Human Exposure to Antimony. III. Contents in Some Human Excreted Biofluids (Urine, Milk, Saliva)

54
This article was downloaded by: [Laurentian University] On: 06 February 2013, At: 06:36 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Critical Reviews in Environmental Science and Technology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/best20 Human Exposure to Antimony. III. Contents in Some Human Excreted Biofluids (Urine, Milk, Saliva) Montserrat Filella a b , Nelson Belzile c & Yu-Wei Chen c a Institute F.-A. Forel, University of Geneva, Versoix, Switzerland b SCHEMA, Rameldange, Luxembourg c Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada Accepted author version posted online: 12 Jan 2012.Version of record first published: 05 Feb 2013. To cite this article: Montserrat Filella , Nelson Belzile & Yu-Wei Chen (2013): Human Exposure to Antimony. III. Contents in Some Human Excreted Biofluids (Urine, Milk, Saliva), Critical Reviews in Environmental Science and Technology, 43:2, 162-214 To link to this article: http://dx.doi.org/10.1080/10643389.2011.604257 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Transcript of Human Exposure to Antimony. III. Contents in Some Human Excreted Biofluids (Urine, Milk, Saliva)

This article was downloaded by: [Laurentian University]On: 06 February 2013, At: 06:36Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registeredoffice: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Critical Reviews in EnvironmentalScience and TechnologyPublication details, including instructions for authors andsubscription information:http://www.tandfonline.com/loi/best20

Human Exposure to Antimony. III.Contents in Some Human ExcretedBiofluids (Urine, Milk, Saliva)Montserrat Filella a b , Nelson Belzile c & Yu-Wei Chen ca Institute F.-A. Forel, University of Geneva, Versoix, Switzerlandb SCHEMA, Rameldange, Luxembourgc Department of Chemistry and Biochemistry, Laurentian University,Sudbury, Ontario, CanadaAccepted author version posted online: 12 Jan 2012.Version ofrecord first published: 05 Feb 2013.

To cite this article: Montserrat Filella , Nelson Belzile & Yu-Wei Chen (2013): Human Exposure toAntimony. III. Contents in Some Human Excreted Biofluids (Urine, Milk, Saliva), Critical Reviews inEnvironmental Science and Technology, 43:2, 162-214

To link to this article: http://dx.doi.org/10.1080/10643389.2011.604257

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representationthat the contents will be complete or accurate or up to date. The accuracy of anyinstructions, formulae, and drug doses should be independently verified with primarysources. The publisher shall not be liable for any loss, actions, claims, proceedings,demand, or costs or damages whatsoever or howsoever caused arising directly orindirectly in connection with or arising out of the use of this material.

Critical Reviews in Environmental Science and Technology, 43:162–214, 2013Copyright © Taylor & Francis Group, LLCISSN: 1064-3389 print / 1547-6537 onlineDOI: 10.1080/10643389.2011.604257

Human Exposure to Antimony. III. Contentsin Some Human Excreted Biofluids

(Urine, Milk, Saliva)

MONTSERRAT FILELLA,1,2 NELSON BELZILE,3 and YU-WEI CHEN3

1Institute F.-A. Forel, University of Geneva, Versoix, Switzerland2SCHEMA, Rameldange, Luxembourg

3Department of Chemistry and Biochemistry, Laurentian University, Sudbury,Ontario, Canada

Humans are exposed to antimony through a variety of natural andanthropogenic sources. Even though the real value of the approachis still uncertain, it has become common practice to use excretedbiofluids (i.e., urine, milk, saliva) to diagnose pollutant exposuredue to the noninvasive nature of sampling these fluids. In this thirdreview of the series on human exposure to antimony, the authorspresent a critical discussion of the available literature, focusing onantimony concentrations in urine, milk, and saliva, while main-taining their three specific objectives: (a) objective evaluation ofpublished data in consideration of the methodology, (b) establish-ment of a range of reasonable values for antimony concentrationsin the biofluids covered in the review, and (c) assessment of the use-fulness of the data in assessing environmental and occupationalexposure. The authors observed that most data collected are notsupported by the analysis of certificate reference materials, a largenumber of papers have reported concentrations that are close to thedetection limit of the analytical techniques used, and recent studiesusing more sensitive techniques report lower concentration values.When these methodological limitations are taken into account, itbecomes difficult to establish a reliable antimony background valuefor human urine from healthy unexposed individuals; though anupper limit of 0.1 μg L−1 can be suggested. Using antimony con-tent in urine appears justified when examining occupational andenvironmental exposure to nearby localized sources (e.g., mines,

Address correspondence to Montserrat Filella, Institute F.-A. Forel, University of Geneva,10 route de Suisse, CH-1290 Versoix, Switzerland. E-mail: [email protected]

162

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 163

smelters) studies, but its usefulness is less clear for assessing theeffect of diffuse pollution. The very limited number of studies onhuman milk and saliva does not allow any solid conclusions to bedrawn.

INTRODUCTION

Human biomonitoring is defined as the direct evaluation of people’s expo-sure to environmental or occupational contaminants by measuring the latteror their metabolites in blood, urine, hair, or other specimens. Biomonitoringdoes not reveal routes of exposure, nor does it provide any insight into thetoxicokinetic processes that take place after the compound’s intake. How-ever, it provides an integrative measure of the internal dose received by anindividual from all routes of exposure in his or her lifestyle; it might this beuseful information, supplementing other types of environmental monitoring.

The approach is based on the hypothesis that, once inside the body,any element is transported and distributed through the blood into organsand, totally or partially, removed from the organism through different ex-cretory pathways, such as sweat, hair, urine, and feces. The trait that theconcentration of an element in the specimen analyzed responded noticeablyto variations in exposure is sought. Blood and urine are the most widelyanalyzed human biofluids.

One of the difficult issues in human biomonitoring is the need to knowreference concentration values (i.e., concentrations that are expected to bepresent in the general population in the absence of occupational exposure)for the different substances of interest. In principle, such reference valuesneed to take into account the wide normal range of concentration exhibitedby the general population, which might include substantial differences inindividual susceptibility. Although clear procedures for determining them doexist (see, for instance, International Union of Pure and Applied Chemistryguidelines in Poulsen et al., 1997), their establishment for many substanceshas been hampered so far by the lack of reliable data on concentration.The inconsistency of concentration values in the literature for many traceelements in biological samples and the negative impact of this when trying totrack environmentally and occupationally derived variability is a recognizedproblem (i.e., Parr et al., 1991).

In this study, published values of antimony concentrations in urineand other noninvasive liquid matrices have been compiled and reviewed.Although antimony is not used in large quantities, it is used extensivelyfor many purposes. It is well known that it has been used since antiq-uity as a drug to induce emesis and to treat other conditions, as well asin cosmetics. Main current uses include as grid metal in lead storage bat-teries and as antimony oxide in fire retardants, but there are many others

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

164 M. Filella et al.

(e.g., solder, sheet and pipe metal, type metal, castings, ammunition andpewter, glass for cathode ray tubes, in pigments, stabilizers and catalystsfor plastics, cable covering) that might result in extensive human exposure.Therefore, methods capable of measuring exposure from diffuse sources(i.e., the uses mentioned previously as well as recycling and incinerationof antimony-containing compounds) such as urine and milk analysis, areparticularly interesting for this element.

The objectives of this study were to (a) evaluate published data froma methodological point of view, (b) establish a range of plausible valuesfor antimony concentrations in human excreted biofluids, and (c) assess theutility of using antimony concentrations in urine in medical, occupational,and environmental studies. This study complements previous publicationswhere we have reviewed different aspects of antimony behavior in the envi-ronment (Belzile et al., 2011; Filella, 2010; Filella et al., 2002a, 2002b, 2006,2009) and, in particular, the use of hair and nails in human biomonitoring(Filella et al., 2011).

METHODS

A systematic search of our database of studies related to antimony thatcurrently comprises more than 3,300 articles has been supplemented withsearches using various search engines (Web of Science, SciFinder, andPubMed; keywords: antimony, milk, saliva, semen, sweat, tears, urine). Allarticles in our database were individually examined. The result of our searchcan be considered to be comprehensive but not exhaustive. Only articleswritten in Chinese, English, French, German, Italian, Portuguese, and Span-ish were included. Secondary sources were avoided as much as possible and,in particular, values uncritically reproduced in books have been excluded.

RESULTS AND DISCUSSION

Urine

Urine is the second most commonly used biofluid for human biomonitoring(Esteban and Castano, 2009), its main advantage arising from being a nonin-vasive matrix. A total of 74 studies containing antimony data were collected.Publication dates range from 1954 to 2011. The values collected are pre-sented in Table 1. This table also includes information on the geographicalorigin of the samples, number of subjects sampled, type of urine samples,and analytical methodology applied (i.e., storage, pretreatment, and measur-ing analytical method). When available, information related to the quality ofthe analytical procedure (i.e., limit of detection, use of certificate referencematerials) is also included. It is important to point out that, unfortunately,

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

1.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

Val

ue

range

or

Pre

trea

tmen

tSa

mple

Num

ber

of

Typ

eof

oth

erst

atis

tical

and

origi

na

indiv

idual

surine

Units

bM

ean

cErr

ord

Med

ian

ein

form

atio

nf

dig

estio

ng

Tec

hniq

ueh

CRM

?iRef

eren

ce

Work

ers

expose

dto

air

conta

inin

gab

out

3m

gSb

m−3

113

(tota

l);not

clea

rhow

man

ypro

vided

urine

sam

ple

s

mg

L−1

0.8–

9.6

NI

Fred

eric

k,19

41N

MB

rieg

eret

al.,

1954

Work

ers

met

allu

rgic

alw

ork

s,CZ

gL−

1pea

ksat

1500

,13

75,

3500

,33

90N

IG

oodw

inan

dPag

e,19

43N

MK

luci

kan

dK

emka

,19

60Controlin

ast

udy

on

bilh

arzi

asis

Sbtrea

tmen

t2

ng

mL−

16.

23.

1st

ora

ge:N

IN

AA

NM

Man

sour

etal

.,19

67

Work

ers

Sbpro

cess

ing

indust

ry,U

S28

spot

μg

L−1

7–10

20N

IN

IN

MCooper

etal

.,19

68

Hyp

erpar

athyr

oid

ism

pat

ients

:24

hr

μg

day

−1st

ora

ge:–2

0◦C

NAA

NM

Bost

rom

and

Wes

ter,

1969

-untrea

ted

40.

6–6.

0-5

day

saf

ter

oper

atio

n1

4.6

(0.6

bef

ore

)-6

day

saf

ter

12.

3(6

.0bef

ore

)-10

day

saf

ter

12.

6(4

.5bef

ore

)-17

day

saf

ter

11.

4(1

.5bef

ore

)Control

23.

0–4.

0“N

orm

alco

nce

ntrat

ions”

μg

L−1

<0.

05lit

erat

ure

valu

esSc

hro

eder

and

Nas

on,19

71m

gday

−1<

0.07

Hyp

erte

nsi

vepat

ients

trea

ted

with

chlo

rthal

idone

μg

day

−1st

ora

ge:N

IN

AA

NM

Wes

ter,

1973

-bef

ore

trea

tmen

t14

1.5

0.57

0.52

–2.6

-during

trea

tmen

t14

1.4

0.58

0.58

–2.7

Hyp

erte

nsi

vepat

ients

trea

ted

with

hyd

rala

zine

μg

day

−1st

ora

ge:N

IN

AA

NM

Wes

ter,

1975

-bef

ore

trea

tmen

t5

2.0

0.52

1.3–

2.6

-during

trea

tmen

t5

1.6

0.57

0.67

–2.0

Ital

ian

popula

tion

NM

μg

day

−1<

0.3

ster

ilize

dN

AA

NM

Cle

men

te,19

76(C

onti

nu

edon

nex

tpa

ge)

165

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

1.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

(Con

tin

ued

)V

alue

range

or

Pre

trea

tmen

tSa

mple

Num

ber

of

Typ

eof

oth

erst

atis

tical

and

origi

na

indiv

idual

surine

Units

bM

ean

cErr

ord

Med

ian

ein

form

atio

nf

dig

estio

ng

Tec

hniq

ueh

CRM

?iRef

eren

ce

Four

groups

Ital

ian

popula

tion:

allfo

r3–

5day

gday

−1no

pre

vious

trea

tmen

tN

AA

NB

Sorc

har

dle

aves

:N

RS

Cle

men

teet

al.,

1977

-A,m

ounta

ins,

pollu

tion

Hg

10<

0.5

<0.

1–92

5

-B,se

a,m

ediu

msi

zeto

wn,in

dust

ries

10<

0.1

<0.

1–1.

0

-C,m

ediu

msi

zeto

wn

10<

0.1

<0.

1–0.

16-D

,la

rge

tow

n10

0.1

0.1–

0.14

Ital

ian

popula

tion

49al

lfo

r3–

5day

gday

−1<

0.1

no

det

ails

give

nN

AA

NB

Sorc

har

dle

aves

:N

RS

Cle

men

teet

al.,

1978

Adult

valu

esco

mpila

tion

μg

day

−1<

70,1.

50,3.

50lit

erat

ure

valu

es(S

chro

eder

and

Nas

on,19

71;

Wes

ter,

1973

;Bost

rom

and

Wes

ter,

1969

)

Iyen

gar

etal

.,19

78

Work

ers

Pb-S

bin

dust

ry,G

B:

24-h

gL−

1st

ora

ge:

refr

iger

ator

afte

rac

idifi

catio

nno

dig

estio

n

SE(A

PD

C-

IBM

K)

+ET-A

AS

NM

Smith

and

Griffi

ths,

1982

-ex

pose

dper

sons

poole

d43

.80.

7416

52.5

10–2

20-unex

pose

dper

sons

18≤1

(11

per

s.)

2(2

per

s.)

3(3

per

s.)

4(1

per

s.)

5(1

per

s.)

Origi

nunkn

ow

gL−

12.

626

%co

llect

ion

ove

rco

nce

ntrat

ion

HCl

filtr

atio

n2×

mem

bra

ne

filte

rs

resi

n+

HG

-ICP-E

S(0

.07)

only

for

SeFo

dor

and

Bar

nes

,19

83

Origi

nunkn

ow

n3

μg

L−1

1.12

0.32

(n=

10)

pre

trea

tmen

tan

dst

ora

ge:N

IH

ClO

4-H

2SO

4hot

open

dig

estio

n

ASV

NM

Rat

etal

.,19

851.

150.

20(n

=8)

1.22

0.38

(n=

12)

166

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Work

ers

inPb

and

Sbpro

cess

ing

indust

ry,G

B10

NM

μg

L−1

29

12–6

4st

ora

ge:N

Ino

dig

estio

nSE

(APD

C-

IBM

K)

+ca

ndolu

min

es-

cence

NM

Cla

rkan

dPat

el,

1986

Indiv

idual

sw

ith3

NM

μg

mL−

10.

0014

,0.

001,

All

n=

6st

ora

ge:4◦

CN

AA

NB

SW

ard,19

86norm

alfo

od

and

0.00

13,

0.00

009,

or

direc

tdee

p(0

.000

gm

L−1)

1577

drink

inta

ke0.

0008

0.00

007

free

zing

Tw

o-d

ayst

arva

tion

10.

0012

0.00

01B

efore

0.00

140.

0001

Gla

ss-p

roduci

ng

indust

ryw

ork

ers,

DE:

end

ofsh

ift

μg

L−1

stora

ge:N

IH

NO

3-H

2SO

4

ashin

g

HG

-AAS

NM

Luder

sdorf

etal

.,19

87-al

l10

91.

90.

2–15

.7-m

elte

r32

0.9

0.2–

2.9

-bat

chm

ixer

455.

01.

5–15

.7-cr

afts

man

80.

90.

4–3.

7-gl

ass

was

her

241.

20.

6–6.

3Control

80.

40.

2–0.

7H

ard-m

etal

indust

ry30

morn

ing

ng

g−1

ww

<4.

8fr

oze

n–8

0◦C

RN

AA

NM

Nic

ola

ou

work

ers,

IT24

hr,

etal

.,19

87Control

3<

3.2

lyophili

zed

48hr

dig

estio

n:H

NO

3

min

eral

izat

ion

afte

rirra

dia

tion

Hea

lthy

nonex

pose

d5

NM

μg

L−1

0.6

0.3–

1.3

stora

ge:N

Isu

bje

cts

HN

O3-H

ClO

4-

H2SO

4dig

estio

nIE

+SE

+G

F-AAS

NB

S15

71K

obay

ashian

dIm

aizu

mi,

1989

Hea

lthy

popula

tion,

Lom

bar

dy,

IT36

0N

gL−

10.

790.

07j

0.1–

3.6

stora

ge:–2

◦ Caf

ter

acid

ifica

tion

dilu

tion

or

dig

estio

n:N

M

ET-A

AS,

ICP-E

S,N

AA

BCR

194,

NB

S26

70,84

19:al

lN

RS,

com

mer

cial

Min

oia

etal

.,19

90

(Con

tin

ued

onn

ext

page

)

167

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

1.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

(Con

tin

ued

)V

alue

range

or

Pre

trea

tmen

tSa

mple

Num

ber

of

Typ

eof

oth

erst

atis

tical

and

origi

na

indiv

idual

surine

Units

bM

ean

cErr

ord

Med

ian

ein

form

atio

nf

dig

estio

ng

Tec

hniq

ueh

CRM

?iRef

eren

ce

“Occ

upat

ional

lyex

pose

dpopula

tions:

”N

gL−

1st

ora

ge:N

Idilu

tion,no

dig

estio

n

ICP-M

S(<

1ng

mL−

1 )M

ulli

gan

etal

.,19

90

-Sa

mple

114

-Sa

mple

238

-Sa

mple

317

6Le

ishm

ania

sis

10μ

gL−

1Sb

(III):

1.6

0.1

1.4–

1.8

pre

trea

tmen

t,H

G-A

AS

NIS

T15

41Pet

itde

Pen

apat

ients

,prior

totrea

tmen

tw

ithG

luca

ntim

eSb

(V):

1.8

0.1

1.5–

2.0

stora

ge:

Burg

uer

aet

al.,

1990

no

dig

estio

n

(0.2

)et

al.,

1990

Work

ers

expose

dto

Sb(V

)in

anonfe

rrous

smel

ter:

20bef

ore

gg−

1CRT

stora

ge:N

Inotcl

ear

whet

her

sam

ple

sw

ere

dig

este

d

GF-

AAS

NM

Bai

llyet

al.,

1991

afte

rsh

ift

-w

etpro

cess

-bef

ore

shift

8.2

3.9

-af

ter

shift

12.3

5.0

-dry

pro

cess

-bef

ore

shift

58.4

62.5

-af

ter

shift

110

76W

ork

ers

inSb

pro

duct

fact

ory

(Hunan

,CN

)12

μg

mL−

10.

030–

0.66

0(G

F-AAS)

0.03

1–0.

641

(colo

rim

etry

)

stora

ge:N

Ino

dig

estio

nCom

par

ison

GF-

AAS

with

5-Br-

PAD

AP

colo

rim

etry

Chen

etal

.,19

92

Leis

hm

ania

sis

pat

ients

,prior

totrea

tmen

tw

ithG

luca

ntim

e

gL−

1Sb

(III):

BD

Lpre

trea

tmen

t,st

ora

ge:B

urg

uer

aan

dBurg

uer

a,19

84

HG

-AAS

(0.2

)U

sem

entio

ned

,no

det

ails

give

n

Burg

uer

aet

al.,

1993

Sb(V

):BD

L

168

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Art

glas

sin

dust

ry30

end

ofsh

ift

μg

L−1

6.8

0.1–

35st

ora

ge:N

IH

G-A

AS

NIS

T26

76c,

Apost

oli

etal

.,w

ork

ers,

ITdig

estio

n:N

M16

43c:

1994

Control

250.

8BD

L-3

NRS;

com

mer

cial

Clo

isonne

work

ers:

urine

during

μg

L−1

stora

ge:N

IFl

amel

ess

NB

Soys

ter

Ara

iet

al.,

-gl

aze

49w

ork

ing

2.93

1.28

2.56

–10.

26dig

estio

n:hot

AA

Stis

sue:

1994

-si

lver

-pla

ting

16hours

2.72

0.64

2.56

–5.1

3H

NO

3(2

.5)

NSb

RS

-pla

ntoffi

ce5

2.56

02.

56–2

.56

Control

622.

710.

582.

56–5

.13

Ref

eren

ceco

nce

ntrat

ions

from

publis

hed

dat

gL−

10.

19–1

.8Li

tera

ture

valu

es(E

linder

and

Frib

erg,

1977

)

Car

oli

etal

.,19

94

Per

sonal

sele

ctio

nof

liter

ature

dat

a—

μg

g−1

ww

1Li

tera

ture

valu

esH

amilt

on

etal

.,19

94SA

Sdat

a(W

alke

r,19

92),

GB

μg

L−1

0.2–

1.1

Ref

eren

ceG

Bva

lues

μg

L−1

1Le

adbat

tery

pro

duct

ion

indust

ry:

end

last

shift

μg

g−1

CRT

stora

ge:N

Idirec

tan

alys

isH

G-A

AS

NM

Ken

tner

etal

.,19

94ofw

ork

ing

wee

k-ca

ster

s7

3.9

2.8–

5.6

-fo

rmer

s14

15.2

3.5–

23.4

Sbsm

elte

rw

ork

shop

(Guiz

hou,CN

)sp

ot

μg

L−1

stora

ge:N

Idig

estio

n:N

Ico

lorim

etry

Huo

etal

.,19

95

air

Sb2O

3(m

gm

−3):

-<

5.0

3516

8.0

182.

00–

544

-5.

1≤

16.7

039

281.

023

618

.0–7

24Controlpopula

tion

192

12.6

2.0

0–60

.0(C

onti

nu

edon

nex

tpa

ge)

169

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

1.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

(Con

tin

ued

)V

alue

range

or

Pre

trea

tmen

tSa

mple

Num

ber

of

Typ

eof

oth

erst

atis

tical

and

origi

na

indiv

idual

surine

Units

bM

ean

cErr

ord

Med

ian

ein

form

atio

nf

dig

estio

ng

Tec

hniq

ueh

CRM

?iRef

eren

ce

Refi

ner

yw

ork

ers

74μ

gL−

10.

08–3

2.6

stora

ge:–2

0◦C

SECom

mer

cial

Smith

etal

.,19

95Chem

ical

man

ufa

cture

rs11

20.

1–36

.1no

dig

estio

n(c

upfe

rron-

IBM

K)

+ET-A

AS

(0.6

9)

Bat

tery

man

ufa

cture

rs36

1.5–

149.

2Control(lab

ora

tory

work

ers)

200.

810.

18–2

.16

Hea

lthy

fres

hm

enuniv

ersi

tyst

uden

ts,CN

:12

8m

orn

ing

μm

olL−

10.

08–8

.13

stora

ge:N

Idig

estio

n:hot

Flam

eAAS

Qin

etal

.19

96

-m

ale

67%

3.12

1.48

HN

O3-H

ClO

4

-fe

mal

e33

%2.

872.

22Ir

ish

infa

nts

<1

year

old

(203

)an

ddea

d(<

2ye

ars)

(17)

210

μg

L−1

0.05

G<

0.02

–0.9

00.

02–0

.11

(25–

75)

stora

ge:–7

0◦C

(Irish

),–2

0◦C

(London)

dilu

tion,no

dig

estio

n

ICP-M

S(0

.01)

BCR

185,

NIS

T15

77a,

1566

aD

elve

set

al.,

1997

London

infa

nts

:-pre

term

new

born

s26

0.28

G0.

03–1

.70.

15–0

.51

(25–

75)

-te

rm13

20.

07G

<0.

02–3

.00.

05–0

.16

(25–

75)

Hea

lthy

infa

nts

:st

ora

ge:–2

0◦C

dilu

tion,no

dig

estio

n

ICP-M

S(0

.004

)N

MD

ezat

eux

etal

.19

97-pre

term

new

born

s26

μg

L−1

ng

mg−

1CRT

0.28

G2.

250.

19–0

.41

1.49

–3.3

9-fu

llte

rm,8

wee

ksold

74μ

gL−

1

ng

mg−

1CRT

0.05

G0.

480.

04–0

.07

0.36

–0.6

5-fu

llte

rm,1

year

old

58μ

gL−

1

ng

mg−

1CRT

0.08

G0.

400.

05–0

.14

0.25

–0.6

5In

fants

dia

gnose

dLR

Iw

ithw

hee

ze43

μg

L−1

ng

mg−

1CRT

0.12

G0.

480.

06–0

.24

0.37

–1.2

5

170

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Unex

pose

dper

sons,

DE

1424

hr

μg

L−1

0.08

20.

077

0.01

2–0.

17st

ora

ge:–4

◦ Caf

ter

acid

ifica

tion

dilu

tion,no

dig

estio

n

ICP-M

S(0

.03)

notuse

dSc

hra

mel

etal

.,19

97

Ran

dom

lyse

lect

edhea

lthy

infa

nts

firs

tye

aroflif

e,IE

:97

(all)

μg

L−1

ng

mg−

1CRT

0.1

70.0

40.

09–0

.25

(mea

SD)

stora

ge:fr

eezi

ng

dilu

tion,no

ICP-M

S(0

.01

μg

L−1 )

NM

Culle

net

al.,

1998

0.42

-2–

6w

eeks

17μ

gL−

10.

160.

03dig

estio

n-8–

16w

eeks

160.

160.

03-20

–18

wee

ks18

0.18

0.04

-33

–41

wee

ks22

0.17

0.05

-48

–56

wee

ks27

0.18

0.04

“Unex

pose

d”

adults

inLo

wer

Saxo

ny,

DE

4724

hr

μg

day

−11.

611.

23<

0.5–

4.74

BD

L:7

sam

ple

sst

ora

ge:–2

0◦C

afte

rac

idifi

catio

nG

F-AAS

(0.5

μg

L−1 )

NM

Geb

elet

al.,

1998

a

Geo

genic

ally

expose

dad

ults

innorther

nPal

atin

ate,

DE

891.

030.

60<

0.5–

5.35

BD

L:40

sam

ple

sno

dig

estio

n

Geo

genic

ally

expose

dad

ults

innorther

nPal

atin

ate,

DE:

24hr

μg

day

−1st

ora

ge:N

Mno

dig

estio

nG

F-AAS

(0.5

μg

L−1 )

Com

mer

cial

Geb

elet

al.,

1998

b

-m

an88

1.12

0.66

BD

L-4.

73-w

om

an10

80.

650.

34B

DL-

4.62

“Unex

pose

d”

adults

inLo

wer

Saxo

ny,

DE

75μ

gday

−11.

531.

11B

DL-

5.86

stora

ge:–2

0◦C

afte

rac

idifi

catio

nno

dig

estio

n

GF-

AAS

(0.5

μg

L−1 )

NM

Geb

elet

al.,

1998

c

Geo

genic

ally

expose

dad

ults

innorther

nPal

atin

ate,

DE

196

0.86

0.46

BD

L-4.

73

(Con

tin

ued

onn

ext

page

)

171

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

1.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

(Con

tin

ued

)V

alue

range

or

Pre

trea

tmen

tSa

mple

Num

ber

of

Typ

eof

oth

erst

atis

tical

and

origi

na

indiv

idual

surine

Units

bM

ean

cErr

ord

Med

ian

ein

form

atio

nf

dig

estio

ng

Tec

hniq

ueh

CRM

?iRef

eren

ce

Ref

eren

cem

anre

eval

uat

ion

μg

day

−1<

0.1

–5?

liter

ature

valu

esIy

enga

r,19

98Child

ren

from

Rom

e,IT

30m

orn

ing

μg

L−1

0.06

<0.

01–0

.53

stora

ge:–2

8◦C

dig

estio

n:

HN

O3-H

2O

2+

UV

irra

dia

tion

Q-I

CP-M

S(0

.012

)sp

iked

NIS

T26

70K

rach

ler

etal

.,19

98a

U.S

.re

siden

ts(N

HA

NES

III,

1988

–199

4)49

gL−

11.

300.

74G

<0.

3–4.

17(2

5–95

)73

.5%

AD

L0.

38–2

.82

(25–

95)

stora

ge:–2

0◦C

dilu

tion,no

dig

estio

n

ICP-M

S(0

.3)

NIS

T26

70Pas

chal

etal

.,19

98

μg

g−1

CRT

1.00

0.67

GIn

fants

dyi

ng

from

SID

S,IE

8ng

mg−

1CRT

0.56

0.02

–3.9

1BD

L:1

sam

ple

stora

ge:–7

0◦C

pre

trea

tmen

t:IC

P-M

S(0

.01

μg

L−1 )

NM

Culle

net

al.,

2000

Control,

IE4

0.67

0.24

–1.2

1D

elve

set

al.,

1997

U.S

.re

siden

ts15

27ra

ndom

,24

hr

μg

L−1

BD

L:96

%ofra

ndom

,82

%of24

-hr

stora

ge:N

Idilu

tion,no

dig

estio

n

ICP-M

S(1

)N

MK

om

arom

y-H

iller

etal

.,20

00

Nonex

pose

dper

son

Asp

ot

μg

L−1

<0.

12st

ora

ge:4◦

Cdig

estio

n:hot

HG

-AAS

NIS

T26

70;

com

mer

cial

Kra

chle

ran

dEm

ons,

2001

Nonex

pose

dper

son

B<

0.12

H2SO

4+

HN

O3

+H

ClO

4+

HF

Exp

ose

dper

son

A8.

30.

3n

=5

Exp

ose

dper

son

B5.

10.

4n

=5

Nonsm

oki

ng

unex

pose

dhea

lthy

subje

cts

19m

gL−

10.

116

0.06

10.

116

0.01

2–0.

223

stora

ge:

refr

iger

ator

dilu

tion,no

dig

estio

n

SF-I

CP-M

S(0

.004

)Com

mer

cial

Rodush

kin

and

Odm

an,20

01

Endem

icar

senis

mpat

ients

(Guiz

hou

pro

vince

,CN

)16

morn

ing

μg

g−1

CRT

4.8

G1.

2–97

.3st

ora

ge:fr

oze

nH

NO

3-H

2O

2

mic

row

ave

dig

estio

n

ICP-M

SN

MX

ieet

al.,

2001

Control

162.

3G

0.5–

6.4

172

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Sb2O

3hig

h-e

xposu

reoper

ators

:24

beg

innin

g,μ

gL−

1st

ora

ge:–2

0◦C

dig

estio

n:

HR-ICP-M

S(0

.03)

Com

mer

cial

Iavi

coli

etal

.,20

02en

dofsh

ift

-beg

innin

gsh

ift

0.39

0.26

0.16

–1.3

7H

NO

3-H

2O

2

0.34

G1.

7G

+U

V-en

dsh

ift

0.46

0.32

0.16

–1.7

7irra

dia

tion

0.41

G1.

6G

Sb2O

3je

toper

ators

15-beg

innin

gsh

ift

0.18

0.10

0.09

–0.4

80.

16G

1.5

G-en

dsh

ift

0.18

0.06

0.10

–0.2

90.

17G

1.4

GA

lloper

ators

-beg

innin

gsh

ift

390.

310.

240.

10–1

.37

0.25

G1.

8G

-en

dsh

ift

0.36

0.29

0.13

–1.7

70.

29G

1.8

GControl

15m

orn

ing

0.10

0.06

<0.

03–0

.24

0.07

G2.

0G

Controlin

ast

udy

on

Glu

cantim

etrea

tmen

tof

leis

hm

ania

sis

10m

gg−

1CRT

0.00

2st

ora

ge:N

Idilu

tion,no

dig

estio

n

Q-I

CP-M

SCom

mer

cial

Mie

kele

yet

al.20

02

NY

Cfire

figh

ters

,U

gL−

1st

ora

ge,

pre

trea

tmen

t:N

M

no

met

hod

give

n,only

8re

fsfo

r11

0ch

emic

als

NM

Edel

man

etal

.,20

03-in

WTC

fire

and

collp

ase,

Sep

2001

321

0.20

3G

-offi

cedutie

s(c

ontrol)

470.

165

GPopula

tion

from

Ensc

hed

e,N

Laf

ter

ala

rge

fire

work

explo

sion

4466

μg

L−1

0.11

95%

per

centil

e:0.

35st

ora

ge:–3

0◦C

dilu

tion,no

dig

estio

n

Q-I

CP-M

S(0

.11)

Com

mer

cial

de

Boer

etal

.,20

04

EU

hea

lthy,

nonex

pose

dpopula

tion

6324

hr

μg

L−1

0.08

10.

037

GQ

L–1

.30.

07–0

.18

(60–

95)

stora

ge:5◦

Caf

ter

acid

ifica

tion

ICP-M

SQ

L=

3.5

×D

LCom

mer

cial

Hei

tland

and

Kost

er,20

04BQ

L=

32%

dilu

tion,no

=0.

021

BQ

Lva

lues

=Q

L/2

dig

estio

n(C

onti

nu

edon

nex

tpa

ge)

173

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

1.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

(Con

tin

ued

)V

alue

range

or

Pre

trea

tmen

tSa

mple

Num

ber

of

Typ

eof

oth

erst

atis

tical

and

origi

na

indiv

idual

surine

Units

bM

ean

cErr

ord

Med

ian

ein

form

atio

nf

dig

estio

ng

Tec

hniq

ueh

CRM

?iRef

eren

ce

Opto

elec

tronic

sin

dust

ry,

TW

:m

orn

ing

ppb

stora

ge−2

0◦C

HN

O3

ICP-M

S(0

.003

)N

MLi

aoet

al.,

2004

-unex

pose

doffi

cew

ork

ers

670.

300.

002

G0.

431.

68m

icro

wav

edig

estio

n-ex

pose

dw

ork

ers:

103

(all)

0.46

0.00

2G

0.22

1.88

-m

ainte

nan

ce15

0.49

0.00

2G

0.64

1.64

-dope

film

520.

330.

002

G0.

421.

88

-en

ginee

rs36

0.35

0.00

2G

0.44

1.64

Poole

d(3

0–35

indiv

idual

spec

imen

s),SW

3ng

L−1

70–1

20pre

trea

tmen

tan

dst

ora

ge:N

Idilu

tion,no

dig

estio

n

SF-I

CP-M

S(0

.004

)Com

mer

cial

Rodush

kin

etal

.,20

04

Cer

roG

rande

Fire

,U

S:sp

ot

μg

g−1

CRT

stora

ge:fr

eezi

ng

ICP-M

SN

MW

olfe

etal

.,20

04-fire

figh

ters

770.

090.

07G

max

:0.

31dig

estio

n:N

M

-ge

ner

alpopula

tion

131

0.13

0.10

Gm

ax:0.

56

Hea

lthy

subje

cts

from

central

IT:

50(a

ll)N

Mng

L−1

66.6

55.4

G39

.060

.811

.3–1

7924

–119

(10–

90)

stora

ge:–3

0◦C

dilu

tion,no

Q-I

CP-M

S(1

.09)

NM

Alim

onti

etal

.,20

05

-m

ale

2580

.069

.8G

38.8

80.0

16.5

–179

30.6

–130

(10–

90)

dig

estio

nSF

-ICP-M

S(0

.43)

-fe

mal

e25

53.3

43.9

G35

.139

.211

.3–1

4621

.8–1

06(1

0–90

)U

.S.re

siden

ts(N

HA

NES

1999

–200

0)22

76N

gL−

10.

13G

0.05

–0.4

2(1

0–95

))st

ora

ge:–2

0◦C

dilu

tion,no

dig

estio

n

ICP-M

S(0

.04)

NM

Cal

dw

ellet

al.,

2005

Hea

lthy

volu

nte

ers,

FR10

0sp

ot

μg

L−1

0.04

0.02

–0.0

8(5

–95)

stora

ge:N

Idilu

tion,no

dig

estio

n

ICP-M

S(0

.003

)Com

mer

cial

Goulle

etal

.,20

05

174

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

U.S

.popula

tion

≥40

year

sold

(fro

mN

HA

NES

1999

–200

0)

725

spot

μg

L−1

0.11

GBD

L-0.

29(1

0–90

)m

ax:5.

70BD

L:9.

0%sa

mple

s

see:

Cal

dw

ellet

al.,

2005

ICP-M

S(0

.04)

NIS

T26

70:N

RS

Nav

as-A

cien

etal

.,20

05

Effec

tofM

CP

on

hea

lthy

adults

,Cal

iforn

ia,U

S:8

24hr

μg

day

−1st

ora

gean

ddig

estio

n:N

MIC

P-M

SCom

mer

cial

Elia

zet

al.,

2006

-day

00.

120.

13-day

10.

100.

13-day

60.

160.

16A

achen

,Erk

elen

z,B

rem

en,

DE:

morn

ing

stora

ge:5◦

Caf

ter

acid

ifica

tion

dilu

tion,no

dig

estio

n

ICP-M

SQ

L=

3.5x

DL

=0.

021

Com

mer

cial

Hei

tland

and

Kost

er,20

06m

iddle

stre

am-ch

ildre

n72

μg

L−1

μg

L−1

μg

g−1

CRT

0.06

3Q

L-0.

72BQ

L=

21%

0.05

–0.1

4(6

0–95

)0.

041

G0.

034

G-ad

ults

87μ

gL−

1

μg

L−1

μg

g−1

CRT

0.06

3Q

L-0.

57BQ

L=

21%

0.04

5–0.

18(6

0–95

)BQ

Lva

lues

=Q

L/2

0.03

9G

0.03

7G

Hum

anurine,

origi

nunkn

ow

n1

NM

ng

mL−

1Sb

(V):

0.94

0.02

n=

3no

pre

trea

tmen

tm

entio

ned

CPE

ETV-ICP-E

SN

MLi

etal

.,20

06Sb

(III):

ND

(Con

tin

ued

onn

ext

page

)

175

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

1.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

(Con

tin

ued

)V

alue

range

or

Pre

trea

tmen

tSa

mple

Num

ber

of

Typ

eof

oth

erst

atis

tical

and

origi

na

indiv

idual

surine

Units

bM

ean

cErr

ord

Med

ian

ein

form

atio

nf

dig

estio

ng

Tec

hniq

ueh

CRM

?iRef

eren

ce

Opto

elec

tronic

sin

dust

ryex

pose

dw

ork

ers,

TW

103

morn

ing

ppb

0.36

0.46

stora

ge:–2

0◦C

pre

trea

tmen

t:Li

aoet

al.,

2004

ICP-M

SLi

aoet

al.,

2006

Control

670.

300.

43Res

iden

tsofZla

taId

ka,SK

(vill

age

close

toan

aban

doned

min

ing

area

)

116

μg

L−1

18.8

14.3

1.3–

87.7

no

det

ails

give

nG

F-A

AS

NM

Rap

antet

al.,

2006

Bra

zilia

nhea

lthy,

nonex

pose

dsu

bje

cts

412

morn

ing

μg

L−1

0.2

0.03

–2.1

4(5

–95)

stora

ge:in

itial

:4◦

C;fr

oze

n–8

0◦C

afte

rac

idifi

catio

ndilu

tion,no

dig

estio

n

Q-I

CP-M

SN

IST

2670

ahig

han

dlo

wle

vel

Bat

ista

etal

.,20

09

Child

ren

(3–1

4ye

ars

old

)in

DE

1729

NM

μg

L−1

0.11

<0.

01–1

.00.

11–0

.31

(50–

95)

AD

L≥

99.9

Ref

valu

e=

0.3

Bec

ker

etal

.,20

08B

ecke

ret

al.,

2008

Bec

ker

etal

.,20

08K

om

mis

sion

”Hum

an-

Bio

monito

ring“

,20

09;Sc

hulz

etal

.,20

09

176

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

NH

AN

ES,

1999

–200

4,U

S:61

10μ

gL−

1st

ora

ge:

refr

iger

atio

nor

free

zing

dig

estio

n:N

I

ICP-M

SN

MRic

hte

ret

al.,

2009

-ove

rall

popula

tion

0.11

G-non

smoke

rs:

-unex

pose

d0.

10G

-lo

wex

posu

re0.

11G

-hig

hex

posu

re0.

12G

-sm

oke

rs0.

13G

Can

adia

npopula

tion

(6–7

8ye

ars

old

),20

07–2

009

5492

μg

L−1

0.08

0.01

BD

L=

22.4

0%st

ora

ge:–2

0◦C

dilu

tion

(0.5

%H

NO

3),

no

dig

estio

n

ICP-M

SN

MH

ealth

Can

ada,

2010

0.04

G0.

01G

Eva

luat

ion

ofSb

exposu

refr

om

Sb-c

onta

inin

gpan

ts:

spot

μg

g−1

CRT

stora

ge:dry

ice

met

hod:

Cal

dw

ellet

al.,

2005

ICP-M

S(0

.032

)N

Mde

Per

ioet

al.,

2010

-fire

dep

artm

entA

(no

pan

tsla

st4

month

s)11

20.

063

G0.

027–

0.28

5

-fire

dep

artm

entB

(pan

tspre

cedin

gtw

ow

eeks

)

960.

054

G0.

017–

0.36

6

Unex

pose

dpre

gnan

tw

om

en,

Toky

o,JP

(200

7,20

08)

78sp

ot

μg

g−1

CRT

All

BD

Lst

ora

ge:–2

0◦C

dilu

tion

and

filtr

atio

n,no

dig

estio

n

ICP-M

S(0

.21)

Com

mer

cial

Shirai

etal

.,20

10

Adults

,Puch

unca

vıva

lley,

CL

(clo

seto

anin

dust

rial

com

ple

x)

8sp

ot

μg

L−1

AD

L:6,

6.3

BD

L:6

sam

ple

sst

ora

ge:4◦

Cdilu

tion

and

filtr

atio

n,no

dig

estio

n

HPLC

-HG

-AFS

(0.1

)N

MQ

uiroz

etal

.,20

11

(Con

tin

ued

onn

ext

page

)

177

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

1.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

(Con

tin

ued

)V

alue

range

or

Pre

trea

tmen

tSa

mple

Num

ber

of

Typ

eof

oth

erst

atis

tical

and

origi

na

indiv

idual

surine

Units

bM

ean

cErr

ord

Med

ian

ein

form

atio

nf

dig

estio

ng

Tec

hniq

ueh

CRM

?iRef

eren

ce

NH

AN

ES,

1999

–200

4,U

S:-19

99–2

000

-20

01–2

002

-20

03–2

004

-20

05–2

006

-20

07–2

008

2276

2690

2558

2576

2627

μg

L−1

95%

confiden

cein

terv

al:

0.12

0–0.

145

0.12

6–0.

142

k

0.06

6–0.

081

0.05

7–0.

066

Ric

hte

ret

al.,

2009

Ric

hte

ret

al.,

2009

LD:0.

04,0.

04,

0.07

,0.

032,

0.03

2,re

spec

tivel

y

Ric

hte

ret

al.,

2009

NH

AN

ES,

2011

0.13

2G

0.13

4G

k

0.07

3G

0.06

1G

Not

e.Val

ues

are

give

nin

chro

nolo

gica

lord

er.

a Inte

rnat

ional

country

codes

follo

wth

eIS

O31

66co

nve

ntio

n.

bThe

origi

nal

units

are

alw

ays

give

nin

ord

erto

avoid

unnec

essa

ryer

rors

.Rem

ember

that

gg−

1=

ng

mg−

1 ,μ

gL−

1=

ng

mL−

1 ,an

dm

gL−

1=

μg

mL−

1 .c B

ydef

ault,

arith

met

icm

ean.G

eom

etric

mea

nw

hen

the

valu

eis

follo

wed

by

G.In

som

eca

ses,

both

mea

nva

lues

are

give

n.W

hen

the

valu

eap

pea

rsin

italic

s,it

has

bee

nca

lcula

ted

by

us

from

publis

hed

valu

es.

dBy

def

ault,

stan

dar

ddev

iatio

n.

Geo

met

ric

stan

dar

ddev

iatio

nw

hen

the

valu

eis

follo

wed

by

G.

Rel

ativ

est

andar

ddev

iatio

nw

hen

the

valu

eis

follo

wed

by

aper

centa

gesi

gn.

e When

the

valu

eap

pea

rsin

italic

s,it

has

bee

nca

lcula

ted

by

us

from

publis

hed

valu

es.

f By

def

ault,

mea

sure

dra

nge

.Fi

gure

sin

bra

cket

sfo

llow

ing

the

quote

dva

lues

are

per

centil

es.

g NI=

notin

dic

ated

.hW

hen

give

n,th

eva

lue

ofth

edet

ectio

nlim

itis

quote

din

bra

cket

sunder

the

tech

niq

ue.

i NM

=notm

entio

ned

;N

RS

=no

resu

ltssh

ow

n(n

eith

erfo

ran

timony

nor

for

oth

erel

emen

ts);

NSb

RS

=no

Sbre

sults

show

n(b

utre

sults

for

oth

erel

emen

tsgi

ven).

See

Tab

le2

for

listofCRM

and

corr

espondin

gan

timony

valu

es.

j σ/n

1/2 t

valu

ew

her

=st

andar

ddev

iatio

n,n

=num

ber

ofobse

rvat

ions,

t=

Fisc

her

coef

fici

entfo

rn

–1

(p=

0.05

).k N

otca

lcula

ted:pro

portio

nofre

sults

bel

ow

limit

ofdet

ectio

nw

asto

ohig

hto

pro

vide

ava

lidre

sult.

178

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 179

not every study contained all the information needed for a valid assessmentof the quality of the data reported.

Results are reported in their original units and only original parameters(arithmetic or geometric mean, median, error, range) are quoted. Only ina very few cases did we calculate median values from published valuesfor comparison purposes; the corresponding values appear in italics. Somestudies investigated a very limited number of samples. In these cases, thestatistical meaning of the results may be limited. Moreover, strictly speaking,mean and standard deviation values can be calculated only when data arenormally distributed but these parameters are sometimes published withouttesting for normality. The median and the 95th percentile should also bequoted, but this is not always the case.

Two different types of urine samples can be collected, spot and 24-hrsamples. The collection of spot samples is easier but they have the disadvan-tage of varying volume and chemical concentration. Most of the publishedantimony values are spot samples (only 12 studies of 72 reported 24-hr dataonly).

Concentrations in urine are usually expressed as mass of substance perunit volume of urine. To take into account the variability derived from thevariability in urine volume, creatinine normalization (i.e., dividing the urinaryconcentration of the substance of interest by the urinary creatinine concen-tration) is often applied, particularly to spot urine samples (Barr et al., 2005;Poulsen et al., 1997). However, the use of creatinine-based values has beensubject to controversy (Alessio et al., 1985; Boeniger et al., 1993; Green-berg and Levine, 1989). The World Health Organization (1996), in its 1996guidelines on biological monitoring at the workplace, recommended theuse of creatinine only as an exclusion criterion (i.e., to include in occu-pational studies only urine samples with a creatinine concentration in therange of the excretion rate of the adult working population). More recently,the Human Biomonitoring Commission of the German Federal EnvironmentAgency (2005) recommended determining the creatinine content of urinesamples but only for the purpose of orientation. Creatinine excretion is sig-nificantly lower in children and the elderly in particular, and some authorsthink that creatinine correction can be used in homogeneous populationsbut that variability across levels in multiple demographic groups may behigh (Barr et al., 2005; Fried et al., 1995). For all these reasons, creatinine-corrected values are included in Table 1, but have not been taken accountof in the discussion that follows. It must be pointed out that only eight stud-ies contained creatinine-only data; usually when creatinine-based values aregiven, they accompany uncorrected ones.

Any analysis includes several well-known steps: sampling, stor-age, pretreatment (e.g., digestion/dilution), and measurement. Antimonydetermination-related issues will be discussed subsequently following thisorder.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

180 M. Filella et al.

Unfortunately, information about the conditions of sampling and sam-ple conservation is most often missing from published studies. Avoidingcontamination during the sampling step is a prerequisite in any analyticaldetermination. However, in the case of human urine, this might be par-ticularly difficult because samples are mostly taken in hospitals and notalways under well-controlled conditions. More than 10 years ago, Delveset al. (1997) measured antimony released from materials used in handlingand storage of body fluids and tissues and advised that attention be paidto preanalytical factors in order to avoid contaminating the samples withantimony. It should also be mentioned that antimony trioxide is extensivelyused by the polymer industry as a polycondensation catalyst in the produc-tion of polyethylene terephthalate (PET) and release of antimony from PETcontainers has been demonstrated (Shotyk et al., 2006; Shotyk et al., 2005).Apart from its possible toxicological implications, these results suggest thatsample contamination in the laboratory by antimony-bearing containers andsample-handling equipment could be more widespread than generally as-sumed. Migration of antimony has also been observed from PET containersinto orange juice (Hansen and Pergantis, 2006) and from food trays or PETmaterials to food (Fordham et al., 1995; Haldimann et al., 2007). The possibleimplications for sample conservation and treatment of clinical samples havenot been studied.

Preservation procedures are designed to ensure the stability of theanalyte in the samples from sampling to measurement. Little informa-tion is available about the stability of antimony species in matrices suchas urine samples. Freezing is possibly the most common method usedto preserve urine samples and, for this reason, it has been widely ap-plied to the samples considered here (Table 1). However, very recently,Quiroz et al. (2011) checked the stability of antimony species in spikedurine samples at 4 ◦C and –70 ◦C and their results revealed that antimonyspecies were highly unstable at –70 ◦C, probably due to coprecipitationreactions. Previous results by Lindemann et al. (2000), who spiked NIST2670 reference material with Sb(III) and Sb(V) (20 and 5 μg L−1, respec-tively), concluded that urine samples should be analyzed immediately aftercollection.

Most of the older determinations were performed by neutron activationanalysis (NAA), a technique that does not require digestion of the sample.However, the rest of the techniques require prior digestion of the sample,particularly in samples such as urine with a high organic content. Never-theless, a digestion step always introduces the risk of contamination and, inthe case of antimony, the additional risk of losing the element as its volatilechloride (Gorsuch, 1962). The use of a method where no hydrochloric acid isadded is recommended and care has to be taken to evaporate acidic samplesthat naturally contain chlorides, such as urine.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 181

Direct determination, without digestion of the sample, has sometimesbeen preferred when applying inductively coupled plasma mass spectrom-etry (ICP-MS). However, various authors recommended sample digestionbecause ICP-MS may suffer from a significant decrease in detection powerduring the analysis of imperfectly digested biological samples, and sampleswhere the organic matrix of biological samples has been completely oxi-dized produce more accurate and reproducible results. For instance, Schram-mel et al. (1999) stated that the spectral and nonspectral interferences aredistinctly reduced and long-term stability of the ICP-MS is considerably im-proved when samples are digested to destroy the organic matrix. But, accord-ing to these authors, the demands placed on sample digestion are normallynot very stringent, as there is sufficient thermal energy in the ICP systemto ensure complete destruction of the organic matter if this has not alreadybeen achieved by sample digestion. A comparison of the effect of digestionversus dilution and UV irradiation can be found in Krachler et al. (1998a).These authors recommended Sb be determined by Q-ICP-MS after 1:10 di-lution with high purity water of centrifuged samples. However, the sameauthors used a harsh digestion method (hot digestion involving H2SO4 +HNO3 + HClO4 + HF) in a later study (Krachler et al., 2001). As is the casefor dilution (Table 2), digestion methods and conditions used in the studieswhere antimony has been determined are rarely the same. They are detailedin Table 3. It should finally be mentioned that dilution of the samples mayalso underestimate antimony concentrations if samples are not adequatelymixed and urine sediment is not uniformly sampled, although, according toKrachler et al. (1998a), urine sediment does not contain antimony at levelsaffecting the final results.

As mentioned previously, most of the older determinations were per-formed by NAA (10 studies, period 1967–1990). However, the use of thistechnique to detect antimony in urine has not been as widespread as forother matrices, such as hair (Filella et al., 2011). Reported NAA-based valuestend to be higher than more recent values obtained by using other tech-niques. According to Versieck and Cornelis (1989) a possible reason mightbe the use of quartz vials as an irradiation container and the inevitable blankthey contribute to the sample. As long as the quartz material used containsmeasurable amounts of antimony, doubt will persist according to these au-thors. Nowadays, ICP-MS is largely the technique of choice. First appliedby Mulligan et al. (1990) to urine in 1990, it has since been employed inmore than 30 studies. Atomic absorption (AAS) based techniques have alsobeen relatively used, with graphite furnace (10 articles) and hydride gener-ation (HG; six articles) being those most applied. Hydride generation hasalso been used on one occasion coupled with ICP-ES and once with atomicfluorescence spectroscopy (AFS).

Not all studies use certificate reference materials (CRM) to check forthe accuracy of the analytical method. CRM mentioned in the published

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

182 M. Filella et al.

TABLE 2. Examples of dilution methods employed in Sb determinations in human urine

Method Reference(s)

1 + 9 with 2% (v/v) HNO3 Mulligan et al., 1990;Caldwell et al., 2005

Direct analysis Kentner et al., 1995200 μL urine + 2.6 mL water Delves et al., 19978.9 mL urine + 0.5 mL HCl + 0.1 mL internal standard

(dilution factor: 1.124)Schramel et al., 1997

“Aqueous dilution of 200 μL volumes” Cullen et al., 19981–50-fold dilution with water after urine centrifugation

(conditions not given)Krachler et al., 1998a

500 μL urine + 500 μL 15% HNO3, mixing and dilution to5 mL with water

Komaromy-Hiller et al.,2000

0.5 mL urine made up to 10 mL with 0.14 M HNO3 Rodushkin and Odman,2001

Dilution (1:10 or 1:100) with water Miekeley et al., 2002Five times dilution with 1% (v/v) HNO3 de Boer et al., 20041 mL urine (already acidified when sampling) + 100 μL conc.

HNO3, filling up to 5mL with waterHeitland and Koster,

2004, 20061 mL specimen + 9 mL 2% HCl Rodushkin et al., 20041+ 9 (v/v) with 1% HNO3 Alimonti et al., 20050.4 (or 0.6) mL urine, addition 3.6 (or 2.3) mL solution 0.65%

(w/v) HNO3 + 0.01% (v/v) Triton + 0.5% (v/v) butanolGoulle et al., 2005

500 μL urine (already acidified when sampling) in 10 mL0.5% (v/v) HNO3 + 0.005% (v/v) Triton X-100

Batista, 2009

1 mL urine + 0.3 mL conc. HNO3, filling up to 10 g andfiltration (0.45 μm)

Shirai et al., 2010

TABLE 3. Examples of digestion methods employed in Sb determinations in human urine

Method Reference(s)

HNO3-H2SO4 ashing Ludersdorf et al., 1987100–200 mL urine in a Teflon beaker, addition of 30 mL

HNO3 + 3.3 mL H2SO4 + 2 mL HClO4; time not givenKobayashi and Imaizumi,

19895 mL urine in a tight Teflon container, addition of

2.5 mL conc. HNO3, placement in a hot-air circulatingdesiccator at 130◦C for 90 min

Arai et al., 1994

10.0 mL urine + 10.0 mL 3:1HNO3-HClO4, hot digestion(100–150◦C) until colorless

Qin et al., 1996

- 2 mL urine in a Teflon vessel, addition of 1 mL conc.HNO3 + 0.5 mL 30% H2O2, placement in a microwaveoven (250–800 W) for less than 30 min

Krachler et al., 1998a

- 5 mL urine + 2 mL H2O2 + 1 mL HNO3, irradiation byUV (500 W lamp) for 90 min

3 mL urine in an open glassy C vessel, addition of 0.5 mLH2SO4 + 3 mL HNO3 + 0.5 mL HClO4 + 0.1 mL HF,placement in an Al heating block; time not given

Krachler et al., 2001

1 mL urine + 0.4 mL conc HNO3 + 0.2 mL H2O2 in amicrowave oven; time not given

Xie et al., 2001

1 mL urine + 0.25 mL 65% HNO3 + 0.5 mL 30% H2O2,irradiation by UV (500 W Hg lamp) for 90 min

Iavicoli et al., 2002

5 mL urine + 65% HNO3 in a microwave oven (300 W)for 4 min

Liao et al., 2004; Liao et al.,2006

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 183

TABLE 4. CRM used in the studies reported in Tables 1 and 6a

Reference MaterialCertified Sb

concentration Other Sb concentrations

BCR 063 skim milk powder none noneBCR 150 skim milk powder,

spikednone none

BCR 185R bovine liver none noneBCR 194 bovine blood none noneIAEA A-11 cow milk powder none noneNBS 1571 orchard leaves (2.9 ± 0.3) μg g−1

NBS 1577 bovine liver none 0.005 μg g−1 (not certified)NBS 1633b constituents elements

in coal fly ashnone 6 mg kg−1 (not certified)

NBS 2670 toxic metals infreeze-dried urine

same as NIST 2670 none

NBS 8419 inorganic constituentsin bovine serum

none none

NBS must beNIST 1566

oyster tissue

NIST 1541 iron foil for MossbauerNIST 1547 peach leaves none 0.02 μg g−1 (not certified)NIST 1549 nonfat milk powder none 0.00027 μg g−1 (information

value)NIST 1566a oyster tissue none 0.010 μg g−1 (information

value)NIST 1566b oyster tissue none 0.01 mg kg−1 (reference

value)NIST 1577a bovine liver none 0.003 μg g−1 (not certified)NIST 1577b bovine liver none 0.003 μg kg−1 (not certified)NIST 1640 trace elements in

natural water(13.79 ± 0.42) μg kg−1

NIST 1643c trace elements in water none noneNIST 2670 trace elements in

freeze-dried urinenone none

NIST 2670alow level

toxic elements infreeze-dried urine

(0.971 ± 0.033) μg L−1

NIST 2670ahigh level

toxic elements infreeze-dried urine

(0.824·± 0.070) μg L−1

NIST 2676c metals on filter media(atmosphericparticles)

none none

aCRMs IAEA H-4 (animal muscle), IAEA HM-1 (human milk) and NIES 153 (unknown) are mentioned invery few articles (see Table 6) but it has proved impossible to trace whether they had a (certified or not)antimony concentration value when they were available.

studies are listed in Table 4. A brief inspection reveals that most of themhave no certified value for antimony and that, in the very few cases where aconcentration is known, it largely exceeds antimony concentrations in urine.Thus, the accuracy of published antimony concentration values in urineremains an open question. It should be mentioned that a characteristic featureof this type of analysis is the use of commercial reference materials, the use

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

184 M. Filella et al.

of which is completely unknown in the analysis of other matrices (e.g.,waters, soils and sediments, Filella et al., 2002; hair and nails, Filella et al.,2011). A wide range of commercial materials are used, including: ClinRep(RECIPE Chemicals & Instruments, GmbH, Munich, Germany; Iavicoli et al.,2002), Lyphocheck Urine Metals Control and Lyphocheck Quantitative UrineControl (Bio-Rad Laboratories, different countries; Apostoli et al., 1998; Eliazet al., 2006; Gebel et al., 1998b; Heitland and Koster, 2004; Smith et al.,1995), Clincheck Urine Control (Recipe, Munich, Germany; Heitland andKoster, 2004); Medisafe Urine Control (Medichem, Steinenbronn, Germany;Heitland and Koster, 2004, 2006), Seronorm (Nycomed AS, Oslo, Norway;Krachler and Emons, 2001; Miekeley et al., 2002 (spiked); Minoia et al.,1990; Rodushkin et al., 2004; Rodushkin and Odman, 2001), Seronorm (SeroAS, Billingstad, Norway; De Boer et al., 2004; Goulle et al., 2005; Heitlandand Koster, 2006). Whether all these commercial materials contain knownamounts of antimony or whether they have been used to check for otherelement concentrations in multielemental studies is not known.

Antimony is present in low concentrations in urine of nonexposed indi-viduals, often close to the detection limit (DL) of the techniques commonlyused. In many studies, antimony was not detected in all of the samples. Thisinformation and the way the below detection limit (BDL) samples are takeninto account in calculating the mean or median values themselves are notalways detailed. When BDL values are excluded, published concentrationsoverestimate real values. The effect that the technique DL has on the resultsobtained was clearly shown by Caldwell et al. (2005). These authors analyzed2,276 samples by ICP-MS with a DL = 0.04 μg L−1 and found a geometricmean = 0.13 μg L−1; when they had analyzed 496 samples some years be-fore by ICP but with a DL = 0.3 μg L−1, they had found a geometric mean of0.74 μg L−1. The values collected in Table 1 show a clear decrease of reportedconcentrations over time for nonexposed populations as more recent studiesusing more sensitive analytical techniques. The clear implication is that allvalues obtained in the past by using methods with higher DL than currentICP-MS apparatus probably overestimate antimony concentrations, at least inthe case of nonexposed individuals. Recent values (Caldwell et al., 2005; Cen-ters for Disease Control and Prevention, 2011; Health Canada, 2010; Heitlandand Koster, 2006b; Richter et al., 2009; Schulz et al., 2009), obtained usinglow DL analytical techniques and based on a high number of individuals, arein the range of 0.06–0.13 μg L−1. They make it possible to conclude that an-timony concentrations in the urine of nonexposed individuals do not exceed0.1 μg L−1. Concentration values considered normal by public bodies, whichare based on older—and thus higher—concentrations, probably need to bereconsidered.

In relation to concentrations measured by ICP-MS, it should be men-tioned that, since ICP often involves a multielement determination, less at-tention may be paid to elements present in very low concentrations, such

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 185

as antimony, especially when they are not the primary object of the study(which, for antimony, is often the case) and are simply added to the packagebecause the technique is capable of measuring them.

In Table 5, published studies are classified according to the objective ofthe work, using the following categories: nonexposure values (21 studies),analytical (20), medical (13), environmental (9), and occupational exposure(17). Please note that some articles may fall into two categories.

One of the oldest reasons for the detection and determination of anti-mony in human urine has been to follow up on its excretion after antimony-containing drugs were administered, mainly for the treatment of tropicaldiseases and, in particular, leishmaniasis. The classic article by Goodwin andPage (1943) contains a comprehensive table listing older studies where anti-mony excretion during the treatment of tropical diseases was either detectedor determined quantitatively. The first paper mentioned dates from 1916 (DiCristina and Caronia, 1916). Publication of such studies continued steadilythrough the 1950s (e.g., Chakravarti and Sen Gupta, 1950; Chatterjee et al.,1954; Chatterji et al., 1956; Gellhorn et al., 1947) up to the present (e.g.,Zaghloul et al., 2010). Results related to antimony excretion kinetics afteradministration of antimony-containing drugs used to treat tropical diseasesare not included in this study; only values of antimony concentrations inurine for untreated patients are quoted in Table 1 when given in this type ofstudy (classified as Medical in Table 5).

Illnesses and drug administration may have an effect on the excretionof trace elements from the human body. For this reason, the trace elementcomposition of urine has often been monitored in order to assess sucheffects. However, very few published studies contain antimony data (sevenarticles) and those that do have also been classified as Medical in Table 5.They seem to suggest that antimony excretion in urine is not affected bymedical conditions and treatments but there are scant data and their quality isnot always easy to assess in order to be able to reach any general conclusions.

As mentioned in the Introduction, the many different uses of antimonymakes it particularly interesting to be able to follow antimony exposure inan integrated way. However, studies published in the field of environmentalexposure to antimony are not abundant (nine articles, three of which are bythe same authors and probably contain the same data) and results are farfrom conclusive.

Finally, urinary excretion of antimony has been monitored in the con-text of occupational studies. In fact, some of the oldest studies that containurinary data belong to occupational work (e.g., Brieger et al., 1954; Klucikand Kemka, 1960). In particular, workers’ exposure to antimony levels in-doors has been followed in different types of industries (Apostoli et al., 1994;Bailly et al., 1991; Kentner et al., 1994; Ludersdorf et al., 1987) and positivecorrelations have been found between airborne and urinary antimony con-centrations in some cases (Apostoli et al., 1994; Bailly et al., 1991; Kentner

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

5.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s

Typ

eofst

udy

Study

des

crip

tion

Corr

elat

ion

found?/

Oth

erco

mm

ents

Multi

elem

ent?

Ref

eren

ce

No

nex

po

sure

valu

es“N

orm

alco

nce

ntrat

ions”

Lite

ratu

reva

lues

butex

actso

urc

enot

clea

rye

sSc

hro

eder

and

Nas

on,19

71Ital

ian

popula

tion

Dai

lyex

cret

ion

yes

Cle

men

te,19

76B

DL

Ital

ian

popula

tion

Dai

lyex

cret

ion

Man

yva

lues

BD

Lye

sCle

men

teet

al.,

1977

Ital

ian

popula

tion

Dai

lyex

cret

ion

yes

Cle

men

teet

al.,

1978

BD

LA

dult

valu

esco

mpila

tion

Lite

ratu

reva

lues

,th

ree

refe

rence

sye

sIy

enga

ret

al.,

1978

Est

ablis

hm

entofre

fere

nce

valu

esin

Ital

ian

subje

cts

(hea

lthy

popula

tion,

Lom

bar

dy)

0.79

μg

L−1ye

sM

inoia

etal

.,19

90

Ref

eren

ceco

nce

ntrat

ions

Lite

ratu

reva

lues

,only

one

sourc

e(a

seco

ndar

yso

urc

epublis

hed

16ye

ars

bef

ore

)

yes

Car

oli

etal

.,19

94

Ele

men

tre

fere

nce

valu

esfo

rth

eG

Bpopula

tion

Lite

ratu

reva

lues

:1

μg

L−1ye

sH

amilt

on

etal

.,19

94

Hea

lthy

univ

ersi

tyst

uden

ts,CN

Val

ues

too

hig

hSb

only

Qin

etal

.19

96Ran

dom

lyse

lect

edhea

lthy

infa

nts

firs

tye

aroflif

e,IE

“Antim

ony

conce

ntrat

ions

inurine

wer

eunre

late

dto

the

age

or

sex

ofth

ein

fant,

pat

ernal

soci

alcl

ass

or

occ

upat

ion,m

edic

alco

vera

gest

atus

of

the

fam

ily,or

the

type

ofm

attres

suse

d”

Sbonly

Culle

net

al.,

1998

186

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Ref

eren

cem

anre

-eva

luat

ion

Lite

ratu

reva

lues

yes

Iyen

gar,

1998

U.S

.popula

tion

(NH

AN

ES

III19

88–1

994)

1.30

μg

L−1ye

sPas

chal

etal

.,19

98U

.S.popula

tion

Most

sam

ple

sB

DL

yes

Kom

arom

y-H

iller

etal

.,20

00H

ealth

ysu

bje

cts

from

central

ITK

olm

ogo

rov-

Smirnov

test

:norm

aldat

afe

mal

es<

mal

es(p

<0.

01)

yes

Alim

onti

etal

.,20

05

U.S

.popula

tion

(NH

AN

ES

1999

–200

0)0.

13μ

gL−1

Low

erD

Lre

sults

inlo

wer

conce

ntrat

ions

com

par

edw

ithpre

vious

surv

ey(P

asch

alet

al.,

1998

)

yes

Cal

dw

ellet

al.,

2005

Child

ren

and

adults

inD

E0.

063

μg

L−1

“Most

ofth

ege

om

etric

mea

nco

nce

ntrat

ions

ofth

eel

emen

tsar

ehig

her

for

child

ren

than

for

adults

”but

no

stat

s

yes

Hei

tland

and

Kost

er,

2006

b

Hea

lthy,

nonex

pose

dsu

bje

cts,

BR

0.2

μg

L−1

Influen

ceofsm

oki

ng,

alco

hol

consu

mptio

n:ap

par

ently

no

effe

cton

Sbbutno

dat

ash

ow

nan

dno

stat

s;ef

fect

ofag

ean

dge

nder

:no

diffe

rence

(p>

0.05

)

yes

Bat

ista

etal

.,20

09

Ref

eren

ceva

lues

child

ren

(3–1

4ye

ars

old

)in

DE

Ref

eren

ceva

lue

(95t

hpopula

tion

per

centil

eofth

edis

trib

utio

nof

conce

ntrat

ions)

=0.

gL−1

(med

ian

=0.

gL−1

)

yes

Kom

mis

sion

“Hum

an-

Bio

monito

ring”

,20

09;Sc

hulz

etal

.,20

09(C

onti

nu

edon

nex

tpa

ge)

187

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

5.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s(C

onti

nu

ed)

Typ

eofst

udy

Study

des

crip

tion

Corr

elat

ion

found?/

Oth

erco

mm

ents

Multi

elem

ent?

Ref

eren

ce

Can

adia

npopula

tion

(6–7

8ye

ars

old

),20

07–2

009

95th

popula

tion

per

centil

eofth

edis

trib

utio

nofco

nce

ntrat

ions

=0.

18μ

gL−1

(geo

met

ric

mea

n=

0.04

μg

L−1)

yes

Hea

lthCan

ada.

2010

Unex

pose

dpre

gnan

tw

om

en,Toky

o,JP

(200

7,20

08)

All

sam

ple

sB

DL

yes

Shirai

etal

.,20

10

U.S

.popula

tion

(NH

AN

ES

2007

–200

8);

valu

esfo

rpre

vious

year

sal

sogi

ven

95th

popula

tion

per

centil

eofth

edis

trib

utio

nofco

nce

ntrat

ions

=0.

240

μg

L−1(g

eom

etric

mea

n=

0.06

gL−1

)

yes

NH

AN

ES,

2011

An

aly

tica

lD

eter

min

atio

nby

sorb

entex

trac

tion

+ET-A

AS

with

com

par

ison

ofw

etdig

estio

nan

ddirec

tex

trac

tion

Rec

om

men

ded

:no

dig

estio

nSb

and

Pb

only

Smith

and

Griffi

ths,

1982

Det

erm

inat

ion

by

resi

nco

mple

xatio

nco

mbin

edw

ithH

G-I

CP-E

S—

yes

Fodor

and

Bar

nes

,19

83D

eter

min

atio

nby

ASV

—Sb

only

Rat

etal

.,19

85D

eter

min

atio

nby

candolu

min

esce

nce

afte

rso

lven

tex

trac

tion

—Sb

only

Cla

rkan

dPat

el,19

86

Det

erm

inat

ion

by

GF-

AA

Saf

ter

ion

exch

ange

separ

atio

nan

dso

lven

tex

trac

tion

—Sb

only

Kobay

ashian

dIm

aizu

mi,

1989

Tes

ting

anal

ysis

by

ICP-M

Sw

ithout

sam

ple

dig

estio

n—

Sbonly

Mulli

gan

etal

.,19

90

188

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Dev

elopm

entofa

spec

iatio

nm

ethod

by

HG

-AA

S—

Sbonly

Pet

itde

Pen

aet

al.,

1990

Det

erm

inat

ion

solv

entex

trac

tion

+ET-A

AS

—Sb

only

Smith

etal

.,19

95

Det

erm

inat

ion

by

dilu

tion

and

ICP-M

S—

Sbonly

Del

ves

etal

.,19

97D

eter

min

atio

nby

dilu

tion

and

ICP-M

S—

yes

Schra

mel

etal

.,19

97Com

par

ison

ofpre

trea

tmen

tpro

cedure

s(d

ilutio

n,U

Virra

dia

tion,m

icro

wav

edig

estio

n)

Rec

om

men

ded

:w

ater

1:10

dilu

tion

of

centrifuge

dsa

mple

san

ddet

erm

inat

ion

by

Q-I

CP-M

S

yes

Kra

chle

ret

al.,

1998

a

Dev

elopm

entofa

spec

iatio

nm

ethod

by

HPLC

-ICP-M

S—

Sbonly

Kra

chle

ran

dEm

ons,

2001

Applic

atio

nofSF

-ICP-M

Sto

the

sim

ulta

neo

us

det

erm

inat

ion

of42

elem

ents

inurine

—ye

sRodush

kin

and

Odm

an,20

01

Dev

elopm

entofa

scre

enin

gm

ethod

for

rapid

anal

ysis

ofa

grea

tnum

ber

of

sam

ple

s,bas

edon

dilu

tion

and

Q-I

CP-M

S

—ye

sde

Boer

etal

.,20

04

Dev

elopm

entan

dte

stofa

routin

em

ulti

elem

entdet

erm

inat

ion

met

hod

bas

edon

the

use

ofIC

P-M

Sw

ithout

sam

ple

dig

estio

n

—ye

sH

eitla

nd

and

Kost

er,

2004

(Con

tin

ued

onn

ext

page

)

189

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

5.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s(C

onti

nu

ed)

Typ

eofst

udy

Study

des

crip

tion

Corr

elat

ion

found?/

Oth

erco

mm

ents

Multi

elem

ent?

Ref

eren

ce

Applic

atio

nofSF

-ICP-M

Sto

the

sim

ulta

neo

us

det

erm

inat

ion

of20

elem

ents

atultr

a-trac

ele

vels

inurine

—ye

sRodush

kin

etal

.,20

04

Com

par

ison

ofQ

-ICP-M

San

dSF

-ICP-M

S;an

alys

is—

yes

Alim

onti

etal

.,20

05

Val

idat

ion

offo

ur

ICP-b

ased

met

hods

—ye

sG

oulle

etal

.,20

05D

evel

opm

entofa

spec

iatio

nm

ethod

by

on-lin

ecl

oud

poin

tex

trac

tion

and

ETV

-ICP-E

S

—Sb

only

Liet

al.,

2006

Dev

elopm

entofa

spec

iatio

nm

ethod

by

HPLC

-HG

-AS

—Sb

only

Quiroz

etal

.,20

10

Med

ical

Controlin

ast

udy

on

bilh

arzi

asis

Sbtrea

tmen

t—

Sbonly

Man

sour

etal

.,19

67

Hyp

er-p

arat

hyr

oid

ism

pat

ients

No

clea

rco

ncl

usi

on

yes

Bost

rom

and

Wes

ter,

1969

Hyp

erte

nsi

vepat

ients

trea

ted

with

chlo

rthal

idone

Pai

red

tte

stN

osi

gnifi

cantdiffe

rence

(p>

0.05

)ye

sW

este

ret

al.,

1973

Hyp

erte

nsi

vepat

ients

trea

ted

with

hyd

rala

zine

Pai

red

tte

stN

osi

gnifi

cantdiffe

rence

(p>

0.05

)ye

sW

este

ret

al.,

1973

Effec

tofst

arva

tion

(all

studie

del

emen

ts)

and

anore

xia

ner

vosa

(notfo

rSb

)“T

he

conce

ntrat

ion

ofSb

does

notva

rysi

gnifi

cantly

”butno

stat

istic

sye

sW

ard,19

86

Controlin

asp

ecia

tion

study

prior

and

afte

rtrea

tmen

tofle

ishm

ania

sis

pat

ients

with

Glu

cantim

e

—Sb

only

Pet

itde

Pen

aet

al.,

1990

Controlin

asp

ecia

tion

study

prior

and

afte

rtrea

tmen

tofle

ishm

ania

sis

pat

ients

with

Glu

cantim

e

—Sb

only

Burg

uer

aet

al.,

1993

190

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Sbin

urine

ofin

fants

(<2

year

sold

)“D

ata

sugg

estth

atfo

etal

assi

mila

tion

may

be

grea

ter

than

post

nat

alupta

ke”

Sbonly

Del

ves

etal

.,19

97

Sbin

urine

ofin

fants

(<2

year

sold

)—

Sbonly

Dez

ateu

xet

al.19

97In

fants

dyi

ng

from

SID

San

din

fants

dyi

ng

from

oth

erca

use

sN

osi

gnifi

cantdiffe

rence

sbet

wee

nin

fants

dyi

ng

from

SID

S,in

fants

dyi

ng

from

oth

erca

use

san

dhea

lthy

infa

nts

(Culle

net

al.,

1998

),st

ats

Sbonly

Culle

net

al.,

2000

Controlin

ast

udy

on

Glu

cantim

etrea

tmen

tofle

ishm

ania

sis

—Sb

only

Mie

kele

yet

al.20

02

Met

als

inurine

and

per

ipher

alar

terial

dis

ease

(PA

D)

“PA

Drisk

incr

ease

dsh

arply

atlo

wle

vels

ofSb

and

rem

ained

elev

ated

bey

ond

0.1

μg

L−1”

(only

when

nonlin

ear

model

sap

plie

d)

yes

Nav

as-A

cien

etal

.,20

05

Effec

tofM

CP

on

urinar

yex

cret

ion

of

trac

eel

emen

tsSt

uden

t’st

test

or

Wilc

oxo

nsi

gned

-ran

kte

stdep

endin

gon

dat

anorm

ality

(chec

ked

by

the

Shap

iro-W

ilkW

test

)“N

osi

gnifi

cantch

ange

sin

the

excr

etio

nofSb

obse

rved

yes

Elia

zet

al.,

2006

En

viro

nm

enta

lex

po

sure

Geo

genic

ally

expose

dad

ults

com

par

edto

“unex

pose

dones

”,D

EU

test

(tw

o-s

ided

)U

nex

pose

dgr

oup

hig

her

Sbco

nce

ntrat

ions

(p<

0.00

1);no

corr

elat

ion

with

soil

conce

ntrat

ions

Pro

bab

lysa

me

dat

aas

inG

ebel

1998

b,

1998

c

Sbonly

Geb

elet

al.,

1998

a

(Con

tin

ued

onn

ext

page

)

191

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

5.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s(C

onti

nu

ed)

Typ

eofst

udy

Study

des

crip

tion

Corr

elat

ion

found?/

Oth

erco

mm

ents

Multi

elem

ent?

Ref

eren

ce

Geo

genic

ally

expose

dad

ults

,D

EM

ale

hig

her

conce

ntrat

ions

than

wom

en(p

<0.

01)

Pro

bab

lysa

me

dat

aas

inG

ebel

1998

a,19

98c

yes

Geb

elet

al.,

1998

b

Geo

genic

ally

expose

dad

ults

com

par

edto

unex

pose

dones

,D

EU

test

(tw

o-s

ided

)N

osi

gnifi

cantco

rrel

atio

nw

ithso

ilco

nte

nts

;unex

pose

dgr

oup

hig

her

Sbco

nce

ntrat

ions

(p<

0.00

1);yo

unge

r18

year

s“l

ow

erurinar

ySb

”(p

<0.

001)

;no

corr

elat

ion

with

smoki

ng,

seaf

ood

consu

mptio

nPro

bab

lysa

me

dat

aas

inG

ebel

1998

a,19

98b

As

and

SbG

ebel

etal

.,19

98c

Pat

ients

suffer

ing

from

chro

nic

As

pois

onin

g,CN

Studen

t’st

test

with

pre

vious

dat

alo

gtran

sform

atio

nbec

ause

dis

trib

utio

nposi

tivel

ysk

ewed

No

sign

ifica

ntdiffe

rence

(p>

0.05

)

yes

Xie

etal

.,20

01

Popula

tion

inEnsc

hed

e,th

eN

L,fo

llow

ing

ala

rge

fire

work

explo

sion

—ye

sde

Boer

etal

.,20

04

Urinar

ym

etal

conte

nts

follo

win

gex

posu

reto

ala

rge

fore

stfire

,Cer

roG

rande

Fire

,U

S

Noth

ing

on

Sb,ex

cepturine

valu

esye

sW

olfe

etal

.,20

04

Res

iden

tsofa

villa

gecl

ose

toan

aban

doned

min

ing

area

,SK

Spea

rman

’sco

rrel

atio

nco

effici

ent

No

control;

corr

elat

ion

with

Sbin

soil

not

stat

istic

ally

sign

ifica

nt(p

>0.

05)

yes

Rap

antet

al.,

2006

Study

ofth

eex

posu

reto

tobac

co(N

HAN

ES,

1999

–200

4,U

S)t

test

“Sm

oke

rshad

hig

her

antim

ony

leve

lsth

annon

smoke

rs”

(p<

0.00

1)

yes

Ric

hte

ret

al.,

2009

192

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Occ

up

atio

nal

exp

osu

reW

ork

ers

expose

dto

air

conta

inin

gab

out

3m

gSb

m−3

,U

SN

one

Sbonly

Brieg

eret

al.,

1954

Met

allu

rgic

alw

ork

ers,

CZ

Follo

w-u

pfo

rper

iods

of8

and

11day

s.Res

ults

,only

give

nin

grap

hic

alfo

rm,

show

stro

ng

tem

pora

lva

riab

ility

Sbonly

Klu

cik

and

Kem

ka,

1960

Sbpro

cess

ing

indust

ryw

ork

ers,

US

No

consi

sten

tpat

tern

ofab

norm

aliti

esSb

only

Cooper

1968

Gla

ss-p

roduci

ng

indust

ryw

ork

ers,

DE

Man

n-W

hitn

eyte

stSb

valu

esfo

rbat

chm

ixer

shig

her

than

controls

and

any

oth

ersu

bgr

oup

(p<

0.05

)N

oco

rrel

atio

nw

ithex

posu

rebec

ause

air

sam

ple

sB

DL

Blo

od

vs.urine

corr

elat

ion,

r=

0.21

Sban

dPb

only

Luder

sdorf

etal

.,19

87

Har

dm

etal

indust

ryw

ork

ers,

ITA

ppar

ently

BD

L,no

com

men

tsY

esN

icola

ou

etal

.,19

87W

ork

ers

expose

dto

Sb,B

EPosi

tive

corr

elat

ion

bet

wee

nlo

gof

airb

orn

eSb

and

log

ofSb

inpost

shift

urine

sam

ple

s(r

=0.

83,

p<

0.00

01)

Sbonly

Bai

llyet

al.,

1991

Work

ers

inSb

-conta

inin

gpro

duct

fact

ory

,CN

None

Sbonly

Chen

etal

.,19

92

Art

glas

sm

anufa

cturing

work

ers,

ITD

ata

notnorm

ally

dis

trib

ute

d(K

olm

ogo

rov

test

);lo

gco

nce

ntrat

ions

use

din

com

par

isons

“Urinar

yco

nce

ntrat

ions

hig

her

inex

pose

dvs

.co

ntrolsu

bje

cts”

butno

stat

s;Sb

inurine

corr

elat

edw

ithai

rSb

(r=

0.82

butno

pva

lue

give

n)

Yes

Apost

oli

etal

.,19

94

(Con

tin

ued

onn

ext

page

)

193

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

5.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anurine

sam

ple

s(C

onti

nu

ed)

Typ

eofst

udy

Study

des

crip

tion

Corr

elat

ion

found?/

Oth

erco

mm

ents

Multi

elem

ent?

Ref

eren

ce

Clo

isonne

work

ers,

JPW

ilcoxo

nte

stN

ost

atis

tical

sign

ifica

ntdiffe

rence

bet

wee

nw

ork

ers

and

controls

Yes

Ara

iet

al.,

1994

Lead

bat

tery

pro

duct

ion

indust

ryw

ork

ers,

GE

Sbhal

f-liv

esw

ere

of93

.2hr

for

cast

ers

and

95.1

hr

for

form

ers

Posi

tive

corr

elat

ion

bet

wee

nai

rborn

eSb

vs.urine

Sb(r

=0.

75,

p<

0.05

)

Sbonly

Ken

tner

etal

.,19

94

Sbsm

elte

rw

ork

shop

work

ers,

CN

None

Sbonly

Huo

etal

.,19

95W

ork

ers

expose

dto

antim

ony

trio

xide

leve

ls,IT

tte

stSi

gnifi

cantdiffe

rence

sbeg

innin

gsh

iftvs

.co

ntrolan

den

dsh

iftvs

.co

ntrolfo

ral

lw

ork

ers

(p<

0.00

1);no

sign

ifica

nt

diffe

rence

sbeg

innin

gvs

.en

dsh

iftfo

rboth

hig

her

exposu

rean

dje

tw

ork

ers

Sbonly

Iavi

coli

etal

.,20

02

NY

Cfire

figh

ters

,U

Sin

WTC

fire

and

colla

pse

,Se

p20

01O

f11

0ch

emic

als

test

ed,only

6fo

und

inco

nce

ntrat

ions

sign

ifica

ntly

hig

her

than

inco

ntrols

,one

ofw

hic

hSb

(p<

0.01

)Conce

ntrat

ions

infire

figh

ters

pre

sentat

colla

pse

(148

)hig

her

than

those

pre

sentday

s1–

2(1

42),

fire

figh

ters

insp

ecia

loper

atio

ns

com

man

d(9

5)hig

her

than

oth

erfire

figh

ters

(195

)(p

<0.

01)

Yes

Edel

man

etal

.,20

03

194

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Opto

elec

tronic

indust

ryw

ork

ers,

TW

tte

stap

plie

dto

diffe

rence

sbet

wee

nto

tals

,one-

way

anal

ysis

ofva

rian

cete

stto

diffe

rence

sbet

wee

ngr

oups

No

sign

ifica

ntdiffe

rence

sw

ithco

ntrols

and

among

groups

Pea

rson

rblo

od

vs.urine

Sb=

0.29

1(p

<0.

05)

Yes

Liao

etal

.,20

04

Urinar

ym

etal

conte

nts

follo

win

gex

posu

reto

ala

rge

fore

stfire

,Cer

roG

rande

Fire

,U

S

Noth

ing

on

Sb,ex

cepturine

valu

esY

esW

olfe

etal

.,20

04

Opto

elec

tronic

indust

ryw

ork

ers,

TW

Pro

bab

lysa

me

dat

aas

inLi

aoet

al.,

2004

Yes

Liao

etal

.,20

06Eva

luat

ion

ofSb

exposu

refr

om

Sb-c

onta

inin

gpan

ts,U

St

test

applie

dto

log

conce

ntrat

ions

bec

ause

log

dat

anorm

ally

dis

trib

ute

dN

osi

gnifi

cantdiffe

rence

sbet

wee

nfire

figh

ters

wea

ring

and

notw

earing

Sb-c

onta

inin

gpan

ts(p

=0.

31);

both

sign

ifica

ntly

low

erth

ange

ner

alpopula

tion

(p<

0.00

1)

Yes

de

Per

ioet

al.,

2010

Not

e.Cla

ssifi

catio

nofth

epublis

hed

studie

sac

cord

ing

toth

eobje

ctiv

eofth

est

udy.

See

text

fordet

ails

on

the

crite

ria

applie

d.The

entrie

sar

eth

esa

me

asin

Tab

le1.

195

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

196 M. Filella et al.

et al., 1994). However, the American Conference of Governmental IndustrialHygienists, a private organization that publishes biological exposure indicesthat “generally indicate a concentration below which nearly all workers maybe repeatedly exposed without adverse health effects” (American Conferenceof Governmental Industrial Hygienists, 2011a), estimates that developing bio-logical exposure index values for antimony is not currently feasible owing toinadequate scientific data (American Conference of Governmental IndustrialHygienists, 2011b).

A key question in biomonitoring is to know how well the concentrationin the measured matrix reflects bodily exposure. In the case of elementswith more than one oxidation state, the rate of assimilation and excretionmight differ depending on the redox state, and this appears to be the casefor antimony. Based on animal studies, it has long been known that pentava-lent antimony is mostly excreted in urine and trivalent antimony mainly infeces (Brieger et al., 1954; Edel et al., 1983; Goodwin and Page, 1943; Ottoand Maren, 1950; Rees et al., 1980); pentavalent antimony is also excretedfaster (Goodwin and Page, 1943). It should be pointed out, however, thatthese observations were made after injecting relatively high doses of thecorresponding compounds and, therefore, in conditions far removed fromthose of diffuse environmental exposure to much lower concentrations ofantimony compounds. Such studies usually assume that there is no redoxtransformation of antimony after intake.

However, interesting additional information might be furnished by de-termining the redox state of antimony in urine. Unfortunately, only a fewstudies giving this information have been published, and they focus mostlyon developing the necessary analytical techniques rather than on measuringthe concentration of antimony species in a large number of individuals. Theyare briefly detailed subsequently.

In 1990, Petit de Pena et al. (1990) proposed the selective determinationof Sb(III) and Sb(V) species by exploiting the acidic dependence of the evo-lution of stibine (SbH3) on reduction with sodium borohydride in HG-AAS(total Sb determined in 0.5 M H2SO4 and Sb(III) in citric acid, pH 2.5). Whenapplied to the urine of patients with leishmaniasis injected intravenously withGlucantime, they found similar amounts of Sb(V) and Sb(III) in untreatedand treated patients. However, 10 years later, Krachler and Emons (2001),by coupling on-line high performance liquid chromatography (HPLC) to anICP-MS instrument, found that Sb(V) was by far the predominant Sb speciesin human urine and only traces of Sb(III) (and some trimethyl antimony(V)[TMSbCl2]) were sometimes detected. Sb(V), Sb(III), and TMSbCl2 detectedaccounted for 52–78% of total antimony, depending on the sample. Mieke-ley et al. (2002), after intramuscular administration of N-methyl meglumineantimoniate, detected both Sb(III) and Sb(V). Their technique differed fromthat used in previous studies (a Hamilton PRP-100X anion exchange columnwith ethylenediaminotetraacetic acid [EDTA] as the mobile phase, coupled

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 197

to ICP-MS). They found that, although only a small fraction of total anti-mony was present as anionic Sb(V) (<7%) in pure aqueous drug solutions(the remainder being bound to the organic structure of the drug), the Sb(V)fraction increased significantly in urine from patients treated with the drugand, interestingly, a peak of Sb(III) appeared, especially in samples collectedduring the slow drug elimination phase of the drug, suggesting in vivo Sb(V)reduction. Concentrations of antimony species determined by Li et al. (2006)by on-line cloud point extraction combined with electrothermal vaporization(ETV) ICP-MS were too high (2 ng mL−1 = 2000 ng L−1) to be considered re-liable. Very recently, Quiroz et al. (2011) published a HPLC-HG-AFS method(Hamilton PRP-100X column; EDTA, pH 4.5, and phosphate, pH 8.3, as mo-bile phases) but this appears to be useful only for elevated/occupationalexposed urine samples because, when applied to real samples, Sb(V) couldonly be detected in two of the eight samples analyzed. Neither Sb(III) norSbTMSb(V) were detected. Therefore, it can be concluded that redox speci-ation of antimony in urine at nonexposed healthy individual concentrationlevels largely requires further elucidation.

Breast Milk

Breast milk is an additional route of excretion of unwanted substances thathas attracted particular attention because it can be a dangerous source ofintake for newborns (LaKind et al., 2001; Pronczuk et al., 2002). The num-ber of publications that contain data on antimony in breast milk is muchlower than that for urine: only 14 studies have been found, with publicationdates ranging from 1982 to 2008. The information gathered is presented inTable 6, according to the same criteria followed for urine. Concentrationsare sometimes expressed on a mass-basis and sometimes on a volume-basisbut, according to Rossipal and Krachler (1998), the differences in both con-centrations are negligibly small because the density of the different types ofhuman milk is always close to 1 g mL−1 (colostrum: 1.013; transitory milk:1.006; mature milk: 1.015).

Most of the methodological issues discussed in relation to urine (i.e.,risk of contamination, preservation, digestion, and analysis of samples) alsoapply to milk and will not be repeated here. It should perhaps be mentioned,however, that NAA has been more widely applied in milk (eight of 14 studies)than is the case for urine.

It is not possible to draw any conclusions about the utility of antimonymeasurements in milk because of the limited number of studies published.Moreover, it should be mentioned that milk values are subjected to numeroussources of variability. In particular, although in the case of antimony no cor-relation of the amount taken up as lactation progresses could be established(Wappelhorst et al., 2002), it has been observed that the concentration ofsome elements in breast milk changes during the course of lactation (Aquilio

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

6.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anm

ilksa

mple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

Sam

ple

origi

na

Num

ber

of

sam

ple

sN

um

ber

of

moth

ers

Units

bM

ean

cErr

ord

Med

ian

Val

ue

range

or

oth

erst

atis

tical

info

rmat

ion

e

Pre

trea

tmen

tan

ddig

estio

nf

Tec

hniq

ueg

CRM

?hRef

eren

ce

Mat

ure

milk

,IT

>13

021

ng

g−1

ww

3.0

0.4

≤0.5

BD

L-12

.9AD

L:49

sam

ple

sst

ora

ge:N

IN

AA

(0.0

5)N

BS

orc

har

dle

aves

:N

RS

Cle

men

teet

al.,

1982

Poole

dhum

anm

ilksa

mple

9ng

g−1

135

n=

18st

ora

ge:N

IIN

AA

NM

Iyen

gar

etal

.,19

82

Ljublja

na,

SIμ

gkg

−1st

ora

ge:

free

ze-d

ryin

gN

AA

IAEA

A-1

1,H

-4K

ost

aet

al.,

1983

-co

lost

rum

100.

50.

30.

1–1.

0-tran

sitio

nal

160.

550.

670.

12–3

.0-m

ature

41.

21.

30.

8–3.

2M

oth

ers,

GB

(most

sam

ple

stran

sitio

nal

milk

)

4219

μg

mL−

1<

0.02

8–0.

169

stora

ge:N

Idilu

tion,no

dig

estio

n

ICP-M

SN

BS

1577

:N

SbRS

Durr

antan

dW

ard,

1989

Guat

emal

a84

μg

L−1

11%

1.0

BD

L-13

.3st

ora

ge:

free

ze-d

ryin

gIN

AA

(≈0.

2)IA

EA

A-1

1,H

M-1

:Sb

resu

ltsonly

for

HM

-1

WH

O,19

89;Par

ret

al.,

1991

Hunga

ry71

10%

1.6

BD

L-7.

7N

iger

ia18

57%

4.1

0.2–

17.7

Phili

ppin

es65

14%

11.0

BD

L-43

.0Sw

eden

3225

%3.

00.

3–22

.9Zai

re69

10%

3.6

BD

L-26

.6Colo

stru

m,m

oth

ers

(22–

26ye

ars

old

),N

agpur,

IN

3ng

g−1

1.02

,0.

93,0.

79st

ora

ge:N

Ipre

trea

tmen

t:ev

apora

tion

by

slow

hea

ting

RN

AA

NIS

T15

49,IA

EA

A-1

1:N

RS

Gar

get

al.,

1993

a

Colo

stru

m3

ng

g−1

0.81

0.05

stora

ge:N

Ipre

trea

tmen

t:ev

apora

tion

by

slow

hea

ting

RN

AA

NIS

T15

77a,

1549

;IA

EA

H-4

,A

-11;

NIE

S15

3

Gar

get

al.,

1993

b

198

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Ref

eren

ceco

nce

ntrat

ions

from

publis

hed

dat

a

μg

L−1

1–4

no

refe

rence

give

nCar

oli

etal

.,19

94

Kaz

akhst

an:

115

ng

g−1

stora

ge:fr

eezi

ng

dig

estio

n:H

NO

3T

and

Pdig

estio

n

ICP-M

San

dN

AA

NIS

T16

33b,

1547

:N

RS

Lutter

etal

.,19

97-Akt

au0.

270.

12–0

.31

-Akt

ubin

sk0.

140.

11–0

.58

-Alm

aty

0.09

BD

L-8.

15-K

hro

mta

u0.

10B

DL-

10.4

4-Pav

lodar

0.11

0.11

–0.8

8-O

ldSe

mip

alat

insk

BD

LBD

L-27

.97

-N

ewSe

mip

alat

insk

BD

LBD

L-6.

9

-U

st-

Kam

enogo

rsk

1.19

0.14

–2.1

8

Gra

z,AT:

46μ

gkg

−1st

ora

ge:–2

0◦C

HN

O3-H

2O

2

mic

row

ave

assi

sted

Pdig

estio

n

ICP-M

S(0

.36)

BCR

063,

150

Kra

chle

ret

al.,

1998

b-co

lost

rum

131.

10.

7B

DL-

6.9

-tran

sito

ry18

BD

LBD

LBD

L-1.

6-m

ature

:BD

L-1.

3-42

–60

d8

BD

LBD

LBD

L-66

–90

d8

BD

LBD

LBD

L-87

–293

d8

BD

LBD

LBD

L-6.

9O

vera

ll55

0.38

BD

LBD

L:73

%sa

mple

sM

oth

ers

24–3

7ye

ars

old

ofch

ildre

n1–

16m

onth

sold

,CZ,

DE,PL

536

19μ

gL−

10.

140.

120.

06–0

.57

stora

ge:

free

ze-d

ryin

gH

NO

3-H

2O

2

mic

row

ave

assi

sted

Pdig

estio

n

ICP-M

SN

IST

1549

:N

RS

Wap

pel

hors

tet

al.,

2002

(Con

tin

ued

onn

ext

page

)

199

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

TA

BLE

6.

Surv

eyoflit

erat

ure

dat

afo

ran

timony

inhum

anm

ilksa

mple

s.Publis

hed

valu

esofan

timony

conce

ntrat

ions

(Con

tin

ued

)

Sam

ple

origi

na

Num

ber

of

sam

ple

sN

um

ber

of

moth

ers

Units

bM

ean

cErr

ord

Med

ian

Val

ue

range

or

oth

erst

atis

tical

info

rmat

ion

e

Pre

trea

tmen

tan

ddig

estio

nf

Tec

hniq

ueg

CRM

?hRef

eren

ce

Raw

alpin

di-

Isla

mab

ad,

PK

23(a

ll)ng

g−1

stora

ge:

free

ze-d

ryin

gRN

AA

(2)

NIS

T15

49,

IAEA

A-1

1N

SbRS

Gill

etal

.,20

03

-lo

w-inco

me

131.

010.

74–1

.3-m

ediu

m-

inco

me

101.

00.

83–1

.3

Moth

ers

24–3

8ye

ars

old

ofch

ildre

n0.

4–16

.4m

onth

sold

,Reg

ion

Nei

sse

(CZ,D

E,

PL)

1295

23μ

gkg

−1w

w0.

180

%st

ora

ge:N

IH

NO

3-H

2O

2

mic

row

ave

assi

sted

Pdig

estio

n

ICP-M

Sm

entio

ned

but

no

info

rmat

ion

give

n

Wunsc

hm

ann

etal

.,20

04

Moth

ers

18–5

0ye

ars

old

ofch

ildre

n4–

80w

eeks

old

,AE

205

μg

L−1

0.35

20.

268

0.50

00.

003–

0.9

stora

ge:–3

0◦C

HN

O3-H

2O

2

mic

row

ave

assi

sted

Tdig

estio

n

ICP-M

SN

IST

1577

b,

1566

b,16

40:

NRS

Abdulraz

zaq

etal

.,20

08

Not

e.Val

ues

are

give

nin

chro

nolo

gica

lord

er.

a Inte

rnat

ional

country

codes

follo

wth

eIS

O31

66co

nve

ntio

n.

bThe

origi

nal

units

are

alw

ays

give

nin

ord

erto

avoid

unnec

essa

ryer

rors

.Rem

ember

that

gkg

−1=

ng

g−1 .

c By

def

ault,

arith

met

icm

ean.

dBy

def

ault,

stan

dar

ddev

iatio

n.Rel

ativ

est

andar

ddev

iatio

nw

hen

the

valu

eis

follo

wed

by

aper

centa

gesi

gn.

e By

def

ault,

mea

sure

dra

nge

.f N

I,notin

dic

ated

.g W

hen

give

n,th

eva

lue

ofth

edet

ectio

nlim

itis

show

nin

bra

cket

sunder

the

tech

niq

ue.

hN

M=

notm

entio

ned

;N

RS

=no

resu

ltssh

ow

n(n

eith

erfo

ran

timony

nor

for

oth

erel

emen

ts);

NSb

RS

=no

Sbre

sults

show

n(b

utre

sults

for

oth

erel

emen

tsgi

ven).

See

Tab

le4

for

listofCRM

and

corr

espondin

gan

timony

valu

es.

200

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 201

et al., 1996; Casey et al., 1989; Perrone et al., 1993). No correlation of an-timony concentrations with age of infant and age of mother (Abdulrazzaqet al., 2008) or amount of food consumed (Wappelhorst et al., 2002) hasbeen observed.

The extent and rate of transfer from blood to milk for a given substancedepends on several factors such as solubility in liquids, strength of binding toplasma proteins, and molecular mass. In the two studies where food/mother’stransfer factors were evaluated, the values obtained were close: 0.041 d kg−1

(Wappelhorst et al., 2002) and 0.035 d kg−1 (Wunschmann et al., 2004).For comparison, iodine gave a transfer factor of 0.560 d kg−1 (Wunschmannet al., 2004).

Other Biofluids

Saliva is a bodily fluid that can be collected easily and without discomfortto the subject (Esteban and Castano, 2009). This does not, however, meanthat using it is free of complicating factors (i.e., variability in saliva com-position, frequent blood contamination of samples; Koh and Koh, 2007).Despite that, saliva has been used in biomonitoring to estimate environmen-tal and occupational exposure to toxic elements (Costa de Almeida et al.,2009; Nriagu et al., 2006; Wang et al., 2008). However, relatively little isknown about the presence of antimony in this biofluid. Olmez et al. (1988)obtained the following values (units: ppm) by applying instrumental neutronactivation analysis (INAA) to freeze-dried samples of human parotid saliva:0.003 (only observed in one sample from four healthy volunteers, two menand two women); 0.010 (only observed in one sample from three patientswith hypogeusia, two men and one woman); 0.11 ± 0.09 in six patientswith hyposmia; 0.009 in three patients with both, two men and one woman(only observed in one sample). Zaichick et al. (1995) identified (INAA) 21chemical elements, among them antimony, in nonstimulated saliva from 52healthy people and 22 men involved in the cleanup after the Chernobyl acci-dent. Mean antimony values were 1.8 ± 0.2 (ng mL−1) in healthy people and0.381 ± 0.101 (μg g−1 dry weight) in cleaners (0.510 ± 0.080 in controls).Gender, age, and season did not influence the antimony concentration in an-alyzed samples. Chicharro et al. (1999) measured antimony concentrationsin saliva at rest and in postexercise situations. In both cases, they obtaineda value of 0.05 mg L−1. In this study, samples were initially kept at 4 ◦C,centrifuged, and stored at –80 ◦C for 15 days prior to analysis by ICP-MS(DL = 0.03 μg L−1). Obviously, the number of published studies is too low,and the values reported too divergent, to be able to extract any conclusionabout antimony levels in saliva, the possible causes of variability and theutility of such measurements.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

202 M. Filella et al.

Other media for biological monitoring include semen, sweat, and tears.No values of antimony concentrations in these fluids could be found.

CONCLUSIONS

The following main conclusions can be drawn from this review article:

1. The lack of adequate CRM (only one CRM, now out of stock, containscertified antimony concentrations in urine, but the values are too high)seriously hampers the assessment of the accuracy of published antimonyconcentrations in urine.

2. Antimony concentrations in urine are close, and often below, the detec-tion limit of the analytical techniques applied. This may have the effectof overestimating the antimony concentrations reported.

3. A dependence has been observed between values obtained in urine andthe sensitivity of the techniques used for their determination, with lowervalues when using more recent, more sensitive analytical methods. Forthis reason, it is recommended that only state-of-the-art dedicated tech-niques, with low detection limits, be used to determine antimony contentin the urine of nonexposed individuals.

4. On the basis of published values, it is not possible to establish a value forthe contents of antimony in the urine of healthy, nonexposed individuals.It is, however, possible to situate, on the basis of more recent results, aconcentration ceiling at around 0.1 μg L−1.

5. Values quoted in secondary sources (i.e., books) and values taken as nor-mal by public bodies are based on old values and are therefore too high.They need to be reconsidered in the light of more recent determinations.

6. Following up on antimony concentrations in urine might be useful inassessing direct occupational exposure to the element and, probably, en-vironmental exposure to nearby point sources of antimony (e.g., antimonymines) but its value for assessing diffuse antimony pollution is not clear.

7. Redox speciation of antimony in urine requires further elucidation.8. No conclusions can be drawn from published values for breast milk and

saliva because of their limited number.

ACKNOWLEDGMENTS

The authors would like to thank Josef Caslavsky (Brno University of Tech-nology, Czech Republic) for providing the translation of the article by Klucikand Kemka (1960). The authors acknowledge the support of the LaurentianUniversity library, more specifically Diane Tessier, Lina Beaulieu, and Daniel

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 203

Leduc for their help in obtaining research articles and reports through theinterlibrary loan system.

LIST OF ABBREVIATIONS

AAS Atomic absorption spectroscopyACGIH American conference of governmental industrial hygienistsADL Above detection limitAES Atomic emission spectroscopyAFS Atomic fluorescence spectroscopyAPDC Ammonium pyrrolidine dithiocarbamateASV Anodic stripping voltammetryAQL Above quantification limitBCR Community bureau of referenceBDL Below detection limitBEI Biological exposure indexBQL Below quantification limitCPE Cloud point extractionCRM Certificate reference materialCRT CreatinineDL Detection limitEDTA Ethylenediaminotetraacetic acidET-AAS Electrothermal atomic absorption spectrometryETV-ICP-MS Electrothermal vaporization inductively coupled plasma mass

spectrometryGF-AAS Graphite furnace atomic absorption spectrometryHG-AAS Hydride generation atomic absorption spectrometryHG-AFS Hydride generation atomic fluorescence spectrometryHG-ICP-MS Hydride generation inductively coupled plasma mass spec-

trometryHPLC High performance liquid chromatographyHR-ICP-MS High resolution inductively coupled plasma mass spectrome-

tryIAEA International atomic energy agencyIBMK Isobuthyl methyl ketoneICP-ES Inductively coupled plasma emission spectrometryICP-MS Inductively coupled plasma mass spectrometryIE Ion exchangeISO International organization for standardizationINAA Instrumental neutron activation analysisLRI Low respiratory tract illnessMCP Modified citrus pectinNAA Neutron activation analysis

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

204 M. Filella et al.

NBS National bureau of standards (NIST since 1988)NHANES National health and nutrition examination surveyNI Not indicatedNIST National institute of standards and technologyNM Not mentionedP Pressure5-Br-PADAP 2-(5-Bromo-2 pyridylazo)-5-diethylaminophenolPET Polyethylene terephthalatePTFE PolytetrafluoroethyleneQ-ICP-MS Quadrople inductively coupled plasma mass spectrometryQL Quantification limitRNAA Radiochemical neutron activation analysisSE Solvent extractionSF-ICP-MS Sector field inductively coupled plasma mass spectrometryT TemperatureTMSb(V) Trimethyl antimony(V)WHO World health organisation

REFERENCES

Abdulrazzaq, Y.M., Osman, N., Nagelkerke, N., Kosanovic, M., and Adem, A. (2008).Trace element composition of plasma and breast milk of well-nourished women.J. Environ. Sci. Heal. A, 43, 329–334.

Alessio, L., Berlin, A., Dell’Orto, A., Toffoletto, F., and Ghezzi, I. (1985). Reliabilityof urinary creatinine as a parameter used to adjust values of urinary biologicalindicators. Int. Arch. Occup. Environ. Health, 55, 99–106.

Alimonti, A., Forte, G., Spezia, S., Gatti, A., Mincione, G., Ronchi, A., Bavazzano,P., Bocca, B., and Minoia, C. (2005). Uncertainty of inductively coupled plasmamass spectrometry based measurements: an application to the analysis of uri-nary barium, cesium, antimony and tungsten. Rapid Commun. Mass Sp., 19,3131–3138.

American Conference of Governmental Industrial Hygienists. (2011a). 2011 TLVsand BEIs. ACGIH publication #0111.

American Conference of Governmental Industrial Hygienists. (2011b). Chemicalsubstances and other issues under study. Retrieved from http://www.acgih.org/tlv/CSBEIStdy.htm

Apostoli, P., Giusti, S., Bartoli, D., Perico, A., Bavazzano, P., and Alessio, L. (1998).Multiple exposure to arsenic, antimony, and other elements in art glass manu-facturing. Am. J. Ind. Med., 34, 65–72.

Aquilio, E., Spagnoli, R., Seri, S., Bottone, G., and Spennati, G. (1996). Trace elementcontent in human milk during lactation of preterm newborns. Biol. Trace Elem.Res., 51, 63–70.

Arai, F., Yamamura, Y., Yoshida, M., and Kishimoto, T. (1994). Blood and urinarylevels of metals (Pb, Cr, Cd, Mn, Sb, Co and Cu) in cloisonne workers. Ind.Health, 32, 67–78.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 205

Bailly, R., Lauwerys, R., Buchet, J.P., Mahieu, P., and Konings, J. (1991). Experimentaland human studies on antimony metabolism: their relevance for the biologicalmonitoring of workers exposed to inorganic antimony. Brit. J. Ind. Med., 48,93–97.

Barr, D.B., Wilder, L.C., Caudill, S.P., Gonzalez, A.J., Needham, L.L., and Pirkle, J.L.(2005). Urinary creatinine concentrations in the U.S. population: implicationsfor urinary biologic monitoring measurements. Environ. Health Perspect, 113,192–200.

Batista, B.L., Rodrigues, J.L., Tormen, L., Curtius, A.J., and Barbosa, F. (2009). Ref-erence concentrations for trace elements in urine for the Brazilian populationbased on q-ICP-MS with a simple dilute-and-shoot procedure. J. Braz. Chem.Soc., 20, 1406–1413.

Becker, K., Mussig-Zufika, M., Conrad, A., Ludecke, A., Schulz, C., Seiwert, M.,and Kolossa-Gehring, M. (2008). German Environmental Survey for Children2003/06 –GerES IV- Human biomonitoring. Levels of selected substances in bloodand urine of children in Germany. WaBoLu-Hefte 01/08, ISSN 1862–4340. Fed-eral Environment Agency, Dessau-Roßlau.

Belzile, N., Chen, Y.-W., and Filella, M. (2011). Human exposure to antimony I.Sources and intake. Crit. Rev. Environ. Sci. Technol., 41, 1309–1373.

Boeniger, M.F., Lowry, L.K., and Rosenberg, J. (1993). Interpretation of urine resultsused to asses chemical exposure with emphasis on creatinine adjustment: Areview. Am. Ind. Hyg. Assoc. J., 54, 615–627.

Bostrom, H., and Wester, P.O. (1969). Pre- and postoperative excretion of traceelements in primary hyper-parathyroidism. Acta Endocrinol. (Copenhagen), 60,380–388.

Brieger, H., Semisch, C.W. III, Stasney, J., and Piatnek, D.A. (1954). Industrial anti-mony poisoning. Ind. Med. Surg., 23, 521–523

Burguera, J.L., and Burguera, M. (1984). Determination of cadmium in human urineby extraction with dithizone in a flow injection system. Anal. Chim. Acta, 153,207–212.

Burguera, J.L., Burguera, M., Gallignani, M., and Alarcon, O.M. (1990). A comparativestudy of methods for determining selenium in biological materials. Acta Cient.Venez., 41, 5–10.

Burguera, J.L., Burguera, M., Petit De Pena, Y., Lugo, A., and Anez, N. (1993). Se-lective determination of antimony(III) and antimony(V) in serum and urineand of total antimony in skin biopsies of patients with cutaneous lesih-maniasis treated with meglumine antimonate. Trace Elem. Med., 10, 66–70.

Caldwell, K.L., Hartel, J., Jarrett, J., and Jones, R.L. (2005). Inductively coupled plasmamass spectrometry to measure multiple toxic elements in urine in NHANES1999–2000. At. Spectrosc., 26, 1–7.

Caroli, S., Alimonti, A., Coni, E., Petrucci, F., Senofonte, O., and Violante, N. (1994).The assessment of reference values in human biological tissues and fluids: Asystematic review. Crit. Rev. Anal. Chem., 24, 363–398.

Casey, C.E., Neville, M.C., and Hambidge, K.M. (1989). Studies in human lactation:secretion of zinc, copper, and manganese in human milk. Am. J. Clin. Nutr., 49,773–785.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

206 M. Filella et al.

Centers for Disease Control and Prevention. (2011). Fourth National Report on hu-man exposure to environmental chemicals. Retrieved from http://www.cdc.gov/exposurereport

Chakravarti, R.N., and Sen Gupta, P.C. (1950). Urinary excretion of antimony af-ter administration of methyl glucamine antimoniate. Preliminary observations.Indian Medical Gazette, 85, 388–391.

Chatterjee, A., Werner, G., and Sen Gupta, P.C. (1954). Urinary excretion of antimonyin kala-azar patients. Bulletin of the Calcutta School of Tropical Medicine, 2,53–54.

Chatterji, A., Chatterjee, M.L., and Sen Gupta, P.C. (1956). Further observations onthe urinary excretion of antimony in kala-azar patients. Bulletin of the CalcuttaSchool of Tropical Medicine, 4, 7–8

Chen, S., Zhu, A., and Chen, J. (1992). Direct determination of antimony in hu-man urine by graphite furnace atomic absorption spectrometry with the L’vovplatform. Guangpuxue Yu Guangpu Fenxi, 12, 63–65.

Chicharro, J.L., Serrano, V., Urena, R., Gutierrez, A.M., Carvajal, A., Fernandez-Hernando, P., and Lucıa, A. (1999). Trace elements and electrolytes in humanresting mixed saliva after exercise. Br. J. Sports Med., 33, 204–207.

Clark, E.R., and Patel, M. (1986). Determination of antimony in urine by candolumi-nescence spectrometry. Analyst, 111, 415–417.

Clemente, G.F. (1976). Trace element pathways from environment to man. J. Ra-dioanal. Chem., 32, 25–41.

Clemente, G.F., Ingrao, G., and Santaroni, G.P. (1982). The concentration ofsome trace elements in human milk from Italy. Sci. Total Environ., 24, 255–265.

Clemente, G.F., Rossi, L.C., and Santaroni, G.P. (1977). Trace element intakeand excretion in the Italian population. J. Radioanal. Chem., 37, 549–558.

Clemente, G.F., Rossi, L.C., and Santaroni, G.P. (1978). Studies on the distributionand related health effects of the trace elements in Italy. Proc. Univ. Miss. Annu.Conf. Trace Subst. Environ. Health, 12, 23–30.

Cooper, D.A., Pendergrass, E.P., Vorwald, A.J., Mayock, R.L., and Brieger, H. (1968).Pneumoconiosis among workers in an antimony industry. Am. J. Roentgenol.Radium Ther. Nucl. Med., 103, 495–508.

Costa de Almeida, G.R., Umbelio de Freitas, C., Barbosa, F. Jr., Tanus-Santos, J.E.,and Gerlach, R.F. (2009). Lead in saliva from lead-exposed and unexposedchildren. Sci. Total. Environ., 407, 1547–1550.

Cullen, A., Kiberd, B., Devaney, D., Gillan, J., Kelehan, P., Matthews, T.G., Mayne, P.,Murphy, N., O’Regan, M., Shannon, W., and Thornton, L. (2000). Concentrationsof antimony in infants dying from SIDS and infants dying from other causes.Arch. Dis. Child., 82, 244–247.

Cullen, A., Kiberd, B., Matthews, T., Mayne, P., Delves, H.T., and O’Regan, M. (1998).Antimony in blood and urine of infants. J. Clin. Pathol., 51, 238–240

De Boer, J.L.M., Ritsema, R., Piso, S., van Staden, H., and van den Beld, W. (2004).Practical and quality-control aspects of multi-element analysis with quadrupoleICP-MS with special attention to urine and whole blood. Anal. Bioanal. Chem.,379, 872–880.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 207

De Perio, M.A., Durgam, S., Caldwell, K.L., and Eisenberg, J. (2010). A health hazardevaluation of antimony exposure in fire fighters. J. Occup. Environ. Med., 52,81–84.

Delves, H.T., Sieniaswska, C.E., Fell, G.S., Lyon, T.D.B., Dezateux, C., Cullen, A.,Variend, S., Bonham, J.R., and Chantler, S.M. (1997). Determination of antimonyin urine, blood and serum and in liver and lung tissues of infants by inductivelycoupled plasma mass spectrometry. Analyst, 122, 1323–1329.

Dezateux, C., Delves, H.T., Stocks, J., Wade, A., Pilgrim, L., and Costeloe, K. (1997).Urinary antimony in infancy. Arch. Dis. Child., 76, 432–436.

Di Cristina, G., and Caronia, G. (1916). Terapia della leishmaniosii [Therapy ofleishmaniasis]. Malar. Mal. Paesi Caldi, 7, 245–253.

Durrant, S.F., and Ward, N.I. (1989). Multi-elemental analysis of human milk byinductively coupled plasma-source mass spectrometry: Implications for infanthealth. J. Micronutr. Anal., 5, 111–126.

Edel, J., Marafante, E., Sabbioni, E., and Manzo, L. (1983). Metabolic behaviour ofinorganic forms of antimony in the rat. Proc. Heavy Metal Environ. Int. Conf.,1, 574–577.

Edelman, P., Osterloh, J., Pirkle, J., Caudill, S.P., Grainger, J., Jones, R., Blount, B.,Calafat, A., Turner, W., Feldman, D., Baron, S., Bernard, B., Lushniak, B.D.,Kelly, K., and Prezant, D. (2003). Biomonitoring of chemical exposure amongNew York City firefighters responding to the World Trade Center fire and col-lapse. Environ. Health Perspect., 111, 1906–1911.

Eliaz, I., Hotchkiss, A.T., Fishman, M.L., and Rode, D. (2006). The effect of modifiedcitrus pectin on urinary excretion of toxic elements. Phytother. Res., 20, 859–864.

Ellinder, C.G., and Friberg, L. (1977). Antimony. In L. Friberg, G. F. Nordberg, V.B. Vouk (Eds.), Toxicology of metals, volume 2 (pp. 26–42). Springfield, VA:National Technical Information Service.

Esteban, M., and Castano, A. (2009). Non-invasive matrices in human biomonitoring:A review. Environ. Internat., 35, 438–449.

Filella, M. (2010). Alkyl derivatives of antimony in the environment. Met. Ions LifeSci., 7, 267–301.

Filella, M., Belzile, N., and Chen, Y.-W. (2002a). Antimony in the environment: areview focused on natural waters. I. Occurrence. Earth-Sci. Rev., 57, 125–176.

Filella, M., Belzile, N., and Chen, Y.-W. (2002b). Antimony in the environment: areview focused on natural waters. II. Relevant solution chemistry. Earth-Sci.Rev., 59, 265–285.

Filella, M., Belzile, N., and Chen, Y.-W. (2012). Human exposure to antimony. II.Contents in some human tissues often used in biomonitoring (hair, nails, teeth).Crit. Rev. Environ. Sci. Technol., 42, 1058–1115.

Filella, M., Belzile, N., and Lett, M.-C. (2007). Antimony in the environment: a reviewfocused on natural waters. III. Microbiota relevant interactions. Earth-Sci. Rev.,80, 195–217.

Filella, M., Williams, P.A., and Belzile, N. (2009). Antimony in the environment:knowns and unknowns. Environ. Chem., 6, 95–105.

Fodor, P., and Barnes, R.M. (1983). Determination of some hydride-forming ele-ments in urine by resin complexation and inductively coupled plasma atomicspectroscopy. Spectrochim. Acta B, 38B, 229–243.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

208 M. Filella et al.

Fordham, P.J., Gramshaw, J.W., Crews, H.M., and Castle, L. (1995). Element residuesin food contact plastics and their migration into food simulants, measuredby inductively-coupled plasma–mass spectrometry. Food Addit. Contam., 12,651–669.

Fredrick, W.G. (1941). Estimation of small amounts of antimony with Rhodamine B.Ind. Eng. Chem. (Anal. Ed.), 13, 922–924.

Fried, P.A., Perkins, S.L., Watkinson, B., and McCartney, J.S. (1995). Associationbetween creatinine-adjusted and unadjusted urine cotinine values in childrenand the mother’s report of exposure to environmental tobacco smoke. Clin.Biochem., 28, 415–420.

Garg, A.N., Weginwar, R.G., and Chutke, N.L. (1993a). A comparative study of minorand trace elements in human, animal and commercial milk samples by neutronactivation analysis. J. Radioanal. Nucl. Chem., 172, 125–135.

Garg, A.N., Weginwar, R.G., and Chutke, N.L. (1993b). Radiochemical neutron ac-tivation analysis of Fe, Co, Zn, Sb and Se in biomedical and environmentalsamples. Sci. Total Environ., 139/140, 421–430.

Gebel, T., Claussen, K., and Dunkelberg, H. (1998a). Human biomonitoring of anti-mony. Int. Arch. Occup. Environ. Health, 71, 221–224.

Gebel, T., Suchenwirth, R.H.R., Behmke, C., Plessow, A., Claussen, K., Schulze,E., and Dunkelberg, H. (1998b). Biomonitoring-Untersuchung bei Personenin Wohngebieten mit erhohten Bodenwerten an Quecksilber, Arsen und An-timon [Human biomonitoring study of persons geogenically exposed to ele-vated levels of mercury, arsenic and antimony]. Gesundheitswesen, 60, 580–585.

Gebel, T.W., Suchenwirth, R.H.R., Bolten, C., and Dunkelberg, H.H. (1998c). Hu-man biomonitoring of arsenic and antimony in case of an elevated geogenicexposure. Environ. Health Persp., 106, 33–39.

Gellhorn, A., Rose, H.M., and Culbertson, J.T. (1947). The plasma antimony concen-tration and the urinary antimony excretion in man during therapy with organicantimony compounds. J. Trop. Med. Hyg., 50, 27–31.

Gill, K.P., Zaidi, J.H., and Ahmad, S. (2003). Radiochemical neutron activation analy-sis for trace elements evaluation of human milk. Radiochim. Acta, 91, 547–551.

Goodwin, L.G., and Page, J.E. (1943). A study of the excretion of organic antimonialsusing a polarographic procedure. Biochem. J., 37, 198–209.

Gorsuch, T.T. (1962). Losses of trace elements during oxidation of organic materials.The formation of volatile chlorides during dry ashing in presence of inorganicchlorides. Analyst, 87, 112–115.

Goulle, J.-P., Mahieu, L., Castermant, J., Neveu, N., Bonneau, L., Laine, G., Bouige, D.,and Lacroix, C. (2005). Metal and metalloid multi-elementary ICP-MS validationin whole blood, plasma, urine and hair. Reference values. Forensic Sci. Int.,153, 39–44.

Greenberg, G.N., and Levine, R.J. (1989). Urinary creatinine excretion is not stable:A new method for assessing urinary toxic substance concentrations. J. Occup.Med., 31, 832–838.

Haldimann, M., Blanc, A., and Dudler, V. (2007). Exposure to antimony frompolyethylene terephthalate (PET) trays used in ready-to-eat meals. Food Ad-dit. Contam., 24, 860–868.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 209

Hamilton, E.I., Sabbioni, E., and Van der Venne, M.T. (1994). Element referencevalues in tissues from inhabitants of the European Community. VI. Review ofelements in blood, plasma and urine and critical evaluation of reference valuesfor the United Kingdom population. Sci. Total Environ., 158, 165–190.

Hansen, H.R., and Pergantis, S.A. (2006). Detection of antimony species in citrusjuices and drinking water stored in PET containers. J. Anal. At. Spectrom., 21,731–733.

Health Canada. (2010). Report on human biomonitoring of environmental chem-icals in Canada. Results of the Canadian Health Measures Survey Cycle 1(2007–2009).

Heitland, P., and Koster, H.D. (2004). Fast, simple and reliable routine determinationof 23 elements in urine by ICP-MS. J. Anal. At. Spectrom., 19, 1552–1558.

Heitland, P., and Koster, H.D. (2006). Biomonitoring of 30 trace elements in urineof children and adults by ICP-MS. Clin. Chim. Acta, 365, 310–318.

Human Biomonitoring Commission. (2005). Standardisation of substance con-centrations in urine – creatinine. Retrieved from http://www.umweltdaten.de/gesundheit-e/monitor/Creatinine.pdf

Huo, X., Huang, L., Zhang, J., and Zhang, A. (1995). Analysis of antimony in bi-ological material from smelter workers. Gongye Weisheng Yu Zhiyebing, 21,375–376.

Iavicoli, I., Caroli, S., Alimonti, A., Petrucci, F., and Carelli, G. (2002). Biomonitoringof a worker population exposed to low antimony trioxide levels. J. Trace Elem.Med. Biol., 16, 33–39.

Iyengar, G.V. (1998). Reevaluation of the trace element content in Reference Man.Radiat. Phys. Chem., 51, 545–560.

Iyengar, G.V., Kasperek, K., Feinendegen, L.E., Wang, Y.X., and Weese, H. (1982).Determination of Co, Cu, Fe, Hg, Mn, Sb, Se and Zn in milk samples. Sci. TotalEnviron., 24, 267–274.

Iyengar, G.V., Kollmer, W.E., and Bowen, H.J.M. (1978). The elemental compositionof human tissues and body fluids. A compilation of values for adults. Weinheim,Germany: Verlag Chemie.

Kentner, M., Leinemann, M., Schaller, K.-H., Weltle, D., and Lehnert, G. (1995).External and internal antimony exposure in starter battery production. Int. Arch.Occup. Environ. Health, 67, 119–123.

Klucik, I., and Kemka, R. (1960). Vylucovanie antimonu u robotnıkov antimonovejhutee [The excretion of antimony in workers in antimony metallergical works].Pracovnı lekarstvı, 12, 133–138.

Kobayashi, R., and Imaizumi, K. (1989). Determination of antimony in urine bygraphite furnace atomic absorption spectrometry after ion exchange separationand solvent extraction. Anal. Sci., 5, 61–64.

Koh, D.S.-Q., and Koh, G.C.-H. (2007). The use of salivary biomarkers in occupa-tional and environmental medicine. Occup. Environ. Med., 64, 202–210.

Komaromy-Hiller, G., Ash, K.O., Costa, R., and Howerton, K. (2000). Comparison ofrepresentative ranges based on U.S. patient population and literature referenceintervals for urinary trace elements. Clin. Chim. Acta, 296, 71–90.

Kommission “Human-Biomonitoring” des Umweltbundesamtes. (2009). Neue undaktualisierte Referenzwerte fur Antimon, Arsen und Metalle (Blei, Cadmium,

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

210 M. Filella et al.

Nickel, Quecksilber, Thallium und Uran) im Urin und im Blut von Kindernin Deutschland [New and updated reference values for antimony, arsenic andmetals (lead, cadmium, nickel, mercury, thallium and uranium) in the urine andblood of children in Germany]. Bundesgesundheitsblatt – Gesundheitsforschung– Gesundheitsschutz, 52, 977–982.

Kosta, M., Byrne, A.R., and Dermelj, M. (1983). Trace elements in some human milksamples by radiochemical neutron activation analysis. Sci. Total Environ., 29,261–268.

Krachler, M., Alimonti, A., Petrucci, F., Forastiere, F., and Caroli, S. (1998a). Influ-ence of sample pre-treatment on the determination of trace elements in urine byquadrupole and magnetic sector field inductively coupled plasma mass spec-trometry. J. Anal. At. Spectrom., 13, 701–705.

Krachler, M., and Emons, H. (2001). Urinary antimony speciation by HPLC-ICP-MS.J. Anal. At. Spectrom., 16, 20–25.

Krachler, M., Shi Li, F., Rossipal, E., and Irgolic, K.J. (1998b). Changes in the concen-trations of trace elements in human milk during lactation. J. Trace Elem. Med.Biol., 12, 159–176.

LaKind, J.S., Berlin, C.M., and Naiman, D.Q. (2001). Infant Exposure to chemicalsin breast milk in the United States: what we need to learn from a breast milkmonitoring program. Environ. Health Perspect., 109, 75–88.

Li, Y., Hu, B., and Jiang, Z. (2006). On-line cloud point extraction combined withelectrothermal vaporization inductively coupled plasma atomic emission spec-trometry for the speciation of inorganic antimony in environmental and biolog-ical samples. Anal. Chim. Acta, 576, 207–214.

Liao, Y.-H., Hwang, L.-C., Kao, J.-S., Yiin, S.-J., Lin, S.-F., Lin, C.-H., Lin, Y.-C., andAw, T.-C. (2006). Lipid peroxidation in workers exposed to aluminum, gallium,indium, arsenic, and antimony in the optoelectronic industry. J. Occup. Environ.Med., 48, 789–793.

Liao, Y.-H, Yu, H.-S., Ho, C.-K., Wu, M.-T., Wang, C.-Y., Chen, J.-R., and Chang, C.-C. (2004). Biological monitoring of exposures to aluminium, gallium, indium,arsenic, and antimony in optoelectronic industry workers. J. Occup. Environ.Med., 46, 931–936.

Lindemann, T., Prange, A., Dannecker, W., and Neidhart, B. (2000). Stability stud-ies of arsenic, selenium, antimony and tellurium species in water, urine, fishand soil extracts using HPLC/ICP-MS. Fresenius J. Anal. Chem., 368, 214–220.

Ludersdorf, R., Fuchs, A., Mayer, P., Skulsuksai, G., and Schacke, G. (1987). Bio-logical assessment of exposure to antimony and lead in the glass-producingindustry. Int. Arch. Environ. Health, 59, 469–474.

Lutter, C., Iyengar, G.V., Barnes, R., Amarasiriwardena, D., Kotrebai, M., Kru-shevska, A., Chuvakova, T., Kazbekova, G., and Sharmanov, T. (1997). Con-centrations of toxic metals and radionuclides in Kazakhstani breast milk.In Harmonization of health related environmental measurements using nu-clear and isotopic techniques (pp. 405–419). Hyderabad, India: BernanAssociation.

Mansour, M.M., Rassoul, A.A.A., and Schulert, A.R. (1967). Anti-bilharzial antimonydrugs. Nature, 214, 819–820.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 211

Miekeley, N., Mortari, S.R., and Schubach, A.O. (2002). Monitoring of total antimonyand its species by ICP-MS and on-line ion chromatography in biological samplesfrom patients treated for leishmaniasis. Anal. Bioanal. Chem., 372, 495–502.

Minoia, C., Sabbioni, E., Apostoli, P., Pietra, R., Pozzoli, L., Gallorini, M., Nicolaou,G., Alessio, L., and Capodaglio, E. (1990). Trace element reference values intissues from inhabitants of the European community. I. A study of 46 elementsin urine, blood and serum of Italian subjects. Sci. Total Environ., 95, 89–105.

Mulligan, K.J., Davidson, T.M., and Caruso, J.A. (1990). Feasibility of the directanalysis of urine by inductively coupled argon plasma mass spectrometry forbiological monitoring of exposure to metals. J. Anal. At. Spectrom., 5, 301–306.

Navas-Acien, A., Silbergeld, E.K., Sharrett, A.R., Calderon-Aranda, E., Selvin, E., andGuallar, E. (2005). Metals in urine and peripheral arterial disease. Environ.Health Perspect., 113, 164–169.

Nicolaou, G., Pietra, R., Sabbioni, E., Mosconi, G., Cassina, G., and Seghizzi, P.(1987). Multielement determination of metals in biological specimens of hardmetal workers: A study carried out by neutron activation analysis. J. Trace Elem.Electrolytes Health Dis., 1, 73–77.

Nriagu, J., Burt, B., Linder, A., Ismail, A., and Sohn, W. (2006). Lead levels in bloodand saliva in a low-income population of Detroit, Michigan. Int. J. Hyg. Environ.Health, 209, 109–121.

Olmez, I., Gulovali, M.C., Gordon, G.E., and Henkin, R.I. (1988). Trace elements inhuman parotid saliva. Biol. Trace Elem. Res., 17, 259–270.

Otto, G.F., and Maren, T.H. (1950). Chemotherapy of filiariasis. VI. Studies on theexcretion and concentration of antimony in blood and other tissues followingthe injection of trivalent and pentavalent antimonials into experimental animals.Am. J. Hyg., 51, 370–385.

Parr, R.M., DeMaeyer, E.M., Iyengar, V.G., Byrne, A.R., Kirkbright, G.F., Schoch,G., Niinisto, L., Pineda, O., Vis, H.L., Hofvander, Y., and Omololu, A. (1991).Minor and trace elements in human milk from Guatemala, Hungary, Nigeria,Philippines, Sweden, and Zaire. Biol. Trace Elem. Res., 29, 51–75.

Paschal, D.C., Ting, B.G., Morrow, J.C., Pirkle, J.L., Jackson, R.J., Sampson, E.J.,Miller, D.T., and Caldwell, K.L. (1998). Trace metals in urine of United Statesresidents: Reference range concentrations. Environ. Res. A, 76, 53–59.

Perrone, L., Di Palma, L., Di Toro, R., Gialanella, G., and Moro, R. (1993). Traceelement content of human milk during lactation. J. Trace Elem. ElectrolytesHealth Dis., 7, 245–247.

Petit de Pena, Y., Gallignani, M., Burguera, M., Burguera, J.L., Anez, N., and Lugo,Y. A. (1990). Selective determination of antimony(III) and antimony(V) in bloodserum and urine by hydride generation and atomic absorption spectrometry. J.Braz. Chem. Soc., 1, 72–75.

Poulsen, O.M., Holst, E., and Christensen, J.M. (1997). Calculation and application ofcoverage intervals for biological reference values. Technical Report. A supple-ment to the approved IFCC recommendation (1987) on the theory of referencevalues. Pure Appl. Chem., 69, 1601–1611.

Pronczuk, J., Akre, J., Moy, G., and Vallenas, C. (2002). Global perspectives in breastmilk contamination: infectious and toxic hazards. Environ. Health Perspect. 110,A349–A351.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

212 M. Filella et al.

Qin, H.-L., Lei, Z. L., and Hu, W.-D. (1996). Determination of urinary antimonyin healthy adult population by flame atomic absorption spectrometry. GongyeWeisheng Yu Zhiyebing, 22, 240–241.

Quiroz, W., Arias, H., Bravo, M., Pinto, M., Lobos, M.G., and Cortes, M. (2011). De-velopment of analytical method for determination of Sb(V), Sb(III) and TMSb(V)in occupationally exposed human urine samples by HPLC–HG-AFS. Microchem.J., 97, 78–84.

Rapant, S., Dietzova, Z., and Cicmanova, S. (2006). Environmental and health riskassessment in abandoned mining area, Zlata Idka, Slovakia. Environ.Geol., 51,387–397.

Rat, J.C., Debrus, C., and Burnel, D. (1985). Dosage de l’antimoine par polarogra-phie impulsionnelle avec redissolution anodique. Application aux milieux bi-ologiques [Determination of antimony by pulse polarography with anodic strip-ping. Application to biological media]. Annales des Falsifications de l’ExpertiseChimique et Toxicologique, 78, 7–11.

Rees, P.H., Kager, P.A., Keating, M.I., and Hockmeyer, W.T. (1980). Renal clearanceof pentavalent antimony (sodium stibogluconate). Lancet, 316, 226–229.

Rice, D.C., Lincoln, R., Martha, J., Parker, L., Pote, K., Xing, S., and Smith, A.E. (2010).Concentration of metals in blood of Maine children 1–6 years old. J. Expo. Sci.Env. Epid., 20, 634–643.

Richardson, B.A. (1994). Sudden infant death syndrome: a possible primary cause.J. Forensic Soc., 34, 199–204.

Richter, P.A., Bishop, E.E., Wang, J., and Swahn, M.H. (2009). Tobacco smoke ex-posure and levels of urinary metals in the U.S. youth and adult population: TheNational Health and Nutrition Examination Survey (NHANES) 1999–2004. Int. J.Environ. Res. Public Health, 6, 1930–1946.

Rodushkin, I., Engstrom, E., Stenberg, A., and Baxter, D.C. (2004). Determination oflow-abundance elements at ultra-trace levels in urine and serum by inductivelycoupled plasma-sector field mass spectrometry. Anal. Bioanal. Chem., 380,247–257.

Rodushkin, I., and Odman, F. (2001). Application of inductively coupled plasmasector field mass spectrometry for elemental analysis of urine. J. Trace Elem.Med. Biol., 14, 241–247

Rossipal, E., and Krachler, M. (1998). Pattern of trace elements in human milk duringthe course of lactation. Nutr. Res., 18, 11–24.

Schramel, P., Wendler, I., and Angerer, J. (1997). The determination of metals (an-timony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thal-lium, tin and tungsten) in urine samples by inductively coupled plasma-massspectrometry. Int. Arch. Occup. Environ. Health, 69, 219–223.

Schramel, P., Wendler, I., Dunemann, L., Fleischer, M., and Emons, H. (1999). Anti-mony, lead, cadmium, platinum, mercury, tellurium, thallium, bismuth, tung-sten, tin. Analyses of Hazardous Substances in Biological Materials, 6, 79–109.

Schroeder, H.A., and Nason, A.P. (1971). Trace-element analysis in clinical chemistry.Clin. Chem., 17, 461–474.

Schulz, C., Angerer, J., Ewers, U., Heudorf, U., and Wilhelm, M. (2009). Revisedand new reference values for environmental pollutants in urine or blood of

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

Human Exposure to Antimony III 213

children in Germany derived from the German Environmental Survey on Chil-dren 2003–2006 (GerES IV). Int. J. Hyg. Envir. Heal., 212, 637–647.

Shirai, S., Suzuki, Y., Yoshinaga, J., and Mizumoto, Y. (2010). Maternal exposure tolow-level heavy metals during pregnancy and birth size. J. Environ. Sci. Heal.A, 45, 1468–1474.

Shotyk, W., Krachler, M., and Chen, B. (2006). Contamination of Canadian and Eu-ropean bottled waters with antimony from PET containers. J. Environ. Monitor.,8, 288–292.

Shotyk, W., Krachler, M., Chen, B., and Zheng, J. (2005). Natural abundance ofSb and Sc in pristine groundwaters, Springwater Township, Ontario, Canada,and implications for tracing contamination from landfill leachates. J. Environ.Monitor., 7, 1238–1244.

Smith, B.M., and Griffiths, M.B. (1982). Determination of lead and antimony in urineby atomic-absorption spectroscopy with electrothermal atomisation. Analyst,107, 253–259.

Smith, M.M., White, M.A., and Wilson, H.K. (1995). Determination of antimony inurine by solvent extraction and electrothermal atomization atomic absorptionspectrometry for the biological monitoring of occupational exposure. J. Anal.At. Spectrom., 10, 349–352.

Versieck, J., and Cornelis, R. (1989). Trace elements in human plasma or serum.Boca Raton, FL: CRC Press.

Walker, A.W. (Ed.). (1992). Trace element analyses. Clinical and analytical hand-book Royal Surrey County and St Luke’s Hospitals (2nd ed.). Surrey, England:Guildford.

Wang, D., Du, X., and Zheng, W. (2008). Alteration of saliva and serum concentra-tions of manganese, copper, zinc, cadmium and lead among career welders.Toxicol. Lett., 176, 40–47.

Wappelhorst, O., Kuhn, I., Heidenreich, H., and Markert, B. (2002). Transfer ofselected elements from food into human milk. Nutrition, 18, 316–322.

Ward, N.I. (1986). Multi-element analysis of urine by neutron activation analysis:Application to starvation and anorexia nervosa. J. Micronutr. Anal., 2, 211–231.

Wester, P.O. (1973). Trace elements in serum and urine from hypertensive pa-tients before and during treatment with chlorthalidone. Acta Med. Scand., 194,505–512.

Wester, P.O. (1975). The urinary excretion of trace elements before and duringtreatment with hydralazine. Acta Med. Scand., 197, 307–309.

Wolfe, M.I., Mott, J.A., Voorhees, R.E., Sewell, C.M., Paschal, D., Wood, C.M., McK-inney, P.E., and Redd, S. (2004). Assessment of urinary metals following expo-sure to a large vegetative fire, New Mexico, 2000. J. Expo. Anal. Env. Epid., 14,120–128.

World Health Organization. (1989). Minor and trace elements in breast milk. Reportof a Joint WHO/IAEA Collaborative Study. Geneva, Switzerland: WHO.

World Health Organization. (1996). Biological monitoring of chemical exposure inthe workplace. Vol. 1. WHO/HPR/OCH 96.1. Geneva, Switzerland: WHO.

Wunschmann, S., Franzle, S., Kuhn, I., Heidenreich, H., Wappelhorst, O., and Mark-ert, B. (2004). Verteilung chemischer Elemente in der Nahrung und Milch stil-lender Mutter. Teil II: Ag, Au, Ba, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, I, La, Mn, Mo,

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3

214 M. Filella et al.

Nb, Ni, P, Pb, Ra, Rb, Re, Ru, Sb, Sr, Te, Th, Ti, U, Y, Zn und Zrr [Distributionof chemical elements in the diet and milk of breast feeding mothers. Part II: Ag,An, Ba, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, I, La, Mn, Mo, Nb, Ni, P, Pb, Ra, Rb, Re,Ru, Sb, Sr, Te, Th, Ti, U, Y, Zn, and Zr]. UWSF – Z. Umweltchem. Okotox., 15,168–174.

Xie, Y., Miyamoto, H., Kondo, M., Koga, H., Zhang, A., Ohmichi, M., Inaba, Y., andChiba, M. (2001). Element concentrations in urine of patients suffering fromchronic arsenic poisoning. Tohoku J. Exper. Med., 193, 229–235.

Zaghloul, I.Y., Radwan, M.A., Al Jaser, M.H., and Al Issa, R. (2010). Clinical efficacyand pharmacokinetics of antimony in cutaneous leishmaniasis patients treatedwith sodium stibogluconate. J. Clin. Pharmacol., 50, 1230–1237.

Zaichick, V., Tsyb, A., and Bagirov, S. (1995). Neutron activation analysis of saliva:Application in clinical chemistry, environmental and occupational toxicology. J.Radioanal. Nucl. Chem., 195, 123–132.

Dow

nloa

ded

by [

Lau

rent

ian

Uni

vers

ity]

at 0

6:36

06

Febr

uary

201

3