Hot Test Loop A|*d^

212
KAERI/MR-287/96 lin iii||||| KR9700064 Operation of the Nuclear Fuel Cycle Test Facilities Hot Test Loop A|*d^ Operation of the Hot Test Loop Facilities 4 28122

Transcript of Hot Test Loop A|*d^

KAERI/MR-287/96 liniii|||||

KR9700064

Operation of the Nuclear Fuel Cycle Test Facilities

Hot Test Loop A|*d^Operation of the Hot Test Loop Facilities

4

2 8 1 2 2

We regret thatsome of the pagesin this report may

not be up to theproper legibilitystandards, eventhough the best

possible copy wasused for scanning

KAERI/MR-287/96

MMMUOperation of the Nuclear Fuel Cycle Test Facilities

Hot Test LoopOperation of the Hot Test Loop Facilities

«• ^ * 4 ^ ^ -=?•

"Hot Test Loop

1997

JL

!@ft BLANK

I . *ll *

Hot Test Loop

II .

711UJ*

Hot Test Loop, Cold Test Loop ^ JL.gr, JL6^ 2Aov-n-§- ^ ^ ^ ^ l i l RCS

Loop, B & c Loop •§•

ffl.

PffR-Hot Test Loopl- ol-§-t> PWR

CANDU-Hot Test Loop-§- o | -g-^ CANFLEX

Cold Test Loopl- ° l -§-# PWR

RCS <&^ Loopl-

111

- B & C L o o p *

• Air-Water

• X-Ray Densitometer System

• RDT ^

IV.

K PWR-Hot

Test Loop-c: °I-|r^ < 2fJLzf-fl- - -tJlAl l Double Grid

CANDU-Hot Test Loop^ CANFLEX

.__ o ul^# 4I*I| iCold Test Loop A|-^oflA^ PWR

RCS Loop^

[. B & C Loopofl M-if: ~Z\ Component Q Loop

Phase Doppler

Particle .Analyzer, Parallel-Wire Probe, X-Ray Densitometer System

IV

SUMMARY

I . Project Title

Operation of the Hot Test Loop Facilities

II. Objective and Importance of the Project

A performance and reliability of a advanced nuclear fuel and

reactor newly designed should be verified by performing the

thermal hydrualics tests. In thermal hydraulics research team, the

thermal hydraulics tests associated with the development of an

advanced nuclear fuel and reactor have been carried out with the

test facilities, such as the Hot Test Loop operated under high

temperature and pressure conditions, Cold Test Loop, RCS Loop and

B & C Loop. The objective of this project is to obtain the

available experimental data and to develop the advanced measuring

techniques through taking full advantage of the facilities.

HI. Scope and Contents of the Project

The main scope and contents of the project are as follows :

- Performance tests of PWR fuel assembly in PWR-Hot Test Loop

- Performance tests of CANFLEX fuel in CANDU-Hot Test Loop

- In Cold Test Loop, thermal hydraulics tests relative to the

development of the advanced PWR nuclear fuel and HANARO

fuel

- CHF and natural circulation experiments in the RCS Loop

- Performance tests of safety/automatic depressurization

system in B & C Loop

- The development of the advanced experimental and measuring

techniques

IV. Results and Proposal for Applications

The facilities operated by the thermal hydraulics reseach team

have been maintained and repaired in order to carry out the

thermal hydraulics tests necessary for providing the available

data. The performance tests for the double grid type bottom end

piece which was improved on the debris filtering effectivity were

performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was

operated to carry out the pressure drop tests and strength tests

of CANFLEX fuel. The Cold Test Loop was used to obtain the local

velocity data in subchannel within HANARO fuel bundle and to study

a thermal mixing characteristic of PWR fuel bundle.

RCS thermal hydraulic loop was constructed and the experiments

have been carried out to measure the critical heat flux. In B & C

Loop, the performance tests for each component were carried out.

In order to meet the thermal hydraulics test needs for

developing an avanced nuclear reactor in future, it is necessary

to supplement the manpower for operating the facilities.

VI

2 # Hot Test Loop A } ^ 3

*fl 1 PWR-Hot Test Loop A ] ^ 3

1. 7fl.fi. 3

2. *1«#*1 4-fi- 33. Al^^S.*! 6

4. -S- - JE. *1H(Uncertainty Analysis) 9

5. 17X17 PWR «!^S.^^>fl6|| Q WJ*\ ^-^Al^ 13

^ 1 2 ^ CANDU-Hot Test Loop A ] ^ 14

i. ^ l ^ ^ i - i ^ 7H.fi. H

2. A J ^ A l ^ ^ £ * } * ^ - i f ^ 1 15

3. >M«A1<S£J ^ ^ f l A i 16

4. Al^cH JjLi 71) 1 17

*11 3 ^ Cold Test Loop A|>^ 18

1. 7fl.fi. 18

2. PWR *}<££. ^ ^ 21

3. tfj-M-S. ^ i 1 ?!^ . - g ^ 27

^1 4 g RCS < i ^ ^ Loop ^*1 31

1. M^r 31

2. -S1HV*1 fljSL 32

3. Ti]^ gj Data Acquisition Tfl f- 40

4. £ 3 * M 7(|* 44

5. CHF ^ ^ ^ ^ f 45

6. ^A^^m 4951

vn

5 ^ B & C Loop #*1 53

1. 7fl.fi. 53

2. ^r*5M]-§- 53

3. W *l*l 64

-ti 67

115

ti 2 tifl * 1151. 7fl.fi, 115

2. -%]%! ^ S . ^ : ^ 116

3. ^Tll^s^-H-^ £«g 7l)t 12o

4. dr]7ll^Boi^.^ _n^ ig7^ 1 2 1

5. ^ € - 122

! 2 ^ ^ 3 | ^ Air-Water 2^-8-S- ^ ^ 123

1. ^ ^ ^ m ^ gl ^ - ^ 123

2 . ^ ^ * 1 51 2L£ 125

3. <U*> ^ - ^ ^ * 1 125

4. ^ ^ l } ?J £3} 126

ti 3 ;g ^Jg3f Air-Water 2^-%-%- <£*& 128

1. 7fl.fi. 128

2. ^ 7 ] ^jS.J£ ^ ; | j7l(Parallel-Wire Conductance Probe) 128

3. - g « # * l 51 wov^ 130

4. ^ ^ ^ 131

1 4 ^ X-Ray Densitometer System 133

1. 7fljEL 133

2. ^ - ^ Tflf- 9J ^ " ^ 135

3. ^ - ^ 1 ^ 4.3\ 136

fl 5 ^ RDT ^ ^ 137

vin

1. 7fl.fi. 137

2. il #*l 140

3. -fr^Tfl iL3 141

4. -B-§-7MS| ^ 143

5. "^7] jet-Sl - a ^ - ^ ^ " ^ - ^ ^ ^ ^ 7 f l * | 144

145

*ov 193

IX mm!©f t 8LANK

43-

Table 2.3-1 Energy Decay of Grid Turbulence 68

Table 2.4-1 Specifications of RCS Loop Facility 70

Table 2.4-2 Instrumentations of RCS Loop Facility 70

Table 2.5-1 List of Major Instrumentations for B & C Loop 71

Table 2.5-2 List of Major Acquisition Parameters for B & C

Loop 72

Table 2.5-3 Test Matrix for B & C Loop 73

Table 2.5-4 Technical Specification of the HP-DAS 74

Table 2.5-5 Triggering Signals for Each Test Mode 74

Table 2.5-6 Parameter List for Main Acquisition and Display — 75

Table 2.5-7 List of the Files for Data Monitoring andAcquisition in B & C Loop 76

Table 3.1-1 Test Matrix 147

Table 3.1-2 Comparison of Selected Critical Flow Dataand the Present Model 147

Table 3.2-1 Typical Parameters used in the Experiments 148

Table 3.4-1 Test matrix for the performance test of X-RayDensitometer system 149

Table 3.5-1 Technical Specification of the Steam Flow Meter --- 150

Table 3.5-2 Instrumentations and DAS for RDT Test 151

Table 3.5-3 Technical Specification of the Digital Balance 152

Table 3.5-4 Experimental Data for Flowmeter Calibration 153

Table 3.5-5 Test Matrix for Phase-I 156

X1 I 8SSXT PAGE(S)I leftBLA*

Fig. 2.1-1 Flow Diagram of PWR-Hot Test Loop 77

Fig. 2.1-2 Structure of Test section 78

Fig. 2.1-3 Locations of Pressure Tap in Test Section 79

Fig. 2.1-4 Pressure Loss Coefficients of Simulated PWR Fuel --- 80Assemblies with STD-BEP and DR-BEP

Fig. 2.3-1 Schematic Flow Diagram of the Cold Test Loop 81

Fig. 2.3-2 Backward Scattered Alignment Model of LDV System --- 82

Fig. 2.3-3 Axial Locations of Spacer Grids and Pressure Tapsfor PWR Test 83

Fig. 2.3-4 Cross-section of 5 x 5 Rod Bundles showing

the Measuring Locations 84

Fig. 2. 3-5 5 x 5 Spacer Grid 84

Fig. 2.3-6 Cross-section of 6 x 6 Rod Bundles showingthe Measuring Locations 85

Fig. 2.3-7 6 x 6 Spacer Grid combined by Mixing Vaned andStraight Types 85

Fig. 2.3-8 Axial Turbulent Intensity Decay behind the 5 x 5Spacer Grid at Points on the Path 1 86

Fig. 2.3-9 Axial Turbulent Intensity Decay behind the 5 x 5Spacer Grid at Points on the Path 2 86

Fig. 2.3-10 Axial Turbulent Intensity Decay behind the 5 x 5Spacer Grid at Points on the Path 3 87

Fig. 2.3-11 Axial Turbulent Intensity Decay behind the 6 x 6Spacer Grid at Points on the Path 2 88

Fig. 2.3-12 Horizontal Turbulent Intensity Decay behindthe 6 x 6 Spacer Grid at Points on the Path 2 89

Fig. 2.3-13 Schematic of the Test Section 90for HANARO Fuel Assembly

Fig. 2.3-14 LDV Measuring Paths for 18-Element FuelAssembly 91

Fig. 2.3-15 Axial Measuring Locations for 18-Element FuelAssembly 92

xiii

Fig. 2.3-16 LDV Measuring Paths for 36-Element FuelAssembly 93

Fig. 2.3-17 Developing Axial Velocitiy at Path Afor 18-Element Fuel Assembly (m=12.7 kg/s) 94

Fig. 2.3-18 Developing Axial Velocitiy at Path Bfor 18-Element Fuel Assembly (m=12.7 kg/s) 95

Fig. 2.3-19 Axial Velocities of Outlet Regionfor 36-Element Fuel Assembly (m=12.4 kg/s) 96

Fig. 2.3-20 Pressure Drop Data for 18-Element FuelAssembly 97

Fig. 2.3-21 Pressure Drop Data for 36-Element FuelAssembly 98

Fig. 2.4-1 Simplified Drawing of RCS Loop Facility 99

Fig. 2.4-2 Whole View of RCS Loop Facility 100

Fig. 2.4-3 Whole View of IRWST 101

Fig. 2.4-4 Data Acquisition System of RCS Loop Facility 102

Fig. 2.4-5 Transient Control System of RCS Loop Facility 103

Fig. 2.4-6 Parametric Trends of CHF with Mass Flux 104(Effect of Inlet Subcooling)

Fig. 2.4-7 Parametric Trends of CHF with Mass Flux 105

(Effect of Pressure)

Fig. 2.4-8 Effect of Pressure on CHF 106

Fig. 2.4-9 Steam Vent Line after Accident 107

Fig. 2.5-1 Typical Form of the DAS Output for MonitoringUnloaded Sensors 108

Fig. 2.5-2 Typical Form of the DAS Output for StartupMonitoring 109

Fig. 2.5-3(a) Typical Form of the DAS Output for the Mode-1Test 110

Fig. 2.5-3(b) Typical Form of the DAS Output for the Mode-2Test 111

Fig. 2.5-3(c) Typical Form of the DAS Output for the Mode-3Test 112

Fig. 2. 5-3(d) Typical Form of the DAS Output for the Mode-4Test 113

xiv

Fig. 2.5-3(e) Typical Form of the DAS Output for the Mode-5Test 114

Fig. 3.1-1 Measured Pressure Variations and the Location ofFlashing Inception within a Pipe for SubcooledTwo-Phase Flow Test 157

Fig. 3.1-2 Measured Pressure Profiles along the Test Sectionfor Various Initial Subcooling of the Water(Test Section No. 1) 158

Fig. 3.1-3 Dimension less Distance from the Pipe Inlet to theLocation of Saturation Pressure versusDimensionless Subcooling 159

Fig. 3.1-4 Mass Flux versus Stagnation Temperature for FourDifferent Stagnation Pressure Obtained at TestSection No. 1(D = 3.4 mm, L = 100 mm) 160

Fig. 3.1-5 Mass Flux versus Stagnation Temperature for ThreeDifferent Stagnation Pressure Obtained at TestSection No. 2 161

Fig. 3.1-6 Effects of Tube Size on Subcooled Critical Two-Phase Flow Rate 162

Fig. 3.1-7 Temperature Dependence of Mass Flux in DifferentSize Tube 163

Fig. 3.1-8 Nonlinear Least Square Curve Fittingfor Present Data 164

Fig. 3.1-9 Model Predictions and Measured Data(755 Data) 165

Fig. 3.2-1 Schematic Diagram of the Air-Water Loop 166

Fig. 3.2-2 Photography of the Arrangements of the TestSection and Optical Components 167

Fig. 3.2-3 Photography of the Test Section before

Assembling 168

Fig. 3.2-4 Schematic of the Transmitter for PDPA System 169

Fig. 3.2-5 Example of the Measured Droplet SizeDistribution 170

Fig. 3.2-6 Variation of the Droplet Size with SuperficialAir Velocity 171

Fig. 3.2-7 Comparison of the Measured Data withthe Prediction by Other Correlations 172

xv

Fig. 3.3-1 Configuration of the Parallel-Wire ConductanceProbe 173

Fig. 3.3-2 Block Diagram of Water Thickness MeasuringCircuit 174

Fig. 3.3-3 Schematic Diagram of the Horizontal Air-WaterLoop 175

Fig. 3.3-4 Typical Time Recordings of Interface

Uf - 0.0004 m/s) 176

Fig. 3.3-5 Variation of Power Spectra 177

Fig. 3.3-6 Variation of Spatial Growth Factor 178Fig. 3.4-1 Drawing of the Void Simulators : 179

(a) Bubbly Simulator, (b) Concentric Tapered Plug,(c) Eccentric Tapered Plug,(d) Inverted Tapered Plug,(e) Steel Pipe Enclosure

Fig. 3.4-2 Photographic View of the Void Simulators : 180(a) Tapered Plug, (b) Inverted Tapered Plug,(c) Bubbly Simulator, (d) Steel Pipe Enclosure

Fig. 3.4-3(a) Test Results for Bubbly Flow Simulator 181

Fig. 3.4-3(b) Test Results for Annular flow Simulator 182

Fig. 3.4-3(c) Test Results for Inverted Annular FlowSimulator(l) 183

Fig. 3.4-3(d) Test Results for Inverted Annular Flow

Simulator(2) 184

Fig. 3.4-4 Arrangements of the Pre- and Post-Collimators 185

Fig. 3.5-1 Schematic Diagram of the Experimental apparatus 186

Fig. 3.5-2 Schematic Diagram of the High-Speed Recorder Based

on the Combination of PC and A/D Converter 187

Fig. 3.5-3 Schematic Diagram of the Data Acquisition System — 188

Fig. 3.5-4 Relation between Water Level and Volumein the Quenching Tank 189

Fig. 3.5-5 Comparison of Flow Rates between Calculated Valuesand Measured Values 190

Fig. 3.5-6 Shapes of Steam Plume under Different Experimental

xvi

Condition 1 3 1

xvn

7]

PWR-Hot Test Loop, CANDU-Hot Test Loop

Cold Test L o o p ^

7fl1fczf

Reactor Coolant System "g^r^ Loop

Loop)A|- Blowdown and Condensation Loop(B & C Loop)^l X\]

1995V1

- 1 -

PWR-Hot Test Loop^- o|-g-»V PWR

CANDU-Hot Test Loop# o|-§-*f CANFLEX

Cold Test Loop# o|^.^> PWR

RCS < g ^ ^ Loop

B & C Loop!- o

• Air-Water

• X-Ray Densitometer System 7^**}

• RDT ^

£• Hot Test Loop A ] ^ ^ ^ J t J L ^ ^ . ^ | 2 ^ofl 7 l ^ A]* |O] Hot

Test Loop A]^ , Cold Test LoopofHSj ^ ^ ^ ^r<g2f ^ ^ 5 ] f e fl-§-

1 RCS Loopi} B & C

3

Phase Doppler Particle Analyzer, Parallel-Wire Conductance Probe,

X-Ray Densitometer System-^-

-2-

2 ^ Hot Test Loop

1 ^ PWR-Hot Test Loop

1 . 7 l | J3L

^ Fretting Wear ^ < ^ ^

l^LS. Full size PWR

PWR-Hot Test Loopl- '90^ 4^^] * 1 * H r^^l^l Sl^.n^f Fullsize

17X17 PWR

2 . ^ l ^ ^ l 7i|.fi.

PWR-Hot Test Loop^- Fullsize PWR

- 3 -

H^J 2.1-l<>fi ^r ^|-£] Flow Diagram^

-8-^ ^-^-g- Orificel

Loop 7}^7}M: x}^\ ^^^^.S. Sl^o>^-t:>. Loop

f. Loop - g ^ r £ ^ Loop 7}<£7)o\)

100 kW£] 7f<g-g-^S. floi^^K Loop - f r ^

Loop <gJ2.:&7H±=. ^H^^iL^l(RHX), ^4*8^^7] (CDHX)

Bleed -«iJ

-§- r# ofl^^JL Loop £ # ^^A]^7l *]*-> Loop 7f

-i- -fe°]ir ol4. 4^^L%7J^ Loop ^]A] Loop#

f-Sll}, Loop ^

Loop -g^*l ^

j 6oto],g.-^.ol^. J3L^3|-g-i- °|-§-*M ^rJ£ 25t:ofl>H pH 7.0,

1.0 micromhos/cm<y JL^S . Loop

176 7l<y-

330 °C

100 kg/sec(500 m3/hr)

De-Ionized Water

-4-

3.5-162 kgf/cm2,

-8-*g 102 m3/hr~500 m3/hro]^ ( o] ^ ^ ^ - 17X17

o\}*\$) Reynolds ^3. ^ K ! * ^ <$ 5.0Xl05<i

Grayloc Flange# 7f*l 16" Sch. 140 w f l ^

Flange S ^ A } O | ^ T]Z}^ 5461mm<>li:K

Al^-8-7m-¥-5l Aj^-f J jL^^ ^ ^ 5 - ^ 1 ^ 1 ^ ^^ (14X14 , 16X

16 ^ ^ 17X17), 3.71 gj ^J^j-S. i ^ ^ ^ - ^ ^ l re|-B>

2.1-2CH1 17x17 PWR

Flow Diffuseri} *}~¥-ii^?>> > 7fl ] Fullsize

fe 4 4 ^ gj Instrumentation Shield^ ^A^<>1 ^14. Flow Housing*}

^ ^ ^ H <?1^^ <y-^^.^^-( Pressure Sensing Line)^ Flow

Housing ]- A|^^-7l L-fl AJ-oj-g- tcj-ef Instrumentation Shield -f-^r^]A]

Instrumentation Head# ^f-*B^ Al^-§-7l $]^-S. - f r S ^ h ^ ^ ^ - ^ ^

Z\]6\) o]7}±t Loop -fr^S] q-*l < - -fe A] -8-71 *f >-f- 1 Flow

Diffuser ^ ^ -^^ofl^ Flow Housing^} ^l^-§-7l ufl^ A}O|S. -f$]

(Bypass)*>7fl $\°\ $X^\. t}^-^^^3] Hole 3.7} ^ ^ ^ 1 ^

3. * H f i i ^ ^ ^ ^«y*f7il ^711, 4 ^ * f S i 4 . Flow Housing^

«:#•§• 3-«y*MJ *j-7l^*H Flow Diffuser^i -^7|-^-<H]^ & £ -?-»g

^l Plate#

- 5 -

3. A

7}.

Loop

Heise

J-Type « i ^ c m Loop 7f<g7l ^ 7 ^ 7 1 ^ ^^1^1 K-Type

-§-^r ^ % ^ ^ Discharge afl -ofl >y^]^ Full Flow

0rifice7|-

High, Low

- 6 -

P T, = P TS 1+a ( Tf- Tr ) } (1)

A Tl = A Tr { 1+a ( T / - 7 \ ) }2 (2)

P = ^ ^ z]o] ( Wetted Perimeter ) [ m ]

A = •%-$, ^ [ m2 ]

Tf = ^ 1 ^ £S. [ TC ]

Tr = 71^ i [ °C ]

a = Stainless Steel ^ ^=J^j- 7}]^ ( 1.782 x 10~5 )

uf. -f jq^-( Bypass Flow )

Flow Housing 2}

Orifice

ischarge Coeffi

cient)^- 9.687 x 10"6 m2^. # 5]51^-^ Beroulli

= Q o - 4.932 x 10 ~2 {JAP~TP7)

- 7 -

Qo = Orifice oJM ^ g ^ JfrBi [ m3 /h r ]

Pt = t^^S. *^*fl &*fl<S) tfej %*} [ Pa

Pf = ^-*\}$) i ^S . [ kg/m3

eh

Instrumentation Head

Instrumentation Head ofM ^: ^°fl>M !+£•

Pa ]

^ ^ ) [ Pa

= Z f P m + ( P c - pf ) g- A2 ( 4 )

Instrumentation Head °\}*\

ZIP = z J P m - ( P C - P / ) g-AZ (5)

AZ = Instrumentation Head < ^ ] ^ ^ ^-^^ -k0]*} [ m ]

P, = 'MtJ-M **« vi$. [ kg/m3 ][ kg/m3 ]

- Loop - f } - ^ Full Flow Taps

Type SJ Orifice -

o = 0 . 0 2 3 2 3 4 • f a - fc \ M ^ ^ 0 - 2 2 . 6 0 4 8 ( p c - p f ) ) p j ( 6 )

/ a = { 1 + 1 . 7 8 2 x 1 0 - 5 ( T f - T r ) } 2

fc = - ^ P " + 0.9893 (7)K eo

Wo = Orifice o]}*\<!] ^ -%-% [ kg/s ]

= Orifice °]]*\2) A? [ Pa ]

= Orifice afl^<Hl-H^ Reynolds^

o) u% ( 7 ) AJSJ ^ ^ 7 f ^ - e o ^ ^ ^ o | H S . - H - So ^ ^ : ( 6 ) 2 f ( 7 )

4. ^-^j-^i ^^(Uncertainty Analysis)

- 9 -

iH*Rr

n|

fe ANSI/ASME PTC 19.1 Code[2]ofl

7}.

Error J£^- System Error)if -f«^^.^>(Random Error)S.

^MJ3Elfe J2.4JM 4

ision Index : o ] ^ .

- 1 0 -

s == 1 xk-x y

N-\

1/2y 2

i Xk NN-l

1/2

(8)

(9)

A :

^ *\±SK

2 }2 } m (10)

Limits cfl*f

B == (ID

-^-US.(Uncertainty)

Level

tl^S.(Confidence

- 1 1 -

overage)!- 4-§-$M. S^J£fe o]^ Parameter^ rfl*H

(99% iE^S. ) (12)

U = [ B2+ (t Sx)2 ]m (95% 3E^S.) (13)

Sample ^ 7 f

=1.965.

Parameter7f ^ £ H , °lw Parameter^ ^ S . •?•*]•

f. Parameter^ ^-^ -^-^fe Parameter^

Taylor Series^ A f ^ oi^ i]#^^5] #^-^J£l- -?-*>7l

Parameter^) g$^l p,S. ^ r# i | o j

Py) (14)

1/2

11"?

2I\

95%

- 1 2 -

Ur = [ B r2 + (tSr)

2]in

14. 4 Parameter^ tfl^:

K 4Accuracy*} o|

SensorS. - ^ i ] ^ ^ | ^ | ^ 4

(10) ^ (ll)6fl>M ^ ^ £ ^

4 ^TfloilAi^ AI (8) JE^. (9)7|. 4

7]^ ; Parameter^

(15)

5. 17x17 PWR

(Debris)oj

J- ty -^^S .^ Double

71 ۥ ^ < ^ ^ . ^ J ^ l A f DGg DR-BEP7f

Full size 7 ] ^ *f^> a^^l(STD-BEP) ^ DR-BEP

- 1 3 -

H ^ 2.1-4^1

Reynolds^, -^-4^:J£ ^ ^ ^ ^ 1 fl«H 4 4 0.8%, 5.7%, 2.5°C 0.5bar

CANDU-Hot Test Loop

CANDU-Hot Test Loop A

.>H. CANDU

: 341 nf/hr

: 176 kgf/orf

: 348 "C: Demineralized Water

CANDU-Hot Test Loop£

. CANDU-Hot Test Loop£| Main Loop

-14-

Supply Header, A)^c|)(Test Rig), Return Header#

Return Header^- 7]^ ^ ^ ^ r } . ^ ^ - g - ^ ^

5. £ £ ^ 1 7}<i7] 9J h§47Hl 5 ] * H ^ H ^ h Feed and Bleed

-Zr Main LoopoJH £ ^ - g - ^ <£^ «>of -g-^v))^ Crud5| -§-Sfl7f

}tf3g=ofl *]*H Main Loop<Hl

f. Chemical 7fl^£. ^

pH7f

Hydroxide!- Main Loopofl

Water T l j ^ Main

Main Loop.2}

Loop ^is]

] ^ Air S: Loop^

Chemical %

^ pH#

5|*H Lithium

. Make-up

Cooling Water Hot Test

2.

CANDU Hot Test Loop^

Distributed control system (DCS)# 3E.<y*H ^ ^

. DCS ^ nj

CANDU Hot Test Loop<H) D/3

^ D/3

- 1 5 -

S14.

3.

CANDU-Hot Test Loop

CANDU # >

^^^- ^ J L ^"cf. CANDU-Hot Test Loop £ Main Loop Tll f, Feed

and Bleed Tfl f-, Make-up Water Treatment 7j] f-, Chemical Tfl f-,

Cooling Water 7 1-f-, Control and Data Acquisition

. CANDU-Hot Test Loop S]

-b Feed and Bleed Tfl f-ofl ^^1^1 ^ ^ 1 - <^^-^^S. 4-g-

0} o]^ ^ ^ ao^l7f 5 )4 Feed and Bleed Tfl f-if Make-up Water

Treatment 7 j )^^ ^^ofl>fc| ^^5^71 nfl -ofl ^ ^ ^ o ] #_OB| S . ^

Feed and Bleed X|-f-^ ^-^ufl^^r ^*1 100i£# -f-^I^S. * H ^ H

3 £ £ wfl 91 -8-7151 -f Alo) 3.711 t * W a 4 .

i i ^ ^ ^ l ^ ^ A J * ] ^ ^ # 711 *1-71 JH*H Feed and

Bleed Tfl^z} Make-up Water Treatment Tfl f- < -f- afl^jif -g-7]# ^

- 1 6 -

4.

H 7]7l

- GA-201 Booster Pump

- GA-302 Polished water supply pump

- FA-301 Polished water storage tank

- FA-202 Overflow storage tank

7171

- GB-301 A,B Vacuum pump

- GA-301 Vacuum deaerator extraction pump

- EC-301 A.B Vacuum separator

- EG-301 Vacuum deaerator

- EB-301 Polished water heater

- FD-301 A,B Polished water Filter

5J Rolled jointofl

(End fitting)^-^.^. n ^ ^ M ^l^h Al^cll^l

Liner tube ^ Shield plug ^ ^ 600 MWe CANDU

m # $ ) vfl^^r 103.385

4", 1500 lb Flange7f -

-17-

Metal gasket#

" (sch. 80)*]

L5

CANDU-Hot Test Loop

L5

3 a* Cold Test Loop

7|iL

-18-

Cold Test Loop A ] ^ ^ -

^H^H ^ 2.3-11^ » , Test Section,

. Test Section^

JI 1 ^ - e o ^ Turbine

PID Controller, Control Valve, SCR Unit, Heater ^

RTD(Resistance Temperature Detector) ^^.S. ^ ^ 5 ] ^ ^r-E-^H^]

1- °l-§-$>4. - PID Controller^! £)*fe ^r^l- ^^l^l 1^ SCR Unit

ofl Sfl Heater7f 4 ^ * } ^ ^ * f e ^ ^ 1 ^ % ^ r # 7>^A]^>|I 5]

Setting^71- RTD5.-f^ 4^5]°1^1fe PV(Position Value)*ll-

Control Value7} <

^^^- Over-Flow Drain#

Test Section-^-S ^g-^-3£]^ -^-^^r OMEGA

Turbine^ ^ ^ ^ 5 + -

Q = A + B H (1)

Q : Flow Rate (GPM),

A, B : Constant (Given By OMEGA),

-19-

H '• Frequency (Hz).

A] (1)<HH - f r ^ -?-*B^l ol-fl-5]^ H ^ Turbine^

<H Turbine -fr TJl 3 (Electronic Part)#

// =^1 2+B 2 V (2)

A2t B2 '• Calibration Constant

V : Voltage (Volt)

L-f. LDV (Laser Doppler Velocimeter)

LDV ^ - ^ 7 1 ^ ^ Laser Beam# o]-g-*>

^|§fl Laserfe Doppler Shift

Doppler Shift

sin

Laser Wave Length, ^r^ Laser Beam

«>4(Half Angle)°]r}. One-component He-Ne LDV System^ TSI

^ 1 - (3-Q 2.3-2). Focusing =]1^1

^ 50mmolJL, Focusing

-20-

250mmo]u>. -

Natural Contaminant^.^

Silicon Carbide(3J3 : 1.5 |im, ^S. : 3.2 g/cm3)

Laser - i>^^^S.-fB|5] ^ 1 ^ 1 ^ Photomultiplierofl ^

°1 Photomultiplier^ -tl L-fe t\X\ Counter Type Processor

Counter Type - i i S ^ ^ l - b ^^}^r < H ^ ^ 1 .

Amplifier, Digital Output, D/A(Digital to Analog) Converter ^^.S.

2 . PWR

7\.

^ 5 x 5, 6 x 6

LDV(Laser Doppler Velocimeter)^

5 x 5

3 x 6

- 2 1 -

mixing v a n e #

* U r 5 x 5. 6 x 6

LDV^

H^ 9i^M|8S: l l ^ ^ ^ W l ^ ^ t^^^(turbulence

decay)<Hl

- 2 2 -

-b 25 °C

1 ^ H ^ 2.3-3O] J£<H^4. ^-c] 40 mm«] * l*13*fe 600 mm

l S H a i 4 . 5 x 5

2.3-4^ JE-^-i- ^^c f l housing^ * > ^ ^ ^ o | 7 | - 68 l ^

JL -g-u]-^^ -g-51 ^ ^ ^ 9.5 mm, p i t ch^ 12.6 mm, ^ ^ ^ ^

)^c: 11.21 mm °}t}. 5 x 5 * ] * ] ^ ^ f e spli t vane©] ^3]Mj-^jj. 22°

I^1^4 W«HI - Sl<>i ai4(n.^ 2.3-5). i l5 m/sec, ^^- f i -^^r 14.22 kg/sec, Reynolds ^

^ 62500014. 6 x 6 *1*13*1-A|- -g-uj-t -¥^rS. ^ ^ ^ ^ ^ r OL^ 2.3-6

-befl housing^ « > ^ ^ 7jo]7} 81 mm<y ^ A f 4 ^ o ] j i ^-

* ] 3 £ 9.5 mm, p i t c h ^ 12.6 mm, ^ ^ ( D h ) ^ : 11.468

mm o|cK *l*|| -f-^5.^1 ^ ^ : ^ - J £ ^ 5 m/sec, ^ ^ - ° r ^ ^ r 20 kg/sec,

Reynolds ^ f e 63924°!cf. 6 x 6 ^1^1 ^ f e ^-7l|-2] cfg- ^|^l^^]-7>

l ^ s ] 6 x 6 ^ | ^ | ^ 4 ^ o M n K l ? ! 2.3-7). ^ 4 4 ^ ^^ housing

^ -f-^^ acryl ic^5.^ |«l-*H laser beamo] ?§-3}*} <&A *}S14.

5 x 5 S\ 6 x 6 - g - 4 1 ^ ^ - ^ ^ ^ o f l - H ^ ^%£- 91 Point#^r

-L^ 2.3-4Af 2.3-6<>ll u j -44$14. P a t h # £ -g-41^ gap

4.

5 x 5

- 2 3 -

log - logiFSS. a ^ i ^ H ^ 2.3-8 ~ 2.3-10^-c|| o]^. mesh 4 * M screen^ f- - *>

screen^

Mesh qx}\} screen^ ^ ^ f e

mesh

A-] a, M, x0^ 4 4 fitting ^M1, 4^f mesha.7], virtual originmesh4^f3.7l M^

2.3-6 1 -1

(5)

o|uf. olAioflAi 4 i ] ^ - ^ - Sreenivasan et al. [6]£i mesh 4^} ^ ^ ^

^ • ^ ^ tMK'-S.^ 4 ^ # ^ - ^ f . 4?> virtual origin (xo/M=3 :

Sreenivasan et al. , xo/M=O : ^-

- 2 4 -

5 x 5 ^ 5 ) Paths 2, 3^5-1 Point#ofl

U5)*J- tt]J2.*}Sii:K Path 1^ ^2f«I HU 2.3-

*<?•§• -S-^l^K ^-^M- Path 25} Path 3S. o|

II

du2 _ 3 u2v _ d u2wdx dy dz

2_ d pu ,p dx

IV

3 2 M 2 d2u2 d2u2,~TT~H ZTT~)

dy dz

III

(6)

- 2 5 -

I, II, III, IV, V # # £ 4 4 tfl^-( Convection),

(Production),^HDiffusion), ^^UTT-S^Pressure re-distribution)

x, y,

. y,

^ U^ y,S7|- 7}%

6 x 6 ^ ^

2.3-11, 2.3-12)5. ^ ( 5 ) ^ ^•^•^i} MlJ2.*>Sl4. Mixing vane

Points 1 - 5#^] 4yo%1 V > ^ - 4 £ 4 ^ 1 - H^I 2.3-11

f. ne]uf n^J 2.3-12^

(7)

- 2 6 -

2.

7f. 711

^ COBRA-IV-I/KMRR Code7f

Cf.

Code

1) Test Section

Test Section^

- 2 7 -

Laser Beamo]

Test Section^

. LDV

Tapo) H7flAL.

2.3-13^1

2)

18 91 36-g-

H ^ 2.3-14, 2.3-

4

Plate

18-g-

c}. 36-g-

Top End Plate *Hf 9l Bottom End

40 °C ^ 4

3-r- ^ o * 12.7, 8.0 kg/s ofl cH*H, 36-g-

19.6, 12.4 kg/s ofl tfl*H 4 4

Fin wfl<i^4

4, 36-g-

5 . 5 ~ 1 6 , 8 - 22 0.5

>. 4

- 2 8 -

35/45°CSZ)

31

1) ^

18-g- « | ^ S . ^ W H 1 cH > Axial Velocity^

Bottom End Plate, 37fl | Spacer Grid ^ 5 . o|

3- n^$ ^ K ^ ^ , S l ^ ^ V Laser Beamvfl^-i- 4 4 L, Dh, x, RS*| JEAJ^cK

-L J 2.3-17< l -fi-^ 12.7 kg/s, Path A^M Bottom End Plate

4 Spacer Grid *BMHSJ ^ ^ ^ ^ - - £ ^ 5 t ^ ^ "End PlateAf 4 Spacer Grid

4 Spacer Grid *HMH*J ^

£ ^ : S ^ 7]*) -H-A} V 4 £ B l -e.<^^JI alt}. o}^. Bottom End

Plated- Spacer Grid£| ^ ^ o | u}#A5-*| ^ - f ^ £ ^ - # -2.^*fe

Blockage $.3}7\ r\^7] 4 ^ ^ . S . ^^>^^K Spacer Grid

^ ^ - ? ^ S . Jit} ^ ^S.$ ^T5L7\ 3.7]}

7} ^-S.^^0] ^^-^-^^<H1 B]*H 1 3.7)

2.3-18^1 ^L l 2.3-17i|- -|HJ*> - >2:?idfl>H Path B 6fl>H 4

*> -<g^6fl>H5l ^ i ^ S ^ ^ ^ ^ # M-EKfl#i:h Bottom End Plate^

Spacer Grid^ ^^B] 4°1<:H1 nfc- Blockage J l ^ ^ Path ^ g

^ 4 ^ * ^ 1 f j Gap -

- 2 9 -

Path A

36-g- «|£.S.3J^aj|Sl ^g-f Laser Beam<>l

^ r ^ l Path 4

H ^ Path 1 ~ Path 4ofl

12.4 kg/s <y

ti X / R = 0.5 fl |

<H7]>H x ^ S l ^ ^ V Laser Beam

36^-

^ ^ Bottom End Plate, 3 7fl«] Spacer Grid,

Top End Plate?} *l*]*Rr <g^ Tap# ^ ^ ] ^ | ^ ^ 18-g- g 36-g-

2.3-20ofl

Ori fice, Bottom End Plate 5

.4. 18-g- « | ^ S ^ ^ :

1 ^ ^ l - b ^^}*f4S. h^^S] Head

1 4 Spacer

*« s ^ -8-

Effect! 3-

Gridofl>H

•^^1 12.7

\ 214 kPa

1 ^kg/s

225

^ nioj. ^

kPaol

>A

- 3 0 -

2.3-21OJ1 3 6 *

K 36* « ? ^ S ^ ^ ^ I ^ S ^ ^91 19.6

kg/s <y itflil «J&g. *| |^^ ^ ^ ^ f e * ^ x } i s . -f^ ^ 205 kPa

Head Effect# JL^*]-^ ^ 216 kPao] ^

RCS ' g ^ - ^ Loop

A^^. >y^*}7l ^*B i l ^ l ^ r ^ i ^ ^ 16.0

LooptI RCS(Reactor Coolant S y s t e m ) ^ ^ Loop

^r^*]-JLSlt;K ^ ^ 1 ^ -f<d 6j7(1 «g^4r(Critical Heat

Flux : CHF) ^ ^ , 3i l^6>^7)l^^ 7fl^

(Passive Residual Heat Removal : PRHR)7}l-fv£l

LOCA

- 3 1 -

2.

7>.

Closed Loop°ln}

16.0 MPa, ^ r ^ ^ r S . 347 °

LoopTflf-,

~L^ 2.4-2

7]

1)

, Test Chamber,

Test Chamber

%_<>) i$<&g_ Hea te r Rods<H|

- 3 2 -

Test Chamber*

7}

7\)

^ & ^ ^ -§-eo* 18.4 m3/hr, <$% 180 m H2O<q Non Seal

Type Canned Motor ^ ^ o | u | - . ^^X\ Test Section<HH

o| ^ ^ * B £ Test S e c t i o n ^ o i H < y ^ ^ - 5o ^ ^ 1 ^

Craneofl ^Sfl ^ ^ a f l ^ ^ 5^S.(Model:N2ST-50K-25S,

SERIAL NoO. :9424266-1), ZL 3.7}^ z±°}7\ 1619mm, ^°]7\ 975mm, ^

°] 452mmo]i:}. 5E^> ^ ^ . ^ Suction^] Diameter^- 3 inch«]jl

Discharged) Diameter^- 1.5incho]uf. ^5 :^) ^ -^^ l -b 440 Volt, 3

Phase*} #717}

^ Loopif o

Bypass^fe 27fl^ tifl:£ Line# nf^*f^uf. 4 Linear Jg f- ^M,o]}

*H ^rBl^oi SZ-M ^ r^#^ l fe ^ ^ ^ ^ ^ 1 ^ ^ ^ - * W ^ Linen>

^ 4^*f7fl^t:f. ^ Loop^ 3.71^ H«I^<>1 2 inch<>l

afl f Lineal 3.7}^ 4 4 1.5 inchij- 1 inchoju}.

9! ^-S-^-S-SJ Orifice -B- Tfl 9l

Inverter!- -f"*fH 7>ig*fe ty^o] ^Fg-^c}. Orifice

- 3 3 -

3] ^ ^ *}<$ t}4:S!] 7%% £ Data Acquisition Tfl^MH ^M)*} 7]

Uf) aj|<£7j

Test S e c t i o n 6 ^ -§-^

Test Chamber^MMH ^ * g 7 l # ^ * 1 * M . ^}^7]S] 3.71-b :Q.°}7\

2330 mmolJL, ufl-f-^^o| 128.3 mmo|a}, n. ^v\]7\ 20mm<>lcf. o| o j |^

7}o\] if*$£[o] *X^ Nozzle^S.^ *\^°] 2 inch<il Cooling Water^

Inlet Jf Outlet©] $XJL 3.7}7\ 0.5 inch*] Vent7} -^-^-5|oial^f. °fi

^ 7 l ^ ^Jg ^ ^ - 8 - 7 H ^ - ^ 40 kWi| 7f<g-g- Heater# ^ ^ ^ S i c K

Heater^ JB.^ 67fl7f ^^|5l«>i al-^-^ ^ 4 4 ^ 1 -S-^^r 6.7kWo|i:f.

Heater^ ^ ^ ^ 0.75 inch<>lJL Qo]^ 74.25 incholu}. J£*> Heater7>

fl-fe ^ w ^ I * f 7 ] ^ | * H 27H^ Support Plateif o ] ^ . o 4 ^ ^ c ^ ^ ^

Tie Rod7} ^^5]<H $X^h Heater#^^r SCR(Silicon Controlled

Rectifier 3E.±r Thyristor)# ^

Test Chamber

Test Chamber£) <£&?• ^r^-sr ^ r 4 Up Flow *£ Down Flow

Test Chamber, ^ Test Chamber, 2]-§^<i*{|7i LoopTJl f-g- 3.$] ±*}

•i: s£*\*k ^ Slsm wfl^^- n>^*fjL ^ J ^ ^ - ^ ^ t f l ^ ^ ixfej- Test

Section^ Jl*||, > i ^ ] ^ ^ sa>H 51<HS14. Test Chamber^ 3.7)] M] -f-

^r^-S. °]^-<H^ Sl^h ^T, Lower Plenum^]- Upper Plenum n.Z\3L Test

ion^.^, o|-f-o|^ SlI K Lower Plenum^- 4 ^ o l 6 inch^lJl ^o]7|-

600 mm<*i ^ ^ ^ Vessel^. S^<H5l^-^. Upper Plenum^; 4 ^ o | 2

- 3 4 -

incho]jl z]o|7l- 4f 380 mm l Pipe^Efl^, S H ^ h Test

£- 0.75 inch SCH 160 Pipe5_ S H S l -M ^ ° 1 ^ ^ 2880 mm°M

£f ^ 7 f 4 4 Lower Plenum^ Upper Plenum^] Flanged

z\. Test Chamber*-) Test Section-f &°\]^ ^<^5.-g-# £ ^ ^ > Heater

Rod7f ^ -^S |n | Heater Rod^ #*1 ^ T ^ |

Flat»>

Heater Rod^

no22

Cosine Shaped o| ^-

110

Heater Rod^

22

Powers Peak^

n| oj-f. Heating Length^

o|c> Heating^

r S ^ 1.40wfl ojcf. Heater Rod^ 7f

uK Heater Rod^ %• ^°\^ <% 4000mmol

°}^ 1830 mmo]jL, Heater^] *]=§£ 9.5mm

440Volt, 3Phase7f 4 - § " ^ 4 . i ^ > Heater

Heater Rod^ Burnout# ^ 1 * > 7 | ^*H

Burnout Detector^. °]-§-£l-fe- Sensorfe-

K-Type(Chromel Alumel) Thermocoupleo] o]-g-ij^c-l| O]T/C5] ^ 3 ^

0.5mmol L Sheath^) ^fl^^r NCF600o]uf. *fu|-^ Heating Rodoil 4 4 6

Thermocoupleol -f-*|"5]6\*\z\ Test Section^

]cK 600kWo]ul-.

Burnout Detector7f

Test Chamber ]A-] 2^-fHf

- 3 5 -

248mmo|jL ^ o | 7 } 1500mm°] ^f-^ Vesselo|c>. Vessel^

38mmolJL ofefli} ^ ^ | Flange^ - ^ ^ f e 75mmo]uf. Vessel^] v.||-f

^ 72 litero|u|-. Vesseloflfe J£-^- 47fl^ Nozzleo] -

ZL 3.7}^ S.Jf- « | ^o | 2 inchojuf. ^*> Vesseli|^ #^f ^

41 SI^- T/C7f - i*)£H al-^^ 6^^ ^-^-g- Tapo|

Control Valve7>

_o.^ U-Tube Type^-

717} *5L^ Shell J i ]^# ^ 4 ^ 7 f ^ ^ . ^ ^ 5 ] ^ ^ ^ . -§-^7]^ 3.7]

12 inchojji Z]o|7f ^ 2 0 0 0

1648.2mmolt:]-.

4afl<gS Pitch7}

H 2^f#^l 67fl^ Baffle^

200 j }

«»

*}<H O. -§-^^r 130 Liters. ^ ^ ^ ]

252mmolJL ^oj7> 2600mmtl ^^f-^^-S Vessel^] Jf^fl^ 36mm o]z}. 7}

- 3 6 -

2 inch PipeS g ^ S M Sl-fi-^ # 3 nA

Tapo] ^ S H ^ r f . £.*> DP# <>l-8-*H Water Level

40 kW^ 7f<g-§- Heater 7f

Heater^ JEL- - 87fl7f ^^|5|<H £ i - ^ 3. 4 4 ^ -g-^^r 5kWo]i:]-.

Heater^ 3 ]^^r 0.75 incho]jl ^ o | ^ 54 inch©]!:}. Heater#^^r SCR

Heater7f «1=.A) ^-ofl ^ 7 ^ ^ - ^7fl5]<H

^0} 40% o|*>^ ^-foU^- Heaterofl

5ll^ Control Valve7f

Over Pressure7j-

Safety Valve#

Test SectionoilA-1

U-Tube ^

3.71-fe- 3 i^o] 252mmo|jL ^<>l7> 1600mmo|c]-.

-^ 1471)71- ^ * 1 S | O 1 sa-fi-nj H # 77fl^ ^o l7} 2779

2848 mmolo| u}n]^l *>tfe. 2917mmolu}. Tube^ i l ^ ^ r 19.05mmo|

^ 4 * 1 1 ^ Pitch7} 25.

Baffleo] ^ ^ ^ ^ 6ic>. JE V Baffle^

Tie Rod# ^*l*fSacK ^ ^ ; - g - ^ ^ U

^c f l ^ J £ ^ 40

^ 10 ia^ : 600

- 3 7 -

<rt8*> ^ Tripol ^ ^ £ ] ^ Pressurized Water

Levelo] Low-Low Trip Level °]-s\M. 3|7|-fe ^-f7f ^ ^ ^ ^ - f Loop

5] Restart?} #7>^*f<H o ] ^ ^ JL<& ^ ^ 7 ) l ^ o ] ^ A * M . JE?1 ^ ^

3 « S ^ ^ 6 J ^ '-JzMaflS. ^ A * W . J L ^ ^ ^ T l l ^ - ^ Injection

Pump, Water Strage Tank, ZLe|jL Pipeif Heat Tracing^^.^. °]^-<H^

$XT=}. Injection Pump*} 7 ^ ^ ^ - b 0^170 Barojx^ ^cfl - f i - ^ 61.5

liter/hroju]-. - -5O ]<H ^ ^ ^ r Electric Stroke Contral Methodom

n ] ^ - ^ Crane Afofl^ ^ 4 ^ ^ ^ . S . (Model : 810C-72SE-TE330)

Diaghragm Typeol

-Bl Main Loop^]-^]^ Pipe< | Heat Tracing^-

23

2)

21 ^ « i ^ M 711^^ A^^ L o o p ^ ^Ai^ . s ^ l ^ f e PRHE

Heater, 7}<&7], IRWST# S.^^V Tank, Tankt-H«]

Bypass*l-o=l IRWST Tankufl*] Test Section^ ^ f - ^ M ^ Loop7 1 f- 1 uj-

l oilA-1 ^ ^ ^ ^ , ofl<g7l, ^ ^ 7 ] /

Loop^j T e s t chamber tj|*l S.3] 2r.

Heater!-

- 3 8 -

7\) PRHR Heating Vessel

- £ 5 . ^ PRHR Heating Vesselufl^ Heater7l-

.£..§.•£• IRWST Tankuflo] Heat Exchanger7} ^*]Sl<H $1

€[. PRHR Heating Vessel*] 3.7]^ vfl^o] 375.2 mm O|JL 4 ° | - b 1600

Vessel^ ^-^fe- 41 mmolu}. Heating^ J L ^ - #

VesselMl^f-ofl^. Flow Baffle# ^^l*>5i^.n^ ^ ^

- ^4*1-5514. Vessel^ vfl-f- -§-2o>^ 120

^ ^ 1.5 incho|u>. J t ^ # S.5l

<H 440 Volt, 3^S] ^ 7 ] # 4-§-*fe -§-5^ 300kW^ Heater#

cf. o] Heater^] - ? ^ ^ : 2 3 7 ^ Heater Rod^. £ H ^ 1 - ^ - ^ 4 Heater

3.7]^ ^ l ^o j l inchol^l ^ o f e 45 inch°M 4 4 ^ -g-^^- 13

Tank ^ Heat Exchanger

IRWST-i- JSL^^l Tank^ ^^f-^^LS. 4^°1 120

1000 cmojt:!-. Test Section^-S. °]-§-3c]^ Heat Exchanger Tube ^

200 mm*! 37fl^| View Por t# ^

Flanged

Test

Sectiono] s^cf. Test Section^ 4 ^ ° 1 19.05 mm°]jL -T-71]^ 2.6 mm

5.5 mol Tube 47fll- *i*l*M 4 4 -&51 ^ ^ i

. Tube*] ^>4^r 38 ma<>]r}m *}t}*\ TubecHl ^

>$T£O_3. -f-B] 550

mm ^ 4 - ^ - 5 . Tube^l ^ ^J£Af TubeM)^ ^ ^ ; - § - ^ £5E.-f

-39-

. Tube

0.05 cm«i K-Type°H

0.08 cm*] K-Typeoju}. o . ^ 2.4-3^: ^-^<H1 * l * l £ H £ l ^ IRWST l

3)

JJl -H-^ all<>!-§- Control Valve^}-

^ ^ ° 1 3 molJL $t<>]7} 2.4 m 3 .

^ ^ ^ - 585000 Kcal/hro|uK i]cfl ^ 4 ^ . 5 ^ 1 9 5 0

220 Volt, 3 P h a s e ^ o ] 4 - § - ^ T : } . ^ ^ ^ ^

°o>;?!ol 30 m H20o|jL -g-^oj 18 m3/hr<>|^ 220 Volt, 3

4)

^ ^ - S - ^ r ^ - ^ / ^ r ^ ^ e l ^-f -c : 1.0 micromho/cmo|*>^

De-Ionized Water# ^ ^ 1 * H Storage Tank(IRWST£f ^-g-), ^ Loop

^ l ^ ^ l "Er^W ^^> ^ ° 1 4 . Storage Tank<Hl ^ g -

Feed &^£. De-Ionizer

i, Feed ^ ^ ^ . ^ Loop ^ a l ^ ^

. De-ionizer^ i j c l l ^Sf -^^^ 600 l i t e r / h H ^ L 220 Volt

3. ] >V ^ Data Acquisition

- 4 0 -

7\.

, Heater Rod )

Acquisition c||*H

r Test Section

^ Heater Rod£]

2.4-2CH1 u}

Data

uf.

1) S.

Loop# : * s _ ^

Ungrounded Sheath ^ ^

SUS304 5 E ^ InconeHu}. <^^

^?] Ice Point Reference Unit

JL

heater Rod^ S ^ ^ r i ^ ^ r K-Type

. Sheath*] 4 ^ ^

?\x}

Data Acquisition(DAS)7fl^f-

2) oi

RCS LoopvH^

fe- PRHR Test Section

Pressurizer ^M.

TT Test Section

^ Smart Type <>l-g-*H

- 4 1 -

3.. Loop^ £*l 9| Loop

3) *]• <y-RCS Loop ^r*U| *f^g; Smart Type

1^ Test Section ^/#-?-, Sfe PRHR Test Section

, Loop

4)

]-b ISO( International Organizarion for

Standardization)-5167 ^f^<Hl n -e} Flange Tap ^ ^ .

•%•*£*& Orifice Plate

m = a e j £^2 AP p (1)

a? : mass flow rate(kg/s)

a : flow coefficient

-42-

£ : expansion factor

d '• orifice bore dia. (m)

AF'-pressure drop between orifice plate(Pa)

p • fluid density(kg/m3)

4) *1£ ^ ^ * 1 ^ ) ^ 3 ^ ^ ^ * H 7l^^e]7l , 7\<$7\, IRWST

Tank %!>\ ^ ^ 1 #

Calibration

f. Data Acquisition

Data AcquisitionTll^f-^r 4 ^-^7]7}S. -^ -^^ Analog

Digital *\$.S. ^^:*11 ^ ^ Scanning A/D Converter, ^

Digital ^ 5 l # ^I^^, ^B]^}7l ^1*> Computer Processor, Ajel

oil ccfs]- 4 711 -7] Controller^) ^ ] 5 l # JSLMI l ^*> D/A Converter,

j > Data# ^|^-*>7l ^*V tfl-g-%^ Hard Disk ^ A ^ ^ - ^ ^ 4 . 3.

2.4-4<Hl Data AcquisitionT

Data Acquisitionr7Jl^f-#

Parameter## ^]<J:*f7l ^1*H Computer Program^ 4Ao*l"55l^}. °1

Program^ HP-VEE, C-SCPI *£ C-<d<H ^ # ol-§-*f<H 4 A ^ S d - ^ ^ , ^

Main Program, A/D Converter^ Sampling Time !g

- 4 3 -

Sampling?]^ ^ ? # ^ ^ * f e Sub-Program, Memory5.-f-^ ^*\

^ S . SK>*fe Sub-Program ^

Sub-Program %-SLS

4. H 1^

Hl^KSteady State Test)

, Test

r PID( Proportional Integral

Derivative Control )*cN^ ^ H ^ l ^ ^^*]^|<>l-t *fl *f5Eli:K -fr3o*

^r Orifice ^-3OM]^] # ^ ^ 1 5 l # Qo\ Air-Operated

Inverterl- I-*!

7f<y-7| Heater^ # ^ # i^*l-SS.>H ^ H ^ } . Test

Test Section<y^-^:S.# ^^*f«H <gJ2-^;7l^ Bypass -%-*$

^ Test Section°J^g:S.# n|Afl

M-. ^1-S.^^ (Transient Test)

Test Section°J^-£.E ( ^ ^ gl - ^ - e o ^ ^ Parameter

^ nJB| Personal ComputercHl 4A^ ti^^l -fr5cM

Test Section^] Heater Rod #S|<Ml cHU: Transient 1<H ^-^. Program

- 4 4 -

(1) Test Section Heater Rod #^£] Transient

^^1 : 30 ~ 600 kW

= ^ ^ 120 sec

^l ^ Step : 0.1 sec

Transient : 1 sec Aj-ojofl .71 # ^ ^ 75

(2) Test Section ti-T^n-^-^ Transient

: 1.5-30 kg/s

ilcfl 120 sec

Step : 0.1 sec

7}-^ Transient : 1 sec Afo]^ 7] -fr^ 75

5. CHF

£• RCS ^1#

110 Kw^ -g-^^ JL *i#^ -&3E7}- Flat l heater7}

|~ 1.82 MPauS.-f-El 12.08

| 300^550 K^

-45-

o\] rcfB} Personal Computer^^ 4 * W 7 l # ^ I H $-*$ ^ Heater

Rodt- * W W . °M Test Section^H 6 ^ 1 , ^ <g-f>-

£ 3 * W ^ ^ A ^ # ^ 2.4-5<Hl

CHF7} a i ^ * | - ^ # ^ - f Heater Rod

*}<*{ CHF ^#7||-f^(Burn-0ut Detector System)#

Transient

81-210 kJ/kgo]cf.

(1) Control PanelB\ power#

(2) °i*i Loopofl ^1S|<H Sl-fe J2.-E- Valve# g c } . o] rcfl,

^ ^ 5 | ^ -f-^S: Isolation ^]^\t\.

(3) IRWST S . ^ ^3.6fl Demi-Waterl- -§^ :*1 ^fl^-f-3. Feed

pump# 7HfAl*! De-IonizerS. # # ^ ^ l ^ I ^ K

(4) ^^:«> ^ ^ # ^ ^ l-o] 0.1 micromho/cm

De-iomized Water7} 5 ] ^ *£*£•& «

(5) Loop cHl ^ 9 4 1 1-^r Drain Valve ^ # f - * } ^ Loop^

DPT *i PTfe drain valve°>^- ^ZUL vent valve^

(6) n>^] B}-j$.S. i ] ^ 1 ^ ^ ] Sll-fe Separator vent valve-2}

Pressurizer vent valve-g- }"-5" K

(7) DPTif PT# ^ - * H LoopvH^ Air7> ^ ^ * 1 ^|7|Sl5it:>31 =>

DPTif PT*1 Vent valve# *}$}$. Q&T:}.

(8) LoopuH^ <&3H 6t 4.5 bar7]- ^ ^ # ^ ^ ^ J L Feed water

(9) h§4^°11 u ^ 4 ^ r # -§^-*l *H*|-¥-a Cooling water pumpl-

(10) Cooling water pump^ 3 ! V * H F # ^ " ^ ^ Main Circulation

p u m p *

- 4 6 -

(11) Pressurizer Heater# switch on*! ^ M*\*\ -§-5cM-

(12) Preheater# switch on*l ^

(13) Prz-heater, Preheater 7f 7Hf-£l'd LoopS-l

Loop £ . E ^ o f l *4€- ^ -8 -^ rS j ^ ^

AV^^ . BJ-7]^*B Loop-2-1 <y-^o| 30 bar o]^o] £}t*| Separator vent-§-

Control valvel- <&6\ {^-^ 6%$S.) Loop^ ^J-^^- 10 bar

(14)

(15) Loop^ ^rJ£7f 80°C

5|^ Loop-S] 7|~§--§- ^ ^ ^ I c } . Cooling Water circulationPump, Main

circulation Pump, Preheater, Pressurizer heater %-~=t Off ^]?l^f.

(16) Sepatator vent valve# < <H Flashing # ^

30 % $£.7} ^ e ] ^ Loop <y-e|o] Pressurizer

ESf^^°l*l-S. 1 < H ^ 1 ^ ^ Pressurizer ufl-f-

Water Leveloj ^ O ^ ^ I J ) A] )- >r:K Pressurize^ Water level

o] 55 % 3JS.O1H Separator vent valve# ^fe^K i l ^

Pressurized ^E!|7|- <^ 5 bar if 150°C flA-] flashings]

(17) Flashing -^^.^ Cooling water circulation pump main

circulation pump, Prz-heater, Preheater &SLS. Switch# On

(18) ^ # - H ? ^ <U^# Setting >cK

(19) 4 ^ 5 S ^ ^ ^ ^ 1 4 4 ^ - ^ Test Section

(20) Test section Heater<^| -^ Switch# On^l

- 4 7 -

(21) CHF -2-HMH # ^ # Step J-

^ A o ^ f l i - ^°J * **§• StepJljiL(22) CHF7} I H * } ^ Burout £ # 7 H ^*H ^ ^ g - g - i - 80°

Trip AJ luK

heater -g- f ^

^ o M ^ -y^^-H-b S ^ ^ r £ 7 f 400 °C

CHF7f «i^*> %SL$. ^^\Si^}.

Test section <£^-

, Test Section -*}-«£ ^ ^f^, heater

heater -g-«H] ^-oj5| f e 3 ^ o ] * } ^ - ^ ^ Aljr^. s = . ^ ^ . ^ e

1.81 MPa<HH 12.08

300^550 kg/irfsecoH ° J ^ ^ - ^ 4 £ f e 8r210^ 0.25~0.40

ZL^ 2.4-6, 2.4-7^ ^ ^ ^ ^ 1 - ^^- f r^-^ CHF5]

test Section

. a ^ 2.4-7^

- 4 8 -

0.994

HU 2.4-8^

300^550

fe 12.08 Mpa ^ - f # ^l^^fJL^ ^ ^ ^ J <g*<M ^

717f

6.

7}. CHF

>H 7]#51 Hfif ^ ^ ><y Heater Rod# Af-g-*H, ^ ^ - f r S . CHF

-i- ^*5*}JL TL o]^oflfe 3 x 3 Heater Rod t } ^ ^ ^ ^ - >H^*}JL

3 x 3 Heater Rod *}*££; ^^fl ^ l ^ ^ ^ l S^^-^. Heater Rod S

9.5 mm, 7>^^-?> zJoj^r 3.66 mS. *f^JL Rod J- ^ # ^ 66.6

4 4 Flat gj Cosine ^^-g-3E^ 27^17}

Heater Rod ^ ^

Heater Rod # ^ ^ 4 S . ^ 4 ^ A | ^ CHF

. Heater Rod t

- 4 9 -

9i ^ ^ 1 ^ ^ J " i ^ -^^^ i# TestCHF ^ 4 R v ^ l ^ 4 %

^ - & CHF<H1 ^ t > 0}

4

CHFcH] t:fl*> 7 j | ^ ^ ^ S . ^ 5 ) 5 } -0.01

U>^ Tight

Lattice Hexagonal ^<&g.

-g-ofl Wire Wrapo] - f - ^ 5 ) £

°l-8-*H " i ^ W * ] - ^ ^ ! cU*H ^l6^ Heater Rod l tfl*> CHF

77J1*] Heater Rod # 4-§-*fe Tight Lattice

- 5 0 -

ojuf.

7. A}J1 ^ J

7}. Separator Vent LineS^ &}£

•y^l : 1996\4 9 ^ 17^ i ^ 3^1 40^-

vfl-g- : 1996\1 9 ^ 16^ Jf-Ef ^-*^^ >^^(Job Name : Single

Annulus, CHF, Job No. : CHF-3)# ^«g*]-^ -§• w ^ t > 4^2-^.

120 bar<HH ^ e ^ ^ - o ] 300^550 kg/trfsec <

^ L o Op£| 6>>|^. *}o^ ^-oj-^. # ^ J* iy-Ag< Separator Vent

Separator^ Control Valve-S^ Pressurizer^] Control

- 5 1 -

CommonSjol <&^<>\ 5Hoi jL Separator JE-fe- Pressurizer

r Steam

^ Loop ^ 6 J "# ^1*M Separator*] Control valve

<$ 30»(Controller^ 7 j ]^ )# openAJtl ^ E H > H ^^*l"SEl#. i ^ ^

^-fofl Flashing*} 4 3 5 ^ ^ # Open*! ^ ^ ^ - « } EO ^ 1 4-11>

^.uf Flashing*] ^-f^- oj-^o] 30baro|*fo)^7. ^ S 7 f

U, ^ ^ ^ 3 ^ £ J Loop condition^ 120 bar, 255"C

>H ° 1 ^ ^ *}°}7\ tf-2;- ^ ^ r 5 o ^ Steam^- ^ # ^ 1 ^ Steam Jet

JL D. ^2} Vent l i ne^ ^ * ^ # 7 H ^ r ^-S-S- ^ ^ > ^ . AJ-JL l Vent

t -. xz\z}*\ Separator^] control valve# ^-A| T^-JL H

Vent l i n e ^ ^ * ^ ^ jg.o0i=o| 3.^ 2 . 4 -

(1) Vent line^ ^-^> e ] # Safety Valve line^f

(2) 5+S. ^-^*i J-oj. . «^l*>7l ^ * H Separator^

Control valve^) 7f|«o»-# 3|4i4} *j".

(3) Jlc} jL-I-a}oi ^oj- qi Loop L M # * H Injection line

^ Injection pump# ^ ]

- 5 2 -

B & C Loop

1. 7|| A

In-containment Refueling Water Storage Tank

(IRWST) <HH Af-g-% Spargerl- ^*}7] *1*J *KS.-t ^4i*K2., A ^ l

Si Sparger^ ^ ^ § - X\^*}7] *lt> ^ ^ H ^ ^Tfl, -g*l*>o|, 31*J

K 1994 id

(Blowdown and Condensation Loop ^ ^ - B & C Loop°|e}

^^Engineering iDEC)^ ^]^*f$it:f[10].

<>l-8-*H B & C Loop o\] cfl«i

Sparger

o] %o\]*\^ IRWST/Sparger

2.

- 5 3 -

Loop

. A Component

A.

Tank, Flow Meter,

7] ^*B t Ml-f- Heater, 7Jl^-g-

^7luf Subcooled Water

7(| f- fe Critical Flow

^ T f l ^ ^ ^ : 178

Heater7>

o.D|t

71 tf, 360

Safety Valve7|-

4, Quench

^cfl. Safety Valve 3.

Heater!-

ADS

370

27H

Heater^

Safety Valve<>lW ^ 150 7l

100

170

. C>n> 7\

- 5 4 -

r 1.0 MPaS] S ^ ^ 7 l # 0.1 kg/sS. &&*k "r $1^ 4

US. Reimers4 *fl# (Model ig RHP375)°lnJ, -O^Tfl^.^ Vortex Flow

Meter (1 inch, i j ^ L ^ - ^ ^ : 2.0 MPa) 7} ^ * l S H #c}. J£*>

^*ga .^ Kammer4 ^ -g - iS . ^ W 0 ! 2.0 MPaojnJ,

inch o]t\. ^7}^7} ^ |^gr Specification^]

»> ^«1S>H. TankS} Sparger, 7fl^#*| ^l^ltfl, Sump Pump

^-§- Spray %*)$. ^-^^cf. Tank*] *}-?-ofl . ^ 7 l # ^ 4 4

Sparger7f ^ ^ 5 ] ^ ol^T^, Sparger ^ o f l - b ^ 7 l ^ - § ^ « ^ #

)«> *]xM7\ s£*\5\o] $X^\. 5E > Tank

1^ 4 7B^ View Port7} #*j-*H 1<H ^7] 7}

. Quench Tankiq-

Tankif o]^- «^^*fe Manifold ^ <y-

. o) 7^1^^ Subcooled Water^]

Blowdown©m Critical Flow *I%M 7><y-7l Ml-^-^^-i-

Accumulator^. 4-§-*}3- Sl K ^ ^ 2 : ^ 1 ^ - il ^B l»g^ .^^ KammerAf

71 Bf 4 ^ » g a . ^ ^%sg: Specification^-

Specification^- ^*1*|-JL 014. t } ^ ^l^-7l7]S} Data Acquisition

System# ^ ^ * f e ^1°]#<H14^1 Noise7l- ^4*f^ l ^ ^ * H Noise afl

- 5 5 -

Noise7|-

7)1 ^^^f0^ Ground -*l?l-cr ^ ^ i f Noise *ll7) ;

Noise#

Noise

1) 7fl A

(transient)!-

^ <% 55. ojufl^ nfl-f

, *KHDP), ^r^I(LT) ^ 3 ^^LS.>H. 1-5 V

10 Hz)3 *1<>hi!:SL5. ^ ^ ^ c } .

^131 : K-type^ <i&tfl( thermocouple; T/C)S. -

cfl, <$ 20 mV (ilcH <i* 5 Hz) n|

(DPT) : 4 H 3 . -f-Bl 0-10 V

- 5 6 -

(FT) : 1-5 V (^tfl 10 Hz)£j ^ 6

201)Sl Venturis *}#-*!:£ (DP-201, 202)

(FT-401)-^ Vortex meter^ flow computer^] £|*H

^ S } ^eo>Al^7} 1 H J W J£t> 1- -^5oM| (FE-301)6J

Venturis -fr^ofl a]a(|*>^. *>^^!3l (DP-301, 302)7} i H ^ c } .

: charge amp. S. -f^ 0-10 V (£]tfl ^ 10 kHz)£) ^<^

Cf^5l 37W

(7f) Til71^ ^ 7 1 ^ ^ 71^- 3\% : ^ A ^-^717]^ 5:7] unload^

monitorcHlA-| VEE^^Hl displays]JI,

^A|(Startup monitoring)

3-8

disPlay5|jL,

(U>) ^}S.^^(Main acquisition)

2.5-2<Hl U^fVl a>-^ ^ - ^ ^ , ^ ^ - ^ Graphic^ e l ^ ^ f e monitor^

VEE^^*f^l displays]JL,

7} 7Hf£4li- ^u} . ^

test matrix^ rcfs} 3.7i] t[^-S] 57}*) 3^3.

- 5 7 -

o .5LE.-1

o JELE.-2

o JS..E1-3

o 3.B.-A

o J5LE.-5

o\6\]

Steady steam test

Transient steam test

Transient water test

Critical Flow (CF) test

Two-phase test

2)

£ - y ^ ^ l ^ DASfe HP-V743i/100# fe

(HP-DAS)if IBM-PC# ^^1^-S. * f e ^=>^r ^ -^^HPC-DAS)S

t h ° i ^ HP-DAS^ HP-V743i/100^] ^-S#B|ol] 2 ^ Scanning A/D

(64 channel )£} 67fl^ Digitizer (2 channel ) # ^ ^ K l L , o

HP-UX 9 . 0 ^ * ^ * H ^ 4 - ^ 5 1 ^ HP-Vee 3.

. ne ] jL PC

. S 2 . 5 - 4 - ^ HP-DAS#

Df, HP-DAS#

HP-DAS

Component1) Scanning A/D

(64 eh.)2) Digitizer

(2 ch. )3) D/A converter

(4 ch. )

Q'ty

2 ea

8 ea

1 ea

Total

SCP Type & No. of ChannelDirectinput

48

16

-

64

T/Cinput

64

-

-

64

SS&Hinput

8

-

-

8

Others

-

-

(4)

(4)

Total

120

16

(4)

136(140)

Remarks

for scanningacquisition

for high-speedacquisition

Not used forsparger test

- 5 8 -

3) *K5>lBl SSZL

S| SSZL^^ * J ^ ^.fi. *m±g.t: £ S program^

_g_ 7l^#^r subroutine^ JE-b function*} *>

ojirfl subroutine^?}

function^-7}

HP-DAS^ ^-f-^ ^1-S.^el^ 37M

HP-VEE-t ^ ^

display^cf.

HP-VEE#

display^

7f) 4

2. 5-

. Trigger!ng^li

(1) J je. .-l : Steady steam test

-59-

2.5-6ofl i

Graphic

(2) r^ 3.B.-2 • Transient steam test

^ ^ 1-2 -g-^ ^^

transient)^

Graphic^ els^u}.

(3) ^r^1 S.JE.-3 : Transient water test

(4) ^^J S ^ - 4 : CF test

^Nir S 2.5-6^1 tj-E>i4 alAt^, o|

. Graphic^ el siu}.

(5) ^ ^ j JSLH.-5 : Two-phase test

HP-DAS^

^ function ? ] 1 >4

-60-

, o]

irfl 4 ^ A ^ J 2 . 3 ^ 2*>*<J" 4*<W^-5. S^*I function -?-^f ^fe

[Vol t ] , P [ b a r ] ) . (1)

) - 4

c|, T/C

, DAS S5.Z11« i-Hl^^ function

", (X[mV],

A/D ]

]«LS., DAS

Pzr 91 Q/T -g-7}

- 6 1 -

u - AP(pw.cps)gHl . .flu/ — 7 \ \o)

W ( P - P ) g

fe ^^-§-71 ufl*]

^ Handbook^] ^ ^ ^ C > .

^ ^ ^ ^^1^1 Venturis]

(DP-201, 202)#

n^, o]^. flow computer^]

^ D } . ^ "o^BH^^ofl ^ ^ m -B-=oMl(FE-301)^ Venturis

(DP-301, 302)#

(1) 3.71

(a) Pzr 31 Steam line-§- PT

o PT-101, PT-102

- 6 2 -

o PT-201, PT-202, PT-203, PT-204, PT-205, PT-206,

(b) Flowmeter Q Flow/Level-§- DP

o LT-101, LT-102, LT-501

o DP-201, DP-202, DP-203, FT-401

o DP-301, DP-302, DP-303,

(c) Water line Q SG line-§- PT

o PT-301, PT-302, PT-311

o PT-401, PT-402

(d) Steam line^ Test section-g- PT

o PT-213, PT-214, PT-215, PT-216, PT-217

(e) Water lineS] Test section-§- PT

o PT-303, PT-304, PT-321, PT-322, PT-323

o PT-324, PT-325, PT-326, PT-327, PT-328

(2) ofl(

2.5-25+

(a) 7}<&7] (Pzr) 2LQ

o Pzr «^^ : PT-101, PT-102

o Pzr £ S . : TC-131, TC-133, TC-135, TC-137, TC-139

o Pzr ^ * ] : LT-101, LT-102

o 7]t\ • PT-201,

(b) - g - ^ ^ ^ (Q/T) 2^£

o - § - ^ ^ ^ ^r^l : LT-501

o - § - ^ ^ 2 : ^rS. : TC-501, TC-502, TC-503, TC-504,

- 6 3 -

TC-505, TC-506, TC-507, TC-510, TC-512, TC-515,

TC-516

(c) ^71^-^-nH^: (SL) afl<£ 3,^

o afl^ MI-T^&S. : TC-201, TC-202, TC-203, TC-204,

TC-205, TC-206, TC-207

(d) f ^ H f l ^ (WL) afl<g ^ £

o tifl^: Ml-f-^E. : TC-301, TC-302

(e) ^ 7 l « ^ 7 ] #-?- (SGL) £.£

o tifl:£ ufl-f-^-£ : TC-401. TC-402, TC-311

o wfl^ -^ : FT-401

(3)

2. 5-6^]

M. 2 . 5 - ] a ^ ^ l ^ ^ 1 , ^ ^ ^ ^ K J l fi6jsjo} cX^l x\3J$Z] 5 S a ^ ^ 3711 source

(version 9.0)

r C-^<H^. ^ ^ ^ l ^ compile S]JL, o |^o]

HP-VEE# o]-g-*}<H Iink5]<>1 ^ ^ ^ c f . 4

^ VEE ^ ^ * H > H 3-ig 2.5-3if

- 6 4 -

B&C Loop

Loopofl

Spargerl-

^ H SpargerSpargerl- a l ^ ^ ^ l

NEXT PAQE(S)left BLANK

KAERI/RR-1004/90, 1991. 7.

2. "ASME Performance Test Code, Supplement on Instruments andApparatus, Part 1, Measurement Uncertainty", ANSI/ASME PTC19.1, 1985.

3. .$. ^ ^4, "17 x 17 « | < * l ^ DRBEP 7VM *IS1 Full Scale\ TR-TH-GEN-92006 Rev.O, 1992. 12.

4. D. S. Oh, "Analysis of Pressure Drop Test Results for DebrisResistance Bottom and Piece", KAERI/TR-290/92, 1992.

5. ^ # & 2) 13*1, "^r^-§-7])5c>«!<?!£. 3 ^ 1 ^ " , KAERI/RR-1637/95, 1996. 7.

6. Sreenivasan et al., K. R., "Temperature Fluctuations and Scalesin Grid-generated Turbulence", J. Fluid Mech., Vol. 100,part 3,PP. 597-621, 1942.

7. Corrsin, S., "Decay of Turbulence behind Three Similar G rids",Aero Eng. Thesis, California Institute of Technology, 1942.

8. Comte-Bellot, G. and Corrsin, S., "The Use of a Contraction toImprove the Isotropy of Generated Turbulence", J. Fluid Mech.Vol. 25, part4, pp. 657-682, 1966.

9. Uberoi, M. S., "The Effect of Wind Tunnel Contraction on FreeStream Turbulence", J. Aero, Sci. 23, pp. 754, 1956.

10. ^ ^:7]S], "#£<>}&?{}!§• "i^}^n, KAERI/RR-1323/93,1994.

11. ^ £r7l^, "-&#<>!:*}Tflf- 1 ^ 1 % ! " , KAERI/RR-1502/94,1995.

- 6 7 -

Table 2.3-1 Energy Decay of Grid Turbulence

Ref.

Present

Corrsin(7)

Comte-

Bellot

and

Corrsin(8)

Uberoi(9)

Sreeni-

vasan

et al . ( 6 )

Uav

(m/sec)

5

10

10

10

20

17

4.4

M

(cm)

1.26

1.27

2.54

2.54

2.54

2.54

2.54

Grid

Type

spacer

mesh

mesh

mesh

mesh

mesh

mesh

2 ,U -decay

ni

1.2

1.3

1.28

1.33

1.27

1.2

1.2

xoi/M

0

1

3

1.5

2.5

4

3

0.04

0.05

0.043

0.077

0.056

0.04

0.04

2 ,V -decay

0.84

1.22

1.14

1.27

1.24

1.2

-

X02/M

0

1.5

2.5

1.5

2

4

-

#2

0.017

0.017

0.016

0.05

0.04

0.028

-

-68-

Table 2.4-1 Specifications of RCS Loop Facility

1) LOOP Tfl f- 91 PRHR LOOP TJl^

: 16.0 MPa

- IRWST <U^ : 0.2 MPa

- ^ t f l ^ ^ ^ ^ - g - ^ £ j £ : 347'C

- Test Section ^-^ Subcooling ^ E . : 0 -1501C at 16.0MPa

- tfi^i -H-5o* : 3 kg/s

- ^ ^ S 6 O^ : 180 mH20

- PRHR LOOP -n-^ : Natural Circulation

- Test Scetion 3]tj| ^ § - ^ - ^ ^ : 600 kW

- PRHR LOOP Till- S ^ i ^ ^ - ^ - ^ 1 ^ : 400 kW: De-Ionized Water

: 2 in

2)

* vfl-f-g-^ : 30 I* heater ^ : 40 kW

: 200 kW

: 600 kW

-69-

Table 2.4-2 Instruments of RCS Loop

Intrumentation(1) Heater Rod Surface Temp.

PRHR Heat Exchanger

(2) Fluid Temp.- Flow Meter Inlet- Test Chanmber Inlet/Outlet- Test Scetion Inlet/Outlet- PRHR Inlet/Outlet- Test Section

(3) Pressure

Input to DAS24

(32)

21(1)(2)(2)(2)(14)

6- Test section Inlet/Outlet- Steam/Water Separater- Pressurizer- PRHR Inlet/Outlet

(4) Differencial Pressure- Test Section- PRHR

(5) Water Level- Steam/Water separater- Pressurizer- IRWST- Flow Calibration Tank

4(3)(1)

(6) Heating Power- Test Section Heater

(7) Mass Flow Rate- Orifice Flow Meter

Total 63(71)

- 7 0 -

Table 2.5-1. List of major instrumentations for B&C loop

Property1) Temperature

2) Pressure

(static)3) Flow

4) Pressure

(dynamic)

5) Press(diff. )

6) Level

7) Acceleration8) Strain/Stress

9) Density

InstrumentThermocouple

Pressure

Trasmit.Venturi, Vortex

Dynamic Press.

Transducer

DP Transmit.

DP Transmit.

AccelerometerStrain gauge

X-ray densito.Total No. of Channels

Channels80

25

3

25

10

3

88

163

LocationPzr, Piping,

Q/T internal, T/SPzr (2), Piping,

LJ/S, Sparger (1)Piping

Sparger (2),

Q/T wall (5) and

internal (18)Venturi (6), T/S (4)

Pzr (2), Q/T (1)

Pipe, Sparger & supportPiping (2), Sparger (3)

& support (3)T/S

Pzr : Pressurizer, Q/T : Quench Tank, T/S •' Test Section,

Piping : Discharge piping

- 7 1 -

Table 2.5-2. List of major acquisition parameters for B&C loop

Mode

1) Steady

Steam

test

2) Trans.

Steam

test

3) Trans.

water

test

4) CF

test

5) Two-

phase

test

Parameters

Flow/Level

Press.

Temp.

Others

Flow/Level

Press.

Temp.

Others

Flow/Level

Press.

Temp.

Others

Flow/Level

Press.

Temp.

Others

Flow/Level

Press.

Temp.

Others

Acqu i s i t i on

Pzr Piping

- 1

1 8

-

2 LT's

2224

2 LT's

222

20 TC's

2 LT's

r 22

20 TC's

2 LT's

10

-

2 DP's

78

1 AC

2 DP's

l_ 78

1 AC

2 DP's

44-

2 DP's,

1 FT

1 6 •2

20 TC's

6

Parameters

Q/T or T/S

1-20

25 DPT's

1 LT

4 PT

2225 DPT's,

1 LT

422

25 DPT's

8 J2 ]

-

-

8

2: -j

Sparger

-

1

2

2 AC's

-

1

22 AC's

-

1

2

2 AC's

-

-

-

~

Remarks

Steam

from S/G

Steam

from Pzr

Steam

from Pzr

Water

from Pzr

- 7 2 -

Table 2.5-3. Test matrix for B&C loop

Parameter

Mode

1) Steady

Steam

test

2) Trans.

Steam

test

3) Trans,

water

test

4) CF

test

5) Two-

phase

test

Test Parameters

Press.

[MPa]

1.0

16.0

16.0

8.0

1.0

Flow

[kg/s]

0.3

20

20

-

Tank

temp.

15 -

100

15 -

100

15 -

100

-

Geometry

Piping or

T/S

-

-

Variable

T/S sizes

Var i ab1e

length/dia.

Var i ab1e

T/S length

& dia.

Q/T

Variable

subcooling

& level

-

_

-

Sparger

Variable

sparger

Optimal

spargers

Optional

sparger

-

Remarks

Sparger

design

Depres.

system

design

Critical

flow

Two-phase

pressure

drop

-73-

Table 2.5-4. Technical specification of the HP-DAS

No.

1.2.

3.4.

o.6.7.8.9.10.11.

Model

E1401AE1498A

C3020RE1413B

E1429AE1328AE1482BA4033CC3141AE3661A

Item

VXI C-size MainframeVXI EmbeddedController (V743/100)SCSI Mass StorageScanning A/DConverter (64 ch)

Digitizer (2 ch)D/A Converter (4 ch)VXI Bus ExtenderColor MonitorLaser Printer19" Rack SystemSoftware :1) HP-UX (Rev.9.0)2) VEE-Test (Rev.3.0)3) C-SCPI (S700)4) SICL

Technical Specification

o 13 slots, o 650 Wo Processor : PA-RISC 7100LCo RAM 128MB, 100MHz, 121.6MIPSo HDD-2GB, o DAT-2GB, o DDS-1.3GBo 16bit, 100 kHz :

(D Direct Voltage Input : 6 ea (48ch)® Sample/Hold Input : 2 ea (8ch)© Fixed Gain/Filter : 8 ea (64ch)

o 12bit, 20 msa/so ± 10.92V, ^ 21.8mA outputo C-size VXI-MXI moduleo 20" (1280x1024 resolution)o Model : Laserjet-4Vo 1600mm EIA-std

o C/ANSI-C developero Series 700

Table 2.5-5. Triggering signals for each test mode

s i gna1mode

1) Steadysteam Test

2) Transientsteam Test

3) Transientwater Test

4) CF Test

5) Two-phaseTest

Triggeringsignal-1Manual

(key-board)

Triggeringsignal-2

HC-2025] ON >i!3l(5.8 V)

rt

Q0V-301S] ON ^ 3 1(5.8 V)

HC-202£) ON ^.S.(5.8 V)

Triggeringsignal-3

PT-401

PT-101, PT-204

PT-101, PT-204

PT-101, PT-304

PT-101, PT-204

-74-

Table 2.5-6. Parameter List for Main Acquisition and Display

ParameMode1)

SteadySteiimtest

2)TransSteamtest

3)

Trans.Watertest

4)CFtest

5)Two-phasetest

ters

Flow/LevelPress.

Temp.

OthersFlow/LevelPress.Temp.

Others

Flow/LevelPress.

Temp.

OthersFlow/LevelPress.Temp.OthersFlow/LevelPress.

Temp.

Others

Acquisition ParametersPzr

-

-

LT-101,102

PT-101.102TC-111,121TC 13 r 150

TC-112,TC 122~124LT-101,102

PT-101,102

TC-111,121

TC-131" 150LT-101,102

PT-101.102TC-111.121Tc-iariiso'LT-101,102

PT-101

TC-111,121

TC-131~150

Piping

FT-401

PT -401.402PT 311.202~206TC-401,402TC-311,202~207

AC-07DP-201,202

PT-201~206.213TC-20P207.TC 213

AC-07HC-101DP-301,302

PT-301,302,311PT-202~206.213TC-301,302,311,TC-202~207,213AC-07.HC-101DP-301,302

PT-30r304TC-301~304HC-101DP-301,302,FT-401PT-301~304PT-401.402TC-301~304TC-401.402HC 101

Q/T or T/S

LT-501

TC-50P520

DPT-0P23LT-501

PT-214~217TC 214~215

TC-50P520DPT-0P23,

LT-501

PT-214~217,

TC-214~215TC-50P520DPT-0P23

-

PT-32r328TC-305~306

-

-

PT-321~328

TC-305~306

-

Sparger

PT 601

TC 601.602

AC-0P03-

PT-601TC-601,602

AC-oro3

-

PT-601

TC-601,602

AC-01~03-

---

-

-

-

-

ParametersNumeric

FT-401

PT-401,402,311,PT-202.203.2(XiTC 401,203.207TC 503, 513TC 601

LT-101, DP 201

PT-101.203.601TC-111.203.207TC-601,503,513

DPT03,07,14

LT-101.DP-301

PT-101.301,202,206. PT-213.TC-111,302,203TC-207,503.513DPT-03LT-101.DP-301

Plot

FT-401

PT-402,206

TC-203,207TC-503TC 601. 602AC0r03.07LT-101JDP-201

PT 101.601TC-111,207,601,TC-503,513,

AC-0r03,07DPT-03.14LT101XJP-301

PT-101,213

TClll,207,601TC-5a-!.513AC-01""03.07LT-101XJP-301

PT-101.321.322 jPT-101.321TC 121.302^304TC13ri32DP-301,FT-401

PT-101,301,401PT-321.322TC-111,121.401TC-302~304TC-131~132

TC-121.303TC-131DP-301.FT-401

PT-101,401

TC-121,401TC-303

- 7 5 -

Table 2.5-7. List of the files for data monitoring and

acquisition in B&C loop

Testmode

1) Monitoringof unloadedconditions

2) Startup

monitoring

3) Steadysteamtest

4) Transientsteamtest

5) Transient

water

test

6) Critical

flow

test

7) Two-phase

test

Note

VEE ExecutionFilename

Acquis i t i on

ini t.vee

startup,

vee

stdsteam

. vee

trsteam.vee

trwater.

vee

cf.vee

phase,

vee

Viewing

viewinit.vee

viewup.

vee

viewsteady. vee

viewsteam,vee

viewwater.

vee

viewcf.

vee

viewphase.vee

Source

Fi lename

init.cs

startup

. cs

ststeam.

cs

trsteam.cs

trwater.

cs

cf.

cs

twphase.

cs

.vee : HP-VEE file,

. cs •' C-language source file

.dat : data file

Compi1e

mkin

mkup

mkst

mktr

mkwa

mkcf

mkph

Dataf Filename

init.dat

startup,dat

steady,dat

steam,dat

water,

dat

cf.

dat

phase,

dat

Remarks

Mode-1

Mode-2

Mode-3

Mode-4

Mod-5

- 7 6 -

ao

3en0)

o

(0

no<oQ

I

a.

- 7 7 -

O

O0)w

U)

3+J

u

Cs)

- 7 8 -

co

oQ>

in

C

a,cacu

w

a .

05

o

COoo

COI

CVJ

- 7 9 -

26

V)

18

16

14

"»—"™r

Q Koa for STD-BEP

A Koa for DR-BEP

100000 200000 300000 400000 500000

Reynolds Number in Fuel Bundle

Fig. 2.1-4 Pressure Loss Coefficients of Simulated PWR FuelAssemblies with STD-BEP and DR-BEP

- 8 0 -

aoo

CD

•a"o<D

aCO

CO

Q

o

0!

ICO

u.

- 8 1 -

C

cO

oE

tern

w

.DV

i — l

oa)

- 8 2 -

600

80

40

x

.Mixing Vane

SpacerGrid

Pressure Tap

-x

FlowDirection

Unit: mm

u

z.W

&

Coordinate system

Fig. 2.3-3 Axial Locations of Spacer Grids and Pressure Taps

for PWR Test

- 8 3 -

, w

Ooooooooooo

-Point 1

Path 3 Path 2 Path 1

D = 9.5 mm, P=1 2.6 mm, H = 68 mm

Fig. 2.3-4 Cross-section of 5 x 5 Rod Bundles

showing the Measuring Locations

MixingVane

- (

• J 2 :

T

M7 T

T T"

t '

)- 12

F i g . 2 . 3 - 5 5 x 5 S p a c e r G r i d

- 8 4 -

oooOO0OOOoooooo

Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7

0 » 9.S mm, P=12.6 mm, H =. 81mm

Fig. 2.3-6 Cross-section of 6 x 6 Rod Bundles

showing the Measuring Locations

<s i»

^ 2 ,2

i •> .

79.65

- 79.69 unit : mm

Fig. 2.3-7 6 x 6 Spacer Grid combined by

Mixing Vaned and Straight Types

- 8 5 -

Fig. 2.3-8 Axial Turbulent Intensity Decay behind the 5 x 5

Spacer Grid at Points on the Path 1

0.1 10 100

Fig. 2.3-9 Axial Turbulent Intensity Decay behind the 5 x 5

Spacer Grid at Points on the Path 2-86-

0.1

h 0.01

0.001

\

• \

•oA Au o

A mfa

. _fiAO

o

•D

V• s

>

• A<

o

D o

D E

' \

o

\V

H

5 O

\A

o

\

c

«

s

D

O

h

o m

5 A A

Point 13

Point 14

Point 15

Point 16

Point 17

Point 18

• Sreenivasan et.al.

• •

u A A

a AO

•I•

A'Npo •ft

o

•••

.•A*

so

L-l

10

X/P

100

Fig. 2.3-10 Axial Turbulent Intensity Decay behind the 5 x 5

Spacer Grid at Points on the Path 3

-87-

0.1

h* 0.01

0.001

\A.! \

c• ck

o

V

• • •r=a

A

c

3

-

i.

11

s

• 1

D

• 1

o I

* 1

A j

i

A S A

o

o o

A

3oint 7

3oint 8

3oint 9

3oint 10

=>oint 11

Doint 12

Sreenivasan e

J A*\ Q

Ol

•A •

k•

i

i.

10

x/P100

Fig. 2.3-11 Axial Turbulent Intensity Decay behind the 6 x 6

Spacer Grid at Points on the Path 2

- 8 8 -

0.1

0.01

0.001

10

x/P100

Fig. 2.3-12 Horizontal Turbulent Intensity Decay behind

the 6 x 6 Spacer Grid at Points on Path 2

- 8 9 -

Tap 16

130.0

UNIT: mm

Tap1

Tap Number

Fig. 2.3-13 Schematic of the Test Section

for HANARO Fuel Assembly

-90-

PathS

Path A

Fig. 2.3-14 LDV Measuring Paths for 18-Element Fuel Assembly

-91-

t

L/Dh = 2, 7, 14, 23

LVD = 2 , 7, 14,23

L7Dh = 2, 7, 14, 23

L/Dh = 2, 7, 14, 23

L/Dh = -2

Fig. 2.3-15 Axial Measuring Locations for 18-Element

Fuel Assembly

- 9 2 -

Path?Path 6Path 5Path 4Path 3Path 2Pathi

Fig. 2.3-16 LDV Measuring Paths for 36-Element Fuel Assembly

- 9 3 -

Fig. 2.3-17 Developing Axial Velocitiy at Path A

for 18-Element Fuel Assembly (m=12.7 kg/s) Irom Wall, x /R

-94-

Fig. 2.3-18 Developing Axial Velocitiy at Path B

for 18-Element Fuel Assembly (m=12.7 kg/s)

- 9 5 -

Distance Irom Wall.

CO

o

CD

5-

4 -

3 -

2 -

1 -Mass flow rate = 12.4 kg/s36-element fuel assembly outlet region

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Distance from Wall [x/R]

0.8 0.9

Fig. 2.3-19 Axial Velocities of Outlet Region

for 36-Element Fuel Assembly (m=12.4 kg/s)

-96-

75*

OQ

IwCO

400

350

300

250

200

150

100

50

0

•ooAffl

©V

-

-

RHS

DP1-2DP2-4DP5-7DP8-10DP11-13DP12-15DP15-16DP1-16

v v

VV

n D n D D D

gSpagaaeJlJM^ JK i utll nVt 1W fvt Ittfr

V

v vV

VV

V

999 990 9

i

_

VV

V_

-

n D

U

9 9 8 9 -

10 15Flow Rate [kg/s]

20

Fig. 2.3-20 Pressure Drop Data for 18-Element Fuel Assembly

-97-

Q

CO

400

350

300

d£ 250Q,2Q 200

150

100

50

0

nooA

a

©

V

DP1-2DP2-4DP5-7DP8-10DP11-13DP12-15DP15-16DP1-16

15

Flow Rate [kg/s]

25

Fig. 2.3-21 Pressure Drop Data for 36-Element Fuel Assembly

-98-

o

L J .

§•oan

a

"8

Q .

BOiZ

- 9 9 -

Fig. 2.4-2 Whole View of RCS Loop Facility

-100-

Fig. 2 .4 -3 Whole View of IRWST

- 1 0 1 -

Sensor

ScanningA/D

Converter(64 Ch.)

VXI bus

MassStorage(SCSI)

VXI Controller

(HP-V382)

Keyboard

Monitor(19")

Printer

Fig. 2.4-4 Data Acquisition System of RCS Loop Facility

- 1 0 2 -

otou.a.oo

DS

V-

oa

enin

O+J

0)

tn

CO

m

Csl

- 1 0 3 -

1.8

1.6

O

1.2

1.0

0.8

0.6

1

oX

p

11

1

(MPa)

8282

1 'Ahin(KJ/Kg)

21081

250 300 350 400 450 500 550 600

-2.Mass Flux (kg/m s)

Fig. 2.4-6 Parametric Trends of CHF with Mass Flux

(Effect of Inlet Subcooling)

-104-

1.8

1.6

1.2

1.0

0.8

o•A

A

X

P (MPa)1.824.055.877.99

12.08

Ahin(KJ/Kg)210210210210210

0.6200 300 400 500

Mass Flux (Kg/m2s)

600

Fig. 2.4-7 Parametric Trends of CHF with Mass Flux(Effect of Pressure)

-105-

LL.Xo

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.600

1

-o -- D -

—A—

- A -

i ' i

Ahln=210(KJ/KG)

G (Kg/m2s)

300 - x -350 - e -400 - • -450

G (Kg/m

500

550

600

i

2s)

6 8 10

Pressure (MPa)

12 14

Fig. 2.4-8 Effect of Pressure on CHF

-106-

'•- •

Fig. 2.4-9 Steam Vent Line after Accident

-107-

73

o 5o T- '£'V

vvq

T

*~~ i*

o ifc

-a-aoc3

O

coa

o

a,

o

IS £o oa c>. a)

LT5

ao

— 1 0 8 —

III• . : : : !

« ! • • • • • • • . . • : -

_ ; •

QO

| P

ress

o

-Id i

(NO

18

1 PT

7-^

•Io :

» • • . .

1 • t >

1 *

W)

osa303

i/3

3.o

Q>

oso

o

I

in

csino

- 1 0 9 -

IQ)

T3OS

a;C

o

3O

ma

5

O

COu

5,

«fl

I

in

mo

- n o -

0)

CM

H i - . i

• 1 ' : :

. : ' ( . • • ;

j ':•''

d)

oa: cu

JZ

3O

BO

CO

o'Q,

eni

in

- 1 1 1 -

Ill•

JI T

C-207

D

U TC-503

TC-301

if)

I0)-aoso

a3O

C3

<D

ao

a

oi

LT5

CO

BO

- 1 1 2 -

u

a C-1

21

..:

C-3

02

.;

o om

C-1

32

.-•

::i-:'::i:- J"

y 2'

in

-aoa0)

aoenQ

<DJZ

oa«_o

o

S,

LT5

- 1 1 3 -

U5

LOI

-aoe

a,

o

oB

O

CO

o

Q>

m

U,

- 1 1 4 -

1. 7fl.fi.

40 ^ 2 <H*H <£-7-*H <>|*M oj

u} [1]. > y ^ ^ <^^-fe, Marviken

[2] ^ - i - ^ I^*>JI^ f cfl^-^ # , 4 i ^ - ^ ^ ^ojuf Nozzle S f e

Orifice ^ - # 4-§-*H ^r^SlSi-5 .^ . 1980 Vl °1^^1 Leak Before

Break 5} ^-§-•§- ^-S*> JS.^ 7fl^^- |*f<H ^ " ^ ^ Crack # ^f-*l

[3,4].

# ± 50

Geometry

[5].

*H 1993

Loop 1- o|-g-t>

- 1 1 5 -

3. Data Base *\r\.

4

314.

2.

fe- Table 3.1-1

135

7f. Flashing Inception

3.1-1 ^ 1.0 MPa, 169 °C

(Flashing)

of

Flashing

-116-

°1 *13T*T Void Fraction

Void Fraction

ZL^ 3.1-2 ^ ^ o | 3.4 mm oj Al^^-ojl^ # 1.0 MPa

1) 2}S54H7> ^J5 .^ Flashing ^

2) ifh§4S7f H ^ ^ - £ °lAoH S]1^ Flashing £

Flashing *

1 B^fe 4 ^ (^-^ 3.1-1. o] 4^cl al

Flashing o| «J>»J ^ tl^BS. o] 4 ^

^r Flashing o] ^ ^ ^ 6 l ^ ^ ^ ^ 0 ] c f e ^o]c]- (Flashing o|

o.^ 3.1-3 ^ o]e]*>

(L*=Lsat/LT) -i-

0.4 JSL

Flashing

-117-

^ H r Geometry (S l i t ) ^

} ^ (3L% 3.1-3

Stagnation Quality i f ^ ^

L $Xt\. ^ Amos [3], John [4], Sozzi A|- Sutherland [7]

^ L ^ 3 . 1 - 4 -b 2 | ^ o l 3 . 4 mm *]

3L7J7]-

- 1 1 8 -

K ^ 3.Q 3.1-5 ^r 3 3 ° 1 7.1 mm ©1:2.

7]- 100 mm ©!

uf. Geometry

Sozzi [7], Marviken Researcher [2] -§-©1

Uf. ZL5]uf ©}3|7H ©H rfl*> Tg^?>

3.1-6 ^ <U- ©1 1.5 MPa SL JL^Q ^^M *\£. c^S- 4 7 H

i/Z7 7f ti]^*> Type 1 ^ Type 3

^ Type 1 ^ -°-^-©l Type 3 ^ ^ g - f ^ 4 4 ^ ^ ^ r ^ ^ 514.

^ 1/Z? 7} Scaling Parameter efjL < * 1 ^ ^ - ° - «I^©| ^j"# ^r^-

©] ^ i ^ I 4 ^ ^ ^ - # ^ # ^r SlI4. H 5 | 4 Scaling Parameter 7}

(D ^lefe ^ ^ # ° J ^ ^-f ^i^ t}€-<& ^ &±^ L/D 7} ^ # ^ -

- 1 1 9 -

3.^ 3.1-6

^ 20 °C 3] | 5 O ^ 4 ^ ^5 -*U sac>. ° lem ^g*o^ 4 4

Scaling Parameter 7}

^ 1 - ^ 6 J ^ 7 l ^ * H ^ ^ 3.1-6

20 °c $ ^ 3 O ^ 4 ^ U

ZI^ 3.1-7 ofl SA]*}5ii:>. H^ofl>H Sj-o]^- ^ ^ ^ u|-i|

*=C/G,r, Cre/- fe 20 °C # ^

Scaling Parameter efe 4 ^ # ^ C J 4 ^ &t}JL ^ ^ $1^}. ^ 7]t\20 °C # 3 ] ^3o>-^-^ol MS. ^}i£

7]

3. ^XI^IHH^

^ 4 4 ^ 4 ^ ^ 4 5 1 (47*)

120-

*§• 135

3.1-8 ofl SAl^f^uf. H ^ o M j i ^ u}if ^ o | 47* cfl

G* f . - *m^J •^•^i^S. S^ |% ^ $ic]-. Nonlinear Least Square

Curve Fitting ao ^ A S chg-Jf ^ ^ G*

2^ > ( l l + exp[(^r+0.578)/0.188]

fe 20 "C ^ l -o]

^)-°-5 (3)

PO> pb) K, f —: Stagnation Pressure, Back Pressure,

Entry Loss Coefficient, ^ Friction Factor # -2-1 nj*>i:j-. ^ (2) ^>

^ ] - 2.86.3 % o|t:>.

4.

%• 9 ^^"4^1 755 7fl5iuf. ^ ^ 3 : ^ ^ . 5 . <^^^r 0.21 - 17.0

MPa, 3 ] ^ ^ 0.25 - 509 mm, ^^>1^ 0 - 2,335 mm ° M

(Slit, Venturi, Nozzle, Tube, Pipe ^-) #

- 1 2 1 -

3.1-2).

(2) 20 -c

(/)

*1 (3)

3.1-2 9i ZL%! 3.1-9

5.

755 OL

- 1 2 2 -

Air-Water 2^MT-§-

# 3 f c Air-Water

71 Afl ^ojofl <s)sfl

-^-1^. °1 3"*H PDPA (Phase Doppler Particle Analyzer)#

1.

(PWR)^ r e f i l l , reflood

^ ^7} »o^-i- -Tf *}JL alfe 10 CFR 50, Appendix-Kofl tr}s.

reflood rate7} 1 in/sec olAoV<y ^-f-^lfe 7]^S] <>]•%•

data# 713:5. *} ^ ^ ^ AoV^^# 4~§-^ ^r Sl K ^LSJU reflood

rate7} 1 in/sec n]n>6] ^-fofl^. ^ 7 W ^*> h§4^°l 7>-^*fi:]-^

reflood rate7|-

>. reflood rate

Reflood ^ - ^ ^ A - ] ^ <^^3] ^afl-fe quench front

*oH^l^ ^ aI«H4 <£:§-I^f. a ^ £ L ^ post-dryout

^ ^ ECCS5] J L # # 711 *1-

(LOCA) 0 ) ^ 0 ) reflooding

- 1 2 3 -

Reflood eoH annular

data# 1 #£ i3

^Efl7f churn- turbulent *]

reflood -8-S

Reflood ^ f l

mechanistic

7]

SLS. 3.7]}

mecha-

nistic , o]

3.71-fe- entrapment mechanismif

turbulent

churn-

\] 3.711

data#

3.7]

fe ^ ^ ECCS

3.7}

3.7H1

PDPA# <>1-§-*]• o churn-turbulent

^ ^ (droplet)^ 3 7 l #

}jL, quench front

mechanistic post-dryout

37} o\}

-124-

ECCS

2.

-fe- air-water * l ^ * | - b ZL^ 3.2-H

18 mm, Zlo| 0.9

£]<H al^f. =L*& 3.

3.

- 1 2 5 -

ufl churn-turbulent^ #-^-7l 2^^-^ SL^M A 5 A ^ ^ O J?^-^ 3.7]

# PDPA# <>l-g-*H ^ - ^ ^ -

1- ^ * f J L , <^^5] 3.71 #

"^ 0 . 8 5 - 4 kg/m2sec*l

0 . 7 - 3 . 4

. o]

[i l l .

irfl churn-turbulent

fe PDPA

window^

[10]^ 3.^ 5.3-2-4^] u}

a]3 ^ - ^ ^ 1 - b Ar-ion

(fiber drive ^ transmitter),

module),

laser source), ^ -f-Af- -

T"(receiver ^ receiving

(data management

system) ^SLS, ^§$°] $1^}. ^ <&•=?-§: ^ | * H ^ 3.2-4^1 M-E^

^: transmitter^- ^-^*f7i] ^|4*)-$5l^K °l t ransmit ter^ 4080

^ ] l l - 7HJL £ U , -^ UJ^ J 2 . ^ f 4 ^ ^ 0.5° o|t^p e f l^#

«1 3 ] ^ ^ 2, 5, 10 mm . ^ ^ 1 ^ Sd f. <>1

transmitter^ ^-^r*}7fl ^14°1 ^ H SI<H>H ^ - ^ - f - ^ l ^ transmitter^}-

<>1«HI ^ 1 ^ t&SAJr 7^e|fe 1 mo]z\. receiver^

a 3.2-iofl

4.

- 1 2 6 -

^: Cheng/Teller [12], Teller/Rood [13]

^ 4 l ^ H £ 71^1^ 51**1 (jg < 1 m/sec)

Jg = 3.4

^ 7 } ufEfuf

, Cheng/Teller [12], Teller/Rood [13]^

<q*u

Kocamustafaogullari^ [14], Bartak-^ [15]^

o)§ 71 #

71

-127-

Air-Water

1. 7H

- Flooding^

Flooding

Silt:}.

2. ^7l * U e £ ^^7l(Parallel - Wire Conductance

Probe)

-128-

(^fl})| % M £Ur ^ ^ ^ ^ ^ 1 ^ ^ AC

Carrier signal°] ^*] 1- 3g-f <H^ ^r^Wl £^*}4 * H ^t>

Impedemce A ^ ^ r 7] 1 4sl-*|7fl ^C>. o|nj| q - ^ ^ Conductance^

_ n y h1 In dlr

conductance between wires

constant

conductivity

liquid height

distance between wires

wire radius.

Tension Screw# ol-g-*H

4.

^ 0.2

0.8mm

-129-

3.3-l H

*l*)-&-^, Wave*]

- - 15 mm

3.

L J 3.3-3<Hl U ^ F ai4. -y^^ l -b Testsection, # g-g-TJI f-, ^-7] ^-^•^^-^•^.S. -^A^cf. Test section^

£°1 4m,Tapo]

^71 (Parallel-Wire Conductance Probe)7}

Test SectionoflA-1

2L<>\] H P ^ M:-& 7 f ^ ^ J E JS.&1 ^xtofl o|*l| Test Section^.

^ -fr^€- ^ i l ^ Rotar Meter^ ^-^^cf. §*1 l - ^ * > ^ # ) ^

J2.e># ij4iS|-*l-a 3-<y# -^-^ i^i- i- ^^-^1^17|^*H Honeycomb^

Water Vessel^] ^^l*F^uf. ^-7l-b ^6o^7]^-^-^l<H) 1/2"

^-^ , Rota MeterS - ^ ^ ^ ^ ^ • i t

Fine Mesh# Test Section

Full Scale©] 19.99 mm H20^1 Micromanometer# o|

-130-

-8"*H ^ W & a , ^-71-1- 7 ^ ) ^ Wave Field#

Qusi-Steady State ^ #*}*1 ^ ^ -8-£

1 - ^ ^ - 3 o i : ^ ^ | ^ 0.0004-0.0204

), E}] g f 0 - 6

4. ^ ^ ^ ^ f

0.0004 m/s(

3.3-4(a)S| ^ o | si-jLi}

^ Pebbly Wave ^Efl7} ^EfufTi] ^u]-. o|

1 ^ 7 } A 1 ^ ] ^ z i ^ 3.3-4(b)ij- ^ ^ 2 ^ ^ Wave

2^>^ WaveS. 3>JL, 4 ^ ^ ^ 4 ^ ^ ° 1 ^ ^

Wave l ^ - ^ ^ 2^}^ WaveA}o]ofl n^^- 3]-^- Wave#o]

l- - f ^ x ] ^ ^ . Wave

Wave

>JL Wave*] ^ f ^-jfAl^u}. (a^J 3.3-4(c)).

Wave#ol ^ .^ .Aj^^g. a i^*Ml 51 n|, o|s]*> Wave

7}«H1 tt}e} 7JI4j^.^|5|i:}7} ^ ^ - Flooding < <H]

3.3-4(e)). Flooding^ ^ j s | ^ . «.^j c^o] s ^ ^g] U}7W ^ - ^ nfl

- 1 3 1 -

# , Water Vessel£] ^$7} ^-7}t>}7] *]*% * f e

3 .3 -5^ Power Spectrum^

oebbly £ 24^1 ^1^4 <g^6fl^fe uf^-^ Peak^o]

Peak# i o l J L £ 1 ^ 1 <>l-b ^ - T - ^ - ^ Tfl^sfl-o] Dominant

^ - A ^ SGF(Spatial Growth Factor)# ^f-*H ^

J > ^ ^ ^ > f e l l j f f . ZL^I 3 .3 -6

SGF1- ^-7] ^ ^ ^ H l

o] P e b b l y < g ^ o f l ^ ^ .

Pebbly Wave#o|

g ^ l ^ f ^ # ^ f ) ^ SGF

] ^ Conductance Probe ^

- 1 3 2 -

X-Ray Densitometer System

7l-«}

711

(void fraction)

pattern) -o]

^ " ^ ( s i n g l e - p h a s e flow)*]

4

o]

/ = 70exp[-^L ]

, Ife 44

cient)olcf.

4 4 ig, ii

X

(1)

^s.(intensity)ol^p L^

inear absorption coeffi-

-133-

cti £

(chordal density)#

(chordal void fraction).^. ^^A|7l

^ ^ ] d ^-«., HelJL photon

1 # ^ ^ photono]

°lfe collimator# 7 ^ ^ A

JSt f- ionization chamber^.

, collimationo]

oi

^ . 4 , photon^^l ^^^(monochromaticityH-f-, ^if^^Cbeam har-

dening)^^]

photo-electric JL 2f, pair-production SE.^- compton

<*HuHphoton^

-134-

(collimated beam)

DR (Digital Radiography) S.^ CT (Computerized Tomography)

2.

^ S 91 71S

BIR4(nl^)«J ACTIS-200VF £ ^ Digital Radio

graphy System^ ^ A 7 l 7 l #

X-

3.7]-^ 3*1*] sch. 160^1 i

-135-

X-id ^ £ detector, ZLEU O]

n}Jffi Sfl -g-o) 1H*1 & i ^ ^ £ ^ 1 , ^JL^-^i [17]^ n ^ 5.4-4

1250X2200X1620 mm*] ^ ^ © ] #

3.5mm^ u f l i l S ^ ( ^ ^ : s teel)^ .S. -?-^Sl<H 5 1 ^ - ^ , X->id

. Window g l a s s ( ^ ^ : l ead)# ^f

r Auto power-OFF 7]-^ofl ^Sfl X-^.3] power7> ONS] 1 ?>^tf.

[ 1 7 H ^Afl*l 7]

3.

i 713EJE.^71 (void simulator)

713ES.517]^^ ZL^ 3.4-1 ^

ZL^ 3.4-2ofl

- 1 3 6 -

5L517],

sch. 160 ^ 1 * 1 3 1 ^ «11 :(ZL^ 3.4-2

. H-% 3.4-3(a),(b),(c),(dH L-}Efuf ^ K

-Q 3.4-3(a),(c)ofl>H ^ ^ # ^r $1^ y>^} ^°1 post-collimator

3.4-4 ^ J

l t photono]

detector^ ^ 1 ^ ^ S . * | a ^ * f e ^ ^ - ^ . S . ^ , collima-

. ^ ^>fiM7f nfl-f 7 | | ^ ^ # ^ ^ Sit}.

3.4-3(a),(b),(c)>(d)^l

5 ^ RDT

1.

#^I 3,

(pressurizer) ^-f^l ^ ^ l ^ ^ $1^- ^^i^-^Ksafety valve)7\

tifl^^aL(RDT : Reactor Drain Tank)^

- 1 3 7 -

SLI*, RDTi} ^

uj- 4-g-sj

3,4 3171

RDTufl

RDT

RDT5]

7l 7}

-§ -^^A O 1- ( D CC : Direct Contact Condensa t ion)^ BWR

suppression pool ) i f PWR5] ^ Z | 4 u J | ^ E | 3 . (RDT

SDT)

A}7) (steam sparger)7f

- 1 3 8 -

ZL

^3.(quenching tank)ufl

jet7f

71 je t *HJ*fJL.

j e t

RDT

irfef

- 1 3 9 -

RDT5]

2.

generator), -§- -E<§3.( quench ing tank)

steam supply line) £

lm,

supply line), Hfl

^7Jl(PT_transmitter)

^ S 3.5-lofl

indicator)!- ^

^711H7] (steam

steam sparger),

water

transmitter), <£

T/C)

-140-

-b HU 3.5-lofl

5mm, 7mm, 10mm, 15mm,

20mmH a l ^ 7}% ^ ^ ^ ^tflo] i i # #

ABB-Atom ^ * ] ^ 4 7 1 , T-% ^A>7l, YGN-RDT

7} jet g 3 . ^^1 -

window# ^^l*]-^., ^L^- video#*l 3E^ 4^ l7 ]# ol-§-*fo^ 7}

7^7)7]S-^-^ ^ # ^ 1 ^151^ DT-2839 A/D converter (16DI/

32SE)# main boards. 4-g-*)\2. DT-2896 channel expander(48DI/96SE)

^ ^ * H 27 channel

. A/D converter*] «^^

4r nm 3.5-2,3^} ^JL 4 ^ 4 1 ^-^7171^1 ^^^;7Jl^ a 3. 5-2ofl

3. -n-BoM| J^-^ ( Vortex Flowmeter Calibration )

- 1 4 1 -

initial watermass

mDt

final watermass

overflowedwater mass

vortex flowmeter)^ ^

^ ( c o n s t a n t volume method)^- 4-g-*H

a ^ 3.5-1^] Drain Line-B)

m = A (1)

- 1 4 2 -

/TT : time span

M0Ver : overflowed water mass

V : volume of water

p, : initial water density

Pt '• final water density

l e v e l H H f l ^ f ^ } ^ ^ ] 1 ^ f

Z L ^ J 3 . 5 - 4

23.6°C

(997.47kg/m3)^.

3.5-5 1 -1 # r Sl -o] cH- §: ^f^.^ i^^^S-f-^ 5*^

4.

je t ^ ZL ^ -

window# ^*j*l-JLf J L ^ video^^l J £ ^ 4

- 1 4 3 -

*!7l# °l-8-*H 7llight sheet Sfe lamp#

laser

] B) ife ii#

l 5mm,

60 kg/hr^f 30kg/hr

3.5-6CH1 ^ E

5. "^71

a 3.5-5OH

- 1 4 4 -

1. E. Elias and G.S. Lei louche, "Two Phase Critical Flow", Int. J.Multiphase Flow Vol. 20, Suppl., 1994.

2. "The MARVIKEN Full Scale Critical Flow Tests", NUREG/CR-2671,MXC-301, 1982.

3. C.N. Amos and V.E. Schrock, "Two Phase Critical Flow in Slits",Nucl. Sci. Engng., Vol. 88, 1984.

4. H. John et al., "Critical Two Phase Flow through Rough Slits",Int. J. Multiphase Flow, Vol. 14, No. 2, 1988.

5. I. Brittain et al., "Critical Flow Modelling in NuclearSafety", OECD, Nuclear Energy Agency, Paris 1982.

6. %&7] ^1, "Hot Test Loop ^ x i r ^ " , KAERI/MR-268/95, 1996.

7. G.L. Sozzi and W.A. Sutherland, "Critical Flow of Saturated andSubcooled Water at High Pressure", NEDO-13428, 1975.

8. 10 CFR part 50, "Domestic Licensing of Production andUtilization Facilities".

9. G. Kocamustafaogullari, G. De Jarlais and M. Ishii, "DropletGeneration During Core Reflood", Trans. ANS, Vol.45,pp.804-805,1983.

10. J-g-7] £j, "Hot Test Loop A ] ^ •£<£", KAERI/MR-268/95, 1996. 1.

11. Bachalo, W., "Methods for measuring the size and velocity ofspheres by dual-beam light scatter interferometry", AppliedOptics, Vol. 19, No. 3, 1980.

12. Cheng, S.I. and Teller, A.J., "Free entrainment behavior insieve trays", AIChE J. , Vol. 7, pp. 282-287, 1961.

13. Teller, A.J. and Rood, R.E., "Coalescence and entrainment:

-145-

phenomena on sieve trays", AIChE J. , Vol. 8, pp. 369-372,

1961.

14. Kocamustafaogullari, G., DeJarlais, G. and Ishii, M., "Dropletgeneration during core reflood", Trans. ANS, Vol. 45, pp.804-805, 1983.

15. Bartak.J., Janicot.A. and Haapalehto, T.,"Recent developmentsin reflood modelling with CATHARE", Proc. Int. Conf. on NewTrends in Nuclear System Thermohydraulics, Pisa, Italy, Vol.1,pp. 297-310, 1994.

16. J. E. Koskie et al., "Parallel-Wire probes for measurement ofThick Liquid Films", Int. J. Multiphase Flow, 15, 521, 1989.

17. ^ ^ T 7 ] 9], "Hot Test Loop Aj^^r^", KAERI/MR-268/95, 1995.

18. ^ 7 1 $], "RDTufli) ^ ^ r ^ ^ ( D " , KAERI/TR-576/95,1995.

19. ^ g * ] , " ^^ 1 ^ - , KAIST, 1996.

-146-

Table 3.1-1 Test Matrix

TestSectionType 1Type 2Type 3Type 4

Diameter(mm)3.47.17.157.15

Length(mm)100100200400

L/D

29.414.128.055.9

Pressure(MPa)

0.5 - 2.00.5 - 1.50.5 - 2.01.0 - 1.5

Subcooling( °c)

0 - 1900 - 1830 - 1900 - 183

Table 3.1-2 Comparion of Selected Critical Flow data and thePresent Model

Experiment

Amos et al.

John et a l .

Celata et

al .Jeandey et

al.

Sozzi et

a l .

Reocreux et

al .

Powel1

Marviken

Pressure(MPa)

4.1-16.2

4.0-14.0

0.8-2.3

2.0-12.0

3.3-6.9

0.21-0.34

4.2-17.0

4.0-5.0

Hydrau1i cDiameter

(mm)

0.25-0.76

0.41-1.28

4.6

20.13

12.7

20

11.1

200-509

FlowLength

(mm)

63.5

46.0

46-1,380

363

0-1,778

2,335

-

166-1,589

So.of

Data

72

57

60

88

210

39

41

53

Mean(SO

-4.4

2.5

-3.2

-2.4

-0.2

-3.6

3.3

1.4

StandardDeviation

(*)

10.4

9.9

6.0

6.8

11.0

6.8

7.3

5.2

Remarks

S l i t

Down FlowSl i t

Down Flow

Pipe

Down Flow

Pipe

Lp Flow

TransientPipe, Nozzle

Horizontal

Pipe

Up Flow

Converger -

Dyverger

TransientPipe

Down Flow

-147-

Table 3.2-1 Typical parameters used in the experiments

Parameter

Velocity SetupHigh Voltage (V)Frequency Shift (MHz)DC Offset (mV)Mixer Frequency (MHz)Low Pass (MHz)Burst FilterThreshold (mV)Envel Filter (uS)Peak Detection=#= of SamplesSampling RateMin S/N RatioDiameter SetupSlope 63Refractive IndexAvailable Range(Transmitter)Collimating LensBeam SeparationsTransmitting Lens(Receiver)Collecting LensFocus LensApertureDetSep A B (0!_2)DetSep A-C (0i_3)

Description

channel 16 9 9

4 0

14.439.93

0 . 5

40 MHz BP10.0

3

O n1 2 8

1.25 MHz0 . 3

channel 26 9 9

4 0

40.339.915

0 . 5

40 MHz BP3 . 0

3O n

1 2 8

2.5 MHz0 . 3

0.4310 Reflection1.333

18.9 - 6217.4(ch 1)

235.004080

(ch2)2

35.004080

500 mm175 mm150 um

10.88 mm30.69 mm

-148-

Table 3.4-1. Test Matrix for the Performance Test

of X-Ray Densitometer System)

No.

1

2

3

4

5

6

7

Test

Case

VS-B

VS-AC

VS-AE

VS-IAC

VS-IAE

AWS

AWA

Test

section

SUS 3"sch.160

SUS 3"sch.160

SUS 3"sch 160

SUS 3"sch. 160

Acryle

Void

Simulator

Rods(13 ea)

TaperedHole

TaperedPlug

Air-WaterMixtures

Air-WaterMixtures

Piece

Arrangements

Var i ab1e

Concentric

Eccentric

Concentric

Eccentric

Randomdistributionof bubbles

SimulatedFlow

Pattern

Bubbly

Annu1ar

InvertedAnnular

Bubblyor Slug

VoidFractionRange

0 -0.18

0.2 -0.54

0.44 -0.86

File Name

VS-B-NC,VS-B-C1.C2.C3

VS-AC-Cl

VS-IAC-NC,VS-IAC-C1.C2.C3

VS-IAE-C1.C2.C3

AWS-l

AWA-1

VS • Void simulator, B : Bubbly, AC : Annular-Concentric,AE : Annular-Eccentric,IAC : Inveterd Annular-Concentric,

IAE : Inverted Annular-Eccentric, AWS : Air-Water in SUS pipe,AWA : Air-Water in Acryle pipe, NC : No Collimator, C : Collimator

- 1 4 9 -

Table 3.5-1 Technical Specification of the Steam Flow Meter

o Flow meter : 0VAL4, SSg. VAW1025-D2D1-2111

- Size : 25A JIS 20K Wafer type

- Flow : 45 ~ 721 kg/hr at 10 kg/cm2

- Output : Current or pulse

o Press. Transmitter : OVAL^K 3.^ AMD200

- Range : 0 ~ 15 kg/cm2 (Output : 4 ~ 20 mAdc)

- Power : 24 Vdc

o Temperature Sensor •' OMEGA^f, Thermocouple

- Type : T/C K-type

o Flow computer : OVAL*}, JEC| FC500

- Input : Flow (current or pulse)

Temperature (T/C K-type),

Pressure (4 ~ 20 mA)

- Output : 4 ~ 20 mA

-150-

Table 3.5-2 Instrumentations and DAS for RDT TestDAS11

Channel

00

01

02

03

04

0506

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Sensor

NamePT-1

PT-2

rr-3LT-1

FT-1

-

-

-

TC-1

TC-2

TC-3

TC-4

TC-5

TC-6

TC-7

TC-8

TC-9

TC-10

TC-11

TC-12

TC-13

TC-14

TC-15

TC-16

-

DPT-1

DPT-2

DPT-3

DPT-4

DPT-5

DPT-6

ModelAMD-200

Rosemount••

"

OVAL

OMEGA (6.35mm)

"

"

WATLOW (4.8mm)

OMEGA (6.35mm)

WATLOW (1.6mm)

"

"

"

"

"

"

PCB-112A2"

"

Druck-PDCR922

PCB-112M247

LocationFM -'

Nozzle exit

Tank

"

FM-1 (25mm)

Pool water

"

Nozzle exit(Steam)

FM-1

Nozzle exit(water)

Steam Jet"

"

"

"

"

"

Tank wall

"

Nozzle exit

Range10 kg/cm"

10 kg/cm'

5 kg/cm"

1 m-HjO

0.72 ton/hr

0 ~ 500 'C

"

"

"

"

"

"

50 psi

"

"

"

1 bar

100 osi

Signal

1~5 V

"

"

(T10V

"

"

"

"

"

"

"

"

"

0~5V

"

"

"

0~10V

0~5V

Remarks

Vortex meter

Dual, indicator

Dual, indicator

Jet center

S/N : 14212

S/N : 14211

S/N : 14210

S/N : 14214

S/N : 718318

S/N :

* Note : 1) DAS : DT-2839 with DT-2896 (Diff. Input, Bipolar, 10V)

2) FM : Flow Meter (Vortex type for steam flow)

Table 3.5-3 Technical Specification of the Digital Balanceo Model : JR-30000D, PRECISA

o Capacity : 31 kg

o Resolution : 0.1 g

- 1 5 1 -

Table 3.5-4 Experimental Data for Flowmeter Calibration (1/4)

NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Q(flowmeter)

[volt]

2.76

2.03

2.31

1.72

2.65

2.38

2.40

2.57

2.32

1.44

2.15

2.72

2.21

1.85

2.67

2.62

1.83

1.61

1.71

1.80

1.87

1.93

1.98

2.05

1.70

2.22

2.34

T(initial)

[degree C]

13.08

21.19

14.65

28.75

20.45

16.80

20.67

20.49

16.23

21.24

25.49

22.54

23.09

25.11

14.80

17.16

18.26

33.12

16.70

29.79

17.15

22.56

31.28

39.32

14.81

25.62

22.39

T(final)

Idegree C]

46.82

41.60

42.21

42.40

49.74

46.83

46.33

50.96

42.63

30.99

50.82

50.21

50.64

43.19

47.90

47.03

33.36

44.42

30.11

45.52

22.64

31.59

39.65

46.67

25.82

44.96

43.75

Time

[sec]

644.90

664.97

710.41

648.03

583.40

727.95

613.08

644.16

673.34

733.24

734.81

520.91

757.51

704.57

668.66

568.05

603.05

624.82

601.35

659.07

197.53

306.18

276.58

221.57

520.97

522.06

525.02

Overflowed

water mass [kg]

69.25

42.01

Remark

55.94!

28.25

61.88

62.53

53.70

64.24

55.14

19.39

54.01

58.48

58.07

37.48

70.30

62.05

31.17

24.51

25.77

33.13

10.13

17.64

16.76

14.70

20.60!

41.47

44.26

- 1 5 2 -

Table 3.5-4 Experimental Data for Flowmeter Calibration (2/4)

No.

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Q(flowmeter)

[volt]

2.60

1.82

1.72

1.48

1.52

1.60

1.63

1.97

1.86

2.03

1.97

1.66

1.72

1.97

1.49

2.47

2.46

2.20

2.42

2.28

2.09

2.14

1.74

1.43

2.01

2.02

2.26

T(initial)

[degree C]

24.98

17.87

23.55

28.85

33.56

37.88

43.09

17.13

26.83

35.24

43.20

14.22

20.52

27.57

38.51

28.32

26.35

27.90

25.41

13.46

28.78

37.45

22.24

30.31

36.07

14.08

25.69

T(final)

[degree C]

52.06

23.61

29.01

33.78

38.24

42.80

51.32

25.35

34.39

43.57

51.81

20.58

27.64

38.87

42.84

50.70

45.73

47.16

47.46

28.97

37.69

46.19

28.38

36.35

44.15

25.79

41.13

Time

[sec]

556.46

224.02

243.52

338.16

285.02

254.12

456.55

249.32

279.39

266.60

290.31

317.02

324.84

386.91

285.21

493.89

433.87

526.80

498.29

404.93

260.25

245.66

267.36

465.25

261.32

372.57

404.52

Overflowed

water mass [kg]

55.63

10.19

10.30

9.98

9.82

10.10

17.92

15.91

14.98

17.05

18.73

12.03

14.56

23.53

8.82

48.17

40.73

39.21

46.98

31.14

18.74

18.86

12.19

11.90

17.10

22.44

32.09

Remark

-153-

Table 3.5-4 Experimental Data for Flowmeter Calibration (3/4)

No.

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Q (flowmeter)

[volt]

1.94

1.95

1.75

1.50

1.94

1.61

1.62

1.44

1.80

1.71

1.83

2.19

1.67

1.53

1.76

1.63

1.66

1.61

1.79

1.64

1.39

1.51

1.44

1.46

1.46

1.73

1.30

T(initial)

[degree C]

19.56

30.14

37.44

21.71

27.02

35.99

14.22

21.84

24.87

32.55

16.40

24.64

33.00

39.51

13.78

20.99

26.92

33.00

38.11

14.56

20.46

23.87

43.12

19.36

24.47

29.85

36.91

T(fmal)

[degree C]

30.26

37.56

45.91

26.69

36.15

41.85

17.78

25.04

32.83

39.56

24.79

33.15

39.83

45.22

21.01

27.04

33.12

38.78

45.60

20.45

24.07

28.43

46.92

24.59

30.02

36.55

40.85

Time

[sec]

374.20

256.84

377.70

322.47

321.29

325.16

181.14

240.53

319.08

325.86

323.48

231.62

342.77

363.41

314.21

318.36

317.38

319.72

317.07

285.91

298.58

290.75

292.46

381.20

404.51

314.44

407.55

Overflowed

water mass [kg]

21.08

15.55

18.36

9.68

18.80

12.65

6.62

6.19

16.07

14.61

15.85

17.25

14.32

12.30

13.69

11.95

12.94

12.22

16.28

11.24

6.83

8.99

8.39

10.35

10.86

14.19

8.36

Remark

- 1 5 4 -

Table 3.5-4 Experimental Data for Flowmeter Calibration (4/4)

No.

82

83

84

85

86

87

88

89

9091

Q(flowmeter)

[volt]

1.47

1.41

1.42

1.42

1.38

1.37

1.37

1.33

1.341.47

T(initial)

[degree C]

17.59

22.85

27.50

31.47

38.88

14.11

17.96

21.79

25.52

28.68

T(fmal)

[degree C]

22.88

27.54

31.60

35.37

42.95

17.96

21.86

25.56

28.70

32.86

Time

[sec]

375.20

381.06

337.20

311.20

369.16

338.42

338.81

369.42

304.44307.20

Overflowed Remark

water mass [kg]

10.24

9.60

8.73

8.14

9.20

7.34

7.31

7.56

6.48

8.90

- 1 5 5 -

Table 3.5-5 Test Matrix for Phase-I

Case

Case

Case

Case

Case

Case

NO.

5-1

5-2

5-3

5-4

5-5

7-1

7-2

7-3

7-4

7-5

10-110-210-310-410-515-115-215-315-415-520-120-220-320-420-5

Experimental ParameterNozzle Exit

dia. [mm]

5555577777101010101015151515152020202020

Mass Flux

[kg/m2sec]

MAX.

11321004920870

MAX.920870600460

MAX.600460350250

MAX.350250200150

MAX.250200150110

Mass Flow Rate[kg/sec]

MAX.

0.0220.0190.0180.017MAX.0.0360.0340.0240.018MAX.0.0490.0370.0280.020MAX.0.0660.0470.0380.028MAX.0.0790.0630.0470.035

Measuring Parameter

1. Axial Temp.

Distr ibution at the

Pool Temp. 20, 40,

60, 80°C

2. Je t Shape at the

Pool Temp. 20, 30,

40, 50, 60, 70, 80°C

3. Tank Wall

Pressure Transient at

the Pool Temp. 20,

30, 40, 50, 60, 70,

80°C

-156-

03CL

C/5CO

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Inlet

Inception of Flashing

Test

PP -

T.AT

DL

Conditions:

1.015 MPa0.781 MPa

169.4 °C

11.1 "C3.4 mm100 mm

Exit

0 20 40 60 80 100

Distance from the Pipe Inlet (mm)

Fig. 3.1-1 Measured Pressure Variations and the Location of Flashing Inceptionwithin a Pipe for Subcooled Two-Phase Flow Test

- 1 5 7 -

2.0

1.8

1.6

1.4

S. 12

COCO

2CL

0.8

0.6

0.4

0.2

0.0

Test Conditions:

Symbol

D

O

A

AT«, CO

0261120306077

T.CC)

180178174169160150120103

• •

Inlet Exit.

A A A

• • •

0 20 40 60 80 100

Distance from the Pipe Inlet (mm)

Fig. 3.1-2 Measured Pressure Profiles along the Test Section for VariousInitial Subcooling of the Water (Test Section No. 1)

- 1 5 8 -

(DO

31obCOCO

JDcgCO

c0)

1.0

0.8

0.6

0.4

0.2

0.0

c

D D* DD

DD

D

AD

DD• A

a a DDD

A

aOD

DD D

ADD

DD D

D

- D *

D

A

Dcm

D

aD

1 • 1

• " /Exit

Symbol Data Source

* Present Worka Amos et al. [43]

Inlet

/

/

l . l . l .

0.0 0.1 0.2 0.3 0.4 0.5 0.6

D i m e n s i o n l e s s S u b c o o l i n g ( A T * )

Fig. 3.1-3 Dimensionless Distance from the Pipe Inlet to the Location of SaturationPressure versus Dimensionless Subcooling

- 1 5 9 -

80000

60000 -

CMCO

40000 -

COCO

20000 -

T

A A

• •

1

Test Conditions:

Po

(MPa)

0.51.01.52.0

* A

A W

A

* A

••

•• •

••

••

> • I

PresentData

•A

A

A

• *

• A

• 1

50 100 150 200

Stagnation Temperature (°C)

250

Fig. 3.1-4 Mass Flux versus Stagnation Temperature for Four Different StagnationPressures Obtained at Test Section No. 1 (D = 3.4 mm, L = 100 mm)

- 1 6 0 -

COCM

X

2LL.05COCO

uuuuu

40000

20000

n

A

O

-

o

1 ,

A

O

1

Test Conditions:

Po

(MPa)

0.51.01.5

A

AO

A

AO

8

" o

o•

• o•••

PresentData

•0

A

A

A

A

50 100 150 200

Stagnation Temperature (°C)

250

Fig. 3.1-5 Mass Flux versus Stagnation Temperature for Three Different StagnationPressures Obtained at Test Section No. 2

- 1 6 1 -

50000

40000

COI

XJ2LL.

30000

20000

10000

P =1.5MPa

^ AV

V A

O V *

o •

Test Conditions:

Symbol

•A

V

o

No.

1234

Test Section

D (mm)

3.47.1

7.157.15

L (mm)

100100200400

8

50 100 150 200

Stagnation Temperature (°C)

250

Fig. 3.1-6 Effects of Tube Size on Subcooled Critical Two-Phase Flow Rates

- 1 6 2 -

1.2

1.0 -

x3

COCO05

CO

co

coCO

Q

0.8 -

0.6 -

0.4 -

0.2

- *

Symbol

_ •

A

T

1

V

Test SectionNo.

1234

AU

V

i

1

Po=1.5MPa

A

Am

50 100 150 200 250

Stagnation Temperature (°C)

Fig. 3.1-7 Temperature Dependence of Mass Flux in Different Size Tubes

- 1 6 3 -

1.2

COCO

COCO

2CO

Q

1.0

0.8 -

0.6 -

0.4

0.2 -

0.0

• / ' \

J v Eq. (5.1.2)

mJ>v

Iffl Test Conditions:

[v Symbol

A

O

1 . | . |

Test Section

No.

1

2

3

4

j

D(mm)

3.4

7.1

7.15

7.15

1

L (mm)

100

100

200

400

1 .

0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless Subcooling (AT)

1.2

Fig. 3.1-8 Nonlinear Least Square Curve Fitting for Present Data

- 1 6 4 -

160000

CO120000

X3LLCOCO05

"-a

80000 -

40000 -

0

Symbol Data Source

• Amos et. al.John et. al.Celata et. al.

» Jeandey et. al.Sozzi et. al.

• Reocreux• Powell

MarvikenPresent Work

a. / j

A/ A"""

+ 10% /

JV/

1

/ /

-10%

1

40000 80000 120000

Measured Mass Flux (kg/m -s)

160000

Fig. 3.1-9 Model Predictions and Measured Data (755 Data)

- 1 6 5 -

Feed Water [Xj—«

Bypass »-

H/X

Transmitter

from laser source

BubbleGenerator

Bypass

Receiver

Test Section

1

Rotameter

FromCentral AirSupply Sys.

Fig. 3.2-1 Schematic diagram of the air-water loop

- 1 6 6 -

Fig. 3.2-2 Photography of the arrangements of the test section

and optical components

- 1 6 7 -

Fig. 3.2-3 Photography of the test section before assembling

- 1 6 8 -

COLLIHATING HQOUiWOFLEXURE

Fig. 3.2-4 Schematic of the transmitter for PDPA system

- 1 6 9 -

MTA ACQUISITION

366 - r

V

!l miI I 1

Arittet ic ftean (DIB) = 656.8 mArea &in (520) = 715.5 o

Volugs Hsan (D30) = 772.3 mSauter &an (D32) = 899.8 m

Proks A m = 1.4&E-3 ca2t t e k r Density s 6.5BE+1 /ccVol. Flow Kate = 1.42E-3 cc/sUoluse Flux = 9.71E-1 cc/s/r.^2

Transit Tisses FVC i Transit ND

590 19S0 151(1Diat&ttr KK

II Valid||X Ualid||Correct«dIIRun TiEse

285674860.54 see

CHI Velocity E^an «-2.B27 M/S-- 8.534 i/s

-3.95 -2.13 -i.25 -S.3II «.5BVelocity 1 H/S

— — —— C:\..\JH5\TPF\SUNi5

Fig. 3.2-5 Example of the measured droplet size distribution

- 1 7 0 -

2000

1800

1600

1400

jjj 1200

E.5 1000

c(0<D 8 0 0L.

0)

5(010

600

400

200

l \

A

Chum-turbuten

Transit on

AA

A : Present experiment• : Cheng and Tellerfl : Teller and Rood

Annular

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Superficial gas velocity (m/s)

t

3.5 4.0

Fig. 3.2-6 Variation of the droplet size with superficialair velocity

- 1 7 1 -

10"2

0

c(00)

raHi

KT1

0

00 8

0 : Present experiments: Kocamustafaogullari ef al.: Bartak et ai.

2 4 6 8

Superficial gas velocity (m/s)

10

Fig. 3.2-7 Comparison of the measured data withthe prediction by other correlations

- 1 7 2 -

Tension Screw

3.

Body

SiliconeMolding

0.2 mmDia.Pt Wire

t Tension Bar

_Water ResistantEpoxy Molding

SupportRod

Water Resistant" Epoxy Molding

/ \SealingGasket

Sealing Plate

Fig. 3.3-1 Configuration of the Parallel-Wire

Conductance Probe

- 1 7 3 -

A

< Cs!

Isu. ZUJ UJ

O

W)

CO

o

CO

o

CO

I

enCO

- 1 7 4 -

£Ji<22 2Q-H ••Q.Q.O,

—j

CO

u

<c

CO

o

N

O

SCO

o

COI

CO

CO

- 1 7 5 -

0 0.25 0.5 0.73 1 »_2S 1.3 1.75

0 0.25 OS 0.75 I 1.23 1.5 1.75

0 0.25 0J 0.75 1 IJ5 U 1.71

0 0J5 0J 0.75 1 1.23 1.1 1.75 2

0 0.25 0.3 0.75 1 US 1.5 175 2

TIMEfsl

Fig. 3.3-4 Typical Time Recordings of Interface(Jt = 0.0004 m/s)

- 1 7 6 -

0.000012

0.00001

0.000008

0.000006

0.000004

0.000002

j,1-2.856 m/s

nL

c

0.00001 S

0.00001

a000006

2.5C-6

1f

20

, ^=5.5751

VV

m/s

o

(0.0003

3.00023

0X002

0.00015

0.0001

0.00005

> 20

1fl 1,-1.487

L

* "m/s

FREQUENCY [Hz]

Fig. 3.3-5 Variation of Power Spectra

-177-

Fig. 9 Variation of spatial growth factor(lower range of j/i

b -2-1

2 3 4

jg [rn/s]

Fig. 3.3-6 Variation of Spatial Growth Factor

-178-

—f . 3"

O M+J 3T—, a

1 t

i:

0)ueno

o.

- 1 7 9 -

ifis_o

CO

sin

"5,u

conoo

+Jo

0_

CM

iZ

3

"o,T3

tapere

ted

s_CDc

osur

enc

3pi

pete

el

-cs

•aa;s_aCO

co

3^3

- 1 8 0 -

oCM

in—d

<D

oo

o+J

cfl

3

W

o

o—d

mod

o(DI. i

nbbl

O

to

3(/)O$_

to

Cfl

en

- 1 8 1 -

cqo

ind

CO

ciCN

ci

CD

d

ECO

/oid

jo3CC

ntric

§oO

limat

oi

oo5

dCO

CO.

d

ind

(U

d

O+J

o

d

cod

CN

d

VaS

iticaS

Theo

re

annu

s fo

rst

re

su

ltTe

,

i^ <

en

00

pejnsB9|/\|

- 1 8 2 -

00

dcqd

cod

d

oqd

cod

J2CO

COO

I?OCD

s-o

+Jcfl

CO

so

CO

cCO

[_0)

o

in

3(0

<J

CO

1

dood

CD

dind

cod

cod

p9JnsB9|/\|

- 1 8 3 -

dCO

d dind

d

oqd

tod

ITo+Jffl

s

en

CO

d

CDd

0303

O

oCD

ccCO-a

Inve

r'

o

Its

3

no

- 1 8 4 -

x-ray tube

Batteredndlation . . .

snd-scutercoIluoKtor detector

Fig. 3.4-4 Arrangements of the pre- and post-col 1imators

-185-

o

oCO

iq

- 1 8 6 -

oc

COV7

sio

CO

Q ©

cc

O0)

CO

€0

Q |o

CO

0)

O 9)O C

oo

O

^ :CO O

in

- 1 8 7 -

(0

20>

w s J2 <»w c E aS- »_ eo .»- 3a n c h" o# . "g* (0 fl) OU UJ ^ mT O

CO>»(0

CO

"5

©

£

0)

- 1 8 8 -

inCVJ

oCVJ

oo

c1coc

CD

CD

CD

O

c5JO)

0)CQ

CCDCD

^_>CD

CD

CO

- 1 8 9 -

oinCO

ooCO

oin

ooCM

oin

oo o

in

\

• ' • • • \

-

-

IS

T3

£

cul;

(0

o

1 r

*\\

Line

•fit

ted

1

<D

urv

O

oIDC

!_|

73ID

imat

LU

573C

3?m

iii

\\

\

VV

a>

itted

Li

rve

OESa>_c—i

B

.EwHItL

a>6m

1

Ia3

\ 75. x u ,\ , \ - '

\ v 2\ • . aVv °X * -2

\ * • o

\ \ «

\ \ £\ \ o

• ' \ CD

V\ 1'•••• * » •>•

%

••• V

• - • K L

1 ' 1 ' 1 "

X

m+<II

>

| \

CD

Vali

i

Par

\\\\.\

1

too>

.981

CM

too

-19*

<

Sof^to

^~

C\Jr~toi n

191

m

fv\i

CMOL660 =

\

A^

enII

Z

599,

= 5.

71

aCO

o

5E-1

7.78

3

na.

\

CO

c\i

cqcvi

40)

CM

2

>

0

c\j

oo

co

CQ

oco

in

C\J

oCO

ooCOoin ooCJ

oin oo oin

- 1 9 0 -

a) Nozzle exit dia. = 5mm, Tpoo, = 20°CMass Flux = 424 kg/m2 sec

b) Nozzle exit dia. = 5mm, Tpool = 20°CMass Flux = 848 kg/m2 sec

Fig 3.5-6 Shapes of Steam Plume underDifferent Experimental Condition

— 1 9 1 —

HIXT PAHI(S)loft

4

PWR-Hot Test Loop f CANDU-Hot Test

Loop X\*££ ^7l*J°J *];*,§-

-fr*l, J i ^ f ^ u ] - . ^-*1 -g-VliE. CANDU-Hot Test Loop^

Distributed Control System^ ^

Feed and Bleed Tfl^J} Make-up Water Treatment Tfl-f-5]

-g-711- -^o] ^ ^ * H o ^ ^ ^EflolBflA: *1|#J=L^ J2.*fl*f55l4. PWR-Hot

Test Loop^r o l # ^ <^3i}-jL^# ^cflA]?] Double Grid

f. CANDU-Hot Test Loop^ CANFLEX

l Cold Test Loop ^l^aJM-fe Spacer Grid7f

5 x 5, 6 x 6 PWR

code

Laser Doppler Velocimeter(LDV)7> A}-§-5] uf. LDV7|^^) S^lL-b

£ RCS

- 1 9 3 -

B & C Loop^- In-containment Refueling Water

Storage Tank<HH 4-g-% Sparger# id?}] ^ ^ ^ 7 f # ^]*> ^%>4

31 %-g-Sju}. B & C LoopolM^ 4 Component ^ Loop #

B & C p ^ ^ ^ ^ ^ ^ | ^ # ^ } ]

^ ^ ^fl-fi-i- ^ ^ ^ H > M f e ^Tfl-fi-i- ^ A oH tfltf Data

Base7f ^ i i 5 | Sdc}. JE^> o] ^ i f s . A> -*f

^ ^r $Ll^ Tfl^ J £ ^ # 7fl«i ^ ^^*f$it:f. Laser ^ # <>l-g-*H

3.7]-§• ^ - ^ ^ f e Phase Doppler Particle Analyzer

Parallel-Wire Conductance Probe# 4-g-*> ^ ^ ^

^ ^ - ^ 7 ] ^ o ] S^iSlSiDK Void

X-Ray Densitometer System^] A

*1 %i l S! PWR, CANDU-Hot Test

Loop ^ Cold Test Loop*] ^^^g^of l -H £ ^ r 3-^r, ^ ^ ^ 1 ^ 1 ^Tfl,

71 - 7 ] ^ # u f e o ^ S R C S Loop ^ B & C

, 150 Channel^] o j e . ^ . SensorS.

JLl- ^ ^ . ^ B l * ^ DAS Tflf^ 7H^, Sensorif

DAS 4 o ] 6 | Tfioj-l-olH ^ i t } ^ Noised

- 1 9 4 -

- 1 9 5 -

*\ *1 % £. <g^•*g7]mLJL*\»i3L

KAERI/MR-287/96*1 7l3f i tn^ t l 3:! SL^ILJIM *i3:

Hot Test Loop ^l^-gr 'g•£-?-*»oj;4 ^i Jf-^ig *) xfl <g (cg-O-f-o^uy

•^ •§" 7 ] ,

UJ *3 *]sfl °1 *1

HliJeJJjL

^"t 6^ S ,^ . yVi O | 7+ Q ^5? J v j £-A— O —* • i —A— "^ , i_i Q . . T . , 0 Q i_

^ ^ 7 1 ^

P. 195 S. SL -fr (0) . -?- ( )

INIS ^Ml 3.B.

a> *W o ls o a

a. 711997. 1

19 x 26 cm'96 7l^;n-n-Al-oj;z|-;lfl

•§-7fi (0), n-Hilul ( ), •£• u } ^

3 L ^ (300 ^ o ] i-fl^j)7fl ^" i -S. 7ll^o

-y-i-^l^^l 'U Hot Test Loop, Co

i t J L ^ ^ ^ -

Tfl o-f •*! i

1 ^ J5L*> <y^*|\S.-i- ^-i>*l-

Id Test Loop ^J J l^ : , i ° JRCS Loop, B & C Loop •§• c>«o>^> Al^-& ^ i * } ^ ^+^ ^-fr

^•S" " r ^S^ ^r 515--^- -fr^l,i^*}SE[c}. PWR-Hot Test Loop-S:

°i^rit3.^

2^** -at*n -a^-i- n

A)?l Double Grid ^ *l-c> JL^g^l -^-fe-^1 °fl %-§-Sl &£:)•. CANTJU-Hot Test

CANFLEX ^ ° i 5 . 2 l °J^7O

V*} ^ l ^ ^ ;o"S-'»-l^0fl %-§-5lSdJl MlnStl K Cold Test Loop '"•l'i'Hl^fe PWR ^ ^ S - g - c } 1 ^ ^ I ^ - ^ - 1

$\Q RCS Loopfe- ^fl^, -^^]7} ^ S . 5 ] 2 i J l - y ^ ° l ^^S-^-ofl SicComponent ^J Loop ?i-*fl<H] c)) V ^ - ^ ^ 1 ^ - 1 - ^r-^*}°4JI «Jel«}•g-^jl^o)] cfl«V it^aj-fy^- *r<g»l-5j[i:>. «cV 2A

ov-n-§- ^ " ^ 7 1 ^

Part ic le Analyzer, Parallel-Wire Probe, X-Ray Densitometer

2]$] -4jTi], ^ll^oH -§•-§-% :5$°1CK i ^ } "#"^t.^ '^'Hl^ ^J^}5-5

•T^l1?) ^ 1 - ^ — (10 Q°] <-fl-2])Al/ti-§rco, Hot Test Loop, Cold Test I.oop, °^^r^RCS < g ^ 3 Loop, B & C Loop, ^-^7]^ 7fl^, - y ^

j2.^Al^-§. *

}. B & C Lo<Al€ ^ ^

S.-H Phase 1System -§-5.

•1 ^7)H A7\ Al-g-Sj-J!

6-i- 7fl *yjL

Loop^rSfl ^•Hl'f'Ofl

lAi M-E}\iDoppler

BIBLIOGRAPHIC INFORMATION SHEETPerforming Org.

Report No.

Sponsoring Org.

Report No.Standard Report No. IN1S Subject Code

KAERI/MR-287/96

Title/Subtitle

Operation of the Hot Test Loop Facilities

Project Manager and Dept. Seyoung Chun (Thermal Hydraulics Reseach Team)

Researcher and Dept. |

M. k. Chung, C. K. Park. S. K. Yang, S. Y. Won, C. H. Song

H. G. Jun, H. J. Chung, S. Cho, K. H. Min, C. H. Chung

(Thermal Hydraulics Research Team)

Pub. Place Taejon Pub. Org KAERI Pub. date Jan. 1997

Page 195 P. Fig. and Tab. Yes (0), No ( ) Size 19 x 26 cm

Note

Classified Open (0), Outside ( ), _ Class Report Type Research Report

Sponsoring Org. Contract No.

Abstract (About 300 words)

A performance and reliability of a advanced nuclear fuel and reactor newly

designed should be verified by performing the thermal hydrualics tests. In thermal

hydraulics research team, the thermal hydraulics tests associated with the

development of an advanced nuclear fuel and reactor have been carried out with

the test facilities, such as the Hot Test Loop operated under high temperature

and pressure conditions, Cold Test Loop, RCS Loop and B & C Loop. The objective

of this project is to obtain the available experimental data and to develop

the advanced measuring techniques through taking full advantage of the facilities.

The facilities operated by the thermal hydraulics reseach team have been

maintained and repaired in order to carry out the thermal hydraulics tests

necessary for providing the available data. The performance tests for the double

grid type bottom end piece which was improved on the debris filtering effectivity

were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated

to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold

Test Loop was used to obtain the local velocity data in subchannel within HANARO

fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle.

RCS thermal hydraulic loop was constructed and the experiments have been carried

out to measure the critical heat flux. In B & C Loop, the performance tests for

each component were carried out.

Subject Keywords (About 10 words)

Facility Management, Hot Test Loop, Cold Test Loop, Thermal Hydraulics Tests,

RCS Thermal Hydraulics Loop, B & C Loop, Development of Measuring Techniques,

Acquisition of experimental Data