Harmonizing FORIN for climate change adaptation \u0026 disaster risk management to develop...

197
Harmonizing FORIN for climate change adaptation & disaster risk management to develop multisectoral narratives for Metro Manila IRDR International Centre of Excellence – Taipei Technical Report No. 3 Charlotte Kendra Gotangco 1,2 Volume 1 Authors: C. Kendra Gotangco, Jairus Josol, Michael Padilla, John Paolo Dalupang, Justin See, and Raiza Elumba Volume 2 Authors: I. Introduction: C. Kendra Gotangco, II. Physical Sector: Gemma Narisma, Faye Cruz, Emilio Gozo, May Celine Vicente, Patricia Sanchez, III. Health Sector: John Wong, Norman Dennis Marquez, IV. Economic Sector: Ramon Clarete, Joey Sescon, Philip Arnold Tuaño, V. Social Sector: Emma Porio, John Paolo Dalupang, Emily Roque, Justin Charles See, VI. Summary: C. Kendra Gotangco 1 Manila Observatory 2 Dept. of Environmental Science, Ateneo de Manila University

Transcript of Harmonizing FORIN for climate change adaptation \u0026 disaster risk management to develop...

 

Harmonizing  FORIN  for  climate  change  adaptation  &  disaster  risk  management  to  develop  

multi-­‐‑sectoral  narratives  for  Metro  Manila    

 

   

IRDR  International  Centre  of  Excellence  –  Taipei Technical  Report  No.  3  

 Charlotte  Kendra  Gotangco1,2  

Volume  1  Authors:  C.  Kendra  Gotangco,  Jairus  Josol,  Michael  Padilla,  John  Paolo  Dalupang,  Justin  See,  and  Raiza  Elumba  

Volume  2  Authors:    I.  Introduction:  C.  Kendra  Gotangco,    II.  Physical  Sector:  Gemma  Narisma,  Faye  Cruz,  Emilio  Gozo,  May  Celine  Vicente,  Patricia  Sanchez,  III.  Health  Sector:  John  Wong,  Norman  Dennis  Marquez,  IV.  Economic  Sector:  Ramon  Clarete,  Joey  Sescon,  Philip  Arnold  Tuaño,  V.  Social  Sector:  Emma  Porio,  John  Paolo  Dalupang,  Emily  Roque,  Justin  Charles  See,  VI.  Summary:  C.  Kendra  Gotangco  1Manila  Observatory  2  Dept.  of  Environmental  Science,  Ateneo  de  Manila  University    

 

Acknowledgements  

This   document   was   produced   under   the   project   entitled   “Harmonizing   FORIN   for   Climate   Change  Adaptation  and  Disaster  Risk  Management  to  Develop  Multi-­‐‑sectoral  Narratives  for  Metro  Manila.”    This  project  was   implemented  by   the  Manila  Observatory,  with   the   collaboration  of   the   Sociology   and  Anthropology   Department,   Economics   department,   Environmental   Science   department,   Physics  department  and  Health  Sciences  program  of  the  Ateneo  de  Manila  University,  and  the  University  of  the  Philippines  School  of  Economics.                 This  project  was  supported  by  a  grant  to  conduct  follow-­‐‑on  research  from  the  2012  Advanced  Institute  on  Forensic  Investigations  of  Disasters  (FORIN).    Funding  for  participant  follow-­‐‑on  research  was  provided  by  the  IRDR  International  Centre  of  Excellence  (ICoE)  in  Taipei  through  ICSU  and  the  US  National  Science  Foundation  (Grant  Number  GEO-­‐‑0627839).    The  2012  Advanced  Institute  on  FORIN  was  organized  by  START  and  the  IRDR  International  Centre  of  Excellence  (ICoE)  in  Taipei,  together  with  IRDR  International,  ICSU,  and  Taiwan'ʹs  National  Science  and  Technology  Center  for  Disaster  Reduction  (NCDR).    Funding  for  the  Institute  was  provided  by  the  IRDR  International  Centre  of  Excellence  (ICoE)  in  Taipei  through  ICSU.  

Disclaimer  

This  technical  report  has  been  prepared  as  an  output  from  follow-­‐‑on  research  from  the  2012  Advanced  Institute  on  Forensic  Investigations  of  Disasters  (FORIN).    Any  opinions  stated  herein  are  those  of  the  author(s)  and  do  not  necessarily  reflect  the  policies  or  opinions  of  ICoE  and  its  partners.  

 

       Creative  Commons  License  This  Report  is  licensed  under  a  Creative  Commons  Attribution  NonCommercial-­‐‑NoDervis  3.0  Unported  License.  This  publication  may  be  freely  quoted  and  reproduced  provided  the  source  is  acknowledged.  No  use  of  this  publication  may  be  made  for  resale  or  other  commercial  purposes.

 

TABLE  OF  CONTENTS  

VOLUME  1   1  

Rationale   2  

Hypotheses  and  Essential  Elements   5  

Objectives   7  

Research  Methodology  and  Templates   9  

Conceptual  Framework   12  

Research  Questions   14  Non-­‐‑Sector-­‐‑Specific  Core  Questions   14  Non-­‐‑Sector  Specific  Generic  Questions   15  Sector-­‐‑Specific  Questions   16  

Physical  Sector   16  Health  Sector   19  Economic  Sector   21  Social  Sector   24  

Indicators   27  Risk  Assessment  Indicators   28  

What  is  Risk?   28  What  is  Hazard?   28  What  is  Exposure?   29  What  is  Vulnerability?   29  What  is  Adaptive  Capacity?   29  

Action  M&E  Indicators   30  

References   32  

Appendix   34  

VOLUME  2   54  

Introduction   55  References   58  

Chapter  1:  Increasing  risk  to  disasters  due  to  the  effects  of  climate  change  and  urban  development   59  Framework  and  Approach  to  CCA-­‐‑DRM  FORIN  in  the  Physical  Sector   59  

Climate  change,  variability  and  extremes  and  Urbanization   60  

 

Interfaces  with  Other  Sectors   66  Application  to  Metro  Manila   66  

Contextualization   67  Evolution  of  Risk  in  Metro  Manila   69  Climate  Change  and  Extremes  in  Metro  Manila   70  Current  and  Projected  Risk  to  Flooding   75  

Conclusions  and  Recommendations   78  References   79  

Chapter  2:  Tracking  the  Health  Impact  of  Climate  Change  in  Metro  Manila:  Understanding  the  Risks  on  the  Health  System   82  

Framework  and  approach  to  CCA-­‐‑DRM  FORIN  in  the  Health  Sector   83  Framework   83  

Application  to  Metro  Manila   95  Cities  at  Risk   95  A  Vulnerable  Population   96  Adaptability  and  Sustainability  of  Health  Systems   98  Beyond  the  Borders  of  Metro  Manila  and  Climate  Change   98  

Conclusions  and  Recommendations   99  References   101  

Chapter  3:  Valuing  economic  damages  due  to  natural  calamities  in  the  Philippines   105  Introduction   106  The  Philippine  economic  performance  and  natural  disasters  caused  by  severe  weather  disturbances  107  

Overview  of  Philippine  economic  performance   107  Natural  calamities  and  the  economy   109  Severe  weather  disturbances  and  their  economic  effects  in  the  national  capital  region   110  Severe  weather  disturbances  and  their  economic  effects  in  Philippines   114  Effect  of  Weather  Disturbances  on  Prices  in  Metro  Manila   116  

Review  of  Literature   120  Tools  to  Measure  Impact   121  Macroeconomic  Impacts  of  Disasters   124  Impacts  of  Climate  Change  and  Relationship  with  Natural  Disasters   129  Summary  and  Causal  Loop  Diagram   131  

Conclusions  and  Recommendations   134  References   136  

Chapter  3:  Social  Sector:  Narratives  on  Flooding  and  Climate  Change  in  Metro  Manila   139  Frameworks   140  Methodology/Data  Sources   140  Risk   141  Social  Vulnerability   141  Social  Factors  that  Determine  Risk  to  Communities   142  Transitions  in  History  that  Changed  the  Distribution  of  Impacts  in  Metro  Manila.   144  

Post-­‐‑WWII  to  the  1960s:  Emergent  Social  and  Environmental  Trends   144  

 

1970s-­‐‑1980s:  Urbanization  Intensifies,  Increasing  Environmental  Degradation  and  Social  Services  Deficit   145  1990s-­‐‑2000s:  Intensification  of  Impacts  of  Urbanization  and  Environmental  Degradation   145  DRRM  and  Climate  Change   146  

Pre-­‐‑Disaster  Social  Trends  Continues   147  Government  Laws,  Measures,  and  Policies:  DRRM  and  Climate  Change   148  

National  Climate  Change  Action  Plan   149  Disaster  Risk  Mitigation  at  the  City  Level:  Marikina  City   150  

Social  Impacts  of  Flooding  in  Metro  Manila   150  Impacts  on  Real  Property   150  Impact  on  the  delivery  of  basic  services   151  Impact  on  Lost  Work  or  School  Days   152  Impact  on  Loss  of  Livelihood   153  Impact  on  Loss  of  Personal  and  Household  Items   153  Impact  on  Health   153  Impact  on  Personal  Finances   154  Impact  on  Gender  and  Household  Resource  Management   154  Perceived  Positive  Impacts  by  Community  Residents   155  DRRM  and  Climate  Change  Perceptions  Among  Affected  Residents   155  Impacts  due  to  Climate  Change   157  

Flood  Impacts:  Intersections  of  Social,  Ecological-­‐‑Environmental  and  Health  Vulnerabilities   158  Community  Preparation  Efforts   159  

Community  Preparation  for  Hazards  Associated  with  Extreme  Events   159  Community  Preparation  for  Hazards  Associated  with  Changing  Climate   161  Access  to  Information  on  Relevant  Hazards   161  Social  and  Cultural  Barriers  to  Adaptation  and  Resilience   162  

Community  Perceptions  of  Hazard,  Risk  and  Vulnerability   162  Flooding  as  Normal   162  Increasing  Awareness  of  Risk   163  Climate  Change  and  Extreme  Events   163  Education  Programs  and  Trainings  in  the  Community   164  

Response  and  Recovery   164  Insights  from  the  Study  of  Antecedent  Social  Conditions  to  Risks  and  Disasters   165  References   167  Appendices   172  

Appendix  V.1:   172  Appendix  V.2:  Accounts  of  Popular  Narratives  on  the  Causes,  Impacts  and  Solutions  to  the  Various  Typhoons  in  Metro  Manila   180  

Summary   190  References   192  

 

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  1  

           

Volume  1  Authors:  C.  Kendra  Gotangco,  Jairus  Josol,  Michael  Padilla,  John  Paolo  Dalupang,  Justin  See,  and  Raiza  Elumba  

This  documented  is  an  Addendum  to  the  FORIN  Project  Report  (suggested  citation:  Integrated  Research  on  Disaster  Risk.  (2011).  Forensic  investigations  of  disasters:  The  FORIN  Project  (IRDR  FORIN  Publication  No.  1).Beijing:  Integrated  Research  on  Disaster  Risk.),  and  was  intended  to  accompany  and  potentially  be  integrated  with  the  original.  The  objective  of  this  Addendum  is  to  explore  how  the  original  report  can  be  enhanced  to  reflect  an  integrated  Climate  Change  Adaptation  -­‐‑  Disaster  Risk  Management  (CCA-­‐‑DRM)  perspective.  The  Addendum  was  patterned  after  the  original  FORIN  Project  Report,  and  in  the  process  of  reworking  it  from  a  CCA-­‐‑DRM  perspective,  it  drew  from  and  quoted  from  the  original  document.  However,  the  authors  contributing  to  this  Addendum  fully  acknowledge  and  recognize  the  content  coming  from  the  original  report  and  do  not  claim  such  as  their  own.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  2  

Rationale  

The  Forensic  Investigations  of  Disasters  (FORIN)  Project  evolved  in  response  to  the  question  of  why  we  continue  to  suffer  losses  due  to  disasters  despite  advances  in  science  and  technology.  “Forensic”  in  this  case  is  meant  to  signify  “systematic,  probing  and  dispassionate  investigations,”  (IRDR  2011)  that  are  broad-­‐‑based,  comprehensive  and  interdisciplinary  in  their  approach  to  identifying  and  addressing  drivers  of  risk.  However,  in  parallel  with  the  growing  recognition  of  the  need  to  be  proactive  in  addressing  disasters,  there  is  also  a  growing  realization  that  climate  change  represents  another  stressor  on  development  and  is  also  a  source  of  risks.  The  trend  in  policy  and  research  today  is  to  integrate  disaster  risk  management  (DRM)  with  climate  change  action  planning,  specifically,  adaptation  (CCA)  in  developing  countries.    

However,  CCA  and  DRM  have  evolved  as  two  distinct  and  largely  independent  disciplines,  heretofore  lacking  in  meaningful  collaboration.  Thus,  although  both  fields  have  been  actively  engaged  in  reducing  vulnerability  and  risk  over  the  past  several  decades,  communities  still  continue  to  suffer  the  impacts  of  hazards  (Thomalla  et  al.,  2006).  Over  the  past  20  years,  disasters  losses  triggered  by  climate  or  weather  hazards  in  particular  have  increased  (Solecki,  Leichenko,  O’Brien,  2011;  Birkmann  &  Teichman,  2010).  Furthermore,  this  process  of  addressing  risks  must  be  cognizant  not  only  of  present  conditions  but  also  how  these  conditions  

may  evolve  into  the  future  in  specific  contexts  to  ensure  sustainable  development.    

The  connections  between  CCA  and  DRM  are  articulated  in  Figure  1.  CCA  and  DRM  share  the  twin  goals  of  reducing  risks  and  keeping  development  on-­‐‑track  (Brooks  et  al.  2011).  A  direct  connection  is  of  course  the  category  of  extreme  weather  events,  the  frequency  of  severity  of  which  will  be  affected  by  climate  change.  However,  the  slow  onset  aspects  of  climate  change  can  also  be  connected  to  DRM  through  changes  in  the  integrity  of  ecological  and  geophysical  systems.  The  current  practice  on  DRM  focuses  only  on  rapid  onset  hazards  (discrete  events)  and  short-­‐‑term  measures  (disaster  warning/response/relief)  (Thomalla  et.  al,  2006).  It  has  not  taken  into  consideration  long-­‐‑term  stressors  and/or  non-­‐‑extreme  events,  in  particular,  the  gradually  changing  climate  “normal”  (Alan  Lavell,  personal  communication,  2012).  But  because  natural  and  anthropogenic  climate  change  modifies  the  nature  of  hazards  (IPCC,  2012)  and  the  context  where  these  hazards  occur,  current  understandings  of  hazards  may  no  longer  work  for  assessing  and  projecting  risk  (Helmer,  2006;  Solecki  et  al.  2011).    

Thus,  present  disaster  risk  reduction  may  no  longer  be  effective  without  considering  climate  change.  DRM  must  incorporate  evolving  risks  associated  with  climate  change  to  ensure  the  sustainability  of  its  strategies  in  the  long-­‐‑run  (Mitchell  &  Van  Aalst,  2008).  Conversely,  CCA  would  also  benefit  from  the  integration  as  DRM  is  an  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  3  

essential  first  step  to  adaptation  (Mitchell  &  Van  Aalst,  2008).  Communities  that  are  well-­‐‑equipped  to  deal  with  current  climate  variability  are  in  a  better  position  to  cope  with  future  variability.  Hence,  the  benefit  of  the  integration  of  CCA  and  DRM  is  mutual  or  dynamic.  It  allows  their  respective  methodologies  to  be  integrated  (CCA-­‐‑DRM),  reducing  risk  both  the  short-­‐‑  and  long-­‐‑run  time  frame  under  a  single  initiative.  

There  are  substantial  gaps,  however,  that  hinder  a  truly  integrative  approach  to  CCA  and  DRM:  

• Disasters  have  widely  been  experienced.  

There  is  an  established  community  of  practitioners  and  clearer  government  actions.  However,  the  focus  for  planners  has  been  on  preparedness  and  response.    In  this  sense,  the  FORIN  approach  to  a  

holistic  construction  of  risk  will  be  not  only  helpful,  but  arguably  necessary.  This  gap  may  be  the  least  difficult  one  to  overcome,  especially  through  the  collaboration  among  researchers  and  planners.  

• Climate  change,  on  the  other  hand,  is  not  an  easy  concept  for  many  stakeholders  to  grasp  for  many  reasons,  not  the  least  of  which  are  the  time  lags,  the  subtlety  of  slow  onset  impacts  and  the  lack  of  proximate  causes  and  effects  that  can  be  readily  experienced  in  everyday  life.  It  is  not  clear  what  sort  of  actions  or  policies  qualify  as  adaptation,  and  neither  are  there  established  methods  for  evaluating  adaptation  options.    

 

Figure  1.  Preliminary  framework  for  connecting  CCA  and  DRM    (Gotangco  2012,  revised  from  Gotangco  Castillo  2007  with  input  from  IRDR  FORIN  Faculty,  Dr.  Alan  Lavell)  

Climate Change Adaptation:

Reduce risk to:  

Disaster Risk Management

Reduce risk to:  

Gradual changes in climatic parameters  

Extreme weather events with increased

frequency and severity  

Changes in mean

temperature  

Changes in precipitation

patterns  

Sea level rise  

Climate- and weather-related

events  

Geophysical events  

Ecological events  

Direct connection   Other events (e.g. technological,

terrorism)  

Hazards that are associated with changing

climate “normals”  

Hazards that are associated with extreme

events  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  4  

• Projects  that  do  attempt  to  integrate  CCA  and  DRRM  are  better  able  to  do  so  from  the  perspective  of  changes  in  the  frequency  and  severity  of  extreme  events.  This  is  a  limited  view  of  CCA.  How  to  deal  with  risks  associated  with  the  gradual  changes  in  climate  is  less  straightforward.  

• While  the  FORIN  Project  report  (IRDR  2011)  provides  a  comprehensive  framework  for  investigating  and  addressing  risks,  it  is  mainly  oriented  towards  disaster  risk  reduction  and  management.  There  is  a  need,  therefore,  to  have  a  clear  and  holistic  framework  and  approach  to  CCA  in  the  same  way  as  we  have  the  FORIN  approach  for  DRM.  A  starting  point  for  the  integration  is  to  recognize  and  define  two  types  of  risks:  (a)  Risks  to  hazards  associated  with  the  “non-­‐‑routine”  or  extreme  events,  and  (b)  Risks  to  hazards  associated  with  gradually  changing  “normals”  (e.g.  sea  level  rise,  aggravation  of  urban  stressors,  lessening  agricultural  productivity  and  other  ecosystem  changes,  decreasing  viability  of  tourist  spots,  increased  

probability  of  landslides  due  to  dry  soils,  increased  incidence  of  adverse  health  impacts,  etc.).    

• Such  an  integrated  framework  would  allow  analysis  of  common  variables  that  affect  risk  and  resilience  to  both  climate  change  and  disaster  impacts.  It  can  help  identify  factors  related  to  disaster  risk  that  can  influence  vulnerabilities  to  long-­‐‑term  climate  change;  and,  conversely,  it  can  help  identify  factors  related  to  climate  change  that  influence  vulnerabilities  to  rapid-­‐‑onset  extreme  weather  events.  Ideally,  a  CCA-­‐‑DRM  FORIN  approach  would  facilitate  the  CCA-­‐‑DRM  research  and  planning  process  by  broadening  the  investigation  and  targeting  of  risk  drivers.    

• Using  the  connections  illustrated  in  Figure  1,  this  document  therefore  identifies  the  entry  points  of  CCA  into  the  elements  described  in  the  original  FORIN  document.  It  describes  potential  ways  of  enhancing  the  current  FORIN  framework  into  a  CCA-­‐‑DRM  FORIN  approach,  particularly  in  the  different  sectors  involved  in  CCA-­‐‑DRM  work.  

 

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  5  

Hypotheses  and  Essential  Elements  

The  FORIN  approach  was  designed  to  address  four  basic  ideas,  in  the  form  of  hypotheses,  concerning  risk.  These  are  the  risk  reduction  hypothesis,  the  integration  hypothesis,  the  responsibility  hypothesis  and  the  communication  hypothesis  (IRDR  2011).  These  are  intended  as  useful  starting  points  for  FORIN  case  studies.  But  although  these  were  originally  conceptualized  specifically  with  disaster  risk  in  mind,  they  are  easily  adaptable  for  both  the  risks  associated  with  extreme  events  (the  realm  of  disaster  risk  management)  and  the  risks  associated  with  gradually  changing  conditions  (the  realm  of  climate  change  adaptation:  

1. The  Risk  Reduction  Hypothesis  states  that  “new  and  more  probing  research  and  understanding  of  the  reasons  for  growth  in  public  vulnerability  and  wider  exposure  would  enable  and  stimulate  improved  DRR.”  (IRDR  2011)  The  same  applies  to  CCA.  More  specifically,  new  and  more  probing  research  can  help  us  define  the  connections  between  DRR/DRM  and  CCA.  This  research  should  then  be  channeled  towards  to  enabling  more  efficient  use  of  resources  and  more  responsive  decision-­‐‑making  in  addressing  the  different  forms  of  risk  over  various  spatio-­‐‑temporal  scales.  

2. The  Integration  Hypothesis  states  that  “new  and  more  integrated  and  participatory  research  is  required  to  yield  more  useful  and  effective  results.”  (IRDR  2011)  This  is  meant  to  address  

how  research  has  mainly  been  fragmented  along  disciplinary  lines,  “in  their  own  relative  professional  isolation,”  (IRDR  2011)  without  meaningful  engagement  of  stakeholders  beyond  their  being  information  providers  or  recipients  of  research  output.  The  need  not  just  for  an  interdisciplinary  approach  but  more  so,  a  transdisciplinary  approach  involving  practitioners  and  stakeholders  on  the  ground  is  especially  true  for  CCA,  which  requires  long-­‐‑term  adjustments  and  transformational  change,  as  well  as  DRM.  Firstly,  CCA-­‐‑DRM  strategies  need  to  be  coherent  across  sectors  (e.g.  social,  economic,  governance)  and  need  to  be  evidence-­‐‑based  to  be  effective.  Secondly,  communities  need  to  have  a  sense  of  ownership  of  these  strategies  for  them  to  be  sustainable  over  the  long-­‐‑term.  

3. The  Responsibility  Hypothesis  posits  that  “responsibility  for  continued  growth  in  vulnerability  and  exposure  is  locally  specific  and  diffuse  over  individuals,  organizations,  jurisdiction,  and  over  time.”  (IRDR  2011)  Therefore,  research  can  trace  the  continued  growth  in  vulnerability  and  exposure  through  historical  developments  and  feedbacks  among  the  different  sectors  and  stakeholder  groups  in  a  community.  In  the  process  of  identifying  the  structure  of  responsibilities,  these  can  be  channeled  towards  taking  action  on  both  CCA  and  DRM.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  6  

4. The  Communication  Hypothesis  posits  that  the  intended  recipients  of  knowledge  concerning  risk  are  “unaware  of  the  insights  or  alternatively  resistant  to  the  knowledge  and  information  and  may  feel  threatened  by  it.”  (IRDR  2011)  Therefore,  “new  and  better  ways  of  communicating  scientific  understanding…are  required.”  (IRDR  2011)  This  becomes  especially  true  when  attempting  to  integrate  CCA  and  DRM  because  of  the  existing  conceptual  confusion  about  climate  change,  how  it  manifests  physically,  and  how  it  is  connected  to  or  different  from  the  experience  of  disasters  which  is  often  more  concrete  for  stakeholders.  Without  proper  information,  we  risk  maladaptation.  

These  hypotheses  are  not  meant  to  be  a  complete  or  exhaustive  set  of  ideas,  however,  and  the  IRDR  FORIN  Report  (IRDR  2011)  acknowledges  that  these  may  be  further  refined  or  new  hypotheses  may  be  defined,  especially  now  that  we  are  attempting  to  integrated  long-­‐‑term  climate  risks  with  disaster  risks.  In  any  case,  the  essential  elements  of  a  forensic  approach  that  should  be  embodied  in  any  study  can  likewise  be  adapted  for  CCA-­‐‑DRM.  These  are  (IRDR  2011):  

1. Investigation  of  circumstances,  causes  and  consequences  of  losses  due  to  hazards  associated  with  extreme  events  as  well  as  hazards  associated  by  changing  “normals”  or  baselines;  and  identification  of  conditions  that  have  limited  or  prevented  loss,  built  resilience  and  adaptive  capacity.  

2. Operationalization  and  testing  of  a  series  of  hypotheses  of  feedbacks  and  causality  (including  the  cascading  of  hazards,  the  role  of  land  use  and  the  built  environment  in  conditioning  risk,  the  interactions  of  development  pathways  and  risk,  the  dynamics  of  perceptions,  values,  communication  and  accountability).  

3. Identification  especially  of  key  factors  in  the  expanding  numbers  of  losses  during  extreme  or  non-­‐‑routine  events,  or  accumulated  over  the  past  few  decades  due  to  changing  climatic  conditions;  and  the  demonstration  of  how  these  factors  enter  into  the  determination  of  risks  and  disasters.  

4. Investigation  of  the  use  of  existing  interdisciplinary  knowledge  and  research,  drawing  from  the  physical  and  social  sciences,  in  assessment  and  management  of  existing  and  projected  risks.

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  7  

Objectives  

The  objectives  of  FORIN  investigations  are  categorized  into  policy,  management,  science,  development  and  disaster  risk  reduction  objectives,  and  are  sufficiently  diverse  and  broad  so  as  to  allow  for  a  seamless  integration  of  climate  change  adaptation.  The  following  are  proposed  revisions  to  the  objectives  (as  revised  and  reworked  from  the  original  text)  to  explicitly  include  and  address  both  the  risks  associated  with  non-­‐‑routine,  discrete  events,  and  the  risks  associated  with  changing  climatic  conditions.  

Policy  Objectives:  

• To  experiment  with  transdisciplinary  and  multi-­‐‑stakeholder  inputs  in  multi-­‐‑level  planning  processes  to  address  adaptation  gaps  to  current  climate  variability  and  other  extreme  events,  and  to  address  long-­‐‑term  transformational  change.  

• To  encourage  participation  by  decision-­‐‑makers  as  they  develop  public  policy.  

• To  guide  policy  across  and  involving  all  key  disciplines.  

• To  guide  public  and  private  investments  that  reduce  the  different  forms  of  risk  over  short-­‐‑,  medium-­‐‑  and  long-­‐‑term  time  scales.  

Management  Objectives:  

• To  focus  attention  on  the  link  between  research  findings  and  improved  policy  application.  

• To  develop  a  reference  bank  of  quality  case  studies  to  be  placed  on  the  IRDR  

website  for  wide  availability  to  interested  parties,  in  close  coordination  with  relevant  databases  and  networks  in  this  field.  

• To  effectively  communicate:  • the  interconnections  between  disaster  

risk  management  and  climate  change  adaptation;  o the  common  underlying  factors  

contributing  to  risk  to  discrete  events  and/or  risk  to  long-­‐‑term  changing  normal.  

o the  root  causes  of  specific  past  disasters  and  how  these  have  affected  adaptive  capacity  and  future  development.  

Scientific  Research  Objectives:  

• To  advance  methodological  diversity  in  addressing  the  different  forms  and  dimensions  of  risk.  

• To  test  existing  theories  and  concepts,  and  to  implement  evidence-­‐‑based  results  (drawing  on  multiple  lines  of  evidence,  including  indigenous  or  traditional  knowledge  and  experiences).  

• To  build  strong,  interdisciplinary,  “in-­‐‑country”  capacity  of  young  researchers  for  policy-­‐‑oriented  research.  

Development  Objectives:  

• To  substantiate  that  generic  causes  and  contributors  to  risk  have  local  manifestations:  “one  size  solutions  do  not  work  everywhere,”  so  disaster  risk  management  and  climate  change  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  8  

adaptation  strategies  must  be  contextualized.  

• To  promote  a  “learning  culture”  amongst  all  stakeholders.  

• To  advance  understanding  of  how  the  causal  factors  of  disasters  can  be  major  impediments  to  long-­‐‑term  climate  change  adaptation  and  overall  sustainable  development.    

• To  identify  situations  where  development  initiatives  and  trends  can  also  become  causal  factors  in  disasters  and  contribute  to  overall  long-­‐‑term  vulnerability  (including  instances  of  “maladaptation”).  

• To  guide  recovery  and  reconstruction  efforts  so  as  to  build  resilience  and  adaptive  capacity  (i.e.  to  “build  back  better”  rather  than  simply  “building  back”).  

• To  communicate  to  the  public,  mainly  through  media  and  community-­‐‑based  organizations  (CBOs),  key  messages  to  shape  values,  perceptions  and  behaviors  that  are  required  for  a  paradigm  shift  in  this  area  of  study,  and  for  overall  transformational  change  in  development  trends.  

Integrated  CCA-­‐‑DRRM  Objectives:  

• To  promote  sustainable  risk  management  and  risk  reduction  policy-­‐‑making  (addressing  both  forms  of  risk)  through  science-­‐‑based  research  and  findings.  

• To  guide  the  implementation  of  the  Hyogo  Framework  and  to  present  key  case  studies  by  the  2015  HFA  target  date  to  guide  post-­‐‑HFA  needs.  

• To  give  a  priority  focus  on  a  holistic  ecosystems-­‐‑based  approach  for  reducing  human  consequences  (e.g.  social  and  economic  vulnerability),  and  building  resilience  and  adaptive  capacity.  

• To  change  paradigms,  by  shifting  responsibility  from  nature,  the  physical  environment  and  distributing  it  accordingly  to  real  circumstances  and  conditions  involving  all  sectors  of  society  including  the  individual  and  the  collective.  This  entails  increasing  responsibility  for  all  stakeholders  in  managing  risk  (in  particular,  governments  but  also  individuals,  households,  communities,  local  government,  etc.)  

• To  develop  case  studies  that  illustrate  “risk-­‐‑drivers”,  again,  both  for  risks  associated  with  non-­‐‑routine  discrete  events  and  risks  associated  with  changing  climatic  conditions.

 

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  9  

Research  Methodology  and  Templates  

The  FORIN  report  (IRDR  2011)  describes  three  ways  (below)  in  which  the  FORIN  approach  to  disaster  research  would  be  different  from  most  of  the  previous  disaster  case  studies.  These  strengths  of  the  FORIN  approach  to  DRR/DRM  are  likewise  strengths  of  an  integrated  CCA-­‐‑DRM  FORIN  approach:  

1. “First,  the  investigations  will  penetrate  more  deeply  into  the  fundamental  causes  of  disasters  in  a  broad  multidisciplinary,  and  comprehensive  manner,  and  they  will  engage  specialists  from  any  and  all  relevant  fields.”  (IRDR  2011)    In  the  context  of  CCA-­‐‑DRM,  such  investigations  will  delve  comprehensively  into  the  fundamental  roots  or  drivers  of  risk  and  vulnerability  to  facilitate  evidence-­‐‑based  actions.  These  actions  will  not  only  address  the  adaptation  gap  to  current  risks  but  also  to  projected  risks.  

2. “Second,  while  investigations  will  preferably  be  carried  out  independently  of  governments,  they  will  also  require  authority,  support,  and  promotion  from  expert  and  professional  institutions,  and  civil  society.  In  order  to  be  truly  investigative  and  forensic  in  spirit,  the  studies  must  be  empowered  to  pursue  the  evidence  wherever  it  leads  in  order  to  be  able  to  report  fully  on  the  train  and  ensemble  of  events,  responsibilities  and  actions  that  account  for  the  losses.”  (IRDR  2011)  CCA-­‐‑DRM  investigations  must  likewise  necessarily  be  broad-­‐‑based  and  objective,  to  the  extent  

possible,  to  better  trace  and  understand  the  drivers  of  both  current  and  future  risk.  Thus,  there  must  be  active  engagement  of  and  support  from  all  relevant  sectors  of  society  to  foster  acceptance  of  responsibilities  and  ownership  of  actions  to  reduce  potential  losses.  In  this  way  can  sustainable  strategies  be  put  in  place,  and  fragmentation  due  to  blame-­‐‑seeking  and  defensiveness  be  avoided.  

3. “Third…the  intended  outcomes  will  not  concentrate  on  a  precise  identification  of  any  specific  locus  of  responsibility,  but  rather  will  help  bring  about  a  paradigm  or  cultural  shift  in  the  ways  in  which  disasters  are  understood  and  risks  and  managed.”  (IRDR  2011)  A  CCA-­‐‑DRM  FORIN  approach  also  requires  a  shift  towards  a  more  comprehensive  understanding  of  risk  –  firstly,  that  risk  is  a  confluence  of  hazard,  exposure  and  vulnerability;  and  secondly,  that  risk  is  not  confined  to  that  associated  with  extreme  events  but  also  to  risk  associated  with  changing  baseline  or  climatic  conditions.  Going  forward,  resilience-­‐‑building  to  current  risks  may  not  be  sufficient  to  sustain  development;  rather,  transformational  change  in  lifestyles,  industries,  institutions,  systems  and  processes  may  be  required.  

There  are  five  templates  provided  by  the  FORIN  report  (IRDR  2011)  for  pursuing  this  class  of  investigations  –  the  Critical  Cause  Analysis,  the  Meta-­‐‑Analysis,  the  Longitudinal  Analysis,  the  Scenarios  of  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  10  

Disaster,  and  the  FORIN  Narratives.  All  of  these  approaches  are  adaptable  for  a  CCA-­‐‑DRM  FORIN  research  by  placing  them  within  the  broader  context  of  long-­‐‑term  development  trends  vis-­‐‑à-­‐‑vis  gradually  changing  climatic  means  in  addition  to  changing  trends  in  extreme  events.  

1. Critical  Cause  Analysis:  This  method  was  originally  intended  to  identify  and  address  the  root  causes  of  disaster  events  (IRDR  2011).  It  may  be  placed  within  the  broader  CCA-­‐‑DRM  perspective  by  using  it  to  address  the  root  drivers  of  risks,  and  the  “critical  thresholds”  beyond  which  the  community  is  unable  to  cope  with  the  hazards  and  losses  accumulate.  These  thresholds  may  likewise  be  defined  for  climate  means  as  well  as  extreme  events.  The  tasks  of  identifying  proactive  strategies,  establishing  monitoring  methods  and  formulating  corrective  actions  are  still  included  under  this  template.  

2. Meta-­‐‑Analysis:  According  to  the  FORIN  report,  “meta-­‐‑analyses  are  systematic  reviews  of  available  literature  carried  out  to  identify  and  assess  consistent  findings  across  diverse  studies.”  (IRDR  2011)  In  the  context  of  disaster  research,  this  method  was  meant  to  be  used  in  conjunction  with  statistical  analyses  to  “look  for  causal  linkages,  the  strength  of  relationships  among  factors…and  the  effectiveness  of  interventions.”  (IRDR  2011)  A  meta-­‐‑analysis  is  also  a  popularly  and  similarly  used  method  for  climate  change  analysis  to  find  multiple,  robust  evidences  of  change  

and  good  practices  for  adaptation  and  mitigation.  Thus,  this  method  is  also  appropriate  for  a  broad  CCA-­‐‑DRM  investigation.  

3. Longitudinal  Analysis:  In  the  context  of  disaster  research,  a  “longitudinal  reconstruction  allows  for  repeated  observations  of  the  same  events…These  are  detailed  place-­‐‑based  re-­‐‑analyses…  and  are  used  to  more  fully  understand  the  contexts  and  processes  that  expose  people  and  their  assets  to  risk.”  (IRDR  2011)  This  remains  applicable  to  a  CCA-­‐‑DRM  FORIN  study.  A  longitudinal  analysis  could  compare  development  trends  against  disaster  and  climate  trends  to  determine  which  factors  give  the  most  insight  as  to  the  drivers  of  risk.  To  address  the  climate  change  dimension,  an  additional  component  of  the  analysis  would  be  to  study  the  motivations  behind  actions  taken  towards  development  –  Are  they  spontaneous  or  planned?  Is  climate  change  a  factor?  Are  the  same  or  different  choices  likely  to  continue  of  climate  change  is  recognized  as  a  factor,  considering  both  the  impacts  of  climate  change  on  extreme  events  as  well  as  changing  baselines?  The  value  of  the  longitudinal  reconstruction  is  indeed  in  providing  in-­‐‑depth  understanding  of  the  evolution  of  and  correlations  between  development  and  risk.  

4. Scenarios  Approach:  The  “scenarios  of  disasters”  approach  combines  a  reconstruction  of  a  community’s  context  with  a  science-­‐‑based  scenario  of  a  known  and  possible  future  hazard  to  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  11  

determine  projected  impacts  (IRDR  2011).  This  method  is  also  well-­‐‑known  in  the  climate  change  community,  since  climate  projections  as  based  on  scenarios  of  emissions  and  other  decisions  communities  might  make  on  land  use,  population  growth,  industries  and  technologies.  A  CCA-­‐‑DRM  scenario,  therefore,  would  represent  a  storyline  of  projected  development  trends  subjected  to  projected  changes  in  climate,  including  changes  in  the  frequency  and  severity  of  extreme  events.  The  interactions  between  climate  changes  and  other  geophysical  and  ecological  hazards  would  also  be  included  in  this  study  to  arrive  at  a  holistic  picture  of  potential  impacts.  

5. FORIN  Narrative:  As  explained  in  the  FORIN  report,  any  of  the  above  templates,  because  of  the  required  comprehensiveness  of  the  investigation,  may  “entail  considerable  effort  and  

space  to  develop  in  detail.”  (IRDR  2011)  The  narrative  therefore  represents  a  preliminary  investigation  of  the  factors,  issues  and  processes  in  the  development  of  a  society  which  contribute  either  to  worsening  risk  or  building  resilience  and  adaptive  capacity.  A  CCA-­‐‑DRM  FORIN  narrative,  similarly  to  the  disaster  research  narrative,  would  be  longitudinal  in  time.  It  would  preserve  the  key  elements  of  a  narrative  which  are  (i)  that  is  illustrates  the  spatial  and  temporal  scales  over  which  risk  and  its  interaction  with  development  should  be  understood;  (ii)  that  it  be  multi-­‐‑stakeholder  and  interdisciplinary  in  perspective;  (iii)  that  it  identify  roles  and  responsibilities  of  different  actors  in  addressing  the  different  dimensions  of  risk;  and  (iv)  that  it  be  framed  in  such  a  way  as  to  “permit  the  assimilation  of  the  information  and  create  a  space  for  those  involved  constructive  engagement.”  (IRDR  2011)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  12  

Conceptual  Framework  

The  original  conceptual  framework  for  FORIN  investigations  is  reproduced  in  Figure  2.  This  is  meant  as  a  guide  for  the  key  questions  of  investigations,  leading  to  the  “identification  and  risk  drivers  and  opportunities  for  risk  reduction  and  resilience  enhancement.”  (IRDR  2011)  As  a  complement  to  this,  Figure  3  proposes  a  broader  CCA-­‐‑DRM  FORIN  framework  that  explicitly  includes  characterization  of  projected  risks  and  the  potential  need  for  transformational  change  to  adapt  to  hazards  in  the  long-­‐‑term.  This  framework  traces  iterative  process  of  generating  interdisciplinary  research  to  serve  as  the  foundations  for  evidence-­‐‑based  strategies  for  managing  risks.  This  is  meant  both  as  a  framework  that  captures  the  cycle  of  research  and  actions,  and  as  a  framework  for  analysis  to  determine  how  existing  

knowledge  is  being  used  to  achieve  desired  outcomes.  

The  proposed  CCA-­‐‑DRM  FORIN  framework  preserves  the  original  FORIN  principles,  such  as  the  need  for  a  comprehensive  approach  that  engages  researchers  from  different  fields  and  stakeholders  from  different  sectors.  Risk  research  or  knowledge  generation  in  this  framework  involves  the  holistic  analysis  of  hazard,  exposure  and  vulnerability  in  the  past,  the  present  and  projected  into  the  future.  This  is  so  that  investigations  can  capture  both  the  risks  associated  with  discrete  extreme  events  as  well  as  risks  associated  with  long-­‐‑term  gradual  changes  in  baseline  climatic  conditions.  The  process  of  risk  assessment  includes  the  identification  of  risk  drivers  and  the  

Figure  2.  FORIN  conceptual  framework  for  key  questions  (IRDR  2011)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  13  

development  of  options  to  address  these  drivers.  The  contribution  of  indigenous  or  traditional  knowledge  in  the  analysis  of  vulnerability  and  adaptation  is  explicitly  recognized  here.  

The  Capacity-­‐‑building  element  involves  the  mechanisms  already  identified  in  the  original  FORIN  by  which  we  can  influence  the  distribution  and  magnitude  of  drivers  of  risk.  These  include  proper  communication  and  education  initiatives  to  increase  understanding  and  awareness  of  underlying  causes  of  risk.  Also  included  are  the  top-­‐‑down  governance  decisions  which  should  be  in  consonance  with  bottom-­‐‑up  community-­‐‑initiated  actions.  The  FORIN  report  specifically  identifies  governance  as  a  critical  element  for  risk  management  in  a  

state.  The  components  of  the  capacity-­‐‑building  element  represent  the  process  by  which  the  results  of  research  are  concretized  and  implemented.  

The  effectiveness  of  such  processes  is  evaluated  through  an  analysis  of  the  Outcomes  component.  This  refers  to  whether  risk  was  indeed  reduced  and  resilience  enhanced.  However,  more  than  bridging  the  adaptation  gap  to  current  risks,  targets  should  including  building  long-­‐‑term  adaptive  capacity  (e.g.  through  climate-­‐‑proofing  infrastructures  or  system),  and  even  transformational  change  in  certain  industries  or  sectors  if  they  are  shown  to  really  be  unsuitable  given  projected  hazards.  The  ultimate  outcome  is  sustainable  development.  

Figure  3.  CCA-­‐‑DRM  FORIN  Framework  

Research/Knowledge • Risk Assessment

o H, E, V o Past, Present, &

Projected • Including

indigenous/traditional knowledge

Outcomes • Risk Reduction • Enhancing Resilience

Sustainable • Building Adaptive Capacity

Development • Transformational Change

 

Capacity Building • Communication • Understanding &

Awareness • Governance (top-down

laws & policies) • Community-based

strategies (bottom-up actions)

 Inter-sectoral,

Multi-Stakeholder, & Transdisciplinary

Approach  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  14  

Research  Questions  

The  FORIN  report  (IRDR  2011)  provides  a  series  of  core  questions  and  generic  questions  to  help  organize  investigations.  These  are  synthesized  and  adapted  here  for  a  CCA-­‐‑DRM  FORIN  approach.  In  addition,  more  in-­‐‑depth  sector  specific  questions  are  also  provided  are  a  starting  point  for  developing  multi-­‐‑sectoral  perspectives  with  a  view  towards  identifying  connections  and  integrating  findings.  

Non-­‐‑Sector-­‐‑Specific  Core  Questions    

1. For  past  disasters,  what  were  understood  to  be  the  proximate  causes  of  the  disaster  or  the  triggering  natural  events?    

a. Have  these  events  been  changing  over  time  (e.g.  in  terms  of  frequency,  severity,  spatial  distribution)?  What  are  the  historical  trends  or  past  records  of  this  particular  type  of  event?  

b. What  is  known  or  understood  about  the  mechanisms  behind  these  events  –  have  they  been  forecasted  or  predicted?  

c. Do  changes  in  baseline  climatic  conditions  affect  these  triggering  mechanisms  or  mediate  their  impacts  in  any  way?  

d. Has  the  quality  or  status  of  knowledge  improved?    

2. Has  the  existing  knowledge  (as  described  about)  widely  available,  accessible  and  understandable  for  relevant  stakeholders?  

a. Were  there  any  decision-­‐‑makers,  actors,  stakeholders,  or  peoples  at  risk  who  were  unaware  of  the  information  (or  less  aware  than  they  should  have  been)?  

b. How  long  has  the  knowledge  been  available,  and  has  the  use  of  this  knowledge  towards  decision-­‐‑making  improved?  

 3. What  are  the  factors  contributing  to  the  risk  associated  with  a  particular  event  –  be  it  (i)  a  

discrete,  non-­‐‑routine  event,  or  (ii)  gradual  changes  in  “normal”  climatic  conditions?    

4. How  have  the  risks  (described  above)  been  perceived  and  understood  by  each  and  all  categories  of  stakeholders?  

 5. What  strategies,  laws  policies  or  measures  have  been  considered  to  prevent  adverse  

impacts,  reduce  existing  risk  to  current  hazards  and  avoid  new  risk  from  projected  changes?  a. Were  there  options  rejected,  or  targets  and  standards  compromised?  Why?  b. Is  there  a  national  platform  for  risk  reduction  to  complement  context-­‐‑specific  

localized  strategies?  c. To  what  extent  have  these  strategies  actually  been  put  into  place?  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  15  

d. Have  implemented  strategies  been  effective?  How  and  to  what  extent?  What  proportion  of  needs  has  it  been  possible  to  meet  and  over  what  time  scale  (e.g.  immediate  post-­‐‑disaster  needs  vs.  long-­‐‑term  development  needs)?  

 6. Provide  a  detailed  description  of  roles  and  actions  of  key  personnel  and  agencies  for:  

a. Pre-­‐‑event  disaster  risk  reduction  b. Post-­‐‑event  emergency  response,  recovery  and  rehabilitation  c. Long-­‐‑term  resilience-­‐‑building,  adaptation  and  transformational  change  in  relation  to  

current  and  future  levels  of  risk    

7. Provide  a  list  of  impacts  across  sectors  in  qualitative  and  quantitative  terms  associated  with:  a. The  occurrence  of  specific  disasters  b. The  record  of  repeated  disasters  (e.g.  compounding  impacts)  c. Historical  long-­‐‑term  changes  in  the  mean  state  of  climate  

 8. What  have  the  development  trends  been  over  the  past  decades?  

a. What  are  the  general  socio-­‐‑economic  trends  over  time?  b. How  have  socio-­‐‑economic  conditions  changed  specifically  after  each  disaster  event?  

How  have  these  changes  affected  the  overall  development  trends?  c. What  is  the  nature  of  community  recovery,  resilience-­‐‑building  and  adaptation?  d. Have  pre-­‐‑disaster  trends  been  continued,  exacerbated  or  reversed?  What  are  the  

major  factors  to  explain  these?    

9. Assess  the  distribution  of  impacts  (both  positive  and  negative)  within  the  community:    a. Were  there  certain  groups  or  individuals  who  lost  more  or  benefitted  more  during  

extreme  events?  b. Have  there  been  certain  groups  or  individuals  who  have  lost  more  or  benefitted  

more  from  gradual  shifts  in  climate?  c. Has  there  been  any  sense  of  unfairness  or  discrimination  in  the  community  as  a  

result  of  the  above?  d. Has  the  social  and  political  structure  of  the  community  therefore  changed,  whether  

after  particular  disasters  or  over  time?    

10. Is  there  an  overall  or  prevalent  community-­‐‑shared  view  of  the  current  and  future  risks  they  face?  Alternatively,  are  they  contrasting  or  conflicting  views?  Describe  and  explain.  

Non-­‐‑Sector  Specific  Generic  Questions  

G1. What  conditions  or  factors  have  limited  or  prevented  losses  (i)  during  extreme  events,  (ii)  as  accumulating  over  time  due  to  gradually  changing  climatic  conditions?    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  16  

G2. What  key  factors  have  affected  or  caused  major  damage  (i)  during  extreme  events,  (ii)  as  accumulating  over  time  due  to  gradually  changing  climatic  conditions?  

 G3. What  were  the  critical  developments  or  transitions  in  recent  history  that  changed  the  

severity  and/or  distribution  of  impacts?    

G4. How  have  culture  and  societal  norms  influenced  (i)  risks  associated  with  extreme  events,  (ii)  risks  associated  with  gradually  changing  climatic  conditions?  

 G5.  How  have  economic  and  political  status  influenced  (i)  risks  associated  with  extreme  events,  

(ii)  risks  associated  with  gradually  changing  climatic  conditions?    G6.  Have  there  been  secondary  or  tertiary  “cascading”  hazards  or  impacts?  How  are  these  

manifested  over  space  and  time?    G7. What  were  the  drivers  of  resilience  (in  broad  categories)?    G8. What  were  the  barriers  of  risk  reduction  and  management  (in  broad  categories)?    G9. Have  there  been  strategies,  plans,  programmes  or  institutions  set  up  for  risk  reduction  and  

management?  Have  they  been  effective  in  addressing  (i)  risks  associated  with  extreme  events,  (ii)  risks  associated  with  gradually  changing  climatic  conditions?  

 G10. Have  there  been  national  and  international  ramifications  to  (i)  localized  impacts  from  

extreme  events,  (ii)  accumulated  impacts  from  gradual  changes?    G11. Identify  the  key  aspects  of  local  and  national  risk  context  evolved  over  time  that  

influence  the  current  development  level,  resilience  and  adaptive  capacity  of  the  community.  

Sector-­‐‑Specific  Questions  

These  questions  adapt  and  extend  the  core  and  generic  questions  above  for  specific  sectors:  

Physical  Sector  1. How  are  risks  to  physical  systems  (natural  and  built  environments)  evaluated?    

a. What  is  the  framework  used  to  assess  these  risks?    b. What  are  the  integral  components/factors  of  this  framework?  c. How  does  this  framework  relate  to  social,  economic,  and  health  risk  evaluation  

frameworks?    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  17  

2. How  does  the  physical  system  relate  to  and  interact  with  the  social,  economic,  and  health  sectors?      

 3. What  kinds  of  hazards  are  urban  areas  exposed  to?    

a. Describe  the  typology  of  these  hazards  (i.e.  whether  they  are  geophysical  hazards  or  climate-­‐‑and-­‐‑weather-­‐‑related  hazards;  or  whether  they  are  hazards  associated  with  discrete  changes  or  gradual  changes).  

b. What  is  the  historical  and  projected  occurrence  of  these  hazards?  c. How  are  these  hazards  spatially  distributed  over  time?  

 4. What  are  the  climate-­‐‑and-­‐‑weather-­‐‑related  hazards?  

a. What  are  the  characteristics  of  these  hazards  (e.g.  magnitude,  frequency,  duration,  spatial  extent)?    

b. How  have  they  changed  over  the  years?    c. Are  they  projected  to  change  in  the  coming  years?  What  is  level  of  uncertainty  

associated  with  these  projections?    

5. Are  there  secondary  or  tertiary  cascading  hazards?  a. What  are  these  and  what  are  its  characteristics?    b. What  events  are  associated  with  its  occurrence  and  what  are  its  consequences  (e.g.  

heavy  rainfall  events  can  cause  flooding  which  subsequently  brings  a  whole  host  of  other  consequences)?    

6. How  has  the  urban  landscape  developed  and  what  are  its  characteristics?    a. What  are  the  geophysical  and  environmental  features  of  the  urban  landscape?    b. How  have  these  features  changed  over  the  years?  What  are  the  drivers  of  these  

changes?    

7. What  is  the  interrelationship  between  exposure  to  hazards  and  urban  morphology?  a. How  does  urban  morphology  interact  with  the  hazards,  and  to  what  extent  do  they  

mediate  or  enhance  the  impacts  of  the  hazards?  b. How  and  to  what  extent  does  exposure  to  hazards  alter  the  urban  morphology?      c. For  hazards  associated  with  discrete  events:  

i.  What  is  the  state  of  the  urban  landscape  before  and  after  exposure?    ii. Did  harm  persist?  Or  was  it  reduced  or  even  reversed?    iii. What  are  the  critical  determinants  of  the  physical  system’s  resilience  and  

recovery?  d. For  hazards  associated  with  gradual  changes:  

i. How  has  the  urban  landscape  changed  in  relation  to  exposure  to  gradually  changing  hazards?    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  18  

ii. How  is  it  expected  to  change  in  relation  continued  and  future  exposure  to  gradually  changing  hazards?  

iii. How  has  harm/impact  developed  in  this  context?      

8. Provide  a  list  of  the  impacts  of  the  geophysical  hazards  and  climate-­‐‑and-­‐‑weather-­‐‑related  hazards  on  the  natural  environment  on  the  urban  landscape  in  qualitative  and  quantitative  terms.    

9. What  is  the  state  of  scientific  knowledge  about  urban  morphology  and  the  different  types  of  hazards  to  which  it  is  exposed?    

a. Is  information  available  on  the  historical  and  projected  occurrence  of  hazards  and  its  spatial  distribution?    

b. Is  information  available  on  historical  and  future  urban  development  and  its  characteristics  (e.g.  land-­‐‑use  patterns,  geophysical  and  ecological  features,  environmental  quality)?      

10. Is  the  existing  scientific  knowledge  on  urban  morphology  and  hazards  available  and  accessible?  

a. Where  is  the  knowledge  generated?  b. How  long  has  the  information  been  available?  Has  the  quality  improved?  c. Are  the  knowledge  generated  conveyed  to  the  relevant  stakeholders  and  

incorporated  into  their  decision-­‐‑making  process  (e.g.  Do  policy-­‐‑makers  have  access  to  information  and  do  they  use  the  information  in  formulating  policies?  Do  people  exposed  to  hazards  have  access  to  information  and  do  they  use  this  information  in  their  efforts  to  reduce  risk?)    

11. Is  indigenous  knowledge  on  the  geophysical  and  environmental  processes,  the  occurrence  of  hazards,  and  the  practices  that  reduce  harm  available?    

a. Is  there  a  repository  of  such  indigenous  knowledge?    b. How  does  indigenous  knowledge  relate  to  existing  scientific  information?  Is  it  given  

comparable  importance  in  research  and  policy  agenda?    

12. What  types  of  interventions  were  proposed  to  reduce  an  urban  environment’s  inherent  vulnerability  to  a  specific  hazard  or  across  a  whole  range  of  hazards  (e.g.  installation  of  flood  control  structures;  increasing  green  spaces  to  reduce  flood  risks  and  sedimentation)?    

a. What  agencies/stakeholder  group  proposed  these  interventions?    b. Were  any  of  the  interventions  rejected,  or  downscaled?  On  what  grounds  were  they  

modified  or  rejected?  c. For  the  implemented  interventions,  are  monitoring  and  evaluation  (M&E)  

procedures  in  place?  Who/What  agencies  are  responsible  for  M&E?        

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  19  

i. For  interventions  with  near-­‐‑term  tangible  impacts,  were  they  effective?  How  and  to  what  extent?    Identify  the  nature  and  effectiveness  of  the  response  measures  (e.g.  Did  the  installation  of  flood  control  structures  effectively  prevent  flooding?)  

ii. For  interventions  with  longer-­‐‑term  impacts,  are  processes  and  relevant  components  in  place  that  will  allow  its  realization  in  the  future  (e.g.  Is  CCA-­‐‑DRM  incorporated  into  the  development  and  implementation  of  a  comprehensive  land-­‐‑use  plan)?    

Health  Sector  1. How  are  risks  to  human  health  (physical,  social,  and  mental  well-­‐‑being)  evaluated?  

a. What  is  the  framework  used  to  assess  these  risks?    b. What  are  the  integral  factors/components  of  this  risk  framework?    c. How  do  this  framework  relate  to  physical,  economic,  and  social  risk  evaluation  

frameworks?      

2. How  does  the  health  sector  relate  to  and  interact  with  economic,  social,  and  physical  sectors?        

3. What  is  health  and  what  are  the  determinants  of  health?  a. Identify  micro-­‐‑level  (individual)  determinants  of  health  (e.g.  genetics,  lifestyle,  age)    b. Identify  macro-­‐‑level  (socio-­‐‑economic,  physical/environmental)  determinants  of  

health  (e.g.  income,  education,  health  services,  clean  air  and  potable  water)  c. How  have  these  determinants  changed  over  the  years?    

 4. What  are  the  public  health  consequences  (e.g.  morbidity,  mortality,  injury,  spread  of  

infectious  and  vector-­‐‑borne  diseases,  psychosocial  effects)  of  exposure  to:  a.  Hazards  associated  with  discrete  events  (e.g.  heavy  rainfall  and  flooding)  

i. Are  these  consequences  due  to  direct  exposure  (e.g.  warming  temperature  and  heat  stokes)  or  to  indirect  exposure  to  the  hazard  (e.g.  flood  contaminates  water  supply  subsequently  contributing  to  the  incidence  of  water-­‐‑related  diseases,  physical  stress  of  the  storm  exacerbates  pre-­‐‑existing  medical  condition)?    

ii. What  are  the  factors  (macro  and  micro  level  determinants)  that  influence  the  distribution  of  these  public  health  consequences?  Identify  the  vulnerable  sub-­‐‑groups.    

iii. What  is  the  profile  of  public  health  and  its  determinants  before  and  after  exposure  to  hazards  associated  with  discrete  events?    

b. Hazards  associated  with  gradual  changes  in  climate  (e.g.  warming  temperatures,  changes  in  seasonality,  rising  sea  level)?  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  20  

i. Are  the  consequences  due  to  direct  or  indirect  continued  exposure  to  the  hazard?    

ii. What  are  the  factors  (macro-­‐‑and  micro  level  determinants)  that  influence  the  distribution  of  these  public  health  consequences?      

iii. How  have  the  public  health  consequences  and  their  determinants  changed  over  the  years?  

iv. How  has  continued  exposure  to  hazards  affected  the  aggregate  health  status  of  the  society?    

 5. How  and  to  what  extent  do  public  health  consequences  feed  into  future  vulnerability  (i.e.  

influence/affect  the  socio-­‐‑economic  and  physical  determinants)?      

6. For  infectious  and  vector-­‐‑borne  diseases,  how  do  climate  and  weather-­‐‑related  changes  affect  its  pathology?  How  is  expected  to  change  relation  to  projected  changes  in  climate  conditions?    

 7. What  is  the  state  of  scientific  knowledge  on  the  dynamics  of  public  health,  the  micro  and  

macro-­‐‑level  health  determinants,  and  the  health  impacts  of  exposure  to  climate-­‐‑and-­‐‑weather  related  hazards?    

a. Is  data  available  that  would  allow  a  comprehensive  assessment  of  historical  and  projected  health  risks  in  relation  to  climate  and  weather-­‐‑related  hazards?    

i. Has  there  been  a  change  in  trends?    ii. What  were  the  drivers  of  these  changes?    

b. What  are  the  gaps  in  research  on  health  impacts  of  hazards  associated  with  discrete  events,  and  of  hazards  associated  with  changing  climatic  conditions?      

8. Is  the  scientific/expert  knowledge  available  and  accessible?  Has  it  improved  over  the  years?  a. Is  there  a  gap  between  scientific  and  common  knowledge?  What  are  the  efforts  

undertaken  to  bridge  it  and  are  they  effective?  b. Are  policy-­‐‑makers  incorporating  the  available  knowledge  in  plans  and  programs  

geared  towards  improving  public  health?    

9. Do  cultural  and  societal  norms  influence  how  people  manage  health  risks  related  to  climate-­‐‑and-­‐‑weather-­‐‑related  hazards?  

a. What  is  the  role  of  traditional  health  care  providers  and  how  do  they  relate  to  the  modern  health  care  providers?  

b. Are  there  societal  practices  that  may  hinder  people  from  seeking  medical  help?      

10.    What  interventions/programs  were  considered  to  reduce  the  prevalence  of  health  related  consequences  due  to  exposure  to  climate-­‐‑and-­‐‑weather-­‐‑related  risks?    

a. What  agencies/stakeholder  group  proposed  these  interventions?    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  21  

b. Were  any  of  the  interventions  rejected,  or  downscaled?  On  what  grounds  were  they  modified  or  rejected?  

c. For  the  implemented  interventions,  are  monitoring  and  evaluation  (M&E)  procedures  in  place?  Who/What  agencies  are  responsible  for  M&E?        

i. For  interventions  with  near-­‐‑term  tangible  impacts,  were  they  effective?  How  and  to  what  extent?    Identify  the  nature  and  effectiveness  of  the  response  measures.  

ii. For  interventions  with  longer-­‐‑term  impacts,  are  processes  and  relevant  components  in  place  that  will  allow  its  realization  in  the  future?  

 11.  What  interventions  were  considered  to  address  the  environmental  and  socio-­‐‑economic  

determinants  of  health?    a. Are  these  standalone  interventions?  Or  are  they  related  to  other  

development/environmental  programs?    b. Who  are  the  agencies  responsible  for  implementing  these  programs?    c. Are  there  efforts  to  integrate  these  interventions?    

Economic  Sector  1. How  are  risks  to  economic  systems  evaluated?  

a. What  is  the  framework  used  to  assess  these  risks?  b. What  are  the  integral  components/factors  of  this  framework?  c. How  does  this  framework  relate  to  social,  health,  and  physical  risk  evaluation  

frameworks?        

2. How  do  economic  systems  relate  to  and  interact  with  the  social,  health,  and  physical  sectors?    

3. What  is  the  status  of  economic  agglomeration  in  the  area?    a. What  have  the  critical  transitions  been  in  economic  development/urbanization  trends  

over  the  past  several  decade  that  changed  the  level  of  economic  agglomeration?  i. What  were  the  drivers  of  the  economic  development/urbanization  trends?    ii. Were  there  any  decision-­‐‑makers,  other  actors,  and  stakeholders  responsible?  

Provide  a  detailed  description  of  their  roles  and  actions.    iii. To  what  extent  have  internationally  financed  infrastructure  or  development  

project  activities  affect  the  risk  environment  of  the  area?  b. How  have  economic  activities  (of  households  and  firms)  in  the  area  been  affected  in  

the  aftermath  (short,  medium  and  long  term)  of  disasters?  What  are  the  major  factors  that  explain  this?    

i. What  is  the  nature  of  economic  recovery  of  households  and  firms  since  the  disasters  occurred  (short,  medium,  and  long-­‐‑term)?  What  critical  factors  and  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  22  

conditions  affected  or  limited  their  economic  recovery  (e.g.  availability  of  skilled  workers  for  reconstruction/repair)?  Describe  and  explain.  

ii. Provide  a  detailed  description  and  list  of  key  personnel  and  agencies  for  economic  recovery,  specifically  in  relation  to  economic  impacts  of:  (i)  hazards  associated  with  extreme  events;  (ii)  hazards  associated  with  gradually  changing  climate.  

iii. Have  pre-­‐‑disaster  economic  development/urbanization  trends  been  continued,  exacerbated  or  reversed?  What  are  the  major  factors  that  explain  this?  

 4. In  general,  what  have  the  economic  impacts  been  of:  (i)  hazards  associated  with  extreme  

events;  (ii)  hazards  associated  with  gradually  changing  climate?  Provide  this  as  a  list  in  qualitative  and  quantitative  terms.  

a. How  did  these  economic  impacts  change  between  discrete  events  and  over  a  longer  time  period  (e.g.  past  several  decades)?  

b. What  key  factors  affected  or  caused  the  economic  impacts  from:  (i)  hazards  associated  with  extreme  events;  (ii)  hazards  associated  with  gradually  changing  climate?  

i. How  did  each  of  the  key  factors  influence  the  risk  of  different  economic  sectors?  

ii. Were  there  specific  economic  sectors  that  benefitted  from  the  disaster  events  (e.g.  construction  sector)?  

iii. What  conditions  or  factors  limited  or  prevented  economic  losses  (impacts)?  c. What  economic  strategies,  laws,  policies,  or  measures  have  been  considered  to  

prevent  the  economic  impact  (losses)  of  the  events  or  reduce  its  consequences  (e.g.  climate-­‐‑proofing/diversification  of  industries,  infrastructures,  utilities,  and  livelihoods)  over  time?  

i. Have  any  economic  options  been  rejected,  or  targets  and  standards  reduced?  ii. To  what  extent  have  those  economic  strategies,  laws,  policies  or  measures  

considered  been  implemented?  iii. Were  those  economic  strategies,  laws,  policies  or  measures  effective,  how  and  

to  what  extent?  Identify  the  nature  and  effectiveness  of  the  economic  measures  in  terms  of,  for  example:  (a)  availability  of  skilled  workers  (pace  of  reconstruction/repairs),  insurance,  and  loans;  (b)  investments/budgets  in  CCA-­‐‑DRM  (e.g.  pre-­‐‑disaster  planning  and  preparedness  and  response  or  in  mitigation  technologies,  protective  infrastructures,  and  warning  and  response  systems);  (c)  diversification  of  livelihoods,  suppliers,  and  energy  sources;  (d)  climate-­‐‑proofing  infrastructures,  utilities,  livelihoods,  and  industries.  

 

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  23  

5. Assess  the  distribution  of  economic  losses  (impacts)  of:  (i)  hazards  associated  with  extreme  events;  (ii)  hazards  associated  with  gradually  changing  climate,  within  households.  

a. What  were  the  critical  transitions  in  recent  history  (preconditions)  that  changed  the  distribution  of  economic  losses  (impacts)  within  households?  

b. How  did  each  of  the  preconditions  influence  the  risk  of  households?  Describe  and  explain.  

c. What  economic  mechanisms  or  types  of  assistance  are  available  among  households  to  restore  their  livelihoods?    

6. Assess  the  distribution  of  economic  losses  (impacts)  of:  (i)  hazards  associated  with  extreme  events;  (ii)  hazards  associated  with  gradually  changing  climate,  within  firms.  

a. What  were  the  critical  transitions  in  recent  history  (preconditions)  that  changed  the  distribution  of  economic  losses  (impacts)  within  firms?  

b. How  did  each  of  the  preconditions  influence  the  risk  of  firms?  Describe  and  explain.  c. What  economic  mechanisms  or  types  of  assistance  are  available  among  firms  to  

restore  normal  business  environment?    

7. What  is  the  state  of  awareness  of  economic  actors  (households  and  firms)  to  the  economic  impacts  of  extreme  events  and  changing  climate?    

a. Was  the  existing  knowledge  on  economic  impacts  of  extreme  events  and  changing  climate  widely  available  and  accessible?  

b. How  long  had  the  knowledge  on  economic  impacts  of  extreme  events  and  changing  climate  been  available  and  had  it  significantly  changed  or  improved  in  the  recent  past?    

8. What  are  the  coping  strategies  or  risk  reduction  countermeasures  of  households  and  firms  to  reduce  economic  losses  (impacts)  brought  by:  (i)  hazards  associated  with  extreme  events;  (ii)  hazards  associated  with  gradually  changing  climate?  

a. Provide  a  list  of  the  costs  of  risk  reduction  to  hazards  undertaken  by  households  and  firms.  

b. Were  there  economic  barriers  to  the  risk  reduction  of  hazards?  If  yes,  what  were  they  (for  example,  limited  financial  resources  available  and  limited  coverage  of  insurances)?      

9. What  is  the  state  of  development  of  the  insurance  market  before  and  after  the  disasters  occurred  and  how  did  it  change  over  time?  

a. What  factors  or  conditions  contributed  or  limited  the  development  of  the  insurance  market?  

b. How  does  the  development/underdevelopment  of  the  insurance  market  affect  the  risk  of  different  economic  actors  and  sectors?  Describe  and  explain.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  24  

Social  Sector  1. How  are  risks  to  social  systems  evaluated?  

a. What  is  the  framework  used  to  assess  these  risks?  b. What  are  the  integral  components/factors  of  this  framework?  c. How  does  this  framework  relate  to  economic,  health,  and  physical  risk  evaluation  

frameworks?        

2. How  do  social  systems  relate  to  and  interact  with  the  economic,  health,  and  physical  sectors?    

3. In  general,  what  are  the  social  impacts  of:  (i)  hazards  associated  with  extreme  events;  and  (ii)  hazards  associated  with  gradually  changing  climate  change,  on  the  community?  Describe  these  in  quantitative  and  qualitative  terms.  

a. Which  of  these  social  impacts  could  be  considered  as  positive,  and  which  can  be  considered  as  negative  impacts  to  the  community?    

b. Has  there  been  any  sense  of  unfairness  or  discrimination  in  the  community  in  relation  to  the  distribution  of  impacts  of  the  hazards,  or  in  relation  to  actions  taken  to  address  these  hazards?    

4. Assess  the  distribution  of  impacts  due  to  disasters  within  the  community  related  to  social  factors.  

a. What  were  the  critical  transitions  in  social  conditions  and  structures  in  recent  history  that  changed  the  distribution  of  impacts  within  the  community?  

b. What  are  the  key  social  factors  or  preconditions  that  determine  the  risk  or  resilience  of  communities?  Describe  and  explain.  

c. How  have  social  conditions  and  structures  changed  after  extreme  events?  How  does  the  repeated  occurrence  of  extreme  events  affect  the  long-­‐‑term  state  of  the  community    does  vulnerability  accumulate  in  the  long  run?  

d. Have  pre-­‐‑disaster  social  transitions/trends  trends  been  continued,  exacerbated  or  reversed?  What  are  the  major  factors  that  explain  this  

e. What  insights  can  be  drawn  from  the  study  of  antecedent  social  conditions  of  pre-­‐‑conditions  in  evaluating  impacts  of  discrete  events,  of  long-­‐‑term  events,  or  both?  

f. What  social  mechanisms  or  types  of  assistance  are  available  to  the  community  to  recover  from  discrete  events,  and  to  be  build  resilience  and  adaptive  capacity  in  the  long-­‐‑run?    

5. What  is  the  state  of  the  community’s  access  to  basic  services?  a. How  has  access  to  basic  services  evolved  over  the  past  few  decades?  

i. What  were  the  drivers  of  these  changes  in  access  to  basic  services?  ii. Who  are  the  decision-­‐‑makers,  other  actors,  and  stakeholders  responsible?  

Provide  a  detailed  description  of  their  roles  and  actions.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  25  

b. How  has  access  to  basic  services  in  the  community  affected  in  the  aftermath  (short,  medium,  and  long-­‐‑term)  since  the  disasters  occurred?      

i. What  critical  factors  and  conditions  have  affected  access  to  services  after  disasters?  Describe  and  explain.  

ii. List  down  available  resources  and  networks,  both  private  and  government,  that  will  help  enable  disaster-­‐‑stricken  areas  to  recover.  

iii. What  is  the  nature  of  community  recovery  (e.g.  how  fast  the  recovery  process  was;  which  parts  of  the  community  recovered  first  and  fastest;  which  members  of  the  community  or  social  groups  recovered  more  quickly  and  effectively?)    

iv. Are  communities  able  to  move  beyond  recovery  and  “build  back  better”?  c. What  is  the  role  of  access  to  basic  services  in  reducing  risk  or  strengthening  resilience  

before  and  after  an  extreme  event,  and  under  a  gradually  changing  climate?  Describe  and  explain.  

d. How  has  the  community  been  able  to  access  information  of  relevant  hazards?  How  has  this  information  been  used  for  social  protection?  Describe  and  explain.    

6. Describe  how  the  community  is  preparing  and  adapting  for  the  impacts  of:  (i)  hazards  associated  with  extreme  events;  (ii)  hazards  associated  with  gradually  changing  climatic  conditions,  to  the  community.  

a. Construct  a  concept  map  of  the  various  preparations  at  the  individual,  community,  and  institutional  levels  in  response  to  disasters.  

b. Construct  a  concept  map  of  the  various  measures  at  the  individual,  community,  and  institutional  levels  to  adapt  to  climate  change.  

c. Who  usually  spearhead  disaster  preparedness  and  adaptation  activities  in  the  community?  Who  usually  funds  these  activities?  

d. Were  there  social  barriers  in  the  disaster  preparations  and  adaptation  efforts  of  the  community?  If  yes,  what  were  they  (e.g.  culture,  class,  religion,  ethnicity,  and  language)  and  how  did  they  affect  the  participation  of  multi-­‐‑stakeholder  groups  in  the  decision-­‐‑making  process  about  response  strategies?  

e. How  do  existing  social  and  cultural  norms  influence  the  community’s  ability  to  adapt  to  climate  change?  

f. How  do  existing  social  and  cultural  norms  influence  the  community’s  ability  to  prepare  and  respond  to  disasters?  

g. Is  there  an  apparent  relationship  between  poverty  in  the  community  and  the  community’s  ability  to  adapt  to  climate  change?  Discuss  the  extent  of  this  relationship.  

h. Is  there  an  apparent  relationship  between  poverty  in  the  community  and  the  community’s  ability  to  prepare  for  hazards  and  respond  to  disasters?  Discuss  the  extent  of  this  relationship.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  26  

7. What  leadership  strategies,  government  measures,  laws,  and  policies  in  place  determines  resilience  to  disasters  and  adapt  to  climate  change?  List  down  all  related  policies  if  possible.  

a. Which  of  these  strategies,  measures,  laws,  and  policies  are  specifically  responding  to  disaster  risk  reduction  and  management?  

b. Which  of  these  strategies,  measures,  laws,  and  policies  are  specifically  responding  to  climate  change  adaptation?  

c. Which  of  these  strategies,  measures,  laws,  and  policies  are  explicitly  responding  to  both?  

d. To  what  extent  have  these  strategies,  measures,  laws,  and  policies  have  been  properly  implemented?  

e. Provide  a  detailed  description  of  the  roles  and  actions  of  key  private  and  government  personnel,  institutions,  and  agencies.      

8. What  is  the  community’s  perception  and  understanding  of  risk,  disaster  risk  management  and  resilience,  climate  change,  and  climate  change  adaptation?  How  do  their  perceptions  affect  their  decision-­‐‑making  process?  

a. What  meaning  does  the  community  attach  with  the  idea  of  “risk”?  b. How  much  does  the  community  understand  about  the  points  of  convergence  and  

points  of  difference  between  DRM  and  CCA?  c. How  does  the  community  assess  their  personal  risk  to  hazards  brought  by  extreme  

events  and  climate  change?  d. Does  the  community  believe  that  climate  changes  are  related  to  extreme  events?  e. Are  there  any  education  programs  or  trainings  for  CCA  and  DRM  in  the  community?    f. What  is  the  average  literacy  level  of  the  community?  On  the  average,  how  many  

years  of  formal  education  did  the  community  members  receive?  g. Is  there  an  overall  or  prevalent  community-­‐‑shared  view  of  the  disaster?  

Alternatively,  are  there  contrasting  or  conflicting  views?  Describe  and  explain.    

9. What  experiences  in  disasters,  disaster  risk  reduction  management,  climate  change  and  adaptation,  and  resilience  building  does  the  community  have?  Relate  these  experiences  as  much  as  possible.  

a. What  is  the  community’s  history  of  disasters  attributed  to  extreme  events?  How  often  does  the  community  experience  these  events?  

b. How  did  the  people  rebuild  their  community  after  such  extreme  events?  c. Are  there  experiences  in  the  community  that  they  attribute  to  climate  change?  If  

there  are,  why  did  they  attribute  them  to  climate  change?  d. Were  there  any  facilities  that  recorded  weather  and  climatic  data  in  the  community  

in  from  the  past  years  to  the  present?  Was  the  community  informed  of  these  findings  or  was  the  community  given  access  to  this  information?  

   

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  27  

Indicators  

A  FORIN  narrative  traces  the  evolution  of  hazards,  the  development  trajectory,  and  the  actions  undertaken  by  society  to  construct  a  holistic  risk  framework.  This  section  serves  as  a  guide  for  writing  such  narrative  by  identifying  indicators  that  may  be  relevant  to  the  analysis  of  development  trends,  societal  strategies,  and  biophysical  changes  in  the  context  of  climate  change  adaptation  and  disaster  risk  management.  The  indicators  presented  are  in  no  way  comprehensive,  but  are  intended  as  possible  starting  points  for  analysis.  

Indicators  can  provide  good  basis  of  assessments  of  risk  and  assessments  of  efficiency  and  effectiveness  of  risk  interventions.  In  the  context  of  climate  change  adaptation  and  disaster  risk  management,  they  can  help  identify  what  factors  are  being  looked  by  each  discipline  in  determining  risk  and  specific  actions  taken  to  reduce  risk.  In  this  study,  there  are  two  basic  categories  of  indicators  which  may  be  used  as  possible  starting  points  for  analysis/assessment,  and  which  can  simplify,  quantify,  standardize  and  convey  complex  and  distinct  data  and  information  to  integrate  CCA  and  DRM  (UNFCCC,  2010):  

• Risk  Assessment  Indicators  are  the  variables/factors  used  to  measure  the  probability  of  adverse  impacts  of  hazards  that  are  associated  with  hazards  associated  with  “non-­‐‑routine”  or  extreme  events,  and  with  hazards  associated  with  gradually  changing  climate.  Risk  assessment  is  performed  to  

provide  a  baseline  and  assess  improvements/progress  in  improving  resilience  and  adaptive  capacity.  

• Action  Indicators  are  the  variables/factors/milestones  used  for  monitoring  and  evaluation  (M&E)  of  strategies  taken  to  reduce  risk  and  build  adaptive  capacity/resilience.    Strategies  are  interventions  or  activities  undertaken  in  the  form  of  projects,  policies,  and  programs.  The  purpose  of  monitoring  and  evaluation  is  to  keep  track  of  the  progress  made  in  implementing  CCA-­‐‑DRM  risk  reduction  strategies/interventions/activities/procedures  and  determine  its  overall  effectiveness,  efficiency,  and  utility  in  building  resilience  and  adaptive  capacity  (UNFCCC,  2010).    

Linking  the  two  indicators:  Risk  Assessment  Indicators  describe  the  status  of  community  under  consideration  (in  terms  of  hazards,  exposure  and  vulnerability)  and  thus  help  determine  describe  the  status  of  community  under  consideration  (in  terms  of  hazards,  exposure,  and  vulnerability)  and  thus  help  determine  what  actions  or  strategies  should  be  taken  to  reduce  the  risk.  Action  M&E  Indicators  are  used  during  the  implementation  of  the  chosen  strategies  to  evaluate  their  effectiveness  both  in  the  form  of  processes  that  build  institutional  capacities,  and  in  the  form  of  developmental  outcomes  achieved.  A  change  in  levels  of  risk,  as  determined  through  periodic  assessments  using  the  Risk  Indicators,  is  one  possible  Action  M&E  Outcome  indicator.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  28  

Risk  Assessment  Indicators  

R  =  HEV  FRAMEWORK  

What  is  Risk?    Crichton  (1999)  defines  risk  as  the  “probability  of  a  loss”  resulting  from  the  interaction  of  three  factors:  (1)  hazard,  (2)  exposure,  and  (3)  vulnerability.  This  definition  may  be  expanded  to  highlight  the  human  dimensions  of  risk  by  including  the  likelihood  of  harm  or  injury.  

Crichton  (1999)  further  suggests  that  risk  may  be  visualized  as  the  area  of  a  “risk  triangle”  whose  magnitude  is  determined  by  the  size  of  its  three  side  components  namely,  hazard,  exposure,  and  vulnerability  (Figure  4).    

Similarly,  if  any  of  these  components  are  absent,  the  remaining  components  will  be  unable  to  form  a  triangle,  which  can  be  construed  as  the  absence  of  risk  (Crichton,  1999).    As  an  illustration,  the  occurrence  of  an  earthquake  of  a  given  magnitude  (hazard)  alone  does  not  constitute  risk;  the  likelihood  of  harm  or  loss  also  depends  on  the  extent  of  exposure  and  the  characteristics  of  those  exposed  (e.g.  whether  the  buildings  can  withstand  the  magnitude  of  the  earthquake  that  they  are  exposed  to,  or  whether  the  people  can  evacuate  to  earthquake  shelters  during  an  earthquake).    

𝑅𝑖𝑠𝑘   = 𝑓(𝐻𝑎𝑧𝑎𝑟𝑑,𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒,𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

In  a  CCA-­‐‑DRM  analysis,  adaptive  capacity  may  also  be  included  as  a  factor  the  reduces  overall  risk:  

𝑅𝑖𝑠𝑘   =𝐻𝑎𝑧𝑎𝑟𝑑  𝑥  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒  𝑥  𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

What  is  Hazard?  A  hazard  is  an  event  or  an  agent  that  has  the  potential  to  cause  harm  or  losses  (UNISDR,  2009).  It  can  come  from  human  activities  such  as  the  release  of  synthesized  chemical  compounds,  and  disposal  of  nuclear  waste,  or  independent  of  human  activities  such  as  earthquakes,  tsunamis,  or  solar  flares.  Some  hazards  are  hybrids  and  are  thus  partly  independent  of  and  partly  attributable  to  human  activities.  Climate-­‐‑related  hazards  belong  to  this  category.    

Brooks  (2003)  classifies  climate-­‐‑related  hazards  into  three  types  based  on  the  frequency  and  the  timescales  associated  with  their  occurrence:    

1. Discrete  recurrent  hazards  are  singular  climate-­‐‑events  that  occur  repeatedly  over  a  couple  of  months  or  years  (e.g.  

Figure  4.  The  Risk  Triangle  (Crichton,  1999)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  29  

droughts,  storms,  and  extreme  rainfall  events).    

2. Continuous  hazards  refer  to  climate-­‐‑related  conditions  that  change  gradually  over  a  period  of  time.  Its  changes  are  often  observed  as  trends  and  usually  occur  on  timescales  of  a  decade  or  more  (e.g.  increase  in  mean  temperature  and  mean  sea  level,  changes  in  mean  rainfall).  

3. Discrete  singular  hazards  refer  to  sudden  events  associated  with  a  new  climate  regime  with  potentially  catastrophic  consequences  (e.g.  the  break-­‐‑up  of  the  West  Antarctic  ice  sheet,  or  shutdown  of  the  thermohaline  circulation).  As  this  class  of  hazards  is  associated  massive  changes,  its  timescales  are  a  century  or  several  centuries  long.    

What  is  Exposure?  Exposure  refers  the  extent  at  which  populations  and  elements  of  human  value  (e.g.  properties,  infrastructure)  are  subjected  to  a  hazard.  It  is  usually  expressed  as  the  number  of  people  or  properties  in  an  area  where  a  hazard  is  present,  or  where  a  hazard  event  occurs  (UNISDR,  2009).  

What  is  Vulnerability?  The  notion  of  vulnerability  in  literature  varies.  Brooks  (2003)  and  Adger  et  al.  (2004)  classify  these  diverse  definitions  into  two  broad  categories  according  to  the  factors  that  they  cover  and  highlight:  (1)  social  vulnerability,  and  (2)  biophysical  vulnerability.    

In  this  paper,  since  the  risk  framework  is  used  whereby  risk  is  broken  down  into  

hazard,  exposure,  and  vulnerability  components,  the  term  vulnerability  refers  to  social  vulnerability,  which  pertains  to  the  properties  of  a  system  that  affect  its  ability  to  cope  or  deal  with  the  potential  impacts  of  a  hazard  (Brooks,  2003;  Adger  et  al.,  2004).  It  includes  the  physical,  environmental,  and  socio-­‐‑economic  characteristics  of  a  system  that  mediate  or  enhance  the  impacts  of  a  hazard,  and  ultimately  determine  the  difference  between  potential  and  actual  harm.  For  clarity,  Brooks  (2003)  uses  the  term  inherent  vulnerability  to  refer  to  the  physical  and  environmental  components  of  the  system.    Socio-­‐‑economic  variables  such  as  income,  quality  of  housing,  and  wealth  distribution,  and  physical  variables  such  as  land  cover  and  topography  are  examples  of  social  vulnerability  indicators.    

 The  other  conception  of  vulnerability  is  biophysical  vulnerability  coined  by  O’  Brien  (2003;  in  Adger  et  al.,  2004)  to  refer  to  the  combination  of  the  magnitude  and  characteristics  of  a  hazard,  the  extent  of  a  system’s  exposure,  and  a  system’s  sensitivity  to  the  hazard.  Vulnerability  framed  in  this  manner  is  roughly  equivalent  to  risk  (Brooks,  2003),  and  this  is  roughly  the  usage  of  vulnerability  in  the  IPCC  assessment  reports.  

What  is  Adaptive  Capacity?  Adaptive  capacity  is  the  potential  of  a  system  to  adjust  in  the  face  of  a  hazard.  It  is  the  sum  of  past  conditions,  and  these  conditions  vary  over  time  and  space  depending  on  socio-­‐‑economic,  environmental,  and  physical  factors  (Brooks,  2003).    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  30  

Action  M&E  Indicators  

What  are  process  indicators  and  outcome  indicators?    

1. Process  (or  Upstream)  Indicators  are  variables/factors  that  measure  the  progress  of  CCA-­‐‑DRM  risk  reduction  interventions  in  building  resilience  and  institutional  capacities  through  incorporation  of  CCA-­‐‑DRM  into  development  processes,  actions,  and  institutions  (Brooks  et.  al,  2011;  Spearman  &  McGray,  2011).  Specifically,  these  are  indicators  that  can  already  be  used  in  the  short-­‐‑  to  medium-­‐‑term  to  determine  whether  concrete  actions  to  implement  CCA-­‐‑DRM  strategies  and  to  help  keep  development  on  track  in  the  face  of  hazards  that  are  taking  place.  They  provide  an  answer  to  the  question,  “What  do  people  need  to  do  to  reduce  or  manage  risk  and  adapt  to  the  gradually  changing  climate  normals?”  In  Figure  3,  process  indicators  would  primarily  describe  the  components  of  the  capacity-­‐‑building  element.  General  examples  of  these  indicators  include  the  following  (taken  and  adapted  from  proposed  indicators  of  Brooks  et.  al,  2011  and  from  Spearman  &  Gray  2011).    

a Use  of  scientific  information  on  hazards  in  policy  and  program  design;  Relevance  and  quality  of  informational  inputs  to  CCA-­‐‑DRM  decisions;  

b Proportion  of  development  initiatives  that  are  modified  compared  to  a  ‘business-­‐‑as-­‐‑usual’  

case  in  order  to  make  them  more  resilient;  

c Mechanisms  for  targeting  the  vulnerable;  

d Institutional  framework  of  regulatory  and  legal  support;  Number  and  quality  of  laws  or  policies  addressing  CCA-­‐‑DRM;  

e Degree  and  quality  of  participant  involvement  in  decision-­‐‑making;  

f Thoroughness  of  accounting  for  risks  and  vulnerability  in  decision-­‐‑making;  

g Whether  and  how  the  adaptation  process  is  sustained.  

2. Outcome  (or  Downstream)  Indicators  are  the  variables/factors  that  measure  the  efficiency,  and  utility  of  the  implemented  CCA-­‐‑DRM  interventions  (Brooks  et  al.,  2011;  Spearman  &  McGray,  2011).  Specifically,  these  indicators  point  to  the  evidence  of  desired  impacts  of  projects,  policies,  and  programs.  They  provide  an  answer  to  the  question,  “Were  the  expected  targets  achieved  through  the  implementation  of  CCA-­‐‑DRM  risk  management  and  adaptation  projects,  policies,  and  programs?”  In  Figure  3,  the  downstream  indicators  describe  the  Outcome  element  which  is  ultimately  sustainable  development.  For  CCA-­‐‑DRM  FORIN  investigations,  these  indicators  can  further  be  categorized  into  the  development  outcome  indicators  and  opportunistic  outcome  indicators  (adapted  from  Brooks  et.  al,  2011  and  from  Spearman  &  Gray  2011).  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  31  

a Development  Outcome  Indicators  are  the  variables/factors  that  refer  to  the  “bottom  line”  long-­‐‑term  changes  affecting  the  overall  quality  of  life  of  the  community.  Comprehensive  and  effective  CCA-­‐‑DRM  strategies  should  be  able  to  contribute  to  sustainable  development  in  the  process  of  addressing  current  and  future  resilience  and  adaptation  gaps.  Because  these  indicators  are  measured  over  longer  time  scales,  however,  there  is  a  high  degree  of  uncertainty  (due  to  gradually  changing  conditions),  and  the  shifting  baselines  need  to  be  considered  in  the  process  of  measurement  and  comparison  (Brooks,  et.  al,  2011;  Spearman  &  McGray,  2011).  General  examples  of  these  indicators  include  the  following  (taken  and  adapted  from  Brooks  et.  al,  2011):  

• Numbers  of  beneficiaries  and  coverage  of  climate  change  interventions;  

• Numbers  of  people  experiencing  reductions  in  risk  based  on  variety  of  context  specific  indicators;  

• Value  of  assets  and  economic  activities  protected  or  made  less  vulnerable  as  a  result  of  adaptation  interventions;  

• Change  in  degree  of  exposure  to  threats;  

• Evidence  of  changed  quality  of  climate-­‐‑sensitive  natural  resource  base;  

• Evidence  of  community,  sectoral,  or  institutional  understanding  and  capability  to  deal  with  or  avoid  losses.  

b. Opportunistic  Outcome  Indicators  are  the  variables/factors  that  allow  empirical  measurement  of  the  impacts  of  CCA-­‐‑DRM  interventions  during  specific  instances,  specifically,  the  occurrence  of  extreme  events  (Brooks  et.  al,  2011).  For  example,  the  impacts  of  two  similar  heavy  rainfall  events  in  the  same  locality  may  be  compared  to  determine  the  effectiveness  of  any  strategic  initiatives  implemented  in  the  intervening  period.  General  examples  of  these  indicators  include  the  following  (taken  from  Brooks  et.  al,  2011):  

• Construction  and  use  of  storm  shelters/evacuation  centers;    

• Installation  of,  and  the  lead  time  provided  by,  early  warning  systems.  

In  summary,  process-­‐‑based  indicators  are  used  to  measure  the  progress  of  the  integration  of  risk  management  and  adaptation  into  projects,  policies  and  programs  while  the  outcome-­‐‑based  indicators  are  used  to  measure  the  effectiveness  on  the  bottom-­‐‑line  developmental  goals.    

A  master  list  of  potential  sectoral  Risk  Assessment  Indicators  and  Action  M&E  Indicators  is  provided  as  supporting  material  to  this  Addendum.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  32  

References  

Adger,  W.  N.,  Brooks,  N.,  Bentham,  G.,  Agnew,  M.,  &  Eriksen,  S.  (2004).  New  indicators  of  vulnerability  and  adaptive  capacity.  Tyndall  Center  for  Climate  Change  Research.  Norwich:  Tyndall  Centre  for  Climate  Change  Research.  Retreived  from:  http://tyndall.ac.uk/sites/default/files/wp38.pdf

Birkmann,  J.,  &  Teichman,  K.  (2010).  Integrating  disaster  risk  reduction  and  climate  change  adaptation:  key  challenges-­‐‑-­‐‑scales,  knowledge,  and  norms.  Sustainability  Science,  5(2),  171.  doi:10.1007/s11625-­‐‑010-­‐‑0108-­‐‑y.  

Brooks,  N.  (2003).  Vulnerability,  risk  and  adaptation:  A  conceptual  framework  (Tyndall  Center  for  Climate  Research  Working  Paper  No.  38).  Retrieved  from  http://tyndall.ac.uk/sites/default/files/wp38.pdf.

Brooks,  N.,  Anderson,  S.,  Ayers,  J.,  Burton,  I.,  &  Tellam,  I.  (2011).  Tracking  adaptation  and  measuring  development  (IIED  Climate  Change  Working  Paper  No.  1).  Retrieved  from  http://pubs.iied.org/pdfs/10031IIED.pdf    

Crichton,  D.  (1999).  The  Risk  Triangle.  In  J.  Ingleton  (Ed.).  Natural  disaster  management  (pp.  102-­‐‑103).  London,  UK:  Tudor  Rose.  

Gero,  A.,  Méheux,  K.,  &  Dominey-­‐‑Howes,  D.  (2011).  Integrating  disaster  risk  reduction  and  climate  change  adaptation  in  the  Pacific.  Climate  &  Development,  3(4),  310-­‐‑327.  doi:10.1080/17565529.2011.624791.  

Integrated  Research  on  Disaster  Risk.  (2011).  Forensic  investigations  of  disasters:  The  FORIN  Project  (IRDR  FORIN  Publication  No.  1).  Beijing:  Integrated  Research  on  Disaster  Risk.  

IPCC  (2012).  Managing  the  Risks  of  Extreme  Events  and  Disasters  to  Advance  Climate  Change  Adaptation.  A  Special  Report  of  Working  Groups  I  and  II  of  the  Intergovernmental  Panel  on  Climate  Change  [Field,  C.B.,  V.  Barros,  T.F.  Stocker,  D.  Qin,  D.J.  Dokken,  K.L.  Ebi,  M.D.  Mastrandrea,  K.J.  Mach,  G.-­‐‑K.  Plattner,  S.K.  Allen,  M.  Tignor,  and  P.M.  Midgley  (eds.)].  Cambridge  University  Press,  Cambridge,  UK,  and  New  York,  NY,  USA,  582  pp.  

Mitchell,  T.,  &  Van  Aalst  (2008).  Convergence  of  Disaster  Risk  Reduction  and  Climate  Change  Adaptation.  Retrieved  from  http://www.preventionweb.net/files/7853_ConvergenceofDRRandCCA1.pdf.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  33  

Spearman,  M.  and  H.  McGray.  (2011)  Making  Adaptation  Count:  Concepts  and  Options  for  Monitoring  and  Evaluation  of  Climate  Change  Adaptation.  GIZ,  BMZ  and  WRI.  

Solecki,  W.,  Leichenko,  R.,  &  O’Brien,  K.  (2011).  Climate  change  adaptation  strategies  and  disaster  risk  reduction  in  cities:  connections,  contentions,  and  synergies.  Current  Opinion  in  Environmental  Sustainability,  3(3),  135.  doi:10.1016/j.cosust.2011.03.001.  

Thomalla,  F.,  Downing,  T.,  Spanger-­‐‑Siegfried,  E.,  Han,  G.,  &  Rockström,  J.  (2006).  Reducing  hazard  vulnerability:  towards  a  common  approach  between  disaster  risk  reduction  and  climate  adaptation.  Disasters,  30(1),  39-­‐‑48.  doi:10.1111/j.1467-­‐‑9523.2006.00305.x  

UNISDR.  (2009).  2009  UNISDR  Terminology  on  Disaster  Risk  Reduction.  Geneva:  United  Nations.  Retreived  from:  www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  34  

Appendix  

Table 1. CCA-DRM Risk Indicators List

Indicators  for  Assessing  Risk   CCA?   DRM?   Hazard   Exposure   Vulnerability  Adaptive  Capacity  

PHYSICAL  SECTOR                                                  

Geophysical  events                          volcanic  eruption  

 x   x  

     landslides    

x   x              •  rainfall-­‐induced  landslides   x  

 x  

     earthquakes    

x   x        formation  of  sink  holes  

 x   x  

     Climate  and  Weather-­‐related  indicators                          historical  temperature  trends   x  

 x  

     projected  temperature  trends   x    

x        historical  change  in  seasonality  (onset  and  duration  of  dry  and  wet  

season)   x    

x        projected  change  in  seasonality  (onset  and  duration  of  dry  and  wet  

season)   x    

x        historical  changes  in  sea  levels   x  

 x  

           •  historical  saltwater  intrusion   x    

x        projected  changes  in  mean  sea  level   x  

 x  

           •  projected  saltwater  intrusion   x    

x        historical  changes  in  rainfall  (amount,  intensity,  frequency,  spatio-­‐

temporal  variability)   x    

x              •  incidences  of  drought   x   x   x              •  incidences  of  heavy  rainfall   x   x   x              •  incidences  flooding   x   x   x        

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  35  

projected  changes  in  rainfall  (amount,  intensity,  frequency,  spatio-­‐temporal  variability)   x   x   x  

           •  projected  episodes  of  drought   x   x   x              •  projected  heavy  rainfall  events   x   x   x              •  anticipated  flooding  due  to  heavy  rainfall   x   x   x        historical  trends  in  typhoons  (intensity,  frequency,  spatio-­‐temporal  

variability)   x   x   x              •  historical  incidences  of  storm  surge  and  other  

secondary/concatenated  hazards    

x   x        projected  trends  in  typhoons  (intensity,  frequency,  spatio-­‐temporal  

variability)   x   x   x              •  probability  of  storm  surge  and  other  secondary/concatenated  

hazards    

x   x        Urban  morphology/Land-­‐use  indicators                          

urban  terrain/cover   x   x      

x   x        •  type  of  land-­‐use  and  spatial  distribution/land-­‐use  patterns   x   x  

   x   x  

     •  physiographic  characteristics     x   x      

x   x        •  vegetative  cover   x   x  

   x   x  

     •  proportion  of  exposed  soil  (relevant  to  flooding:  sedimentation,  erosion)   x   x  

   x   x  

     •  impervious  surfaces   x   x      

x          •  urban  structure  (dimensions  of  buildings  and  spaces  between  

them,  street  widths  and  spacing)   x   x      

x    hydrology  (related  to  flooding)   x   x  

   x   x  

     •  peak  flow  characteristics  (determined  by:  %  of  impervious  area,  rate  at  which  water  is  transmitted  across  the  land  to  stream  channels,  characteristics  of  tributary  channels)   x   x  

   x   x  

     •  total  run-­‐off  (dependent  on  infiltration  characteristics:  slope,  soil  type,  vegetative  cover)   x   x  

   x   x  

     •  volume  of  flood  storage  (dams,  artifical  ponds,  small  reservoirs  in  stream  channels,  tanks)   x   x  

   x   x  

     •  geomorphic  features  of  the  channel  (bank  height,  width,  bed   x   x      

x   x  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  36  

material)  Ecological  indicators                          

forest  cover   x      

x   x   x  coastal  wetlands   x   x  

 x   x   x  

habitat  structure   x            changes  in  biodiversity   x        

x   x  trophic  structure   x  

     x   x  

water  quality   x   x      

x   x        •  industrial  wastewater  collection  and  treatment  coverage  

 x   x  

   x  

   •  domestic  wastewater  treatment  coverage    

x   x      

x        •  type  of  sewerage  systems  used  

 x   x  

   x  

     •  sewage  treatment  coverage    

x   x      

x        •  discharge  of  effluents  and  raw  sewage  

 x   x  

   x  

     •  physico-­‐chemical  and  biological  properties  (e.g.  turbidity,  pH,  nitrate  level,  heavy  metal  content,  coliform)    

 x   x  

   x  

water  availability   x   x      

x   x        •  seasonal  variation  of  the  hydrologic  process   x   x   x  

           •  seasonal  variation  in  water  demand   x   x      

x   x        •  historical  water  use   x  

     x  

       •  rate  of  infiltration  (soil  column,  soil  characteristics:  moistrure,  soil  type,  compaction)   x   x  

   x  

       •  rate  of  evapotranspiration   x   x      

x          •  rate  of  groundwater  extraction  and  recharge   x   x  

   x   x  

amenity  value  of  water  bodies   x   x      

x          •  stability  of  the  stream  channel  

 x  

   x   x  

     •  accumulation  of  trash/debris  on  the  water  channels  and  flood  plains  

 x  

   x   x  

     •  changes  in  the  stream  biota  (eutrophication  and  algal  blooms)   x   x      

x   x  solid  waste  generation  and  collection  (related  to  clogging  of  waterways/transmission  rate,  and  health  and  social  effects  of  improper  disposal)  

 x   x  

 x  

 

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  37  

characteristics  of  the  transport  system   x   x      

x   x  energy  mix   x   x  

   x   x  

electricity  generation  and  distribution  (source,  distribution  infrastructure)  

 x  

   x   x  

HEALTH  SECTOR                                                  

range  expansion  of  vector-­‐borne  diseases   x    

x        incidence  of  heat  waves   x  

 x  

     outbreak  of  water-­‐related  diseases  (e.g.  leptospirosis,  diarrhea,  typhoid)     x   x   x  

     environmental  conditions  in  evacuation  centers      

x   x              •  sanitation  

 x   x  

           •  outbreak  of  respiratory  and  other  skin-­‐related  diseases    

x   x        access  to  medical  facilities   x   x  

   x   x  

number  of  fully-­‐equipped  medical  facilities   x   x      

x   x  medicine  price   x   x  

   x   x  

knowledge  of  diseases  that  are  associated  with  flooding  and  other  extreme  events  

 x  

   x   x  

knowledge  on  diseases  or  illness  being  related  to  the  effects  of  climate  change   x  

x   x

speedy  delivery  of  health  services  during  an  epidemic    

x      

x   x  speedy  delivery  of  health  services  durin  disasters  or  extreme  events  

 x  

   x   x  

extent  of  medical  insurance  coverage     x   x      

x   x  insurance  prices   x   x  

   x   x  

infant  and  child  mortality   x   x      

x   x  maternal  health  (as  an  indicator  of  vulnerability  and  resilience)   x  

     x   x  

SOCIAL  SECTOR                                                  

Population  Size   x   x    

x   x    Population  Density   x   x  

 x   x  

 Rate  of  Urbanization   x   x      

x   x  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  38  

Access  to  Basic  Services   x   x      

x   x  Level  of  Urban  Migration   x   x  

 x  

   Number  of  informal  settlers   x   x    

x   x    Location  of  informal  settlements  

 x  

       Security  of  Tenure   x   x      

x   x  Gender   x   x  

   x  

 Income  Level   x   x      

x   x  Age   x   x  

   x  

 Proximity  to  rivers  (vulnerable  populations)   x   x    

x   x    Education  level  (literacy)   x   x  

   x   x  

Installment  of  early  warning  systems  (access  and  understanding)    

x      

x   x  Number  of  socio-­‐civic  organizations   x   x  

   x   x  

Access  to  ICT  and  use  of  social  media   x   x      

x   x  Perceptions  of  risk   x   x  

   x   x  

Family  ties,  decision  making   x   x      

x   x  Community  training   x   x  

   x   x  

Maternal  health  (as  an  indicator  of  vulnerability/resilience)   x   x    

x   x   x  Number  of  children  per  family   x   x  

 x   x  

 Family  size   x   x    

x   x    ECONOMIC  SECTOR                          

                       Level  of  Economic  Agglomeration  (concentration  of  economic  activities,  firms,  and  wealth  in  limited  areas)   x   x  

 x   x   x  

Development  of  Insurance  Market/Credit  Facilities  (wider  take-­‐up  of  insurance/lending  services,  more  funds  available  post-­‐disaster)   x   x  

   x   x  

Household  Income  Level  (low-­‐income  groups  likely  to  live  in  cheaper  but  risky  areas;  affects  recovery/reconstruction  phase;  availability  of  financial  resources  for  adaptation  options)   x   x  

 x   x   x  

Savings   x   x      

x   x  Remittances   x   x  

   x   x  

Inflation  (changes  in  prices  affect  reconstruction/recovery  phase  due   x   x      

x    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  39  

to  demand  surge)  Coastal  Urbanization  (concentration  of  people,  infrastructure,  assets,  and  econ.  activities  in  coastal  areas  relative  to  sea  level  rise)   x   x  

 x   x   x  

Diversity  of  Livelihoods  (e.g.  dependence  on  imports  and  narrow  range  of  exports)   x   x  

   x   x  

Diversity  of  Suppliers  (limited  number  of  suppliers  can  limit  production)   x   x  

   x   x  

Availability  of  Skilled  Workers  (affects  pace  of  reconstruction)    

x      

x   x  Insurance   x   x  

   x   x  

Availability  of  Loans   x   x      

x   x  Unemployment   x   x  

   x   x  

Government  Funding/Budget  Availability  for  CCA-­‐DRM   x   x      

x   x  GDP  Sector  Composition  (agricultural,  industrial,  and  service)   x   x  

   x   x  

Climate  sensitivity  of  industries   x   x      

x   x  Weather  sensitivity  of  industries   x   x  

   x   x  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  40  

Table 2. CCA-DRM Actions M&E Indicators List

Indicators for Monitoring and Evaluating Actions CCA? DRM? Process Indicator

Dev't/Vulnerability

Outcome Indicator

Opportunistic Outcome Indicator

PHYSICAL SECTOR

increasing basic research ( climate variability, projections, downscaling, assessment of hydrological characteristics,hydrological modeling, etc.) x x x

decreased damage to culturally, economically significant areas or vital infrastructure x x

x x

• climate-proofing infrastructures x x x • revision of building regulations to incorporate CCA-DRM x x x • increasing insurance coverage of climate-sensitive properties x x x water security (in terms of quality and availability for competing

water uses) x x

x x • implementation of a comprehensive rive basin management plan x x x

• increasing the coverage of wastewater/sewage treatment x

x • implementation of policies that regulate the use of water

resources x

x • decrease in human-induced land subsidence x

x

improved water quality in rivers and its tributaries x

x decreased crop vulnerability to droughts x x

x x

• modification of irrigation systems to incorporate the changes in seasonality and precipitation patterns x

x

continous energy supply x x

x x • diversification of energy sources x

x

• climate-proofing energy distribution infrastructures (especially for transport and electricity) x x x

preservation of coastal wetlands x

x

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  41  

increase in marine productivity and biodiversity x

x decreased incidence of precipitation-induced flooding

x

x

• installation of flood control systems (and other engineering interventions)

x x

• improving urban water channels x x x • implementation of soft interventions to improve surface run-

off (e.g. removing solid waste in river channels, buffer zones and green spaces, increasing pervious areas)

x x

• increasing the coverage and efficiency of solid waste collection

x x

• implementation of a comprehensive solid waste management plan

x x

improved flood, typhoon, and rainfall forecasting

x

x x • increasing the technological and technical capacity of forecasting institutions and other related agencies

x x

• increasing the budget for research and purchase of relevant monitoring equipment

x x

increased access to hydrometeorological forecasts

x

x x decreased property damages due to flooding and other weather-related events

x

x

decreased exposure to flooding and other weather-related events

x

x implementation of a comprehensive land-use plan (incoporates CCA-DRM) x x

x

decrease in the number of properties and infrastructure exposed to storm surge

x

x

• Implementation of a coastal development plan x x x • Installation of sea-walls and other engineering measures

x x

• delineation of coastal buffer zones x x x • decreasing transmission rate (related to peak-flow, run-off and

impervious areas) x x x decrease in erosion and sedimentation rates (see flooding)

x

x x

• increasing vegetative cover x x x • reducing the area of bare/exposed soils x x x

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  42  

HEALTH SECTOR

increased access to medical faciltiies x x

x more, better health programs on climate and weather related

diseases x x

x improved information on epidemiology after extreme events

x

x

faster delivery of health services during extreme events

x

x policies implemented on sanitation and health x x

x

increasing health budget x x x increasing budget allocation for health-related and epidemiology

research x x x decreased mortality due to climate and weather-related disease

outbreaks x x

x increased involvement of the civil society/NGOs to deliver health services (for profit and voluntary) x x

x x

access to potable water during flooding

x

x better information dissemination on water borne and water related diseases

x

x

barangays are better-equipped to handle disaster-related outbreaks

x

x x healthier population (decreased incidence of disesase, decreased incidence of malnutrition) x x

x

cheaper medicine and health services x x

x increased public awareness on the effects of climate change and

weather-related events on health x x

x

SOCIAL SECTOR

Increased access to basic services (water and food, electricity, medical facilities) x x

x

Increase in per capita or household income x x

x Proper implementation/enforcement of land use planning, zoning

and building codes x x x Presence of disaster risk reduction and management policies

x x

x

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  43  

Disaster preparedness (community training)

x x Decrease in Mortality Rate

x

x

Increase in number of socio-civic organizations in the community x x x Increase in number of social research related to DRM and CCA x x x Decreasing poverty level and incidence x x

x

Increase in education with regard to CCA and DRM (literacy) x x x Decrease population living in hazard-prone areas [relocation] ->

flooding areas, landslide areas x x

x Increase in stakeholder consultation and participation related to

CCA-DRM policies x x

x Increase access to ICT and social media x x x

Integration of CCA-DRM in school curriculum x x x Improved media communications and portrayal of climate change

and disasters x x x Providing proper housing for informal settlers x x x Decrease loss of social capital (after discrete hazards, or over a

long period of change) x x

x x

ECONOMIC SECTOR

Low Morbidity Rate (e.g. illness due to water contamination from shutdown of treatment plant)

x

x

High and Growing GDP x x

x High and Growing GDP per capita x x

x

High Net Exports (e.g. damages to firms from discrete events or due to climatic shifts could affect imports and exports) x x

x

Decrease Levels of Indebtedness (e.g. gov''t spending for emergency response can increase debt)

x

x

Increase FDI Rates (e.g. foreign companies see a great risk or too much damage = loss in confidence) x x

x

Price Stability/Low Inflation x x

x Decrease Urban Income Inequality (e.g. higher income reduces

natural disaster deaths) x x

x High Employment/Low Unemployment x x

x

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  44  

Increase Investment in pre-disaster planning and preparedness and response or in mitigation technologies x x x

Increase Investment in protective infrastructure (e.g. sea walls against storm surges, flood protection systems or dams and building elevations) x x x

Increase Investment in improved warning and response x x x Decrease Poverty Level x x

x

Development of long-term urban economic climate scenarios x x x Diversification of livelihoods x

x

Improved employment rate x

x Diversification of suppliers x x x

Implementation of energy saving programs x

x Diversification of energy sources (for power generation and

industrial activities) x

x Development of catastrophe insurance pool and credit facilities. x x x Decreased Loss of Potential Production Output (disruption of

economic activities due to lost power or evacuation of workers) x x

x x Decreased Loss of Potential Production Output (due to changes in productivity brought about by gradual climatic shifts) x

x

Decreased Loss of Expected Income/Earnings (of households, firms, and employees) after extreme events

x

x

Decreased Loss of Expected Income/Earnings (of households, firms, and employees) in climate-sensitive industries due to gradual climatic shifts x

x

Decreased Loss of Homes (and their contents)

x

x Decreased Loss of Productive Capital Assets (machines, firm structures [buildings] and their contents, inventory, vehicles)

x

x

Decreased Loss of Infrastructures or Other Lifelines/Utilities (power, sewage, water, communication, or transportation like roads)

x

x

Decreased Loss of Human Capital/Labor

x

x Decreased Cost of Emergency Response, Relief, & Clean-Up (evacuation and rescue and the clean up costs, such as clearing

x

x

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  45  

debris from streets) Decreased Cost of Reconstruction/Repairs

x

x

Increased awareness of economic actors of economic impacts of various hazards x x x

Increase pace of reconstruction (to restore production and housing and avoid high losses; e.g. easier and faster building permits)

x x

x

Climate-proofing of infrastructures and utilities (power, water, rail) x x x

Climate-proofing of livelihoods and industries x x x *Climate proofing – a shorthand term for identifying risks to a

development project, or any other specified natural or human asset, as a consequence of climate variability and change, and ensuring that those risks are reduced to acceptable levels through long-lasting and environmentally sound, economically viable, and socially acceptable changes implemented at one or more of the following stages in the project cycle: planning, design, construction, operation, and decommissioning (ADB, 2005). Reference: Asian Development Bank (2005). Climate Proofing: A Risk-based Approach to Adaptation. Retrieved from http://www.adb.org/sites/default/files/pub/2005/climate-proofing.pdf

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  46  

Table 3. RRL Master List

PHYSICAL SECTOR

AUTHOR YEAR TITLE SOURCE

Abon, C., David, C., & Pellejera, N. 2011 Reconstructing the Tropical Storm Ketsana flood

event in Marikina River, Philippines Hydrology and Earth System Sciences , 15,

1283-1289

Bankoff, G. 2003 Constructing Vulnerability: The Historical, Natural

and Social Generation of Flooding and Social Generation of Flooding in Metropolitan Manila

Disasters , 27 (3), 95-109

Crozier, M. 2010 Deciphering the effect of climate change on landslide activity: A review Geomorphology , 124, 260-267

De Sherbinin, A., Schiller, A., & Pulsipher, A. 2007 The vulnerability of global cities to climate hazards Environment and Urbanization, 19 (1), 39-

64

Delpla, I., Jung, A.-V., Baures, E., Clement, M., & Thomas, O. 2009 Impacts of climate change on surface water quality

in relation to drinking water production Environment International, 35, 1225-1233

Gaillard, J.-C., Liamzon, C., & Maceda, E. 2005 Act of nature or act of man? Tracking the root

causes of increasing disasters in the Philippines Philippine Geographical Journal, 49, 46-65

Gersonius, B., Nasruddin, F., Ashley, R., Jeuken, A., Pathirana,

A., & Zevenbergen, C. 2012

Developing the evidence base for mainstreaming adaptation of stormwater systems to climate

change Water Research , 1-2

Hunt, A., & Watkiss, P. 2011 Climate change impacts and adaptation in cities: a review of literature Climatic Change, 104 (1), 13-49

Jennerjahn, T. 2012 Biogeochemical response of tropical coastal systems to present and past environmental change Earth-Science Reviews, 114, 19-41

Kiss, T., & Blanka, V. 2012 River channel response to climate-and-human-

induced hydrological changes: Case study on the meandering Hernad River, Hungary

Geomorphology, 1-11

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  47  

Muto, M., Morishita, K., & Syson, L. no date Impacts of Climate Change upon Asian Coastal

Areas: The case of Metro Manila Japan International Cooperation Agency

(JICA)

Rodolfo, K., & Siringan, F. 2006 Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored

around northern Manila Bay, Philippines Disaster , 1, 118-139

Sekovski, I., Newton, A., & Dennison, W. 2012

egacities in the coastal zone: Using a driver-pressure-state-impact-response framework to

address complex environmental problems

Estuarine, Coastal and Shelf Science , 96, 48-59

Suriya, S., & Mudgal, B.V. 2012 Impact of urbanization on flooding: The Thirusoolam sub watershed – A case study Journal of Hydrology, 210-219

Thomalla, F., Larsen, R., Zou, L., & Miller, F. 2008

Building hazard resilent communities in coastal Southeast Asia: Lessons for research, policy &

practice: Stockholm Environment Institute (SEI)

van Aalst, M. 2006 The impacs of climate change on the risk of natural disasters Disasters, 30 (1), 5-18

Virola, R., Lopez-Dee, E., Romaraog, M., & Halcon, L. 2010 Localizing the Measurment of the Impact of

Climate Change. Manila National Statistical Coordination Board

(NSCB) Yasuhara, K., Homine, H.,

Murakami, S., Chen, G., Mitani, Y., & Duc, D. M.

2012 Effects of climate change on geo-disasters in coastal zones and their adaptation Geotextiles and Geomembranes, 30, 24-34

Yumul, G., Cruz, N., Servando, N., & Dimalanta, C. 2011

Extreme weather events and related disasters in the Philippines, 2004-08: a sign of what climate

change will mean? Diasters, 35 (2), 362-382

Zhou, Q., MIkkelsen, P., Halsnaes, K., & Arnbjerg-

Nielsen, K. 2012

Framework for economic pluvial flood risk assessment considering climate change effects and

adaptation benefits Journal of Hydrology , 414-415, 539-549

HEALTH SECTOR

AUTHOR YEAR TITLE SOURCE

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  48  

Basara, H.G. & Yuan, M. 2008 Community health assessment using self-

organizing maps and geographic information systems

International Journal of Health Geographics, 7, 67

Chou, Y.-J., Huang, N., Lee, C.-H., Tsai, S.L., Chen, L.S. &

Chang, H.J. 2004 Who is at Risk of Death in an Earthquake? American Journal of Epidemiology, 160, 688-

695

Choudhury, M.A.H.Z., Shahera, B. & Islam, M.A. 2008 Forecasting dengue incidence in Dhaka,

Bangladesh: A time series analysis Dengue Bulletin, 52, 29-37

Costello, A., Abbas, M., Allen, A. Ball, S., Bell, S., Bellamy, R., Friel, S., Groce, N., Johnson, A.,

Kett, M., Lee, M., Levy, C., Maslin, M., McCoy, D.,

McGuire, B., Montgomery, H., Napier, D., Pagel, C., Patel, J.,

de Oliveira, J.A.P., Redclift, N., Rees, H., Rogger, D., Scott, J.,

Stephenson, J., Twigg, J., Wolff, J., Patterson, C.

2009 Managing the health effects of climate change Lancet, 373, 1693-1733

Cruz, E.I., Salazar, F.V., Porras, E., Mercado, R., Orais, V., &

Bunyi, J. 2008

Entomological Survey of Dengue Vectors as Basis for Developing Vector Control Measures in

Barangay Poblacion, Muntinlupa City, Philippines, 2008

Dengue Bulletin, 52, 167-170

DOH 2012 Administrative Order No. 2012-0005: National Policy on Climate Change Adaptation for the

Health Sector Department of Health (DOH), Philippines

Ebi, K.L. 2011 Climate-Associated Changes in Health Outcomes Carneige Institution for Science Epstein, P.R. 2001 Climate change and emerging infectious diseases Microbes and Infection, 3, 747-754

Gharbi, M., Quenel, P., Gustave, J., Cassadou, c., La Ruche, G.,

Girdary, L. & Marrama, L. 2011

Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors

BMC Infectious Diseases, 11, 166

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  49  

Go, J.J. 2008

resentation on Health Impact of Disasters and Climate Change: Challenges to Hospitals and

Public Health Systems for Third Global Congress of Women in Politics and Governance

World Health Organization (WHO), Philippines

Hallegatte, S., Przyluski1, V.& Vogt-Schilb, A. 2011 Building world narratives for climate change

impact, adaptation and vulnerability analyses Nature Climate Change, 1(3), 151-155

Hunt, A & Watkiss, P. 2011 Climate change impacts and adaptation in cities: a review of the literature Climate Change, 104, 13-49

IWGCCH 2009 On Human Health Perspective On Climate Change:

A Report Outlining the Research Needs on the Human Health Effects of Climate Change

Environmental Health Perspectives (North Carolina)

Kovat, S. & Akthar, R. 2008 Climate, Climate change and human health in Asian cities Environment and Urbanization, 20, 165

Lafferty, K.D. 2009 The ecology of climate change and infectious diseases Ecology, 90(4), 888-900

Lau, C.L., Smythe, L.D., Craig, S.B. & Weinstein, P. 2010 Climate change, flooding, urbanisation and

leptospirosis: fuelling the fire? Transactions of the Royal Society of Tropical

Medicine and Hygiene, 104, 631-638

Long, Z.A., Bakar, A.A., Hamdan, A.R. & Sahani, M. 2010 Multiple Attribute Frequent Mining-Based for

Dengue Outbreak L. Cao, J. Zhong, and Y. Feng (Eds.): ADMA

2010, Part I, LNCS 6440, 489–496

Ma, S. Ooi, E.E., & Goh, K.T. 2008 Socioeconomic determinants of Dengue Incidence in Singapore Dengue Bulletin, 52, 17-28

Martens, P. & McMichael, A.J. 2001 Vector-borne diseases, development and climate change: An editorial comment Integrated assessment, 2, 171-172

McGeehin, M.A. & Mirabelli, M. 2001

The Potential Impacts of Climate Variability and Change on Temperature-Related Morbidity and

Mortality in the United States

Environmental Health Perspectives, 109(21), 185-189

McMichael, A.J., Woodruff, R.E. & Hales, S. 2006 Climate change and human health: present and

future risks Lancet, 367, 859-869

Mertz, O., Halsnæs, K., Olesen, J.E. & Rasmussen, K. 2009 Adaptation to Climate Change in Developing

Countries Environmental Management, 43, 743-752

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  50  

Muto, M., Morishita, K., and Syson, L. no date

Chapter 4: The Intangible Risk analysis (Health) [p. 90, PDF pp.93)] Impacts of Climate Change upon Asian Coastal Areas: The Case of Metro

Manila

Japan International Cooperation Agency (JICA)

Nerlander, L. 2009 Climate Change and Health Commission on Climate Change and Development, Stockholm

Nga, T.T.V. & Fukushi, K. 2012 Infection Risk Assessment with Exposure to

Pathogens in the Flood Water - The case of City of Manila, Philippines

International Conference on Sustainability Science in Asia 2012

Pham, H.V., Doan, H.T.M., Phan, T.T.T. & Minh, N.N.T. 2011 Ecological factors associated with dengue fever in

a central highlands Province, Vietnam BMC Infectious Disease, 11, 172

Preston, B.L., Westaway, R.M. & Yuen, E.J. 2011

Climate adaptation planning in practice: an evaluation of adaptation plans from three

developed nations

Mitigation, Adaptation Strategies and Global change, 16, 407-438

Rincon, M.F.G. & Virtucio, Jr., F.K. 2008 Climate Change in the Philippines: A Contribution

to the Country Environmental Analysis

Country Environmental Analysis (CEA) Consultative Workshop held in Manila,

Philippines Rose, J.B. Epstein, P.R., Lipp, E., Sherman, B. H., Bernard,

S.M. & Patz, J.A. 2001

Climate Variability and Change in the United States: Potential Impacts on Water- and Foodborne

Diseases Caused by Microbiologic Agents

Environmental Health Perspective, 109(2), 211-221

Samet, J. 2010 Adapting to Climate Change Resources for the Future Issue Brief 10-06, Washington D.C.

Schwierz, C, Appenzeller, C., Davies, H.C., Liniger, M.A., Müller, W., Stocker, T.F. &

Yoshimori, M.

2010 Challenges posed by and approaches to the study of seasonal-to-decadal climate variability Climate Change, 79, 31-63

Su, G.L.S. 2008 Correlation of Climatic Factors and Dengue Incidence in Metro Manila, Philippines Ambio, 37 (4), 292-294

Tseng, W.-C., Chen, C.-C., Chang, C.C. & Chu, Y.-H. 2009

Estimating the economic impacts of climate change on infectious diseases: a case study on dengue

fever in Taiwan Climate Change, 92, 123-140

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  51  

Victoriano, A.F.B., Smythe, L.D., Gloriani-Barzaga, N.,

Cavinta, L.L., Kasai, T., Limpakarnjanarat, K., Ong,

B.L.,Gongal, G., Hall, J., Coulombe, C.A., Yanagihara, Y.,

Yoshida, S. & Adler, B.

2009 Leptospirosis in the Asia Pacific region BMC Infectious Diseases, 9, 147

Villanueva , S.Y.A.M., Ezoe, H., Baterna, R.A., Yanagihara, Y., Muto, M., Koizumi, N., Fukui,

T., Okamoto, Y., Masuzawa, T., Cavinta, L.L., Gloriani, N.G. and

Yoshida, S.

2010 Serologic and Molecular Studies of Leptospira and Leptospirosis among Rats in the Philippines

The American Journal of Tropical Medicine and Hygiene, 82(5), 889-898

Watkiss, P. & Hunt, A. 2012 Projection of economic impacts of climate change in sectors of Europe based on bottom up analysis:

human health Climate Change, 112, 101-126

WHO 2003 Climate Change and Human Health – Risks and Responses World Health Organization (WHO), France

Yusuf, S. Nabeshima, K. & Ha, W. 2007 Income and Health in Cities: the Messages from

Stylized Facts Journal of Urban Health, 84(1), 135-141

SOCIAL SECTOR

AUTHOR YEAR TITLE SOURCE

Adger, W. N. 2000 Social and ecological resilience: are they related? Progress in Human Geography, 24(3), 347-

364.

Bankoff, G. 2003

Constructing Vulnerability: The Historical, Natural and Social Generation of Flooding in

Metropolitan Manila Disasters, 27(3), 224-238 Marshall N.A., Marshall P.A.,

Tamelander J., Obura D., Malleret-King D. and Cinner

J.E.

2009 A Framework for Social Adaptation to Climate Change; Sustaining Tropical Coastal

Communities and Industries http://data.iucn.org/dbtw-wpd/edocs/2010-022.pdf

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  52  

Porio, E. 2011

Vulnerability, Adaptation, and Resilience to Floods and Climate Change-Related Risks among Marginal, Riverine Communities in

Metro Manila Asian Journal of Social Science, 39(4), 425-

445

Sperling, F., & Szekely, F. 2005

Disaster Risk Management in a Changing Climate. Discussion Paper prepared for the World Conference on Distaster Reduction on

behalf of the Vulnerability and Adaptation Resource Group (VARG)

http://www.preventionweb.net/files/7788_DRMinachangingclimate1.pdf

Stanley, J. 2009 Promoting social inclusion in adaptation to

climate change: Discussion paper

http://monash.edu/research/sustainability-institute/assets/documents/promoting_social_inclusion_in_adaptation_to_climate_change_final.pdf

UN-HABITAT

2008 CITIES AND CLIMATE CHANGE ADAPTATION

http://www.unhabitat.org/downloads/docs/5883_19704_Cities%20and%20Climate%20Change%20Adaptation.pdf

Yumul, G., Cruz, N., Servando, N., Servando, N., & Dimalanta,

C. 2011

Extreme weather events and related disasters in the

Philippines, 2004-08: a sign of what climate change will mean? Disasters, 35(2), 362-382

ECONOMIC SECTOR

AUTHOR YEAR TITLE SOURCE

Hallegatte, S., Henriet, F., & Corfee-Morlot, J 2008

The economics of climate change impacts and policy benefits at city scale: a conceptual

framework http://www.springerlink.com/content/f3j25203048253np/fulltext.pdf

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  53  

Hallegatte, S., Henriet, F., Patwardhan, A., Narayanan, K., Ghosh, S., Karmakar, S.,

… Naville, N. 2010

Flood Risks, Climate Change Impacts and Adaptation Benefits in Mumbai: An Initial

Assessment of Socio-Economic Consequences of Present and Climate Change Induced Flood

Risks and of Possible Adaptation Options

http://www.oecd-ilibrary.org/docserver/download/fulltext/5km4hv6wb434.pdf?expires=1346406038 &id=id&accname=guest&checksum=DF72BF49E63C9C540F500A729906CF15

Hallegatte, S., & Przyluski, V.

2010 The Economics of Natural Disasters: Concepts

and Methods

http://www-wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/2010/12/21/000158349_20101221155640/Rendered/PDF/WPS5507.pdf

Kousky, C. 2010

Informing Climate Adaptation: A Review of the Economic Costs of Natural Disasters, Their

Determinants, and Risk Reduction Options http://www.rff.org/RFF/Documents/RFF-DP-12-28.pdf

Lall, S., & Deichmann 2006 Density and Disasters: Economics of Urban

Hazard Risk http://gfdrr.org/docs/WPS5161.pdf

Muto, M., Morishita, K., & Syson, L. 2010

Impacts of Climate Change to Asian Coastal Areas: The case of Metro Manila

http://jica-ri.jica.go.jp/publication/other/impacts_of_climate_change_to_asian_coastal_areas_the_case_of_metro_manila.html

Rebecca, G., Andrew, B., & Matthias, R. 2011

Social and economic impacts of climate change on the urban environment

Current Opinion In Environmental Sustainability, 3150-157.

World Bank 2005

Philippines - Natural disaster risk management in the Philippines: enhancing poverty alleviation through disaster reduction

http://documents.worldbank.org/curated/en/2005/10/8387918/philippines-natural-disaster-risk-management-philippines-enhancing-poverty-alleviation-through-disaster-reduction

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  54  

           

Volume  2  Authors:    I.  Introduction:  C.  Kendra  Gotangco,    II.  Physical  Sector:  Gemma  Narisma,  Faye  Cruz,  Emilio  Gozo,  May  Celine  Vicente,  Patricia  Sanchez,  III.  Health  Sector:  John  Wong,  Norman  Dennis  Marquez,  IV.  Economic  Sector:  Ramon  Clarete,  Joey  Sescon,  Philip  Arnold  Tuaño,  V.  Social  Sector:  Emma  Porio,  John  Paolo  Dalupang,  Emily  Roque,  Justin  Charles  See,  VI.  Summary:  C.  Kendra  Gotangco  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  55  

Introduction  

The  “Forensic  Investigations  of  Disasters”  (FORIN)  Project  Report  was  published  by  the  Integrated  Research  on  Disaster  Risk  in  2012  to  propose  and  catalyze  a  more  “demanding  and  penetrating  approach”    (IRDR,  2011)  to  understanding  the  causes  of  disasters  and  the  drivers  of  risk  and  resilience.  This  paradigm  asserts  that  the  actual  causes  of  disasters  are  systemic,  built  into  the  structure  of  the  community  and  in  the  interactions  between  humans  and  their  environment.  Thus,  the  term  “forensic”  is  used  to  signify  research  methods  that  are  systematic  and  probing.  

The  FORIN  approach  seeks  to  respond  to  the  question,  “why,  when  so  much  more  is  known  about  the  science  of  natural  events,  including  extremes,  and  when  technological  capacity  is  so  much  stronger,  are  large-­‐‑scale  and  even  small-­‐‑  and  medium-­‐‑scale  disasters  apparently  becoming  more  frequent  and  the  losses  continuing  to  increase  at  a  rapid  rate  (IRDR,  2009;  White,  Kates,  &  Burton,  2001)?”  Disasters  triggered  by  extreme  weather  events  in  particular  (e.g.  typhoons,  droughts)  are  common  in  the  Philippines,  and  with  climate  change  projected  to  affect  the  frequency  and  severity  of  extreme  weather  events,  it  becomes  all  the  more  crucial  to  be  able  to  identify  and  address  drivers  of  risk.  Climate  change  represents  a  stressor  on  development.  Therefore,  initiatives  in  planning  and  research  today  are  geared  towards  harmonize  disaster  risk  management  (DRM)  of  extreme  weather  events  with  climate  change  action  planning,  specifically,  adaptation  (CCA).  This  allows  

for  efficient  use  of  limited  resources  and  more  robust,  evidence-­‐‑based  decision-­‐‑making  over  the  short-­‐‑,  medium-­‐‑  and  long-­‐‑terms.  

The  integration  of  CCA  and  DRM  can  be  achieved  if  we  recognize  that  risk  comes  in  different  forms,  at  the  very  least:    (a)  Risks  associated  with  the  “non-­‐‑routine”  or  extreme  events  such  as  typhoons  and  the  associated  episodes  of  flooding;  and  (b)  Risks  associated  with  gradually  changing  “normals”  (Alan  Lavell,  personal  communication,  2012)  such  as  sea  level  rise,  aggravation  of  urban  stressors,  lessening  agricultural  productivity  and  other  ecosystem  changes,  decreasing  viability  of  tourist  spots,  increased  probability  of  landslides  due  to  dry  soils,  increased  incidence  of  adverse  health  impacts,  etc.  CCA  and  DRM  share  the  goals  of  reducing  risk,  but  while  the  latter  focuses  on  risk  of  the  first  type,  the  former  addresses  both  types  of  risk  (i.e.  climate  change  also  modifies  the  nature  of  extreme  weather  events  as  well  contributes  to  changing  climate  normals).  Thus,  interventions  and  strategies  that  build  capacities  to  cope  with  current  climate  variability  also  contribute  towards  enhancing  long-­‐‑term  adaptive  capacity.  

Furthermore,  any  research  on  and  proposed  solution  to  address  risk  must  also  recognize  that  risk,  of  either  type,  is  a  confluence  of  different  factors  –  the  hazard  or  physical  disturbance,  the  exposure  of  populations  and  assets,  and  the  vulnerability  (or  conversely,  adaptive  capacity)  of  the  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  56  

exposed  elements  that  makes  them  susceptible  to  the  hazard.  It  is  here  where  the  FORIN  approach  becomes  valuable  –  the  roots  of  exposure  and  vulnerability  to  hazards  are  deeply  embedded  in  the  community  history  and  development,  and  will  therefore  require  such  probing  investigation  if  they  are  to  come  to  light.  

This  document  presents  a  case  study  applying  a  CCA-­‐‑DRM  FORIN  approach  to  Metro  Manila,  implemented  under  the  Manila  Observatory  project  entitled  “Harmonizing  FORIN  for  Climate  Change  Adaptation  and  Disaster  Risk  Management  to  Develop  Multi-­‐‑sectoral  Narratives  for  Metro  Manila.”  The  FORIN  Project  Report  by  IRDR  describes  several  templates  for  constructing  in-­‐‑depth  research  projects,  which  include  the  Critical  Cause  Analysis,  Meta-­‐‑Analysis,  Longitudinal  Analysis  and  Scenario  Analysis.  (For  more  details,  please  see  the  complete  FORIN  report,  by  IRDR,  2011.)  However,  because  the  goal  of  a  forensic  investigation  is  to  analyze  and  address  the  systemic  drivers  of  risk,  such  research  necessarily  requires  significant  time  and  resources.  Thus,  the  FORIN  approach  also  provides  for  a  shorter  “narrative”  template.  

The  FORIN  narrative  is  a  template  employed  here  in  a  preliminary  scoping  endeavor  for  future  more  in-­‐‑depth  and  exhaustive  forensic  investigations.  As  described  in  the  FORIN  Report,  a  narrative  “can  frame  the  broad  outlines  of  the  processes  embedded  in  the  developmental  forms  and  strategies  of  a  society  that  result  in  vulnerability  construction  and  disaster  causation  (IRDR,  2011).”  The  narrative  

format  can  help  with  identifying  gaps  in  available  data  or  previous  research,  while  also  highlighting  the  trends  and  issues  for  which  more  comprehensive  analyses  is  required.  

This  compendium  of  multi-­‐‑sectoral  narratives  contains  four  studies  of  Metro  Manila  representing  the  physical,  social,  economic  and  health  sectors.  The  physical  sector  addresses  mainly  the  hazard  component  of  risk  while  the  other  sectors  address  aspects  of  exposure  and  vulnerability  in  more  details.  Each  narrative  is  structured  as  appropriate  for  that  particular  sector,  but  all  are  developed  so  as  to  contain  two  basic  parts  –  a  description  of  the  approach,  and  the  application  to  the  context  of  Metro  Manila.  The  description  of  the  approach  includes  a  discussion  of  how  the  proposed  general  CCA-­‐‑DRM  FORIN  framework  is  concretely  operationalized  in  the  sector,  and  a  discussion  of  the  sectoral  dimensions  of  risk  (given  the  two  categories  of  risk  and  the  components  of  risk  discussed  previously).  This  section  also  identified  connections  and  interfaces  with  other  sectors  in  the  study  of  risk  and  resilience.  

The  application  of  the  framework  to  Metro  Manila  includes  a  contextualization  to  frame  the  Metro  Manila  experience  within  the  larger  context  of  developments  (e.g.  national  trends),  and  a  discussion  of  the  evolution  of  risk  in  Metro  Manila.  This  section  is  longitudinal  in  nature,  tracing  historical,  current  and  if  possible,  projected  components  of  risk.    It  applies  the  CCA-­‐‑DRM  FORIN  framework  to  analyze  the  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  57  

factors  driving  the  levels  and  distribution  of  risk.  

Following  the  narratives  is  a  brief  integration  that  summarizes  common  themes  and  critical  processes,  and  discusses  

challenges  and  lessons  learned  from  the  multi-­‐‑sectoral  scoping  process.  A  more  detailed  discussion  of  the  proposed  CCA-­‐‑DRM  FORIN  approach  can  be  found  in  Volume  1  of  the  project  output  documents.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  58  

References  

Integrated  Research  on  Disaster  Risk.  (2011).  Forensic  investigations  of  disasters:  The  FORIN  Project  (IRDR  FORIN  Publication  No.  1).  Beijing:  Integrated  Research  on  Disaster  Risk.  

Integrated  Research  on  Disaster  Risk.  (2009).  Report  of  the  ad  hoc  working  group,  IRDR  Forensic  Investigations.  Toronto:  International  Council  for  Science.  

White,  G.  F.,  Kates,  R.  W.,  &  Burton,  I.  (2001).  Knowing  better  and  losing  even  more:  The  use  of  knowledge  in  hazards  management.  Environmental  Hazards,  3(3-­‐‑4),  81-­‐‑92.  

 

 

 

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  59  

Chapter  1:  Increasing  risk  to  disasters  due  to  the  effects  of  climate  change  and  urban  development  

Framework  and  Approach  to  CCA-­‐‑DRM  FORIN  in  the  Physical  Sector  

The  narrative  of  the  Physical  Sector  and  its  role  in  Climate  Change  and  Disaster  impacts  adapts  in  general  the  fundamental  framework  and  ideas  of  the  new  special  report  of  the  Intergovernmental  Panel  on  Climate  Change  (IPCC)  on  Managing  the  Risks  of  Extreme  Events  and  Disasters  to  Advance  Climate  Change  Adaptation  (SREX,  IPCC  2012),  see  Figure  II.1.  The  framework  illustrates  the  importance  of  not  just  weather  and  climate  events  in  disaster  risk  but  also  the  role  of  non  climatic  factors  (exposure  and  vulnerability)  in  determining  the  potential  disastrous  impacts  of  weather  and  climatological  hazards.  More  

importantly,  and  relevant  to  this  narrative,  the  IPCC  SREX  framework  links  climate  change  and  disasters  to  development.    Figure    II.1  illustrates  that:  

• Pathways  to  development  dictate  greenhouse  gas  emissions  that  consequently  result  in  anthropogenic  climate  change.  

• Both  human  induced  changes  in  climate  and  natural  variability  influence  or  affect  weather  and  climate  events,  especially  extreme  weather  events.  The  IPCC  in  its  fourth  assessment  report  has  stated  that  in  globally  warmer  world,  extreme  events  are  more  likely  to  occur,  with  greater  than  90%  probability  (very  likely)  for  more  frequent  and  heavy  precipitation  events  (Adger  et  al.,  2007).    

• The  risk  to  disasters,  which  is  the  

Figure  II.1.    Disaster  risk  framework  in  the  IPCC  Special  Report  on  Extreme  Events  (IPCC  2012).    (Figure  taken  from  IPCC  2012).  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  60  

compounding  effect  of  hazard,  exposure,  and  vulnerability,  can  threaten  development  but  at  the  same  time,  the  way  cities  develop  affects  the  city’s  or  society’s  level  of  risk  to  the  impacts  of  extreme  events.      

This  narrative  will  hence  analyze  the  physical  hazard  in  the  risk  framework  by  first  focusing  on  the  changing  characteristics  of  weather  and  climate  extremes  and  variability  in  light  of  climate  change.    It  will  then  expound  on  the  compounding  effects  of  urban  development  to  flooding  that  increases  the  risk  to  disasters  of  urban  cities  to  the  extreme  weather  events.    The  discussions  will  illustrate:    

a. the  historical  impacts  of  climate  change  and  variability  on  rainfall  trends,  especially  rainfall  extremes,  as  the  main  threat  and  hazard  to  development  and;    

b. how  local  development  increases  the  risk  to  and  the  complexity  of  the  disastrous  nature  of  urban  flooding  due  

to  extreme  rainfall  events.  

Climate  change,  variability  and  extremes  and  Urbanization  The  climate  has  been  changing  locally  in  the  Philippines,  especially  in  the  urban  areas.    In  the  same  trend  as  the  global  average  temperatures,  the  average  annual  temperature  of  the  Philippines  has  also  steadily  increased  since  the  1950s.  In  particular,    urban  areas  have  shown  an  average  warming  of  about  0.8oC  from  1950-­‐‑2005  based  on  23  stations  located  in  the  different  cities  of  the  country  (including  Manila,  Baguio,  Legazpi,  Tacloban,  Mactan,  etc),  see  Figure  II.2.        

Both  changes  in  the  global  and  local  temperatures  in  the  Philippines  can  have  other  climatic  impacts  including  changes  in  rainfall  and  tropical  cyclone  characteristics.  In  particular,  rainfall  variability  in  the  Philippines  is  affected  by  local-­‐‑scale  and  synoptic  systems,  such  as  monsoons,  tropical  cyclones,  and  El  Nino  Southern  Oscillation,  and  hence  any  change  in  these  

Figure  II.2.  Average  annual  surface  temperatures  from  1951  to  2005  based  on  data  from  observation  stations  located  in  urban  areas  in  the  Philippines.    (Data:  PAGASA)  

!0.8%

!0.6%

!0.4%

!0.2%

0%

0.2%

0.4%

0.6%

0.8%

1%

1951% 1961% 1971% 1981% 1991% 2001%

Anom

aly((°C)(

Years(

Annual(surface(temperature(anomalies(from(1951(to(2005(%in(Urban(Areas((the(Philippines((

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  61  

systems  can  influence  trends  in  rainfall.      

Monsoonal  influence  on  rainfall  is  indicated  in  the  geographical  pattern  in  the  rainfall  trends.  Based  on  the  analysis  of  seasonal  total  rainfall  values  from  1951  to  1992  by  Jose  et  al.  (1996),  there  is  a  decreasing  trend  in  eastern  Luzon,  most  areas  in  Visayas  and  in  Mindanao,  which  may  be  attributed  to  changes  in  the  northeast  monsoon  (from  October  to  March),  while  a  general  increasing  trend  in  rainfall  is  found  over  western  Luzon,  particularly  during  the  southwest  monsoon  (SWM)  season  (from  April  to  September).      

However,  in  a  more  recent  analysis  of  rainfall  data  from  1961  to  2010,  Cruz  et  al.  (2012)  found  a  general  decreasing  trend  in  the  SWM  rainfall  total  and  its  spatial  variability,  particularly  in  the  western  part  of  the  Philippines.    Although,  two  out  of  nine  stations  indicated  a  very  minimal  increasing  trend  (0.008%  per  decade  in  Science  Garden  and  0.017%  per  decade  in  Iloilo),  these  trends  were  found  to  be  not  significant  (i.e.  without  statistical  confidence)  given  the  insufficient  number  of  years  of  the  dataset  used  in  the  study  (Cruz  et  al.  2012).      

The  warm  and  cold  phases  of  the  El  Niño  Southern  Oscillation  is  also  known  to  influence  seasonal  rainfall  in  the  Philippines,  wherein  drought  is  experienced  in  many  areas  during  El  Niño  years,  while  there  is  heavy  rainfall  and  flooding  during  La  Niña  years.    However,  there  can  be  a  reversal  in  the  sign  of  the  seasonal  response  of  rainfall  to  ENSO  between  boreal  summer  (from  July  to  September)  and  boreal  

autumn  (from  October  to  December)  for  both  El  Niño  and  La  Niña  years  (Lyon  et  al.,  2006).    During  the  boreal  summer  of  an  El  Niño  year,  statistically  significant  above-­‐‑median  rainfall  is  recorded  over  north  and  central  Philippines  before  the  onset  of  anomalously  dry  conditions  in  the  boreal  fall.    On  the  other  hand,  below-­‐‑median  rainfall  is  recorded  during  the  boreal  summer  of  a  La  Niña  year,  which  is  followed  by  anomalously  wet  conditions.    Lyon  et  al.  (2006)  found  that  this  rainfall  response  is  not  associated  with  the  transitions  in  ENSO  during  the  boreal  spring,  but  because  of  the  influence  of  ENSO  on  the  atmospheric  circulation  over  the  western  North  Pacific.    

While  heavy  rainfall  events  over  western  Luzon  correspond  to  strong,  moist  southwest  winds,  which  can  occur  as  early  as  May  (Moron  et  al.,  2008),  tropical  cyclones  can  also  affect  the  intensity  of  SWM  rainfall  indirectly.    Cayanan  et  al.  (2011)  found  that  the  southwesterlies  from  the  basic  monsoon  flow  can  be  either  strengthened  by  the  southwesterly  winds  generated  by  tropical  cyclones  located  over  northeast  of  Luzon,  or  be  converged  with  the  northwesterlies  generated  by  tropical  cyclones  located  over  north  or  north-­‐‑northwest  of  Luzon.    These  winds  interact  with  the  Cordillera  Mountain  ranges  along  western  Luzon  resulting  to  enhanced  vertical  motion  leading  to  heavy  rainfall  over  western  Luzon  (Cayanan  et  al.,  2011).  

Heavy  rainfall  can  also  be  directly  associated  with  tropical  cyclones,  which  can  have  destructive  impacts  (Ribera  et  al.,  2008).    Typhoons  within  the  vicinity  of  the  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  62  

Philippines  have  a  maximum  occurrence  during  August  and  September,  followed  by  July  and  October  with  the  few  events  between  January  and  March  (Ho  et  al.,  2004;  Ribera  et  al.,  2005).    The  highest  passage  frequency  of  typhoons  occurs  over  the  northern  and  northeastern  part  of  Luzon.    However,  there  have  been  some  observed  recent  changes  in  these  tracks.    Ho  et  al.  (2004)  found  a  significant  decrease  in  the  typhoon  passage  frequency  over  the  Philippine  Sea  and  East  China  Sea  with  a  slight  increase  over  the  South  China  Sea.    The  interdecadal  variations  of  typhoon  tracks  during  the  boreal  summer  reveal  that  the  major  shift  started  in  the  late  1970s  over  the  East  and  South  China  Sea  whereas  a  constant  rate  of  about  -­‐‑9%  per  decade  can  be  seen  over  the  Philippine  Sea  (Ho  et  al.,  2004).    These  changes  can  be  attributed  with  the  westward  expansion  of  the  subtropical  northwestern  Pacific  high  (Ho  et  al.,  2004).    Similarly,  the  analysis  of  Wu  et  al.  (2005)  reveals  a  substantial  westward  shift  in  the  two  prevailing  typhoon  tracks  in  the  Western  North  Pacific,  possibly  due  to  the  change  in  the  mean  translation  velocity  of  typhoons  and  the  large-­‐‑scale  steering  flow,  

causing  an  increased  influence  over  the  Subtropical  East  Asia.    In  terms  of  tropical  cyclone  landfall  numbers  in  the  Philippines,  while  no  long-­‐‑term  interdecadal  trend  is  found,  annual  landfall  numbers  is  observed  to  decrease  (increase)  in  El  Nino  (La  Nina)  years  during  low  Pacific  Decadal  Oscillation  phase  (Kubota  and  Chan,  2009).      

Preliminary  analysis  of  archival  data  together  with  more  recent  typhoon  tracks  data  from  the  Joint  Typhoon  Warning  Center  (JTWC),  appear  to  indicate  a  clear  increase  in  the  number  of  tropical  cyclones  (TCs)  forming  in  the  Western  Pacific  Region  (Formation,  blue  line),  an  increase  in  the  TCs  approaching  or  within  the  Philippine  Area  of  Responsibility  (Approach,  green  line),  and  slight  increase  in  the  TCs  that  make  landfall  in  the  Philippines  (Landfall,  red  line).  It  is  noted  though  that  the  methodology  for  documenting  the  tracks  of  the  TCs  before  the  second  world  war  in  the  early  1940s  ,  and  as  reflected  in  the  TC  counts  in  the  Manila  Observatory  Archival  records,  will  most  likely  be  different  from  the  current  systems  of  tracking  TCs.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  63  

Table  II.1.  Eleven  of  the  most  destructive  typhoons  in  the  Philippines  from  1947-­‐‑2009;  (Data  taken  from  typhoon2000.com,  except  for  Sendong  estimates.)    

NAME YEAR HIGHEST WIND SPEED (KPH)

DEATHS DAMAGE (Php B)

1 Rosing 1995 260 936 11 2 Reming 2006 320 754 5 3 Frank 2008 172 938 13 4 Uring 1991 95 5101 1 5 Pepeng 2009 120 492 27 6 Ondoy 2009 85 464 11 7 Nitang 1984 220 1363 4 8 Ruping 1990 220 748 11 9 Sisang 1987 240 979 1

10 Sening 1970 275 768 2 Sendong 2011 ~100 ~1000+ ~1

Figure  II.4.  Number  of  typhoons  that  a)  form  in  the  Western  Pacific  Region  (blue);  b)  approach  and  are  within  the  Philippine  Area  of  Responsibility  (green);  and  c)  make  landfall  in  the  Philippines  (red)  from  1941-­‐‑2011  based  on  from  the  JTWC  best  track.  

0"

10"

20"

30"

40"

1945" 1955" 1965" 1975" 1985" 1995" 2005"

Num

ber'

Forma+on'

Approach'

Landfall'

Tropical  Cyclone  Formation,  Approach,  and  Landfall  (1945-­‐‑2011)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  64  

Table  II.2.  Top  10  Natural  Disasters  in  the  Philippines  from  1900-­‐‑2012  sorted  by  the  number  of  people  affected.  (Table  taken  from  http://www.emdat.be/result-­‐‑country-­‐‑profile;  EM-­‐‑DAT:  The  OFDA/CRED  International  Disaster  Database.)  

Hence,  declining  trends  in  the  passage  of  tropical  cyclones  across  the  Philippines  and  within  the  Philippine  area  of  responsibility  are  not  indicative  of  the  resulting  disasters  due  to  these  extreme  events.  This  

emphasizes  the  importance  of  investigating  the  nature  of  the  hazard  and  the  nature  of  the  exposed  and  vulnerable  elements  to  the  hazard.  On  the  characterization  of  the  weather  hazard,  for  example,  there  is  a  shift  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  65  

now  in  the  warning  system  of  the  Philippine  Weather  Bureau  (PAGASA)  from  a  purely  wind  strength  based  warning  to  a  system  that  incorporates  rainfall  warning  signals.  This  is  a  response  to  the  fact,  which  was  noted  earlier,  that  the  more  recent  “slow-­‐‑moving”  storms,  with  wind  speeds  of  about  85-­‐‑100kph,  were  disastrous  because  of  the  extreme  amount  of  rainfall  associated  with  the  tropical  cyclones.  Figure  II.5  shows  that  PAGASA  rainfall  warning  signals  that  range  from  a  yellow  warning  (flooding  is  possible);  orange  warning  (flooding  is  threatening);  and  red  warning  (serious  flooding  is  expected  in  low  lying  areas  and  hence  evacuation  measures  should  be  implemented).  

Equally  important  to  characterizing  the  changing  nature  of  the  weather  hazard  is  understanding  the  nature  of  the  exposed  elements  and  how  these  have  evolved  through  time,  especially  with  urban  growth,  development,  and  expansion.    This  narrative  will  not  deal  with  the  socio-­‐‑economic  variables  related  to  exposure  and  vulnerability.    Rather,  it  assesses  urban  exposure  in  terms  of  the  secondary  consequence  of  physical  urban  morphology  changes  that  affect  in  turn  the  crucial  translation  of  extreme  rainfall  events  into  

the  secondary  and  potentially  disastrous  impacts  of  flooding.    

It  is  important  to  understand  the  impact  of  urbanization  on  surface  hydrology,  particularly  since  the  growth  of  urban  areas  is  often  accompanied  by  increased  incidences  of  flooding  (Bankoff,  2003;  Shi  et  al.,  2007).    Heavy  rainfall  events  also  tend  to  be  more  frequent  over  urban  areas  compared  to  rural  areas  (Kishtawal  et  al.  2009).  The  conversion  of  lands  to  urban  areas  results  in  changes  in  the  characteristics  of  the  land  surface,  which  affect  the  local  climate,  including  the  surface  temperature,  surface  moisture  availability  and  runoff  (Carlson  and  Arthur,  2000).    Paved  and  concrete  roads  and  drainage  systems  increase  surface  impermeability  and  divert  natural  flows  leading  to  changes  in  surface  runoff  (Booth,  1991).  Further,  urbanization  can  intensify  flood  hazard  because  the  high  impermeability  of  urban  surfaces  can  result  in  more  surface  runoff,  faster  runoff  confluence  times  and  high  maximum  flood  discharge  (Shi  et  al.,  2007).    The  evolution  of  development  therefore  can  potentially  compound  the  impacts  of  extreme  weather  events,  especially  flooding.      

Figure  II.5.  Rainfall  warning  system  of  the  PAGASA.    (Image  taken  from:  http://newsinfo.inquirer.net/files/2012/08/color-­‐‑code-­‐‑warning-­‐‑signal.jpg)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  66  

Hence,  in  light  of  climate  change  increasing  the  probability  of  occurrence  of  extreme  rainfall  events,  it  is  important  to  include  in  disaster  risk  analysis  the  compounding  effects  of  urban  development  to  the  secondary  impacts  of  flooding.    Together  with  analyzing  variability  and  trends  in  changes  in  temperature  and  rainfall,  the  evolution  and  trends  of  urban  growth  and  expansion  should  also  be  studied.  Figure  II.6  shows  the  more  detailed  framework  for  the  Physical  Sector,  which  builds  on  the  concept  on  how  urban  development  can  compound  the  effects  of  extreme  rainfall  events  and  increasing  the  risk  to  disastrous  flooding.    Climate  change  will  affect  long  term  trends  in  temperature  and  rainfall.    These  changes  will  affect  the  probability  of  flood  events  in  cities  as  an  increasing  trend  in  rainfall  can  produce  “new  normals”  or  new  averages.  Return  periods  of  rainfall  extremes  can,  in  time,  change  such  that  

previous  50  or  100  return  period  rainfall  events  can  happen  at  more  frequent  

intervals  of  less  than  50  years.  Extreme  events  are  then  more  likely  to  occur,  leading  to  higher  risk  to  disasters.  But  the  increasing  risk  is  not  solely  due  to  changing  climate  but  also  to  the  changing  nature  of  the  urban  landscape.    Unplanned  and  disorganized  urban  development  and  expansion  can  lead  to  the  narrowing  of  rivers  and  waterways  that  can  hamper  the  flow  of  water  through  cities  to  the  bay  and  hence  leading  to  higher  potential  for  city  flooding.  Urbanization  also  increases  paved  areas,  which  reduces  water  infiltration  to  the  ground,  and  can  also  increase  the  speed  of  water  runoff.    Watershed  deforestation  decreases  the  ability  of  the  ground  to  absorb  and  hold  water  and  also  causes  river  siltation,  thereby  decreasing  the  depth  of  waterways  through  time.  These  factors  increase  the  complexity  of  flooding  in  urban  cities  and  increases  the  risk  to  disastrous  impacts  of  flooding  due  to  extreme  weather  events.  

Interfaces  with  Other  Sectors  Based  on  the  framework  in  Figure  II.1,  the  physical  sector  provides  input  to  the  analyses  in  the  economic,  social,  and  health  sectors.    These  other  sectors  tackle  more  the  aspects  of  exposure  and  vulnerabilities  where  economic  variables  can  be  indicators  of  development  and  hence  exposure  either  in  terms  of  infrastructure  or  people  or  both.    The  social  and  health  sectors  on  the  hand  will  illustrate  crucial  information  and  indicators  of  human  and  societal  vulnerabilities    that  can  increase  the  risk  to  disasters.  

Application  to  Metro  Manila  

Figure  II.6.    Climate  change  and  extreme  weather  events  lead  to  higher  risks  to  flooding  but  complex  and  unplanned  urban  development  can  compound  flooding  impacts  and  further  increases  the  risk  to  disasters.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  67  

Contextualization  

Geography  and  Demographics   Metro  Manila,  also  known  as  the  National  Capital  Region,  is  the  country’s  financial  and  economic  center.  It  covers  636  square  kilometers  of  land  that  sits  on  a  “semi  alluvial  flood  plain  formed  by  sediments  

flowing  from  the  Meycauayan  and  Malabon-­‐‑Tullahan  river  basins”  (Bankoff  2003).  It  has  a  tropical  wet  and  dry  climate/tropical  savanna  climate  (WWF  2009).  Inhabited  by  more  than  11.8  million  people  (NSO  2010),  it  is  one  of  the  most  populated  coastal  megacities  in  Asia,  see  Table  3.    

Table  II.3.  Population  and  area  of  the  major  coastal  cities  in  Asia.  

Megacity Population (in millions)

Area (sq. km)

Dhaka, Bangladesh 13 154 Jakarta, Indonesia 8.5 662 Metro Manila, Philippines 11.8a 636 Calcutta, India 15 1886b Phnom Penh, Cambodia 2 375 Ho Chi Minh, Vietnam 9 2095c Shanghai, China 20 6400 Bangkok, Thailand (including Greater Bangkok)

12 1500

Hong Kong, China 7 1100 Kuala Lumpur, Malaysia (including Klang Valley)

7.2 244

Singapore, Rep. of Singapore 4.7 710 Source: Mega-Stress for Mega-Cities: WWF 2009 a NSO 2010 b Kolkata Metropolitan Development Authority c wikipedia.org

Climate  Vulnerability  Through  the  years,  Metro  Manila  has  been  a  passing  point  of  tropical  cyclones  that  cross  the  archipelago.  According  to  Bankoff  (2003),  two  of  at  least  five  identified  main  typhoon  tracks  are  in  NCR:  one  that  crosses  to  the  north  of  Manila,  one  that  traverses  south  of  the  capital.  A  study  made  by  the  World  Wildlife  Fund  on    “Mega-­‐‑Stress  for  Mega-­‐‑Cities”  analyzed  the  ranking  of  major  coastal  cities  in  Asia,  including  Metro  Manila,  in  terms  of  climate  vulnerability.  

The  study  collected  information  that  are  mostly  sourced  from  the  IPCC’s  latest  reports,  specifically,  “Working  Group  I:  The  Physical  Science  Basis”  and  “Working  Group  II:  Impacts,  Adaptation  and  Vulnerability”.  Other  data  came  from  the  “Climate  Change  Vulnerability  Mapping  for  Southeast  Asia”  report  by  Anshory  and  Francisco  (2009).  The  criteria  used  for  ranking  was  comprised  of  three  major  categories:  environmental  exposure,  socioeconomic  sensitivity  and  adaptive  capacity.  Encompasses  in  the  environmental  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  68  

category  are  storm  threat  (which  includes  threats  from  tropical  cyclones  and  storm  surge),  sea-­‐‑level  rise  and  subsidence,  and  water-­‐‑related  threats  (whether  due  to  flooding  or  drought).  The  socioeconomic  sensitivity  variables  include  population,  wealth  (GDP)  and  contribution  to  national  

GDP.  The  adaptive  capacity  analysis  includes  existing  examples  of  capacities  and  per  capita  GDP.  Table  4  shows  that  Metro  Manila,  in  this  study,  is  ranked  third  in  terms  of  overall  vulnerability  and  hence  has  higher  risk  to  disaster  and  climate  change  impacts.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  69  

Table  II.4.  Ranking  of  overall  vulnerability  of  megacities  in  Asia  based  on  environmental  exposure,  socioeconomic  sensitivity  and  adaptive  capacity.    

Megacity Overall Vulnerability

Environmental Exposure (Storm Threat, Sea-level

Rise, Flooding/Drought)

Socioeconomic Sensitivity

(Population, Assets Threatened)

Inverse Adaptive Capacity

Dhaka, Bangladesh 9 8 [(4+9+10)/3] 8 [(6+10)/2] 10 Jakarta, Indonesia 8 6 [(2+8+9)/3] 10 [(10+9)/2] 7 Metro Manila, Philippines 8 9 [(10+8+1/3)] 7 [(5+9)/2] 7 Calcutta, India 7 6 [(3+8+7)/3] 7 [(7+6)/2] 7 Phnom Penh, Cambodia 7 4 [(2+1+10)/3] 6 [(1+10)/2] 10 Ho Chi Minh, Vietnam 6 8 [(6+10+3)/3] 6 [(4+7)/2] 3 Shanghai, China 6 8 [(7+10+7)/3] 9 [(9+8)/2] 2 Bangkok, Thailand (including Greater Bangkok)

5 5 [(2+7+7)/3] 7 [(5+9)/2] 4

Hong Kong, China 4 7 [(7+7+6)/3] 6 [(3+8)/2] 1 Kuala Lumpur, Malaysia (including Klang Valley)

4 3 [(1+1+7)/3] 5 [(3+7)/2] 3

Singapore, Rep. of Singapore

4 4 [(1+6+5)/3] 6 [(2+10)/2] 1

Note: Some figures are rounded up. Source: Mega-Stress for Mega-Cities: WWF 2009

Evolution  of  Risk  in  Metro  Manila  The  historical  tracing  of  changes  and  developments  that  has  increased  the  risk  of  Metro  Manila  to  the  potentially  disastrous  effects  of  extreme  weather  events  and  climate  will  focus  on  how  urban  growth  in  and  expansion  of  the  city  has  progressed  rapidly  within  the  last  decades.  

Urbanization  Expansion:  Pervious  vs.  Impervious  Estimates  The  evolution  of  urban  morphology  and  development  is  assessed  through  primary  satellite-­‐‑based  data  analysis.  As  mentioned  earlier,  urbanization  has  an  undoubted  relationship  with  the  way  land  is  utilized.  Here,  for  the  case  of  Metro  Manila,  the  changing  character  of  land  use  is  reflected  

in  the  ratio  between  pervious  and  impervious,  which  has  rapidly  changed  since  the  1970s.    The  spread  of  paved  areas  in  the  city  was  analyzed  using  five  multi-­‐‑date  Landsat  images  that  were  processed  using  different  RS  techniques  such  as  image  classification  (maximum  likelihood)  and  

Figure II.7. Satellite image analysis show the decreasing ratio between urban and vegetated areas through time.

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  70  

masking.  The  final  layout  was  done  through  GIS  spatial  mapping  (del  Castillo  et  al.,  2012).  Initial  results,  Figure  7,  show  that  through  the  years,  the  total  area  of  impervious  surfaces  such  as  residential,  commercial  and  industrial  regions  have  continued  to  rise  while  forest  lands  and  other  vegetated  regions  (considered  as  pervious  areas)  have  continuously  decreased.  In  1972,  more  than  50%  of  the  area  of  Metro  Manila  (~301  sq.  km  of  land)  were  vegetated,  including  agricultural  areas  and  bare  land.  The  remaining  part  comprised  of  various  impervious  surfaces  (residential,  commercial  and  industrial  areas)  had  a  total  of  239  sq.  km.  In  7  years,  vegetation  dropped  to  238  sq.  km  while  impervious  surfaces  rose  to  329  sq.  km  (~60%).  After  a  decade,  only  174  sq.  km  (30%)  of  land  remained  vegetated  and  impervious  surfaces  increased  to  455  sq.  km  (70%).  In  1999,  only  115  sq.  km  (>21%)  of  land  remained  permeable/vegetated  and  

impervious  areas  continued  to  rise  to  455  sq.  km.  By  2009,  areas  with  vegetation  have  decreased  to  about  20%  and  approximately  80%  of  the  city  is  considered  urban  and  can  be  characterized  mostly  by  impervious  surfaces.    Only  107  sq.  km  (<20%)  of  land  was  permeable/vegetated  while  impervious  areas  had  a  total  of  475  sq.  km.  

Climate  Change  and  Extremes  in  Metro  Manila  As  Metro  Manila,  grew  and  expanded,  the  local  climate  has  also  been  changing.    The  PAGASA  station  data  in  Science  Garden,  Quezon  City  are  analyzed  for  indicators  of  local  climate  changes  in  the  metropolis.    Results  show  that  the  average  temperature  has,  in  general,  steadily  increased  since  the  1980s,  Figure  II.8.      The  city  has  been  warmer  than  normal  in  the  past  30  years.  This  can  be  both  due  to  global  warming  and  the  urban  heat  island  effect.  

Figure II.8. Average temperature recorded in the Science Garden station of PAGASA in Metro Manila shows a steady increase since the 1980s. (Data: PAGASA)

y"="0.0319x"*"0.5085"

*1.5"

*1"

*0.5"

0"

0.5"

1"

1.5"

1961" 1966" 1971" 1976" 1981" 1986" 1991" 1996" 2001"

Mean%Tempe

rature%ano

maly%(°C)%

Years%

Temperature%anomaly%rela5ve%to%1961:1990%baseline%%(with%5:year%running%mean)%

Science%Garden%

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  71  

Rainfall  trends  have  also  changed  and  observation  data  indicate  that  the  recent  decades  have  been  wetter  than  normal.    Figure  II.9  shows  the  annual  precipitation  ratio  (relative  to  the  1961-­‐‑1990  climate).  The  blue  bars  in  the  figure  denote  the  times  when  the  year  had  more  rain  than  the  climatological  average.  For  example,  2011  had  rainfall  that  was  about  more  than  50%  of  the  average  rainfall  that  the  station  in  Science  Garden  normally  receives.    Since  the  1980s,  the  precipitation  ratios  show  that  more  years  have  rainfall  that  were  higher  than  average.    This  suggests  that  there  has  been  a  general  increasing  trend  in  rainfall  in  Metro  Manila.    It  is  noted  though  that  results  are  still  to  be  tested  for  statistical  significance  and  that  more  data  might  be  needed  for  better  confidence  in  the  trends  analysis.  

The  wetter  characteristic  of  the  recent  decades  appear  to  be  supported  by  the  decadal  trends  of  rainfall  during  the  

southwest  monsoon  (SWM)  season,  or  the  rainy  season  during  the  months  of  June-­‐‑October.    Figure  II.10  shows  that  beginning  in  the  1980s,  the  SWM  season  had  more  rains  than  normal,  (as  indicated  by  the  linear  (increasing)  trendlines  in  the  figure).  Hence,  both  the  annual  precipitation  ratios  and  the  decadal  trends  of  the  SWM  rainfall  indicate  wetter  conditions  in  Metro  Manila.    

It  is  important  to  examine  the  nature  of  the  increasing  trend  in  rainfall,  i.e.  specifically,  whether  embedded  in  the  trend  is  a  signal  that  indicates  an  increase  in  the  frequency  of  extreme  rainfall  events,  which  is  the  primary  driver  for  heavy  flooding.  In  this  study,  this  is  done  by  analyzing  the  decadal  trends  in  the  90th  and  95th  percentile  of  rainfall  amounts  (i.e.  the  heavier  rainfall  amounts).  Results  show  that  the  number  of  days  when  these  heavier  rainfall  amounts  occur  have  been  increasing  through  the  decades  from  the  1960s  to  the  2000s,  see  Figure  II.10.  Therefore,  rainfall  change  in  

Figure  II.9.    Annual  precipitation  ratio  (relative  to  the  1961-­‐‑1990  baseline)  show  that  the  recent  decades  have  been  wetter  than  normal.  (Data:  Science  Garden  Station,  PAGASA)  

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1961" 1971" 1981" 1991" 2001" 2011"

Ra#o

%(%)%

Year%

Annual%precipita#on%ra#o%(rela#ve%to%the%196191990%baseline)%Science%Garden%

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  72  

Metro  Manila  in  the  last  50  years  point  to  average  wetter  conditions,  higher  amounts  of  rainfall  during  the  rainy  months  of  the  

SWM  season,  and  an  increase  in  the  occurrence  of  the  heavier  rainfall  events.  

 

Decadal trends of southwest monsoon rainfall

Figure  II.10.    Decadal  trends  of  rainfall  during  the  Southwest  Monsoon  Season.  (Data:  Science  Garden  Station,  PAGASA)  

Figure  II.11.    Frequency  of  events  of  the  90th  and  95th  rainfall  percentile.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  73  

In  the  previous  section,  it  was  mentioned  that,  considering  only  the  period  of  1945-­‐‑2011,  there  is  a  slight  decline  in  the  number  of  tropical  cyclones  that  made  landfall  and  that  approached  or  entered  the  Philippine  area  of  responsibility.  Here,  the  number  of  TCs  that  cross  within  a  600km  radius  from  the  center  of  Metro  Manila  is  analyzed.    Further,  the  TCs  are  categorized  according  to  intensity  based  on  the  classification  by  the  Joint  Typhoon  Warning  Center:  tropical  depression  (intensity  <  63kph),  tropical  storm  (63kph<intensity<117kph),  typhoon  (118kph<intensity<239kph),  and  super  typhoon  (intensity>240kph).    Results  in  Figure  II.12  show  that  there  appears  to  be  no  clear  trend  in  the  behavior  of  the  different  categories  of  TCs.    Although  a  closer  study  of  trendlines  would  show  that  the  number  of  tropical  depression  events  have  increased    through  the  decades  while  the  other  categories  show  very  slight  declining  trends  in  frequency.  Overall,  the  total  number  of  TCs  show  a  slight  increasing  trend  since  the  1960s.  

The  amount  of  rainfall  associated  with  tropical  cyclones  is  next  analyzed  by  getting  

the  ratio  between  the  total  amount  of  rainfall  (per  category)  and  the  number  of  events  (per  category).    In  this  way,  the  average  precipitation  per  each  event  (of  a  category)  is  obtained  and  hence  indicates  the  “intensity”  of  the  rain  associated  with  the  TC.  For  example,  a  total  of  1000mm  of  rainfall  associated  with  four  typhoon  events  will  give  a  ratio  of  250mm/typhoon.    On  the  other  hand,  there  will  be  less  “intense”  rainfall  associated  with  TCs  if  there  is  a  total  of  1000mm  of  rainfall  for  10  typhoon  events,  resulting  in  a  ratio  of  100mm/typhoon.  

Figure  II.13  shows  that  the  rainfall  ratios  (with  the  number  of  TCs)  for  the  slow  moving  categories  of  tropical  depression  and  tropical  storm  have  been  increasing  from  the  1990s  to  the  2000s.    On  the  other  hand,  the  average  rainfall  associated  for  each  event  of  typhoons  and  super  typhoons  has  been  slightly  decreasing.    Hence,  in  recent  decades,  the  slow  moving  TCs  have  been  bringing  more  rain.  In  particular,  tropical  depression  and  tropical  storms  had  more  rain  than  typhoons  in  the  2000s.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  74  

Figure II.12. Number of tropical cyclones that cross within a 600 km radius from Metro Manila,

classified according to the different categories of the JTWC.

Figure II.13. Ratio between the total rainfall associated with each tropical cyclone category and the total

number of events per category.

0 20 40 60 80

100 120 140 160 180

1961-1970 1971-1980 1981-1990 1991-2000 2001-2010 Num

ber

of T

ropi

cal C

yclo

nes

Years

Number of Tropical Cyclones crossing within a 600 km radius from lat=14.58 and lon=121

Tropical Depression Tropical Storm Typhoon Super Typhoon

0

5

10

15

20

25

30

35

1961-1970 1971-1980 1981-1990 1991-2000 2001-2010

mm

/TC

Years

Ratio of total rainfall (associated with TC) with number of TCs

Tropical Depression Tropical Storm Typhoon Super Typhoon

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  75  

Compounding  effects  of  increasing  rainfall  and  urban  expansion  in  Metro  Manila  The  general  increasing  trend  in  rainfall,  the  wetter  conditions  during  the  southwest  monsoon  season,  and  the  greater  amount  of  rainfall  associated  with  slower  moving  tropical  cyclones  all  indicate  that  Metro  Manila  is  facing  an  increasing  hazard  in  terms  of  a  new  wetter  “normal”  for  rainfall  and  the  more  frequent  occurrence  of  extreme  rainfall  events,  which  are  both  indicators  of  a  changing  climate.  Together  with  these  climatic  and  extremes  changes,  the  landscape  of  the  metropolis  has  also  changed,  with  impervious  surfaces  replacing  more  and  more  of  the  porous  soils  associated  with  natural  vegetation  areas.  Development  has  also  resulted  in  the  narrowing  of  river  channels,  lost  esteros  and  waterways,  the  siltation  of  rivers  due  to  watershed  deforestation,  land  subsidence,  all  of  which  greatly  increases  the  potential  for  flooding  in  Metro  Manila.    

Bankoff  (2003)  has  linked  the  increase  in  flood  incidence  in  Metro  Manila  not  just  to  climatic  patterns  and  topography  but  also  to  the  pattern  of  urban  development.  Similarly,  Zoleta-­‐‑Nantes  (2000)  identifies  the  increase  in  impervious  areas,  the  encroachment  of  floodplains  and  waterways,  increase  in  run-­‐‑off  due  to  watershed  denudation  as  major  reasons  on  why  urbanization  contributes  to  severe  flooding.  Both  Bankoff  (2003)  amd  Zoleta-­‐‑Nantes  (2000)  illustrated  timelines  on  the  evolving  nature  of  flooding  in  Metro  Manila.  Figure  II.14  shows  the  sequence  of  events  from  Bankoff  (2003)  coupled  with  the  analysis  on  the  observed  trend  in  rainfall  

and  development.  Interestingly,  Bankoff  (2003)  shows  that  severity  in  flooding  has  already  begun  in  the  1960s  because  of  the  deforestation  of  the  Marikina  and  Montalban  watersheds.  By  the  1970s  and  onward,  siltation,  urban  expansion  to  the  west  (areas  of  Cainta,  Pasig,  Pateros,  and  Taguig),  siltation  of  Laguna  Lake  further  exacerbated  flood  potential  and  impacts.  It  is  also  shown  in  Figure  II.14  that  the  timeline  of  the  increasing  number  of  factors  that  lead  to  more  serious  flooding  coincide  with  the  changing  landscape  as  observed  in  the  satellite  image  analysis  and  the  increasing  trends  in  rainfall  beginning  in  the  1980s.  The  chronology  of  expansion  of  flooded  areas  documented  by  Zoleta-­‐‑Nantes  (2000)  also  correlate  well  with  the  satellite-­‐‑based  urban  expansion  patterns.  In  the  1960s-­‐‑1970s,  according  to  Zoleta-­‐‑Nantes  (2000),  flooding  expanded  to  Manila,  Quezon  City,  Pasay,  San  Juan,  and  Caloocan.    These  are  also  the  urban  areas  identified  in  the  image  analysis.    Moreover,  flooding  further  expanded  to  the  low-­‐‑lying  areas  of  Pasig,  Marikina,  Taguig,  and  Pateros  (Zoleta-­‐‑Nantes,  2000),  which  are  also  the  areas  of  urban  expansion  in  the  1980s.  

Current  and  Projected  Risk  to  Flooding  Tropical  Storm  Ketsana  in  2009  was  a  clear  illustration  of  how  disastrous  flooding  can  be  in  Metro  Manila  due  to  the  extreme  weather  event  and  the  complex  nature  of  development  that  compounded  the  effects  of  the  heavy  precipitation.  Metro  Manila  is  at  high  risk  to  flooding  because  of  the  increasing  nature  of  the  hazards,  which  are  primarily  the  extreme  rainfall  and  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  76  

secondarily  the  translation  of  heavy  precipitation  into  ground  flooding.  Because  of  the  way  Metro  Manila  has  developed,  the  city  has  now  a  lower  threshold  for  rainfall  amounts  that  could  result  into  heavy  and  disastrous  flooding.  

Climate  change  projections  over  the  Philippines  using  the  A1B  scenario  of  the  ECHAM5  global  climate  model  downscaled  by  a  regional  climate  model  (RegCM3)  show  that  the  northern  parts  of  the  country,  including  Metro  Manila,  will  have  wetter  than  normal  rainfall  conditions,  Figure  II.15.    The  rest  of  the  Philippines  are  projected  to  have  a  general  decrease  in  rainfall,  

especially  Mindanao.  Further  analysis  shows  that  during  the  rainy  season,  there  can  be  an  increase  of  about  5-­‐‑20%  in  the  northwestern  regions  of  the  country,  including  Metro  Manila  and  that  the  increase  is  more  likely  to  be  due  to  the  frequent  occurrence  of  heavy  rainfall  events  (Villafuerte,  2009).  It  is  noted  though  that  these  climate  projections  are  from  a  single  regional  climate  model  driven  by  one  global  climate  model  scenario.    It  is  best  to  have  an  ensemble  of  projections  from  different  models  and  scenarios  to  better  understand  the  potential  future  changes  in  climate.  

 

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  77  

Figure  II.14.  Sequence  of  events  from  Bankoff  (2003)  coupled  with  the  analysis  on  the  observed  trend  in  rainfall  and  development.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  78  

Conclusions  and  Recommendations  

Both  climate  and  the  urban  landscape  have  changed  in  Metro  Manila  In  the  recent  decades.  There  is  a  general  increasing  trend  in  rainfall  and  also  an  increase  in  the  occurrence  of  heavier  rainfall  amounts.  Tropical  depressions  and  storms  have  also  brought  more  intense  precipitation.    

Further,  Metro  Manila  has  rapidly  grown  and  expanded  since  the  1970s.  The  climate  changes  and  unsystematic  urban  development  have  translated  into  a  greater  risk  to  flooding  that  Metro  Manila  has  been  and  is  now  facing,  and  will  continue  to  face  in  the  future,  especially  in  light  of  a  globally  warmer  world.  

The  analysis  in  the  Physical  Sector  has  illustrated  how  changes  in  climate  trends  

Figure  II.15.  Climate  change  projections  show  that  the  northern  parts  of  the  country,  including  Metro  Manila,  will  have  wetter  than  normal  rainfall  conditions  by  2020,  as  denoted  by  the  blue  colored  regions.  (Courtesy  of  the  Manila  Observatory;  Dynamic  downscaling  using  the  regional  climate  model  RegCM3A1B  driven  by  the  A1B  scenario  of  the  ECHAM5  global  climate  model.)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  79  

and  extremes  and  how  the  urbanization  factors  that  compound  flooding  have  increased  the  physical  hazard  and  consequently  have  increased  the  risk  to  disasters.  Zoleta-­‐‑Nantes  (2000)  asserted  that  flood  control  infrastructures  are  inadequate  because  the  effects  of  urbanization  are  not  incorporated  in  the  design.    This  study  highlights  this  argument  and  also  emphasizes  the  need  to  incorporate  climate  change  impacts  in  future  infrastructure  developments  to  address  city  flooding.    To  support  future  development  plans  and  mitigating  measures  to  flooding,  a  more  in  depth  scientific  analysis  on  how  Metro  

Manila  has  developed  should  be  done  with  clear  identification  and  spatial  profiling  of  existing  causes  that  exacerbate  flooding.    Although  previous  studies  have  indicated  the  general  factors  that  lead  to  more  severe  and  disastrous  flood  events,  these  can  be  supported  by  more  research  with  greater  detail  and  focus,  especially  in  the  most  vulnerable  areas,  so  as  to  form  the  basis  for  specific  policy  actions.  Climate  change  projections  should  also  be  done  using  multi-­‐‑models  and  an  ensemble  of  scenarios  to  assess  the  range  and  probabilities  of  the  climatic  impacts  over  Metro  Manila.    

References  

Adger,  N.,  et  al.  (2007).  Climate  Change  2007:  Impacts,  Adaptation  and  Vulnerability:  Summary  for  Policy  Makers,  Contribution  of  Working  Group  II  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change,  IPCC  Secretariat,  WHO  and  UNEP,  Geneva.  

Bankoff,  G.,  2003.    Constructing  vulnerability:  The  historical,  natural  and  social  generation  of  flooding  in  Metropolitan  Manila.    Disasters,  27:  95-­‐‑109.    

Booth,  D.B.,  1991.    Urbanization  and  the  Natural  Drainage  System  –  Impacts,  Solutions,  and  Prognoses.    The  Northwest  Environmental  Journal,  7:  93-­‐‑118.  

Carlson,  T.N.,  and  S.T.  Arthur,  2000.    The  impact  of  land  use  –  land  cover  changes  due  to  urbanization  on  surface  microclimate  and  hydrology:  a  satellite  perspective.    Global  and  Planetary  Change,  25:  49-­‐‑65.  

Cayanan,  E.O.,  Chen,  T.-­‐‑C.,  Argete,  J.C.,  Yen,  M.-­‐‑C.,  Nilo,  P.D.,  2011.  The  effect  of  tropical  cyclones  on  southwest  monsoon  rainfall  in  the  Philippines.  J.  Meteorol.  Soc.  Japan  89A,  123–139.  http://dx.doi.org/10.2151/jmsj.2011-­‐‑A08.  

Cruz,  F.  T.,  G.  T.  Narisma,  M.  Q.  Villafuerte  II,  K.  U.  Cheng  Chua,  L.  M.  Olaguera,  A  climatological  analysis  of  the  southwest  monsoon  rainfall  in  the  Philippines,  Atmos.  Res.  (2012),  doi:10.1016/j.atmosres.2012.06.010  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  80  

Del  Castillo,  M.F.,  Vicente,  M.C.  2012.  Historical  Land  Use  and  Land  Cover  Change  Detection  in  Metro  Manila,  Philippines  (1972-­‐‑2009)  in  prep.  for  publication  by  the  Manila  Observatory.    

Ho  C.,  J.  Baik,  J.  Kim  and  D.  Gong  (2004),  Interdecadal  Changes  in  Summertime  Typhoon  Track,  Journal  of  Climate,  17,  1767  –  1776  

IPCC,  2012:  Managing  the  Risks  of  Extreme  Events  and  Disasters  to  Advance  Climate  Change  Adaptation.  A  Special  Report  of  Working  Groups  I  and  II  of  the  Intergovernmental  Panel  on  Climate  Change  [Field,  C.B.,  V.  Barros,  T.F.  Stocker,  D.  Qin,  D.J.  Dokken,  K.L.  Ebi,  M.D.  Mastrandrea,  K.J.  Mach,  G.-­‐‑K.  Plattner,  S.K.  Allen,  M.  Tignor,  and  P.M.  Midgley  (eds.)].  Cambridge  University  Press,  Cambridge,  UK,  and  New  York,  NY,  USA,  582  pp.  

Jose,  A.M.,  Francisco,  R.V.,  Cruz,  N.A.,  1996.  A  study  on  impact  of  climate  variability/change  on  water  resources  in  the  Philippines.  Chemosphere  33,  1687–1704.  

Kishtawal,  C.M.,  D.  Niyogi,  M.  Tewari,  R.A.  Pielke,  Sr.,  and  J.M.  Shepherd,  2010.    Urbanization  signature  in  the  observed  heavy  rainfall  climatology  over  India.    International  Journal  of  Climatology,  30:  1908-­‐‑1916.  

Kubota,  H.,  and  J.  C.  L.  Chan  (2009),  Interdecadal  variability  of  tropical  cyclone  landfall  in  the  Philippines  from  1902  to  2005,  Geophys.  Res.  Lett.,  36,  L12802,  doi:10.1029/2009GL038108  

Lyon,  B.,  Cristi,  H.,  Verceles,  E.R.,  Hilario,  F.D.,  Abastillas,  R.,  2006.  Seasonal  reversal  of  the  ENSO  rainfall  signal  in  the  Philippines.  Geophys.  Res.  Lett.  33,  L24710.  http://dx.doi.org/10.1029/2006GL028182.  

Moron,  V.,  A.  Lucero,  F.  Hilario,  B.  Lyon,  A.  W.  Robertson  and  D.  DeWitt  (2008),  Spatio-­‐‑temporal  variability  and  predictability  of  summer  monsoon  onset  over  the  Philippines,  Clim.  Dyn.,  33,  1159-­‐‑1177,  doi:10.1007/s00382-­‐‑008-­‐‑0520-­‐‑5  

Ribera,  P.,  R.  García-­‐‑Herrera,  L.  Gimeno,  E.  Hernández,  2005.    Typhoons  in  the  Philippine  Islands,  1901-­‐‑1934.  Clim.  Res.,  29,  85-­‐‑90.  

Ribera,  P.,  R.  Garcia-­‐‑Herrera,  and  L.  Gimeno,  2008:    Historical  deadly  typhoons  in  the  Philippines.  Weather,  63(7),  194-­‐‑199.  

Wu,  L.,  B.  Wang,  and  S.  Geng  (2005),  Growing  typhoon  influence  on  east  Asia,  Geophys.  Res.  Letter,  32,  L18703,  doi:10.1029/2005GL022937.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  81  

Shi,  P.-­‐‑J.,  Y.  Yuan,  J.  Zheng,  J.-­‐‑A.  Wang,  Y.  Ge,  and  G.-­‐‑Y.  Qiu,  2007.    The  effect  of  land  use/cover  change  on  surface  runoff  in  Shenzhen  region,  China.    Catena,  69:  31-­‐‑35.    doi:10.1016/j.catena.2006.04.015  

Villafuerte,  M.,  2009:  The  Philippines’  Southwest  Monsoon  Season  in  the  Next  Thirty  Years:  A  Regional  Climate  Projection,  MS  Atmospheric  Science  Thesis,  Ateneo  de  Manila  University.  

Zoleta-­‐‑Nantes,  D.  (2000).  Flood  hazards  in  Metro  Manila:  Recognizing  commonalities,  differences  and  courses  of  action.  Social  Science  Diliman  ,  1  (1),  60-­‐‑105.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  82  

Chapter  2:  Tracking  the  Health  Impact  of  Climate  Change  in  Metro  Manila:  Understanding  the  Risks  on  the  Health  System  

   

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  83  

Framework  and  approach  to  CCA-­‐‑DRM  FORIN  in  the  Health  Sector  

Framework  The  recommended  framework  to  CCA-­‐‑DRM  FORIN  in  the  health  sector  is  an  epidemiological  framework.  This  framework  would  include  both  a  descriptive  and  an  analytic  component.  In  the  descriptive  component,  the  magnitude  of  the  morbidity  and  mortality  events  due  to  climate  change  and  to  extreme  events  would  be  measured  using  frequency  parameters.  The  distribution  of  these  events  would  also  be  described  in  terms  of  person,  place,  and  time  (e.g.,  who,  where,  and  when).    

Approach   1. The  main  health  outcomes  are  morbidity  and  mortality  events  associated  with  climate  

change  and  with  extreme  events.    a) Magnitude  (i.e.,  exposure)  is  the  frequency  of  an  event  over  a  period  of  time  and  may  be  

measured  as:  (1) Incidence  (for  communicable  diseases)  or  the  number  of  new  cases  per  population  at  

risk  over  a  specified  period  of  time.  The  burden  of  disease  (BOD)  due  to  climate  change  has  been  measured  (Campbell-­‐‑Lendrum  et  al,  2006).  There  are  completed  examples  for:  cardiovascular  mortality,  diarrheal  disease,  malnutrition,  natural  disaster  health  impacts,  vector-­‐‑borne  diseases.  The  procedure  consisted  of  the  following:    identification  of  health  outcomes,  quantification  of  the  dose-­‐‑response  relationship  at  baseline,  definition  of  future  exposure  scenarios,  and  estimation  of  the  BOD:  those  attributable  to  a  risk  factor  and  those  avoidable  by  plausible  reductions  in  risk  factor.  For  chronic  diseases,  prevalence  is  the  preferable  parameter,  i.e.,  the  number  of  existing  cases  per  population  over  a  specified  period  of  time.    

(2) The  magnitudes  of  health  events  due  to  climate  change  and  extreme  events  have  been  measured  in  several  studies.    (a) For  example,  Knowlton  has  developed  a  model  for  predicting  attributable  deaths  

due  to  changes  in  ozone  concentration  (Knowlton,  2004).  The  model  is  as  follows:    

M=  (P/100,000)  x  B  x  CRF  x  E    Where:  • M  =  estimated  number  of  deaths  attributable  to  O3  concentrations  • P  =  estimated  county  population  during  time  period  of  interest  • B  =  estimated  baseline  county-­‐‑level  daily  mortality  rate  in  June-­‐‑  August  (per  100,000  

population)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  84  

• CRF  =  concentration-­‐‑response  function,  which  quantifies  the  magnitude  of  the  proportional  change  in  daily  mortality  that  would  be  expected  in  response  to  a  given  daily  O3  concentrations,  based  on  results  from  epidemiologic  literature  

• E  =  daily  1-­‐‑hr  max  O3  concentrations  in  June-­‐‑August  in  each  county,  interpolated  from  Giss/MM5/CMAQ  model  outputs1  

 (b) The  WHO  has  reported  that  children  suffer  more  from  environmental  hazards  to  

health.  The  number  of  healthy  life  years  lost  by  children  is  five  times  greater  compared  to  the  total  population.  In  developing  countries,  children  lose  eight  times  more  healthy  life  years  per  capita  than  their  counterparts  in  developed  countries  from  environmentally  caused  disease  (WHO,  2006).  

(c) There  is  a  5-­‐‑7%  expected  increase  in  the  population  at  risk  for  malaria  in  Africa  due  to  the  spread  of  mosquitoes  into  higher  altitudes  and  a  16-­‐‑28%  increase  in  total  number  of  person  months  of  exposure.  Climate  change  is  thought  to  have  caused  0.3%  of  global  deaths  annually  and  5.5  million  lost  DALYs  annually  (0.4%)  by  2000.  Climate  change  is  responsible  for  2%  of  the  burden  of  malnutrition  (Haines  et  al  2006).    

b) A  state  transition  model  may  be  hypothesized  in  which  people  may  assume  one  of  four  states  of  health:  healthy,  sick  from  climate  change  and  extreme  events,  sick  from  other  causes,  and  dead  (WHO,  2004).    

c) These  CCA-­‐‑DRM-­‐‑related  health  events  may  also  be  described  in  terms  of  their  distribution  over  person,  place,  and  time.    (1) For  example,  social  disparities,  lifestyles,  and  economic  inequities  all  affect  the  risks  

of  disease  and  death.  Floods  have  resulted  in  many  adverse  outcomes  (Alderman  et  al,  2012).  Those  at  highest  risk  for  death  were:  ethnic  minorities,  those  living  in  floodplains  and  in  unstable  dwellings,  females,  the  very  young  and  the  very  old.  On  the  other  hand,  injuries  were  most  common  among  young  and  middle-­‐‑aged  males.  Toxins  were  prevalent  in  flood-­‐‑impacted  industrial  or  agricultural  areas.  Communicable  diseases  resulted  from  the  destruction  of  water  supply  systems,  poor  hygiene  facilities,  inadequate  provision  of  clean  drinking  water,  power  shortages,  and  post-­‐‑flood  resettlement  (i.e.,  overcrowding,  compromised  quality  of  water  and  hygiene).  Vector-­‐‑borne  diseases  resulted  from  increased  exposure  to  vectors  (i.e.,  sleeping  outside,  overcrowding),  changes  in  vector  habitat,  and  compromised  vector  control  programs  during  floods.  Psychological  disorders  were  associated  with  the  degree  of  exposure,  previous  flood  experience  and  disaster  preparedness,  being  

                                                                                                                 

1 GISS - Global circulation model: Goddard Institute for Space Studies. MM5 - Regional Climate Model: Penn State/ National Center for Atmospheric Research Mesoscale Model 5. CMAQ - Ozone simulation: Community Multiscale Air quality model.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  85  

female,  older  age,  lower  socio-­‐‑economic  status,  family  structure,  religion,  social  support,  self-­‐‑reported  physical  health,  baseline  personality  factors,  and  rural  residence.    

(2) The  risk  factors  associated  with  mortality  varied  with  the  type  of  disaster.  Heat  wave  deaths  were  associated  with  increased  age,  urban  location  because  of  the  urban  island  heat  effect  and  increased  pollution,  and  an  uncoordinated  response.  Flooding  deaths  were  associated  with  living  close  to  rivers,  residential  areas  located  beside  agricultural  or  industrial  areas,  low-­‐‑income  countries  because  more  people  live  in  flood  plains  and  coastal  areas  and  there  is  limited  public  health  infrastructure,  male  gender,  and  being  elderly.  Feco-­‐‑oral  diseases  during  flooding  were  associated  with  living  in  a  low  income  country  and  in  those  residing  in  a  flooded  home  or  yard.  Mental  health  consequences  during  flooding  -­‐‑  anxiety  and  depression  were  most  common  in  high  and  middle  income  countries,  among  individuals  aged  35-­‐‑75  years  old,  among  those  with  higher  levels  of  pre-­‐‑flood  depressive  symptoms,  and  those  in  the  lower  socioeconomic  groups  (Haines  et  al,  2006)  

(3) On  the  other  hand,  infectious  diseases  were  most  common  in  the  following  situations:  (a)  disruption  of  public  health  services  and  health-­‐‑care  infrastructure,  (b)  damage  to  water  and  sanitation  networks,  (c)  changes  in  population  density  (in  crowded  shelters),  (d)  population  displacement  and  migration,  (d)  increased  environmental  exposure  due  to  damage  to  dwellings  and  (e)  ecologic  changes.  Factors  unique  to  developing  nations  that  are  more  likely  to  favor  disease  emergence  were:  (a)  high  endemic  rates  of  disease,  (b)  low  immunization  rates,  (c)  poor  access  to  clean  water,  (d)  poor  sanitation,  (e)  prolonged  crowding  in  shelters,  and  (f)  inadequate  nutrition  (Ahern  et  al,  2006).    

(4) Finally,  adverse  psychological  outcomes  was  associated  with:  (a)  severity  of  individual  exposure,  (b)  female  gender,  (c)  age  (children,  old  adults),  (d)  lower  socioeconomic  status,  (e)  pre-­‐‑disaster  functioning  (Schulz  et  al,  2004)    

2. Under  the  epidemiologic  framework,  after  describing  the  magnitude  and  distribution  of  the  health  outcome,  the  factors  that  are  associated  with  increasing  or  decreasing  the  risk  of  occurrence  of  the  health  outcomes  are  analyzed.  Risk  factors  may  be  divided  into  harmful  factors  (i.e.,  risks)  or  protective  factors  (i.e.,  adaptive  capacity).    a) Harmful  factors  may  be  classified  as  physical  and  non-­‐‑physical.    

(1) Physical  factors  (i.e.,  hazards)  may  be  further  sub-­‐‑classified  as  geophysical,  hydro-­‐‑meterological,  and  climatological.    (a) Geophysical  hazards  include  earthquakes,  volcano  eruptions,  and  mass  

movements  (dry).  In  one  study,  the  risk  factors  for  mortality  from  a  landslide  are:  female  gender,  younger  age  (5-­‐‑14  years  old),  knowledge  of  landslides  occurring  elsewhere  and  of  natural  warning  signs  (Sanchez  et  al,  2009).  

(b) Hydro-­‐‑meteorological  refer  to  floods,  mass  movement  (wet),  and  storms  (i.e.,  tropical  cyclones,  extra-­‐‑tropical  cyclones,  and  local  storms).  In  one  study,  Knowlton  predicted  that  considering  an  increase  in  population  growth  and  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  86  

anthropogenic  O3  precursor  emissions,  much  greater  changes  in  summer  mortality  are  projected:  regional  summer  O3  related  mortality  would  increase  by  a  median  of  59.9%  in  the  2050s  compared  with  the  1990s.  These  larger  impacts  are  dominated  by  the  growth  in  population  at  risk  (Knowlton  2006).  The  health  outcomes  due  to  floods  may  be  classified  as  short-­‐‑term  or  long-­‐‑term  (Alderman  et  al,  2012).  (i) Short-­‐‑term  health  outcomes  include:    

(a) Mortality  due  to  drowning  and  acute  trauma  (direct  exposure)  (b)  Non-­‐‑fatal  injuries  and  exacerbation  of  chronic  illnesses  (direct  

exposure)  –  nonfatal  injuries:  cuts,  falls,  struck  by  falling  debris  or  objects  moving  quickly  in  flood  water;  being  bitten  or  stung  

(c) Toxic  exposure  (indirect  exposure)  (d) Communicable  diseases  (indirect  exposure)  (e) Water  borne  diseases  (indirect  exposure)  –  GI  diseases:  diarrheal  

diseases,  cholera,  Norvo-­‐‑virus-­‐‑based  gastroenteritis,  Hepatitis  A  and  E,  respiratory  and  skin  infections:  upper  respiratory  infections,  skin  rashes,  earaches,  inflammatory  dermatoses,  infectious  skin  conditions,  infections  caused  by  moulds,  leptospirosis  

(f) Vector-­‐‑borne  diseases  (indirect  exposure):  dengue,  malaria,  dengue  hemorrhagic  fever,  yellow    

(ii) Long-­‐‑term  health  outcomes  include:    (a) Non-­‐‑communicable  diseases:  cardio-­‐‑vascular  disease,  cancer,  

chronic  lung  disease,  diabetes  (b) Psychosocial  health:  mental  health  disorders  such  as  post-­‐‑

traumatic  stress  disorder  (PTSD),  depression,  anxiety;  psychosocial  symptoms  such  as  earache,  headache  and  bodily  pain.  

(c) Malnutrition  (d) Birth  outcomes  –  by  affecting  physical  and  mental  health  of  

pregnant  moms  and  their  ability  to  access  health  services,  floods  may  impact  on  the  health  of  newborns.  There  are  also  increased  levels  or  prenatal  stress  and  increased  maternal  risk.  Other  associated  outcomes  include:  behavioral  problems,  psychiatric  conditions,  low  and  preterm  births,  and  autism  spectrum  disorders.  

(c) Many  climatological  and  health  associations  have  been  hypothesized.    (i) Common  risk  factors  identified  include:  temperature  change  (i.e.,  heat  wave,  

cold  wave,  extreme  winter  condition),  precipitation  change  (i.e.,  drought),  sea  level  rise,  and  extreme  events  (i.e.,  wildfires,  forest  fire,  land  fire).  Heat  waves  were  associated  with  increased  cardiovascular,  cerebrovascular  and  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  87  

respiratory  deaths,  especially  when  humidity  is  high,  e.g.,  Western  Europe  in  2003.  Flash  floods  and  slow-­‐‑rise  river  flooding  increased  morbidity  and  mortality  due  to:  drowning,  spread  of  chemicals  from  storage  or  contained  in  particular  areas  (e.g.,  heavy  metal  soil  contamination  after  flooding  of  Meuse  river  during  1993-­‐‑1994),  diarrheal  and  respiratory  diseases  (especially  in  areas  of  crowding),  and  anxiety  and  depression.  Droughts  affect  nutrition,  infectious  disease  spread,  forest  fires,  and  air  pollution  (Haines  et  al  2006).    

(ii) Floods  were  associated  with  the  following  outcomes:  (1)  increased  mortality  (the  number  of  deaths  from  acute  events  such  as  drowning  and  trauma  are  dependent  on  speed  of  onset,  depth  and  extent  of  food)  and  injuries,  (2)  an  increase  in  feco-­‐‑oral  disease  (increased  cases  of  cholera,  cryptosporidiosis,  nonspecific  diarrhea,  poliomyelitis,  rotavirus,  and  typhoid  and  paratyphoid),  (3)  increased  incidence  of  vector-­‐‑borne  diseases  (e.g.,  malaria,  filariasis,  West  Nile  virus),  and  (4)  mental  health  problems:  anxiety  and  depression,  behavioral  changes  and  bedwetting  among  children  2-­‐‑9  years  old,  PTSD,  depression  and  dissatisfaction  with  life  among  11-­‐‑20  year  olds,  and  suicide    (limited  evidence).  However,  the  evidence  for  diarrheal  deaths  is  inconclusive  (Ahern  et  al,  2005).    

(iii) Dengue  fever  cases  increases  with:  rise  in  temperature,  rise  in  humidity,  higher  rainfall,  and  decreased  sunshine.  Mosquito  density  rises  with  temperature  rise  and  increased  rainfall  (Pham  et  al,  2011)  

(iv) The  impacts  of  climate  change  on  non-­‐‑communicable  diseases  (NCDs)  have  also  been  reviewed  (Frie  at  al,  2010).  These  NCDs  include:  cardiovascular  disease,  respiratory  disease,  cancer,  mental  health,  and  injuries.    

(a) Cardiovascular  diseases  increase  through  two  exposure  pathways:  (i)  Direct:  air  pollution  and  extreme  temperatures,  particularly  heat  events  and  increases  in  temperatures  and  (ii)  Indirect:  changes  to  dietary  options  (because  of  changes  in  living,  hunting  and  eating  patterns  and  reduced  physical  mobility)  

(b) Respiratory  diseases  occur  due  to  the  following  pathways:  (i)  Climate  change  compromises  outdoor  air  quality  by  increasing  production  of  tropospheric  ozone  resulting  in  increased  respiratory  tract  irritation,  chronic  pulmonary  disease  hospitalizations,  and  lung  disease  mortality,  (ii)  Fine  particle  air  pollution  increases  the  risk  of  acute  respiratory  infections,  (iii)  Extraordinary  spring  pollen  counts  and  earlier  arrival  of  spring  results  in  extended  spring  allergy  and  asthma  seasons,  and  (iv)  More  intense  bushfires  increase  the  risk  of  respiratory  illness  among  susceptible  groups  (i.e.,  asthmatics,  children,  and  the  elderly)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  88  

(c) Cancers  may  be  caused  through  the  following  pathways:  (i)  Alteration  of  ambient  ultraviolet  radiation  (UVR)  and  its  spectral  composition  plus  the  alteration  in  sun  exposure  behavior,  (ii)  Increased  contamination  of  some  foods  and  greater  human  exposure  from  pesticides  (secondary  to  changes  in  pest  biodiversity  and  ecosystems),  and  (iii)  Aflatoxin  contamination  from  warming  of  climate  

(d) Mental  health  is  affected  through  (i)  increased  stress  and  anxiety  from  extreme  temperature  and  weather  events,  increased  competition  for  scarce  resources,  social  inequities,  and  perception  and  fear  of  climate  change  and  (ii)  Effects  of  disasters  and  weather  events  on  jobs,  lives,  etc.    

(e) Injuries  result  from  (i)  Direct  injury  from  weather  events  and  (ii)  temperature  extremes  affect  physiological  functioning  and  accident-­‐‑proneness  

(v) Infectious  diseases  may  also  increase  in  incidence  (Barrett  et  al,  1998).  Warmer  climates  led  to  increased  coastal  algal  blooms  and  thus  increased  proliferation  of  V.  cholerae.  Temperature  and  humidity  changes  increase  malarial  vector  reproduction.    

(2) Non-­‐‑physical  (i.e.,  vulnerabilities)  may  be  classified  as  biological,  social,  and  economic.    (a) Examples  of  biological  risk  factors  include  epidemics  (i.e.,  viral,  bacterial,  

parasitic,  fungal,  and  prion),  insect  infestations,  and  animal  stampedes.  Many  studies  have  described  the  effect  of  these  factors  on  climate  change,  extreme  events,  and  health.  Hanta  virus  re-­‐‑emerged  due  to  six  years  of  drought  followed  by  heavy  rains.  An  increase  in  pine  nuts  and  grasshoppers  led  to  more  deer  mice.  Mice  were  forced  above  ground  by  rains  (Epstein,  1995).  The  effect  of  climate  change  on  public  health  is  mediated  through:  geographical  variation,  technological  advances  and  socio  economic  status  that  decrease  infectious  disease  cases,  and  population  size  and  age  profile  (Haines  et  al,  2006).  Climate  change  affects  malaria  through  the  following  factors:  (a)  Basic  reproduction  rate  (Ro):  average  number  of  secondary  infections  produced  when  a  single  infected  individual  is  introduced  into  a  potential  host  population  in  which  each  member  is  susceptible  and  (b)  Transmission  potential  (TP):  reciprocal  of  the  critical  mosquito  density  or  vector  density  threshold.  Main  components  of  TP:  human  biting  rate:  daily  biting  rate  of  a  female  mosquito,  human  susceptibility:  efficiency  with  which  an  infective  mosquito  infects  a  human,  mosquito  susceptibility:  chance  that  an  uninfected  mosquito  acquires  infection  from  biting  an  infectious  person,  daily  survival  probability  of  the  mosquito,  and  incubation  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  89  

period  for  the  parasite  inside  the  mosquito.  Factors  i-­‐‑iv  are  dependent  on  vector  species,  while  factors  i,  iv,  and  v  are  temperature-­‐‑dependent.    

(b) Social  factors  also  mediate  the  health  and  climate  change-­‐‑extreme  event  relationship.  Tapsell  has  developed  a  social  vulnerability  flood  index  (SVFI)  (Tapsell,  2002)  which  consists  of  social  factors  –  gender,  young  children,  ethnicity  –  and  inancial  deprivation  –  elderly,  lone  parents,  pre-­‐‑existing  health  problems,  Townsend  index.  Risk  factors  for  increased  cardiovascular  mortality  during  extreme  temperatures  include:  rural  areas,  less  availability  of  medical  resources,  older  people,  people  with  disabilities,  aborigines,  cold  temperatures  (Pei-­‐‑Chih  Wu,  2010).  The  qualitative  effects  of  flooding  have  been  reported  as:  physical  and  mental  health  effects,  security,  community  cohesion,  attitudes  to  authorities,  vulnerable  groups,  changes  in  behavior  (Tapsell,  2002).  Psychological  distress  explains  some  of  the  excess  physical  illness  after  floods  (Reacher  et  al).  More  media  attention  and  more  disaster  relief  resources  are  routed  to  victims  of  lightning,  storms,  and  floods  even  though  they  cause  less  deaths  than  extremes  of  heat  and  cold  (Thacker  et  al,  2008).  

(c) The  economic  risk  factors  associated  with  decreased  incidence  of  malaria  were  increased  GDP  per  capita,  increase  per  capita  expenditures  on  healthcare,  lower  Gini  inequality  index,  lower  hospital  bed  per  1000  people  (Egbendewa-­‐‑Mondzozo,  2001).  In  a  study  by  Tseng,  willingness  to  pay  (amount  allocated  to  reduce  the  risk  for  dengue  fever)  was  used  as  an  economic  measure.  This  was  correlated  with  the  degree  of  education  and  income.  With  higher  probability  in  acquiring  dengue  fever,  respondents  were  willing  to  pay  more  to  avoid  it  or  to  reduce  the  risk.    (Tseng  et  al,  2009)  

b) Protective  factors  (i.e.,  adaptive  capacity),  on  the  other  hand,  reduce  the  risk  of  morbidity  and  mortality  due  to  climate  change  and  extreme  events.    (1) Adaptive  capacity  may  be  increased  by  addressing  the  existing  gaps  in  healthcare.    

(a) In  terms  of  early  detection  –  Early  detection  systems  that  track  issues  such  as  food  and  water-­‐‑borne  outbreaks  due  to  bacteria,  virus  and  parasites.  Establish  baseline  prevalence  potential  of  common  pathogens  (specified  were:  Giardia  lablia,  Cryptosporidium  sp.,  Virbio  parahemolyticus,  west  nile  virus,  pumula  virus,  Borrelia  spp.,  Brucella  spp.,  Echinococcus  spp.,  Toxoplasma  spp.  and  other  protozoa)  to  guide  early  detection  and  intervention  strategies.    

(b) In  terms  of  complex  interactions  -­‐‑  implications  of  changing  climatic  patterns  in  relation  to  health  on  economics,  human  health,  and  wellbeing.  Climatic  effects  on  health  in  socio-­‐‑economically  disadvantaged  nations    

(c) In  terms  of  the  economics  of  climate  induced  diseases  -­‐‑  Lack  of  data  on  the  economics  relating  to  adaptations  to  climate  change  and  overall  health  expenditure.  Risk  management  and  economic  assessment  of  climate  change  and  its  impact  on  health,  based  on  empirical  evidence  such  as:  socioeconomic  status,  exposure-­‐‑response  function,  effects  and  policy  measures.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  90  

(d) In  terms  of  raising  awareness  –  Health  impacts  of  climate  change  on  children.  (e) Pertinent  questions  –  there  is  a  need  to  assess  the  consequences  of  climate  on  

own  populations.  Given  the  severe  weather  events,  the  questions  that  should  be  addressed  are:  What  are  the  economic  consequences  of  these  natural  disasters?  What  mitigating  measures  have  been  taken  within  the  country  and  the  region?  What  improvements  are  there  in  early  warning  systems?  How  effective  are  the  early  warning  systems  that  we  do  have?  What  measures  have  been  taken  to  protect  disadvantaged  populations?  

(2) Research  gaps  also  need  to  be  bridged  in  order  to  improve  a  country’s  adaptive  capacity  to  climate  change  and  extreme  events  (WHO,  2009).  (a) Assessing  the  risks  

(i) Improved  evaluation  of  current  climate-­‐‑related  health  risks,  rather  than  a  primary  focus  on  risks  over  very  long  timeframes  

(ii) Identification  of  vulnerable  populations  and  life  stages  (iii) Quantification  of  the  fraction  of  morbidity  and  mortality  attributable  to  

climate  hazards,  and  to  climate  change  (iv) Better  assessment  of  neglected  climate-­‐‑health  linkages  

(b) Identifying  the  most  effective  interventions  (i) Systematic  reviews  of  the  evidence  base  for  interventions  (ii) Methodological  research  to  improve  analytical  tools  for  cost-­‐‑effectiveness  

analysis  (c) Guiding  health-­‐‑promoting  mitigation  and  adaption  decisions  in  other  sectors  

(i) Improve  methods  for  assessment  of  the  health  implications  of  decisions  in  other  sectors  

(ii) Health  implications  of  climate  change  mitigation:  energy  and  transport  sectors  

(iii) Health  implications  of  climate  change  adaptation:  water,  food,  and  agriculture  sectors  

(iv) Improved  integration  of  climate  change  mitigation,  adaptation  and  health  through  “settings-­‐‑based”  research  

(d) Improving  decision-­‐‑support  (i) Research  to  improve  vulnerability  and  adaptation  assessments  (ii) Improvement  of  operational  predictions  (iii) Improved  understanding  of  decision-­‐‑making  processes  

(e) Estimating  the  costs  of  protecting  health  from  climate  change  (i) Definition  of  harmonized  methods  to  estimate  costs  and  benefits  (ii) Assessment  of  the  health  costs  of  inaction  and  the  costs  of  adaptation  (iii) Improved  economic  assessment  of  the  health  co-­‐‑benefits  of  climate  change  

mitigation  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  91  

(3) There  is  also  a  need  to  close  the  gap  between  scientific  and  common  knowledge  (Akerlof,  2010).  In  a  survey  of  three  diverse  countries,  the  following  findings  were  reported:    (a) Does  the  public  believe  that  climate  change  poses  human  health  risks,  and  if  so,  are  they  

seen  as  current  or  future  risks?  Majority  of  people  in  all  three  nations  said  that  it  poses  significant  risks.  About  one-­‐‑third  of  Americans,  ½  of  Canadians,  and  ⅔  of  Maltese  said  that  people  are  already  being  harmed.  Majority  in  all  three  countries  said  that  in  the  future,  climate  change  will  likely  cause  poverty/  reduced  standards  of  living,  water  shortages,  and  disease  (US  and  Malta),  and  more  severe/  frequent  hurricanes  and  heat  waves  (US,  Canada)  

(b) Whose  health  does  the  public  think  will  be  harmed?  About  a  third  or  more  of  people  in  the  US  and  Canada  saw  themselves  (US,  32%;  Canada,  67%),  their  family  (US,  35%;  Canada,  46%),  and  people  in  the  community  (US  39%;  Canada  76%)  as  being  vulnerable  to  at  least  moderate  harm  from  climate  change.  About  31%  of  Maltese  said  they  were  most  concerned  about  the  risk  to  themselves  and  their  families.  Canadians  said  that  the  elderly  (45%)  and  children  (33%)  are  at  heightened  risk  of  harm.  Americans  were  more  likely  to  see  people  in  developing  countries  as  being  at  risk  than  people  in  their  own  nation  

(c) In  what  specific  ways  does  the  public  believe  climate  change  will  harm  human  health?  Canadians  and  Maltese  said  that  climate  change  can  cause:  respiratory  problems  (78-­‐‑91%),  heat  related  problems  (75-­‐‑84%),  cancer  (61-­‐‑90%),  infectious  diseases  (49-­‐‑62%).  Canadians  also  mentioned  sunburn  (79%)  and  injuries  from  extreme  weather  events  (73%).  Maltese  mentioned  allergies  (84%).  No  questions  addressed  this  topic  in  the  US  survey    

(d) Climate  change  appears  to  lack  salience  as  a  health  issue  in  all  three  countries:  relatively  few  people  answered  open-­‐‑ended  questions  in  a  manner  that  indicated  clear  top-­‐‑of-­‐‑mind  associations  between  climate  change  and  human  health  risks.    

(e) Recommendations:  public  health  communication  initiatives  that  increase  salience  of  the  human  health  consequences  associated  with  climate  change;  suggested  strategy:  simple  clear  messages,  repeated  often,  by  a  variety  of  trusted  public  health  voices  within  a  wider  policy  environment  that  support  greenhouse  gas  reduction  behavior  and  healthy  lifestyles.  

(4) In  the  domain  of  climate  change  and  malaria,  the  research  gaps  are:  (a)  development  of  quantitative  indicators  of  vulnerability  to  malaria  and  other  infectious  disease  outcomes,  (b)  improvement  of  the  parameterization  of  rainfall  in  malaria  models,  and  (c)  development  of  region-­‐‑  or  national-­‐‑specific  models  to  identify  more  accurately  populations  at  risk  based  on  regional  environmental  and  socio-­‐‑economic  changes  (Van  Lieshout  et  al,  2004).    

(5) In  addition,  the  knowledge  of  local  and  indigenous  peoples  –  often  referred  to  as  local,  indigenous  or  traditional  knowledge  –  is  increasingly  recognized  as  an  important  source  of  climate  knowledge  and  adaptation  strategies.  Indigenous  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  92  

knowledge  focuses  on  elements  of  significance  for  local  livelihoods,  security  and  well  being,  and  as  a  result  is  essential  for  climate  change  adaptation.  (Nakashima  et  al.)  

(6) However,  there  are  constraints  to  adaptive  capacity.  Adaptive  capacity  varies  between  Asian  countries  depending  on  social  structure,  culture,  economic  capacity,  and  level  of  environmental  degradation.  Areas  of  concern  include  water  and  agriculture  sectors,  water  resources,  food  security,  biodiversity  conservation  and  natural  resource  management,  coastal  zone  management,  and  infrastructure  (African  Development  Bank).  

(7) Climate  change  strategies/interventions  in  different  sectors  that  may  affect  NCD  (Friel  et  al,  2010):  (a) Energy  sector:  need  to  change  power  generation  and  energy  use  

(i) Energy  generation  -­‐‑  reduce  fuel-­‐‑based  sources  of  power  generation  (e.g.,  coal,  oil,  gas)  

(ii) Domestic  energy  use  -­‐‑  reduce  indoor  smoke  from  inefficient  burning  of  biomass  fuels  by  introducing  low-­‐‑emission  household  cook-­‐‑stoves;  improve  energy  efficiency  within  buildings  and  homes  (e.g.,  improving  insulation,  retrofitting  existing  homes,  and  constructing  energy-­‐‑efficient  buildings)  

(b) Urban  planning:  need  to  ensure  that  current  and  future  urban  development  is  done  in  such  a  way  that  prevents  NCDs,  reduces  poverty,  and  builds  societies  that  live  within  environmental  limits  

(c) Urban  design  and  the  built  environment  (i) Compact,  walkable  urban  environments  can  promote  physical  activity  and  

reduce  BMI,  car  travel,  and  air  pollutions  (ii) Position  vital  community  resources  near  residential  and  commercial  areas;  

workplace  proximity  encourages  walking  (iii) Incorporate  green  spaces  within  communities,  focused  along  transportation  

routes  and  floodplains:  promotes  CO2  bio-­‐‑sequestration;  positively  impacts  general  health,  stress,  BP  and  mental  health;  encourages  physical  activity  and  social  connectedness,  improving  air  quality,  and  reducing  urban  heat  island  effects;  reduces  health  inequities.  

(d) Transport  systems  (i) Neighborhoods  that  are  easily  accessed  and  navigated  by  active  transport  

(e.g.,  walking,  cycling),  combined  with  high-­‐‑quality  transport  (e.g.,  renewable  energy-­‐‑powered)  for  longer  journeys  are  vital  for  climate  change  mitigation  and,  in  addition,  increases  physical  activity,  reduces  obesity  and  CVD,  traffic  injuries,  and  levels  of  respiratory  illness.      

(e) Food  and  Agriculture  Sector  (i) Changes  in  animal  source  food  production  and  consumption  

(a) Production  of  foods  from  animal  sources  is  the  major  contributor  to  green  house  gas  emissions  from  the  agricultural  sector.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  93  

(b) A  30%  reduction  in  consumption  and  production  of  animal  source  foods  can  result  in  a  reduced  healthy  life  years  lost  from  ischemic  heart  disease  by  an  estimated  15%,  will  allow  selected  national  emission  targets  to  be  met,  and  may  also  reduce  cancer  and  obesity  incidence  

(ii) Food  system  diversification  -­‐‑  New  food  production  techniques  and  improved  food  storage  facilities  are  needed.    

(8) Media  has  both  positive  and  negative  effects  on  the  aftermath  of  disasters.  Negative  effects  include:  (a)  degree  of  disaster-­‐‑related  TV  viewing  was  positively  associated  with  PTSD  and  depression,  (b)  extensive  media  coverage  of  disasters  with  related  characteristic    symptoms  play  a  role  in  enhancing  the  spread  of  mass  psychogenic  or  socio-­‐‑genic  illness,  (c)  media  hypes  can  increase  the  number  of  persons  who  attribute  their  health  problems  to  a  disaster,  and  (d)  news  waves  fuel  fear  and  anxiety  among  people  involved  in  the  aftermath  of  disasters.  The  positive  effects  include:  (a)  media  can  inform,  educate,  or  communicate  with  people  (e.g.  following  terrorist  attacks,  media  can  be  used  to  broadcast  accurate  info  to  an  anxious  population.)  (Vasterman  et  al,  2004)  

(9) West  et  al  argues  that  the  problems  of  climate  change  and  air  pollution  have  the  same  causes,  thus  strategies  that  address  air  pollution  also  help  with  climate  change.  Steps  that  can  taken  to  tackle  both  include:  (a)  create  an  existing  database  for  all  information  on  the  costs  and  air  pollutants  and  greenhouse  gas  emission  reductions  associated  with  different  control  strategies,  (b)  implement  decision-­‐‑support  tools  that  can  be  used  to  analyze  cost-­‐‑effective  strategies  for  targeting  multiple  pollutants  simultaneously,  (c)  create  user-­‐‑friendly  tools  and  train  government  workers  to  use  these  programs.  The  benefits  of  simultaneously  planning  urban  air  pollutant  and  greenhouse  gas  mitigation  are  small  since  additional  carbon  dioxide  constraints  are  often  met  by  investing  in  measures  that  target  carbon  dioxide  but  with  modest  changes  in  emissions  of  local  pollutants  (West  at  al,  2003).    

(10) Prevention  and  control  of  public  health  consequences  of  tropical  cyclones  should  include  the  following  actions:  forecasting,  warning  (with  accurate  risk  perception),  evacuation  -­‐‑  strategies  for  sequenced  evacuation  and  assessment  of  personal  and  property  risk,  safe  shelters,  land-­‐‑use  planning,  building  design  and  construction,  preparedness  behaviors,  accurate  risk  perception,  and  identification  of  vulnerable  populations  (Schulz  et  al,  2005)  

(11) A  public  health  early  warning  system  should  be  added  to  existing  surveillance  mechanisms  and  effective  response  capabilities  (Ebi  et  al,  2004).  Its  aim  would  be  to  reduce  current  vulnerability  and  increase  resilience  to  future  extreme  events.  However,  a  basic  requirement  for  such  a  system  would  be  an  existing  adequate  public  health  and  social  infrastructure,  including  political  will,  to  undertake  design  and  implementation.  The  components  of  such  a  system  would  include:  meteorologic  identification  and  forecasting  of  extreme  events,  prediction  of  possible  health  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  94  

outcomes,  effective  and  timely  response  plan,  and  ongoing  evaluation  of  system  and  its  components  

   

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  95  

Application  to  Metro  Manila  

This  section  applies  the  framework  and  approach  described  above  in  the  context  of  Metro  Manila.  Factors,  harmful  and  protective,  that  drive  the  magnitude  and  distribution  of  the  risk  are  discussed.  The  spatial  and  temporal  changes  in  these  factors  are  also  noted.  Interventions  are  mentioned.  Finally,  the  current  status  of  Metro  Manila  in  along  the  continuum  of  desired  CCA-­‐‑DRM  outcomes  are  discussed.    

In  recent  years,  Metro  Manila  has  grown  accustomed  to  flash  floods  that  slow  down  inadequate  public  transportation,  disrupt  restricted  school  activities,  cut  on  marginal  business  profits,  burden  tight  government  expenditure,  and  delay  critical  health  services.  The  city  of  Manila  and  its  neighbouring  coastal  cities,  as  well  as  communities  along  the  banks  of  the  Marikina-­‐‑Pasig  River  system,  are  primarily  threatened  of  inundation  with  prolonged  rainy  days.  Major  thoroughfares  in  the  vicinities  of  Pureza,  G.  Araneta  Ave.,  San  Marcelino,  Taft  Ave.,  portions  along  Quezon  Ave  to  Espana,  Quirino-­‐‑Sauyo,  Aurora  and  P.  Tuazon  in  Cubao,  E.  Rodriguez  Ave.,  NLEX  Balintawak,  South  Super  Hi-­‐‑Way-­‐‑Buendia  Ave.,  and  Commonwealth  Ave.  -­‐‑Philcoa  among  others  are  usually  reported  to  be  catch  basins  within  minutes  of  a  heavy  downpour.  Efforts  at  de-­‐‑clogging  canals  and  sewers  and  cleaning  up  the  major  tributaries  to  the  Pasig  River  in  conjunction  with  an  intensifying  waste  management  campaign  of  local  governments  have  not  significantly  reduced  the  extent  and  duration  of  flooding,  it  seems.  Further,  the  

intermittent  pounding  of  super  typhoons  as  Ondoy  in  September  2009  and  super  monsoons  as  Habagat  in  August  2012,  have  demonstrated  the  limited  capacity  of  the  metropolis  to  address  the  risks  associated  with  climate-­‐‑related  disasters.  

With  better  appreciation  of  the  complex  nonlinear  mechanisms  of  climate  change,  the  government  and  the  business  sector  begin  to  put  in  place  structures  and  processes  that  will  allow  continuity  of  operations  once  disasters  strike.  Sustainable  development  initiatives  have  shifted  the  discussions  from  an  initially  heavy  prevention  strategy  to  more  mitigation  and  adaptation  strategies  toward  the  effects  of  increasingly  harsh  climate-­‐‑related  challenges.  Furthermore,  reviews  of  projects,  programs,  and  policies  with  better  success  in  dealing  with  the  impact  of  climate  change  highlight  the  importance  of  adaptation-­‐‑specific  and  result-­‐‑based  management  frameworks  (UNFCCC,  April  2010).  Interestingly,  scientists  and  policy  makers  have  drawn  attention  to  urban  centres  as  scales  of  mitigation  responses,  as  they  recognize  climate  change  impacts  that  are  particular  to  or  emphasized  in  cities  (Hunt  and  Watkiss,  December  2010).  This  direction  becomes  relevant  as  more  than  half  of  the  world  population  live  in  urban  dwellings.    

Cities  at  Risk  Metro  Manila  or  the  National  Capital  Region  (NCR),  home  to  about  12M  people  and  with  a  population  density  of  close  to  20K  individuals  per  square  kilometer,  illustrates  a  case  of  cities  at  risk  of  the  impact  of  climate-­‐‑related  disasters.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  96  

Geographically,  the  region  faces  threats  from  more  devastating  flooding  from  all  directions.  In  particular,  stronger  typhoons  and  extreme  weather  conditions  are  bound  to  magnify  the  effects  of  rising  sea  levels  on  the  western  coastal  communities  along  the  bay  of  Manila,  which  includes  Malabon  and  Navotas  in  the  north  and  Paranaque,  Pasay  and  Las  Piñas  in  the  south.  On  the  east  side,  where  south-­‐‑west  monsoon  rains  generally  pass,  the  denuded  mountains  of  Montalban  and  portions  of  the  Sierra  Madre  dump  volumes  of  silt  along  with  runoff  water  into  the  Marikina  river  that  eventually  overflow  into  the  Pasig-­‐‑Marikina  Basin,  a  large  area  that  covers  eastern  Metro  Manila.  This  flooding  disrupts  private,  social,  and  commercial  activities  along  the  riverbanks  and,  in  extreme  cases,  extends  into  the  inner  low-­‐‑lying  central  districts.  South  of  the  metropolis  is  Laguna  Lake  that  drains  to  the  same  Pasig-­‐‑Marikina  river  system.  With  poorly  regulated  fishing  practices  and  horrendous  drainage  systems  of  industries  around  the  lake,  it  has  deteriorated  and  diminished  its  containment  capacity  and  contributes  its  polluted  water  to  the  floods  that  affect  the  southern  cities  of  Pateros,  Taguig,  Muntinlupa,  and  Pasig,  as  well  as  the  suburban  Rizal  and  Laguna.  The  industrial  zones  of  Quezon  City,  Caloocan  City,  and  Valenzuela  City  on  the  northern  border  experience  their  own  version  of  inundation  resulting  from  clogged  canals  and  sewerage  systems  that  inefficiently  drain  precipitation  even  on  average  rainy  seasons.  With  urbanization,  much  of  the  metropolis  surface  area  is  covered  with  concrete  and  asphalt  that  impede  ground  absorption  of  rainwater  during  continuous  

rain  days,  especially  with  bursts  of  heavy  downpour.    

Typhoons  and  floods  pose  as  both  immediate  and  indirect  health  hazards.  As  flood  water  carries  toxic  substances  from  improperly  collected  and  disposed  wastes,  including  harmful  biologic  agents,  Metro  Manila  residents  will  be  exposed  to  mild  irritants  to  potentially  fatal  infections  such  as  leptospirosis.  Statistics  show  that  more  than  2000  cases  of  leptospirosis  and  close  to  200  deaths  from  its  complications  were  recorded  from  15  hospitals  during  and  a  few  weeks  after  typhoon  Ondoy  (Virola,  November  2009).  Though  unclear,  variations  in  water  temperature,  humidity,  and  frequency  of  rain  affect  the  proliferation  and  behaviour  of  pathogens  and  their  vectors.  Strains  of  E.  coli,  salmonella,  cholera,  rotavirus,  and  several  parasitic  worms  and  microorganisms  contaminate  household  water  supply  during  and  after  the  floods.  Worse,  these  food  borne  and  waterborne  diseases  are  inadvertently  brought  to  the  evacuation  centers  as  part  of  relief  operations.  With  crowds  building  up  in  the  holding  area  for  the  displaced  population,  respiratory  infections  spread  faster  and  affect  more  people  in  a  given  area.  

More  immediate  risks  are  physical  injuries  from  debris,  vehicular  accidents,  accidental  falls,  and  drowning  from  rising  and  sometimes  rampaging  floods.  

A  Vulnerable  Population  Climate-­‐‑related  risks  are  not  limited  to  typhoons  and  floods.  The  air  quality  of  NCR,  though  improving,  remains  far  from  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  97  

acceptable  standards  (DENR-­‐‑EMB  2008).  Suspended  particles  in  the  atmosphere  brought  about  by  natural  processes  and  human  activities  have  been  associated  with  respiratory  diseases  and  their  complications.  Emissions  from  vehicles  and  industrial  processes  are  major  sources  of  these  particles.  Sulphur  and  nitric  oxides  from  combustion  of  fossil  fuels  are  released  in  the  atmosphere  and  react  with  water  vapor  to  produce  acids  that  precipitates  with  rain,  exposing  Metro  Manila  residents  and  commuters  to  irritating  substances  that  may  lead  to  intermittent  and  chronic  respiratory  pathologies.  Less  direct  health  impact  of  contaminated  precipitations  is  their  effect  on  the  ecosystem  since  the  resulting  acidity  and  salinity  variations  can  disrupt  the  reproduction  and  growth  of  other  organisms,  more  importantly,  the  food  supply  chain.  While  NCR  imports  most  of  its  food  resources  from  the  provinces,  it  ultimately  shares  its  atmosphere  with  the  provincial  sources  as  wind  and  typhoons  disperse  polluted  air  to  contiguous  areas.    

As  Metro  Manila  attracts  more  migrants  from  the  less  developed  regions  in  the  country,  its  carrying  capacity  continues  to  be  challenged.  A  dense  population  demands  more  housing  and  transportation  facilities.  The  concrete  paving  of  roads  and  the  proliferation  of  residential  and  commercial  establishments  has  significantly  changed  the  landscape.  Concrete  and  asphalt  covers,  not  only  do  they  decrease  the  capacity  of  the  ground  to  absorb  rainwater,  increase  surface  temperature  by  absorbing  more  heat  that  magnify  risk  of  heat  fatigue  and  heat  stroke,  especially  

during  the  very  hot  summer.  A  closely  associated  challenge  is  the  increased  demand  for  energy  with  a  larger  population  and  an  even  higher  consumption  of  energy  for  cooling  systems,  again,  during  the  dry  spells.  Stable  power  sources  are  also  critical  in  maintaining  services  in  hospital  facilities  and  relief  centers  during  times  of  disasters.  Access  to  clean  and  potable  water  is  also  a  challenge  in  a  fast  growing  metropolis.  As  mentioned,  typhoons  and  floods  can  contaminate  sources  and  limit  its  availability  and  use  during  prolonged  rains  storms.  Moreover,  a  highly  populated  metropolis  that  utilizes  more  resources  is  bound  to  produce  more  wastes.  For  decades  now,  the  MMDA  has  been  finding  ways  to  minimize  and  manage  tons  of  solid  municipal  waste  that,  not  only  make  their  way  to  sewerage  and  waterways,  are  breeding  grounds  for  pests  and  disease  vectors.    

The  sheer  volume  of  people  in  NCR  poses  health  and  other  problems,  beyond  space  and  resource  requirements.  Increasing  number  of  moving  particles  in  a  fixed  and  defined  space  is  bound  to  have  more  collisions.  Crowding  favors  faster  transmission  of  diseases  such  as  tuberculosis  and  respiratory  infections.  During  typhoons,  when  mobility  is  restricted,  households  and  evacuation  centers  provide  increased  opportunities  for  human  contact,  hence,  the  higher  probability  to  spread  some  diseases  faster.  More  people  using  more  vehicles  that  run  on  inadequate  roads  are  at  risk  of  accidents  and  injuries  whether  in  the  regular  rush  of  commuting  to  work  or  in  the  uncoordinated  trips  to  safety  during  disasters  and  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  98  

calamities.  With  these  specific  challenges,  Metro  Manila  will  have  to  assess  its  disaster  preparedness  and  contingency  plan.  

Adaptability  and  Sustainability  of  Health  Systems  A  robust  health  system  must  be  in  place  to  address  the  health  impact  of  climate  change.  Efficient  and  effective  service  delivery  must  be  in  place  and  remain  uninterrupted  when  typhoons  and  related  disasters  strike.  Basic  services  such  as  outpatient  consultations  and  wellness  programs  must  remain  available  to  the  general  population.  However,  quality  care  should  be  ensured  to  the  displaced  subpopulation  and  that  the  service  they  are  provided  is  safe,  adequate,  timely,  and  equally  accessible.  Together  with  services,  health  and  medical  supplies  should  be  readily  available  and  accessible  to  the  population.  It  is  important  that  a  comprehensive  information  system  can  identify  and  monitor  the  inventory  of  supplies  and  services  and  that  this  system  is  accessible  at  all  times  to  field  personnel  and  decision-­‐‑makers.  Within  the  information  system  is  a  surveillance  system  that  tracks  emerging  disease  patterns  during  and  after  the  disaster  period.  Evacuation  center  personnel  can  respond  more  timely  and  appropriately  to  the  needs  of  the  evacuees  when  they  have  access  to  health  information  upon  registry  into  these  holding  areas.  It  would  be  ideal  if  high-­‐‑risk  populations  are  pre-­‐‑instructed  and  assigned  to  specific  centers  in  the  event  of  disasters.  Health  and  medical  teams  will  then  be  prepared  to  refill  prescriptions  of  those  with  pre-­‐‑existing  conditions  as  well  as  disaster-­‐‑specific  emergency  needs.  Also,  specific  

skills  and  expertise  can  be  made  available  to  pre-­‐‑profiled  response  centers.  

In  NCR,  the  high-­‐‑risk  population  is  also  the  most  financially  vulnerable.  Access  to  health  care  before,  during,  and  after  displacement  is  a  perennial  challenge  to  the  marginalized  sectors  of  society  who  are  also  in  climate  hazard  zones.  It  is  even  more  pressing  when  typhoons  or  earthquakes  destroy  their  limited  properties  and  resources.  Metro  Manila  might  find  it  practical  to  invest  in  traditional  and  micro-­‐‑finance  system  that  will  provide  the  capacity  for  these  sectors  of  society  to  mitigate  their  vulnerable  conditions.  While  government  has  the  legal  responsibility  to  address  these  risks,  it  is  the  moral  responsibility  of  every  member  of  society  to  care  for  each  other.  

Beyond  the  Borders  of  Metro  Manila  and  Climate  Change  The  leadership  and  the  governance  of  NCR  and  the  rest  of  the  Philippines  face  the  daunting  task  to  manage  the  risks  of  climate-­‐‑related  disasters  and  of  the  broader  challenge  of  climate  change  itself.  The  range  of  work  can  be  overwhelming  and  the  demanded  resource  mobilization  appears  very  discouraging.  It  is  important,  then,  that  the  leadership  acts  decisively  and  deliberately.  Evidence-­‐‑based  decision-­‐‑making  becomes  a  rational  and  practical  approach  to  set  priorities,  especially  with  limited  budget,  manpower,  and  time.  Lessons  learned  from  experiences  around  the  world  show  that  there  are  better  outcomes  with  preparedness  plan  tailored  to  specific  localities.  While  general  measures  of  sustainable  strategies  can  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  99  

improve  outcomes  in  the  long  term,  specific  mitigation  responses  scaled  to  target  populations  and  areas  translate  to  more  favorable  outcomes  for  the  people.      

Metro  Manila  and  the  rest  of  the  country  take  on  the  responsibility  of  ensuring  health  systems  that  are  efficient  and  effective.  At  all  times,  the  system  should  be  able  to  provide  services  of  the  best  quality  equally  accessible  to  all  sectors  of  society.  In  time  of  disasters  and  emergencies,  special  services  should  be  available  without  interrupting  basic  health  care.  In  the  same  manner,  products  and  supplies  like  medicines  and  hospital  equipment  should  have  secure  supply  chains  from  production  to  distribution  to  utilization.  Patent  roads  and  uninterrupted  communication  systems  must  also  be  reliable.  Information  as  flood  maps,  location  of  relief  distribution  centers,  medical  personnel  distribution,  incidence  and  prevalence  of  diseases,  population  demographics,  and  volunteer  groups  among  other  data  bases  remain  valuable  for  decision-­‐‑makers  and  planners,  even  more  so  during  extraordinary  times  as  super  typhoons  or  super  monsoons.  Health  personnel  are  often  stressed  during  time  of  calamities.  They  are  as  much  put  to  dangers  when  they  are  disposing  of  their  duties.  The  system  must  ensure  their  safety  and  well  being  as  they  are  given  the  responsibility  to  take  care  of  others.  Providing  them  with  appropriate  skills  and  expertise  improves  outcomes  of  their  response.  But  they  also  need  to  be  cared  for  and  to  be  satisfied  in  their  jobs.  Health  expenditures  can  double  or  triple  in  times  of  calamities.  Both  service  providers  and  clients  must  have  access  to  financial  resources,  particularly  in  

emergency  situation  when  usual  finance  systems  are  operating  with  limited  capacity.  With  a  large  number  of  the  population  live  on  daily  subsistence,  emergency  funds  must  be  accessible  to  them  through  just  mechanisms.  All  these  structures  and  processes  are  achievable  with  good  governance  and  pro-­‐‑active  leadership.  Prioritization  of  programs  and  spending  that  will  not  prejudice  sectors  will  result  from  a  system  that  nourishes  trust  and  cooperation  among  the  different  stakeholders.  A  system  that  constantly  strives  to  learn  and  respond  better  than  from  the  last  disaster  is  bound  also  to  provide  better  opportunities  during  less  stressful  times.  

Finally,  to  address  the  health  impacts  of  climate  change  is  beyond  preparing  for  disasters.  Health  is  a  continuum.  One  can  be  well  today  and  be  ill  the  next  day.  In  ordinary  times  or  during  disasters,  health  is  a  fundamental  right  and  basic  service.  Health  systems,  then,  must  allow  individuals  and  populations  to  recover  and  re-­‐‑integrate  with  society  so  that  they  can  participate  in  the  primary  role  of  the  system,  which  is  to  keep  everyone  healthy.  

Conclusions  and  Recommendations  

An  epidemiological  framework  can  be  used  to  describe  the  magnitude  and  distribution  of  the  health  outcomes  arising  from  climate  change  and  extreme  events.  Magnitude  is  equivalent  to  the  exposure  of  populations  to  these  events.  The  framework  also  incorporates  the  determination  of  risk  factors  for  disease  and  death  due  to  climate  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  100  

change  and  extreme  events.  These  factors  may  be  harmful  (hazards  and  vulnerabilities)  or  protective  (adaptive  capacity).  Metro  Manila  is  used  as  an  example  of  the  application  of  this  framework.    

As  an  initial  exercise  in  estimating  the  magnitude  of  climate  change  and  extreme  

event-­‐‑related  disease,  a  burden  of  disease  study  should  be  undertaken  for  climate  change  and  for  the  most  common  extreme  events  in  Metro  Manila.  Aside  from  identifying  the  number  of  disability-­‐‑adjusted  life  years  (DALYs)  that  is  lost,  the  DALYs  that  can  be  gained  by  effective  interventions  can  also  be  estimated  along  with  the  costs  for  these  interventions.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  101  

References  

ACIA.  Arctic  Climate  Impact  Assessment  Scientific  Report.  UK:  Cambridge  University  Press,  2005.  

African  Development  Bank,  et  al.  Poverty  and  Climate  Change:  Reducing  the  Vulnerability  of  the  Poor  through  Adaptation.  

Ahern,  Mike,  R  Sari  Kovats,  Paul  Wilkinson,  Rofer  Few  and  Franziska  Matthies.  “Global  Health  Impacts  of  Floods:  Epidemiologic  Evidence.”  Epidemiologic  Reviews  27  (2005):  36-­‐‑46.  

Akerlof,  et  al.  “Public  Perceptions  of  Climate  Change  as  a  Human  Health  Risk:  Surveys  of  the  United  States,  Canada  and  Malta.”  International  Journal  of  Environmental  Research  and  Public  Health  7  (2010):  2559-­‐‑2606.    

Alderman,  et  al.  “Floods  and  Human  Health:  A  systematic  review.”  Environment  International  47  (2012):  37-­‐‑47.  

Ambu,  Stephen.  “Climate  Change  and  its  impacts  on  Public  Health-­‐‑-­‐‑A  review  of  the  global  environment.”  IeJSME  6  (2012):  S2-­‐‑S11.  

Barrett,  Ronald,  Christopher  W  Kuzawa,  Thomas  McDade  and  George  J  Armelagos.  “Re-­‐‑emerging  Infectious  Diseases.”  Annu.  Rev.  Anthropol.  27  (1998):247–71.  

Campbell-­‐‑Lendrum,  Diarmid  and  Rosalie  Woodruff.  “Comparative  Risk  Assessment  of  the  Burden  of  Disease  from  Climate  Change.”  Environmental  Health  Perspectives  114  (2006):  1935-­‐‑1941.  

Ebi,  Kristle  L  and  Janet  L  Gamble.  “Summary  of  a  Workshop  on  the  Development  of  Health  Models  and  Scenarios:  Strategies  for  the  Future.”  Environmental  Health  Perspectives  113  (2005):  335-­‐‑338.  

Ebi,  Kristie  L  and  Jordana  K  Schmier.  “A  Stitch  in  Time:  Improving  Public  Health  Early  Warning  Systems  for  Extreme  Weather  Events.”  Epidemiologic  Reviews  27  (2005):  115-­‐‑121.  

Egbendewe-­‐‑Mondzozo,  Aklesso,  Mark  Musumba,  Bruce  A  McCarl  and  Ximing  Wu.  “Climate  Change  and  Vector  Borne  Disease:  An  Economic  Impact  Analysis  of  Malaria  in  Africa.”  Int.  J.  Environ.  Res.  Public  Health  8  (2011):  913-­‐‑930.  

Epstein,  Paul  R.  “Emerging  Diseases  and  Ecosystem  Instability:  New  Threats  to  Public  Health.”  American  Journal  of  Public  Health  85  (1995):  168-­‐‑172.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  102  

Friel,  S,  K  Bowen,  D  Campbell-­‐‑Lendrum,  H  Frumkin,  A  J  McMichael  and  K  Rasanathan.  “Climate  change,  Noncommunicable  Diseases  and  Development:  The  Relationships  and  Common  Policy  Opportunities.”  Annual  Review  of  Public  Health  32  (2011):  133-­‐‑47.  

Galea,  Sandro,  Arijit  Nandi  and  David  Vlahov.  “The  epidemiology  of  PTSD  after  Disasters.”  Epidemiologic  Reviews  27  (2005):  78-­‐‑91.    

Haines,  Andy  and  Andrew  Cassels.  “Can  the  Millennium  Development  Goals  Be  Attained?”  British  Medical  Journal  329  (2004):  394-­‐‑397.  

Haines,  A,  R  S  Kovats,  D  Cambell-­‐‑Lendrum  and  C  Corvalan.  “Climate  change  and  human  health:  Impacts  vulnerability  and  public  health.”  Journal  of  the  Royal  Institute  of  Public  Health  120  (2006):  585-­‐‑596.  

Knowlton,  et  al.  “Assessing  Ozone-­‐‑Related  Health  Impacts  under  a  Changing  Climate.”    Environmental  Health  Perspectives  112  (2004):  1557-­‐‑1563.  

Lindgren,  Elisabet,  Lars  Talleklint  and  Thomas  Polfeldt.  “Impact  of  Climate  Change  on  the  Northern  Latitude  Limit  and  Population  Density  of  the  Disease-­‐‑Transmitting  European  Tick  Ixodes  ricinus.”  Environmental  Health  Perspectives  108  (2000):  119-­‐‑123  

Martens,  Pim  and  Maud  Huynen.  “A  future  without  health?  Health  dimension  in  global  scenario  studies.”  Bulletin  of  the  World  Health  Organization  81  (2003):  896-­‐‑901.  

McKee,  Martin  and  Suhrcke  Marc.  “Commentary:  Health  and  economic  transition.”  International  Journal  of  Epidemiology  34  (2005):  1203–1206.  

Myung,  Hyung  and  Jae-­‐‑Yeon  Jang.  “Causes  of  death  and  demographic  characteristics  of  victims  of  meteorological  disasters  in  Korea  from  1990  to  2008.”  Environmental  Health  10:82  (2011),  http://www.ehjournal.net/content/10/1/82.    

Nakashima,  D  J,  K  Galloway  McLean,  H  D  Thulstrup,  A  Ramos  Castillo  and  J  T  Rubis.  “Weathering  Uncertainty:  Traditional  Knowledge  for  Climate  Change  Assessment  and  Adaptation.”  Paris,  UNESCO,  and  Darwin,  UNU,  2012.    

Wu,  Pei-­‐‑Chih,  Chuan-­‐‑Yao  Lin,  Shih-­‐‑Chun  Lung,  et  al.  “Cardiovascular  mortality  during  heat  and  cold  events:  determinants  of  regional  vulnerability  in  Taiwan.”  Occup    Environ  Med  (2010),  http://www.oem.bmj.com  (Accessed  November  8,  2010).  

Pham,  Hau  V,  Juong  TM  Doan,  Thao  TT  Phan  and  Nguyen  N  Tran  Minh.  “Ecological  factors  associated  with  dengue  fever  in  a  central  highlands  Province,  Vietnam.”  BMC  Infectious  Diseases  11:172  (2011),  http://www.biomedcentral.com/1471-­‐‑2334/11/172.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  103  

Portier  et  al.  A  Human  Health  Perspective:  On  Climate  Change.  US:  Environmental  Health  Perspectives  and  the  National  Institute  of  Environmental  Health  Sciences,  2010.    

Prüss-­‐‑Üstün,  A  and  C  Corvalán.  “Preventing  Disease  Through  Healthy  Environments:  Towards  an  Estimate  of  the  Environmental  Burden  of  Disease.”  World  Health  Organization  (2006).  

Reacher,  et  al.  “Health  impacts  of  flooding  in  Lewes:  A  comparison  of  reported  gastrointestinal  and  other  illness  and  mental  health  in  flooded  and  non-­‐‑flooded  households.”  Commun  Dis  Public  Health  7  (2004):  1-­‐‑8.  

Sanchez,  Carlos,  Tze-­‐‑San  Lee,  Stacy  Young,  Dahna  Batts,  Jefferson  Benjamin  and  Josephine  Malilay.  “Risk  factors  for  mortality  during  the  2002  landslides  in  Chuuk,  Federated  States  of  Micronesia.”  Oxford:  Blackwell  Publishing,  2008.  

Sharma,  AJ,  EC  Weiss,  SL  Young,  K  Stephens,  R  Ratard,  S  Straight-­‐‑Bourgeois,  TM  Sokol,  P  Vranken  and  CH  Rubin.  “Chronic  disease  and  related  conditions  at  emergency  treatment  facilities  in  New  Orleans  after  Hurricane  Katrina.”  Centers  for  Disease  Control  and  Prevention  (2008).    

Shultz,  James  M,  Kill  Russell  and  Zelde  Espinel.  “Epidemiology  of  Tropical  Cyclones:  The  Dynamics  of  Disaster,  Disease  and  Development.”  Epidemiologic  Reviews  27  (2005):  21-­‐‑35.  

Sommer,  Alfred  and  Wiley  H  Mosley.  “East  Bengal  Cyclone  of  November  1970:  Epidemiologic  Approach  to  Disaster  Assessment.”  Epidemiologic  Reviews  27  (2005):  13-­‐‑20.    

Tapsell,  S  M,  E  C  Penning-­‐‑Rowsell,  S  M  Tunstall  and  T  L  Wilson.  Vulnerability  to  Flooding:  Health  and  Social  Dimensions.  Phil.  Trans.  R.  Soc.  Lond.  360  (2002):  1511-­‐‑1525.  

Thacker,  Maria  T  F,  Robin  Lee,  Raquel  I  Sabogal  and  Alden  Henderson.  “Overview  of  deaths  associated  with  natural  events,  United  States,  1979-­‐‑2004.”  Oxford:  Blackwell  Publishing,  2008.  

Tseng,  Wei-­‐‑Chun,  Chi-­‐‑Chung  Chen,  Ching-­‐‑Cheng  Chang  and  Yu-­‐‑Hsien  Chu.  “Estimating  the  economic  impacts  of  climate  change  on  infectious  diseases.”  Climatic  Change  92  (2009):  123-­‐‑140.  

United  Nations.  “Review  of  the  Yokohama  Strategy  and  Plan  of  Action  for  a  Safer  World.”  Paper  presented  at  the  World  Conference  on  Disaster  Reduction,  Kobe,  Hyogo,  Japan,  January  18-­‐‑22,  2005.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  104  

United  Nations.  “Yokohama  Strategy  and  Plan  of  Action  for  a  Safer  World:  Guidelines  for  Natural  Disaster  Prevention,  Preparedness  and  Mitigation.”  Paper  presented  at  the  World  Conference  on  Natural  Disaster  Reduction,  Yokohama,  Japan,  May  23-­‐‑27,  1994.  

van  der  Berg,  Bellis,  Linda  Grievink,  Joris  Yzermans  and  Erik  Lebret.  “Medically  Unexplained  Physical  Symptoms  in  the  Aftermath  of  Disasters.”  Epidemiologic  Reviews  27  (2005):  92-­‐‑106.  

van  Lieshout,  M,  R  S  Kovats,  M  T  J  Livermore  and  P  Martens.  “Climate  change  and  malaria:  analysis  of  the  SRES  climate  and  socio-­‐‑economic  scenarios.”  Global  Environmental  Change  14  (2004):  87-­‐‑99.  

Vasterman,  Peter,  C  Joris  Yzermans  and  Anja  J  E  Dirkzwager.  “The  role  of  the  Media  and  Media  Hypes  in  the  Aftermath  of  Disasters.”  Epidemiologic  Reviews  27  (2005):  107-­‐‑114  

West,  J  Jason,  Patricia  Osnaya,  Israel  Laguna,  Julia  Martinez  and  Adrian  Fernandez..  “Co-­‐‑control  of  Urban  Air  Pollutants  and  Greenhouse  Gases  in  Mexico  City.”  Instituto  Nacional  de  Ecología,  México,  2003.  

World  Health  Organization.  Protecting  Health  from  Climate  Change:  Global  Research  Priorities.  Geneva:  WHO  Press,  2009.  

Yusuf,  Shahid,  Kaoru  Nabeshima  and  Wei  Ha.  “Income  and  Health  in  Cities:  the  Messages  from  Stylized  Facts.”  Journal  of  Urban  Health:  Bulletin  of  the  New  York  Academy  of  Medicine  84  (2007):  i35-­‐‑i41.    

GFDRR.  Climate  Risk  and  Adaptation  Country  Profile.  Washington:  The  World  Bank  Group,  2011.  

WMO.  Climate  Change  2007:  A  Synthesis  Report.  Geneva:  Intergovernmental  Panel  on  Climate  Change,  2008.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  105  

Chapter  3:  Valuing  economic  damages  due  to  natural  calamities  in  the  Philippines

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  106  

Introduction  

The  purpose  of  the  economic  study  under  the  Forensic  Investigation  of  Disasters  Project  (FORIN  CCA/DRM)  is  to  examine  the  interrelationship  between  disaster  risk  management  (DRM)  and  climate  change  adaptation  (CCA)  in  understanding  the  broad  effects  of  the  severe  changes  of  the  natural  environment  particularly  on  the  economic  well-­‐‑being  of  human  beings  and  their  communities  (CCA-­‐‑DRM  Addendum  to  the  FORIN  Project,  2012).  It  is  being  undertaken  with  the  view  that  DRM  and  CCA  programs  are  separate  research  areas.  However,  this  view  has  become  more  untenable  as  the  socio-­‐‑economic  impacts  of  disasters  due  to  natural  calamities  have  increased  and  intensified  as  a  result  of  more  frequent  and  severe  climactic  conditions  that  have  occurred  in  the  past  few  decades.    

The  natural  disasters  that  the  study  focuses  on  are  typhoons.    The  study  examines  the  impacts  of  changes  of  the  physical  environment  on  economy  and  the  different  socio-­‐‑economic  sectors  (including  households  and  industries)  in  the  Philippines.  Its  key  contribution  is  developing  a  framework  of  valuing  the  damages  due  to  typhoons  from  the  perspective  of  the  macro-­‐‑economy,  the  households,  and  the  various  industries.      

The  second  part  of  the  paper  examines  the  relationship  between  disasters  and  the  macroeconomic  variables,  including  output  and  its  components.    It  conducts  a  cursory  examination  of  how  typhoons  had  affected  selected  economic  variables.      The  analysis  relies  on  data  gathered  by  authorities  tasked  

to  minimize  the  risk  of  damages  due  to  natural  calamities  such  as  typhoons  and  the  adjustment  costs  of  affected  individuals  and  communities.    As  such,  the  analysis  can  only  go  as  far  as  the  availability  and  quality  of  the  asembled  data  permits,  which  motivates  the  need  for  developing  a  methodology  for  this  type  of  analysis  and  for  identifying  the  data  requirement  to  implement  the  analysis  using  it.    This  part  examines  the  economic  situation  in  Metro  Manila  and  the  role  of  typhoons  in  affecting  regional  output  and  welfare.    

In  developing  the  methodology,  Section  3  of  this  paper  reviews  the  literature  on  the  relationship  between  natural  disasters,  climate  change  and  the  economy  for  its  modeling  approach  to  reflect  the  research  that  has  been  done  not  only  on  disasters  and  both  their  direct  and  indirect  impacts,  but  also,  on  their  implications  on  specific  macroeconomic  variables.  The  discussion  moves  from  the  impacts  on  consumption  and  investment,  then  on  specific  national  economy  indicators  including  prices,  trade  and  foreign  exchange  flows  and  government  taxation  and  spending.  Then,  it  examines  the  eventual  impact  on  households  and  on  their  asset  base.  The  impacts  of  disasters  on  urban  areas  are  also  examined.  And  lastly,  the  interaction  of  climate  change  and  natural  disasters  is  explored.  The  review  of  literature  is  summarized  by  causal  loop  model.    

   

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  107  

The  Philippine  economic  performance  and  natural  disasters  caused  by  severe  weather  disturbances  

Overview  of  Philippine  economic  performance  The  Philippines  economy,  as  measured  by  its  gross  domestic  product  (GDP),  grew  at  the  average  annual  rate  of  4.7%  from  1999  to  2011.    The  services  sector  accounted  for  62.4  %  or  the  bulk  of  such  economic  growth,  while  the  relative  contributions  of  industry  and  agriculture  had  been  29.7%,  and  7.9%  respectively.    Since  1999,  the  share  of  the  service  sector  to  GDP  has  been  high  and  rising  from  52  %  in  1999  to  56  %  in  2011.    Agriculture  on  the  other  hand  contributes  the  lowest  share  at  14%  in  1999,  which  fell  to  11%  in  2011.    Figure  IV.1  shows  the  same  information  at  constant  prices.  

The  more  important  concern  is  the  relatively  low  capacity  of  both  the  industrial  and  manufacturing  sectors  to  create  jobs  and  business  opportunities  for  rural  residents  migrating  into  urban  centers.      In  the  course  of  economic  development,  the  agriculture’s  contribution  to  the  GDP  is  expected  to  fall,  and  the  sector  releases  labor  resources  for  the  other  parts  of  the  economy.    While  both  are  considered  most  resilient  to  weather  disturbance  hazards,  these  sectors  have  also  gone  down  from  34  

%  in  1999  to  32  %  in  2011,  in  favor  of  services.2      

Corresponding  to  its  contribution  to  the  GDP,  the  services  sector  accounts  for  the  largest  share  of  employment.    The  figure  ranges  from  51  to  52  %.    However,  the  informal  sector  employment  is  highest  in  the  sector  found  in  transportation,  retail  and  personal  services  and  even  in  related  rural  agriculture  activities.    The  2008  Informal  Sector  Survey  of  the  National  Statistics  Office  (NSO)  has  estimated  a  total  of  10.5  million  informal  sector  operators  in  the  country  with  almost  90%  as  self-­‐‑employed  workers.  On  the  other  hand,  the  share  of  employment  in  manufacturing  has  been  stagnant.  Instead  most  of  the  workers  released  by  agriculture  got  found  jobs  in  the  services  sector.    However,  the  quality  of  jobs  provided  is  of  low  value.    Additionally,  the  fastest-­‐‑growing  type  of  jobs  is  not  permanent  wage  employment  but  casual  wage  jobs.    There  has  been  weak  growth  in  productivity,  wages  and  earnings  for  workers  in  general.  

Although  agriculture  has  the  lowest  share  in  GDP,  it  accounts  for  34  %  of  employment,  the  second  highest  in  the  Philippines  after  services.  The  data  implies  that  a  significant  part  of  the  country’s  population  continues  to  depend  on  agriculture  activities  despite  the  fact  that  it  has  already  the  lowest  to  total  income  or  GDP.    This  has  immediate  implications  to  livelihood  outcomes  of  the                                                                                                                    

2  Source:  NSCB  Revised/Rebased  ANNUAL  National  Accounts  posted  12  April  2012  (Own  calculations  at  constant  2000)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  108  

relatively  poor  sector  of  the  economy.  Compared  against  industry  with  a  low  15  %  share  in  2010-­‐‑11  in  labor  employment,  it  has  the  second  highest  share  of  total  income/GDP  at  32  %  in  2010-­‐‑11.    High  productivity,  as  expected,  had  characterized  the  industrial  sector,  albeit  only  accounting  for  15  %  of  the  labor  force  but  contributing  32  %  to  total  output  or  income.  With  the  4.7%  annual  average  growth  rate,  the  Philippine  economy  has  shown  solid  growth,  albeit  modest  compared  to  East-­‐‑Asian  performance  over  the  2000s.  The  country,  however,  is  still  far  from  translating  this  into  inclusive  growth,  one  that  can  benefit  the  entire  population  including  the  poor  and  marginalized  sectors  in  society.  Despite  opportunities  created  by  the  economic  growth  in  the  period,  many  

people  remain  poor  (20.9  %  of  families  as  of  FIES  2009  or  3,855,730  families)  and  unemployed  (7.3%  unemployment  and  18.7%  underemployment),  and  investments  in  the  country  are  still  below  the  regional  standard  of  its  Asian  neighbours.    

In  summary,  the  Philippines  economy  has  been  slow  to  transform  towards  achieving  sustain  growth  powered  by  increasing  overall  productivity.  Historically,  the  modern  industrial  and  manufacturing  sectors  serve  as  the  backbone  of  increasing  productivity  and  sustaining  growth.    However,  the  country  ironically  went  through  a  de-­‐‑industrialization  process  as  shown  by  Figure  IV.1  since  1984  and  urban  expansion  and  growth  relied  instead  on  the  expansion  of  the  services  sector  activities.    

Figure  IV.1  Shares  of  Agriculture,  Industry  and  Service  Sectors  in  GDP,  1946-­‐‑2010  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  109  

Manufacturing  stagnated  and  so  were  the  jobs  generated  by  the  sector.    The  deteriorating  political  uncertainties  in  the  1980s,  coupled  with  liberalization  of  the  country’s  trade  regime  could  have  downward  pressure,  but  also  made  cleansing  effects  on  industries  that  are  protected,  inefficient  and  are  not  sustainable  or  not  in  a  position  to  compete  in  a  more  open  market  mechanisms.    Nevertheless,  this  has  accelerated  the  process  to  a  serviced-­‐‑based  economy  buoyed  by  the  expansion  of  business  process  outsourcing  (BPOs)  sector.    As  mentioned,  the  service  sector  currently  contributes  more  than  half  of  the  economy’s  output,  employment  and  overall  growth.  

Natural  calamities  and  the  economy  How  have  severe  weather  disturbances  in  the  Philippines  affected  overall  growth  and  output  of  the  economy  in  the  same  period  from  1999  –  2011?  From  the  review  of  related  literature,  the  answer  to  the  question  has  proved  to  be  difficult  to  obtain  given  that  there  are  no  standard  systematic  or  modelling  instrument  to  measure  disaster  effects  to  the  economy.    Official  data  on  economic  damages,  as  shown  below,  were  direct  estimates  of  physical  impact.    Indirect  effects  of  these  climatic  disturbances  on  productivity  or  macro-­‐‑economic  variables  were  done  but  only  in  one  or  two  commissioned  studies.    Indeed,  the  contribution  of  this  narrative  is  to  provide  a  synthesis  of  estimating  economic  damages  of  severe  weather  disturbances  that  directly  affected  Metro  Manila,  while  referring  as  well  to  the  same  in  a  country  wide  basis.  

In  practice,  economic  impacts  of  disasters  in  the  Philippines  have  been  assessed  primarily  in  terms  of  physical  damage.    The  source  of  information  is  the  National  Disaster  Risk  Reduction  and  Management  Council  (NDRRMC)  or  its  predecessor  before.  The  agency  depends  upon  other  national  government  agencies  in  coming  up  with  the  data.    In  agriculture  for  example,  the  NDRRMC  has  counted  on  the  Department  of  Agriculture  to  assess  the  damage  of  typhoons  or  other  calamities  on  the  standing  crops.  

There  have  been  few  assessments  of  the  longer-­‐‑term  impacts  of  natural  disasters  as  had  been  done  in  the  case  of  Tropical  Storm  (TS)  Ondoy  and  Typhoon  (TY)  Pepeng  in  2009.    These  assessments  had  been  undertaken  by  a  multilateral  and  inter-­‐‑agency  team  working  on  a  Post-­‐‑Disaster  Needs  Assessment  (PDNA).      

The  team  came  up  with  the  monetary  value  of  the  damages  caused  by  severe  weather  disturbances.    When  the  indicator  is  correlated  with  the  GDP  growth  for  the  period  from  200  to  2010  as  shown  in  Figure  IV.2,  the  result  suggests  a  lack  of  any  systematic  relationship  between  the  damage  and  overall  economic  growth.    This  may  imply  either  that  these  disasters  have  had  little  impact  on  growth  rates  in  the  Philippines.    It  may  also  suggest  that  the  damage  figures  alone  are  a  poor  indicator  of  the  economic  impact  of  these  calamities.    

Benson  (1997)  believed  that  physical  damage  maybe  a  poor  indicator  for  these  reasons.  Firstly,  damage  estimates  may  themselves  be  inaccurate,  most  notably  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  110  

because  costs  are  defined  in  terms  of  reported  losses  only.    Secondly,  the  focus  on  levels  of  damage  effectively  captures  only  the  stock  impacts  of  disasters  and  ignores  the  potentially  considerable  their  larger  effects  on  income  flows.  Disasters  could  potentially  affect  longer-­‐‑term  growth  rates  as  well  as  a  host  of  other  variables  such  as  the  budget  deficit,  the  trade  balance,  level  of  external  debt  or  the  incidence  of  poverty.  

After  reviewing  the  methodologies  on  disaster  impact  estimation,  Okuyama  (2009has  observed  that  estimated  disaster  impacts  demonstrate  that  there  are  no  particular  trends  or  correlations  among  damages,  losses,  and  higher  order  effects  between  the  types  of  disaster  and  the  intensity  of  disasters.  Economic  impacts  of  disasters  depend  on  the  structure  of  economy  that  a  hazard  hits  and  where  and  how  the  economy  is  damaged.    Okuyama  further  advocated  that  the  first  step  for  promoting  disaster  related  economic  analysis  is  to  create  the  standard  methodology  for  assessing  damages  and  losses,  such  as  the  ECLAC  methodology,  and  the  standard  framework  for  estimating  the  higher-­‐‑order  effects.    However,  Hallegatte  and  Przyluski  (2010)  also  concluded  that  it  is  impossible  to  define  “the  cost”  of  a  disaster,  as  the  relevant  cost  depends  largely  on  the  purpose  of  the  assessment.  The  best  definition  and  method,  according  to  them,  obviously  depend  on  whether  the  assessment  is  supposed  to  inform  insurers,  prevention  measure  cost-­‐‑benefit  analyses,  or  international  aid  providers.      

Severe  weather  disturbances  and  their  economic  effects  in  the  national  capital  region  The  economy  of  Metro  Manila  or  the  national  capital  region  (NCR)  has  consistently  posted  the  highest  GDP  share  among  all  regions  increasing  from  31%  in  2000  to  35.7%  in  2011.    In  2011,  Metro  Manila  has  26  %  of  the  820,254  total  business  establishments  all  over  the  country.      The  regions  around  the  national  capital  region  had  the  next  largest  numbers  of  establishments.    Region  4A  or  CALABARZON  was  second  to  NCR  with  15  %,  and  Region  3  or  Central  Luzon  following  with  10  %.    Roughly  the  same  pattern  was  observed  with  regards  to  employment  statistics.    In  2010-­‐‑2011,  out  of  the  total  36,036,000  employed  persons  in  the  country  Metro  Manila’s  share  was  12%,  next  to  that  of  Region  4A  with  12.5  %,  and  Region  3  coming  third  again  with  10.3  %.      

Metro  Manila  has  2.6  %  poverty  incidence,  the  lowest  in  the  country.    It  is  followed  by  Region  4A  with  10.3  %,  and  Central  Luzon  with  12  %.    The  highest  poverty  incidence  is  in  Caraga  with  39.8  %,  followed  by  ARMM  with  38.1  %,  and  Zamboanga  Peninsula  with  36.6  %.    However,  Metro  Manila  has  the  the  highest  proportion  of  households  living  in  informal  settlements  with  9.88  %  based  on  the  data  from  the  NSCB  and  the  Department  of  Labore  and  Employment  Bureau  of  Labor  Statistics.    A  relatively  far  second  is  Western  Visayas  with  5.04  %  and  followed  by  Zamboanga  Peninsula  with  4.64  %.  

The  latest  census  of  population  in  2010  by  the  NSO  shows  that  the  Philippines  has  a  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  111  

total  population  of  92,337,852  with  12.8  %  or  11,855,975  individuals  living  in  Metro  Manila  or  the  National  Capital  Region.    This  is  followed  by  the  population  of  Region  4A  with  13.7  %  or  12,609,  803  and  Central  Luzon  or  Region  3  that  had  11  %  or  10,137,737  persons.      

In  terms  of  the  average  family  income  at  current  prices,  Metro  Manila  has  an  annual  average  of  P356,000  way  above  the  national  average  of  P206,000  based  on  the  2009  Family  Income  and  Expenditure  Survey  (FIES)  of  the  NSO.    Regions  4a  and  3  came  after  Metro  Manila  with  Php  249,000  and  Php  221,000  average  family  income.    The  ARMM  was  reported  to  have  the  lowest  average  family  income  with  Php  113,000.  

In  the  period  from  1999  to  2011,  there  were  about  a  hundred  severe  weather  disturbances  that  inflicted  some  economic  damage  to  various  regions  of  the  country,  including  Metro  Manila.    These  include  typhoons  (TY),  tropical  storms  (TS),  and  tropical  depressions  (TD).  Out  of  these,    36  directly  affected  Metro  Manila  as  shown  in  Table  IV.1.    The  years  2009  and  2002  posted  the  highest  number  of  individuals  affected  considering  that  the  first  was  caused  by  Tropical  Storm  Ondoy  that  devastated  Metro  Manila  with  unprecedented  flooding  and  the  latter  by  Typhoon  Milenyo,  which  directly  passed  through  the  metropolitan  area.    Figure  IV.3  graphically  shows  an  increasing  occurrence  of  severe  weather  situations  in  the  national  capital  region.  

The  number  of  residents  in  the  national  capital  region  who  got  affected  by  these  weather  disturbanes  appears  to  have  risen,  as  shown  in  Table  IV.2.    The  rising  number  may  indicate  that  these  weather  disturbances  have  apparently  become  more  and  more  intense.  In  2009,  Metro  Manila  nearly  made  the  record  of  a  million  of  its  residents  who  suffered  losses  due  to  TS  Ondoy.  However,  seven  years  earlier  in  2002,  TY  Milenyo,  a  super  typhoon,  affected  nearly  400  hundred  thousand,  indicating  a  difficulty  to  establish  a  pattern.      It  must  be  pointed  out  that  these  figures  differ  from  those  reported  in  the  PDNA  report  on  TS  Ondoy  and  TY  Pepeng.    That  report  placed  the  number  of  individuals  affected  by  TS  Ondoy  at  4,901,234  persons  or  993,227  families.    It  is  therefore  unclear  if  the  NDRRMC  is  reporting  households  or  individuals.  

In  Figure  IV.4,  the  average  number  of  residents  affected  by  these  weather  disturbances  is  shown.  It  is  difficult  to  pin  down  whether  or  not  there  has    been  a  rising  number  of  residents  affected  by  typhoons.    In  2009,  the  average  number  of  individuals  affected  per  typhoon  was  165,  498.    In  the  two  years  following  that  the  number  fell  to  only  thousands.    Besides  in  2002,  the  average  number  was  higher  compared  to  the  intervening  years  until  2009.  

   

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  112  

Table  IV.1  Severe  weather  disturbances  that  affected  Metro  Manila  

1999 2000 2001 2002 2003 2004 2006 2007 2009 2010 2011

1 Helming Biring Feria Juan and Kaka

Chedeng Winnie Caloy Egay Feria Basyang Bebeng

2 Luding Edeng

Milenyo Onyok Marce Florita Hanna Isang Juan Chedeng

3 Neneng

Yoyong Glenda

TS Chedeng and Dodong

Kiko

Falcon

4

Milenyo

Maring

Juaning 5

Ondoy

Kabayan

6

Pepeng

Mina Source: NDRRMC

   

Figure  IV.3  Frequency  of  Severe  Weather  Disturbances  that  Hit  Metro  Manila,  1999-­‐‑2011  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  113  

Table  IV.2  Number  of  individuals  in  Metro  Manila  affected  by  severe  weather  disturbances  

1999 2000 2001 2002 2003 2004 2006 2007 2009 2010 2011

210 3,106 600 6,020 721 11,066 5 136 1,485 877 275

1,730 25,255

394,782 11,144 28,610 1,220 7,317 3,420 2,802 370

46,485 24,040 28,481 5,858

535

121,118

22,071

1,173

960,152

2,725

72,687 Source: NDRRMC

Figure  IV.4  Average  Number  of  Residents  of  Metro  Manila  Affected  by  A  Severe  Weather  Disturbance,  1999-­‐‑2011  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  114  

Severe  weather  disturbances  and  their  economic  effects  in  Philippines  However  on  a  countrywide  basis,  there  appears  to  an  increasing  trend  in  the  number  of  residents  affected    (Figure  IV.5).    The  same  pattern  may  be  observed  from  the  total  estimated  physical  damages  as  

reported  by  the  NDRRMC  (Figure  IV.6).    In  Figure  IV.7,  the  same  increasing  trend  is  also  observed  on  the  second  half  of  the  period.    The  difference  is  that  the  biggest  spike  in  the  number  of  houses  damaged  was  on  year  2006  because  of  the  combined  effects  of  Typhoons  Milenyo  and  Reming.  

Figure  IV.5  Number  of  Affected  Individuals,  Philippines,  1999-­‐‑2011  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  115  

  Figure  IV.6  Total  Estimated  Damage  (constant  2000  prices),  Philippines,  1999-­‐‑2011  

Figure  IV.7  Number  of  Houses  Affected  by  Severe  Weather  Disturbances,  Philippines,  1999-­‐‑2011  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  116  

Effect  of  Weather  Disturbances  on  Prices  in  Metro  Manila  The  number  of  individuals  affected  could  be  the  first  step  in  assessing  indirect  productivity  effects.    The  loss  of  short  term  income  stream  due  to  inaccessibility  of  the  workplace,  temporary  work  shutdowns,  sickness,  exhaustion  (the  need  to  rest  after  the  physical  strains  of  coping  with  the  weather  disturbance),  failure  to  work  because  of  immediate  necessary  house  repairs  and  taking  care  of  sick  family  members  -­‐‑-­‐‑  all  of  these  reduce  productivity  and  incurring  opportunity  cost  of  loss  incomes.    For  example  in  the  case  of  TS  Ondoy  devastating  Metro  Manila,  an  estimated  number  of  missed  working  days  of  the  estimated  960,000  individuals  affected,  adjusted  according  to  the  proportion  of  working  age  in  the  average,  could  have  been  the  first  step  in  estimating  indirect  effects  or  losses.      

The  PDNA  report  used  a  methodology  developed  originally  by  the  United  Nations  Economic  Commission  for  Latin  America  and  the  Caribbean  (ECLAC)  in  the  early  1970s.  It  is  used  to  determine  the  value  of  lost  assets,  define  reconstruction  requirements,  and  assess  the  impacts  on  each  sector.  A  two  part  Handbook  for  Estimating  the  Socio-­‐‑Economic  and  Environmental  Impact  of  Disasters  by  ECLAC  was  published  in  2003.    The  following  schematic  summary  below  was  presented  by  Okuyama  on  estimating  losses  (indirect  impact)  and  secondary  effects  or  macroeconomic  impact  following  the  said  handbook.      

In  order  to  estimate  losses  and  higher-­‐‑order  effects,  damages  need  to  be  transformed  into  flow  measure.  This  process  was  carried  out  using  capital-­‐‑to-­‐‑output  ratio,  based  on  the  available  and  estimated  physical  capital  data.  Then,  the  transformed  flow  measure  can  be  considered  as  losses  (output  decrease  due  to  the  damages).    This  is  further  converted  to  demand  change,  since  the  model  used  social  accounting  matrix  (SAM)  which  is  a  demand  driven  model;  this  conversion  is  done  by  multiplication  with  the  inverse  of  diagonal  elements  in  direct  input  matrix.  SAM  or  IO  for  each  case  is  aggregated  mostly  to  the  following  sectors:  Agriculture,  Manufacturing,  Utilities,  Construction,  Commerce,  Services,  and  Others  to  match  with  sector  scheme  in  the  damage  assessment  reports.  SAM  includes  household  sector  in  institution  category  so  that  the  induced  effects  of  household  income  changes  are  included  (Okuyama  2009,  2010).  

Given  this  framework,  it  is  posited  that  productivity  losses  may  push  the  average  price  level.  In  assessing  the  relationship  between  prices  and  severe  weather  disturbances  in  Metro  Manila,  the  data  on  monthly  inflation  rate  were  correlated  with  the  number  of  individuals  affected  during  the  particular  months.    This  is  done  for  the  three  years,  2006,  2009  and  2011.    These  years  were  selected  because  of  the  severity  of  weather  disturbances  that  occurred  in  this  period.      

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  117  

No  definite  pattern  of  a  relationship  had  been  observed.  Hallegatte  and  Przyluski  (2010)  had  pointed  out  the  need  for  a  deeper  understanding  of  the  interaction  between  the  economic  intrinsic  dynamics  (e.g.,  business  cycles  and  financial  crises)  and  external  shocks  (e.g.,  natural  disasters),  as  analyzed  in  Hallegatte  and  Ghil  (2008).  The  coexistence  of  these  two  dynamics  explains  why  it  is  so  difficult  to  “extract”  the  effect  of  natural  disasters  from  macroeconomic  data  series  (Strobl,  2008;  Noy,  2009).  A  better  understanding  of  their  interactions  would  allow  for  a  better  measurement  of  disaster  cost  and  for  a  better  understanding  of  relevant  processes.  

In  testing  further  if  there  is  any  relationship  between  the  damage  due  to  weather  

disturbances  and  economic  characteristics  of  the  various  regions  in  the  country,  regression  tests  were  conducted.    The  explanatory  variables  of  the  regions  affected  include  population,  proportion  of  households  in  agriculture,  household  income,  household  size,  housing  characteristics,  household  head  education,  regional  GDP,  and  Region  dummy  variables.    The  results  show  that  the  explanatory  variables  are  insignificant  in  explaining  total  damage  per  region,  the  number  of  individuals  affected  and  total  houses  damaged.    The  only  significant  variable  found  to  explain  total  houses  damaged  as  reported  is  the  proportion  of  houses  made  of  makeshift  materials.    The  fitted  line  graph  is  also  shown  below  (Figure  IV.12).  

Damage  Data  

Loss  (Output)  

Demand  Change  

Total  Impact  Model  

Capital  to  Output  Ratio  

Inverse  of  Direct  Input  Coefficient  

Figure  IV.8  Transformation  of  Damages  Into  Flow  Measures  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  118  

Figure  IV.9  Monthly  Inflation  and  Number  of  Residents  Affected  by  Severe  Weather  Disturbances,  Metro  Manila,  2011  

Figure  IV.10  Monthly  Inflation  and  Number  of  Residents  Affected  by  Severe  Weather  Disturbances,  Metro  Manila,  2009  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  119  

Figure  IV.11  Monthly  Inflation  and  Number  of  Residents  Affected  by  Severe  Weather  Disturbances,  Metro  Manila,  2006  

Figure  IV.12  Proportion  of  Makeshift  Housing  and  Total  Houses  Damaged,  1999-­‐‑2011  

0

100000

200000

300000

400000

500000

600000

Tota

l dam

aged

hou

ses

.5 1 1.5 2 2.5 3Proportion of Makeshift Housing

Total houses affected Fitted values

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  120  

Review  of  Literature  

The  economic  effects  of  disasters  have  been  quite  large.  It  has  been  estimated  that  total  losses  in  terms  of  natural  disasters  had  reached  US$  66  billion  per  year  (Benson  and  Clay,  2002).  It  has  been  estimated  that  in  the  past  ten  years,  there  have  been  a  total  amount  of  1,430  disasters  that  have  been  recorded  with  over  1  million  dead  and  a  total  amount  of  economic  losses  reaching  US$  1.95  trillion.  In  the  Philippines,  for  example,  natural  disasters  have  estimated  to  affect  4  to  6  million  each  year;  the  2012  World  Disaster  Report,  using  the  data  from  the  Center  for  Research  in  the  Epidemiology  of  Disasters,  which  is  an  internationally  known  research  institute  established  in  1974  to  examine  the  socio-­‐‑economic  and  long-­‐‑term  effect  of  large-­‐‑scale  disasters,  noted  that    almost  20,000  people  have  died,  2.7  million  people  have  been  directly  affected  and  94  million  people  have  been  affected  by  natural  disasters  from  1992  to  2011.      

According  to  the  literature  (Benson  and  Clay,  2004;  Pelling,  Ozerdam,  Barakat,  2004;  Hallegate  and  Pryzluzki,  2010),  economic  impacts  of  natural  hazards  include:  

• Direct  impacts:  these  are  the  immediate  consequences  of  disaster  phenomenon,  especially  on  physical  assets  (including  raw  materials,  goods  in  process  and  final  goods),  property,  valued  at  agreed  upon  replacement  prices;  the  values  of  these  shocks  can  be  observed  directly  from  market  goods  or  their  replacement  costs.    

• Indirect  impacts:  these  are  losses  are  not  provoked  by  the  disaster  itself  but  by  its  consequences,  including  effects  on  firm  

productivity  and  household  incomes  and  expenditures  over  time  until  assets  are  fully  recovered;  there  are  also  additional  costs  in  terms  of  provision  of  goods,  losses  of  personal  income  and  partial/  total  loss  in  terms  of  production,  businesses  and  livelihoods.  They  also  include  medical  costs  of  treating  victims  of  the  disaster  and  costs  of  lower  productivity  or  lost  output.  

• Macroeconomic  ‘secondary’  impacts:  these  include  changes  in  the  over-­‐‑all  state  of  economy-­‐‑wide  indicators,  such  as  the  changes  in  over-­‐‑all  or  sectoral  GDP,  balance  of  trade  and  balance  of  payments,  level  of  indebtedness,  employment,  money  supply,  public  finance  and  capital  investments.  

Pelling,  Ozerdam  and  Barakat  (2004)  noted  that  direct  losses  have  been  the  focus  of  most  studies  on  disaster  effects  because  these  have  been  utilized  for  disaster  mitigation  and  preparedness,  and  also  the  provision  of  insurance  and  other  similar  types  of  financial  instruments.  Some  of  the  immediate  effects  of  a  disaster  would  be  the  loss  of  housing,  business  and  industrial  production  and  crops,  and  damages  to  infrastructure,  marketing  systems,  transport  and  communication.  

Indirect  impacts  are  measured  mainly  in  terms  of  the  degree  in  which  the  impacts  of  disasters  can  spread  through  economic  networks.  The  loss  of  critical  infrastructure,  such  as  road  networks,  bridges,  electricity,  telecommunications  and  water  systems,  can  impact  on  the  agriculture,  industrial  and  service  sectors,  even  if  there  is  no  physical  damage  of  the  assets  of  some  (or  even  most  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  121  

of)  the  firms  in  these  sectors.  The  short-­‐‑term  decline  in  commodity  exports  may  also  be  affected  given  a  loss  of  productive  capacity  and  the  disruptions  in  domestic  and  international  transportation  infrastructure.  

Lastly,  the  economic  effects  of  disasters  have  longer  impacts  on  the  economy  and  may  impact  on  the  production,  distribution  and  consumption  of  goods  and  services;  these  are  called  the  ‘secondary’  effects  of  a  natural  shock.  Damage  to  infrastructure  causes  production  to  fall,  fewer  commodities  will  circulate,  and  prices  for  basic  commodities  will  increase.  Employment  may  be  displaced  as  production  may  be  disruption,  but  urban  based  industries  will  recover  much  faster  given  that  these  have  better  access  to  insurance  and  credit.  The  balance  of  payments  may  be  adversely  affected  given  the  disruptions  in  export  capacity  and  the  need  for  short-­‐‑term  imports  that  would  cover  interruptions  in  production.  Public  expenditures  would  have  to  shift  towards  short-­‐‑term  relief  and  rehabilitation,  and  this  may  have  consequence  on  the  government  debt  stock.    

Tools  to  Measure  Impact  There  are  many  ways  in  which  the  estimation  of  economic  impacts  of  disasters  have  been  modelled  (de  la  Fuente,  Lopez-­‐‑Calva  and  Revi,  2008;  Hallegate  and  Pryzluzki,  2011);  these  include  the  following:  determinants  of  indirect  losses  from  firm  and  household  surveys;  microeconomic  models  at  the  household  level  (in  which  econometric  modelling  may  be  required);  input-­‐‑output  models  at  the  regional  or  national  level;  and,  computable  

general  equilibrium  models  at  the  regional  and  national  levels.  

Single  event  analysis  The  first  type  of  assessment  of  disaster  impacts  analyses  the  impacts  of  single  events  and  focuses  on  the  use  of  firm  and  household  surveys  to  analyse  the  direct  and  indirect  impacts  of  disasters.  These  measure  the  amount  of  damages  suffered  by  communities  and  enterprises,  by  infrastructure  and  by  agriculture,  industry  and  service  output  losses.  Both  physical  and  monetary  values  are  measured  in  the  methodology  suggested  by  the  United  Nations  Economic  and  Social  Commission  on  Latin  America  (ECLA,  2003)  and  these  are  supplemented  by  expert  analysis.  Indirect  losses  are  measured  from  data  made  available  by  different  sources,  such  as  government  agencies  and  non-­‐‑governmental  groups.  

For  example,  after  Tropical  storm  Ondoy  hit  Metro  Manila  and  the  surrounding  provinces,  the  economic/  financial  impacts  are  recorded  in  terms  of  different  types  of  impacts  (Muto,  Moroshita  and  Syson,  2010;  Philippine  Disaster  Needs  Assessment  Report,  2010).  The  economic  value  of  total  “damages”  or  direct  impacts  have  been  estimated  to  amount  to  P  68.2  billion,  while  the  value  of  “losses”  or  indirect  impacts  have  been  estimated  at  P  137.8  billion.  Around  half  of  the  damages  are  in  terms  of  residential  property  losses;  significant  amounts  also  reflect  damages  (in  terms  of  loss  output  and  property  damage)  in  the  commercial  and  industrial  sector,  and  also  devastated  infrastructure  nationwide.  On  the  other  hand,  more  than  half  of  the  losses  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  122  

are  economic  output  loss  in  terms  of  the  commerce/  service  sector  and  a  fifth  represented  the  loss  of  agricultural  output.    

In  the  Philippines,  most  of  the  analysis  of  disaster  effects  have  focused  on  assessing  the  direct  impacts,  although  there  have  been  some  work  on  evaluating  the  secondary  macroeconomic  impacts  of  single  disaster  events.  The  National  Disaster  Risk  Reduction  and  Management  Council  (NDRRMC)  has  a  database  of  damage  reports  of  each  typhoon,  which  is  based  on  the  reports  provided  to  them  by  the  local  disaster  councils.  These  reports  are  aggregated  through  the  different  politico-­‐‑administrative  levels  so  at  the  national  level,  the  NDRRMC  only  keeps  on  reports  at  the  regional  level.  The  estimates  on  loss  and  secondary  macroeconomic  impact  are  usually  undertaken  by  donors  and  private  institutions,  such  as  the  above  assessment  for  the  Ondoy  storm.  Bankoff  (2003)  and  Benson  (1997)  provide  an  overview  of  the  extent  of  the  damages  from  natural  disasters  in  different  years,  although  the  latter  has  a  more  thorough  exposition  of  the  possible  macroeconomic  effects  of  disasters.  

Baade,  Baumann  and  Matheson  (2007)  use  time  series  analysis  of  taxable  sales  in  the  Miami  area  to  assess  the  effects  of  Hurricane  Katrina  on  the  economic  outcomes;  it  found  that  there  is  a  short-­‐‑term  positive  impact  on  the  community.  Other  studies,  such  as  West  and  Lenze  (1998)  analyse  the  impact  of  hurricanes  on  the  effects  on  the  economic  output  and  employment  in  specific  cities  or  communities.    

There  are  a  few  micro-­‐‑level  studies  undertaken  to  assess  indirect  effects  of  disasters  in  communities.  Huigen  and  Jens  (2006)  provide  an  overview  of  the  socio-­‐‑economic  impacts  of  a  typhoon  on  a  municipality  in  2003;  the  loss  on  agricultural  output  for  that  year  was  particularly  assessed.    

Econometric  assessment  Econometric  techniques  are  utilized  to  analyse  different  a  series  of  disaster  events;  at  the  country  or  global  level,  these  are  undertaken  to  evaluate  the  impacts  of  hazards  on  economic  growth,  or  other  macroeconomic  variables  such  as  investments,  savings  and  productivity.  At  the  local  level,  these  are  used  to  measure  the  changes  in  economic  growth  at  the  provincial  level,  and  to  assess  the  impact  on  housing  values  and  poverty.      

These  type  of  studies  examine  the  impact  of  disasters  on  economic  output.  There  are  studies  similar  to  that  of  Skidmore  and  Toya  (2002)  which  state  that  disasters  have  a  positive  impact  on  economic  output  due  to  the  increased  spending  in  terms  of  reconstruction  and  production  following  the  hazard  event;  disasters  also  increase  the  utilization  of  human  capital  and  increase  the  momentum  in  utilizing  new  technologies,  which  lead  to  greater  productivity.  However,  studies  such  as  Noy  (2009)  shows  that  there  are  pronounced  economic  slowdowns  following  disasters;  these  studies  finds  that  countries  with  an  increased  ability  to  mobilize  resources  (because  of  their  superior  human  capital,  greater  government  spending  and  openness  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  123  

to  trade)  appear  to  be  more  robust  and  less  vulnerable  to  production  slowdown.  

Econometric  approaches  at  the  local  level  find  a  small  decrease  in  provincial  output  (in  the  case  of  Vietnam,  in  Noy  and  Vu  (2009)),  and  increase  regional  poverty  (in  the  case  of  Mexico,  in  Rodriguez-­‐‑  Oriega  (2009).  

Input-­‐‑output  and  CGE  models  Economic  input-­‐‑output  (IO)  and  computable  general  equilibrium  (CGE)  techniques  assess  the  impact  of  disaster  on  the  whole  economic  system,  focusing  on  the  effects  on  the  local  production  system.  In  input-­‐‑output  models,  industrial  (and  probably  household)  output  is  constrained  by  the  loss  of  infrastructure,  machinery  and  other  production  assets  in  key  sectors  that  were  affected  by  the  natural  hazard,  and  these  have  ripple  effect  in  the  whole  economy  as  the  loss  of  output  means  the  loss  of  inputs  for  other  productive  sectors.  Only  imports  or  foreign  capital  inflows  can  improve  production  in  the  short-­‐‑term,  while  local  capacities  are  being  built.  Hallegate  (2008)  proposed  an  input-­‐‑output  model  that  would  take  into  account  the  production  capacities  of  each  economic  sector,  backward  and  forward  linkages  and  the  integration  of  adaptive  behaviour;  the  study  finds  out  that  the  indirect  losses  exceed  the  direct  losses  and  therefore  the  former  needs  to  be  taken  into  account.    

On  the  other  hand,  CGE  models  examine  the  impacts  of  the  changes  in  the  productive  system  over  a  longer  period,  since  natural  hazards  could  affect  relative  prices  of  goods  and  inputs,  and  capital,  labor  and  other  

mobile  factors  could  move  into  disaster  stricken  areas  and  the  pace  of  the  rehabilitation  of  devastated  areas  could  be  speeded  up  because  of  the  increase  in  returns  to  these  factors.  In  these  models,  because  there  is  an  equilibrium  of  supply  and  demand,    enterprises,  which  cannot  produce  due  to  infrastructure  problems,  can  be  replaced  by  other  producers,  while  consumers,  which  may  be  constrained  in  the  purchase  of  certain  goods,  may  also  substituted  by  other  demanders  of  the  same  goods.      

Rose  and  Liao  (2005)  utilize  a  CGE  framework  but  revised  by  the  following  components:  defining  business  and  regional  macroeconomic  resilience,  linking  production  function  parameters  to  various  types  of  producer  adaptations  in  emergencies,  recalibrating  production  functions  to  empirical  or  simulation  data,  and  decomposing  partial  and  general  equilibrium  responses.  They  find  that  it  is  important  to  assess  the  impacts  of  disasters  on  local  infrastructure  to  be  able  to  better  assess  their  effects  on  economic  output.  Hallegate,  Hourcade  and  Dumas  (2005)  define  a  CGE  model  in  order  to  compute  for  the  economic  amplitude  of  a  disaster;  their  model  allows  for  temporary  imbalances  between  production  and  demand,  labor  market  disequilibrium  due  to  institutional  and  technical  constraints  and  short-­‐‑run  rigid  wages.  They  find  that  disasters  results  in  production  shocks  and  the  effects  are  amplified  by  slower  productivity  and  therefore  a  lower  employment  rate  (due  to  wage  and  price  rigidities).  This  eventually  decreases  profits  and  remitted  share  of  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  124  

savings  to  firms  and  therefore  reduces  consumption  and  investment.      

The  IO  and  CGE  models  assess  the  impact  of  the  loss  of  output  of  specific  sectors,  such  as  utilities  and  transportation,  could  have  on  the  whole  economy.  In  some  models,  interactions  with  other  administrative  units  in  the  economy  can  also  be  modelled.    

Hybrid  Models    Hallegate  and  Pryzluzki  (2010)  review  the  use  of  other  models  such  as  ‘hybrid’  models  in  which  physical  and  economic  sectors  of  disasters  are  combined;  ‘idealized’  models  examine  the  transmission  of  the  effects  of  disasters  on  technical  change  and  business  cycles,  while  public  finance  models  examine  the  effect  of  disasters  purely  on  changes  in  taxes  and  expenditures  as  flows,  and  public  debt  as  stocks.  

Macroeconomic  Impacts  of  Disasters  The  direct  effects  of  economic  disasters  are  specifically  on  property  damages  on  affected  residential  communities  and  firms.  However,  there  are  also  other  affects  that  affect  the  extent  of  the  damage  affected  by  the  community,  including  the  following  (Benson  and  Clay,  2010):  

1. The  type  of  natural  hazard;  extremely  low  or  even  high  and  erratic  rainfall  affect  agricultural  production,  and  these  have  impacts  on  other  hydrologically  sensitive  sectors  such  as  water  supply  and  hydroelectricity;  abnormally  severe  flooding  affects  infrastructure  and  production  capacity  affects  over-­‐‑all  economic  activity.  

2. The  over-­‐‑all  structure  of  the  economy,  including  its  natural  endowments;  the  relative  importance  of  the  different  economic  sectors,  such  as  the  agriculture,  industry  and  services  sectors,  the  production  systems,  intersectoral  linkages  and  role  of  investment  would  also  affect  the  magnitude  of  the  effects  of  the  disaster  event;    

3. The  geographic  size  of  the  country;  this  would  also  scope  of  the  effects  of  the  disasters  in  the  economy;  in  many  cases,  the  Philippines  has  been  pointed  out  as  a  country  with  a  significant  amount  of  disasters,  but  since  these  are  located  in  a  particular  area,  the  scope  of  the  disasters  are  not  that  large.    

4. The  country’s  income  and  stage  of  development,  which  includes  the  linkages  made  by  different  sectors  or  the  degree  of  economic  integration,  and  the  ability  of  government  to  raise  revenues  would  affect  vulnerability  of  economies  to  natural  disasters;    Noy  (2008)  finds  that  countries  with  higher  literacy  rates,  better  political  institutions  and  government  spending  and  higher  openness  to  trade  are  able  to  better  cope  with  the  crisis.    a The  prevailing  economic  conditions  

in  the  area,  including  macroeconomic  and  social  policies,  the  local  and  external  policy  environment  is  also  important.    

Initially,  the  impacts  of  a  hazard  event  would  be  the  damage  that  it  would  result  in  terms  of  infrastructure.  According  to  insurance  estimates,  two-­‐‑thirds  of  all  losses  in  flood-­‐‑related  events  in  Asia  are  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  125  

infrastructure  losses,  including  housing,  road  networks,  agricultural  systems  and  firm  physical  structures.  Natural  disasters  severely  impact  households  in  terms  of  the  partial  or  full  damage  of  their  residential  areas  and  on  assets  that  are  utilized  for  generating  incomes.  Hazard  events  also  may  destroy  crop  systems  and  forested  areas,  which  would  affect  the  food  security  of  affected  communities.  Hazard  events  lead  to  partial  or  complete  damages  among  firm  physical  infrastructure  and  to  the  loss  of  important  financial  records  and  there  is  also  some  evidence  that  this  would  lead  to  firm  relocation  (Webb,  Tierney,  Dahlhamer,  1999;  Alesch,  Holly,  Mittler,  Nagy,  2001).      

The  effects  on  households  would  lead  to  the  decline  in  consumption  and  investment  in  favour  of  activities  that  would  help  individuals  and  families  cope  with  the  aftereffects  of  the  natural  damage.  Private  consumption  significantly  declines  after  the  onset  of  a  catastrophic  event,  while  public  consumption  also  falls  but  to  a  smaller  degree  (Aufret,  2003).  At  the  same  time,  private  investments  are  diverted  to  reconstruction  and  rehabilitation  of  firm  physical  capital  and  infrastructure.  The  resulting  effect  would  be  a  short-­‐‑term  decline  in  economic  output.      

Because  of  the  decline  in  output,  there  would  be  a  decrease  in  the  demand  for  labor  services,  leading  to  a  decline  in  employment  and  cuts  in  formal  sector  wages  and  informal  sector  income  (Skoufias  ,2003).  In  some  cases,  because  of  disruptions  in  agricultural  output  and  in  the  distribution  of  goods,  there  would  be  a  

slight  increase  in  prices  until  the  marketing  channels  are  restored.    

At  the  same  time,  the  literature  (Benson  and  Clay,  2004;  Pelling,  Ozerdam,  Barakat,  2004;  Hallegate  and  Pryzluzki,  2010)  also  suggests  that  there  are  several  factors  that  would  affect  the  secondary  impacts    of  the  hazard  impacts  (in  terms  of  economic  values):  changes  in  prices,  resulting  from  the  disaster  shock;  length  of  reconstruction;  output  effects  due  to  negative  ‘network  effects’  such  as  vulnerabilities  in  transportation  infrastructure  and  utilities  (such  as  water,  electricity,  gas  and  transportation)  whose  effects  can  be  felt  throughout  the  economic  system;  and,  the  stimulus  effect  of  disasters,  which  may  be  positive  or  negative  depending  whether  resources  are  mobilized  or  diverted  (as  the  case  may  be)  because  of  reconstruction  activities  that  need  to  take  place.    

Disasters  have  an  inflationary  effects  (Benson,  1997).  Because  of  disruptions  in  supply,  prices  could  possibly  rise,  reflecting  the  loss  or  damage  to  goods,  and  transport  and  marketing  infrastructure.  The  increase  in  prices  could  also  be  due  to  an  increase  in  demand  for  certain  goods  that  are  needed  in  disaster  relief  and  rehabilitation  such  as  canned  foodstuff,  clothing  and  housing  materials.  In  some  disaster  episodes,  there  may  also  be  a  decline  in  demand  for  luxury  goods,  which  may  temper  the  general  increase  in  prices,  but  these  comprise  only  a  small  %age  of  the  expenditure  baskets  of  ordinary  households.  In  the  Philippines,  the  combined  effects  of  the  1990  Central  Luzon  earthquake  and  the  1991  Mount  Pinatubo  disaster  increased  prices  of  fruits  and  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  126  

vegetables  by  46  %  at  the  peak  of  supply  disruptions.    

In  the  short  to  medium  term,  there  is  evidence  that  disasters  would  affect  the  redistribution  of  public  finance  from  capital  investments  to  fund  relief  and  rehabilitation  activities,  which  would  affect  future  economic  growth.  Governments  may  be  forced  to  reduce  capital  spending  or  even  increased  public  borrowing  that  would  then  affect  domestic  interest  rates.  Disasters  may  also  affect  the  inflows  of  external  assistance,  as  donors  would  then  divert  their  resources  to  immediate  needs  that  would  then  affect  other  aid  objectives.      

Disasters  may  also  lead  to  balance  of  payments  difficulties  as  exports  could  be  disrupted  (because  of  the  loss  of  agricultural  and  industrial  output  and  the  damage  on  infrastructure  and  port  facilities)  and  as  demand  for  imports  especially  related  to  rehabilitation  efforts  would  increase.    This  could  then  lead  to  an  increase  in  external  borrowing,  especially  in  cases  where  foreign  exchange  reserves  are  limited,  with  consequences  for  debt  servicing  and  future  government  spending  and  growth.  Changes  in  foreign  exchange  would  also  result,  affecting  the  country’s  competitiveness  and  the  ability  to  meet  the  foreign  supply  needs  of  domestic  industries.    

The  resulting  loss  in  production  would  lead  to  slower  economic  growth  in  the  short-­‐‑term.  Thus,  disasters  would  see  a  decline  in  savings  and  investment,  and  therefore  lower  capital  stock  in  the  economy.  Noy  (2011)  showed  that  there  is  a  strong  

relationship  between  the  amount  of  damage  suffered  in  a  disaster  and  negative  economic  growth;  developing  countries  and  smaller  countries,  on  the  average,  are  more  adversely  affected.    

Capital  assets  and  resources  would  also  be  affected  by  natural  disasters,  and  this  would  affect  long-­‐‑term  economic  output.    However,  there  is  some  evidence  of  the  “productivity  effect”  (Hallegate  and  Pryzluzki,  2010)  that  the  capital  investments  that  are  destroyed  can  be  replaced  by  investments  and  infrastructure  that  could  be  replaced  with  the  most  recent  technology  which  would  increase  the  returns  to  the  infrastructure  more  than  that  before  the  disaster.      

Impacts  on  Urban  Areas  In  cities  such  as  Metro  Manila,  the  presence  of  public  infrastructure  increases  economic  development,  and  the  scarcity  of  land  leads  to  high  density  occupation;  residential  areas  with  greater  population  concentrations,  especially  those  with  large  building  sizes,  may  cause  a  higher  level  of  disaster  risk  (Lall  and  Deichmann,  2009).    

Also,  cities  generally  attract  firms  in  industries  and  services  in  order  to  attract  access  to  specialized  suppliers  and  expertise  that  will  only  be  supported  at  some  relative  minimum  scale,  or  to  benefit  from  the  existence  of  different  industries  due  to  the  diversity  of  their  skill  and  expertise  that  encourages  innovation.  These  further  increases  the  economic  and  demographic  density,  which  also  increases  risks  brought  about  by  natural  disaster.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  127  

City  managers  usually  respond  to  the  density  by  imposing  restrictions  in  land  use;  but  these  result,  in  a  majority  of  cases,  in  lower  economic  productivity  (as  it  limits  the  sizes  of  production  areas)  and  temporarily  increase  the  prices  of  land  and  housing  services.  At  the  same  time,  this  also  encourages  the  growth  of  urban  informal  settlements,  where  the  urban  poor  are  generally  affected  in  terms  of  the  vulnerabilities  to  disaster  risk.  Mapping  studies  on  urban  areas  show  that  poorer  households  have  a  disproportionate  share  of  hazard  risk  because  they  are  located  in  more  vulnerable  areas  (near  rivers  or  creeks,  or  earthquake  faults)  which  generally  are  cheaper  in  terms  of  housing  costs.  Other  factors  that  affect  the  risk  of  these  households  include  poor  infrastructure,  weak  property  rights,  and  the  lack  of  planning  standards  and  adequate  infrastructure  and  weak  institutional  oversight  of  land  usage.      

The  effects  of  disasters  in  the  rural  areas  also  affect  urban  areas.  With  disasters,  agricultural  productivity  declines,  leading  to  lower  agricultural  incomes  and  increased  rural  to  urban  migration.    

Impacts  on  Households  Hallegate  and  Pryzluski  (2010)  note  that  households  may  lead  to  “poverty  traps”,  where  disasters  negatively  affect  assets  and  incomes,  and  result  in  lower  productivity,  which  would  make  it  more  difficult  to  build  these  assets  and  savings.  This  may  even  lead  to  “inter-­‐‑generational”  poverty  where  disasters  negatively  impact  on  long-­‐‑term  diminution  of  cognitive  and  psychological  abilities.      

According  to  the  literature,  the  impacts  of  disasters  on  households  depend  on  the  different  assets  that  households  have  acquired.  Lopez-­‐‑Calva  and  Levi  (2009),  which  examined  the  relationship  between  disasters  and  poverty,  note  that  the  ability  of  households  to  utilize  their  asset  endowments.  These  assets  can  be  collectively  owned  by  the  communities  or  privately  owned  by  households  and  individuals.  The  ability  of  these  assets  to  mediate  the  impact  of  disasters  depends  on  the  ‘rate  of  utilization’  of  these  assets  and  the  ‘availability  and  exchangeability’  of  the  assets  with  each  other.  Households  have  the  ability  to  utilize  or  invest  in  these  assets,  and  are  able  to  derive  benefits  from  these  assets  by  their  use  or  by  exchange  with  other  assets.    

The  ability  of  households  to  diversify  across  different  types  of  assets  is  important.  Dercon  (2005)  noted  that  rural  families  in  many  developing  countries  engage  in  the  planting  and  harvesting  of  many  low-­‐‑risk  crops,  different  types  of  livestock  and  activities  in  order  to  reduce  the  risk  of  being  too  dependent  on  one  activity;  however,  at  the  same  time,  this  affects  the  ability  of  these  families  to  earn  sufficient  incomes  given  that  many  of  these  low-­‐‑risk  activities  are  also  produce  very  little  returns.    

Households’  human  capital  assets,  such  as  education  and  health,  are  important  to  take  advantage  of  livelihood  generation  activities.  Higher  levels  of  education  allow  individuals  to  be  able  to  switch  to  different  types  of  work  in  the  face  of  the  loss  of  firm  employment  given  a  disaster  that  would  affect  industrial  level  assets.  At  the  same  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  128  

time,  improved  health  outcomes  are  important;  detrimental  effects  of  a  disaster  on  the  physical  bodies  of  individuals  (i.e.,  disabilities,  sickness)  would  lead  to  a  negative  impact  on  the  ability  to  cope  with  a  disaster.  

The  physical  assets  of  the  household  are  also  important;  these  include  the  type  of  residential  housing  and  may  also  include  other  material  assets  that  allow  them  to  earn  a  living.  Informal  settlements  are  particularly  vulnerable  to  disaster  risk  because  the  light  materials  utilized  for  constructing  their  homes.  Households  which  have  access  to  home-­‐‑based  assets  that  can  be  utilized  to  earn  a  living  can  also  help  households  cope  with  disasters.    

The  diversity  of  financial  assets  of  households  is  also  important  in  order  to  cope  with  disaster  risk.  Dercon  (2005)  noted  that  the  micro-­‐‑insurance,  in  which  low-­‐‑income  households  can  purchase  to  guard  against  the  loss  of  assets,  can  improve  the  ability  of  families  to  spring  back  after  a  typhoon  or  earthquake.  Savings  and  investments  in  bonds  and  stock  can  also  reduce  covariant  risks  that  can  be  caused  by  downturns  in  consumption.    

Other  types  of  assets  can  also  help  communities  able  to  cope  with  disaster  effects.  The  ability  of  households  to  connect  with  organizations  and  institutions  that  can  help  them  cope  with  the  impacts  on  their  welfare.    The  important  role  of  NGOs,  local  social  institutions  and  the  private  sector  in  uplifting  the  situation  of  marginalized  groups  has  been  repeatedly  emphasized  in  the  literature.      

Ultimately,  the  long-­‐‑term  social  and  human  capital  impacts  of  disasters  on  different  communities  would  have  to  be  affected  by  several  factors  (Lindell  and  Prater,  2003).    These  include  the  coping  mechanisms  that  are  available  at  the  household,  community  and  regional  levels,  which  may  include  informal,  market  or  public  mechanisms.  Financial  assistance  can  be  provided,  for  example,  by  the  local  governments  or  by  non-­‐‑government  organizations  that  may  easily  allow  individuals  to  recover,  or  there  may  even  be  behaviour,  such  as  finding  additional  work,  that  can  also  affect  the  probability  of  households  to  recover.  

At  the  macroeconomic  level,  government  policies  and  programs  can  mitigate  the  impacts  of  disasters  and  also  influence  how  different  households  cope  with  the  negative  impacts  of  a  shock.    

Skoufias  (2003)  provided  some  lessons  in  undertaking  public  programs  after  a  natural  disaster  or  an  economic  downturn.  Ex-­‐‑ante  programs  are  more  effective  than  programs  undertaken  after  a  disaster  had  occurred  because  they  improve  welfare  and  also  reduce  poverty.  Second,  market  liberalization  reforms  that  are  undertaken  together  with  improvements  in  the  provision  of  goods  and  services  through  private  markets  and  public  agencies  are  important  in  reducing  the  adverse  effects  of  a  crisis.  Third,  the  institutionalization  of  targeting  mechanisms  that  would  support  the  implementation  of  programs  are  also  important.  And  finally,  the  design  of  public  programs  that  aim  at  specific  members  of  the  household  such  as  women  or  children  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  129  

should  take  into  consideration  the  role  of  families.    

The  policy  environment  can  also  improve  the  ability  of  households  especially  in  urban  areas  to  cope  with  disaster  risk.  Lall  and  Deichmann  (2006)  suggest  that  the  deregulation  of  land  markets  may  allow  poor  people  to  access  land  and  housing  rental  markets.  Improving  the  land  titling  process  and  strengthening  the  ability  of  the  poor  to  access  formal  titles  may  provide  the  following  effects:    

“Assurance”  effects  in  that  the  presence  of  land  titles  would  allow  households  to  feel  more  secure  in  their  dwelling,  and  would  increase  investments  in  their  housing  in  order  to  better  cope  with  disasters;  this  can  be  witnessed  in  the  urban  housing  programs  undertaken  for  informal  settlers  which  shifted  from  light  materials  to  cement  and  other  heavier  materials  in  reconstructing  their  homes  following  the  receipt  of  their  land  titles;  

“Collateralization”  effect  in  which  households  would  be  able  to  use  their  land  titles  in  order  to  be  able  to  obtain  loans  that  can  be  utilized  to  build  their  assets;  

“Realizability”  effects  that  allow  households  to  better  transfer  ownership  of  their  dwelling  to  others,  further  increasing  investment  in  their  homes  that  would  allow  them  to  improve  their  dwelling  areas.      

Diversification  of  a  country’s  sources  of  economic  output  can  also  help.  Benson  and  Clay  (2004)  noted  that  the  transformation  of  Dominica,  an  island  country  in  the  Carribean,  was  facilitated  by  the  rapid  

development  of  public  infrastructure  which  strengthened  the  development  of  the  tourism  and  financial  services  industries.  The  country,  which  was  dependent  on  banana  exports  as  their  main  source  of  income  and  foreign  exchange  and  thus  was  vulnerable  to  the  natural  disasters,  was  able  to  better  invest  in  disaster  mitigation  mechanisms.  In  Bangladesh,  the  removal  of  restrictions  on  private  agricultural  investments  resulted  in  the  rapid  expansion  of  irrigated  rice,  displacing  highly  risk  rainfed  rice  and  jute,  and  resulting  in  better  exports.    

Impacts  of  Climate  Change  and  Relationship  with  Natural  Disasters  The  relationship  between  climate  change  and  various  macroeconomic  and  welfare  indicators  is  more  complex.  The  Stern  Review  on  the  Economics  of  Climate  Change    (2006)  noted  that  the  significant  impact  of  the  climate  change  would  be  a  disruption  in  the  natural  capital  of  most  countries;  more  particularly  the  impacts  would  result  in  the  following:  

1. Floods  and  droughts  have  caused  disruptions  in  agricultural  output,  resulting  in  lower  food  production;  this  will  in  turn  affect  malnutrition  rates  across  different  countries;  

2. Water  supply  disturbances,  affecting  agricultural  and  industrial  output;  also,  persistent  water  shortages  exist  in  many  large  urban  areas;  

3. Increase  in  the  loss  of  forest  cover,  which  would  disrupt  the  livelihoods  of  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  130  

individuals  that  are  dependent  on  subsistence  activities.  

All  of  these  would  affect  economic  output  of  all  countries  around  the  world  in  the  medium  and  long  run.  However,  at  the  same  time,  the  report  also  acknowledges  that  climate  change  can  result  in  increase  in  the  magnitude  and  intensity  of  flooding  and  other  natural  disasters,  and  thus  would  heighten  the  impacts  of  these  disasters  on  the  economy.  

Urban  centers  are  particularly  vulnerable  to  climate  change  (Gaspar,  Blum  and  Roth,  2011)  as  urban  areas  are  particularly  located  near  coastal  areas  where  physical  infrastructure  are  vulnerable  to  the  rise  of  sea  levels  and  associated  land  erosion.  Climate  change  can  affect  water  quality  which  is  important  in  the  production  of  economic  goods;  it  can  also  affect  the  ability  to  produce  electricity.  In  the  Philippines,  for  example,  a  significant  portion  of  power  comes  from  hydroelectric  sources,  which  supplies  the  bulk  of  Mindanao’s  needs;  in  the  past  several  years.  

Hallegate,  Henriet  and  Coffe-­‐‑Marlot  (2011)  provide  an  overview  of  the  possible  impacts  of  cities  on  cities;  see  Table  IV.3  below.  

Long-­‐‑term  changes  in  temperature  would  lead  to  changes  in  energy  consumption.  Asset  losses  will  also  be  felt  due  to  sea  level  rise,  and  the  occasional  hurricanes,  typhoons  or  even  storm  surges;  major  losses  will  also  be  seen  due  to  an  increased  rise  in  the  sea  level  in  major  cities  which  are  based  in  coastal  areas.  Non-­‐‑quantifiable  effects  would  also  include  increased  mortality  and  morbidity  due  to  frequent  heat  or  cold  waves,  and  there  would  be  a  greater  %age  of  the  population  that  will  be  affected  due  to  increased  storm.    

Indirect  effects  in  cities  would  be  the  changes  in  tourism  activity  due  to  changes  in  temperature,  the  fall  in  worker  productivity  due  to  health  impacts,  and  long-­‐‑term  population  and  migration  patterns.      

Also,  the  rise  in  water  levels  also  poses  a  threat  to  the  transportation  networks  that  have  been  established  in  the  urban  areas.  Highways,  bridges  and  road  tunnels  in  and  around  Metro  Manila  are  particularly  vulnerable  during  periods  of  high  storm  intensities.  Tourism  infrastructure,  because  of  their  proximity  to  natural  resources,  is  also  affected  during  thunderstorms  and  landslides.    

   

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  131  

 Table  IV.3  Types  of  climate  change  impacts  on  cities  

Impacts Direct Indirect Climate mean

changes Climate variability

changes Catastrophic

changes Market Change in energy

consumption due to heating/ cooling

Rise/fall in tourism due to temperature changes

Asset losses due to sea level rise

Asset losses due to hurricanes or storm surges

Major asset losses due to catastrophic sea level rise

Effects of decline in tourism activity

Fall in worker productivity due to health

Spatial or sectoral diffusions

Effects on long-term economic development

Non-market

Increased mortality and morbidity due to increase in global mean temperature

Loss in thermal comfort

Population at risk due to sea level rise

Number of deaths due to frequent heat wave/ stresses

Population at risk in coastal cities due to increased storminess

Cultural losses and migration, including ethical aspects induced by catastrophic sea level rise

Effect of climate change on water shortages

Inequality deepening; loss of human security

Source: Hallegate, Henriet and Corfee-Morlot (2011). Climate  change  has  also  caused  socio-­‐‑economic  dislocation  of  a  significant  number  of  people.  The  declining  amount  of  fish  stocks  and  declining  amount  of  water  resources  available  for  crop  production,  for  example,  have  forced  fishery  and  agricultural-­‐‑based  households  to  move  to  urban  centers  to  look  for  informal  sector  work.  The  Stern  report  warned  that  as  much  as  half  a  billion  people  might  be  affected  by  the  rise  of  sea  waters  in  low-­‐‑lying  coastal  areas  caused  by  an  increase  in  temperature  by  3  degrees  Celsius.        

Summary  and  Causal  Loop  Diagram  Given  the  review  of  the  literature  above,  the  causal  link  tree  can  now  be  illustrated  

below  (see  Figure  IV.13  below).  The  initial  effect  of  hazard  as  a  discrete  event  in  urban  areas  would  be  to  negatively  impact  housing  and  other  residential  assets,  public  infrastructure  and  industrial  capital  stock.    The  decline  in  housing  assets  would  negatively  impact  household  consumption,  at  least  in  the  short-­‐‑term,  as  household  income  would  be  diverted  towards  replacing  the  assets,  reducing  demand  and  therefore  industrial  production  and  employment.  The  short-­‐‑run  decline  in  job  demand  would  then  have  a  negative  impact  on  wages  and  income.    

The  loss  of  industrial  capital  stock  would  adversely  impact  output,  which  would  lead  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  132  

to  supply  bottlenecks  and  eventually  might  lead  to  an  increase  in  consumer  prices.  The  loss  of  industrial  production  would  also  lead  to  a  slowdown  in  the  export  capability  of  industry,  affecting  the  balance  of  payments  and  foreign  exchange.  The  loss  of  industrial  output,  together  with  the  short-­‐‑run  decline  in  income,  may  affect  public  revenues  and  could  eventually  lead  to  a  decline  in  expenditures,  affecting  the  ability  of  governments  to  replace  the  public  assets  that  were  lost  in  a  disaster.    

Government  spending  in  public  infrastructure  in  itself  could  lead  to  a  greater  increase  in  complimentary  private  investments  in  urban  areas,  increasing  land  values  and  strengthening  agglomeration.  This  could  lead  to  an  increase  in  informal  settlements,  affecting  the  vulnerability  of  these  settlements  to  disasters.    

At  the  household  level,  the  loss  of  income  could  lead  to  a  decline  in  the  stock  of  financial  and  human  capital  assets  in  the  households,  affecting  their  ability  to  respond  to  a  natural  disaster.  Therefore,  the  nature  of  the  disaster  and  the  characteristics  of  households  would  eventually  affect  the  transmission  of  the  shock  to  these  households.  Household  vulnerability  would  then  be  affected  also  by  the  proportion  of  the  population  in  unsafe  areas  and  the  proportion  of  the  population  in  sub-­‐‑standard  housing.      

On  the  other  hand,  climate  change  as  a  slow-­‐‑onset  incident  would  affect  the  vulnerability  of  physical  and  natural  resources  to  respond  to  one-­‐‑off  extreme  events.  This  would  also  impact  on  the  ability  of  physical  infrastructure  to  cope  with  stresses  brought  about  the  effects  of  the  extreme  events.      

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  133  

Figure  IV.13  Causal  Loop  Diagram  on  the  Economic  Impacts  of  Climate  Change  and  Disasters  

tropical cyclone

intensity

tropical cyclone

magnitude

temperature change

sea level rise

housing and

residential assets

damage

public

infrastructure stock

industrial capital

damage

public infrastructure

damage

industrial capital stock

housing and

residential stock

industrial investments

consumption/demand commodity prices

industrial production

urban employment

urban wages/income

private expenditures in

education and health

education levels

DALY/VSL (health)

household tax

household savings

public spending

public spending in

education and health

household financial

capital stock

industrial sector tax

export supply balance of payments foreign exchange

importsforeign supplydomestic supply

energy demandenergy prices

land investments land values urban densityproportion in

unsafe areas

proportion in

sub-standard houses

agricultural productionagricultural income rural to urban migration

Household

Vulnerability

+

+

+

+

++

+

-+

+

-

-

- +

+

+

+

+

+

+

+

+

+

+

+

+

+

---

++

+

+

+

+ + + +

+ +

+

-

+

+

-

+ + +

+

+

+

+

-

+

-

+

+

+

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  134  

Conclusions  and  Recommendations  

The  supply  side  of  economic  estimation  of  disaster  impacts  has  increased  with  recent  frequent  and  severe  disasters  around  the  world.      Disaster,  as  a  phenomenon,  is  quite  different  from  any  other  economic  events:  sudden  occurrence  of  the  event;  loss  of  lives;  negative  externalities;  non-­‐‑uniform  distribution  of  damages  over  space;  and  a  dynamic  trend  change  from  large  negative  shocks  to  a  positive  demand  injection  for  recovery  and  reconstruction  (opposite  effect).    Studies  and  research  done  worldwide  on  the  estimation  of  economic  impact  of  disasters  has  improved  over  the  decade  in  the  same  period  that  this  narrative  covers  data  of  severe  weather  disturbances  in  the  Philippines  and  in  particular  Metro  Manila.    This  does  not  mean,  however,  that  the  methodologies  in  economic  estimation  of  disaster  impact  are  easily  accessible,  doable,  and  replicable.      

Given  above,  a  casual  attempt  of  an  economics  impact  narrative  investigation  of  weather  disasters  in  Metro  Manila  is  constrained  foremost  by  quantity  and  quality  of  data  overtime,  and  the  ease  and  familiarity  in  combining  economic  estimation  methodologies  to  be  employed.    Much  capacity  has  to  be  developed  in  installing  this  capability  among  individuals  and  institutions  in  government  and  independent  private  institutions.  This  is  very  obvious  to  researchers  writing  this  narrative  report.    

On  the  practicalities  of  the  demand  side,  the  economic  estimations  must  address  the  information  need  for  emergency  management  by  officials  (ex-­‐‑post  response),  policy  makers  for  preparedness  and  mitigation  policies  (ex-­‐‑ante  response),  for  development  planning,  and  for  a  wide  range  of  researchers  of  different  disciplines  engaging  in  disaster  impact  analysis.    In  this  vein,  the  PDNA  of  TS  Ondoy  and  Peping  must  be  assessed  by  users  of  how  the  study  was  useful.    For  example,  did  the  flow  analysis  estimation  of  impacts  helped  in  emergency  management,  and  policy  makers  were  able  to  grasp  the  size  and  extent  of  the  devastation  on  productivity  and  future  stream  of  incomes.    The  users  in  this  case  may  have  demanded  the  credibility,  not  necessarily  the  accuracy  of  the  estimation  (Okuyama  2010).      

Meanwhile,  in  order  to  advance  our  understanding  of  disasters  and  their  impacts  in  Metro  Manila  and  in  the  Philipines,  it  is  essential  that  a  wide  range  of  researchers  cooperate  together.  The  FORIN  interdisciplinary  approach  is  a  first  step  towards  that  direction.    All  the  above  discussions  lead  toward  the  necessity  of  reliable  data  collection  of  disasters,  and  it  appears  now  that  having  standardized  definitions  and  data  of  damages  and  losses  for  all  the  disasters  remains  a  dream.  West  and  Lenze  (1994)  suggested  that  the  more  sophisticated  impact  models  become,  the  more  precise  numerical  data  will  be  required,  while  imperfect  measurements  of  the  damages  and  losses  of  a  disaster  are  often  the  case.  In  international  settings,  definitions  of  damages  and  losses  are  often  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  135  

different  across  countries,  let  alone  the  definition  of  economic  impacts.    

Whereas  the  demand  for  details  are  different  among  the  users  discussed  above,  disaster  data  have  to  be  standardized,  reliable,  and  consistent  to  some  extent  for  all  disasters  in  order  to  make  cross-­‐‑disaster  analysis.  While  collecting  such  data  retrospectively  for  the  past  cases  is  hardly  affordable  and  unrealistic,  it  is  never  too  late  to  set  and  implement  some  international  standards  for  future  events,  such  as  the  method  devised  by  the  Economic  Commission  for  Latin  American  and  the  Caribbean  (ECLAC,  2003).  On  this  front,  it  may  also  be  useful  to  link  economic  models  for  disaster  with  other  established  indicators  of  development,  so  that  the  data  collection  and  analysis  can  be  streamlined  and  linked  together,  and  that  the  models  and  the  resulting  analyses  will  be  much  more  useful  to  the  disaster  community,  researchers,  and  practitioners  a  like.  

With  capacity  and  capability  to  provide  the  supply  side  of  estimation  methodologies  of  economic  impact  of  disaster,  and  collection  of  standardized  and  reliable  data  on  disaster,  it  is  only  then  that  a  detailed  forensic  investigation  of  disasters,  such  as  in  Metro  Manila  can  be  done.

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  136  

References  

Aufret,  Philippe  (2003).  “High  Consumption  Volatility:  The  Impact  of  Natural  Disasters,”  World  Bank  Policy  Research  Working  Paper  2962.  

Bankoff,  Greg  (2003).  “The  ‘Costs’  of  Hazard  in  the  Contemporary  Philippines,”  in  Greg  Bankoff  (ed.)  Cultures  of  Disaster  :  Society  and  Natural  Hazards  in  the  Philippines.  London:  Routledge  Curzon.  

Benson,  Charlotte  (1997).  “The  Economic  Impact  of  Natural  Disasters  in  the  Philippines,”  Overseas  Development  Institute  Working  Paper  99.  

Benson,  Charlotte  and  J.  Edward  Clay  (2004).  “Understanding  the  Economic  and  Financial  Impacts  of  Natural  Disasters,”  World  Bank  Disaster  Risk  Management  Series  Paper  No.  4.  

Carter,  Michael,  Peter  Little,  Tewodaj  Mogues  and  Workneh  Negatu  (2004).  “Shocks,  Sensitivity  and  Resilience:  Tracking  the  Economic  Impacts  of  Environmental  Disaster  on  Assets  in  Ethiopia  and  Honduras,”  typescript.    

Dercon,  Stefan  (2005).  “Vulnerability:  A  Micro  Perspective,”  QEH  Working  Papers  qehwps149,  Queen  Elizabeth  House,  University  of  Oxford.  

de  la  Fuente,  Alejandro,  Luis  Felipe  López-­‐‑Calva  and  Aromar  Revi  (2008).  “Assessing  the  Relationship  between  Natural  Hazards  and  Poverty:  A  Conceptual  and  Methodological  Proposal,”  Document  Prepared  for  ISDR-­‐‑UNDP  Disaster  Risk-­‐‑Poverty  Regional  Workshops  in  Bangkok,  Thailand  (April  2008)  and  Bogotá,  Colombia  (June,  2008).    

Gasper,  Rebecca,  Andrew  Blohm  and  Matthias  Ruth  (2003).  “Social  and  Economic  Impacts  of  Climate  Change  on  the  Urban  Environment,”  Current  Opinion  in  Environmental  Sustainability  3,  pp.  150–157.  

Hallegatte,  Stéphane,  Fanny  Henriet  and  Jan  Corfee-­‐‑Morlot  (2010).  “The  Economics  of  Climate  Change  Impacts  and  Policy  Benefits  at  City  Scale:  A  Conceptual  Framework,”  Climatic  Change  104,  pp.  51–87.  

Hallegatte,  Stéphane  and  Jan  Corfee-­‐‑Morlot  (2011)      “Understanding  Climate  Change  Impacts,  Vulnerability  and  Adaptation  at  City  Scale:  An  Introduction,”  Climatic  Change  104,  pp.  1–12.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  137  

Hallegatte,  Stéphane  and  Valentin  Przyluski  (2010).  “The  Economics  of  Natural  Disasters:  Concepts  and  Methods,”  World  Bank  Policy  Research  Working  Paper  5507.  

Hallegatte,  Stephane  ,  Jean-­‐‑Charles  Hourcade  and  Patrice  Dumas.  “Why  Economic  Dynamics  Matter  in  Assessing  Climate  Change  Damages:  Illustration  on  Extreme  Events,”  Ecological  Economics  62  (2),  pp.  330-­‐‑  340.    

Hallegatte,    Stéphane,  Fanny  Henriet,  Anand  Patwardhan,  K.  Narayanan,  Subimal  Ghosh,  Subhankar  Karmakar,  Unmesh  Patnaik,  Abhijat  Abhayankar,  Sanjib  Pohit,  Jan  Corfee-­‐‑Morlot,  Celine  Herweijer,  Nicola  Ranger,  Sumana  Bhattacharya,  Murthy  Bachu,  Satya  Priya,  K.  Dhore,  Farhat  Rafique,  P.  Mathur,  Nicolas  Naville  (2010).  “Flood  Risks,  Climate  Change  Impacts  and  Adaptation  Benefits  in  Mumbai:  An  Initial  Assessment  of  Socio-­‐‑Economic  Consequences  of  Present  and  Climate  Change  Induced  Flood  Risks  and  of  Possible  Adaptation  Options”,  OECD  Environment  Working  Papers,  No.  27,  OECD  Publishing.  http://dx.doi.org/10.1787/5km4hv6wb434-en  

International  Federation  of  Red  Cross  and  Red  Crescent  Societies  (2012).  World  Disaster  Report  2012.  Geneva,  Switzerland:  IFRCS.  

Kumpulainen,  Sato  (2006).  “Vulnerability  Concepts  in  Hazard  and  Risk  Assessment.  Natural  and  technological  hazards  and  risks  affecting  the  spatial  development  of  European  regions.”  Geological  Survey  of  Finland,  Special  Paper  42,  pp.  65–74.  

Kim,  Chul-­‐‑Kyu.  “The  Effects  of  Natural  Disasters  On  Long-­‐‑Run  Economic  Growth,”  Michigan  School  of  Business  Journal  4  (1),  pp.  11-­‐‑  49.    

Kousky,  Carolyn  (2012).  “Informing  Climate  Adaptation:  A  Review  of  the  Economic  Costs  of  Natural  Disasters,  Their  Determinants,  and  Risk  Reduction  Options,”  Resources  for  the  Future  Discussion  Paper.    

Lall,  Somik  and  Uwe  Deichmann  (2009).  “Density  and  Disasters  Economics  of  Urban  Hazard  Risk,”  World  Bank  Policy  Research  Working  Paper  5161.  

Lindell,  Michael  and  Carla  S.  Prater    (2003).  “Assessing  Community  Impacts  of  Natural  Disasters,”  Natural  Hazards  Review  4  (4),  pp.  176-­‐‑  185.    

Lopez-­‐‑Calva,  Luis  Felipe  and  Ortiz-­‐‑Juarez,  Eduardo  (2009).  “Evidence  and  Policy  Lessons  on  the  Links  between  Disaster  Risk  and  Poverty  in  Latin  America,”  MPRA  Paper  No.  18342  Online  at  http://mpra.ub.uni-muenchen.de/18342/.  

Muto,  M.,  Morishita,  K.,  and  Syson,  L.  (2011).  “Impacts  of  Climate  Change  upon  Asian  Coastal  Areas:  The  case  of  Metro  Manila,”  Japan  International  Cooperation  Agency  with  the  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  138  

cooperation  of  Integrated  Research  System  for  Sustainability  Science  (IR3S),  Institute  for  Global  Change  Adaptation  Science  (ICAS),  CTI  International,  ALMEC  Corporation,  Ateneo  de  Manila  University,  and  National  Statistics  Office,  Republic  of  the  Philippines.  

Noy,  Ilan  (2009).  “The  Macroeconomic  Consequences  of  Disasters,”  Journal  of  Development  Economics  22  (2),  pp.  221-­‐‑  231.  

Okuyama,  Yasuhide  (2009-­‐‑10).    “Critical  Review  of  Methodologies  on  Disaster  Impact  Estimation,”  Graduate  School  of  International  Relations,  International  University  of  Japan,  Niigata,  Japan.  

Pelling,  Mark,  Alpaslan  Özerdem  and  Sultan  Barakat  (2002).  “The  Macro-­‐‑economic  Impact  of  Disasters,”  Progress  in  Development  Studies  2  (4)  pp.  283–305.  

Rose,  Adam  (2004).  “Defining  and  Measuring  Economic  Resilience  to  Disasters,”  Disaster  Prevention  and  Management  13  (4),  pp.  307-­‐‑  314.    

Skoufias,  Emmanuel    (2003).  “Economic  Crisis  and  Natural  Disasters:  Coping  Strategies  and  Policy  Implications,”  World  Development  31  (7),  pp.  1087-­‐‑  1102.    

Stern,  Nicolas  (2007).  The  Economics  of  Climate  Change.  Cambridge,  UK:  Cambridge  University  Press.    

Webb,  Gary,  Kathleen  Tierney  and  James  Dahlhamer  (1999).  “Businesses  and  Disasters:  Empirical  Patterns  and  Unanswered  Questions,”  University  of  Delaware  Disaster  Research  Center  Preliminary  Paper  281.    

Zhang,  Yang,  Michael  Lindell  and  Caral  Prater  (2007).  “Vulnerability  of  Community  Business  to  Environmental  Disasters,”  Disasters  33,  pp.  38-­‐‑57.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  139  

Chapter  3:  Social  Sector:  Narratives  on  Flooding  and  Climate  Change  in  Metro  Manila

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  140  

Frameworks  

The  vulnerability  frameworks  of  Birkman  et  al  (2010)  and  Cutter  et  al  (2003)  are  utilized  in  this  narrative  in  order  to  examine  the  social  factors  associated  with  the  causes  and  consequences  of  disaster  and  climate  change  on  the  vulnerable  populations  of  Metro  Manila.3The  framework  used  in  examining  these  narratives  is  given  below:  

Cutter  (1996)  in  analyzing  the  impacts  of  flooding  in  the  United  States  used  householdsas  units  of  analysis  while  Bankoff  (2003)used  historical-­‐‑spatial  approaches  in  examining  the  hazards  of  floodinginMetro  Manila.  Meanwhile,  Porio  (2011,  2012)  examined  the  vulnerability,  adaptation  and  resilience  of  marginal  communities  in  the  three  flood  basins  of  Pasig-­‐‑Marikina,  Manggahan  and  the  KAMANAVA4  areas  (Kaloocan,  Malabon,  Navotas,  and  Valenzuela).  

                                                                                                                 

3Metro Manila is composed of 17 cities and municipalities by virtue of Presidential Decree No. 824 issued in 1975. 4Part of the 17 cities and municipalities comprising Metro Manila.  

Methodology/Data  Sources  

The  social  sector  paper  used  mainly  secondary  sources  plus  the  following  primary  data  sources:  

1. Disaster  and  Climate  Change  Study  (2008-­‐‑2009)  conducted  by  Dr.  Emma  Porio  in  15  marginal  communities  located  in  the  three  flood  basins  of  Metro  Manila.  This  study  utilized  household  and  community  profiling  surveys,  key  informant  interviews,  and  focus  group  discussion  (FGDs);  

2. APN-­‐‑supported  study  “Enhancing  Medium-­‐‑  and  Long-­‐‑Term  Planning    AmongLocal  Governments”  (Porio  2012).  This  study  utilized  household  and  community  surveys,  business  and  industrial  establishment  survey,  key  informant  interviews  and  focus  group  discussions  (FGD);  

3. Post-­‐‑Disaster  Needs  Assessment  (Typhoons  Ondoy  and  Pepeng)/PDNA  Study  (Institute  of  Philippine  Culture,  2009).  This  study  utilized  household  surveys,  community  profiling,  and  FGDs;  

4. Social  Impact  Assessment  Study  of  Ondoy  and  Pepeng  (Institute  of  Philippine  Culture,  2011).  This  studyutilized  household  surveys,  community  profiling,  and  FGDs.  

While  the  social  sector  narratives  also  utilized  other  studies,  the  quantitative  and  qualitative  assessments  of  the  causes  and  impacts  to  the  different  stakeholders  and  affected  communities  were  largely  lifted  out  

Figure  V.1.  Framework  for  the  Social  Sector  Narrative  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  141  

of  Porio  (2011)  and  Porio  (2012)  as  well  as  from  the  some  un-­‐‑analyzed  portions  of  the  data  sets  obtained  by  these  two  studies.  

For  a  coastal  and  riverine  city  like  Metro  Manila,  the  hazards  and  sources  of  disaster  risks  are  floods,  sea  level  rise,  and  storm/tidal  surges,  earthquakes  and  subsidence.    

Risk  

Disaster  risk  is  a  product  of  the  interaction  of  the  hazard  (event)  and  the  vulnerability  conditions  of  the  society  or  elements  exposed.  As  a  result,  the  need  for  a  systematic  linkage  between  disaster  risk  reduction  (DRR)  and  climate  change  adaptation  (CCA)  to  advance  sustainable  development,  and  finally  human  security  is  being  discussed  within  the  ongoing  climate  change  negotiations  as  well  as  within  the  disaster  risk  community,  for  example,  in  the  framework  of  the  Intergovernmental  Panel  on  Climate  Change  special  report  on  ‘Managing  the  risks  of  extreme  events  and  disasters  to  advance  climate  change  adaptation’  (Birkmann  et  al,  2010).  

Social  Vulnerability  

The  definition  of  the  term  ‘vulnerability’  has  been  widely  debated  in  the  literature.  Several  definitions  have  been  advanced  depending  largely  on  their  disciplinary  orientations  (Cutter,  1996).Vulnerability  and  adaptation  is  relative  to  the  degree  that  a  particular  group  is  susceptible  to,  or  unable  to  cope  with,  adverse  effects  of  climate  change,  including  climate  variability  and  extremes(Carter  and  Kankaanpaa,  2003  and  

IPCC,  2001).  Downing  et  al  (1995)  refer  to  vulnerability  as  an  outcome:  “the  degree  of  loss  (ranging  from  0  %  to  100%)  resulting  from  a  potentially  damaging  phenomenon”.  Adger  (1999)  in  a  similar  way  argues  that  “the  exposure  of  groups  or  individuals  to  stress,  as  a  result  of  social  and  environmental  change,  where  stress  refers  to  unexpected  changes  and  disruptions  to  livelihoods”.  However,  vulnerability  is  also  seen  as  a  set  of  indicators  that  condition  outcomes  in  terms  of  susceptibility  to  impacts  (Lewis,  1999).  The  work  of  Blaikie  et  al  (1994)  defines  vulnerability  as:  “characteristics  of  person  or  group  in  terms  of  their  capacity  to  anticipate,  cope  with,  resist,  and  recover  from  the  impacts  of  natural  hazards”.  Adger  (2000)  provides  an  alternative  definition  for  this:  “the  presence  or  lack  of  ability  to  withstand  shocks  and  stresses  to  livelihood”.  

The  definition  given  by  Downing  sees  vulnerability  in  terms  of  exposure  to  hazards.  Studies  focusing  on  this  tend  to  ‘focus  on  the  distribution  of  some  hazardous  condition,  the  human  occupancy  of  this  hazardous  zone  .  .  .  and  the  degree  of  loss  (life  and  property)  associated  with  the  occurrence  of  a  particular  event’  (Cutter,  1996).  In  a  way,  this  is  what  can  be  termed  as  the  “physical-­‐‑ecological  vulnerability”.  In  turn,  Blaikie’s  definition  sees  vulnerability  as  the  variations  in  people’s  ability  to  cope  with  the  hazards.  Studies  focusing  on  this  tend  to  highlight  the  social  construction  of  vulnerability  (Cutter,  1996).  Studies  have  shown  that  the  socio-­‐‑political  processes  by  which  people  are  made  vulnerable  are  the  most  relevant  to  disaster  and  mitigation  strategies  (Few,  2003;  Pelling,  1999).  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  142  

What  are  the  indicators  of  social  vulnerability?  One  of  the  most  popular  is  poverty  level  (Few,  2003;  Chan  and  Parker,  1996;  Adger,  1999,  Porio,  2011).    Communities  with  a  higher  incidence  of  poverty  tend  to  be  more  vulnerable  to  environmental  hazards.  The  poor  tend  to  occupy  the  more  flood-­‐‑prone  environments,  and  they  have  fewer  resources  upon  which  to  draw  to  counteract  the  impacts  of  flooding  (Few,  2003;  Chan  and  Parker,  1996).  However,  poverty  is  NOT  the  only  indicator  of  vulnerability  to  environmental  hazards.  Vulnerability  to  the  impacts  of  hazards  has  social,  political,  institutional,  and  cultural  dimensions  as  well  (Few,  2003;  Cutter,  2000;  Pelling,  1997).  A  list  of  indicators  to  social  vulnerability  has  been  constructed  by  Cutter  (2000),  and  it  involves:  “access  to  information  and  knowledge,  access  to  political  power  and  representation,  and  beliefs  and  customs”.  Pelling  (1997)  argues  that  the  neighbourhoods  who  are  most  vulnerable  to  flooding  are  those  with  low  household  incomes,  poor  housing  quality,  and  low  levels  of  community  organization  (Few,  2003).  Maskrey  (1999)  also  sees  the  multi-­‐‑dimensional  nature  of  social  vulnerability  that  includes  “geographic  location,  economic  capacity  in  terms  of  asset  levels,  reserves  and  access  to  loans,  levels  of  social  cohesion  and  organization,  its  cultural  vision  of  disasters,  and  many  more…”  However,  Maskrey  (1999)  warns  of  treating  hazard  victims  as  homogeneous,  since  communities  are  definitely  heterogeneous  in  terms  of  vulnerabilities  and  needs.  There  are  many  variations  in  social  vulnerability  within  different  communities  that  have  variable  socio-­‐‑economic  status,  gender,  age,  

ethnicity,  and  religious  affiliation  (Few,  2003).      

Porio  (2011)  utilizing  Nicholls  (1998)  in  examining  the  vulnerability  of  riverine  communities  in  Metro  Manila  distinguished  between  natural  system’s  vulnerability  and  socio-­‐‑economic  vulnerability  to  climate  change.  More  significantly,  she  argued  that  the  dynamic  interaction  between  these  two  systems  can  intensify  the  vulnerabilities  of  different  social,  political,  and  economic  groups.  Therefore,  the  socio-­‐‑economic  vulnerability  of  certain  social  classes  or  groups  is  also  partly  dependent  on  the  society’s  technical,  institutional,  economic  and  cultural  ability  to  prevent  or  cope  with  these  impacts,  i.e.,  capacity  to  adapt  within  the  timescale  of  natural  changes,  (Sairinen  and  Peltonen  (N.D.).  Meanwhile,  vulnerability  can  also  be  defined  as  the  degree  to  which  a  system  or  unit  is  likely  to  experience  harm  due  to  perturbations  or  stresses  (environmental,  economic,  technological)  and  the  responses  of,  and  impacts  on  social  groups,  ecosystems,  and  places  (De  Sherbinin  et  al.  2007).    

Social  Factors  that  Determine  Risk  to  Communities  

Flooding  in  Metro  Manila  is  not  caused  by  physical  and  environmental  factors  alone.  There  are  also  human-­‐‑induced  factors,  brought  about  as  a  result  of  human  activities  (Bankoff,  2003;  Porio,  2011).  The  dynamic  interaction  between  physical  and  socio-­‐‑economic  factors  can  intensify  the  vulnerabilities  of  various  social,  political,  and  economic  groups  (Porio,  2011).    There  are  four  main  social  factors  that  contribute  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  143  

to  risk  of  communities  in  Metro  Manila:  (1)  population  growth,  (2)  encroachment  of  informal  settlers  on  waterways,  (3)  improper  disposal  of  waste,  and  (4)  poor  maintenance  of  flood  control  systems  (Bankoff  2003;  Porio  2011,  2012;  Zoleta-­‐‑Nantes  2000).    

Metro  Manila’s  population  expanded  from  5.93  million  in  1980  to  7.95  million  in  1990,  9.93  million  in  2000  and  is  projected  to  reach  19.43  million  in  2020.  In  2007,  the  National  Statistics  Office  (NSO)  reported  that  Metro  Manila  has  12  million  residents  but  the  average  daytime  population  is  about  16  million  (Porio,  2011).  The  high  population  density  has  strained  the  existing  sewerage  and  drainage  systems  in  the  city  (Porio,  2009;  Zoleta-­‐‑Nantes,  2000).    

There  are  two  major  sewage  systems  in  

Metro  Manila.    One  is  the  Central  Manila  Sewer  on  the  north  and  south  banks  of  the  Pasig  River,  whichcovers  1,850  hectares  and  with  a  total  length  of  240  kilometers.  It  was  initially  designed  to  serve  500,000  people,  but  it  recently  services  more  than  a  million  people.    Another  sewage  system  is  located  in  Quezon  City  and  Makati,  measuring  approximately  140  kilometers  in  length.  It  was  designed  to  serve  350,000  individuals,  but  currently  serves  about  half  a  million  people  (Zoleta-­‐‑Nantes,  1999).  

Because  most  of  the  people  who  migrated  to  the  metropolis  were  poor,  they  could  not  afford  the  high  costs  of  land,  housing  materials,  and  construction.  Consequently,  migrants  have  to  find  housing  in  the  informal  housing  sector,  living  along  the  banks  of  rivers,  canals,  and  esteros  (Bankoff,  2003;  Porio,  2011;  Zoleta-­‐‑Nantes,  2000).  In  

Figure V.2. Population Trends of Metro Manila (1970 – 2020)

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  144  

fact,  a  study  conducted  by  the  HUDCC  revealed  that  in  2007,  the  total  informal  settlers  in  the  country  number  550,771  households,  with  36%  or  199,398  households  found  in  Metro  Manila  (Cruz,  2010).  These  makeshift  houses  often  encroach  on  to  available  waterways,  narrowing  their  flow  capacity  and  diminishing  their  volume  of  discharge  (Bankoff,  2003;  Porio,  2011;  Zoleta-­‐‑Nantes,  2000).  

Finally,  residential  communities  are  also  responsible  for  generating  about  half  the  total  volume  of  Metro  Manila’s  solid  wastes.  Unfortunately,  only  71  %  of  the  wastes  are  properly  collected  by  the  dump  trucks  and  taken  to  landfills.  The  remaining  wastes  are  simply  left  on  the  streets,  dumped  on  vacant  lots,  or  thrown  into  storm  drains,  creeks,  or  rivers.  As  a  result,  an  amount  of  about  55  to  157  tons  of  solid  wastes  each  day  clog  the  network  of  drainage  canals,  thus  increasing  the  likelihood  of  flooding  (Bankoff,  2003).            

Transitions  in  History  that  Changed  the  Distribution  of  Impacts  in  Metro  Manila.  

Floods  have  always  affected  coastal  and  riverine  cities  like  Manila  whose  earlier  socioeconomic  development  was  very  much  based  on  its  location  Manila  Bay  and  the  Pasig  River.  Manila  Bay  provided  an  ideal  port  location  for  both  foreign/local  ships/boats  to  dock  in  Manila  Bay  and  near  the  mouth  of  the  Pasig  River  to  transport  of  people  and  goods.  Ports  served  as  the  transport  hub  for  import  and  export  of  goods  starting  with  the  Galleon  trade  

between  the  Philippines  and  Europe.  Meanwhile,  the  Pasig  River  served  as  the  main  channel  for  bringing  people  and  goods  from  the  hinterlands  of  Luzon  to  the  city.  This  all  changed  at  the  turn  of  the  century  with  the  increasing  shift  to  road-­‐‑based  transport  and  the  decline  of  water-­‐‑based  transport  along  the  Pasig  River  and  those  docking  in  Manila  Bay.    

 The  destructive  impacts  of  floods  became  more  discernible  with  the  rapid  increase  of  the  population  after  WWII.  Rapid  urbanization  started  in  the  1950s  and  reached  its  height  in  the  1990s  with  more  than  half  of  the  population  living  in  cities.  By  the  1980s,  Metro  Manila  has  become  almost  hundred  percent  urban  (Porio  2009).    

The  following  section  will  describe  the  flood  patterns  and  trends  from  1950s  to  2000.  

Post-­‐‑WWII  to  the  1960s:  Emergent  Social  and  Environmental  Trends  In  the  1950s,  floods  often  devastated  Tondo,  Sta.  Cruz,  Sampaloc,  and  Sta.  Mesa,  Manila.  During  this  time,  floods  were  mostly  attributed  to  nature  such  as  high  rainfall  intensity,  city’s  flat  terrain,  and  high  tide  events  in  Manila  Bay  (Zoleta-­‐‑Nantes,  2000).  Furthermore,  tidal  channels  had  become  shallower  and  narrower  (from  12  meters  to  3.6  meters)  with  increased  siltation.  Mass  housing  complexes  and  commercial  establishments  had  been  constructed  all  over  the  city.  Government  paid  little  attention  to  flood  problems  in  Metro  Manila  (Leuterio,  1956).  

In  the  1960s,  the  areas  inundated  by  floods  have  expanded.  Almost  70%  of  the  city  of  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  145  

Manila  was  drenched  with  flood  waters  (Zoleta-­‐‑Nantes,  2000).  Pasig  River,  which  used  to  have  a  mean  depth  of  about  4.8  to  5.5  meters,  accumulated  silt  to  the  point  that  the  depth  had  been  reduced  to  3.6  to  4.3  meters  (Pope,  1967).  A  number  of  makeshift  houses  along  riverbanks  have  also  been  constructed  and  blamed  for  the  floods.    

The  Manila  Council  blamed  the  floods  to  massive  deforestation  initiated  by  the  Philippine  Congress  in  the  Marikina  and  Montalban  watersheds.  On  the  other  hand,  the  Congress  blamed  city  government’s  poor  drainage  system.  In  fact,  20-­‐‑meter  wide  esteros  had  been  reduced  to  0.6  meter  wide  canals.  The  number  of  paved  roads  also  increased  flooding  (Rodriguez,  1967).  

1970s-­‐‑1980s:  Urbanization  Intensifies,  Increasing  Environmental  Degradation  and  Social  Services  Deficit  In  the  1970s,  soil  erosion  and  garbage  on  waterways  have  made  the  colours  of  flood  waters  brown  and  murky  dark.  Watershed  deforestation,  uncompleted  dike  constructions,  silting  of  waterways,  and  lack  of  comprehensive  flood  control  programs  were  the  primary  causes  of  flooding  in  the  1970s.  City  officials  even  blamed  the  flooding  on  supernatural  forces,  such  as  the  due  to  the  robbery  of  the  400-­‐‑year  old  image  of  the  Holy  Child,  the  patron  saint  of  Tondo  (Zoleta-­‐‑Nantes,  2000).    

By  the  1980s,  chronicles  of  flooding  of  riverine  communities  of  Metro  Manila  became  more  frequent.  For  example,  Zoleta-­‐‑Nantes  (2000)  described  the  1986  and  1988  

floods  as  causing  a  lot  of  destruction  in  Marikina  Valley  and  along  Laguna  de  Bay.  Heavy  siltation  had  reduced  the  water  holding  capacity  of  Laguna  de  Bay  by  64%  (Ressurreccion-­‐‑Sayo,  1988).  To  control  the  destructive  flood  impacts,  the  government  started  constructing  flood  control  infrastructure  such  as  flood  gates,  river  walls,  and  main  interceptors  along  the  main  water  channels  along  the  Pasig-­‐‑Marikina  River  System  and  the  rivers/coasts  of  the  KAMANAVA  areas.  More  specifically,  it  was  during  the  1980s  that  the  Manggahan  Floodway  and  the  Napindan  Floodgate  were  installed  (Zoleta-­‐‑Nantes,  2000).    

1990s-­‐‑2000s:  Intensification  of  Impacts  of  Urbanization  and  Environmental  Degradation    It  was  in  the  1990s  that  the  outbreak  of  flood-­‐‑related  diseases,  such  as  leptospirosis,  cholera,  and  dengue  emerged.  Traffic  congestion  in  the  mega  city  also  became  worse.  For  instance,  a  two-­‐‑hour  travel  can  translate  to  10  hours  of  being  trapped  inside  one’s  vehicle  on  a  flooded  street.  The  depths  of  floodwaters  also  had  increased  in  Marikina,  Pasig,  and  Kamanava  (Kalookan,  Malabon,  Navotas,  Valenzuela)  areas.      

It  was  also  in  the  1990s,  however,  that  the  government  provided  more  transportation  assistance  to  stranded  commuters.  Timely  suspension  of  school  was  also  observed.  The  bulk  of  government  response  was  on  construction  of  food  control  infrastructures  and  relief  operations  (Zoleta-­‐‑Nantes,  2000).    

It  was  in  this  decade  that  Metro  Manila  suffered  greatly  from  the  flooding  brought  about  by  typhoons.  In  early  July  2008,  the  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  146  

World  Bank  estimated  that  the  Philippines  loses  P15  billion  annually  to  disasters  like  typhoons  and  floods  (Porio,  2011).  Typhoon  Ketsana  (Ondoy)  wreaked  havoc  in  Metro  Manila  last  2009,  leaving  300  dead  and  causing  nearly  P9  billion  pesos  in  total  damages.  Unfortunately,  insufficient  funds,  mismanagement,  and  misspending  of  resources  continue  to  hinder  improvement  of  flood  control  programs.    

DRRM  and  Climate  Change  This  decade  also  saw  the  increasing  awareness  of  people  regarding  changing  climate  patterns  as  manifested  in  the  intensity  of  typhoons  and  floods  and  the  variability  (or  season)  of  their  occurrence  during  the  year.  This  was  also  supported  by  accounts  of  affected  residents  who  observed  the  increasing  height  of  flood  waters  in  their  midst  and  the  unpredictable  patterns  of  their  occurrence  compared  to  climate  events  

Figure  V.4.  Map  of  the  Flood  Prone  Areas  of  Metro  Manila  River  Basins  and  the  Research  Communities.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  147  

in  the  past.  They  said  that  they  have  always  come  to  expect  the  typhoon  season  from  June  to  November  every  year.  But  urban  poor  residents  in  the  riverine  and  coastal  communities  of  Metro  Manila  remembered  that  in  2008,  they  experienced  their  first  typhoon  in  May.  

Porio  (2012)  also  noted  as  reflected  in  the  table  below  that  in  2011,  10  deadly  storms  (out  of  19)  occurred  year  round  (from  January  to  December)  causing  many  deaths  and  damage  to  property  and  infrastructure  (bridges,  roads).  These  occurrences  prompted  residents  in  the  surveyed  marginal  communities  of  the  Pasig-­‐‑Marikina  Flood  Basin  to  argue  that  climate  change  is  indeed  very  real  for  them  as  they  constantly  suffer  from  floods  and  storms  more  now  than  in  the  past.  

Pre-­‐‑Disaster  Social  Trends  Continues  

Because  the  increasing  population  of  general  population  and  the  increasing  populations  of  vulnerable  populations  such  as  poor  people  and  due  to  various  socio-­‐‑political  contexts  affecting  the  vulnerabilities  of  populations,  the  trends  are  continued.  Furthermore,  the  behavior  of  the  affected  population  changed  temporarily  after  the  disaster  but  went  back  to  their  old  ways  after  just  a  few  months.  Mismanaged  solid  waste  management  systems,  land  use  and  habitation  patterns  in  both  declared  danger  zones/areas  continue  in  the  metropolis.  

Another  factor  for  the  continuation  of  pre-­‐‑disaster  social  trends  is  the  absence  of  a  

Figure  V.3.  List  of  Storms/Typhoons  and  Earthquakes  in  the  Philippines  in  2011  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  148  

continuous-­‐‑systematic  training  and  capability  program  for  the  staff  of  the  agencies  responsible  for  disaster  risk  reduction  and,  more  importantly,  for  the  vulnerable,  flood-­‐‑prone  communities  and  residents.  

Government  Laws,  Measures,  and  Policies:  DRRM  and  Climate  Change  

There  are  a  number  of  existing  policies  and  legislations  that  respond  to  disaster  risk  reduction  and  management  in  the  country.  On  June  13,  1956,  the  Fourth  Congress  passed  Republic  Act  Number  2056,  which  prohibited  construction  of  buildings,  dams,  dikes,  and  other  structures  that  encroach  upon  navigable  waterways.  The  punishment  was  a  fine  of  five  hundred  to  six  thousand  pesos.  This  law  was  poorly  observed  and  enforced  (Zoleta-­‐‑Nantes,  2000).  In  September  1973,  Presidential  Decree  Number  296  had  directed  the  demolition  of  all  structures  that  obstruct  the  natural  flow  of  water,  and  specified  a  heavier  penalty:  fine  of  five  thousand  pesos  and  imprisonment  for  two  to  ten  years.  Unfortunately,  these  directives  were  not  executed  (Zoleta-­‐‑Nantes,  2000).    

The  Metropolitan  Manila  Commission  was  created  in  1975  to  integrate  the  provision  of  public  services  in  Metro  Manila.  This  was  later  replaced  by  the  Metro  Manila  Authority  (MMA)  in  1990,  and  then  to  Metropolitan  Manila  Development  Authority  (MMDA)  in  1995.  The  MMDA  has  undertaken  development  planning,  traffic  administration,  solid  waste  disposal,  and  flood  control  in  the  city(Zoleta-­‐‑Nantes,  

2000).  An  important  resolution  created  by  the  MMDA  with  regard  to  flood  mitigation  was  the  1996  provision  on  the  Pasig  River  and  esterosin  Metro  Manila.  This  resolution  specified  a  minimum  building  setback  of  10  meters  from  the  existing  banks  of  major  river  systems,  and  3  meters  from  existing  esterosin  Metro  Manila  (Zoleta-­‐‑Nantes,  2000).    

In  June  1978,  Presidential  Decree  Number  1566  established  the  National  Disaster  Coordinating  Council  (NDCC).  The  group  is  mandated  to  coordinate  disaster  preparation  and  management  activities  of  government  agencies.  The  NDCC  also  advises  the  President  on  national  disaster  preparedness  program,  disaster  operations,  and  rehabilitation  efforts.    

In  the  year  2000,  the  Local  Government  Code  has  institutionalized  a  systematic  allocation  of  powers  and  responsibilities  between  the  national  and  local  governments.  This  decentralization  of  state  power  from  the  national  to  local  governments  was  instituted  to  increase  the  efficiency  and  effectiveness  of  local  governments  in  responding  to  the  needs  of  their  constituents  (Porio,  2012).  Metro  Manila  comprises  of  17  administrative  cities,  each  having  autonomous  local  government  units  (LGUs),  but  also  managed  through  the  MMDA.  In  terms  of  disaster  preparation  and  operations,  it  is  currently  the  LGUs  who  are  responsible  for  the  coordination  of  evacuation  and  relief  operations  for  their  respective  constituents.  They  also  initiate  the  trainings  of  their  barangay  disaster  management  teams.  Finally,  workshops  are  also  conducted  for  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  149  

local  residents  in  order  to  improve  disaster  preparation  and  mitigation.  

In  order  to  further  address  the  challenges  brought  about  by  disasters,  several  policies  and  programs  were  enacted  by  Congress.  Two  overarching  frameworks  for  adapting  to  climate  change  were  crafted:  the  2010  National  Disaster  Risk  Reduction  and  Management  and  the  2011  National  Framework  Strategy  on  Climate  Change.  The  first  provides  for  the  creation  of  the  National  Disaster  Risk  Reduction  and  Management  Council  (NDRRMC);  the  second,  for  the  Climate  Change  Action  Plan  approved  for  implementation  by  President  Benigno  Aquino  III  (APN,  2010).  

National  Disaster  Risk  Reduction  and  Management  Plan  

In  2010,  Republic  Act  No.  10121  provided  a  new  legal  basis  for  policies,  plans,  and  programs  dealing  with  disasters.  It  acknowledges  the  need  to  “adopt  a  disaster  risk  reduction  and  management  approach  that  is  holistic,  comprehensive,  integrated  and  proactive  in  lessening  the  socio-­‐‑economic  and  environmental  impacts  of  disasters  including  climate  change,  and  promote  the  involvement  and  participation  of  all  sectors  and  stakeholders  concerned.”  (NDRRMP,  2011)  Thus,  the  National  Disasters  Risk  Reduction  and  Management  Plan  (NDRRMP)  has  been  formulated.    

The  NDRRMP  is  a  document  formulated  and  implemented  by  NDRRMC  through  the  Office  of  Civil  Defense  (OCD)  that  sets  out  goals  and  objectives  for  reducing  disaster  risks.  The  NDRRMP  goals  are  to  be  

achieved  until  2028,  and  address  the  following  needs:  (1)  Need  for  institutionalizing  DRRM  policies,  structures,  coordination  mechanisms  and  programs  from  national  down  to  the  local  levels;  (2)  Importance  of  mainstreaming  DRRM  and  CCA  in  the  development  processes  such  as  policy  formulation,  socioeconomic  development  planning,  budgeting  and  governance;  (3)  Competency  and  science-­‐‑based  capacity  building  activities;  and  (4)  Emphasizes  gender-­‐‑responsive  and  rights-­‐‑based  sustainable  development  (NDRRMP,  2011).      

National  Climate  Change  Action  Plan  The  National  Climate  Change  Action  Plan  (NCCAP)  outlines  the  agenda  for  climate  change  adaptation  and  mitigation  for  2011  to  2038.  Consistent  with  the  Climate  Change  Adaptation  Framework,  the  NCCAP’s  ultimate  goal  is  to  “build  the  adaptive  capacities  of  women  and  men  in  their  communities,  increase  the  resilience  of  vulnerable  sectors  and  natural  ecosystems  to  climate  change  and  optimize  mitigation  opportunities  towards  gender-­‐‑responsive  and  rights-­‐‑based  sustainable  development”  (NDRRMP,  2011).  

The  NCCAP  calls  for  a  convergence  of  approaches  and  programmes  between  DRRM  and  CCA,  especially  since  climate  and  weather-­‐‑based  hazards  can  lead  to  large  scale  disasters  if  processes  and  communities  are  not  prepared  and  the  risks  are  not  reduced.  The  NCCAP  pursues  seven  priorities:  (1)  Food  Security,  (2)  Water  Efficiency,  (3)  Environmental  and  Ecosystem  Stability,  (4)  Human  Security,  (5)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  150  

Climate-­‐‑Smart  Industries,  (6)  Sustainable  Energy,  and  (7)  Knowledge  and  Capacity  Development  (NDRRMP,  2011).    

Disaster  Risk  Mitigation  at  the  City  Level:  Marikina  City  The  crafting  of  local  risk  reduction  and  management  plans  at  the  barangay  (community),  city,  and  provincial  levels  provide  a  very  promising  scenario.  These  local  plans  drawn  locally  and  elevated  to  the  city  level  make  design  strategies  contextually-­‐‑specific  and  more  appropriate,  responsive  and  effective  for  local  needs  (APN,  2010;  Porio  2012).Among  local  governments  in  Metro  Manila,  Marikina  is  one  of  the  most  successful  LGUs  in  constructing  flood  mitigation  structures.  In  1992,  Marikina’s  flooded  area  was  6.36  sq.  kms.  But  this  was  reduced  to  4.40  sq.  kms.  in  2004  with  the  following  initiatives:  (1)  Concreting  of  roads  a  priority  of  the  LGU  to  reduce  the  amounts  of  sand,  pebbles,  and  mud  entering  the  drainage  system;  (2)  Construction  and  rehabilitation  of  major  outfalls  which  allow  flooded  areas  to  recede  faster  and  in  the  process  reduce  flood  damage  and  other  negative  impacts;  (3)  Regular  massive  dredging  operations  allowing  faster  discharge  of  floodwaters  from  residential  subdivisions  to  the  creeks/rivers;  (4)  Demolition  of  obstructions  like  the  squatter/  informal  settlements  along  rivers  and/above  waterways  (e.g.,  small  creeks,  drainage  channels);  (5)  Provision  of  relocation  areas  and  housing  for  the  informal  settlers  by  the  city’s  resettlement  office,  and  (6)  Improvement  of  existing  water  diversion  channels  (Porio,  2011).    

Social  Impacts  of  Flooding  in  Metro  Manila  

A  hazard  like  flooding  creates  a  multitude  of  impacts  on  populations.  These  impacts  can  include  loss  of  homes,  livelihood,  or  loss  of  life.    

In  the  case  of  Metro  Manila,  studies  (e.g.,  Muto  2009;  Porio  2011;  Porio  2012)  suggests  that  flooding  “interacts  with  the  patterns  of  human  activities  in  the  metropolis  in  more  complex  ways.”  Not  all  tangible  losses  are  directly  observed,  because  floods  “not  only  affect  structures  themselves  but  also  their  contents  and  the  activities  undertaken  within  them.”    Examples  of  these  losses  include  disruption  of  traffic  and  business.    Such  secondary  impacts  are  damages  induced  by  the  direct  impacts  and  may  occur  outside  the  flood  event  in  space  or  time  (such  as  the  degradation  of  materials  such  as  wood  and  metal  when  soaked  in  water).  In  addition,  there  are  intangible  impacts  such  as  health  hazards.  Cases  of  these  negative  effects  were  presented  by  Porio  (2011)  and  the  IPC  Post-­‐‑Distaster  Needs  Assessment  Study  (Typhoons  Ondoyand  Pepeng)  (2009)  from  fieldwork  done  in  the  affected  areas  after  the  devastation  of  typhoon  Ondoy  of  2009.  The  IPC  also  followed  this  with  a  “Social  Impact  Assessment  Study”  in  2011  in  both  rural  and  urban  affected  areas  in  Metro  Manila  and  Luzon.  

Impacts  on  Real  Property  On  the  average,  the  flood  waters  in  their  homes  reached  an  average  of  20  ft.,  while  in  some  it  reached  the  maximum  height  30  ft.  in  2009.  But  of  the  two  cities,  Marikina  had  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  151  

suffered  more  with  75  percent  of  their  dwelling  structures  fully  or  partially  damaged  while  only  35  percent  of  Pasig  had  suffered  the  same  (Porio  2012).  

Most  (81  percent)  of  their  major  repairs  and  reconstruction  were  concentrated  on  adding  and  repairing/repainting  the  floors,  walls,  and  roofing  of  their  homes  while  the  rest  (19  percent)  either  constructed  a  new  home,  fixed  their  plumbing,  drainage  system  and  toilets  (Porio  2012).  

The  length  of  time  needed  to  repair  or  reconstruct  their  houses  was  dependent  on  the  extent  of  the  damage  and  the  availability  of  resources.  On  the  average,  it  took  them  30  days  to  complete  the  repair  and  reconstruction  of  their  homes,  with  a  small  minority  (10  percent)  unable  to  do  so  because  of  not  having  the  resources  to  do  it  or  were  prevented  by  the  authorities  to  reconstruct  their  homes  as  these  were  located  in  danger  zones  (Porio  2012).    

In  Marikina,  affected  residents  spent  an  average  of  P141,000  but  maximum  of  P4  million  (compared  to  P12,000  in  Pasig  City  but  maximum  of  P150,000)  to  repair  their  damaged  homes  and  appliances.  Overall,  it  took  them  an  average  of  2.5-­‐‑3  months  to  completely  reconstruct  their  damaged  dwelling  structures.  The  disparity  is  due  to  the  fact  that  extreme  flooding  in  Marikina  hit  more  upper/middle-­‐‑income  households  while  in  Pasig  City  the  extreme  floods  (in  terms  of  height  and  length)  devastated  mostly  low  and  middle-­‐‑income  households  (Porio  2012).  

Impact  on  the  delivery  of  basic  services  The  frequent  and  increasing  intensity  of  flooding  in  Metro  Manila  have  severely  affected  the  delivery  of  basic  services  like  water,  drainage  systems,  sanitation  facilities,  and  electricity  (Porio  2012).    

In  the  study  conducted  by  Porio  (2011)  on  the  riverine  communities  affected  by  typhoons  Ondoy  and  Pepeng,  only  39  percentof  the  respondents  have  their  own  electric  meter  while  42  percent  buy  their  electricity  from  their  neighbor  at  a  higher  price.  Ten  percent  obtained  electricity  through  illegal  connection  from  their  neighbors,  while  almost  9  percent  use  oil/gas  lamps  and  candles  for  light,  heightening  the  risks  of  fires  in  informal  settlements.  During  typhoons  and  floods,  they  often  experience  energy  fluctuations,  “brown-­‐‑outs”,  and  “grounding”  of  their  electricity  sources  (Porio,  2011).  

Only  one-­‐‑third  (32  percent)  of  the  respondents  in  the  same  study  have  piped  water  while  the  remaining  two-­‐‑thirds  buy  it  from  suppliers  or  neighbors  (65  percent)  who  have  water  connections  or  dug/artesian  wells.  Slightly  less  than  one-­‐‑fourth  (23  percent)  of  them  have  their  water  supply  buried  by  floods  and  tidal/storm  surges.  Thus,  they  have  to  buy  potable  water  at  higher  prices  from  water  suppliers.  During  floods  and  storm  surges,  then,  their  expenses  on  water,  food  commodities,  and  transportation  also  increase  (Porio,  2011).    

Respondents  reported  that  during  floods/tidal  surges,  their  toilets  get  clogged  with  waste  overflowing  to  their  floor  and  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  152  

forced  to  relieve  themselves  in  the  river  or  in  their  neighbors’  toilet  located  far  from  the  flooded  area.  They  also  complained  that  their  place  smell  so  bad  and  quite  dirty  with  floating  garbage,  plastic  bags,  and  human  waste.  Aside  from  the  smell,  dirt,  and  environmental  pollution,  they  also  observed  that  sometimes,  huge  worms  or  snakes  would  emerge  from  their  toilets,  sewage,  and/or  drainage…  (Porio  2011)”    

In  addition,  the  affected  residents  also  reported  that  their  water  supply  was  interrupted  for  22  days  in  2009  (compared  to  zero  in  2011).  In  the  same  manner,  electricity  could  not  be  delivered  for  about  a  month  (Marikina)  and  14  days  (Pasig)  to  about  half  of  the  sample  population  in  2009  compared  to  almost  nil  (1  day)  in  2011  (Porio  20120.  

Impact  on  Lost  Work  or  School  Days  Respondents  reported  losing  from  2  to  98  

days  in  the  last  rainy  season  because  of  illness  or  floods  prevented  them  from  working  or  pursuing  their  business/livelihood  activities.  On  the  average,  they  lost  from  1–15  workdays  (average,  4  days)  due  to  Ondoy.  Of  those  who  were  not  able  to  work  or  pursue  their  livelihood  activities,  they  reported  losing  earnings,  ranging  from  P98–P2,000  (average  of  P1,081;  median  of  P500)  in  the  last  rainy  season  (Porio  2012).  

On  the  average,  30  man-­‐‑days  were  lost  by  the  residents  in  the  year  2009  because  of  the  flood  damage  to  their  homes,  basic  services,  and  infrastructure  (roads,  bridges  and  water  channels)  while  in  a  few  (5  percent)  households  the  number  of  days  lost  totaled  365  days  or  equivalent  to  1  year  due  to  the  same  reasons  (Porio  2012).  

Children  also  suffered  from  the  monsoon  rains,  typhoons,  and  floods,  with  a  third  of  them  being  absent  (average,  4  days)  from  

Figure  V.5.  Children  playing  in  the  Flood  waters  of  Marikina  during  the  Habagat  rains  (Source:  Reuters,  2012)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  153  

their  classes  and  affecting  negatively  their  academic  performance.  Children  from  Napindan  and  Calzada  (Taguig  City)  lost  the  most  number  of  days  (7)  while  those  from  Longos,  Malabon  reported  the  least  (1.5  days).  On  the  whole,  respondents  reported  their  children  lost  five  days  of  schooling  because  of  floods  (Porio  2011).

Impact  on  Loss  of  Livelihood  In  all  urban  areas  visited,  the  loss  of  capital  and  stock  caused  by  Ondoy  had  a  long  term  impact  on  small  businesses  and  reduced  their  profitability.  In  a  number  of  instances,  small  businesses  closed  and  could  not  resume  their  activities  due  to  heavy  losses  or  to  the  need  to  divert  capital  to  meet  basic  expenditures  or  conduct  urgent  housing  repairs  (Porio  20120.    

In  rural  areas,  the  destruction  of  the  means  of  livelihood  fields,  gardens,  fishponds,  crops,  animals  (e.g.  carabaos,  fowls,  pigs),  and  equipment  (e.g.  boats,  fishing  and  farming  equipment)  had  significant  long  term  impacts  on  rural  and  peri-­‐‑urban  communities  (IPC  2011).  

Fishing  was  no  longer  a  primary  source  of  livelihood  in  any  of  the  costal  or  riverine  sites  visited  (as  noted  in  the  SIA)  due  to  a  steady  decrease  in  catch.  Fish  farming  did,  however,  play  an  important  role  as  a  complementary  source  of  income.  As  with  farmers,  the  loss  of  the  investment  made  in  fish  farming  equipment  had  long  term  negative  effects.  Where  fish-­‐‑pens  were  destroyed  by  Ondoy,  fish  farmers  were  unable  to  secure  the  capital  needed  to  return  to  their  initial  line  of  activity  (IPC  2011).  

Impact  on  Loss  of  Personal  and  Household  Items  Aside  from  losses  in  earnings,  the  respondents  also  reported  damages  to  their  household  appliances  (refrigerator,  TV,  washing  machine,  bed  mattress,  cabinet  or  house  furniture,  radio,  electric  fan,  water  dispenser,  etc.)  and  parts  of  their  houses  destroyed,  costing  them  from  P2–P50,000,  with  average  loss  of  P4,615  (Porio  2012).    

Almost  half  (45  percent)  of  the  surveyed  households  reported  having  lost  severely,  while  30  percent  lost  mildly  and  16  percent  had  negligible  losses.  Severe  losses  mean  losing  most  of  their  household  appliances  and  electronic  equipment/gadgets.  Negligible  loss  could  mean  an  electric  fan  becoming  inoperable  or  losing  some  household  utensils/things  (Porio  2012).  

Impact  on  Health  Respondent  s  complained  of  suffering  from  skin  itchiness/allergies,  psoriasis,  athlete’s  foot,  fever,  colds,  diarrhea,  typhoid,  dengue,  and  the  resurgence  of  TB  infection  among  children  and  the  elderly.  Most  (almost  80  percent)  of  the  respondents  suffered  from  coughs/colds  and  fever  due  to  the  floods.  About  40  percent  complained  of  diarrhea  and  stomach  ailments.  About  one  third  (32  percent)  said  they  suffered  from  skin  diseases/allergies.  But  it  is  quite  alarming  that  almost  one-­‐‑fifth  of  the  respondents  suffered  from  deadly  diseases  like  leptospirosis  (18  percent)  and  dengue  (15  percent).  Majority  (84  percent)  of  the  respondents  were  also  alarmed  with  the  increase  of  climate/flood-­‐‑related  diseases  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  154  

such  as  diarrhea,  dengue,  and  leptospirosis  (Porio  2011,  Porio  2012).    

The  diseases  mentioned  also  happen  to  be  quite  costly  among  medical  services.  In  subsidized  government  health  centers/hospitals,  treatment  for  dengue  could  cost  P35,000  -­‐‑  P60,000  while  treatment  for  leptospiroses  ranged  P10,000  to  P50,000.  In  private  hospitals/medical  centers,  expenses  could  be  double  or  triple  these  amounts  (Porio  2011,  Porio  2012).  

On  the  average,  they  spent  P  6,517  for  medical  expenses,  with  some  families  spending  a  maximum  of  P70,000  during  the  Ondoy  floods.  Of  those  who  got  sick,  only  half  (50  percent)  of  them  said  they  were  benefited  by  the  medical  services  provided  by  the  government  and/or  non-­‐‑government  organizations  (NGOs).  But  majority  of  them  said  they  were  able  to  receive  free  medicine,  first  aid  kits  and  services  like  water  chlorination  and  dengue-­‐‑infested  area  fumigation  or  defogging  (Porio  2012).  

Impact  on  Personal  Finances  Only  a  fifth  (20  percent)  of  the  respondents  took  out  loans  because  of  the  2009  floods  with  an  average  loan  of  P10,  517.  Of  those  who  have  taken  loans,  about  half  of  them  paid  interest  of  less  than  10  percent  while  the  other  half  paid  high  interest  ranging  from  12-­‐‑30  percent  per  month.  Of  those  who  have  loaned  money,  only  half  of  them  (50  percent)  were  able  to  pay  their  debt/loan  at  the  time  of  the  survey.  The  used  the  loaned  money  to  build  and  repair  their  homes,  replace  equipment  and  livelihood  losses  (Porio  2012).  

In  summary,  the  number  of  absences  from  school  and/or  workdays  lost  rose  a  100  percent  for  both  men  and  women.  But  their  average  income  losses  rose  to  300  hundred  percent  for  male-­‐‑headed  households  but  a  bit  lesser  (200  percent)  for  women-­‐‑headed  households.  This  is  perhaps  due  to  the  longer  closure  of  factory-­‐‑based  work  for  males  while  home-­‐‑based  work  for  females  opened  earlier  than  the  former.  But  the  worst  is  the  increase  in  their  expenditure  for  medicines,  sanitation,  and  health  care  which  rose  a  thousand  percent  during  the  Ondoy  floods  (Porio  2012).  

Impact  on  Gender  and  Household  Resource  Management  Porio  (2011)  in  her  study  for  the  Asia  Pacific  Network  (APN)  summarized  the  costs  of  basic  services  before,  during,  and  post-­‐‑Ondoy  floods  below.  As  shown  in  the  comparative  summary  table  of  costs  and  losses  incurred  prior,  during,  and  after  the  Ondoy  floods  based  on  the  recollection  of  respondents  during  FGDs.  The  number  of  absences  from  school  and/or  workdays  lost  rose  a  100  percent  for  both  men  and  women.  But  their  average  income  losses  rose  to  300  hundred  percent  for  male-­‐‑headed  households  but  a  bit  lesser  (200  percent)  for  women-­‐‑headed  households.  This  is  perhaps  due  to  the  longer  closure  of  factory-­‐‑based  work  for  males  while  home-­‐‑based  work  for  females  opened  earlier  than  the  former.  But  the  worst  is  the  increase  in  their  expenditure  for  medicines,  sanitation,  and  health  care  which  rose  a  thousand  percent  during  the  Ondoy  floods.  

Comparing  male  and  female-­‐‑headed  households  show  that  women  bear  a  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  155  

heavier  burden  in  times  of  disasters,  especially  during  extreme  floods  during  Ondoy  as  seen  in  the  tables  below.  But  in  non-­‐‑extreme  situations  like  that  of  Pedringand  Quiel  in  2011,  the  damages  were  negligible  (Porio  2012).  

Perceived  Positive  Impacts  by  Community  Residents  However,  though  most  of  these  impacts  are  negative  in  nature,  there  can  be  some  positive  ones  as  well.  In  some  areas  of  KAMANAVA  areas  and  those  near  Laguna  de  Bay,  informal  fisher  folk  were  able  to  catch  fish  that  escaped  from  the  flooded  fish  pens  and  ponds  around  the  area  for  their  own  consumption  and  for  selling.  Of  course,  this  causes  losses  to  the  owners  of  the  flooded  fishpens.  Furthermore,  fisher  folk  who  had  their  own  boats  ferried  people  across  flooded  streets  to  enable  them  to  get  to  work  or  school.  Other  transportation  providers  such  as  the  pedicab  (bicycles  with  

sidecars),  and  the  flood-­‐‑adapted  tricycles  (motorcycles  with  sidecars  mounted  on  high  suspension  and  wheels)  were  plying  the  routes  on  roads  where  jeeps  and  private  vehicles  cannot  pass  through  due  to  the  high  flood  waters  (Porio  2011).    

DRRM  and  Climate  Change  Perceptions  Among  Affected  Residents  While  the  above  impacts  have  been  mainly  attributed  to  flooding,  some  survey  respondents  also  recognized  climate  change  as  a  factor  that  could  have  intensified  the  impacts  of  flooding.  They  also  reported  a  change  in  the  climate  such  as  intensity  and  variability  of  temperature  and  heat  patterns  during  the  year  or  during  summer  and  cold  months  of  December-­‐‑February;  cold  months  seem  to  become  warmer,  etc.,  (Porio  2012).  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  156  

Summary  of  Costs  of  Basic  Needs/Services  (in  pesos,  monthly,  US$  1=P43)  

Pre-­‐Ondoy   Ondoy  Period   Post-­‐Ondoy    

Men    HH  

Women  HH   Men    HH  

Women  HH   Men    HH  

Women  HH  

Food   P6,000   P5,800   P2,500  +  relief  goods  

P2,000  +  relief  goods  

P6,500   P6,000  

Water  

     • Drinking     P50   P45   P240     P240   P60   P50  

•   Cooking/washing  utensils  

P80  (well)  P500  (piped)  

P80  (well)  P550  (piped)  

P80  (well,  long  lines)  

P1,500  (piped)  

P80  (well,  long  lines)  P1,500  (piped)  

P80  (well)  P740  (piped)  

P80  (well)  P700  (piped)  

Energy/electricity   P2,000   P1,800   P5,000   P4,500   P2,000  (wet)  P3,000  (dry)  

P1,800  (wet)    P2,500  (dry)  

Sanitation/Laundry  (mud,  waist  deep;  cleaning  –  2  weeks  –  one  month)  

P300   P310   P2,000   P2,000   P360   P320  

House  repair   P1,500  –  P15,000  

P1,000  –  P8,000  

Figure  V.6.  Summary  of  Costs  of  Basic  Needs/  Services  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  157  

Percent  Increase/Decrease  of  Costs  of  Basic  Needs/Services  in  Men-­‐ and  Women-­‐headed  Households  (monthly)

Pre-­‐Ondoy Ondoy Period Post-­‐Ondoy

Men  HH

Women  HH Men  HH

WomenHH

MenHH

WomenHH

Food È-­‐3% È-­‐20% È-­‐8%

Water

• Drinking   È-­‐10% same È-­‐17%

• Cooking/washing  utensils

0%  (well)Ç10%  (piped)

0%  (well)0%  (piped)

0%  (well)È-­‐5%  (piped)

Energy/electricity È-­‐10% È-­‐10% È-­‐10%(wet)È-­‐17%  (dry)

Sanitation/Laundry  (mud,  waist  deep;  cleaning  – 2  weeks  – one  month)

Ç3% same È-­‐11%

House  repair È-­‐33% to  -­‐47%

Impacts  due  to  Climate  Change  Aside  from  floods  caused  by  isolated  extreme  events  such  as  that  of  Ondoy,  research  is  also  showing  that  similar  impacts  can  be  created  by  floods  due  to  climate  change  (sea  level  rise)  and  other  related  causes  (tidal  surges  and  land  subsidence).  Porio  (2011)  reports  that  the  areas  of  KAMANAVA  are  particularly  susceptible  throughout  the  year  to  the  effects  of  sea  level  rise  (SLR)  and  tidal  surges.  During  the  last  few  years,  the  residents  also  reported  changes  in  the  climate  patterns  marked  by  increases  in  water  levels  during  tidal/storm  surges  as  seen  in  the  water  marks  left  of  their  house  posts.  These  pose  additional  risks  to  their  

household  appliances,  garments,  and  higher  losses  in  their  work  days  (Porio  2011).  

Data  gathered  from  coastal  and  riverine  cities  by  Porio  (2011)  in  Metro  Manila  also  show  that  in  flood-­‐‑prone  areas  have  also  reported  changes  over  time  in  the  intensity  of  the  monsoon  rains  and  the  depth  of  floods  in  their  communities.  Tidal  waters  did  not  reach  their  schools  before;  now  their  classrooms  often  are  flooded  resulting  in  children  going  home  during  the  rainy  season.  Furthermore,  residents  from  KAMANAVA  areas  (near  Manila  Bay)  and  West  Mangahan  (near  Laguna  Lake)  experience  mostly  the  effects  of  sea  level  rise  through  tidal/storm  surges.  Residents  here  reported  said  that  in  the  previous  years  

Figure  V.7.  Percent  Increase/  Decrease  of  Costs  of  Basic  Needs/  Services  in  Men-­‐‑  and  Women-­‐‑headed  Households  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  158  

the  water  in  their  yard  would  only  reach  up  to  their  knees  but  in  the  recent  storm/  tidal  surges  the  water  would  reach  their  waists  (Porio  2011).      

Looking  at  these  impacts  that  affected  a  lot  of  people,  one  can  see  that  there  were  cases  of  an  “uneven  distribution”  of  such  hazards  and  impacts.  Porio  (2011)  in  particular  points  out  that  households  near  the  constructed  flood  control  infrastructures  (gates  and  walls)  complained  that  the  flood  levels  have  increased  (from  ankle  deep  to  waist  deep).  Respondents  reported  that  there  was  an  observed  intensification  of  flooding  with  the  clogging  of  the  water  ways.  From  the  perspectives  of  those  households  and  communities,  increasing  water  levels,  there  is  a  perceived  sense  of  unfairness.  Also,  according  to  the  local  officials,  informal  settler  families  (ISFs)  should  not  settle  in  danger  zones  (hillsides,  creeks,  riverbanks  and  other  waterways  or  sites  of  soil  erosion  and  subsidence.  But  continuous  eviction/demolition  programs  by  LGUs  in  these  areas  have  not  solved  the  problem  (Porio  2011,  Porio  2012b).    

These  household  level  flood  risks  and  vulnerabilities  also  increase  with  the  expansion  of  residential,  commercial,  and  industrial  development  in  their  immediate  localities  and  cities.  This  could  be  observed  in  the  rapid  expansion  of  construction  projects  around  the  Mangahan  River  Basin,  which  do  not  have  the  necessary  infrastructure  support  like  proper  drainage,  sewerage,  and  road  systems.  The  consequent  flooding  become  intense  as  the  areas  near  the  Napindan  Channel  and  Laguna  de  Bay  are  not  really  suitable  for  

habitation  nor  for  commercial-­‐‑industrial  use  as  these  are  mostly  wetlands.  Meanwhile,  these  have  not  deterred  building  activities  in  these  areas  because  developers  just  fill  up  the  marshy  areas  and  raise  the  building  height  of  ground  floors  (Porio  2011,  Porio  2012b).  

It  must  be  noted  however  that  during  Ondoy  2009,  both  informal  and  formal  settlers  experienced  more  or  less  the  same  impacts  as  shown  in  the  IPC  Post-­‐‑Disaster  Assessment  (IPC  2011).  But  as  Porio  (2011)  noted  earlier,  aperson’s  vulnerability  stems  from  social  conditions  such  as  those  who  endured  Ondoywere  mostly  “very  poor  households  (old,  widowed/separated,  no  income  and  dependent  on  the  relatives’  food  support),  also  came  from  these  low  income  communities”  which  still  shows  the  possibility  of  discrimination  of  impacts  in  the  community.  This  was  reinforced  in  the  post-­‐‑disaster  study  of  marginal  communities  in  the  Pasig-­‐‑Marikina  flood  basin  who  suffered  from  the  Ondoy,  Pepeng  and  Qiel  floods  (Porio  2012,  Porio  2012b).  

Flood  Impacts:  Intersections  of  Social,  Ecological-­‐‑Environmental  and  Health  Vulnerabilities  

Individuals  and  their  societies  live  on  specific  spatial  and  temporal  locations  that  are  bound  by  certain  contexts  or  backgrounds.  Each  location  has  physical,  economic,  health,  and  other  contexts  that  affect  the  dynamics  of  societies.  In  understanding  risk  and  vulnerability  of  people  and  populations,  one  must  consider  how  risks  stemming  from  the  physical  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  159  

conditions  of  the  environment,  the  economic  status  of  the  area,  and  the  overall  state  of  health  and  socio-­‐‑political-­‐‑economic  status  of  the  families  living  in  the  area.  In  this  particular  paper,  we  look  at  the  intersection  of  all  of  these  forces  in  cases  of  flooding  in  urban  cities  particularly  coastal  and  riverine  cities  such  as  Metro  Manila  (Porio  2012b).  

In  several  studies  that  examined  the  characteristics  of  vulnerable  populations.  For  example,  Porio  (2009,  2011)  suggested  the  following  characteristics:      

“Most  of  the  very  poor  households  (old,  widowed/separated,  no  income  and  dependent  on  the  relatives’  food  support),  also  came  from  these  low  income  communities.  These  urban  poor  settlements  remain  very  vulnerable  because  of  dilapidated  housing  structures  and  absence  of  services  and  drainage  systems  in  their  water-­‐‑logged  environments.  Most  respondents  had  8.5  years  in  schooling  and  only  respondents  from  Malabon  attained  some  college  education  (11.20  years).  Their  low  education  and  income,  in  part,  explain  their  low  levels  of  formal  employment  as  most  of  their  earnings  were  from  the  underground  economy.”  

Note  that  apart  from  social  sector  variables  such  as  poverty,  marital  status,  age,  gender,  educational  attainment,  and  income,  the  description  also  emphasizes  the  fact  that  these  populations  live  in  water-­‐‑logged  areas  that  lack  social  services  such  as  potable  water,  electricity,  passable  roads  and  inadequate  drainage  systems.  This  study  

reports  that  these  seemingly  vulnerable  populations  suffer  from  a  myriad  of  flood-­‐‑related  diseases  such  as  those  of  the  skin,  dengue,  diarrhea,  and  leptospirosis.  These  diseases  are  exacerbated  by  lack  of  access  to  clean  water  and  health  care  facilities  that  can  help  prevent  or  reduce  the  risk  of  getting  such  diseases.  Loss  of  work  days  due  to  these  diseases  in  turn  contributes  to  the  reduction  of  the  individual’s  ability  to  become  economically  productive  as  also  shown  by  the  study.  The  interrelatedness  of  these  different  sectors  emphasizes  the  need  to  address  issues  of  vulnerability  and  risk  in  a  multidimensional  manner  (Porio  2011).  More  details  on  the  intersections  of  the  vulnerable  contexts  of  marginal  communities  are  given  in  the  figures  below:  

Cutter  (2003),  in  her  study  of  social  vulnerability  to  environmental  hazards,  uses  variables  such  as  loss  of  physical  infrastructure  and  lifelines  (bridges,  sewers),  commercial  and  industrial  development,  occupation,  and  availability  of  health  services.  These  variables  can  be  sourced  from  the  other  sectors  mentioned.  Cutter  considers  these  variables’  interaction  with  age,  gender,  race  and  ethnicity,  and  socioeconomic  status  to  fully  understand  social  vulnerability.    

Community  Preparation  Efforts  

Community  Preparation  for  Hazards  Associated  with  Extreme  Events  The  wealthy  residents  experience  significant  flood  impacts,  and  are  active  in  defense  of  their  own  interest.  They  are  more  capable  of  finding  solutions  on  a  neighbourhood  scale,  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  160  

and  do  not  look  for  the  government  to  help  them.  They  often  also  possess  enough  political  connections  that  can  help  them  direct  much-­‐‑needed  resources  towards  flood-­‐‑proofing  their  houses  (Zoleta-­‐‑Nantes,  2002).  

In  the  study  conducted  by  Porio  (2011)  in  the  riverine  communities  of  Metro  Manila,  the  wealthy  or  better-­‐‑off  families  responded  to  increasing  heights  of  floods  by“flood-­‐‑proofing”  their  houses  through  use  of  

stronger  materials  like  lumber,  zinc  and  concrete  blocks.  Better-­‐‑off  residents  also  build  additional  floors  to  their  houses  so  they  can  move  up  when  the  ground  floor  is  flooded  as  well  as  providing  rental  income  from  workers  in  nearby  fish  port  in  Navotas  City  or  in  nearby  factories  in  Manggahan  floodway,  Pasig  City.  

On  the  other  hand,  the  flood  problems  of  the  urban  poor  are  intimately  linked  with  survival  problems  such  as  decent  housing  

Figure V.8. Environmental Vulnerabilities of Places: Sources of Vulnerabilities for Urban poor Households in the Three Metro Manila Flood Plains (Porio 2011).

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  161  

availability,  infrastructure  maintenance,  and  scarcity  of  financial  resources.  Their  flood  losses  are  smaller  in  value,  but  have  more  adverse  impacts  on  their  livelihoods,  daily  survival,  and  capability  to  deal  with  flood  hazards  in  the  future  (Zoleta-­‐‑Nantes,  2002).  

The  urban  poor  living  in  the  KAMANAVA  area,  who  regularly  experience  tidal/storm  surges,  have  adapted  themselves  over  the  years  by  just  packing  their  clothes  in  boxes,  tying  and  raising  their  furniture  and  appliances  to  the  higher  parts  of  their  homes  through  a  makeshift  pulley.  They  have  devised  platforms  for  their  appliances  and  household  things  that  they  raise  when  the  tidal/storm  surge  comes.  As  one  respondent  quipped,  “they  are  forever  in  an  evacuation  mode  with  their  clothes  and  other  necessities  or  valuables  in  boxes”!  (Porio,  2011).  

Community  Preparation  for  Hazards  Associated  with  Changing  Climate  Adaptation  to  the  hazards  involving  risks  of  storm/tidal  surges  and  floods  has  been  the  key  survival  strategy  of  most  residents.  They  seem  to  have  gotten  used  to  the  constant  flooding  in  their  premises  and  crafted  a  “water-­‐‑based  lifestyle”  —  getting  used  to  the  regular  rise  of  dirty  water  in  their  midst  and  adjusting  their  household  routines  and  work  patterns  according  to  the  demands  of  the  rains,  floods,  and  water  surges”.  This  is  particularly  true  for  residents  in  the  KAMANAVA  areas  where  tidal  surges  often  meet  flood  waters  from  the  upstream  (Porio,  2011).  However,  residents  are  not  really  well-­‐‑aware  of  the  hazards  associated  with  climate  change.  

They  only  hear  about  climate  change  through  mass  media  (TV  and  radio),  but  they  do  not  really  know  what  it  means  and  how  relevant  it  is  for  them.  As  a  result,  the  preparation  and  adaptation  strategies  to  the  changing  climate  are  very  rare.    

Access  to  Information  on  Relevant  Hazards  Efforts  are  made  by  the  government,  media,  and  other  organizations  in  order  to  relay  important  information  on  hazards  to  the  people.  For  instance,  in  the  study  conducted  after  typhoon  Ondoy  and  Pepeng  in  Pasig  City  and  Marikina  City,  majority  of  the  respondents  (71  percent)  obtained  their  information  from  television  while  some  heard  it  from  friends/relatives  (13  percent),  radio  (8  percent),  government  agencies  (2  percent)  or  have  read  about  it  in  magazines/newspapers  (7  percent)  (Porio  2012).    

However,  differences  in  access  to  information  still  persist.  In  the  IPC  Social  Impact  Monitoring  Study  (IPC  2011)  conducted  in  the  summer  of  2011,  respondents  reported  that  differences  in  access  to  information  partly  explained  the  uneven  distribution  of  support:  “Being  ordinary  citizens  we  do  not  know  who  to  approach!”Participants  reported  that  not  everyone  was  informed  about  the  recovery  programs  implemented  in  the  community,  with  some  respondents  finding  out  about  existing  programs  because  they  responded  to  meetings  called  by  the  barangay/organization  concerned  or  were  sought  out  by  groups  providing  support.  For  others,  information  about  recovery  programs  arrived  too  late:  “Anyone  could  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  162  

apply.  But  the  application  is  no  longer  available”!  (IPC,  2011)  

Respondents  in  affected  areas  often  highlighted  what  they  considered  to  be  a  “monopoly  of  knowledge”  by  community  leaders  and  local  officials.  The  way  in  which  information  about  the  support  available  circulated  in  affected  areas  seemed,  therefore,  to  be  highly  reliant  on  personal  networks.  Respondents  reported  that  there  were  no  instances  of  LGU  putting  in  place  outreach  or  communication  strategies  for  those  in  the  social  margins.Limited  access  to  information  also  meant  that  respondents  were  unable  to  voice  their  complaints  or  grievances  about  the  recovery  process  (IPC,  2011).  

Social  and  Cultural  Barriers  to  Adaptation  and  Resilience  The  study  conducted  in  riverine  communities  in  Metro  Manila  showed  three  main  barriers  to  disaster  preparation  efforts:  (1)  lack  of  financial  capacity;  (2)  lack  of  institutional  support;  and  (3)  security-­‐‑related  concerns.While  respondents  recognized  the  risks  of  floods  and  storm/tidal  surges  to  their  homes  and  communities,  economic  (unemployment  and  loss  of  livelihood)  and  social  problems  (thefts,  drugs,  domestic  conflicts)  were  their  over-­‐‑riding  concern  (Porio,  2011).Their  money  is  usually  allocated  for  basic  commodities  such  as  food,  water,  and  medicine.  So  instead  of  spending  money  to  flood-­‐‑proof  their  houses,  they  will  just  strengthen  their  house  posts  and  stock  up  on  food  (Zoleta-­‐‑Nantes,  2002).  

Availability  of  support  networks  during  calamities  seemed  low  among  the  urban  poor.  When  surveyed  what  kind  of  support  they  received  from  their  relatives,  neighbors,  friends  and  community  officials,  the  respondents  displayed  a  high  level  of  self-­‐‑reliance  (Porio,  2011).  One-­‐‑third  of  the  respondents  consistently  assert  that  they  just  rely  on  themselves  as  no  one  really  helps  them.  Only  a  small  portion  (range  of  3–24  percent)  received  aid  from  their  support  networks.  Perhaps,  their  social  networks  are  quite  thin  and  also  in  similar  dire  situation  (Porio  2011).    

Security-­‐‑related  risks  like  thefts,  fire,  and  drug  abuse  in  their  neighborhoods  are  also  hindrances  to  disaster  preparation  efforts  of  the  community.  These  security-­‐‑related  issues  are  closely  linked  to  the  physical  congestion  and  economic  insecurities  (i.e.,  high  unemployment/underemployment)  of  their  communities/  families.  Given  these  socio-­‐‑economic  risks,  their  vulnerability  to  the  effects  of  typhoons,  floods,  and  sea  level  rise  (SLR)  or  storm/tidal  surges  increasingly  becomes  heightened  (Porio,  2011).  

Community  Perceptions  of  Hazard,  Risk  and  Vulnerability  

Flooding  as  Normal  An  overall  perception  that  some  degree  of  flooding  is  part  of  “normal  life”  persists  among  the  residents  in  flood-­‐‑prone  areas.  For  instance,  in  the  IPC  Social  Impacts  Monitoring  Study  conducted  in  2011,  reported  that  acceptance  of  floods  as  part  of  daily  life  in  12  out  of  the  21  studied  sites.  There  were  even  instances  of  under-­‐‑

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  163  

estimationof  the  potential  dangers  in  the  current  location  as  reflected  in  high  degree  of  pride  in  having  survived  previous  disasters:  “You  were  not  born  yet  when  we  went  through  more  ferocious  typhoons.  But  here  we  are,  still  alive!”(IPC,  2011).  

In  a  study  conducted  by  Porio  (2011),  respondents  reflect  a  low  perception  of  risk  living  in  riverine  communities:  “You  do  not  die  from  floods  or  from  the  rising  waters  here!”  Thus,  the  risk  of  catching  infection  from  rat’s  urine  in  the  flood  (i.e.,  leptospirosis  which  can  result  in  massive  infection  and  death)  is  also  not  high  in  the  people’s  consciousness.  This  level  of  awareness  about  the  deadly  effects  of  rats  and  leptospirosis  changed  after  the  Ondoy  floods  when  those  affected  by  the  dreaded  virus  reached  hundreds  (Porio  2012b).  

Increasing  Awareness  of  Risk  In  the  IPC  Social  Impacts  Monitoring  Study  conducted  after  typhoons  Ondoy  and  Pepeng,  17  out  of  the  19  communities  reported  greater  awareness  of  the  dangers  of  flooding  and  of  possible  mitigation  measures.  Mass  media  (TV  and  radio)  and  schools  (for  children  and  young  people)  were  the  sources  of  information  about  disaster  prevention  consistently  mentioned.  There  were  also  isolated  instances  where  written  materials  provided  by  the  municipality  or  the  barangay  were  referred  to  as  a  useful  sources  of  information  (in  two  of  the  19  communities/areas  studied).In  these  areas,  the  research  team  observed  that  respondents  were  aware  of  a  general  disaster  response  plan  (“May  sistemanapodyan  “(There  is  a  system  in  place)  (IPC,  2011).  

Climate  Change  and  Extreme  Events  In  the  study  conducted  among  the  affected  residents  of  Pasig  City  and  Marikina  City  from  typhoons  Ondoy  and  Pepeng,  majority  of  them  (86  percent)  have  heard  of  climate  change  and  have  accepted  it  as  part  of  environmental  change.  In  fact,  when  asked  how  they  understand  the  phenomenon,  majority  were  able  to  enumerate  the  following  indications:  ozone  depletion,  sea  level  rise,  air  pollution,  heavy  rains/floods,  droughts,  water  shortage,  melting  of  glaciers  and  rapid/intense  weather  changes.  But  they  were  not  agreed  on  the  causes  of  climate  change  as  they  gave  varying  responses  like:  environmental  pollution  (50  percent),  increasing  population  (36  percent),  and  God’s  wrath/mankind’s  sins  (14  percent).  But  on  the  whole,  they  acknowledge  that  the  major  causal  forces  of  climate  change  are:  people’s  lifestyles  (68  percent)  as  mainly  responsible,  followed  by  inaction  or  negative  actions  of  government  (20  percent),  industries  (10  percent),  and  God  (2percent)  (Porio  2012,  Porio  2012b).  

Furthermore,  the  residents  in  flood  prone  areas  around  Laguna  Lake  and  KAMANAVA  observed  the  effects  of  climate  change  (e.g.,  variable  patterns  of  heat/temperature,  rainfall  and  floods),  but  they  are  not  necessarily  aware  that  these  are  already  signs  of  climate  change  (Porio  2012b).  In  the  study  conducted  by  Porio  (2011),  residents  in  the  KAMANAVA  area  have  reported  changes  over  time  in  the  intensity  of  the  monsoon  rains  and  the  depth  of  floods  in  their  communities.  Tidal  waters  did  not  reach  their  schools  before;  now  their  classrooms  often  are  flooded  resulting  in  children  going  home  during  the  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  164  

rainy  season.  Residents  in  West  Manggahan  (near  Laguna  lake)  have  reported  that  in  the  previous  years  the  water  in  their  yard  would  only  reach  up  to  their  knees  but  in  the  recent  storm/  tidal  surges  the  water  would  reach  their  waists.  Very  few  of  the  respondents  attributed  these  to  climate  change  (Porio  2011).  

Education  Programs  and  Trainings  in  the  Community  Based  on  the  Social  Impacts  Monitoring  Study  conducted  after  typhoons  Ondoy  and  Pepeng,  11  out  of  19  study  sites  reported  the  existence  of  a  disaster  preparedness  plan  in  their  barangays.  Furthermore,  15  out  of  the  19  study  sites  also  reported  the  existence  of  trainings  on  disaster  preparedness  implemented  by  the  local  government  units  and  non-­‐‑governmental  organizations.  Unfortunately,  these  trainings  tended  to  focus  only  on  LGU  officials,  with  limited  outreach  especially  to  vulnerable  sectors  (urban-­‐‑rural  poor,  women-­‐‑headed  households,  children,  senior  citizens,  poor  migrants)  of  the  community  level.  Hence,  future  disaster  preparedness  trainings  should  include  the  broader  sectors  of  the  community,  especially  vulnerable  groups  and  not  just  the  local  government  officials.  More  importantly,  communication  strategies  and  techniques  should  utilizeand  incorporate  indigenous/local  knowledge  as  well  as  mobilize  existing  social  capital  and  networks  in  reaching  and  assisting  urban-­‐‑rural  poor  sectors  and  other  vulnerable  groups  in  these  communities  (Porio  2012b).    

Response  and  Recovery  

Majority  of  the  affected  population  are  given  assistance  and  help  by  the  local  government.  In  the  study  conducted  among  the  affected  residents  of  Pasig  City  and  Marikina  City  after  typhoons  Ondoy  and  Pepeng,  an  overwhelming  83  percent  claimed  to  have  been  assisted  by  the  local/city  government  with  food  and  clothing.  They  received  this  assistance  on  the  average  after  48  hours,  minimum  14  hours  and  maximum  of  504  hours  (or  about  21  days).  Only  1  percent  claimed  to  have  received  financial  assistance  of  P4,000  (about  US$  9)  because  of  the  death  of  a  family  member  during  the  flood  (Porio  2012).  

After  the  floods,  Porio  (2012,  2012b)  reported  that  the  following  measures  were  taken  by  the  barangay/city  government  to  reduce  the  impact  of  flooding  in  their  communities:  (1)  Evacuation  of  residents,  especially  those  in  informal  settlements  along  the  rivers,  creeks  and  other  danger  areas;  (2)  Clearing  and  rebuilding  of  roads  and  bridges;  (3)  Rebuilding  of  the  water  supply  network;  (4)  Clearing  and  rebuilding  of  water  channel  and  drainage  networks  (including  rip-­‐‑rapping  of  river/creek  walls  and  elevating  water  dikes);  (5)  Pumping  flood  waters  out  of  the  area;    (6)  Relocation/resettlement  of  affected  residents;  (7)  Acquisition  of  equipment/supplies  necessary  during  calamities  (e.g.,  rubber  boats,  fire  trucks);  (8)  Defogging  of  mosquito  infested  areas,  especially  those  with  high  incidence  of  dengue  cases;  and  (9)  Capability  building  programs  (training/seminars,  information  campaigns/dissemination).    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  165  

In  short,  the  immediate,  medium  and  long-­‐‑term  responses  of  the  city/local  government  can  be  summarized  into:  1)  evacuation,  2)  restoration  of  basic  services  and  3)  rebuilding  of  infrastructural  support  (Porio  2012).    

Given  the  above  interventions,  majority  of  the  respondents  in  the  same  study  (65  percent)  feel  satisfied  with  the  interventions  provided  by  the  national/local  government  agencies.  A  small  number  (35  percent)  wished  the  government  could  provide  better  services  such  as  water,  sewage  and  sanitation  but  most  of  all  sustainable  livelihood  and  land/housing  for  those  displaced  by  the  floods.  Thus,  when  asked  who  is  responsible  for  preventing  and  responding  to  hazards  and  calamities,  an  overwhelming  majority  (70  percent)  pointed  to  the  barangay/city  LGU  as  the  one  

responsible  while  others  identified  the  family  (17  percent),  civil  society  (8  percent)  and  the  private  sector  (5  percent)  as  being  responsible.    

Glaringly  highlighted  in  the  identified  medium  and  long-­‐‑term  responses  of  the  city  governments  of  Marikina  and  Pasig  is  the  absence  of  a  continuous-­‐‑systematic  training  and  capability  program  for  the  staff  of  the  agencies  responsible  for  disaster  risk  reduction  and,  more  importantly,  for  the  vulnerable,  flood-­‐‑prone  communities  and  residents  (Porio  2012b).    

Insights  from  the  Study  of  Antecedent  Social  Conditions  to  Risks  and  Disasters  

Figure  V.9.  A  resident  being  rescued  during  the  Habagatflooding  (source:  Agence  France-­‐‑Presse)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  166  

People’s  memory  is  short.  It  seems  that  the  affected  community  groups,  especially  the  poor  vulnerable  to  floods,  easily  forget  the  devastations  they  experienced  during  the  disaster.  Or  it  seems  that  they  do  not  adjust/adapt  their  behaviour  in  their  midst.  They  continue  to  go  back  to  their  old  ways  of  mismanaged  waste  and  other  environmentally-­‐‑degrading  practices  after  just  a  few  months.  On  closer  look,  however,  residents  reported  that  the  incentive  structures  (both  positive  and  negative)  are  not  consistently  implemented.This  short  memory  is  not  only  limited  to  those  of  affected  populations  but  of  institutions  (local  government  units,  recovery  and  rehabilitation  agencies)  as  well.  This  lack  of  institutional  memory  is  glaringly  reflected  in  the  persistence  of  outmoded  land  use  policies  and  building  codesin  most  cities  of  Metro  Manila  (Porio  2012b).  

Another  important  lesson  from  these  studies  is  that  the  social  vulnerabilities  (gender,  age,  socio-­‐‑political-­‐‑economic  status)  of  the  poor  in  marginal  riverine  or  coastal  communities  in  Metro  Manila’s  flood  basins  strongly  interact  with  ecological-­‐‑environmental  and  political  vulnerabilities  of  places/communities  and  their  LGU  governance  systems  highlighting  the  overall  vulnerability  of  a  sector  or  population  (Porio  2012b)  as  seen  in  the  following  description.    

Based  on  the  2008  household  survey  conducted  in  the  three  flood  basins  of  Metro  Manila,  namely,  1)  Pasig-­‐‑Marikina,  2)  West  Mangahan,  and    3)  KAMANAVA  Area.  Based  on  the  survey,  the  respondents  were  mostly  female  (86  percent)  as  they  were  the  ones  available/open  to  be  interviewed,  compared  to  the  unwilling  male  members  of  the  household.  Their  ages  ranged  from  18-­‐‑92  years  old,  with  a  median  age  of  42  years  old.  They  were  mostly  legally  married  (61  percent),  or  were  in  live-­‐‑in/cohabitation  arrangements  (20  percent),  while  the  rest  were  widowed,  separated  or  single  (18  percent).  Their  mean  household  income  was  P10,033  per  month  but  their  median  monthly  household  income  was  P8,000,  suggesting  some  disparity  among  the  respondents.  Most  of  the  very  poor  households  (old,  widowed/separated,  no  income  and  dependent  on  the  relatives’  food  support),  also  came  from  these  low  income  communities.  These  urban  poor  settlements  remain  very  vulnerable  because  of  dilapidated  housing  structures  and  absence  of  services  and  drainage  systems  in  their  water-­‐‑logged  environments.  Most  respondents  had  8.5  years  in  schooling  and  only  respondents  from  Malabon  attained  some  college  education  (11.20  years).  Their  low  education  and  income,  in  part,  explain  their  low  levels  of  formal  employment  as  most  of  their  earnings  were  from  the  underground  economy  (Porio  2011).  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  167  

References  

Adger,  W.N.  (2000).  ‘Institutional  adaptation  to  environmental  risk  under  the  transition  in  Vietnam’.Annals  of  the  Association  of  AmericanGeographers.90(4),  738–58.  

APN:  Asia  Pacific  Network  for  Global  Change  Research.  (2010).  Enhancing  Adaptation  to  Climate  Change  by  Integrating  Climate  Risk  into  Long-­‐‑Term  Development  Plans  and  Disaster  Management.  (Reference  No.  ARCP2010-­‐‑09NSY-­‐‑Patankar).  Retrieved  from  http://www.apn-gcr.org/resources/archive/files/06516ed9ac5850386cdd0d5d73f7033f.pdf  

Avendano,  Christine  and  Marlon  Ramos.(2006).  “Typhoon  Death  Toll  Soars:  ‘Milenyo’  Exits;  Massive  Relief,  Cleanup  Launched.  Philippine  Daily  Inquirer.30  Sept  2006).  

Bankoff,  G.  (2003).  Constructing  Vulnerability:  The  Historical,  Natural,  and  Social  Generation  of  Flooding  in  Metropolitan  Manila.  Disasters  27  (3):  224  –  238.    

Bartolome,  Noel.  (1988).  “Eleven  die  in  Marikina  River  Flood”.  Malaya.Vol.  7,  No.  288.  October  26,  1988.    

Bello,  John  et  al.  (1995).  “Slides  Hike  Typhoon’s  Toll  to  240:  99  Dead  in  Calauag,  Quezon  Alone”.Philippine  Daily  Inquirer  (10):  331.    

Blaikie,  P.,  Cannon,  T.,  Davis,  I.  and  Wisner,  B.  (1994).  At  Risk:  Natural  Hazards,  People’s  Vulnerability,  and  Disasters.  New  York:  Routledge.  

Birkmann,  J.,  Krause,  D.,  Welle,  T.,  Suarez,  D.,  Wolfertz,  J.  (2010).A  Concept  for  a  World  Risk  Index.Study  for  the  BundnisEntwicklungHilft,  Bonn.  

Borje,  David  et  al.  (1986).  “State  of  Emergency  Declared  in  4  Regions:  Aquino  Oks  P11-­‐‑M  for  Luzon,  Metro”  Philippine  Daily  Express.  Vol.  15,  No.  67.  July  12,  1986.    

Burgos,  Rowena.  (2009).  “Don’t  blame  God,  blame  botched  Urban  Planning”  Philippine  Daily  Inquirer  24  (298):  C2.    

Carter,  T.  and  Kankaapaa,  S.  (2003).A  Preliminary  Examination  of  Adaptation  to  Climate  Change  in  Finland.Suomenymparisto  640,  Suomenymparistokeskus,  Edita  Prima,  Helsinki.  

Chan,  N.W.  and  Parker,  D.J.  (1996).Response  to  dynamic  flood  hazard  factors  in  peninsular  Malaysia.  The  Geographical  Journal.162(3),  313–25.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  168  

Chavez,  Chito.  (1994).  “As  long  as  there’s  indiscriminate  dumping,  there  will  always  be  floods”  Manila  Bulletin  259  (26):  19.    

Cruz,  J.  (2010).  Estimating  Informal  Settlers  in  the  Philippines.11th  National  Convention  on  Statistics.October  4  –  5,  2010.  

Cutter,  S.L.  (1996).Vulnerability  to  environmental  hazards.Progress  in  Human  Geography.20(4),  529–39.  

Cutter,  S.L.,  B.J.  Boruff,  W.  L.  Shirley.(2003).  Social  Vulnerability  to  Environmental  Hazards.Social  Science  Quarterly.  84  (2):  242  –  261.    

David,  Randy.  (2012).  “Homes  Along  the  Estero”.  Philippine  Daily  Inquirer.August  15,  2012.  

De  Quiros,  Conrado  (as  quoted  from  PepeQuitorio).  (2009).  “Metro  Manila  Flooding:  A  Disaster  of  Mismanagement  and  Corruption”.  Impact  43  (10):  4  –  7.    

De  Sherbinin,  et  al.  (2007).  Population  and  Environment.Annual  Review  of  Environment  and  Resources.  32:  345  –  373.    

Downing,  T.E.,  Olsthoorn,  A.A.  and  Tol,  R.S.J.(1999).Climate,  change  and  risk.London:Routledge.  

Few,  R.  (2003).  Flooding,  Vulnerability,  and  Coping  Strategies:  Local  Responses  to  a  Global  Threat.  Progress  in  Development  Studies.3,1  (2003)  pp.  43–58.  

Hermoso,  Christina.  (1992).  “Two  Major  Causes  of  Metro  Floods  Noted”.Manila  Bulletin  236  (18):  10.    

IPCC  (2001):  Climate  Change  2001:  Impacts,  Adaptation,  and  Vulnerability.  Contribution  of  Working  Group  II  to  the  Third  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change.Cambridge  University  Press,  Cambridge  and  New  York.  

Leuterio,  M.  (23  September  1956).  Why  We  Have  Floods?.ManilaChronicle.pp  31  –  32.    

Lewis,  J.  (1999).  Development  in  disaster-­‐‑prone  places:  studies  of  vulnerability.  London:  IntermediateTechnology  Publications.  

Mananghaya,  James  et  al.  (2006).  “Milenyo  Shuts  Down  Metro”  Philippine  Star.  Vol.  21,  No.  63.  September  29,  2006.    

Maskrey,  A.  (1999):  Reducing  global  disasters.  In  Ingleton,  J.,  editor,  Natural  disaster  management.  Leicester:  Tudor  Rose,  84–86.  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  169  

Mijares,  Primitivo.  (1974).  “Good  storm  warning  system  is  a  big  help”.  Philippine  Daily  Express.November  30,  1974.  

Muto,  M.  (2009).Impacts  of  Climate  Change  to  Asian  Coastal  Areas:  The  Case  of  Metro  Manila.  Draft  Report.  Japan  Bank  for  International  Cooperation.  

NDRRMP.  (2011).  The  National  Disaster  Risk  Reduction  and  Management  Plan  2011  –  2028.  Manila,  Philippines:  Department  of  Interior  and  Local  Government.    

Nicholls,  R.,  1998.  Coastal  Vulnerability  to  Sea-­‐‑Level  Rise:  Evaluation  and  Selection  of  Methodologies  for  Implementation.  Barbados:Caribbean  Planning  for  Adaptation  to  Global  Climate  Change(CPACC),  Technical  Report  TR98002,  44p.  Available  at  http://www.cpacc.org/ifrownframe.htm  (accessed  July  26,  2004),  

Oxfam  (2008)  Building  Resilient  Communities.  Good  Practices  in  Disaster  Risk  Management  in  the  Philippines.  Oxfam  GB,  Philippines  Programme,  Quezon  City.  

Patino,  Santos.  (1986).  “Why  Floods  Will  Still  be  with  Us”.  Philippine  Daily  Express.  

Pelling,  M.  (1997).What  determines  vulnerability  to  floods:  a  case  study  in  Georgetown,  Guyana.Environment  and  Urbanization.9(1),  203–26.  

Pelling,  M.  (1999).The  political  ecology  of  flood  hazard  in  urban  Guyana.Geoforum.30,  249–61.  

Penalba,  Linda  and  Elazegui,  Dulce.“Adaptive  Capacity  of  Households,  Community  Organizations,  and  Institutions  for  Extreme  Climate  Events  in  the  Philippines.”Economy  and  Environment  Program  for  Southeast  Asia  (EEPSEA).  

Philippines  Typhoons  Ondoy  and  Pepeng:  Post-­‐‑Disaster  Needs  Assessment  (PDNA)  Main  Report.  2011.    

Philippine  Daily  Express.(1974).  “Damage  Heavy;  Backlash  Rains  May  Cause  Floods”.  Vol.  3,  No.  208.  November  29,  1974.    

Philippine  Daily  Express.(1974).  “What  to  do  during  typhoons?”Vol.  3,  No.  208.  November  29,  1974.  

Philippine  Daily  Express.(1986).  “12  Killed  as  Gading  batters  NL”  Vol.  15,  No.  65.  July  10,  1986.    

Pope,  J.  (25  June  1967).  After  a  Cruel  Flood,  Manila  has  a  Nervous  Breakdown.  Sunday  Times  Magazine.pp  18  –  22.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  170  

Porio,  E.  (2009).Urban  Transition,  Poverty,  and  Development  in  the  Philippines.  London:  International  Institute  for  Environment  and  Development.  

Porio,  E.  (2011).  Vulnerability,  Adaptation,  and  Resilience  to  Floods  and  Climate  Change-­‐‑Related  Risks  Among  Marginal,  Riverine  Communities  in  Metro  Manila.  Asian  Journal  of  Social  Science.39  (2011),  425  –  445.    

Porio,  E.  (2011).  Enhancing  Institutional  Arrangements  for  Climate  Change:  The  Case  of  Pasig  City  in  Metro  Manila.Paper  presented  at  the  Cities  at  Risk  II  Conference,  Academia  Sinica,  Taipe,  April  11-­‐‑13,  2011.  

Porio,  E.  (2012).Enhancing  Climate  Change  Adaptation  Through  Integration  to  Long-­‐‑Term  Development  Plans  and  Disaster  Management  :  The  Case  of  Metro  Manila.  Supported  by  the  Asia  Pacific  Network.  

Porio,  E.  (2012a).  Decentralisation,  Power,  and  Networked  Governance  Practices  in  Metro  Manila.Space  and  Polity.16:  1,  7  –  27.    

Porio,  E.  (2012b).  Vulnerability,  Adaptation  and  Resilience  to  Floods  and  Climate  Change  Impacts  Among  Marginal  Communities  and  Local  Governance  Systems  in  Metro  Manila.  Paper  to  be  presented  in  the  Inter-­‐‑Asean  Seminar  on  Social  Development,  Universiti  Dar  Es  Salaam,  Brunei,  Dec.  8-­‐‑11,  2012.  

Principe,  Lulu.  (1988).  “Calamity  Fund  Released”.The  Manila  Times.Vo.30,  No.  300.  October  26,  1988.    

Requintana,  Robert.  (1995).  “Supertyphoon  now  threatens  Metro  Manila:  Is  expected  to  hit  land  this  morning;  winds  lash  Bicol”.  Manila  Bulletin.  

Ressurreccion-­‐‑Sayo,  B.  (10  December  1988).  After  Unsang,  the  Deluge.  Philippine  Free  Press.  

Reyes,  Renato  et  al.  1986.  “Gading  Aftermath,  Death  Toll  Now  57”  Philippine  Daily  Express  15:  66.    

Rodriguez,  J.  (28  June  1967).  The  Manila  Flood  Control  Program.Graphic.pp.  6  –  7.    

Sairinen,  R.  and  L.  Peltonen  (N.D.).Adaptation  Strategies  for  Climate  Change  in  the  Urban  Environment.FINADAPT/Appendix  13.  WP  13:  Urban  Planning.  www.ymparisto.fi/download.asp?contendid=15988  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  171  

SIM:  Social  Impacts  Monitoring  Study.  (2011).  The  Social  Impacts  of  Tropical  Storm  Ondoy  and  Typhoon  Pepeng:  The  Recovery  of  Communities  in  Metro  Manila  and  Luzon.  Institute  of  Philippine  Culture,  School  of  Social  Sciences,  Ateneo  de  Manila  University.  

Vargas,  Anthony  et  al.  (2006).  “Milenyo  Batters  Metro”  The  ManilaTimes.Vol.  107,  No.  352.  September  29,  2006.    

Yumul,  G.,  Cruz,  N.,  Servando,  N.,  and  Dimalanta,  C.  (2011).Extreme  Weather  Events  and  Related  Disasters  in  the  Philippines,  2004  –  2008:  A  Sign  of  What  Climate  Change  Will  Mean?.  Disasters35  (2),  362  –  382.    

Zoleta-­‐‑Nantes,  D.  (1999).  ‘The  Flood  Landscapes  of  Metro  Manila’.  UP-­‐‑CIDS  Chronicle,  vol.  4  nos.  1  –  2.    

Zoleta-­‐‑Nantes,  D.  (2000).  Differential  Vulnerability  to  Flooding  in  Metro  Manila:  Perspectives  of  Street  Children,  the  Urban  Poor,  and  Residents  of  Wealthy  Neighborhoods.  (Doctoral  Dissertation).  Rutgers  University,  New  Jersey.    

Zoleta-­‐‑Nantes,  D.  (2002).  Differential  Impacts  of  Flood  Hazards  Among  the  Street  Children,  Urban  Poor,  the  Urban  Poor,  and  Residents  of  Wealthy  Neighbourhoods  in  Metro  Manila,  Philippines.  Mitigation  and  Adaptation  Strategies  for  Global  Change.7  (2002),  239  –  266.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  172  

Appendices  

Appendix  V.1:  Summary  of  Data  Gathered  from  Different  Sources  (Social  Surveys,  Key  Informant  Interviews  and  Focus  Group  Discussions/FGDs  and  Secondary  Sources,  namely  1)  JBIC-­‐‑supported    Study  of  Three  Flood  Basins  (Porio  2011),  2)  APN-­‐‑supported  study  “Enhancing  Medium-­‐‑  and  Long-­‐‑Term  Planning    Among  Local  Governments”  (Porio  2012),  3)  PDNA  Study  (Institute  of  Philippine  Culture,  2009),  and  4)  Social  Impact  Assessment  Study  of  Ondoy  and  Pepeng  (Institute  of  Philippine  Culture,  2011).  

Questions Answers/Sources

3. In general, what are the social impacts of: (i) hazards associated with extreme events; and (ii) hazards associated with gradually changing climate change, on the community? Describe these in quantitative and qualitative terms. a. Which of these social impacts could be

considered as positive, and which can be considered as negative impacts to the community?

SIM/APN Study –Taguig, Pasig and Marikina – on flooding

Negative – destruction of houses/properties,

unable to go to work/classes for a number of days

after the event; presence of water-borne diseases,

disruption of businesses, increased

transportation expenses.(Some or allwere reportedly experienced by both focus group discussion participants and survey respondents.)

Positive – Increased fishermen’s income who used boats in ferrying residents to and from unflooded portions where they can get transportation to and from work/school.(mentioned by four (4) of the six (6) focus group discussions done in Wawa, Taguig)

JBIC Study – Napindan, Taguig – Flooding

Negative – unable to go to work/classes, destroyed properties, unclean water,water-borne diseases, increase in transportationexpenses. (reported by almost all of the surveyrespondents and key informants.)

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  173  

Questions Answers/Sources

Positive/Negative– sustenance fishermen had more catch because of fish from overflowing fishponds/fish pens but negative for fishpond/pens owners whose fishpens got destroyed and lost their fish. (from key informants living near the mouth of the Pasig River going to Laguna Lake)

APN Study – Pasig and Marikina – Flooding

Negative – unable to go to work/classes,

destroyed houses/properties, water-borne

diseases, increased transportation expenses,

losses of lives, increase cost of repairs/

replacements for both house and properties. (All survey respondents)

Positive –

-­‐ some residents were hired to clean up muddied houses, selling gallons of clean water to residents whose water connections were cut off because of the flood.(from all respondents in Marikina)

-­‐ ferrying passengers from their houses to where they can get their rides to and from work/school (as recounted by a few of the respondents from Pasig)

b. Has there been any sense of unfairness or discrimination in the community in relation to the distribution of impacts of the hazards, or in relation to actions taken to address these hazards?

JBIC Study (from key informant interviews and focus group discussions)

-­‐ the construction of the sea wall caused excessive flooding to settlers whose houses were situated in low-lying areas. (e.g., Navotas and Malabon)

-­‐ construction of access roads which were

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  174  

Questions Answers/Sources

built higher than some houses and had inadequate drainage also caused more flooding in the area (Navotas and Malabon)

-­‐ informal reclamation/filling up of swampy or waterlogged lands by realtors and better-off neighbours led to flooding among residents who could not afford to make these adaptive strategies or were in low-lying areas

-­‐ pumping stations (by the city LGU) which suction flood waters from one barangay caused flooding in other barangay (Caloocan and Navotas)

SIM Study, APN

-­‐ Usually, only those who were relatives/friends of barangay officials/staff can get relief goods easily compared to those who did not have strong social and political networks. Other barangay residents had to line up for a long time to get relief goods. (reported by some respondents of each survey barangays in Marikina, Pasig and Taguig).

SIM Study

-­‐ Some benefits for relocated families were not given by the sending city or what was given them was not enough to sustain them while they were looking for work and host LGUs could not also afford to provide assistance (As complained by more than half of the relocatees from Marikina to Biñan, Laguna)

-­‐ Survey respondents and focus group discussion informants reported that there were not enough employment in/near the relocation sites, some relocatees had to go back to former residence to look for work(from most of the relocatees from Marikina to Biñan, Laguna; relocatees from other parts of Manila to Southville 4a, Sta. Rosa, Laguna)

-­‐ Some relocated families had gone back to live near their former residence, renting rooms/houses because they had a hard life in the relocation site. However, they also

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  175  

Questions Answers/Sources

revealed that they left some of the family members in the relocation site so that their will not lose their entitlement to resettlement. (as gleaned from the key informant interviews in Southville 4a, Sta. Rosa, Laguna; in Langkiwa, Biñan, Laguna and Eusebio Bliss, Pasig)

4. Assess the distribution of impacts due to disasters within the community related to social factors. b. What are the key social factors or

preconditions that determine the risk or resilience of communities? Describe and explain

JBIC Study, SIA, SIM, APN

-­‐ Construction of houses near or over waterways by informal dwellers/settlers

-­‐ Indiscriminate disposal of garbage by these dwellers/settlers which caused clogging of canals/drainage

e. What social mechanisms or types of assistance are available to the community to recover from discrete events, and to be build resilience and adaptive capacity in the long-run?

JBIC Study

-­‐ Relief goods -­‐ Flood water pumps (“bombastic”)

SIA, SIM, APN

-­‐ Relief goods/medicines -­‐ Temporary evacuation centers -­‐ Relocation/resettlement -­‐ Disaster orientations/trainings

SIA/SIM

-­‐ Giving housing materials to verified victims of the flood to repair their damaged houses.

5. What is the state of the community’s access to basic services? a. How has access to basic services evolved

over the past few decades? i. What were the drivers of these

changes in access to basic services?

Negative/Positive: Deterioration of services (water, drainage) but some improvement in garbage collection (recycling and segregation have found greater support among LGUs).

ii. Who are the decision-makers, other actors, and stakeholders responsible? Provide a detailed description of their roles and actions.

Key decision-makers for social services: the service providers like Manila Water or Maynilad, electricity provider like MERALCO, government service providers like the city social services departments (e.g., social welfare and development, solid waste management, land use and planning division) and the local barangay council/committees (DRRM, environment, social services)

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  176  

Questions Answers/Sources

b. How has access to basic services in the community affected in the aftermath (short, medium, and long-term) since the disasters occurred?

i. What critical factors and conditions have affected access to services after disasters? Describe and explain.

SIM/APN

-­‐ Long lines of residents waiting for relief distributions or medical assistance (reported by almost all of the respondents SIM and APN)

-­‐ Doubtful residency or doubtful claims (in cases of the housing materials distributions, mentioned in the focus group discussion and some key informant)

-­‐ Affected families have no access to relief distributed (for families who opted to stay on top of their houses, and their houses were located in inner alleys of the settlement), the relief distribution usually took place in dry area or main streets/corners of flooded area. (reported by some respondents from Marikina and Pasig)

ii. List down available resources and networks, both private and government, that will help enable disaster-stricken areas to recover.

SIM/APN

-­‐ LGUs (city and barangay) § Prepare residents for future disasters

ü Pasig – had manuals and done trainings on disaster preparation down to the barangay level

ü Marikina –had had orientation seminars on what to watch out for or what to do in times of typhoon/flooding

§ Ensure that laws regarding settlements near waterways be implemented

ü Pasig – relocated river bank/floodway side dwellers to Bliss housing and relocation sites in Laguna

ü Pasig – had pumped out flood waters from flood-ravished barangays

ü Marikina – had also brought to Laguna residents whose houses were destroyed by the flood.

ü Taguig – had already

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  177  

Questions Answers/Sources

informed waterways dwellers that they had to move out/some were offered relocation, but their resettlement housing were not ready yet.

-­‐ NGOs/CSOs – ü Have conducted seminars/

trainings in risk awareness/reduction/preparation

iii. What is the nature of community recovery (e.g. how fast the recovery process was; which parts of the community recovered first and fastest; which members of the community or social groups recovered more quickly and effectively?)

SIM/APN

-­‐ Those who could afford, repaired their houses, and bought new appliances to replace appliances destroyed by Ondoy. (Mariking, Taguig and Pasig)

-­‐ Some residents left their houses after it has been destroyed by Ondoy (Provident Village, Marikina)

-­‐ Some repaired their destroyed houses a little at a time. (Marikina and Pasig)

-­‐ For those who could not afford, they make do without the appliances they use to have. (i.e., kerosene stove in place of their destroyed gas stove; use fans because they could not afford to buy new electric fans)

-­‐ Some businesses which were destroyed by Ondoy were not able to operate again due to lack of capital.(Marikina)

As to recovery

-­‐ Those who had money to repair their houses/business/appliances and did not suffer death among its family members seems to have recovered better (Marikina and Pasig)

-­‐ For those who had lost their houses/businesses, their appliances destroyed did not think they will recover for a long time. Some businesses though have transferred or put up branches in higher places like Antipolo and Laguna. (Marikina and Pasig)

-­‐ Those who had suffered deaths, sickness and trauma – think they could not forget about the tragedy, and would probably remember it for

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  178  

Questions Answers/Sources

the rest of their lives. (Marikina) iv. Are communities able to move

beyond recovery and “build back better”?

SIM/APN

-­‐ Respondents said that rebuilding houses meant adding another storey to which they can run to in case another tragedy like Ondoy strikes..

c. What is the role of access to basic services in reducing risk or strengthening resilience before and after an extreme event, and under a gradually changing climate? Describe and explain.

JBIC/SIM/APN

-­‐ Given the Ondoy experience, both the household respondents and key informants believe that although the barangay LGUs had helped them (like giving warnings of the flood, relief distribution, setting up evacuation sites), they themselves should be prepared in anyway they can (like putting up important things and clothes in barrels/big baskets and raised it up to the higher portion in their houses, construction of additional storey to their houses, etc.) (Pasig, Taguig and Marikina)

d. How has the community been able to access information of relevant hazards? How has this information been used for social protection? Describe and explain.

SIM/APN

-­‐ Information system throughout the barangay has been expanded (i.e, public address system has been put up around the barangay). Announcements of possible disaster (i.e. typhoon) are made through these public address system (Marikina)

-­‐ Baragangay officials going around the barangay using a megaphone to warn people about the disaster (Taguig)

-­‐ Informationscomes from the City Rescue Unit to the barangay LGU. The barangay follow the procedures which were contained in their manual.(Pasig)

8. What is the community’s perception and understanding of risk, disaster risk management and resilience, climate change, and climate change adaptation? How do their perceptions affect their decision-making process?

a. What meaning does the community attach with the idea of “risk”?

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  179  

Questions Answers/Sources

b. How much does the community understand about the points of convergence and points of difference between DRM and CCA?

c. How does the community assess their personal risk to hazards brought by extreme events and climate change?

d. Does the community believe that climate changes are related to extreme events?

e. Are there any education programs or trainings for CCA and DRM in the community?

f. What is the average literacy level of the community? On the average, how many years of formal education did the community members receive?

g. Is there an overall or prevalent community-shared view of the disaster? Alternatively, are there contrasting or conflicting views? Describe and explain.

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  180  

Appendix  V.2:  Accounts  of  Popular  Narratives  on  the  Causes,  Impacts  and  Solutions  to  the  Various  Typhoons  in  Metro  Manila  Questions   Typhoon  Bidang  

(Nov.  25  –  29,  1974)  

Typhoon  Gading  (July  6  –  10,  1986)  

Typhoon  Unsang  (Oct.  21  –  26,  1888)  

Typhoon  Rosing  (Oct.  30  –  Nov.  4,  1995)  

Typhoon  Milenyo  (Sept  27  –  30,  2006)    

Typhoon  Ondoy/Pepeng  (Sept.  24  –  27,  2009    Sept  30  –  Oct  10,  2009)  

Causes  of  the  disaster  

““PAGASA  said  it  expected  Bidang’s  backlash  winds  and  rains  to  cause  the  swelling  of  the  Pampanga  swamplands  which  sprawl  over  half  the  province  and  Nueva  Ecija.”  (Phil.  Daily  Express,  1974)    

“Executive  Secretary  Joker  Arroyo  blamed  the  floods  on  the  inefficient    drainage  system  inherited  from  the  previous  administration…”  (Renato  Reyes  et  al,  Philippine  Daily  Express)    

“Many  residents  of  Barangay  Minahan  Interior  which  alongside  the  Marikina  river  were  hardly  alarmed  by  the  continuous  rains  spawned  by  the  typhoon  since  most  of  the  shanties  in  the  community  were  20  meters  away  from  the  riverbank.    However,  the  heavy  overnight  downpour  caused  the  river  to  overflow,  its  swollen  waters  sweeping  the  frail  shanties  in  barangays  along  the  bank,  including  

“Many  bodies  were  crushed  by  mudslides  from  denuded  hills…”  (John  Bello  et  al,  Phil.  Daily  Inquirer)    “One  reason  is  the  overflowing  of  major  rivers  during  heavy  downpours,  and  another  is  the  inefficient  and  inadequate  inland  drainage  facilities…”  (Christina  Hermoso,  Manila  Bulletin)    “Indiscriminate  dumping  of  waste  materials  along  canals,  rivers,  creeks,  and  esteros  has  been  one  of  the  major  causes  of  flooding…”  (First  Metro  District  

“Ferrer  said  they  were  apparently  trying  to  check  if  it  is  necessary  for  them  to  leave  their  homes  and  more  to  higher  ground.  ‘Witnesses  said  part  of  the  (Butas)  dam  [in  Cavite]  suddenly  gave  way  as  the  dam  was  already  swollen  with  water.  The  victims  were  then  swept  away  by  the  water.”    (Christine  O.  Avendano  and  Marlon  Ramos,  PDI  30  Sept  2006).      

“The  rainfall  was  recorded  as  approximately  450  mm  at  the  Manila  Observatory,  an  extremely  rare  occurrence…”  (Source:  PDNA)    “Local  governments  did  not  have  adequate  zoning  ordinances,  building  codes,  and  standards  to  mitigate  against  these  risks…”  (Urban  planner  FelinoPalafox)        

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  181  

Minahan  interior.”  (Noel  Bartolome,  Malaya  26  October  1988)  

Engineer  Nardo  Cruz)    

Factors  contributing  to  the  risks  

“At  least  85  shanties  and  houses  in  Metro  Manila  were  destroyed  by  Bidang  as  she  lashed  the  country  packing  killer  winds  of  220  kph  near  the  center.  Most  of  the  destroyed  shanties  and  houses  were  located  in  Islang  Putting  Bato  and  Luzviminda  villages  in  Tondo  and  in  Barrio  La  Huerta,  Paranaque,  Rizal.”  (Phil.  Daily  Express,  1974)  

“The  howler,  packing  center  winds  of  175  kilometers  per  hour…  spawned  floods  that  left  thousands  homeless  in  the  Ilocos  region,  Cagayan,  Southern  Tagalog,  and  Metro  Manila.    (Phil.  Daily  Express,  10  July  1986)  

See  above,  consider  fact  that  people  were  living  along  the  river.  

“Many  officials  blamed  PAGASA’s  failure  to  accurately  plot  the  typhoon’s  path  for  the  extensive  damage  to  life  and  property…”  (Negros  Governor  Rafael  Coscollucia)    “The  sea  level  in  the  metropolis  had  gone  up  by  30  centimeters  as  a  result  of  global  warming.  The  low-­‐‑lying  areas  in  Metro  Manila  are  in  danger  of  becoming  severely  flooded  within  the  next  100  years…”  (Philvocs  director  RaymundoPunongbayan,  1992)  

“The  high  population  density  has  strained  the  existing  sewerage  and  drainage  systems  in  the  city…”    (Zoleta-­‐‑Nantes,  2002).    “The  forestlands  in  the  Marikina  watershed  had  been  transformed  into  paddies,  villages,  and  residential  subdivisions,  eroding  25  to  50%  of  the  topsoil  and  thus  silted  Marikina  and  Pasig  river  systems…”    (Zoleta-­‐‑Nantes,  2002).  

“Expansion  of  residential,  commercial,  and  industrial  development  in  their  immediate  localities  and  cities,  which  DO  NOT  have  the  necessary  infrastructure  support  like  proper  drainage,  sewerage,  and  road  systems...”  (Porio,  2011)    “Only  71  %  of  the  wastes  are  properly  collected  by  the  dump  trucks  and  taken  to  landfills.  The  remaining  wastes  are  simply  left  on  the  streets,  dumped  on  vacant  lots,  or  thrown  into  storm  drains,  creeks,  or  rivers…”  (Bankoff,  2003)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  182  

 “Corruption  was  the  lifeboat  that  should  have  been  there  but  there  were  not  because  the  money  had  been  stolen.  Corruption  was  the  pile  of  relief  goods  that  should  have  been  there  but  was  not  because  it  had  been  stolen.  Corruption  was  the  dams  and  garbage  incinerators  and  drainage  systems  and  relocation  areas  that  should  have  been  there  but  were  not…”  (Conrado  de  Quiros)    “Killer  floods  are  not  only  the  result  of  clogged  waterways,  inadequate  drainage  systems,  dysfunctional  urban  management,  rising  sea  levels,  or  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  183  

the  gradual  sinking  of  Metro  Manila  as  a  whole  due  to  unabated  ground  water  extraction.  They  are  also  the  product  of  gross  social  inequality  and  mass  poverty…”  (Randy  David,  Phil.  Daily  Inquirer)    

Strategies,  measures,  and  policies  that  will  prevent  adverse  impacts  

“Social  workers  went  on  immediate  alert,  most  of  them  rushing  to  the  affected  area  to  help  in  the  massive  rescue  and  relief  operation  for  Central  Luzon  and  Greater  Manila  area  residents  whose  houses  were  either  toppled  or  rendered  roofless    by  the  strong  winds.  A  stand-­‐‑by  fund  of  P1,339,000  was  

“President  Aquino  ordered  the  release  of  P10  million  from  the  national  budget  for  the  affected  Luzon  provinces,  and  another  P1  million  from  the  Philippine  Charity  Sweepstakes  Office  for  Metro  Manila…    The  Ministry  of  Health  said  it  is  dispensing  P3-­‐‑million  worth  of  analgesics  and  antibiotics  in  coordination  with  other  agencies  involved  in  relief  operations…”  

“President  Aquino  ordered  yesterday  the  immediate  release  of  a  P10  million  calamity  fund  for  the  victims  of  typhoon  ‘Unsang.’  The  President  ordered  mobilized  all  government  agencies,  especially  the  DSWD,  the  DND,  and  the  Dept.  of  Local  Governments,  in  carrying  out  relief  operations  in  the  typhoon-­‐‑ravaged  areas  of  the  country.    

“The  Metro  Manila  Disaster  Coordinating  Council  placed  the  entire  metropolis  on  red  alert  in  anticipation  of  super  typhoon  Rosing…  These  include  plans  for  evacuating  people,  especially  those  living  near  shorelines,  rivers,  and  creeks,  or  in  low  level  areas.  Rescue  and  relief  teams  were  also  readied…”  (Donna  Cueto,  Phil.  Daily  Inquirer)    “Prospero  Oreta,  MMDA  Chair,  mobilized  hundreds  of  

“Adaptation  strategies  of  the  households  to  deal  with  Typhoon  Milenyo  were  mostly  structural,  such  as  reinforcing  their  houses  and  household  properties…  as  well  as  behavioural,  such  as  securing  food,  water,  and  other  household  needs…  Some  collective  action  took  place  in  the  community,  particularly  after  the  typhoon  as  relief  operations  

“A  community-­‐‑based  early-­‐‑warning  system,  involving  the  gathering  of  data,  interpretation  of  results  and  dissemination  of  forecasts  and  warnings  to  solicit  appropriate  response  from  the  affected  populace,  is  in  place…”  (Yumul,  2011)    “The  sharing  of  best  practices  on  being  proactive  in  mitigating  the  ill-­‐‑effects  of  disasters  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  184  

also  released  by  the  DSW  to  the  provinces  that  life  in  the  path  of  the  typhoon,  the  seventh  and  strongest  to  hit  the  country  since  October  11...”  (Phil.  Daily  Express,  29  Nov  2012)    “What  to  do  during  typhoons:  1.  Watch  out  for  manholes,  ditches,  and  washed  out  pavements  leading  to  brooks  and  rivers  while  walking  in  flooded  in  flooded  streets  and  roads.  2.  Watch  out  for  flooded  areas  with  toppled  electric  posts  or  dangling  electric  wires.  3.  Use  bancas  with  outriggers,  

(David  Borje  et  al,  12  July  1986)  

The  president  also  directed  the  Bureau  of  Customs  to  make  available  all  seized  smuggled  goods,  including  clothes  and  and  food  to  typhoon  victims.  “  “[The  president]  also  instructed  DOH  Sec  Alfredo  Bengzon  to  provide  all  the  much-­‐‑needed  medicines  and  other  first-­‐‑aid  drugs  to  the  two  evacuation  sites.”  (Lulu  Principe,  The  Manila  Times  26  Oct  1988)    “US  military  forces  stationed  at  Clark  Air  Base  took  part  in  the  search  and  rescue  efforts  for  typhoon  victims.”  “Schools,  government  offices  and  many  private  businesses  were  closed  as  strong  winds  buffeted  Metro  Manila.”  

MMDA  personnel  for  disaster  monitoring,  rescue,  and  evacuation  work…  He  ordered  deployment  of  tow  trucks  and  buses  to  help  stranded  motorists  and  commuters.  Teams  were  organized  to  clear  streets  of  fallen  trees  and  electric  wires…”  (Dona  Pazzibugan  and  Natasha  Vizcarra,  Phil.  Daily  Inquirer)    

were  mobilized.  ”  (Linda  Penalba  and  DulceElazegui,  EEPSEA)  

also  has  been  occurring…”  (Yumul,  2011)      “The  capacities  of  local  government  units  are  enhanced  through  training,  emphasizing  the  need  for  their  communities  to  assume  ownership  of  their  disaster  risk  management  programmes…”    (Oxfam,  2008)  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  185  

if  possible,  with  reserved  paddles  and  enough  food  and  water  supply.  4.  When  evacuating  to  the  mountains  or  hills.  Be  careful  about  snakes  that  usually  hide  in  tall  grasses  in  stones  or  rocks  or  along  the  roads.  5.  When  your  house  is  submerged  by  floods,  cling  or  hold  on  a  floating  object  and  wait  for  a  rescuer.  6.  Handicapped  individuals  with  disability  defects  such  as  poor  eyesight  or  hearing  should  not  be  allowed  to  swim  for  safety  for  themselves.    7.  When  in  evacuation  centers  store  extra  food  esp  

“Social  Welfare  Sec  MitaPardodeTavera  ordered  social  workers  to  go  on  24-­‐‑hour  work  to  assist  typhoon  victims.”  “Times  correspondent  AnnalynJusay  reported  that  the  DOH  sent  P16.5  million  worth  of  medicines  to  all  its  regional  offices  to  check  the  possible  spread  of  diseases  spawned  by  the  typhoons.”    (Joe  Capadocia  and  Dante  Galapate,  The  Manila  Times  26  October  1988)      “President  Aquino  declared  yesterday  a  state  of  calamity  in  six  regions,  including  the  National  Capital  Region,  as  a  result  of  the  destruction  caused  by  typhoon  Unsang.”  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  186  

those  that  can  be  eaten  without  cooking.    8.  Do  not  go  swimming  or  boating  in  overflowing  or  flooded  rivers  or  other  waterways.  9.  Submit  yourself  immediately  to  immunization  against  cholera,  dysentery,  and  typhoid.  If  wounded  by  a  galvanized  iron  sheet,  see  a  doctor  for  immediate  immunization  for  tetanus.”    (Phil.  Daily  Express,  29  Nov  2012)    

(Malaya,  26  Oct  1988)    

Impacts  of  the  Disaster    

Bidang’s  Toll:  10  dead,  8  hurt,  P40-­‐‑M  damage.  Killer  typhoon  Bidang  left  10  persons  dead,  four  missing  and  

106  dead,  16  injured,  12  missing,  730,357  people  affected  P678,493,000  total  cost  of  damages  (Source:  NDRRMC)  

16  pax  dead  confirmed  in  mindanao  64  estimated    Millions  of  P  in  crop  and  property  damage  

936  dead,  4152  injured,  376  missing,  4,583,618  people  affected    P10,850,772,000  total  cost  of  damages  (Source:  NDRRMC)    

“Billboards  were  torn  down  and  steel  scaffolding  flung  into  the  streets  while  sheets  of  iron  were  peeled  off  rooftops  by  the  

929  dead,  736  injured,  84  missing,  9,379,518  people  affected  P39,248,920,000  total  cost  of  damages    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  187  

eight  injured  during  her  48-­‐‑hour  rampage  that  devastated  some  P40  million  worth  of  crops  and  properties  across  Central  Luzon  and  Greater  Manila.  87  shanties  on  Isla  PutingBato  (Tondo),  Luzviminda  Village  (Tondo)  and  in  Barrio  La  Huerta  Paranaque,  Rizal,  and  the  120  houses  on  Constitution  Hill  in  QC  were  either  totally  damaged  or  destroyed.    The  PLDT  reported  only  a  minimal  damage  to  telephone  service  in  Greater  Manila.  

   “Majority  of  Metro  Manila  went  under  water  yesterday  due  to  the  typhoon-­‐‑induced  southwest  monsoon  and  the  fringe  effects  of  Gading.”  (Renato  Reyes  et  al,  Philippine  Daily  Express)    “Manila  was  a  Venice  yesterday,  as  flashfloods  spawned  by  typhoon  Gading  placed  nearly  95%  of  the  city  under  water.  Police  said  that  there  was  not  an  avenue  or  street  in  Manila  that  was  not  flooded…”  (Renato  Reyes  et  al,  Philippine  Daily  Express)      “Meralco  said  Gading  severely  destroyed  its  

Two  bridges  destroyed  while  two  were  damaged  in  some  Mindanao  provinces.    Malabonand  Valenzuela  area,  crews  were  on  24-­‐‑hour  emergency  work    

“Metro  Manila  was  totally  without  electricity  at  the  height  of  the  typhoon…  There  was  also  no  water  in  many  parts  of  the  metropolis…  Commerce  ground  to  a  halt  in  the  country  as  the  Phil.  Stock  Exchange  and  banks  were  closed…  ”  (Gemma  Cuadro  et  al,  The  Manila  Times)      “PAGASA  raised  public  storm  signal  4  in  Metro  Manila…  Rosing  smashed  squatter  shanties,  toppled  electric  posts  and  signboards,  uprooted  trees,  and  broke  telephone  &  electric  lines  all  over  Metro  Manila…  Residents  near  Manila  Bay  were  evacuated  after  receiving  reports  of  impending  waves  as  high  as  10  feet…  Roads  and  bridges  in  the  provinces  south  of  Manila  were  

wind…  With  power  out,  the  Metro  Rail  Transit  and  Light  Rail  Transit  halted  operations.  There  were  very  few  buses,  jeepneys,  and  taxis  on  the  road  as  the  typhoon’s  fury  began  to  be  felt  just  after  noon.”  (Anthony  Vargas  et  al,  Manila  Times)      “Strong  wind  toppled  a  row  of  trees  on  Manila’s  famous  Baywalk  beside  Manila  Bay,  and  knocked  down  billboards  near  US  and  Japanese  Embassy  along  Roxas  Blvd.  where  traffic  was  stalled  for  several  hours.  Workers  used  chainsaws  to  clear  the  roads  amid  howling  winds  and  blinding  rains…  

(Source:  NDRRMC)    “Ondoy  caused  extensive  flooding  in  the  Metro  Manila  area  and  the  neighboring  Rizal  province,  including  the  cities  of  Antipolo,  Makati,  Malabon,  Marikina,  Muntinlupa,  Pasig,  Quezon,  San  Juan,  Taguig,  and  Valenzuela…”  (Source:  PDNA  2008)      

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  188  

northern  line  facilities,  causing  prolonged  brownouts  in  many  areas  of  Metro  Manila,  Calumpit,  Hagonoy,  Baliwag,  San  Rafael  and  Bustos  in  Bulacan…”  (Phil.  Daily  Express,  10  July  1986)  

destroyed,  making  it  impossible  for  rescue  teams  to  fight  their  way  to  badly  hit  towns  and  cities…”  (Robert  Requintina,  Manila  Bulletin)    

Some  residents  used  makeshift  rafts  and  ferried  people  across  streets  through  knee-­‐‑deep  water…”  (James  Mananghaya  et  al,    September  29,  2006)  

Proposed  Solutions/  Recommendations  

“The  department  of  education  announced  the  suspension  of  classes,  saving  students  from  inconveniences  and  possible  accidents….  Those  who  were  traditionally  flooded  areas  transferred  to  higher  grounds.  Families  placed  supports  for  their  houses  and  stock  up  on  supplies…  The  Philippines  is  situated  in  the  typhoon  belt  in  this  part  of  the  

“Floods  cannot  be  avoided  until  the  overall  flood  control  system  is  completed…  The  Manggahan  Floodway  structure  in  Pasig,  still  under  construction,  is  designed  to  intercept  rainwaters  from  high-­‐‑lying  municipalities…”  (Minister  Rogaciano  Mercado  of  Public  Works  and  Highways,  1986)    “Flood  control  measures,  such  as  dredging  of  esteros  

Sources  had  no  explicit  solutions  that  were  offered  but  it  seems  that  most  measure  point  to  preparations  in  responding  to  the  calamities.  

“Public  should  heed  the  government’s  call  for  the  proper  disposal  of  garbage…”    (DPWH  Assistant  Director  Pablo  Bautista,  1994)    “Address  the  problems  of  deforestation  by  planting  trees  and  rehabilitating  the  watersheds.”    (John  Bello  et  al,  Phil.  Daily  Inquirer)    

“The  need  for  regular  widening  and  de-­‐‑clogging  of  canals  and  esteros.  More  flood  control  projects  from  the  government  are  necessary…  A  need  coordinated  planning  and  project  implementation  of  the  various  cities  and  municipalities  in  Metro  Manila.  The  mayors  in  the  different  cities  should  work  together  to  arrive  at  effective  solutions  for  flood  problems.  There  should  be  a  

“Fast  track  the  preparation  of  multi-­‐‑hazard  and/or  risk  maps  in  high-­‐‑risk  LGUs…  Strengthen  the  risk  modeling  and  forecasting  capacities  of  scientific/technical  agencies…”  (PDNA)    “Implement  a  viable  urban  development  plan  which  would  prevent  danger  zones  from  being  developed.  Control  the  growth  of  

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  189  

world.  This  is  our  lot  which  we  have  to  face  with  fortitude.  We  must  accept  the  fact  that  we  will  be  battered  by  typhoons  now  and  then.    With  government  and  the  private  sector  joining  hands,  we  have  been  –  and  we  will  always  be  –  able  to  build  new  homes,  make  our  land  productive  again,  and  lead  new  lives.”  (PrimitivoMijares,  Philippine  Daily  Express,  30  November  1974  –  OpEd  Page)  

and  rivers,  and  the  putting  up  of  earth  dikes  and  tidal  gate  structures,  should  be  intensified…”  (Ministry  of  Public  Works  and  Highways,  taken  from  Santos  Patino,Phil.  Daily  Express)      “Appoint  Flood  Control  Experts  at  the  NCR…”    (Minister  RogacianoMercado,  Ministry  of  Public  Works  and  Highways,  taken  from  Santos  Patino,  1986)  

sharing  of  technological  and  technical  expertise  for  flood  prevention”  (Zoleta-­‐‑Nantes,  2002).  

population  in  the  metropolis  by  spreading  growth  to  other  regions.  If  growth  is  inevitable,  come  up  with  a  new  zoning  ordinance  that  would  allow  high-­‐‑rise  development.”  (Manuel  Maximo  Lopez  del  Castillo-­‐‑Noche,  architect,  professor    at  UST,  heritage  expert)    “Protect  the  few  remaining  natural  areas  that  we  have.  We  must  set  up  contingency  plans  for  food  and  water  security,  for  example,  full-­‐‑cycle  mariculture…”  (Jose  Ma.  Lorenzo  Tan,  CEO  World  Wildlife  Fund-­‐‑  Phils.)    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  190  

Summary  

These  narratives  of  Metro  Manila  reflect  a  core  principle  of  FORIN,  which  is  that  development  and  risk  are  “mutually  constitutive”  (Oliver-­‐‑Smith,  2012).  The  history  and  trajectory  of  urban  development  influences  the  level  and  distribution  of  risk.  This  in  turn  influences  (specifically,  hinders)  development  when  this  risk  is  “realized”  in  the  form  of  disasters  and  lost  opportunities  due  to  climate  change.  For  example,  both  the  physical  and  social  narratives  assert  that  the  occurrence  of  hazards  over  Metro  Manila,  particularly  flooding,  is  not  due  to  natural  factors  alone,  but  is  probably  even  more  influenced  by  human-­‐‑induced  factors.  A  key  example  expounded  in  the  narratives  is  how  urban  growth  has  changed  the  land  cover  through  the  expansion  of  impervious  surfaces,  the  encroachment  of  people  and  infrastructures  into  floodplains  and  waterways,  and  the  denudation  of  the  watershed.  These  factors  have  significant  altered  surface  hydrology,  as  well  as  contributed  to  the  urban  heat  island  effect.    

The  fact  that  populations  are  located  in  harm’s  way  (or  where  they  themselves  can  cause  harm)  is  also  a  result  of  the  urbanization  process.  As  is  discussed  in  the  economics  narrative,  increasing  urban  density  leads  to  restrictions  in  land  use  and  increasing  land  prices,  which  drives  vulnerable  urban  populations  into  informal  settlements  and  hazardous  areas.  All  of  these  physical  and  socio-­‐‑economic  factors  lead  to  living  conditions  that  degrade  human  health.  

These  examples  also  illustrate  the  cascading  or  compounding  nature  of  risk  and  its  elements.  Primary  hazards  such  as  rainfall  interact  with  the  city’s  physical  characteristics  on  the  ground,  generating  a  secondary  and  potentially,  more  damaging,  hazards  in  the  form  of  floods.  These  floods,  interacting  with  water  quality  and  solid  waste  management  problems,  pose  further  hazards,  both  immediate  and  indirect  to  health.    Direct  economic  damages  brought  about  by  typhoons  and  flooding,  translate  into  further  indirect  losses  in  productivity  and  income,  and  secondary  macro-­‐‑economic  losses.  As  recognized  in  the  social  sector  narrative,  these  dynamic  interactions  can  intensify  vulnerabilities  of  different  stakeholder  groups.  

Indeed,  elements  of  risk  compound  each  other  resulting  in  a  “risk  trap”  –  it  becomes  difficult  to  escape  the  cycle  of  extreme  weather  events  and  climate  change  resulting  in  significant  losses,  thus  increasing  vulnerability,  and  increasing  the  probability  of  repeated  disasters  and  losses.  Concerted  strategies  targeting  different  sectors  in  a  programmatic  and  harmonized  manner  are  required  to  build  resilience  and  adaptive  capacities  to  current  climate  variability  and  projected  future  climate  change.  These  strategies  should  recognize  and  aim  to  strengthen  the  entire  continuum  of  action  from  a  more  proactive  approach  focusing  on  prevention,  mitigation  and  adaptation  to  emergency  response  to  post-­‐‑event  recovery  and  rehabilitation,  rather  than  being  merely  reactive.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  191  

Furthermore,  as  emphasized  by  the  narratives,  information,  communication  and  education  are  crucial  factors  influencing  the  success  of  interventions,  and  thus,  the  reduction  of  risk.  For  example,  the  social  narrative  describes  the  lack  of  information  dissemination  among  stakeholders  regarding  the  available  capacity-­‐‑building  options  and  the  appropriate  agencies  to  approach.  There  is  also  a  prevailing  perception  of  floods  being  low-­‐‑risk  events,  and  a  lack  of  understanding  about  how  past  experiences  may  no  longer  be  a  suitable  gauge  of  future  trends,  in  the  face  of  climate  change.  The  drivers  of  climate  change  are  also  unclear  among  the  masses.  The  health  narrative  likewise  describes  a  gap  between  knowledge  from  research  and  what  is  considered  “common  knowledge”  on  the  ground.  Hence,  communication  strategies,  targeting  both  horizontal  and  vertical  sharing  information,  represent  a  basic  step  towards  building  resilience  across  the  different  sectors.  This  information,  in  order  to  be  actionable,  must  already  integrate  assessments  and  evidences  across  the  different  relevant  disciplines  to  present  a  complete  picture  of  the  context  in  which  the  decision-­‐‑making  is  taking  place.    

In  the  field  of  risk  research,  an  interdisciplinary  approach  is  also  crucial  in  analyzing  risk  as  a  complex,  multi-­‐‑dimensional  issue.  To  facilitate  collaboration  among  the  different  sectoral  and  cross-­‐‑analyses  of  different  disaster  events,  shared  definitions  and  methods,  and  standardized  and  disaggregated  data  would  be  useful.  The  lack  of  data  is  a  common  challenge  amongst  researchers.  However,  

compounding  this  are  the  differences  in  data  requirements  and  data  analysis  methodologies  across  the  sectors.  This  can  be  seen  in  the  different  approaches  applied  by  the  sectoral  narratives  of  Metro  Manila.  The  economics  sector  narrative  suggests  linking  models  to  development  indicators,  which  represent  the  baseline  improvements  we  aim  for,  so  as  to  streamline  the  data  collection  and  analysis  process.  

But  though  each  narrative  highlights  a  particular  sector,  it  is  inevitable  for  other  sectors  to  be  included  in  the  discussion,  as  is  apparent  in  each  narrative,  owing  to  the  inherent  interfaces  and  interconnections  among  the  different  sectors.  More  importantly,  while,  on  the  one  hand,  having  different  paradigms  or  approaches  does  pose  a  challenge  for  integrative  work,  on  the  other  hand,  offering  different  perspectives  from  which  to  analyze  the  context  of  Metro  Manila  can  contribute  to  a  more  holistic  case  study.  Results  of  such  a  multi-­‐‑dimensional  approach,  if  integrated  and  communicated  effectively,  can  prove  to  be  useful  not  only  to  researchers  but  also  to  decision-­‐‑makers  and  practitioners  on  the  ground.  

This  collection  of  narratives  is  by  no  means  a  comprehensive  FORIN  case  study  yet,  and  is  a  work  in  progress.  However,  by  attempting  a  multi-­‐‑sectoral  scoping,  this  endeavor  will  hopefully  act  as  a  catalyst  for  collaborative  research  and  interventions,  and  in  this  way  contribute  towards  risk  research  as  a  field  of  study,  and  to  the  understanding  of  the  drivers  of  risk  in  Metro  Manila  in  particular.    

 

IRDR ICoE – Taipei, Technical Report No. 3

Harmonizing  FORIN  for  climate  change  adaptation  and  disaster  risk  management  192  

References  

Oliver-­‐‑Smith,  Anthony.  (2012).  Disaster  Research  and  the  New  Ecology:  Models  of  Vulnerability  and  Resilience.  Lecture  at  the  2012  Advanced  Institute  on  Forensic  Investigations  of  Disasters  (FORIN)  organized  by  START  and  the  IRDR  International  Centre  of  Excellence  (ICoE)  in  Taipei,  together  with  IRDR  International,  ICSU  and  Taiwan’s  National  Science  and  Technology  Center  for  Disaster  Reduction  (NCDR).  Held  at  Academia  Sinica,  Taipei,  Taiwan.