Extended analysis of fifth spectrum of bromine: Br V

16
Extended analysis of fifth spectrum of bromine: Br V A. Riyaz n , A. Tauheed, K. Rahimullah Department of Physics, Aligarh Muslim University, Aligarh 202002, India article info Article history: Received 24 February 2014 Received in revised form 5 May 2014 Accepted 6 May 2014 Available online 27 May 2014 Keywords: Atomic spectra Energy levels Classified spectral lines Transition probabilities abstract The fifth spectrum of bromine (Br V) has been studied in the 2002400 Å wavelength region. The spectrum was photographed on a 3-m normal incidence vacuum spectrograph at the St. Francis Xavier University, Antigonish (Canada) and 6.65-m grazing incidence spectrograph at the Zeeman laboratory (Amsterdam). The light sources used were a triggered spark and sliding spark. The ground configuration of Br V is 4s 2 4p. The excited configurations 4s4p 2 þ4s 2 (4d þ5d þ5s þ6s þ7s þ5g þ6g) þ4s4p(5p þ4f) þ4p 2 4d in the even parity system and the 4p 3 þ4s 2 (5p þ6p þ7p þ4f) þ4s4p4d þ4s4p5s configurations in the odd parity system have been studied. Relativistic HartreeFock (HFR) and least squares fitted (LSF) parametric calculations have been used to interpret the observed spectrum. 99 levels of Br V have now been established, 43 being new. Among 394 classified spectral lines, 181 are newly classified. The level 4s 2 7s 2 S 1/2 is revised. We estimate the accuracy of our measured wavelengths for sharp and unblended lines to be 70.005 Å. The ionization limit is determined as 479,657 7200 cm 1 (59.470 7 0.025 eV). & 2014 Elsevier Ltd. All rights reserved. 1. Introduction Four-times ionized bromine (Br V) has neutral gallium-like (Ga I) spectrum with 4s 2 4p as the ground state configura- tion. The excited configurations are 4s4p 2 , 4s 2 nd(nZ4) and 4s 2 ns(nZ5). Further excitations lead to 4p 3 þ 4s4p4dþ 4s4p5dþ 4s4p5s þ 4s4p6s þ 4s 2 (5pþ 6pþ 7pþ 4f) þ 4s4p5pþ 4s4p4f þ 4s4p5f þ 4p 2 (4d þ 5s) þ 4s 2 (5g þ 6g þ 7g þ ) etc. configurations. The spectrum of Br V was first analyzed by Rao and Rao [1]. They studied 4s 2 4p, 4s4p 2 , 4s 2 (4d þ 5d) configurations and classified 12 spectral lines in the wave- length region 482856 Å. Budhiraja and Joshi [2] revised the earlier analysis of Rao and Rao [1] and reported 15 levels based on lines in the 4681471 Å region arising out of 4s 2 (4p þ 5p) (4s4p 2 þ 4s 2 4d þ 4s 2 5s) transition array and estimated the ionization potential of Br V at 502,860 cm 1 . Recently, Tauheed and Joshi [3] investigated Br V spectrum in more detail. They studied the configurations 4s 2 (4p þ 5p þ 6pþ 4f) þ 4s4p(4d þ 5s) þ 4p 3 in the odd parity system and 4s 2 (4d þ 5d þ 5s þ 6s þ 7s) þ 4s4p 2 in the even parity matrix with theoretical predictions by Cowan's code [4] in the wavelength region 3161892 Å. They confirmed only 10 levels out of 15 reported by Budhiraja and Joshi [2], and revised 5 levels viz. 4s 2 5p 2 P 1/2, 3/2 , 4s4p 22 S 1/2 , 2 D 3/2 and 2 D 5/2 . Their analysis contains 216 classified lines connecting 57 energy levels and revised ionization limit at 480,670 7200 cm 1 (59.60 70.02 eV). The present investigation is undertaken mainly due to the availability of the data in the shorter wavelength region (below 316 Å) as well as in the higher wavelength region above 2000 Å which lead us to extend the study of new configurations like 4s 2 (5g þ 6g þ 7p), 4s4p (5p þ 4f) and 4p 2 4d. Also, the availability of shorter wavelength data gave us a chance to verify the 4s 2 4p 4s 2 7s transitions which were missing in earlier work [3]. However, these transitions are not seen on the list and a revised level value Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/jqsrt Journal of Quantitative Spectroscopy & Radiative Transfer http://dx.doi.org/10.1016/j.jqsrt.2014.05.023 0022-4073/& 2014 Elsevier Ltd. All rights reserved. n Corresponding author. E-mail address: [email protected] (A. Riyaz). Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86101

Transcript of Extended analysis of fifth spectrum of bromine: Br V

Contents lists available at ScienceDirect

Journal of Quantitative Spectroscopy &Radiative Transfer

Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101

http://d0022-40

n CorrE-m

journal homepage: www.elsevier.com/locate/jqsrt

Extended analysis of fifth spectrum of bromine: Br V

A. Riyaz n, A. Tauheed, K. RahimullahDepartment of Physics, Aligarh Muslim University, Aligarh 202002, India

a r t i c l e i n f o

Article history:Received 24 February 2014Received in revised form5 May 2014Accepted 6 May 2014Available online 27 May 2014

Keywords:Atomic spectraEnergy levelsClassified spectral linesTransition probabilities

x.doi.org/10.1016/j.jqsrt.2014.05.02373/& 2014 Elsevier Ltd. All rights reserved.

esponding author.ail address: [email protected] (A

a b s t r a c t

The fifth spectrum of bromine (Br V) has been studied in the 200–2400 Å wavelengthregion. The spectrum was photographed on a 3-m normal incidence vacuum spectrographat the St. Francis Xavier University, Antigonish (Canada) and 6.65-m grazing incidencespectrograph at the Zeeman laboratory (Amsterdam). The light sources used were atriggered spark and sliding spark. The ground configuration of Br V is 4s24p. The excitedconfigurations 4s4p2þ4s2(4dþ5dþ5sþ6sþ7sþ5gþ6g)þ4s4p(5pþ4f)þ4p24d in theeven parity system and the 4p3þ4s2(5pþ6pþ7pþ4f)þ4s4p4dþ4s4p5s configurationsin the odd parity system have been studied. Relativistic Hartree–Fock (HFR) and leastsquares fitted (LSF) parametric calculations have been used to interpret the observedspectrum. 99 levels of Br V have now been established, 43 being new. Among 394classified spectral lines, 181 are newly classified. The level 4s27s 2S1/2 is revised. Weestimate the accuracy of our measured wavelengths for sharp and unblended linesto be70.005 Å. The ionization limit is determined as 479,6577200 cm�1 (59.47070.025 eV).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Four-times ionized bromine (Br V) has neutral gallium-like(Ga I) spectrum with 4s24p as the ground state configura-tion. The excited configurations are 4s4p2, 4s2nd (nZ4)and 4s2ns (nZ5). Further excitations lead to 4p3þ4s4p4dþ4s4p5dþ4s4p5sþ4s4p6sþ4s2(5pþ6pþ7pþ4f)þ4s4p5pþ4s4p4fþ4s4p5fþ4p2(4dþ5s)þ4s2(5gþ6gþ7gþ⋯) etc.configurations. The spectrum of Br V was first analyzed byRao and Rao [1]. They studied 4s24p, 4s4p2, 4s2(4dþ5d)configurations and classified 12 spectral lines in the wave-length region 482–856 Å. Budhiraja and Joshi [2] revisedthe earlier analysis of Rao and Rao [1] and reported 15levels based on lines in the 468–1471 Å region arising out of4s2(4pþ5p)�(4s4p2þ4s24dþ4s25s) transition array andestimated the ionization potential of Br V at 502,860 cm�1.

. Riyaz).

Recently, Tauheed and Joshi [3] investigated Br V spectrum inmore detail. They studied the configurations 4s2(4pþ5pþ6pþ4f)þ4s4p(4dþ5s)þ4p3 in the odd parity systemand 4s2(4dþ5dþ5sþ6sþ7s)þ4s4p2 in the even paritymatrix with theoretical predictions by Cowan's code [4] inthe wavelength region 316–1892 Å. They confirmed only 10levels out of 15 reported by Budhiraja and Joshi [2], andrevised 5 levels viz. 4s25p 2P1/2, 3/2, 4s4p2 2S1/2, 2D3/2 and2D5/2. Their analysis contains 216 classified lines connecting57 energy levels and revised ionization limit at480,6707200 cm�1 (59.6070.02 eV).

The present investigation is undertaken mainly due tothe availability of the data in the shorter wavelengthregion (below 316 Å) as well as in the higher wavelengthregion above 2000 Å which lead us to extend the study ofnew configurations like 4s2(5gþ6gþ7p), 4s4p (5pþ4f)and 4p24d. Also, the availability of shorter wavelength datagave us a chance to verify the 4s24p�4s27s transitionswhich were missing in earlier work [3]. However, thesetransitions are not seen on the list and a revised level value

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101 87

of 4s27s 2S1/2 is found at 381,546.60 cm�1 giving satisfac-tory transitions. This revision changes the value of theionization energy [3].

2. Experimental details

The spectrum of bromine was recorded in the 300–2080 Å wavelength region on a 3-m normal incidencevacuum spectrograph at the Antigonish laboratory,Canada. The spectrograph was equipped with 2400 linesper mm Osmium coated concave grating having an inversedispersion of 1.385 Å mm�1. The source used in thisexperiment was a triggered spark where high-purity LiBror NaBr was packed into the cavity of aluminum electro-des. The charging system consisted of a 14.5 μF lowinductance capacitor. The charging potential was variedbetween 2 and 6 kV. Series inductance was also used tovary the excitation conditions to separate out lines ofvarious ionization stages. At low voltage discharges withseries inductance coil, lines of higher ionization wereeliminated on the track. However, they favored the higherexcitation as the charging potential was increased. Theabove mentioned data were supplemented by the data ofthe shorter wavelength region (below 300 Å). The datawas provided to us by Prof. Joshi (Private communication)which was recorded by Joshi and van Kleef [5] on a 6.65-mgrazing incidence spectrograph with an inverse dispersionof 0.46 Å mm�1 at the Zeeman laboratory, Amsterdam.The sliding spark was used as excitation source in this casewhere CsI and CsBr powders were packed into Al electro-des. We found good excitation of Br V and Br VI lines on6kV track. However, on other tracks with different seriesinductances, they behave differently. The intensity of Br IVlines fall gradually with increasing inductance while Br IIIlines remain nearly constant with increasing inductance.On the other hand the intensity of Br V lines fall morerapidly than Br IV lines with increasing inductance. Theintensity of Br VI lines fall sharply on the lower voltagestracks and become short (polar). The weaker lines of Br VIalso appear shorter on the first track (6 kV). This providesus a very reliable ionization separation. The exposure wastaken on Kodak SWR plates and measured on a semiauto-matic Grant's comparator at Antigonish (Canada) as well ason an Abbe comparator at Aligarh. The carbon, oxygen andaluminum lines [6,7] present as impurities are used asinternal standards to calibrate the spectrum with a poly-nomial fit program. The wavelength accuracy of sharp andunblended lines in the wavelength region 248–2000 Å isexpected to be 70.005 Å. Further experimental details canbe found in Refs. [3,8–10]. The data above 2000 Å wassupplemented by Budhiraja's line list [11] where theaccuracy of the wavelength was claimed to be 70.01 Å.

3. Theoretical calculations

The ab initio prediction for this spectrum was obtainedby using Cowan's code [4] in HFR mode by superpositionof configurations. The prominent interacting configura-tions incorporated for odd parity system were 4s2(5pþ6pþ7pþ8pþ4f)þ4s4p(4dþ5dþ5sþ6s)þ4p3þ4p4d2þ4p5s2þ4p25pþ4p24f and that for even parity matrix were

4s4p2þ4s2(4dþ5dþ6dþ5sþ6sþ7sþ8sþ9sþ5gþ6gþ7gþ8g)þ4p24dþ4p25sþ4s4p5pþ4s4p4f for a reliableprediction. The ab initio values for different energy para-meters used were as Eav and ζ at 100%, Fk at 85%, Gk and Rk

at 75% of HFR values. Further, this scaling was refined bycomparing the parameters with its isoelectronic ion Kr5þ

[12,13].As the analysis progressed, the least squares fittedparametric calculations were performed and finally energyparameters were obtained from least squares fit and theyare given in Tables 4 and 5. Due to convergence problem inLSF calculations, some of the low configuration interactionintegrals (Rk) have been fixed at predetermined values.

4. Analysis and discussion

4.1. New analysis

With the availability of extended data in shorter as wellas in longer wavelength regions, it became possible to lookfor new configurations 4s2(5gþ6gþ7p), 4s4p5p, 4s4p4fand 4p2(4dþ5s) which were not studied before. Theanalysis started with the verification of published work[3]. It was found that all the levels were correct except4s27s 2S1/2. This level did not give any transition from4s24p levels and hence created doubt. Though on isoelec-tronic extrapolation it was not too far from the expectedvalue. However, on a new line list, these transitions werelocated giving level value at 381,546.60 cm�1 which isonly 348.4 cm�1 lower than the earlier value. This wasfurther confirmed by the observed transitions from 4s25plevels. Level optimization done using computer code LOPT[14] allowed minor adjustment in level values of Ref. [3].

4.1.1. The 4s2ng configurationsThe 4s2ng series were considered next. We expected

strong transitions from 4s24f levels. However, it wasnoticed that 4s26g and 4s27g levels were highly mixedwith 4s4p4f and 4p24d configurations which resulted inunusually large 2G interval. Secondly, 4s24f 2F levels werealso mixed with 4s4p4d levels. Due to these mixings the4f–ng transitions were not as regular as expected. The 6ginterval was highly perturbed and was found to be muchlarger than 5g interval. Strong transitions from 4s4p4dwere also predicted. The situation of 4s25g was better andwe found 4f–5g transitions easily. The 6g levels werefound satisfactorily with large separation of 749 cm�1 aspredicted on the basis of transitions from 4s24f and4s4p4d levels. The 7g levels predicted with separation93 cm�1 were not so clear; we could not find anysatisfactory pair for them and they were left out.

4.1.2. The 4s4p5p configurationThis configuration arises from the excitation of 4s4p4d,

4s4p5s and 4s25p configurations. The array [4s4p4dþ4s4p5sþ4s25p�4s4p5p] is found to be reasonably strongon our plates. Since the configurations 4p3, 4s4p4d and4s4p5s are strongly mixed with each other, fairly strongtransitions from 4p3 are also observed and we are success-ful to establish all the 18 levels of this configuration. The LSpurity of all the levels is greater than 50% except that of(3P) 2P3/2 at 359,047.4, (3P)4S3/2 at 367,255.2 and (3P)2

Table 1Classified lines of Br V.

Iobsa λobs (Å) sobs (cm�1) λRitz (Å) λobs�λRitz (Å)b Lower level Upper level log gf gA (s�1)c

10 248.979 401,640 248.983 �0.004 4s24p 2P3/2 4s4p5p (1P) 2D5/2 �1.455 3.775Eþ0932 262.095 381,541 262.091 0.004 4s24p 2P1/2 4s27s 2S1/2 �1.682 2.020Eþ0942 266.346 375,451 266.340 0.006 4s24p 2P3/2 4s27s 2S1/2 �1.357 4.133Eþ0915 268.174 372,892 268.175 �0.001 4s24p 2P3/2 4s4p5p (3P) 2S1/2 �2.776 1.554Eþ0820 271.564 368,237 271.566 �0.002 4s24p 2P1/2 4s4p5p (3P) 2D3/2 �1.997 9.130Eþ0811 272.289 367,257 272.290 �0.001 4s24p 2P1/2 4s4p5p (3P) 4S3/2 �1.895 1.147Eþ0928 274.021 364,936 274.019 0.002 4s24p 2P3/2 4s4p5p (3P) 2D5/2 �1.276 4.725Eþ0916 276.130 362,148 276.129 0.001 4s24p 2P1/2 4s4p5p (3P) 4P3/2 �2.376 3.679Eþ0816 276.130 362,148 276.130 0 4s24p 2P3/2 4s4p5p (3P) 2D3/2 �1.910 1.079Eþ0928 277.692 360,111 277.693 �0.001 4s24p 2P1/2 4s4p5p (3P) 4P1/2 �2.509 2.676Eþ0818 280.726 356,219 280.728 �0.002 4s24p 2P1/2 4s4p5p (3P) 4D3/2 �2.632 1.979Eþ0820 280.854 356,057 280.849 0.005 4s24p 2P3/2 4s4p5p (3P) 4P3/2 �2.262 4.624Eþ0820 282.132 354,444 282.131 0.001 4s24p 2P1/2 4s4p5p (3P) 4D1/2 �2.413 3.240Eþ0822 285.604 350,135 285.609 �0.005 4s24p 2P3/2 4s4p5p (3P) 4D3/2 �2.317 3.948Eþ088 287.059 348,360 287.061 �0.002 4s24p 2P3/2 4s4p5p (3P) 4D1/2 �2.912 9.908Eþ0740 316.521d 315,935 316.521 0 4s24p 2P1/2 4s25d 2D3/2 �1.124 4.999Eþ0950 322.490d 310,087 322.485 0.005 4s24p 2P3/2 4s25d 2D5/2 �0.875 8.547Eþ0925 322.737d 309,850 322.739 �0.002 4s24p 2P3/2 4s25d 2D3/2 �1.815 9.801Eþ0820 373.294 267,885 373.297 �0.003 4s4p2 2D3/2 4s27p 2P1/2 �1.922 5.736Eþ0825 373.340 267,852 373.344 �0.004 4s4p2 2D5/2 4s27p 2P3/2 �1.633 1.116Eþ0910 412.317d 242,532 412.315 0.002 4s4p2 2D3/2 4s4p5s (1P) 2P3/2 �1.315 1.900Eþ0960 412.535d 242,404 412.535 0 4s4p2 2D3/2 4s4p5s (1P) 2P1/2 �0.755 6.904Eþ0970 413.558d 241,804 413.559 �0.001 4s4p2 2D5/2 4s4p5s (1P) 2P3/2 �0.624 9.296Eþ095 424.020d 235,838 424.015 0.005 4s4p2 4P5/2 4s4p4d (1P) 2F7/2 �1.943 4.225Eþ085 427.060d 234,159 427.063 �0.003 4s4p2 4P3/2 4s4p5s (3P) 2P3/2 �2.294 1.857Eþ085 429.904 232,610 429.903 0.001 4s4p2 2P1/2 4s27p 2P1/2 �2.932 4.220Eþ0740 442.155d 226,165 442.157 �0.002 4s4p2 4P1/2 4s4p4d (3P) 2P3/2 �1.128 2.539Eþ0990 442.577d 225,949 442.573 0.004 4s4p2 4P3/2 4s4p5s (3P) 4P5/2 �0.352 1.512Eþ10100 446.301d 224,064 446.304 �0.003 4s4p2 4P1/2 4s4p5s (3P) 4P3/2 �0.476 1.120Eþ1020 447.040d 223,694 447.042 �0.002 4s4p2 4P3/2 4s4p4d (3P) 2P3/2 �1.624 7.925Eþ0810 447.569d 223,429 447.565 0.004 4s4p2 2D3/2 4s26p 2P1/2 �1.831 4.922Eþ08100 449.137d 222,649 449.139 �0.002 4s4p2 4P5/2 4s4p5s (3P) 4P5/2 �0.006 3.252Eþ1015 450.046d 222,200 450.040 0.006 4s4p2 4P1/2 4s4p5s (3P) 4P1/2 �1.108 2.573Eþ0980 451.281d 221,591 451.282 �0.001 4s4p2 4P3/2 4s4p5s (3P) 4P3/2 �1.024 3.098Eþ0940 453.739d 220,391 453.742 �0.003 4s4p2 4P5/2 4s4p4d (3P) 2P3/2 �1.505 1.012Eþ0965 455.101d 219,731 455.102 �0.001 4s4p2 4P3/2 4s4p5s (3P) 4P1/2 �0.434 1.186Eþ1090 458.106d 218,290 458.111 �0.005 4s4p2 4P5/2 4s4p5s (3P) 4P3/2 �0.405 1.249Eþ1040 463.108d 215,932 463.104 0.004 4s4p2 2S1/2 4s4p5s (1P) 2P3/2 �0.670 6.638Eþ0995 468.375d 213,504 468.377 �0.002 4s24p 2P1/2 4s25s 2S1/2 �0.552 8.535Eþ0960 469.644d 212,927 469.644 0 4s4p2 2D3/2 4s4p4d (1P) 2F 5/2 0.170 4.481Eþ1040 471.260d 212,197 471.258 0.002 4s4p2 2D5/2 4s4p4d (1P) 2F 5/2 �1.066 2.587Eþ0975 472.770d 211,519 472.763 0.007 4s4p2 2D5/2 4s4p4d (1P) 2F7/2 0.277 5.653Eþ10100 482.121d 207,417 482.122 �0.001 4s24p 2P3/2 4s25s 2S1/2 �0.264 1.561Eþ1060 482.472d 207,266 482.473 �0.001 4s4p2 2D3/2 4s4p5s (3P) 2P3/2 �1.083 2.373Eþ0960 482.789d 207,130 482.786 0.003 4s4p2 2P1/2 4s4p5s (1P) 2P1/2 �0.598 7.223Eþ0945 483.530d 206,812 483.538 �0.008 4s4p2 4P5/2 4s4p4d (3P) 2F7/2 �1.305 1.413Eþ0990 484.178d 206,536 484.177 0.001 4s4p2 2D5/2 4s4p5s (3P) 2P3/2 0.030 3.056Eþ1050 486.692d 205,469 486.692 0 4s4p2 4P3/2 4s4p4d (3P) 2F 5/2 �2.067 2.414Eþ0880 489.115d 204,451 489.125 �0.01 4s4p2 2D3/2 4s4p5s (3P) 2P1/2 �0.417 1.067Eþ1085 489.221d 204,407 489.219 0.002 4s4p2 2P3/2 4s4p5s (1P) 2P3/2 �0.321 1.332Eþ1030 489.532d 204,277 489.528 0.004 4s4p2 2P3/2 4s4p5s (1P) 2P1/2 �1.021 2.649Eþ0920 492.930 202,869 492.937 �0.007 4s24d 2D5/2 4s27p 2P3/2 �1.533 8.027Eþ0840 496.743d 201,311 496.747 �0.004 4s4p2 4P1/2 4s4p4d (3P) 2D3/2 �1.507 8.424Eþ0860 500.961 199,616 500.963 �0.002 4p3 2D5/2 4p24d (1D) 2D5/2 0.251 4.684Eþ1060 501.702d 199,322 501.704 �0.002 4s4p2 4P3/2 4s4p4d (3P) 2D5/2 �1.214 1.620Eþ095 502.918d 198,840 502.921 �0.003 4s4p2 4P3/2 4s4p4d (3P) 2D3/2 �2.130 1.958Eþ0820 504.203d 198,333 504.199 0.004 4s4p2 4P3/2 4s24f 2F5/2 �2.163 1.804Eþ085 505.394d 197,865 505.387 0.007 4s4p2 2S1/2 4s26p 2P3/2 �3.258 1.440Eþ0750 506.653d 197,374 506.652 0.001 4s4p2 2D3/2 4s4p4d (3P) 2P1/2 �0.632 6.071Eþ0910 508.052d 196,830 508.047 0.005 4s4p2 2S1/2 4s26p 2P1/2 �1.525 7.694Eþ0870 510.021d 196,070 510.019 0.002 4s4p2 2D5/2 4s4p4d (3P) 2P3/2 �1.019 2.459Eþ0960 511.936d 195,337 511.931 0.005 4s4p2 4P5/2 4s24f 2F7/2 �1.324 1.205Eþ0910 512.740d 195,031 512.738 0.002 4s4p2 4P5/2 4s24f 2F5/2 �2.082 2.098Eþ0810 513.610d 194,700 513.613 �0.003 4s4p2 2D3/2 4s4p5s (3P) 4P3/2 �1.891 3.253Eþ0820 515.544d 193,970 515.544 0 4s4p2 2D5/2 4s4p5s (3P) 4P3/2 �1.408 9.833Eþ0860 517.544d 193,220 517.545 �0.001 4s4p2 4P3/2 4s4p4d (3P) 4P3/2 0.317 5.158Eþ1090 517.653d 193,180 517.649 0.004 4s4p2 4P3/2 4s4p4d (3P) 4D5/2 0.163 3.620Eþ1065 518.017d 193,044 518.027 �0.01 4s4p2 4P3/2 4s4p4d (3P) 4P1/2 0.168 3.656Eþ105 518.560d 192,842 518.567 �0.007 4s4p2 2D3/2 4s4p5s (3P) 4P1/2 �2.036 2.286Eþ08

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–10188

Table 1 (continued )

Iobsa λobs (Å) sobs (cm�1) λRitz (Å) λobs�λRitz (Å)b Lower level Upper level log gf gA (s�1)c

65 520.270d 192,208 520.273 �0.003 4s4p2 4P1/2 4s4p4d (3P) 4D1/2 0.289 4.805Eþ10100 521.771d 191,655 521.767 0.004 4s4p2 4P1/2 4s4p4d (3P) 4D3/2 0.446 6.880Eþ1060 525.634d 190,246 525.628 0.006 4s4p2 2S1/2 4s4p4d (1P) 2P3/2 �0.376 1.015Eþ1055 526.545d 189,917 526.546 �0.001 4s4p2 4P5/2 4s4p4d (3P) 4P3/2 0.095 2.987Eþ10100 526.651d 189,879 526.654 �0.003 4s4p2 4P5/2 4s4p4d (3P) 4D5/2 0.611 9.811Eþ1020 527.051d 189,735 527.050 0.001 4s4p2 4P3/2 4s4p4d (3P) 4D1/2 �1.848 3.409Eþ08100 527.860d 189,444 527.858 0.002 4s4p2 4P5/2 4s4p4d (3P) 4D7/2 0.901 1.905Eþ1140 528.564 189,192 528.558 0.006 4s4p2 2P1/2 4s26p 2P3/2 �1.270 1.283Eþ0960 528.587d 189,184 528.583 0.004 4s4p2 4P3/2 4s4p4d (3P) 4D3/2 �0.314 1.159Eþ1070 528.725d 189,134 528.728 �0.003 4s4p2 2S1/2 4s4p4d (1P) 2P1/2 �0.190 1.543Eþ1010 529.795d 188,752 529.785 0.010 4s4p2 2S1/2 4s4p4d (1P) 2D3/2 �1.480 7.880Eþ08100 530.798d 188,396 530.791 0.007 4s4p2 4P3/2 4s4p4d (3P) 4P5/2 0.592 9.250Eþ1010 531.474d 188,156 531.468 0.006 4s4p2 2P1/2 4s26p 2P1/2 �1.130 1.748Eþ09125 531.962d 187,983 531.961 0.001 4s24p 2P1/2 4s24d 2D3/2 0.453 6.689Eþ1030 536.649d 186,342 536.649 0 4s4p2 2P3/2 4s26p 2P3/2 �0.594 5.907Eþ0940 537.979d 185,881 537.976 0.003 4s4p2 4P5/2 4s4p4d (3P) 4D3/2 �0.824 3.451Eþ0950 538.922 185,556 538.922 0 4p3 4S3/2 4p24d (3P) 4P5/2 0.768 1.347Eþ1110 539.649d 185,306 539.649 0 4s4p2 2P3/2 4s26p 2P1/2 �1.223 1.370Eþ0980 540.271d 185,092 540.263 0.008 4s4p2 4P5/2 4s4p4d (3P) 4P5/2 �0.274 1.214Eþ105 546.736 182,904 546.729 0.007 4p3 2D3/2 4p24d (3P) 4D5/2 �0.741 4.070Eþ09150 547.879d 182,522 547.877 0.002 4s24p 2P3/2 4s24d 2D5/2 0.707 1.132Eþ1195 547.980d 182,488 547.973 0.007 4s4p2 2D5/2 4s4p4d (3P) 2F7/2 0.655 1.007Eþ11100 549.760d 181,898 549.762 �0.002 4s24p 2P3/2 4s24d 2D3/2 �0.180 1.458Eþ1080 553.502d 180,668 553.505 �0.003 4s4p2 2S1/2 4s4p5s (3P) 2P3/2 0.029 2.325Eþ1080 554.138d 180,460 554.142 �0.004 4s4p2 2P1/2 4s4p4d (1P) 2P1/2 �0.288 1.121Eþ10100 555.306d 180,081 555.304 0.002 4s4p2 2P1/2 4s4p4d (1P) 2D3/2 0.665 9.981Eþ1010 557.011 179,530 557.015 �0.004 4p3 4S3/2 4p24d(3P) 4D5/2 �0.391 8.769Eþ0910 557.121 179,494 557.112 0.009 4p3 2D5/2 4p24d (1D) 2F7/2 0.020 2.246Eþ1010 558.683 178,992 558.679 0.004 4p3 2D3/2 4p24d (1D) 2F5/2 �0.156 1.499Eþ1095 559.529d 178,722 559.528 0.001 4s4p2 2P3/2 4s4p4d (1P) 2P3/2 0.509 6.885Eþ10100 559.760d 178,648 559.766 �0.006 4s4p2 2P3/2 4s4p4d (1P) 2D5/2 0.903 1.698Eþ1190 559.989d 178,575 559.982 0.007 4s4p2 2D3/2 4s4p4d (3P) 2F5/2 0.460 6.151Eþ1085 562.278d 177,848 562.279 �0.001 4s4p2 2D5/2 4s4p4d (3P) 2F5/2 �0.165 1.449Eþ1085 562.278d 177,848 562.279 �0.001 4s4p2 2S1/2 4s4p5s (3P) 2P1/2 �0.078 1.758Eþ1060 563.038d 177,608 563.042 �0.004 4s4p2 2P3/2 4s4p4d (1P) 2P1/2 �0.267 1.142Eþ1095 563.947B 177,322 563.963 �0.016 4s24d 2D3/2 4s4p5s (1P) 2P1/2 �0.871 2.820Eþ0930 564.246d 177,228 564.241 0.005 4s4p2 2P3/2 4s4p4d (1P) 2D3/2 �1.524 6.261Eþ0810 565.545d 176,821 565.548 �0.003 4s24d 2D5/2 4s4p5s (1P) 2P3/2 �0.724 3.938Eþ0930 567.982B 176,062 567.992 �0.01 4p3 2D5/2 4p24d(3P) 4F3/2 �0.833 2.969Eþ0920 572.074d 174,803 572.076 �0.002 4s4p2 2P3/2 4s4p4d (1P) 2F5/2 �0.953 2.273Eþ097 572.563 174,653 572.572 �0.009 4p3 2P3/2 4p24d(1D) 2D5/2 �0.231 1.182Eþ1025 573.467 174,378 573.459 0.008 4s4p2 4P1/2 4s4p4d (3P) 4F3/2 �2.163 1.394Eþ0815 575.181 173,858 575.185 �0.004 4p3 2D5/2 4p24d(3P) 2P3/2 0.021 2.168Eþ10100 576.594d 173,432 576.593 0.001 4s4p2 4P3/2 4s4p4d (3P) 4F5/2 �1.507 6.223Eþ0830 578.602d 172,830.4 578.601 0.001 4s4p2 4P1/2 4p3 2P3/2 �1.923 2.380Eþ0890 579.943d 172,430.7 579.949 �0.006 4s4p2 2D3/2 4s4p4d (3P) 2D5/2 0.228 3.362Eþ10100 581.581d 171,945.1 581.576 0.005 4s4p2 2D3/2 4s4p4d (3P) 2D3/2 0.475 5.909Eþ1030 581.719 171,904.3 581.703 0.016 4s4p2 4P3/2 4s4p4d (3P) 4F3/2 �2.292 1.006Eþ0865 582.408d 171,701 582.394 0.014 4s4p2 4P5/2 4s4p4d (3P) 4F7/2 �1.113 1.514Eþ09100 582.408d 171,701 582.412 �0.004 4s4p2 2D5/2 4s4p4d (3P) 2D5/2 0.436 5.387Eþ1050 583.288d 171,441.9 583.285 0.003 4s4p2 2D3/2 4s24f 2F5/2 �0.612 4.805Eþ0980 584.053d 171,217.3 584.054 �0.001 4s4p2 2D5/2 4s4p4d (3P) 2D3/2 �0.530 5.793Eþ0970 584.733d 171,018.2 584.725 0.008 4s4p2 2D5/2 4s24f 2F7/2 0.310 3.987Eþ1040 585.565d 170,775.2 585.565 0 4s4p2 2S1/2 4s4p4d (3P) 2P1/2 �0.579 5.122Eþ0995 585.781d 170,712.3 585.777 0.004 4s4p2 2D5/2 4s24f 2F5/2 0.185 2.986Eþ1030 586.996d 170,358.9 586.995 0.001 4s4p2 4P3/2 4p3 2P3/2 �1.580 5.090Eþ0895 587.538d 170,201.8 587.538 0 4s4p2 2S1/2 4s4p4d (3P) 2P3/2 0.460 5.553Eþ1025 591.235d 169,137.5 591.226 0.009 4s4p2 2P3/2 4s4p5s (3P) 2P3/2 �2.199 1.209Eþ0810 591.752 168,989.7 591.752 0 4p3 2D3/2 4s4p4f (3P) 2D3/2 �0.488 6.203Eþ0920 593.096d 168,606.8 593.099 �0.003 4s4p2 4P5/2 4s4p4d (3P) 4F3/2 �2.950 2.125Eþ0740 594.886d 168,099.4 594.883 0.003 4s4p2 2S1/2 4s4p5s (3P) 4P3/2 �0.690 3.838Eþ0920 598.601d 167,056.2 598.601 0 4s4p2 4P5/2 4p3 2P3/2 �2.166 1.266Eþ0823 604.870 165,324.8 604.871 �0.001 4p3 2D5/2 4s4p4f (3P) 2D5/2 �0.168 1.245Eþ1022 611.696 163,479.9 611.700 �0.004 4p3 2D5/2 4s4p5p (1P) 2P3/2 �0.836 2.607Eþ0940 616.163d 162,294.7 616.169 �0.006 4s4p2 2D3/2 4s4p4d (3P) 4D3/2 �1.395 7.096Eþ0875 616.899d 162,101.1 616.899 0 4s4p2 2P1/2 4s4p4d (3P) 2P1/2 �0.013 1.700Eþ1020 619.173d 161,505.8 619.171 0.002 4s4p2 2D3/2 4s4p4d (3P) 4P5/2 �2.261 9.545Eþ0795 621.034d 161,021.8 621.034 0 4s24p 2P1/2 4s4p2 2P3/2 �0.176 1.152Eþ1060 621.980d 160,776.9 621.980 0 4s4p2 2D5/2 4s4p4d (3P) 4P5/2 �0.997 1.739Eþ0910 622.778 160,570.9 622.772 0.006 4s25p 2P1/2 4s4p5p (1P) 2S1/2 �0.628 4.026Eþ09

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101 89

Table 1 (continued )

Iobsa λobs (Å) sobs (cm�1) λRitz (Å) λobs�λRitz (Å)b Lower level Upper level log gf gA (s�1)c

5 625.727d 159,814.1 625.724 0.003 4s4p2 4P3/2 4s25p 2P3/2 �2.915 2.070Eþ0710 627.443d 159,377 627.433 0.01 4s24d 2D3/2 4s26p 2P3/2 �1.448 6.039Eþ0860 627.944d 159,249.9 627.949 �0.005 4s4p2 2P3/2 4s4p4d (3P) 2P1/2 �0.744 3.049Eþ0933 629.749 158,793.4 629.760 �0.011 4s25p 2P3/2 4s4p5p (1P) 2S1/2 �0.108 1.305Eþ1040 629.902d 158,754.9 629.907 �0.005 4s24d 2D5/2 4s26p 2P3/2 �0.662 3.663Eþ0960 630.221d 158,674.5 630.218 0.003 4s4p2 2P3/2 4s4p4d (3P) 2P3/2 �0.011 1.637Eþ1030 631.536d 158,344.1 631.538 �0.002 4s24d 2D3/2 4s26p 2P1/2 �1.007 1.646Eþ0990 632.230d 158,170.3 632.234 �0.004 4s24p 2P1/2 4s4p2 2P1/2 �0.208 1.033Eþ1030 638.678d 156,573.4 638.677 0.001 4s4p2 2P3/2 4s4p5s (3P) 4P3/2 �1.062 1.417Eþ0930 638.929d 156,511.9 638.930 �0.001 4s4p2 4P5/2 4s25p 2P3/2 �2.206 1.015Eþ08100 645.439d 154,933.3 645.432 0.007 4s24p 2P3/2 4s4p2 2P3/2 0.494 4.993Eþ1010 647.470 154,447.3 647.463 0.007 4s4p4d (3P) 4F7/2 4p24d (3P) 4D7/2 �0.263 8.726Eþ0916 650.797 153,657.7 650.819 �0.022 4s4p4d (3P) 4F5/2 4p24d (3P) 4D5/2 �0.250 8.943Eþ0950 655.433 152,570.9 655.433 0 4s25p 2P1/2 4s4p5p (1P) 2D3/2 0.043 1.723Eþ10100 657.532d 152,083.9 657.538 �0.006 4s24p 2P3/2 4s4p2 2P1/2 0.010 1.581Eþ1070 658.215d 151,926 658.215 0 4s25s 2S1/2 4s4p5s (1P) 2P3/2 0.386 3.742Eþ1080 658.324 151,900.9 658.319 0.005 4s25p 2P3/2 4s4p5p (1P) 2D5/2 0.539 5.329Eþ1060 658.777d 151,796.4 658.775 0.002 4s25s 2S1/2 4s4p5s (1P) 2P1/2 0.085 1.870Eþ1065 658.940d 151,758.9 658.934 0.006 4s24d 2D3/2 4s4p4d (1P) 2P3/2 0.104 1.953Eþ1055 661.669d 151,133 661.663 0.006 4s24d 2D5/2 4s4p4d (1P) 2P3/2 0.072 1.801Eþ1070 661.998d 151,057.9 661.996 0.002 4s24d 2D5/2 4s4p4d (1P) 2D5/2 0.465 4.418Eþ1063 662.957 150,839.3 662.955 0.002 4s25p 2P1/2 4s4p5p (1P) 2P3/2 0.147 2.135Eþ1065 663.153 150,794.8 663.177 �0.024 4s25p 2P3/2 4s4p5p (1P) 2D3/2 0.137 2.090Eþ1070 663.810d 150,645.5 663.814 �0.004 4s24d 2D3/2 4s4p4d (1P) 2P1/2 0.068 1.775Eþ1065 665.137 150,345 665.135 0.002 4s25p 2P1/2 4s4p5p (1P) 2P1/2 �0.026 1.415Eþ1050 665.478d 150,267.9 665.481 �0.003 4s24d 2D3/2 4s4p4d (1P) 2D3/2 �0.116 1.151Eþ1075 666.535d 150,029.6 666.541 �0.006 4s4p2 4P1/2 4p3 4S3/2 �0.211 9.245Eþ0940 666.962 149,933.6 666.964 �0.002 4s4p4d (3P) 4F7/2 4p24d(3P) 4F9/2 �0.181 9.832Eþ0970 668.258d 149,642.8 668.265 �0.007 4s24d 2D5/2 4s4p4d (1P) 2D3/2 0.126 1.989Eþ107 668.698 149,544.3 668.700 �0.002 4s4p4d (3P) 4F3/2 4p24d(3P) 4F3/2 �0.016 1.398Eþ10100 668.917d 149,495.4 668.917 0 4s24p 2P1/2 4s4p2 2S1/2 �0.062 1.295Eþ105 669.638 149,334.4 669.637 0.001 4s4p4d (3P) 4F5/2 4p24d(3P) 4F7/2 �0.229 8.742Eþ0935 670.885 149,056.8 670.880 0.005 4s25p 2P3/2 4s4p5p (1P) 2P3/2 0.032 1.598Eþ105 671.644 148,888.4 671.628 0.016 4p3 2P3/2 4p24d(3P) 2P3/2 �0.282 7.945Eþ0915 673.111 148,563.9 673.111 0 4s25p 2P3/2 4s4p5p (1P) 2P1/2 �0.500 4.630Eþ0980 676.403d 147,840.9 676.407 �0.004 4s24d 2D3/2 4s4p4d (1P) 2F5/2 0.886 1.22Eþ1125 676.773 147,760 676.777 �0.004 4s4p4d (3P) 4F7/2 4p24d(3P) 4F7/2 0.371 3.399Eþ1095 677.693d,B 147,559 677.705 �0.012 4s4p2 4P3/2 4p3 4S3/2 0.089 1.781Eþ1010 678.485d 147,387.2 678.487 �0.002 4s4p2 2D5/2 4s4p4d (3P) 4F7/2 �2.265 7.896Eþ0725 678.995 147,276.5 679.002 �0.007 4s4p4d (3P) 4F7/2 4p24d(3P) 4F5/2 �0.012 1.374Eþ1010 679.279d 147,214.9 679.283 �0.004 4s24d 2D5/2 4s4p4d (1P) 2F5/2 �0.510 4.468Eþ093 681.76 146,679 681.779 �0.019 4s24f 2F5/2 4p24d(1D) 2D5/2 �0.126 1.073Eþ1030 681.891d 146,651 681.892 �0.001 4s4p2 4P1/2 4p3 2D3/2 �1.544 4.103Eþ0885 682.413d,S 146,539 682.404 0.009 4s4p2 2D3/2 4s4p4d (3P) 4F5/2 �3.124 1.075Eþ0785 682.413d,S 146,539 682.414 �0.001 4s24d 2D5/2 4s4p4d (1P) 2F7/2 1.035 1.551Eþ1170 685.821 145,810.6 685.817 0.004 4s4p2 2D5/2 4s4p4d (3P) 4F5/2 �1.852 1.992Eþ0815 686.411 145,685.3 686.395 0.016 4s4p4d (3P) 2D5/2 4p24d(1D) 2D5/2 �0.432 5.148Eþ0945 688.005d 145,347.8 688.005 0 4s4p2 2S1/2 4s4p4d (3P) 2D3/2 �1.083 1.164Eþ0945 689.568d 145,018.3 689.573 �0.005 4s4p2 2D3/2 4s4p4d (3P) 4F3/2 �1.598 3.545Eþ0820 691.019 144,713.8 691.017 0.002 4s4p4d (3P) 4P5/2 4p24d(3P) 4P5/2 �0.099 1.114Eþ1010 693.050d 144,289.7 693.059 �0.009 4s4p2 2D5/2 4s4p4d (3P) 4F3/2 �2.475 4.667Eþ0771 693.218d 144,254.8 693.223 �0.005 4s4p2 4P5/2 4p3 4S3/2 0.247 2.446Eþ1035 693.573d 144,180.9 693.581 �0.008 4s4p2 4P3/2 4p3 2D3/2 �1.498 4.396Eþ0813 694.79 143,928.4 694.794 �0.004 4s4p4d (3P) 4D3/2 4p24d(3P) 4P5/2 �0.096 1.108Eþ1013 695.664 143,747.6 695.667 �0.003 4p3 2P1/2 4s4p4f (3P) 2D3/2 �0.139 1.003Eþ1075 697.026d 143,466.7 697.022 0.004 4s4p2 2D3/2 4p3 2P3/2 �0.902 1.720Eþ09100 697.312d 143,407.8 697.309 0.003 4s24p 2P3/2 4s4p2 2S1/2 �1.207 8.527Eþ0885 700.578d 142,739.3 700.584 �0.006 4s4p2 2D5/2 4p3 2P3/2 0.074 1.617Eþ1090 701.599d 142,531.6 701.605 �0.006 4s4p2 2D3/2 4p3 2P1/2 �0.140 9.844Eþ0930 703.350d 142,176.7 703.343 0.007 4s24d 2D3/2 4s4p5s (3P) 2P3/2 �1.195 8.629Eþ0820 703.768d 142,092.3 703.774 �0.006 4s4p2 4P5/2 4p3 2D5/2 �2.038 1.232Eþ0830 706.460d 141,550.8 706.453 0.007 4s24d 2D5/2 4s4p5s (3P) 2P3/2 �1.152 9.442Eþ0820 708.948 141,054.1 708.925 0.023 4s4p4d (3P) 4P5/2 4p24d(3P) 4D7/2 0.163 1.945Eþ1066 709.843d 140,876.2 709.843 0 4s4p2 4P5/2 4p3 2D3/2 �1.059 1.152Eþ095 712.004d 140,448.6 711.989 0.015 4s4p2 2P3/2 4s4p4d (3P) 2F5/2 �2.284 6.852Eþ0740 712.437 140,363.3 712.431 0.006 4s4p4d (3P) 4D7/2 4p24d(3P) 4P5/2 0.231 2.236Eþ1038 712.447 140,361.3 712.456 �0.009 4p3 2P3/2 4s4p4f (3P) 2D5/2 �0.027 1.244Eþ105 714.831 139,893.2 714.834 �0.003 4s4p4d (3P) 4P3/2 4p24d(3P) 4P5/2 �0.584 3.411Eþ095 716.603 139,547.3 716.608 �0.005 4s4p4d (3P) 4F7/2 4s26g (1S) 2G7/2 �2.167 8.793Eþ0720 717.555d 139,362.1 717.570 �0.015 4s24d 2D3/2 4s4p5s (3P) 2P1/2 �0.960 1.417Eþ09

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–10190

Table 1 (continued )

Iobsa λobs (Å) sobs (cm�1) λRitz (Å) λobs�λRitz (Å)b Lower level Upper level log gf gA (s�1)c

10 725.163 137,900 725.162 0.001 4s4p4d (3P) 4D3/2 4p24d (3P) 4D5/2 �0.221 7.673Eþ098 729.68 137,046.4 729.677 0.003 4s4p4d (3P) 4F5/2 4s4p4f (3P) 2G7/2 �1.083 1.041Eþ0950 731.465 136,711.9 731.481 �0.016 4s4p4d (3P) 4D7/2 4p24d(3P) 4D7/2 0.051 1.409Eþ1060 731.669d 136,673.8 731.670 �0.001 4s4p2 2P1/2 4s4p4d (3P) 2D3/2 �0.725 2.351Eþ095 732.649 136,491 732.639 0.01 4s4p4d (3P) 4P5/2 4p24d(1D) 2F7/2 0.238 2.144Eþ108 732.762 136,470 732.764 �0.002 4s4p4d (3P) 4F3/2 4s4p5p (1P) 2P1/2 �1.182 1.179Eþ0960 733.812B 136,274.7 733.805 0.007 4s4p4d (3P) 4D5/2 4p24d(3P) 4D7/2 0.035 1.352Eþ1015 736.954d 135,693.7 736.951 0.003 4s4p2 2S1/2 4s4p4d (3P) 4D3/2 �2.701 2.443Eþ0750 744.209B 134,370.9 744.219 �0.01 4s4p4d (3P) 4P5/2 4p24d (3P) 4F7/2 0.443 3.321Eþ1020 744.395 134,337.3 744.395 0 4s4p4d (3P) 4D7/2 4p24d(3P) 4D5/2 �0.217 7.340Eþ0940 744.572d 134,305.3 744.581 �0.009 4s4p2 2P3/2 4s4p4d (3P) 2D 5/2 �0.756 2.112Eþ0940 746.811 133,902.7 746.803 0.008 4s4p4d (3P) 4D5/2 4p24d(3P) 4D5/2 0.214 1.971Eþ1010 746.921 133,883 746.911 0.01 4s4p4d (3P) 4P5/2 4p24d(3P) 4F 5/2 �0.197 7.411Eþ0940 747.023 133,864.7 747.019 0.004 4s4p4d (3P) 4P 3/2 4p24d(3P) 4D5/2 0.103 1.529Eþ1040 747.040d 133,861.6 747.049 �0.009 4s25s 2S1/2 4s26p 2P3/2 �0.714 2.311Eþ0940 747.261 133,822.1 747.266 �0.005 4s4p2 2P3/2 4s4p4d (3P) 2D3/2 �1.226 7.115Eþ0860 750.088d 133,317.7 750.090 �0.002 4s4p2 2P3/2 4s24f 2F5/2 �0.918 1.432Eþ0930 750.909W 133,171.9 750.898 0.011 4s4p4d (3P) 4F3/2 4s4p4f (3P) 4D5/2 �0.905 1.517Eþ0960 751.092 133,139.5 751.094 �0.002 4s4p4d (3P) 4F5/2 4s4p4f (3P) 4D7/2 0.739 6.524Eþ1060 751.092 133,139.5 751.096 �0.004 4s4p4d (3P) 4F7/2 4s4p4f (3P) 4G9/2 0.837 8.068Eþ1045 751.321 133,098.9 751.326 �0.005 4s4p4d (3P) 4D3/2 4p24d (3P) 4F5/2 0.430 3.098Eþ1010 752.325d 132,921.3 752.315 0.01 4s4p2 2D3/2 4s25p 2P3/2 �2.029 1.105Eþ0830 752.870d 132,825.1 752.875 �0.005 4s25s 2S1/2 4s26p 2P1/2 �0.934 1.367Eþ0910 753.386 132,734.1 753.398 �0.012 4s24f 2F5/2 4p24d (1D) 2G7/2 �0.487 3.812Eþ0970 755.930d 132,287.4 755.933 �0.003 4s24d 2D3/2 4s4p4d (3P) 2P1/2 �3.151 8.238Eþ065 756.044 132,267.4 756.040 0.004 4s4p4d (3P) 4D3/2 4p24d (3P) 4F3/2 �0.214 6.910Eþ0970 756.479 132,191.4 756.470 0.009 4s4p4d (3P) 4D7/2 4p24d (3P) 4F9/2 0.769 6.796Eþ1075 756.479d 132,191.4 756.467 0.012 4s4p2 2D5/2 4s25p 2P3/2 �0.945 1.327Eþ0910 759.202 131,717.3 759.199 0.003 4s4p4d (3P) 4D1/2 4p24d (3P) 4F3/2 0.261 2.042Eþ105 759.235d 131,711.5 759.225 0.01 4s24d 2D3/2 4s4p4d (3P) 2P3/2 �1.770 1.964Eþ085 759.238 131,711 759.243 �0.005 4s4p4d (3P) 4D5/2 4p24d (1D) 2F7/2 �0.174 7.734Eþ0920 760.075 131,566 760.088 �0.013 4s4p4d (3P) 4F7/2 4s4p4f (3P) 4D7/2 �0.101 9.062Eþ0965 762.538d 131,141 762.536 0.002 4s4p2 2D3/2 4s25p 2P1/2 �1.195 7.330Eþ0810 762.849d 131,087.5 762.850 �0.001 4s24d 2D5/2 4s4p4d (3P) 2P3/2 �2.022 1.088Eþ0840 768.417B 130,137.7 768.427 �0.01 4s4p4d (3P) 2D5/2 4p24d (3P) 4D7/2 �0.257 6.224Eþ0935 768.780 130,076.2 768.788 �0.008 4s4p4d (3P) 4F7/2 4s4p4f (3P) 4D5/2 �0.219 7.024Eþ095 769.259 129,995.2 769.278 �0.019 4s4p4d (3P) 4D5/2 4p24d (1D) 2F5/2 �0.653 2.516Eþ093 769.511 129,952.7 769.508 0.003 4s4p4d (3P) 4P3/2 4p24d (1D) 2F5/2 �0.671 2.415Eþ098 771.447 129,626.5 771.451 �0.004 4p3 2D5/2 4s4p5p (3P) 2D5/2 �0.856 1.584Eþ0910 771.534d 129,611.9 771.535 �0.001 4s24d 2D3/2 4s4p5s (3P) 4P3/2 �4.053 9.912Eþ0510 771.700 129,584 771.687 0.013 4s4p4d (3P) 4D5/2 4p24d (3P) 4F7/2 0.331 2.381Eþ1015 772.096 129,517.6 772.105 �0.009 4s4p4d (3P) 4D1/2 4p24d (3P) 2P3/2 �0.776 1.927Eþ0910 775.262d 128,988.7 775.279 �0.017 4s24d 2D5/2 4s4p5s (3P) 4P3/2 �2.119 8.441Eþ0710 780.943 128,050.3 780.939 0.004 4p3 2D3/2 4s4p5p (3P) 2D3/2 �1.155 7.714Eþ0810 784.256 127,509.4 784.260 �0.004 4s25p 2P1/2 4s27s 2S1/2 �1.133 7.983Eþ083 786.958 127,071.6 786.960 �0.002 4p3 2D3/2 4s4p5p (3P) 4S3/2 �1.410 4.199Eþ0810 787.268d 127,021.5 787.276 �0.008 4s4p2 2P1/2 4s4p4d (3P) 4D3/2 �2.949 1.210Eþ075 792.67 126,155.9 792.669 0.001 4s4p4d (3P) 4P5/2 4s26g (1S) 2G7/2 �2.521 3.184Eþ0727 795.376 125,726.7 795.373 0.003 4s25p 2P3/2 4s27s 2S1/2 �0.741 1.914Eþ095 796.204 125,596 796.194 0.01 4s4p4d (3P) 2F5/2 4p24d (1D) 2G7/2 0.207 1.692Eþ105 804.283 124,334.3 804.281 0.002 4s4p4d (3P) 2D3/2 4p24d (1D) 2F5/2 �0.048 9.250Eþ0920 810.492d 123,381.8 810.498 �0.006 4s4p2 2P3/2 4s4p4d (3P) 4P5/2 �2.120 7.688Eþ0795 813.693d 122,896.5 813.693 0 4s24p 2P1/2 4s4p2 2D3/2 �0.496 3.205Eþ0910 815.953 122,556.1 815.956 �0.003 4s4p4d (3P) 4D7/2 4s26g (1S) 2G9/2 �1.160 6.887Eþ0820 828.142 120,752.2 828.149 �0.007 4p3 2D5/2 4s4p5p (3P) 4P3/2 �0.997 9.810Eþ0817 828.748d 120,663.9 828.741 0.007 4s4p2 2D3/2 4p3 4S3/2 �1.865 1.330Eþ0891 833.762d,B 119,938.3 833.781 �0.019 4s4p2 2D5/2 4p3 4S3/2 �2.321 4.602Eþ075 833.860 119,924.2 833.850 0.01 4p3 2D3/2 4s4p5p (3P) 4P1/2 �1.399 3.812Eþ0833 843.223 118,592.6 843.229 �0.006 4p3 2D3/2 4s4p5p (3P) 2P1/2 �0.910 1.157Eþ0985 843.863d 118,502.6 843.865 �0.002 4s4p2 2D3/2 4p3 2D5/2 �1.270 5.041Eþ0895 849.092d 117,772.9 849.092 0 4s4p2 2D5/2 4p3 2D5/2 �0.207 5.767Eþ095 849.596 117,703 849.588 0.008 4s4p4d (3P) 2F5/2 4p24d (1D) 2F5/2 0.093 1.149Eþ1015 849.975 117,650.5 849.989 �0.014 4p3 2D5/2 4s4p5p (3P) 2P3/2 �0.701 1.831Eþ09100 850.785d 117,538.5 850.781 0.004 4s24p 2P3/2 4s4p2 2D5/2 �0.349 4.110Eþ0930 851.017d 117,506.5 851.013 0.004 4s24d 2D5/2 4s4p4d (3P) 2F7/2 �1.050 8.215Eþ0885 852.602d 117,288 852.606 �0.004 4s4p2 2D3/2 4p3 2D3/2 �0.522 2.762Eþ0980 855.664d 116,868.3 855.662 0.002 4s4p2 2S1/2 4p3 2P3/2 �0.800 1.439Eþ0990 856.096d 116,809.3 856.094 0.002 4s24p 2P3/2 4s4p2 2D3/2 �1.889 1.171Eþ0830 857.199 116,659 857.179 0.02 4s24f 2F7/2 4s26g (1S) 2G9/2 0.096 1.127Eþ1030 857.199d 116,659 857.201 �0.002 4s25s 2S1/2 4s4p5s (3P) 2P3/2 �1.352 4.046Eþ08

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101 91

Table 1 (continued )

Iobsa λobs (Å) sobs (cm�1) λRitz (Å) λobs�λRitz (Å)b Lower level Upper level log gf gA (s�1)c

80 857.936d 116,558.8 857.941 �0.005 4s4p2 2D5/2 4p3 2D3/2 �0.906 1.129Eþ0968 860.437 116,220 860.439 �0.002 4s24f 2F5/2 4s26g (1S) 2G7/2 �0.150 6.335Eþ092 861.819 116,033.6 861.829 �0.01 4p3 2D3/2 4s4p5p (3P) 4D3/2 �2.509 2.798Eþ0715 862.584d 115,930.7 862.578 0.006 4s4p2 2S1/2 4p3 2P1/2 �2.907 1.110Eþ078 862.731 115,911 862.720 0.011 4s24f 2F7/2 4s26g (1S) 2G7/2 �1.308 4.395Eþ086 870.855 114,829.7 870.859 �0.004 4s4p4d (3P) 2F7/2 4p24d (3P) 4F9/2 �0.395 3.514Eþ097 870.95 114,817.2 870.947 0.003 4p3 2D5/2 4s4p5p (3P) 4D3/2 �1.084 7.273Eþ083 871.222 114,781.3 871.239 �0.017 4s4p4d (3P) 2F7/2 4p24d (1D) 2F7/2 0.018 9.107Eþ095 880.661 113,551.1 880.665 �0.004 4p3 2P1/2 4s4p5p (3P) 2S1/2 �1.213 5.260Eþ0865 881.142d 113,489.1 881.136 0.006 4s24d 2D3/2 4s4p4d (3P) 2F5/2 �0.995 8.707Eþ083 881.917 113,389.4 881.907 0.01 4s4p4d (3P) 4D5/2 4s4p4f (3P) 4D7/2 �1.369 3.625Eþ083 884.355 113,076.8 884.369 �0.014 4s24f 2F7/2 4s4p5p (1P) 2D5/2 �0.868 1.175Eþ0910 886.034d 112,862.5 886.023 0.011 4s24d 2D5/2 4s4p4d (3P) 2F5/2 �1.377 3.566Eþ0812 888.001 112,612.5 887.994 0.007 4p3 2P3/2 4s4p5p (3P) 2S1/2 �0.916 1.028Eþ095 890.720 112,268.7 890.714 0.006 4s24f 2F5/2 4s4p5p (1P) 2D3/2 �1.257 4.681Eþ0810 893.910B 111,868 893.950 �0.04 4s4p4d (3P) 4P3/2 4s4p4f (3P) 4D5/2 �0.331 4.045Eþ0910 899.626 111,157.3 899.616 0.01 4s4p4d (3P) 2D5/2 4s4p4f (3P) 2G7/2 �0.974 8.762Eþ0850 916.707 109,086.1 916.713 �0.006 4s4p4d (3P) 2F5/2 4s26g (1S) 2G7/2 �0.278 4.166Eþ0950 924.269d 108,193.6 924.261 0.008 4s4p2 2P1/2 4p3 2P3/2 �2.552 2.187Eþ075 928.504 107,700.1 928.503 0.001 4s4p4d (3P) 2F5/2 4s4p4f (3P) 2D3/2 �0.599 1.953Eþ0975 931.597d 107,342.6 931.604 �0.007 4s24d 2D3/2 4s4p4d (3P) 2D5/2 �0.464 2.643Eþ0980 932.331d 107,258 932.337 �0.006 4s4p2 2P1/2 4p3 2P1/2 �0.650 1.719Eþ0920 935.806d 106,859.8 935.811 �0.005 4s24d 2D3/2 4s4p4d (3P) 2D3/2 �1.599 1.925Eþ085 936.621d 106,766.8 936.616 0.005 4s25s 2S1/2 4s4p4d (3P) 2P1/2 �2.051 6.754Eþ0720 937.077d 106,714.8 937.067 0.01 4s24d 2D5/2 4s4p4d (3P) 2D5/2 �3.128 5.658Eþ0680 940.253d 106,354.4 940.244 0.009 4s24d 2D3/2 4s24f 2F5/2 �0.91 3.980Eþ0910 941.678d 106,193.4 941.674 0.004 4s25s 2S1/2 4s4p4d (3P) 2P3/2 �1.860 1.037Eþ08100 943.079d 106,035.7 943.069 0.01 4s24d 2D5/2 4s24f 2F7/2 0.081 9.032Eþ0940 945.815d 105,728.9 945.810 0.005 4s24d 2D5/2 4s24f 2F5/2 �1.073 6.303Eþ0880 949.292d 105,341.7 949.289 0.003 4s4p2 2P3/2 4p3 2P3/2 �0.396 2.969Eþ0915 950.652 105,191 950.647 0.005 4s4p4d (3P) 2F7/2 4s26g (1S) 2G9/2 0.356 1.660Eþ1060 952.287 105,010.4 952.285 0.002 4s4p4d (3P) 2F5/2 4s4p4f (3P) 2G7/2 0.563 2.694Eþ105 955.530 104,654 955.516 0.014 4s4p4d (3P) 4F7/2 4s25g (1S) 2G9/2 �1.963 7.961Eþ075 956.532d 104,544.3 956.549 �0.017 4s4p2 2S1/2 4s25p 2P1/2 �4.523 2.180Eþ0560 957.808d 104,405.1 957.809 �0.001 4s4p2 2P3/2 4p3 2P1/2 �1.277 3.852Eþ0810 960.677d 104,093.3 960.686 �0.009 4s25s 2S1/2 4s4p5s (3P) 4P3/2 �1.600 1.816Eþ085 993.966 100,607.1 993.970 �0.004 4s4p4d (3P) 2F7/2 4s4p4f (3P) 2D5/2 �0.448 2.400Eþ0910 998.579d 100,142.3 998.573 0.006 4s24d 2D5/2 4s4p4d (3P) 4D7/2 �2.276 3.546Eþ0710 1020.046 98,034.8 1020.046 0 4s4p4d (3P) 2F7/2 4s4p4f (3P) 4G9/2 �1.152 4.462Eþ0810 1035.412d 96,579.9 1035.412 0 4s24d 2D5/2 4s4p4d (3P) 4D3/2 �2.760 1.083Eþ0785 1041.617d 96,004.6 1041.616 0.001 4s24p 2P1/2 4s4p2 4P3/2 �4.016 5.934Eþ055 1043.095d 95,868.5 1043.097 �0.002 4s4p2 2P1/2 4s25p 2P1/2 �2.869 8.277Eþ068 1043.991 95,786.3 1043.993 �0.002 4p3 2P3/2 4s4p5p (3P) 4P3/2 �1.883 8.030Eþ073 1061.157 94,236.8 1061.162 �0.005 4s4p4d (3P) 4F3/2 4s4p5p (3P) 4P3/2 �1.706 1.166Eþ08100 1069.140d 93,533.1 1069.139 0.001 4s24p 2P1/2 4s4p2 4P1/2 �2.568 1.575Eþ0720 1069.41 93,509.5 1069.393 0.017 4s4p4d (3P) 4F7/2 4s4p5p (3P) 4D7/2 �0.779 9.622Eþ08100 1072.716d 93,221.3 1072.722 �0.006 4s24p 2P3/2 4s4p2 4P5/2 �2.089 4.734Eþ075 1075.092d 93,015.3 1075.085 0.007 4s4p2 2P3/2 4s25p 2P1/2 �2.355 2.549Eþ075 1078.611 92,711.8 1078.601 0.01 4s4p4d (3P) 4F5/2 4s4p5p (3P) 4P3/2 �1.147 4.118Eþ0820 1100.564 90,862.5 1100.569 �0.005 4s4p4d (3P) 4F3/2 4s4p5p (3P) 2P1/2 �1.038 5.061Eþ0845 1102.673d 90,688.7 1102.673 0 4s4p2 2S1/2 4p3 2D3/2 �1.198 3.461Eþ0845 1108.183 90,237.8 1108.183 0 4s4p4d (3P) 4F5/2 4s4p5p (3P) 4D5/2 �0.638 1.254Eþ0990 1112.127d 89,917.8 1112.127 0 4s24p 2P3/2 4s4p2 4P3/2 �2.795 8.647Eþ0670 1127.864 88,663.2 1127.874 �0.01 4s4p4d (3P) 4F7/2 4s4p5p (3P) 4D5/2 0.110 6.735Eþ0910 1132.475 88,302.2 1132.469 0.006 4s4p4d (3P) 4F3/2 4s4p5p (3P) 4D3/2 �0.817 7.951Eþ0850 1143.558d 87,446.4 1143.559 �0.001 4s24p 2P3/2 4s4p2 4P1/2 �2.932 5.961Eþ065 1149.084 87,025.8 1149.078 0.006 4s4p4d (3P) 2P3/2 4s4p4f (3P) 2D5/2 �0.480 5.703Eþ095 1150.532 86,916.3 1150.541 �0.009 4s4p4d (3P) 4D7/2 4s25g (1S) 2G9/2 �0.973 5.349Eþ0810 1155.65 86,531.4 1155.65 0 4s4p4d (3P) 4F3/2 4s4p5p (3P) 4D1/2 �0.387 2.046Eþ0920 1171.069d 85,392.1 1171.069 0 4s4p2 2P1/2 4p3 4S3/2 �2.674 1.030Eþ0730 1211.548 82,539 1211.540 0.008 4s4p2 2P3/2 4p3 4S3/2 �1.863 6.241Eþ075 1215.477 82,272.2 1215.479 �0.002 4s4p4d (3P) 4D7/2 4s4p5p (3P) 2D5/2 �1.539 1.334Eþ0845 1219.294d 82,014.7 1219.295 �0.001 4s4p2 2P1/2 4p3 2D3/2 �0.910 5.510Eþ0840 1229.569 81,329.3 1229.553 0.016 4s24f 2F5/2 4s25g (1S) 2G7/2 0.611 1.799Eþ1062 1234.235 81,021.8 1234.216 0.019 4s24f 2F7/2 4s25g (1S) 2G7/2 �0.701 8.719Eþ0862 1234.235 81,021.8 1234.237 �0.002 4s24f 2F7/2 4s25g (1S) 2G9/2 0.843 3.054Eþ1080 1244.128d 80,377.6 1244.139 �0.011 4s4p2 2P3/2 4p3 2D5/2 �0.581 1.130Eþ0910 1244.632 80,345 1244.648 �0.016 4s4p4d (3P) 2D5/2 4s25g (1S) 2G7/2 0.131 5.816Eþ0910 1262.776 79,190.6 1262.786 �0.01 4s4p4d (3P) 4P1/2 4s4p5p (3P) 2D3/2 �0.950 4.759Eþ0810 1263.237d 79,161.7 1263.231 0.006 4s4p2 2P3/2 4p3 2D3/2 �2.124 3.135Eþ07

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–10192

Table 1 (continued )

Iobsa λobs (Å) sobs (cm�1) λRitz (Å) λobs�λRitz (Å)b Lower level Upper level log gf gA (s�1)c

10 1265.034 79,049.3 1265.033 0.001 4s4p4d (3P) 4D5/2 4s4p5p (3P) 2D3/2 �1.012 4.097Eþ085 1265.668 79,009.7 1265.655 0.013 4s4p4d (3P) 4P3/2 4s4p5p (3P) 2D3/2 �0.866 5.744Eþ0815 1278.614 78,209.7 1278.606 0.008 4s4p4d (3P) 4P1/2 4s4p5p (3P) 4S3/2 �0.768 6.999Eþ0815 1280.902 78,070 1280.910 �0.008 4s4p4d (3P) 4D5/2 4s4p5p (3P) 4S3/2 �0.834 5.974Eþ0825 1281.543 78,030.9 1281.547 �0.004 4s4p4d (3P) 4P3/2 4s4p5p (3P) 4S3/2 �0.622 9.737Eþ0810 1286.093d 77,754.9 1286.104 �0.011 4s24d 2D5/2 4p3 2P3/2 �1.898 5.092Eþ0740 1313.022 76,160.2 1313.027 �0.005 4s4p4d (1P) 2F7/2 4s26g (1S) 2G9/2 �0.185 2.513Eþ095 1316.103 75,981.9 1316.106 �0.003 4s4p4d (1P) 2P1/2 4s4p5p (1P) 2S1/2 �0.919 4.564Eþ0830 1319.332 75,795.9 1319.315 0.017 4s4p4d (3P) 4D7/2 4s4p5p (3P) 4P5/2 �0.005 3.787Eþ0930 1319.752 75,771.8 1319.764 �0.012 4s4p4d (3P) 4D7/2 4s4p5p (3P) 4D7/2 �0.375 1.593Eþ096 1321.021 75,699 1321.020 0.001 4s4p4d (3P) 2D5/2 4s4p5p (3P) 2D5/2 �0.982 4.079Eþ0825 1326.898 75,363.7 1326.897 0.001 4s4p4d (3P) 4D5/2 4s4p5p (3P) 4P5/2 �0.091 3.076Eþ0920 1327.573 75,325.4 1327.580 �0.007 4s4p4d (3P) 4P3/2 4s4p5p (3P) 4P5/2 �0.610 9.312Eþ0830 1328.073 75,297.1 1328.074 �0.001 4s25d 2D5/2 4s27p 2P3/2 �0.756 6.607Eþ0830 1334.756 74,920.1 1334.757 �0.001 4s4p4d (3P) 4D3/2 4s4p5p (3P) 4P1/2 �0.609 9.115Eþ088 1335.719 74,866 1335.716 0.003 4s4p4d (1P) 2P3/2 4s4p5p (1P) 2S1/2 �0.668 7.937Eþ0850 1338.616d 74,704 1338.609 0.007 4s25p 2P1/2 4s26s 2S1/2 �0.335 1.721Eþ097 1339.678 74,644.8 1339.683 �0.005 4s4p4d (3P) 4P5/2 4s4p5p (3P) 2P3/2 �0.233 2.162Eþ0925 1344.637 74,369.5 1344.634 0.003 4s4p4d (3P) 4D1/2 4s4p5p (3P) 4P1/2 �0.561 1.002Eþ0910 1347.784 74,195.9 1347.782 0.002 4s4p4d (3P) 2F5/2 4s25g (1S) 2G7/2 �1.442 1.324Eþ0825 1362.541 73,392.3 1362.546 �0.005 4s4p4d (3P) 2D3/2 4s4p5p (3P) 2D3/2 �0.982 3.776Eþ08100 1371.306d 72,923.2 1371.314 �0.008 4s25p 2P3/2 4s26s 2S1/2 �0.050 3.160Eþ0920 1377.923 72,573 1377.919 0.004 4s4p4d (1P) 2F7/2 4s4p5p (1P) 2D 5/2 �0.093 2.849Eþ095 1390.266 71,928.7 1390.248 0.018 4s4p4d (3P) 2D5/2 4s4p5p (3P) 4S 3/2 �1.473 1.162Eþ0840 1409.997 70,922.1 1409.990 0.007 4s4p4d (3P) 4D7/2 4s4p5p (3P) 4D5/2 �0.619 8.028Eþ0835 1412.731 70,784.9 1412.731 0 4s4p4d (1P) 2F5/2 4s4p5p (1P) 2D3/2 �0.290 1.734Eþ0915 1415.216 70,660.6 1415.220 �0.004 4s4p4d (1P) 2F 5/2 4s4p4f (3P) 2G7/2 �0.417 1.275Eþ0935 1474.152d 67,835.6 1474.151 0.001 4s24d 2D3/2 4s25p 2P3/2 �0.928 3.619Eþ0890 1487.872d 67,210.1 1487.879 �0.007 4s24d 2D5/2 4s25p 2P3/2 0.013 3.100Eþ0935 1497.874 66,761.3 1497.872 0.002 4s4p4d (3P) 2F5/2 4s4p5p (3P) 2D3/2 �0.202 1.889Eþ0920 1532.175 65,266.7 1532.177 �0.002 4s4p4d (3P) 2D3/2 4s4p5p (3P) 4P1/2 �1.113 2.157Eþ0810 1533.518 65,209.5 1533.519 �0.001 4s4p4d (1P) 2D5/2 4s4p5p (1P) 2P3/2 �0.347 1.294Eþ0930 1540.652 64,907.6 1540.642 0.01 4s4p4d (3P) 2F7/2 4s4p5p (3P) 2D5/2 0.173 4.296Eþ0915 1564.147 63,932.6 1564.142 0.005 4s4p4d (3P) 2D3/2 4s4p5p (3P) 2P1/2 �0.834 3.990Eþ0850 1615.590d 61,896.9 1615.596 �0.006 4s25p 2P1/2 4s25d 2D3/2 0.364 5.905Eþ0980 1656.757d 60,358.9 1656.755 0.002 4s25p 2P3/2 4s25d 2D5/2 0.606 9.803Eþ0990 1663.478 60,115.01 1663.478 0.0002 4s25p 2P3/2 4s25d 2D3/2 �0.347 1.083Eþ095 1711.361 58,433 1711.368 �0.007 4s4p4d (3P) 2F7/2 4s4p5p (3P) 4P5/2 �1.497 7.245Eþ075 1871.634 53,429.25 1871.639 �0.005 4s4p5s (3P) 4P3/2 4s4p5p (3P) 2D5/2 �1.609 4.848Eþ078 1891.772d 52,860.49 1891.768 0.004 4s25s 2S1/2 4p3 2P3/2 �1.554 5.198Eþ078 1936.699 51,634.25 1936.700 �0.001 4s4p5s (3P) 2P1/2 4s4p5p (3P) 2S1/2 �0.410 6.957Eþ0825 1941.006 51,519.68 1941.013 �0.007 4s4p5s (3P) 4P1/2 4s4p5p (3P) 4S 3/2 �1.324 8.412Eþ07

λobs in air λRitz in air10 2047.887e 48,815.2 2047.881 0.006 4s4p5s (3P) 2P3/2 4s4p5p (3P) 2S1/2 �0.076 1.327Eþ0910 2308.151e 43,311.4 2308.135 0.016 4s4p5s (3P) 4P1/2 4s4p5p (3P) 2P3/2 �0.040 1.126Eþ0980 2362.436e 42,316.3 2362.441 �0.004 4s25s 2S1/2 4s25p 2P3/2 0.158 1.720Eþ09

Bblended with other line, Sshoulder line, wwide line.a Intensity figures are visual estimates of photographic blackening.b Observed wavelength value�calculated value from Table 2.c Transition probabilities (gA) obtained by Cowan's code. Here g is the statistical weight of the upper level while for gf, g refers to the

weight of the lower level.d Lines originally classified by Tauheed and Joshi [3].e Lines above 2000 Å were taken from Ref. [11].

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101 93

D3/2 at 368,235.0 cm�1 which are 46%, 47% and 43%respectively. Thus LS designation is still quite unambiguous.These levels are nicely fitting in the least squares para-metric calculations with expected parameters scaling.

4.1.3. The 4s4p4f configurationThe theoretical prediction for this configuration was

obtained with the inclusion of all interacting configura-tions as mentioned above. The transitions lying on ourplates and predicted strong were looked at first. It waseasy to locate the first level 4s4p4f (3P) 2G7/2 at

406,484.2 cm�1 based on the identifications of 5 transi-tions. This established the initial shift from the calculatedvalue. A further scaling of the Eav (4s4p4f) gave veryprecise prediction of the remaining 4s4p4f levels. A fewtransitions from 4p3 were also observed due to strongmixing of 4p3 with 4s4p4d as mentioned above. Weestablished 6 levels of this configuration satisfactorily.A few more levels were also found with less satisfaction,so we did not include them here. The LS designations werenot unambiguous as their leading LS purities were greaterthan 50% except (3P)4D7/2 at 402,576.4 cm�1 which is 44%.

Table 2Observed energy levels of Br V.

Designationa Energy (cm�1) D1 (cm�1)b D2 (cm�1)c No. of connecting linesd

4s24p 2P1/2 0e 0.3 0 164s24p 2P3/2 6086.9e 0.2 0.4 214s4p2 4P1/2 93,533.2e 0.3 0.4 124s4p2 4P3/2 960,04.7e 0.3 0.4 234s4p2 4P5/2 99,307.7e 0.4 0.5 204s4p2 2D3/2 122,896.5e 0.3 0.4 274s4p2 2D5/2 123,625.9e 0.4 0.4 234s4p2 2S1/2 149,495.3e 0.4 0.4 194s4p2 2P1/2 158,169.4e 0.2 0.4 164s4p2 2P3/2 161,021.9e 0.2 0.4 264s24d 2D3/2 187,983.8e 0.2 0.4 194s24d 2D5/2 188,609.7e 0.3 0.4 214s25s 2S1/2 213,503.3e 0.13 0.4 124p3 2D3/2 240,184.0e 0.2 0.4 164p3 2D5/2 241,398.8e 0.4 0.4 144p3 4S3/2 243,561.5e 0.3 0.4 94s25p 2P1/2 254,037.8e 0.2 0.4 114s25p 2P3/2 255,819.5e 0.04 0.4 164p3 2P1/2 265,426.8e 0.4 0.5 64p3 2P3/2 266,363.9e 0.2 0.4 154s4p4d (3P) 4F3/2 267,913.7e 0.3 0.4 124s4p4d (3P) 4F5/2 269,437.3e 0.4 0.5 94s4p4d (3P) 4F7/2 271,012.7e 0.5 0.4 134s4p4d (3P) 4P5/2 284,402.9e 0.4 0.4 124s4p4d (3P) 4D3/2 285,189.6e 0.3 0.4 124s4p4d (3P) 4D1/2 285,739.9e 0.3 0.5 54s4p4d (3P) 4D7/2 288,752.6e 0.3 0.4 124s4p4d (3P) 4P1/2 289,045.0e 0.5 0.4 34s4p4d (3P) 4D5/2 289,185.7e 0.3 0.4 114s4p4d (3P) 4P3/2 289,224.5e 0.3 0.4 94s24f 2F5/2 294,339.2e 0.5 0.4 124s24f 2F7/2 294,646.5e 0.5 0.5 84s4p4d (3P) 2D3/2 294,843.0e 0.2 0.4 124s4p4d (3P) 2D5/2 295,325.6e 0.4 0.4 124s4p4d (3P) 2F5/2 301,473.6e 0.2 0.4 134s4p4d (3P) 2F7/2 306,116.7e 0.2 0.4 104s4p5s (3P) 4P1/2 315,735.7e 0.2 0.4 54s25d 2D3/2 315,934.5e 0.04 0.4 44s25d 2D5/2 316,178.4e 0.2 0.4 34s4p5s (3P) 4P3/2 317,595.6e 0.3 0.4 114s4p4d (3P) 2P3/2 319,697.1e 0.4 0.5 104s4p4d (3P) 2P1/2 320,270.6e 0.5 0.5 64s4p5s (3P) 4P5/2 321,956.0e 2 2 24s4p5s (3P) 2P1/2 327,343.1e 0.2 0.5 44s26s 2S1/2 328,742.2e 0.3 0.4 24s4p5s (3P) 2P3/2 330,162.0e 0.3 0.5 94s4p4d (1P) 2F7/2 335,148.3e 0.3 0.5 54s4p4d (1P) 2F5/2 335,823.8e 0.2 0.5 84s4p4d (1P) 2D3/2 338,251.0e 0.9 0.7 54s4p4d (1P) 2P1/2 338,628.5e 0.3 0.6 54s4p4d (1P) 2D5/2 339,668.0e 0.2 0.7 34s4p4d (1P) 2P3/2 339,744.0e 0.3 0.6 54s26p 2P1/2 346,327.5e 0.8 0.7 64s26p 2P3/2 347,363.3e 1.0 0.7 64s4p5p (3P) 4D1/2 354,445.1 0.4 0.6 34s4p5p (3P) 4D3/2 356,216.3 0.5 0.5 54s4p5p (3P) 2P1/2 358,775.8 0.2 0.4 34s4p5p (3P) 2P3/2 359,047.4 0.3 0.4 34s4p5p (3P) 4D5/2 359,675.1 0.3 0.4 34s4p5p (3P) 4P1/2 360,109.6 0.2 0.4 54s4p5p (3P) 4P3/2 362,150.0 0.4 0.4 64s4p5p (3P) 4D7/2 364,523.7 0.7 0.5 24s4p5p (3P) 4P5/2 364,549.5 0.2 0.4 44s4p5s (1P) 2P1/2 365,300.3e 1.1 0.9 54s4p5s (1P) 2P3/2 365,429.3e 0.8 0.8 64s4p5p (3P) 4S3/2 367,255.2 0.2 0.4 74s4p5p (3P) 2D3/2 368,235.0 0.2 0.4 84s4p5p (3P) 2D5/2 371,024.7 0.2 0.4 64s25g (1S) 2G9/2 375,668.2 0.5 0.5 3

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–10194

Table 2 (continued )

Designationa Energy (cm�1) D1 (cm�1)b D2 (cm�1)c No. of connecting linesd

4s25g (1S) 2G7/2 375,669.6 0.5 0.4 44s4p5p (3P) 2S1/2 378,977.3 0.13 0.5 54s27s 2S1/2 381,546.6 0.7 0.7 44s27p 2P1/2 390,780.0 2 2 24s27p 2P3/2 391,475.4 0.3 0.5 34s4p4f (3P) 4D5/2 401,087.6 1.3 0.7 34s4p4f (3P) 4D7/2 402,576.4 1.1 0.6 34s4p4f (3P) 4G9/2 404,151.5 0.5 0.6 24s4p5p (1P) 2P1/2 404,383.3 0.6 0.7 34s4p5p (1P) 2P3/2 404,877.5 0.2 0.7 44s4p4f (3P) 2G7/2 406,484.2 0.2 0.5 54s4p5p (1P) 2D3/2 406,608.7 0.3 0.5 44s4p4f (3P) 2D5/2 406,723.4 0.4 0.5 44s4p5p (1P) 2D5/2 407,721.5 0.4 0.5 44s4p4f (3P) 2D3/2 409,173.8 0.4 0.6 34s26g (1S) 2G7/2 410,559.0 0.4 0.5 54s26g (1S) 2G9/2 411,308.2 0.3 0.5 44s4p5p (1P) 2S1/2 414,610.2 0.2 0.6 44p24d (3P) 2P3/2 415,255.9 2 0.7 34p24d (3P) 4F3/2 417,457.7 0.7 0.6 44p24d (3P) 4F5/2 418,287.7 1.0 0.7 34p24d (3P) 4F7/2 418,771.9 1.0 0.6 44p24d (1D) 2F5/2 419,177.7 0.8 0.5 54p24d (1D) 2F7/2 420,895.8 1.0 0.6 44p24d (3P) 4F9/2 420,945.9 0.6 0.6 34p24d (3P) 4D5/2 423,089.9 0.8 0.5 74p24d (3P) 4D7/2 425,461.6 1.2 0.6 54p24d (1D) 2G7/2 427,071.2 1.5 0.7 24p24d (3P) 4P5/2 429,117.1 0.6 0.6 54p24d (1D) 2D5/2 441,014.4 2 0.8 4

a Represent designations of the levels.b Uncertainty D1 is close to the minimum estimated dispersion relative to any other term.c Uncertainty of the level value relative to the ground level and both uncertainties were determine by the LOPT code [14].d No. of observed transitions corresponding to each level.e Levels established by Tauheed and Joshi [3].

Table 3Observed and LSF energy levels of Br V in cm�1.

J E (obs) E (LSF) Diff.a LS-composition

Odd configurations1/2 0.0 �4.0 4.0 97%4s24p 2P

254,037.8 254,037.0 0.8 95%4s25p 2P265,426.8 265,545.0 �118.2 78%4p3 2Pþ14%4s4p4d(3P)2P

þ4%4s4p4d(1P)2P285,739.9 285,922.0 �182.1 84%4s4p4d(3P)4Dþ15%4s4p4d(3P)4P289,045.0 288,906.0 139.0 84%4s4p4d(3P)4Pþ15%4s4p4d(3P)4D315,735.7 315,801.0 �65.3 97%4s4p5s(3P)4P320,270.6 320,240.0 30.6 57%4s4p4d(3P)2P þ28%4s4p5s(3P)2P

þ8%4p3 2P327,343.1 327,241.0 102.1 67%4s4p5s(3P)2P þ25%4s4p4d(3P)2P

þ4%4p3 2P338,628.5 338,859.0 �230.5 87%4s4p4d(1P)2P þ5%4p3 2P346,327.5 346,276.0 51.5 89%4s26p 2Pþ7%4s4p5s(1P)2P365,300.3 365,272.0 28.3 90%4s4p5s(1P)2P þ6%4s26p 2P390,780.0 390,930.0 �150.0 99%4s27p 2P

3/2 6086.9 6087.0 �0.1 97%4s24p 2P240,184.0 240,116.0 68.0 65%4p3 2Dþ26%4s4p4d(3P)2D243,561.5 243,603.0 �41.5 93%4p3 4S255,819.5 255,820.0 �0.5 94%4s25p 2P266,363.9 266,307.0 56.9 71%4p3 2Pþ15%4s4p4d(3P)2P

þ4%4s4p4d(1P)2P267,913.7 267,953.0 �39.3 98%4s4p4d(3P)4F285,189.6 285,270.0 �80.4 55%4s4p4d(3P)4Dþ43%4s4p4d(3P)4P289,224.5 289,147.0 77.5 56%4s4p4d(3P)4Pþ44%4s4p4d(3P)4D294,843.0 295,034.0 �191.0 56%4s4p4d(3P)2Dþ22%4s4p4d(1P)2D

þ18%4p3 2D

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101 95

Table 3 (continued )

J E (obs) E (LSF) Diff.a LS-composition

317,595.6 317,593.0 2.6 87%4s4p5s(3P)4Pþ6%4s4p4d(3P)2Pþ5%4s4p5s(3P)2P

319,697.1 319,638.0 59.1 67%4s4p4d(3P)2Pþ12%4p3 2Pþ10%4s4p5s(3P)4Pþ6%4s4p5s(3P)2P

330,162.0 330,269.0 �107.0 83%4s4p5s(3P)2Pþ7%4s4p4d(3P)2P338,251.0 338,074.0 177.0 54%4s4p4d(1P)2Dþ23%4s4p4d(1P)2P

þ8%4s4p4d(3P)2Dþ7%4p3 2D339,744.0 339,809.0 �65.0 65%4s4p4d(1P)2Pþ16%4s4p4d(1P)2D

þ4%4s4p4d(3P)2Dþ4%4p3 2P347,363.3 347,408.0 �44.7 88%4s26p 2Pþ5%4s4p5s(1P)2P

þ4%4s4p5s(3P)2P365,429.3 365,457.0 �27.7 90%4s4p5s(1P)2Pþ6%4s26p 2P391,475.4 391,326.0 149.4 99%4s27p 2P

5/2 241,398.8 241,343.0 55.8 70%4p3 2Dþ28%4s4p4d(3P)2D269,437.3 269,184.0 253.3 98%4s4p4d(3P)4F284,402.9 284,353.0 49.9 69%4s4p4d(3P)4Pþ27%4s4p4d (3P)4D289,185.7 289,196.0 �10.3 72%4s4p4d(3P)4Dþ26%4s4p4d (3P)4P294,339.2 294,445.0 �105.8 70%4s24f 2Fþ12%4s4p4d(1P)2F

þ9%4s4p4d(3P)2D295,325.6 295,302.0 23.6 44%4s4p4d(3P)2Dþ18%4s4p4d(1P)2D

þ16%4s24f2Fþ14%4p3 2D301,473.6 301,529.0 �55.4 79%4s4p4d(3P)2F þ16%4s4p4d(1P)2F321,956.0 321,891.0 65.0 99%4s4p5s(3P)4P335,823.8 335,956.0 �132.2 69%4s4p4d(1P)2Fþ15%4s4p4d(3P)2F

þ11%4s24f 2F339,668.0 339,390.0 278.0 71%4s4p4d(1P)2Dþ13%4s4p4d(3P)2D

þ10%4p3 2D

7/2 271,012.7 271,033.0 �20.3 98%4s4p4d(3P)4F288,752.6 288,843.0 �90.4 97%4s4p4d(3P)4D294,646.5 294,563.0 83.5 85%4s24f 2Fþ10%4s4p4d(1P)2F306,116.7 306,234.0 �117.3 83%4s4p4d(3P)2Fþ16%4s4p4d(1P)2F335,148.3 335,028.0 120.3 71%4s4p4d(1P)2Fþ14%4s4p4d(3P)2F

þ12%4s24f 2FEven configurations1/2 93,533.2 93,522.0 11.2 99%4s4p2(3P)4P

149,495.3 149,461.0 34.3 81%4s4p2(1S)2Sþ17%4s4p2(3P)2P158,169.4 158,180.0 �10.6 80%4s4p2(3P)2Pþ18%4s4p2(1S)2S213,503.3 213,503.0 0.3 97%4s25s 2S328,742.2 328,742.0 0.2 100%4s26s 2S354,445.1 354,632.0 �186.9 66%4s4p5p(3P)4Dþ31%4s4p5p(3P)2P358,775.8 358,676.0 99.8 54%4s4p5p(3P)2Pþ23%4s4p5p(3P)4D

þ20%4s4p5p(3P)4P360,109.6 359,968.0 141.6 76%4s4p5p(3P)4Pþ10%4s4p5p(3P)4D

þ10%4s4p5p(3P)2P378,977.3 378,804.0 173.3 88%4s4p5p(3P)2Sþ6%4s27s 2S381,546.6 381,559.0 �12.4 93%4s27s 2Sþ6% 4s4p5p(3P)2S– 403,965.0 – 68%4s4p4f(3P)4Dþ30% 4p24d(3P)4D404,383.3 404,268.0 115.3 94%4s4p5p(1P)2P– 411,678.0 – 77%4s28s 2Sþ21%4s4p5p(1P)2S414,610.2 414,645.0 �34.8 70%4s4p5p(1P)2Sþ23%4s28s 2S

3/2 96,004.7 96,011.0 �6.3 100%4s4p2(3P)4P122,896.5 123,011.0 �114.5 89%4s4p2(1D)2Dþ9%4s24d 2D161,021.9 161,006.0 15.9 97%4s4p2(3P)2P187,983.8 187,972.0 11.8 88%4s24d 2Dþ9%4s4p2(1D)2D315,934.5 315,933.0 1.5 99%4s25d 2D356,216.3 356,606.0 �389.7 75%4s4p5p(3P)4Dþ21%4s4p5p(3P)2P359,047.4 358,636.0 411.4 46%4s4p5p(3P)2Pþ29%4s4p5p(3P)4P

þ10%4s4p5p(3P)4Dþ9%4s4p5p(3P)4S362,150.0 362,258.0 �108.0 59%4s4p5p(3P)4Pþ21%4s4p5p(3P)2P

þ13%4s4p5p(3P)4D367,255.2 367,288.0 �32.8 47%4s4p5p(3P)4Sþ44%4s4p5p(3P)2D

þ5%4s4p5p(3P)4P368,235.0 368,494.0 �259.0 43%4s4p5p(3P)2Dþ40%4s4p5p(3P)4S

þ9%4s4p5p(3P)2Pþ4%4s4p5p(3P)4P– 374,968.0 – 94%4s26d 2D– 393,231.0 – 66%4s4p4f(3P)4Fþ31%4p24d(3P)4F– 403,677.0 – 68%4s4p4f(3P)4Dþ27%4p24d(3P)4D404,877.5 405,074.0 �196.5 76%4s4p5p(1P)2Pþ18%4s4p5p(1P)2D

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–10196

Table 3 (continued )

J E (obs) E (LSF) Diff.a LS-composition

406,608.7 406,684.0 �75.3 73%4s4p5p(1P)2Dþ18%4s4p5p(1P)2P409,173.8 409,481.0 �307.2 87%4s4p4f(3P)2Dþ10%4p24d(3P)2D415,255.9 415,833.0 �577.1 66%4p24d(3P)2Pþ12%4p24d(3P)4F

þ12%4p24d(1D)2Pþ6%4s4p4f(3P)4F417,457.7 417,290.0 167.7 53%4p24d(3P)4Fþ26%4s4p4f(3P)4F

þ12%4p24d(3P)2P

5/2 99,307.7 99,287.0 20.7 98%4s4p2(3P)4P123,625.9 123,583.0 42.9 89%4s4p2(1D)2D þ9%4s24d 2D188,609.7 188,614.0 �4.3 89%4s24d 2D þ9%4s4p2(1D)2D316,178.4 316,180.0 �1.6 99%4s25d 2D359,675.1 359,547.0 128.1 86%4s4p5p(3P)4Dþ12%4s4p5p(3P)4P364,549.5 364,691.0 �141.5 84%4s4p5p(3P)4Pþ13%4s4p5p(3P)4D371,024.7 371,400.0 �375.3 76%4s4p5p(3P)2Dþ20%4s26d 2D– 375,773.0 – 78%4s26d 2Dþ20%4s4p5p(3P)2D– 392,365.0 – 74%4s4p4f(3P)2Fþ18%4p24d(3P)2F– 393,585.0 – 63%4s4p4f(3P)4Fþ26%4p24d(3P)4F401,087.6 400,945.0 142.6 68%4s4p4f(3P)4Dþ22%4p24d(3P)4D- 403,183.0 – 94%4s4p4f(3P)4G406,723.4 407,052.0 -328.6 59%4s4p4f(3P)2Dþ29%4s4p5p(1P)2D

þ5%4p24d(3P)2D407,721.5 407,277.0 444.5 65%4s4p5p(1P)2D þ24%4s4p4f(3P)2D418,287.7b 416,926.0 – 63%4p24d(3P)4F þ28%4s4p4f(3P)4F

þ6%4p24d(3P)4D419,177.7 419,653.0 �475.3 58%4p24d (1D)2Fþ18%4p24d(3P)2F

þ11%4s4p4f(3P)2Fþ5%4p24d(3P)4D423,089.9 423,554.0 �464.1 57%4p24d(3P)4Dþ20%4s4p4f (3P)4D

þ7%4p24d(3P)4Pþ5%4p24d(1D)2F429,117.1 429,048.0 69.1 89%4p24d(3P)4Pþ6%4p24d(3P)4D– 439,757.0 – 65%4s4p4f(1P)2Fþ15%4p24d(3P)2F

þ12%4p24d(1D)2D441,014.4 441,074.0 �59.6 69%4p24d(1D)2Dþ12%4s4p4f(1P)2F

þ5%4p24d(3P)2D

7/2 364,523.7 364,083.0 440.7 99%4s4p5p (3P)4D375,669.6 375,669.0 0.6 98%4s25g 2G– 393,402.0 – 56%4s4p4f(3P)2Fþ17%4s4p4f(3P)4F

þ12%4p24d(3P)2Fþ6%4p24d(3P)4F– 394,504.0 – 49%4s4p4f(3P)4Fþ21%4s4p4f (3P)2F

þ18%4p24d(3P)4Fþ5%4s4p4f(3P)4G– 401,846.0 – 58%4s4p4f(3P)4Gþ28%4s4p4f(3P)4D

þ7%4p24d(3P)4Dþ4%4s4p4f(3P)2G402,576.4 402,686.0 �109.6 44%4s4p4f(3P)4Dþ33%4s4p4f(3P)4G

þ11%4p24d(3P)4D þ6%4s4p4f(3P)4F406,484.2 406,586.0 �101.8 74%4s4p4f(3P)2G þ10%4p24d(1D)2G

þ5%4s4p4f(1P)2G410,559.0 410,824.0 �265.0 93%4s26g 2Gþ5%4s4p4f(3P)2G418,771.9 418,359.0 412.9 64%4p24d(3P)4Fþ26%4s4p4f(3P)4F

þ7%4p24d(3P)4D420,895.8 420,776.0 119.8 48%4p24d(1D)2F þ19%4p24d(3P)4D

þ13%4p24d(3P)2Fþ8%4s4p4f(3P)4D425,461.6 425,420.0 41.6 50%4p24d(3P)4Dþ13%4p24d(1D)2F

þ11%4s4p4f(3P)4Dþ6%4p24d(1D)2G427,071.2 426,546.0 525.2 41%4p24d(1D)2Gþ19%4s4p4f(1P)2G

þ12%4s4p4f(3P)2Gþ11%4s27g 2G– 433,026.0 – 87%4s27g 2Gþ11%4p24d(1D)2G

9/2 375,668.2 375,671.0 �2.8 98%4s25g 2G– 395,577.0 – 71%4s4p4f(3P)4Fþ23%4p24d(3P)4F

þ4%4s4p4f(3P)4G404,151.5 403,862.0 289.5 93%4s4p4f(3P)4G– 409,796.0 – 56%4s4p4f(3P)2Gþ24%4s26g 2G

þ13%4p24d(1D)2Gþ6%4s4p4f(1P)2G411,308.2 410,981.0 327.2 71%4s26g 2Gþ26%4s4p4f(3P)2G420,945.9 420,515.0 430.9 69%4p24d(3P)4Fþ26%4s4p4f(3P)4F– 426,303.0 – 44%4p24d(1D)2Gþ23%4s4p4f(1P)2G

þ12%4s27g 2Gþ11%4s4p4f(3P)2G– 433,119.0 – 86%4s27g 2Gþ11%4p24d(1D)2G

a Difference between experimental and LSF energy levels.b This level was not fitted due to interaction, so not included in LSF calculation.

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101 97

Table 4LSF and HFR parameters of odd configurations of Br V in cm�1.

Configuration Parameter LSF Accuracy HF LSF/HF

4s24p Eav(4s2 4p) 12,857.1 169.0 11,437.3ξ(4p) 41,61.1 162.0 3784.7 1.099

4s25p Eav(4s25p) 264,072.3 177.0 264,316.0 0.993ξ(5p) 1244.4 167.0 1125.8 1.105

4s26p Eav(4s26p) 347,641.5 136.0 354,959.0 0.975ξ(6p) 515.8 (fixed) 515.9 1.000

4s27p Eav(4s27p) 390,992.3 120.0 399,523.3 0.974ξ(7p) 281.2 (fixed) 281.3 1.000

4s28p Eav(4s28p) 424,969.9 (fixed) 424,971.4 0.997ξ(8p) 170.5 (fixed) 170.5 1.000

4s24f Eav(4s24f) 306,157.9 384.0 308,803.5 0.986ξ(4f) 2.7 (fixed) 2.7 1.000

4p3 Eav(4p3) 266,527.5 205.0 265,545.0 0.998F2(4p,4p) 550,50.1 606.0 62,427.4 0.882ξ(4p) 4234.8 344.0 3772.3 1.123

4s4p4d Eav(4s4p4d) 300,475.9 52.0 298,137.0 1.003ξ(4p) 4271.3 100.0 39,13.9 1.091ξ(4d) 225.9 (fixed) 226.0 1.000F2(4p,4d) 38,451.2 436.0 49,539.1 0.776G1(4s,4p) 68,585.0 229.0 84,396.0 0.813G2(4s,4d) 34,830.2 460.0 40,838.9 0.853G1(4p,4d) 47,978.4 322.0 59,586.7 0.805G2(4p,4d) 0.0 (fixed) 0.0G3(4p,4d) 24,899.1 772.0 36,979.5 0.673

4s4p5d Eav(4s4p5d) 434,584.4 (fixed) 434,584.4 0.997ξ(4p) 4113.5 (fixed) 4113.5 1.000ξ(5d) 89.7 (fixed) 89.7 1.000F2(4p,5d) 13,611.3 (fixed) 16,013.4 0.850G1(4s,4p) 64,509.8 (fixed) 86,013.1 0.750G2(4s,5d) 6947.5 (fixed) 9263.4 0.750G1(4p,5d) 7755.6 (fixed) 10,340.9 0.750G3(4p,5d) 5554.0 (fixed) 7405.4 0.750

4s4p5s Eav(4s4p5s) 333,867.8 76.0 333,154.2 0.998ξ(4p) 4436.5 141.0 4060.8 1.093G1(4s,4p) 62,973.0 248.0 85,476.7 0.737G0(4s,5s) 4298.3 138.0 5234.4 0.821G1(4p,5s) 5256.0 (fixed) 7522.9 0.699

4s4p6s Eav(4s4p6s) 447,099.3 (fixed) 447,105.4 0.997ξ(4p) 4132.6 (fixed) 4132.6 1.000G1(4s,4p) 64,586.3 (fixed) 86,115.2 0.750G0(4s,6s) 1284.3 (fixed) 1712.5 0.750G1(4p,6s) 1799.4 (fixed) 2399.3 0.750

4p4d2 E0(4p4d2) 603,179.0 (fixed) 603,184.8 0.998

4p5s2 E0(4p5s2) 696,297.7 (fixed) 696,307.9 0.998ξ(4p) 4343.9 (fixed) 4344.0 1.000

4p25p E0(4p25p) 508,905.0 (fixed) 508,909.5 0.997

4p24f E0(4p24f) 553,313.7 (fixed) 553,320.2 0.997Rk parameters4s24p–4p3 R1(4s,4s;4p,4p) 71,976.5 508.0 83,409.8 0.8634s24p–4s4p4d R1(4s,4p;4p,4d) 59,548.8 421.0 69,007.9 0.863

R2(4s,4p;4d,4p) 43,826.8 310.0 50,788.5 0.8634s24p–4s4p5s R0(4s,4s;4s,5s) 3739.4 26.0 4333.4 0.863

R1(4s,4p;4p,5s) 1655.4 12.0 1918.4 0.863R0(4s,4p;5s,4p) 369.8 3.0 428.6 0.863

4s25p–4s4p4d R1(4s,5p;4p,4d) �1986.5 �14.0 �2302.6 0.863R2(4s,5p;4d,4p) 6696.2 47.0 7759.9 0.863

4s25p–4s4p5s R1(4s,5p;4p,5s) 29,994.7 212.0 34,759.3 0.863R0(4s,5p;5s,4p) 4366.6 31.0 5060.2 0.863

4s25p–4p25p R1(4s,4s;4p,4p) 74,133.7 524.0 85,909.6 0.8634s26p–4s4p4d R1(4s,6p;4p,4d) �1460.8 �10.0 �1692.9 0.863

R2(4s,6p;4d,4p) 2712.2 19.0 3143.0 0.863

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–10198

Table 4 (continued )

Configuration Parameter LSF Accuracy HF LSF/HF

4s26p–4s4p5s R1(4s,6p;4p,5s) 13,586.9 96.0 15,745.1 0.863R0(4s,6p;5s,4p) 2598.9 18.0 3011.8 0.863

4s24f–4s4p5d R2(4s,4f;5d,4p) 319,20.5 761.0 45,538.7 0.701R1(4s,4s;4p,4p) 18,665.3 445.0 26,628.4 0.701

4p3–4s4p5s R1(4p,4p;4s,5s) 73,887.5 522.0 85,624.2 0.8634p3–4s4p6s R1(4p,4p;4s,6s) 59,157.4 418.0 68,554.4 0.8634p3–4p4d2 R3(4p,4p;4d,4d) 1786.6 13.0 2070.4 0.8634p3–4p25p R0(4p,4p;4p,5p) 54,003.1 381.0 62,581.3 0.863

R2(4p,4p;4p,5p) 33,505.6 237.0 38,827.9 0.8634p3–4p24f R2(4p,4p;4p,4f) 7694.9 54.0 8917.3 0.8634s4p4d–4p25p R1(4s,4d;4p,5p) 61,029.3 431.0 70,723.7 0.863

R1(4s,4d;5p,4p) 44,991.2 318.0 52,137.9 0.863R1(4s,4d;4p,4f) 36,942.8 261.0 42,811.0 0.863

Standard deviation s 166

Table 5LSF and HFR parameters of even configurations of Br V in cm�1.

Configuration Parameter LSF Accuracy HF LSF/HF

4s4p2 Eav(4s4p2) 127,164.4 259.0 126,321.3 0.995F2(4p,4p) 49,749.0 855.0 624,46.2 0.797ξ(4p) 4260.1 366.0 3776.3 1.128G1(4s,4p) 68,989.2 463.0 83,427.9 0.827

4s24d Eav(4s24d) 189,705.9 310.0 191,132.2 0.984ξ(4d) 296.6 229.0 218.1 1.360

4s25d Eav(4s25d) 316,594.2 264.0 324,550.8 0.970ξ(5d) 106.3 206.0 88.7 1.198

4s26d Eav(4s26d) 375,451.7 (fixed) 383,710.2 0.974ξ(6d) 45.2 (fixed) 45.2 1.000

4s25s Eav(4s25s) 220,917.5 504.0 222,264.6 0.987

4s26s Eav(4s26s) 328,935.5 361.0 336,106.1 0.974

4s27s Eav(4s27s) 381,496.8 387.0 389,405.6 0.975

4s28s Eav(4s28s) 412,348.8 (fixed) 418,902.9 0.980

4s29s Eav(4s29s) 420,583.2 (fixed) 436,987.7 0.958

4s25g Eav(4s25g) 376,630.2 263.0 378,124.6 0.992ξ(5g) 0.7 (fixed) 0.7 1.000

4s26g Eav(4s26g) 411,741.0 316.0 412,187.0 0.995ξ(6g) 0.4 (fixed) 0.4 1.00

4s27g Eav(4s27g) 432,671.8 (fixed) 432,675.0 0.997ξ(7g) 0.2 (fixed) 0.2 1.000

4s28g Eav(4s28g) 445,948.6 (fixed) 445,953.2 0.997ξ(8g) 0.2 (fixed) 0.2 1.00

4p24d Eav(4p24d) 432,080.1 491.0 429,635.3 1.002F2(4p,4p) 54,868.6 3501.0 63,189.2 0.868ξ(4p) 3903.7 (fixed) 3903.8 1.000ξ(4d) 234.8 (fixed) 234.8 1.000F2(4p,4d) 42,400.4 2528.0 50,170.9 0.845G1(4p,4d) 41,659.1 1678.0 60,702.6 0.686G3(4p,4d) 25,853.8 1042.0 37,672.3 0.686

4p25s Eav(4p25s) 469,195.7 (fixed) 469,195.6 0.997F2(4p,4p) 54,470.8 (fixed) 64,083.4 0.850ξ(4p) 4053.3 (fixed) 4053.4 1.000G1(4p,5s) 5762.9 (fixed) 7684.0 0.750

4s4p5p Eav(4s4p5p) 375,154.3 104.0 374,152.1 0.999ξ(4p) 5160.9 236.0 4118.0 1.253ξ(5p) 1181.8 (fixed) 1125.5 1.050F2(4p,5p) 20,633.4 573.0 21,422.9 0.963G1(4s,4p) 63,549.0 347.0 85,977.6 0.739G1(4s,5p) 5946.2 32.0 8044.8 0.739

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101 99

Table 5 (continued )

Configuration Parameter LSF Accuracy HF LSF/HF

G0(4p,5p) 3945.8 22.0 5338.5 0.739G2(4p,5p) 4987.0 27.0 6747.1 0.739

4s4p4f Eav(4s4p4f) 416,066.7 238.0 418,650.5 0.990ξ(4p) 4470.2 535.0 4086.8 1.094ξ(4f) 2.8 (fixed) 2.9 0.966F2(4p,4f) 23,806.5 (fixed) 28,007.7 0.850G1(4s,4p) 63,490.9 1073.0 85,690.5 0.741G3(4s,4f) 9056.7 153.0 12,223.3 0.741G2(4p,4f) 14,322.4 242.0 19,330.3 0.741G4(4p,4f) 9550.5 161.0 12,889.9 0.741

Rk parameters:4s4p2–4s24d R1(4p,4p;4s,4d) 54,040.8 1244.0 67,946.4 0.7954s4p2–4s25d R1(4p,4p;4s,5d) 22,431.1 516.0 28,203.4 0.7954s4p2–4p24d R1(4s,4p;4p,4d) 55,418.0 1275.0 69,679.1 0.795

R2(4s,4p;4d,4p) 40,773.9 938.0 51,266.4 0.7954s4p2–4s4p5p R0(4s,4p;4s,5p) 2676.4 62.0 3365.1 0.795

R1(4s,4p;5p,4s) 15,708.3 362.0 19,750.6 0.795R0(4p,4p;4p,5p) 1792.2 41.0 2253.4 0.795R2(4p,4p;4p,5p) 8277.0 190.0 10,407.0 0.795

4s4p2–4s4p4f R2(4p,4p;4p,4f) 26,289.2 605.0 33,054.4 0.7954s24d–4p24d R1(4s,4s;4p,4p) 67,075.0 1544.0 84,335.7 0.7954s24d–4s4p5p R1(4s,4d;4p,5p) �2801.3 �64.0 �3522.1 0.795

R1(4s,4d;5p,4p) 10,278.7 237.0 12,923.8 0.7954s24d–4s4p4f R1(4s,4d;4p,4f) 36,941.0 850.0 46,447.2 0.795

R3(4s,4d;4f,4p) 16,869.8 388.0 21,211.0 0.7954s25d–4s4p5p R1(4s,5d;4p,5p) 18,397.2 423.0 23,131.5 0.795

R1(4s,5d;5p,4p) 6128.5 141.0 7730.6 0.7934s25s–4p25s R1(4s,4s;4p,4p) 67,954.7 1564.0 85,441.7 0.7954s25s–4s4p5p R1(4s,5s;4p,5p) 27,636.4 636.0 34,748.3 0.795

R1(4s,5s;5p,4p) 4235.1 97.0 5325.0 0.7954s26s–4s4p5p R1(4s,6s;4p,5p) 5592.3 129.0 7031.3 0.795

R1(4s,6s;5p,4p) 2112.6 49.0 2656.2 0.7954s25g–4s4p4f R1(4s,5g;4p,4f) �15,236.4 �351.0 �19,157.2 0.795

R3(4s,5g;4f,4p) �2764.8 �64.0 �3476.4 0.7954s26g–4s4p4f R1(4s,6g;4p,4f) �10,935.7 �252.0 �13,749.9 0.795

R3(4s,6g;4f,4p) �2565.1 �59.0 �3225.2 0.7954s27g–4s4p4f R1(4s,7g;4p,4f) �8313.1 �191.0 �10,452.4 0.795

R3(4s,7g;4f,4p) �2210.4 �51.0 �2779.2 0.7954s28g–4s4p4f R1(4s,8g;4p,4f) �6608.9 �152.0 �8309.6 0.795

R3(4s,8g;4f,4p) �1889.8 �43.0 �2376.2 0.7954p24d–4p25s R2(4p,4d;4p,5s) �7237.0 �167.0 �9099.4 0.795

R1(4p,4d;5s,4p) �1214.5 �28.0 �1527.0 0.7954p24d–4s4p5p R1(4p,4d;4s,5p) �1769.8 �41.0 �2225.3 0.795

R2(4p,4d;5p,4s) 6030.3 139.0 7582.1 0.7954p24d–4s4p4f R1(4p,4d;4s,4f) 37,865.8 1177.0 46,064.4 0.822

R2(4p,4d;4f,4s) 22,428.9 697.0 27,285.1 0.8224p25s–4s4p5p R1(4p,5s;4s,5p) 28,956.6 900.0 35,226.3 0.822

R0(4p,5s;5p,4s) 4266.1 98.0 5363.9 0.7954s4p5p–4s4p4f R2(4p,5p;4p,4f) �6915.9 �159.0 �8695.6 0.795

R2(4p,5p;4f,4p) 1976.9 45.0 2485.6 0.795Standard deviation s 360

The configuration interaction integrals for known configurations were linked to vary in the same ratio; the remaining integrals fixed at 80% were notincluded in the table.

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101100

4.1.4. The 4p24d configurationThe 4p24d configuration is strongly mixed with 4s4p4f.

On the other hand, 4s24f and 4p3 configurations are mixedwith 4s4p4d as mentioned earlier. Therefore, transitionsfrom 4s24f were also observed along with 4s4p4d and 4p3

configurations. We were able to establish 12 levels out of28 of the 4p24d configuration. LS designations are stillunambiguous for observed levels. The least squares fittedparameters were found to be in close agreement with KrVI [12] which is isoelectronic to Br V.

The levels were optimized using LOPT [14] code of Dr.A.E. Kramida of NIST [USA]. The transition probabilities(gA) and weighted oscillator strength (log gf) as obtainedwith final least squares fitted energy parameters areincluded in Table 1. The optimized levels along with theiruncertainties and the number of connecting lines asobtained by LOPT program are given in Table 2. Theobserved and the least squares fitted (LSF) energy levelsalong with their LS percentage mixing are assembled inTable 3 and the corresponding energy parameters of both

A. Riyaz et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 147 (2014) 86–101 101

odd and even parity configurations are given in Tables 4and 5 respectively. 99 levels of Br V have now beenestablished, 43 being new. Among 394 classified spectrallines, 181 are new. We found reasonably good agreementof observed levels with the theoretical calculations. Thestandard deviations for odd and even parity configurationswere 166 and 360 cm�1 respectively.

5. Ionization potential

Tauheed and Joshi [3] reported the ionization limit of BrV at 480,6707200 cm�1 based on three member series4s2ns (n¼5–7). Since 4s27s level has been revised, so thenew value of the ionization potential is found to be479,657 cm�1 using the nonlinear least-squares fittingcomputer code RITZPL [15,16]. A similar calculation of I.P.for As III [17] which is isoelectronic to Br V was carried outusing 4s2ns as well as 4s2ng series. We found that the limitcalculated by 4s2ng series was about 100 cm�1 higherthan 4s2ns series. Therefore we considered the similaramount of uncertainty in Br V as well and adapted theseries limit of Br V at 479,6577200 cm�1 (59.47070.025 eV).

Acknowledgments

We would like to acknowledge late Prof. Y.N. Joshi andSt. Francis Xavier University, Antigonish (Canada) forproviding the local hospitality to A. Tauheed during therecording of bromine spectra. Riyaz would like to thankthe Aligarh Muslim University for the financial supportunder DST-PURSE (Department of Science and Technology-

Promotion of University Research and Scientific Excel-lence) fellowship program.

References

[1] Rao AS, Rao KR. The spectra of Br V, Br VI and Br VII. Proc Phys Soc(London) 1934;46:163–8.

[2] Budhiraja CJ, Joshi YN. Spectrum of Br V. Can J Phys 1971;49:391–3.[3] Tauheed A, Joshi YN. Revised and extended analysis of the fifth

spectrum of bromine: Br V. Phys Scr 2009;80:025305–16.[4] Cowan RD. The theory of atomic structure and spectra. Berkeley, CA:

University of California Press; 1981.[5] Joshi YN, van Kleef ThAM. Revised and extended analysis of Se Vand

Br VI. Phys Scr 1986;34:135–7.[6] Kelly RL. Atomic and ionic lines below 2000 Å. J Phys Chem Ref Data

1987;16(Suppl. 1).[7] ⟨www.physics.nist.gov/PhysRefData/ASD/index.html⟩.[8] Riyaz A, Tauheed A, Rahimullah K. Revised and extended analysis of

Br VI. J Quant Spectrosc Radiat Transf 2012;113:2072–80.[9] Riyaz A, Rahimullah K, Tauheed A. Revised and extended analysis of

Br IV. J Quant Spectrosc Radiat Transf 2014;133:624–45.[10] Ryabtsev AN, Wyart JF, van Kleef Th AM, Joshi YN. Observation of

autoionizing energy levels in the spectra of copper-like ions As V, SeVI and Br VII. Phys Scr 1984;30:407–13.

[11] Budhiraja CJ. A study of the spark spectra of bromine [M.Sc. thesis].Antigonish, Canada: St. Francis Xavier University; 1970.

[12] Farias EE, Raineri M, Gallardo M, Reyna Almandos J, Cavalcanti GH,Borges FO, Trigueiros AG. New energy levels and transitions for the4s4p5p configuration in Kr VI. J Quant Spectrosc Radiat Transf2011;112:2463–8.

[13] Saloman EB. Energy levels and observed spectral lines of krypton, KrI through Kr XXXVI. J Phys Chem Ref Data 2007;36:215–386.

[14] Kramida AE. The program LOPT for least- squares optimization ofenergy levels. Comput Phys Commun 2011;18:419–34,http://dx.doi.org/10.1016/j.cpc.2010.09.019.

[15] Sansonetti C. Fortran computer code RITZPL, 2010 [privatecommunication].

[16] Kramida AE. Critical evaluation of data on atomic energy levels,wavelengths, and transition probabilities. Fusion Sci Technol2013;63:313–23.

[17] Churilov SS, Joshi YN. Revised and extended analyses of doubly andtriply ionized arsenic: As III, As IV. J Opt Soc Am B 1996;13:11–28.