European Patent Office - EP 0598911 B1

49
(19) Europaisches Patentamt European Patent Office Office europeen des brevets (12) peen des brevets EP0 598 911 B1 EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention of the grant of the patent: 20.05.1998 Bulletin 1998/21 (21) Application number: 93906815.1 (22) Date of filing: 24.03.1993 (51) intci.6: C09J 179/08, C08J 5/12, C08G 73/10, C09J 183/10, C08G 77/42 (86) International application number: PCT/JP93/00351 (87) International publication number: WO 93/24583 (09.12.1993 Gazette 1993/29) (54) FILM ADHESIVE AND PRODUCTION THEREOF KLEBEFILM UND SEINE HERSTELLUNG ADHESIF SOUS FORME DE FILM ET PRODUCTION DE CET ADHESIF (84) Designated Contracting States: • SAKAMOTO, Yushi, DE FR GB NL Sumitomo Bakelite Company Ltd. Tokyo 100 (JP) (30) Priority: 04.06.1992 JP 144183/92 • TOCHIMOTOJakuya, 04.06.1992 JP 144187/92 Sumitomo Bakelite Company Ltd. 04.12.1992 J P 325012/92 Tokyo 100 (JP) 04.12.1992 JP 325015/92 04.12.1992 J P 325017/92 (74) Representative: Vossius, Volker, Dr. et al Dr. Volker Vossius, (43) Date of publication of application: Patentanwaltskanzlei - Rechtsanwaltskanzlei, 01.06.1994 Bulletin 1994/22 Holbeinstrasse 5 81679 Miinchen (DE) (73) Proprietor: SUMITOMO BAKELITE COMPANY LIMITED (56) References cited: Tokyo 1 00 (JP) EP-A- 0 676 456 JP-A- 1 1 88 577 J P- A- 4 046 983 J P- A- 4 050 279 (72) Inventors: JP-A- 4 153 224 JP-A- 4 318 025 • YOSHIDA, Tatsuhiro, JP-A- 4 334 089 JP-A- 4 334 090 Sumitomo Bakelite Company Ltd. JP-A-58 027 721 JP-A-60 258 229 Tokyo 100 (JP) JP-A-61 143 477 JP-A-61 241 359 • OKUGA1 A, Yoshitaka, JP-A-61 247 734 JP-A-63 225 629 Sumitomo Bakelite Company Ltd. JP-A-64 042 136 JP-B-58 044 712 Tokyo 1000 (JP) • SUZUKI, Toshio, • D. Wilson etal.(ed.), Polyimides, Blackie& Sons Sumitomo Bakelite Company Ltd Ltd., Glasgow and London/GB, 1990, 152-153 Tokyo 10000 (JP) • TAKEDA, Toshiro, Remarks: Sumitomo Bakelite Company Ltd The file contains technical information submitted Tokyo 100(JP) aftertheapplicationwasfiledandnotincludedinthis specification DO O) 00 O) lO o a. LU Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed byJouve, 75001 PARIS(FR)

Transcript of European Patent Office - EP 0598911 B1

(19)

Europaisches Patentamt

European Patent Office

Office europeen des brevets

(12)

peen des brevets E P 0 5 9 8 911 B 1

EUROPEAN PATENT S P E C I F I C A T I O N

(45) Date of publication and mention of the grant of the patent: 20.05.1998 Bulletin 1998/21

(21) Application number: 93906815.1

(22) Date of filing: 24.03.1993

(51) intci.6: C09J 179/08, C08J 5 /12, C08G 73/10, C09J 183/10 , C08G 7 7 / 4 2

(86) International application number: PCT/JP93/00351

(87) International publication number: WO 93/24583 (09.12.1993 Gazette 1993/29)

(54) FILM ADHESIVE AND PRODUCTION THEREOF

KLEBEFILM UND SEINE HERSTELLUNG

ADHESIF SOUS FORME DE FILM ET PRODUCTION DE CET ADHESIF

(84) Designated Contracting States: • SAKAMOTO, Yushi, DE FR GB NL Sumitomo Bakelite Company Ltd.

Tokyo 100 (JP) (30) Priority: 04.06.1992 JP 144183/92 • TOCHIMOTOJakuya,

04.06.1992 JP 144187/92 Sumitomo Bakelite Company Ltd. 04.12.1992 J P 325012/92 Tokyo 100 (JP) 04.12.1992 JP 325015/92 04.12.1992 J P 325017/92 (74) Representative: Vossius, Volker, Dr. et al

Dr. Volker Vossius, (43) Date of publication of application: Patentanwaltskanzlei - Rechtsanwaltskanzlei,

01.06.1994 Bulletin 1994/22 Holbeinstrasse 5 81679 Miinchen (DE)

(73) Proprietor: SUMITOMO BAKELITE COMPANY LIMITED (56) References cited: Tokyo 1 00 (JP) EP-A- 0 676 456 JP-A- 1 1 88 577

J P- A- 4 046 983 J P- A- 4 050 279 (72) Inventors: JP-A- 4 153 224 JP-A- 4 318 025

• YOSHIDA, Tatsuhiro, JP-A- 4 334 089 JP-A- 4 334 090 Sumitomo Bakelite Company Ltd. JP-A-58 027 721 JP-A-60 258 229 Tokyo 100 (JP) JP-A-61 143 477 JP-A-61 241 359

• OKUGA1 A, Yoshitaka, JP-A-61 247 734 JP-A-63 225 629 Sumitomo Bakelite Company Ltd. JP-A-64 042 136 JP-B-58 044 712 Tokyo 1000 (JP)

• SUZUKI, Toshio, • D. Wilson etal.(ed.), Polyimides, Blackie& Sons Sumitomo Bakelite Company Ltd Ltd., Glasgow and London/GB, 1990, 152-153 Tokyo 10000 (JP)

• TAKEDA, Toshiro, Remarks: Sumitomo Bakelite Company Ltd The file contains technical information submitted Tokyo 100(JP) aftertheapplicationwasfiledandnotincludedinthis

specification

DO

O) 00 O) lO o a . LU

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

EP 0 598 911 B1

Description

The present invention relates to a polyimide resin and film adhesive which has excellent heat resistance and low water absorption, which is suitable for use in electronics applications particularly as a material for mounting of semi-

5 conductors, which has excellent adhesion to silicon substrates and metals and which can be applied at low temperatures in a short period of time.

In recent years, while semiconductor chips have come to possess a higher function and a larger capacity and accordingly have become larger in size, the packages containing semiconductor chips are required to have an external form same as or even smaller than the conventional form so as to meet the demand for smaller electronic apparatuses.

10 In response to this trend, some new mounting methods allowing the high-density mounting of high-density semicon- ductor chips have been proposed. One is a LOC (lead-on-chip) structure proposed for memory devices, wherein a die pad-free lead frame and chips are fixed to each other with a double-coated adhesive tape. Meanwhile, in logic devices, a multi-layered lead frame structure has been proposed in which the electric source and the glands are provided in different frames and the metal plates for heat radiation are provided in a plurality of layers. While in the conventional

is methods, the chip area was too large to secure the area for inner leads, in the above new methods, semiconductor chips and a lead frame are bonded with a double-coated adhesive tape and can be accommodated in a package having the same external form as the conventional package although the chip area is larger due to the larger capacity of chips. In the new methods, it is possible to rationalize in-chip wiring and wire bonding, shorten the length of wire for quicker signal, radiate the heat generated by the higher consumption of electric power, and make smaller the size of a device.

20 In the devices employing the above new mounting methods, there exist various adhesion interfaces between same materials or between different materials, such as chip vs. lead frame, lead frame vs. plate, lead frame vs. lead frame and the like. Therefore, the reliability of a device is greatly influenced by the adhesion reliabilities of said interfaces. The adhesion reliabilities must withstand the temperatures employed during the assembling of a device and further must be sufficient when the device is under humidity or under humidity and heat. Further, adhesion workability is also

25 an important item. In semiconductor apparatuses of COL or LOC structure, the semiconductor chips and the lead frame are fixed to each other with an adhesive. This adhesive is required to have an excellent adhesivity so that the adhesion interfaces do not cause peeling under humidity or under thermal stresses caused by reflow soldering, temperature cycle, etc. The presence of a large amount of volatile components in the adhesive is not preferable because, when it is applied with heating, the volatile components contaminate the working environment, leads, etc. Desirably, the ad-

30 hesive can complete adhesion in a period of time as short as possible, in view of the mass productivity of a device. As such an adhesive, there have heretofore been used paste-like adhesives and adhesives obtained by coating

an adhesive on a heat-resistant base. As the adhesive, there are used thermosetting resins of epoxy resin type, acrylic resin type or rubber-phenolic resin type; however, they do not satisfy the requirements for a highly reliable adhesive, because they contain a large amount of ionic impurities, require a high temperature and a long time for thermosetting

35 and are not productive, generate a large amount of volatile matters during thermosetting and contaminate leads, and are highly hygroscopic. Thus, no satisfactory adhesive has not yet been found.

Meanwhile, with respect to the heat-resistant film adhesive which is contact-bondable with heating, some film adhesives are known. For example, hot-melt adhesives of polyamideimide type or polyamide type are described in Japanese Patent Application Kokai (Laid-Open) No. 282283/1989; a process for producing a flexible printed circuit

40 board using a polyimide type adhesive is described in Japanese Patent Application Kokai (Laid-Open) No. 157190/1983; and thermosetting polyimide type film adhesives are described in Japanese Patent Application Kokai (Laid-Open) Nos. 235382/1987, 235383/1987 and 15663/1990. JP-A-61 -241 359 (abstract) describes a polyimide precursor solution, obtained by reacting a specific diamino compound expressed by formula I [X is C(CH3)2, etc.] with a specific aromatic tetracarboxylic acid dianhydride (derivative) in a polyhydric alcohol expressed by formula II (m is

45 §4), and containing 80~20mol% total of (A) a component consisting of repeating units expressed by formula III and/ or formula IV (Ar1 is 2,3,3',4'-biphenytetracarboxylic acid residue; Ar2 is 3,3',4,4'-benzophenonetetracarboxylic acid residue) and (B) a component consisting of repeating units expressed by formula V and/or formula VI (Ar3 is 3, 3', 4,4'- biphenyltetracarboxylic acid residue; Ar4 is pyromellitic acid residue) and (C) 20~80mol% component consisting of repeating units expressed by formula VII, etc. The ratio of the components (A) to (B) is 100~80mol% component (A)

so and 0~20mol% component (B). The polyimide precursor solution is stated to have good handleability without problems in safety and hygiene. However, the polyamide type or polyamideimide type resins have a drawback of high water absorption owing to the hydrophilicity of the amide group, and have had a limitation in using them as an adhesive for electronics applications wherein reliability is required. The thermosetting polyimide type film adhesives require the conditions for contact bonding with heating, of 275°C, 50 kgf/cm2 and 30 minutes, or must be cured from a semi-cured

55 state at a high temperature for a long time, or generate condensation water during curing; therefore, they have been insufficient as an film adhesive for use in electronic parts which are sensitive to heat, pressure, water, etc. or in appli- cations wherein mass productivity is required.

For the reasons mentioned above, it is desired to develop an adhesive suitable for the new mounting methods,

2

EP 0 598 911 B1

particularly an adhesive tape from productivity standpoint. Meanwhile, polyimide resins have high heat resistance, flame retardancy and excellent electrical insulating prop-

erty and, accordingly, are in wide use in electric and electronic applications. However, conventional polyimide resins have high hygroscopicity and have no sufficient processability since they are insoluble and non-fusible or have very

5 high melting points though they have excellent heat resistance. They are used as a material for mounting of semicon- ductors, in an insulating film between layers, a surface protective film, etc. In using them, a polyamic acid (a polyimide resin precursor) soluble in an organic solvent is coated on a semiconductor surface and the coated semiconductor is heated to remove the solvent and allow the imidization of the precursor to proceed. At that time, the acid amide type solvent used has a high boiling point and causes foaming of the resultant film; and a high-temperature (250°C or higher)

10 drying step is necessary to evaporate the solvent completely and the device is inevitably exposed to a high temperature. These matters incur reduction in yield in the assembling step. Moreover, the conventional polyimide resins have high hygroscopicity and have caused, in some cases, a problem that the water absorbed by them is vaporized all at once at high temperatures to cause bulging or cracking.

The present inventors made extensive study in order to obtain a polyimide resin and film adhesive which can be is applied at low temperatures in a short time, which has excellent heat resistance and which has low water absorption.

As a result, the present inventors have found that a polyimide resin of particular structure achieves the above task, and have completed the present invention.

The present invention relates to a polyimide resin having a glass transition temperature of 350°C or lower and soluble in organic solvents, which polyimide resin is obtainable by reacting

20 (A) 4,4'-oxydiphthalic acid dianhydride with a combination of the following amine components (C) and (D) (C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount of the amine components: [2,2-bis-(4-(4-amino-phenoxy)phenyl)propane]

wherein R-, and R2are each a bivalent aliphatic (C-,. or aromatic group; R3, R4, R5 and R6are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20, (D) 2,2-bis(4-(4-aminophenoxy)phenyl)propane and/or a bis(aminophenoxy)benzene and/or a dimethylphe-

35 nylene-diamine provided that 2,2-bis(4-(4-aminophenoxy)phenyl)propane is not the sole component (D)

and converting the polyamic acid obtained into the polyimide resin. Furthermore the invention relates to a polyimide resin having a glass transition temperature of 350°C or lower and

soluble in organic solvents, obtainable by reacting 40

(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid dianhy- dride with a combination of the following amine components (C) and (D) (C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total

45 amount ofthe amine components:

50 H z N - R i - f - S i - O - f - S i -R2-NH2 \ 1 1 \R4 / k

( 1 )

wherein R1 and R2 are each a bivalent aliphatic (C^) or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20, (D)2,2-bis(4-(4-aminophenoxy)phenyl)propane and a dimethyl-phenylene-diamine, and

converting the polyamic acid obtained into the polyimide resin, and a polyimide resin having a glass transition temper-

3

EP 0 598 911 B1

ature of 350°C or lower and soluble in organic solvents, obtainable by reacting

(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid dianhy- dride

5 with a combination of the following amine components (C) and (D) (C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount of the amine components:

wherein R1 and R2are each a bivalent aliphatic (C-|_4) or aromatic group; R3, R4, R5 and R6are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20, (D) a bis(aminophenoxy)benzene and 2,2-bis(4-(4-amiophenoxy)phenyl)propane and/or a dimethyl-phenylene-

20 diamine, and

converting the polyamic acid obtained into the polyimide resin, and a polyimide resin having a glass transition temper- ature of 350°C or lower and soluble in organic solvents, obtainable by reacting a combination of the following acid components (A) and (B)

25 (A) 4,4'-oxydiphthalic acid dianhydride

(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid dianhy- dride

30 with a combination of the following amine components (C) and (D)

(C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount of the amine components:

35

H2N-R 40

( 1 )

wherein R-, and R2 are each a bivalent aliphatic (C-|_4) or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20,

(D) 2,2-bis(4-(4-aminophenoxy)phenyl)propane and/or a bis(aminophenoxy)benzene and/or a dimethyl-phe- nylene-diamine, and

converting the polyamic acid obtained into the polyimide resin. so The present invention relates also to these resins, wherein the polyimide resin is capped, at the molecular ends,

with an acid anhydride represented by the following general formula (2)

55

4

EP 0 598 911 B1

0 x

X 0 ( 2 )

Y

o

10 wherein X is at least one group selected from

15

20

25

30 or an aromatic amine represented by the following general formula (3)

35

wherein Y is at least one group selected from hydrogen atom and methyl, ethyl, propyl, butyl, phenyl, methoxy ethoxy, propoxy, butoxy and phenoxy groups.

40 Further embodiments are evident from the features of claims 6 to 14. The present invention resides also to an adhesive film comprising a heat-resistant film base and any one of the

polyimide resins applied on one side or both sides of the film base. Preferably the heat-resistant film base is a polyimide film having a glass transition temperature of 350°C or higher.

The present invention relates also to a process for producing an adhesive film, according to claims 1 7 to 25 which 45 comprises casting, on one side or both sides of a substrate, an organic solvent solution of any one of the polyimide

resins of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

so 4,4'-Oxydiphthalic acid dianhydride used in obtaining the polyimide resin of the present invention is represented by formula (4); 3,3',4,4'-biphenyltetracarboxylic acid dianhydride is represented by formula (5); 3,3',4,4'-benzophenon- etetracarboxylic acid dianhydride is represented by formula (6); 2,2-bis(4-(4-aminophenoxy)phenyl)propane is repre- sented by formula (7); 1 ,3-bis(3-aminophenoxy)benzene, which is a typical example of a bis(aminophenoxy)benzene, is represented by formula (8); 2,5-dimethyl-p-phenylenediamine, which is a typical example of a dimethylphenylene-

55 diamine, is represented by formula (9); and a,co-bis(3-aminopropyl)-polydimethylsiloxane, which is a typical example of the siloxane compound of the general formula (1 ), is represented by formula (10). In formula (1 0), k is preferably in the range of 4-10 in view of the glass transition temperature, adhesion and heat resistance of the polyimide resin. These siloxane compounds can be used not only singly but also in combination of two or more. Use of, in particular,

5

EP 0 598 911 B1

6

EP 0 598 911 B1

/CH3 \ CH3

N H 2 - ( C H 2 ) 3 4 - S i - o 4 - S i - ( C H 2 ) 3 - N H 2 ( 1 0 )

CH3 / k CH3

The bis(aminophenoxy)benzene is preferably 1 ,4-bis(3-aminophenoxy)benzene, 1 ,3-bis(3-aminophenoxy)-ben- 10 zene, 1 ,3-bis(4-aminophenoxy)benzene or the like.

The dimethylphenylenediamine is preferably 2,5-dimethyl-p-phenylenediamine or 2,4-dimethyl-m-phenylenedi- amine.

It is important that the amount ratios of individual components be in the ranges as stated in the claims. The molar proportion of 4,4'-oxydiphthalic acid dianhydride, which is an important constituent of the acid components, or the

is siloxane compound is very important for the solubility of the polyimide resin obtained and, when said molar proportion is not in the above range, a feature of the present invention of being soluble in low-boiling solvents is lost. In formula (1), k is preferably 1-10, more preferably 4-10, and mixed use of a monomer of k=4-10 and a monomer of k=1 is particularly preferable. The amount of the a,co-bisaminosiloxane compound represented by the general formula (1) is preferably 5-60% based on the total amine components. An amount of 5% or less is not preferred because the polyimide

20 resin obtained has lower solubility in organic solvents, higher water absorption and lower wettability on an adhered to be applied, which makes adhesion in a short time difficult. An amount more than 60% is not preferred because the polyimide resin obtained has a very low glass transition temperature and has inferior properties at high temperatures, which incurs insufficient heat resistance.

The molar proportion of 2,2-bis(4-(4-aminophenoxy)phenyl)propane is preferably in the range of 10-90 mole% 25 based on the total amine components. When the proportion is outside the range, problems arise in solubility and heat

resistance. Addition of dimethylphenylenediamine can increase the heat resistance of the polyimide resin obtained, without

reducing its solubility in low-boiling solvents. Further, 1 ,3-bis(3-aminophenoxy)benzene can be added when the poly- imide resin obtained is required to have low-temperature adhesion in adhesive applications.

30 In the present invention, the tetracarboxylic acid dianhydrides as the acid components further include, besides those mentioned above, for example, 1 ,2,4,5-benzenetetracarboxylic acid dianhydride (PMDA), 2,2'-bis(4-(3,4-dicar- boxyphenyl)phenyl)propane and 3,3',4,4'-diphenylsulfonetetracarboxylic acid dianhydride. One or more of these can be used together with the above-mentioned tetracarboxylic acid dianhydrides. Further, a dicarboxylic acid anhydride such as phthalic anhydride or the like can be added as a molecular weight modifier.

35 The tetracarboxylic acid dianhydride as an essential component is used in an amount of 50 mole% or more, pref- erably 70 mole% or more based on the total amount of acid components. An amount of less than 50 mole% is not preferred because the polyimide resin obtained has a too high glass transition temperature, which requires a very high temperature during adhesion, or has inferior adhesivity.

Similarly, the diamines include, besides the above-mentioned essential diamines, diamines such as 4,4'-diamin- 40 odiphenyl ether (4,4'-DDE), 3,3'-diaminodiphenyl ether (3,3'-DDE), 3,4'-diaminodiphenyl ether (3,4'-DDE), 4,4'-diami-

nodiphenyl sulfone (4,4'-DDS), 3,3'-diaminodiphenylsulfone (3,3'-DDS), 2,2-bis-4-aminophenylhexafluoropropane (BAPF), 2,2-bis-4-aminophenoxyphenylhexafluoropropane (BAPPF), bis-4-(4-aminophenoxy)phenylsulfone (BAPS), bis-4-(3-aminophenoxy)phenylsulfone (BAPSM), 4,4'-diaminobenzanilide (DABAN), m-phenylenediamine, p-phe- nylene-diamine, 4,4'-diaminodiphenylmethane (DDM), 2,4-diaminotoluene and the like. One or more of these can be

45 used together with the essential diamines. The diamine compound as an essential component is used in an amount of 50 mole% or more, preferably 70 mole% or more based on the total diamine components. Similarly to the case of the acid components, an amount of 50 mole% or less is not preferred because various drawbacks are brought about, for example, the polyimide resin obtained has a high glass transition temperature, which requires a very high temper- ature during adhesion, or has inferior adhesivity.

so The polyimide resin, by being capped at the molecular ends to control the molecular weight, can have a melt viscosity suitable for adhesion to a base and can have higher wettability for higher adhesivity. The amount of the end- capping agent, i.e. the acid anhydride or the aromatic amine is desirably in the range of 1-5 mole%. An amount less than 1 mole% is not preferred because the resulting polyimide resin has too large a molecular weight and is insoluble in low-boiling solvents in some cases, and has inferior wettability caused by the increase in melt viscosity, in applications

55 where adhesivity is very important. When said amount is more than 5 mole%, the polyimide resin has a significantly reduced molecular weight and has a problem in heat resistance.

As the end-capping agent, there can be cited an acid anhydride represented by the general formula (2) and an aromatic amine represented by the general formula (3).

7

EP 0 598 911 B1

As the acid anhydride, there are used phthalic anhydride, maleic anhydride, nadic anhydride, etc. and, as the aromatic amine, there are used p-methylaniline, p-methoxyaniline, p-phenoxyaniline, etc.

In the polycondensation reaction, the molar ratio of the tetracarboxylic acid dianhydride components and the di- amine components is an important factor which determines the molecular weight of the polyamic acid obtained. It is

5 well known that there is a correlation between the molecular weight of a polymer and its properties, particularly between the number-average molecular weight and the mechanical properties. A larger number-average molecular weight gives superior mechanical properties. Accordingly, a polymer is required to have an appropriately high molecular weight in order for the polymer to show an excellent strength when put into practical use as an adhesive. In the present invention, the equivalent ratio r of the acid anhydride components to the amine components is in the range of preferably

10 0.950<r<1 .06, more preferably 0.975<r<1 .06, wherein r = (equivalent number of total acid components)/(equivalent number of total amine components). When r is smaller than 0.950, the polyimide resin obtained has a small molecular weight, is fragile and therefore has low adhesivity. An r larger than 1 .06 is not preferable because, in some cases, the unreacted carboxylic acids give rise to decarboxylation during heating and cause gas generation and foaming.

The reaction of the acid anhydrides and the amines is conducted in an aprotic polar solvent in a known way. The is aprotic polar solvent is exemplified by N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), N-methyl-

2-pyrrolidone (NMP), tetrahydrofuran (THF), diglyme, cyclohexanone and 1 ,4-dioxane. The aprotic polar solvent may be used singly or as a mixture of two or more. At that time, a non-polar solvent compatible with the aprotic polar solvent may be used together with the aprotic polar solvent. An aromatic hydrocarbon such as toluene, xylene, solvent naphtha or the like is often used. The proportion of the non-polar solvent in the mixed solvent is preferably 30% by weight or

20 less. The reason is that when the proportion of the non-polar solvent is 30% by weight or more, the mixed solvent has low solvency and may precipitate the polyamic acid formed. In the reaction of the tetracarboxylic acid dianhydrides with the diamines, sufficiently dried diamine components are dissolved in the above-mentioned reaction solvent which is dehydrated and purified; thereto are added sufficiently dried tetracarboxylic acid dianhydrides having a ring closure ratio of 98%, preferably 99% or higher to allow the reaction to proceed.

25 The thus-obtained polyamic acid solution is then heated in an organic solvent to give rise to dehydration, cyclization and resultantly imidization for formation of a polyimide. The water generated by the imidization reaction hinders the ring-closing reaction; therefore, an organic solvent non-compatible with water is added to the system and azeotropic distillation is conducted using an apparatus such as a Dean-Stark apparatus or the like, to discharge the water out of the system. Dichlorobenzene is known as the organic solvent non-compatible with water, but it may invite the presence

30 of chlorine in the polyimide resin obtained. Hence, when the polyimide resin obtained is used in electronics applications, the above-mentioned aromatic hydrocarbon is used preferably. Further, it is possible to use, as a catalyst for imidization reaction, a compound such as acetic anhydride, p-picoline, pyridine or the like.

In the present invention, the degree of ring closure of imide is desired to be as high as possible. A low imidization degree is not preferable because, during adhesion, the heat generated gives rise tofurther imidization and consequently

35 generates water. Desirably, an imidization degree of 95% or more, preferably 98% or more is achieved during the imidization.

In the imidization, if strong heating is conducted from the start before a polyimide film is formed, there is formed a rough surface or a partially stretched surface; therefore, it is preferable that heating be started at a low temperature and the temperature be increased slowly. For example, heating is conducted continuously from 1 00°C to 350°C in 0.5

40 hour or more. When the heating time is less than 0.5 hour, solvent removal becomes insufficient and ring closure of imide becomes insufficient and resultantly the polyimide resin obtained has no sufficient properties, although these matters vary depending upon the film thickness of the polyimide resin obtained. Alternatively, the temperature elevation may be conducted stepwise by conducting heating, for example, at 1 00°C for 30 minutes, then at 1 50°C for 30 minutes, at 200°C for 30 minutes, at 250°C for 30 minutes, at 300°C for 30 minutes and at 350°C for 30 minutes.

45 In the present invention, the thus-obtained polyimide solution is not coated on a substrate as it is, but is added to a poor solvent to reprecipitate the polyimide resin for removal of unreacted monomers and purification. The polyimide resin after purification, filtration and drying is redissolved in an organic solvent to prepare a coating composition. As the solvent, there is selected a solvent having a boiling point of 180°C or below in order to minimize the residual solvent in the film to be prepared and also in view of the economy and workability of the coating and drying steps of the varnish.

so In the present invention, there can be used, as ketone type solvents, acetone (b.p.: 56.5°C), methyl ethyl ketone (b. p.: 79.6°C), methyl isobutyl ketone (b.p.: 118°C), cyclopentanone (b.p.: 130. 6°C) and cyclohexanone (b.p.: 155. 6°C) and, as ether type solvents, 1 ,4-dioxane (b.p.: 101 .1°C), tetrahydrofuran (b.p.: 66°C) and diglyme (b.p.: 162°C). These solvents may be used singly or in admixture of two or more. N,N-dimethylformamide and N,N-dimethylacetamide, both of which are amide type solvents, have boiling points of 180°C or below, respectively. They, however, are not preferred

55 because they have high interaction with the polyimide resin and give a low evaporation rate and accordingly, unless drying is conducted at 200°C or above, it is difficult to remove the solvent molecules which are in solvation with the polyimide resin, and the solvent remains in the polyimide film in a large amount. Said solvents are not preferred, either, because they are highly hygroscopic and, when the polyimide coating composition containing them is made into a film

8

EP 0 598 911 B1

by coating, the film tends to absorb water and cause whitening. In the present invention, the residual solvent content in the film can be controlled at a low level, as compared with those in conventional polyimide films obtained by heating a polyamic acid dissolved in a high-boiling polar solvent (e.g. NMP) at the time of film formation to give rise to imidization, and further the contamination of an adhered by the thermal decomposition products of the polyimide resin can be prevented.

To the polyimide resin coating composition can be added, if necessary, various additives for imparting surface smoothness, such as smoothing agent, levelling agent, defoamer, adhesion improver and the like. An aromatic hydro- carbon type solvent can also be added in such an amount that it is uniformly soluble, in order to control the evaporation rate of the solvent in the polyimide resin coating composition.

In order to use the polyimide resin coating composition as an adhesive film, the polyimide resin coating composition is casted into a film shape and used as a film of polyimide resin alone or in one piece integrated with a film substrate.

In casting the polyimide resin coating composition, there can be used, for example, an apparatus in which a coating device (e.g. flow coater or roll coater) and a hot-air drying chamber are combined. The polyimide resin coating com- position is coated on a substrate, and the coated substrate is introduced into a hot-air drying chamber and dried at a temperature and an air volume sufficient to evaporate the solvent in the coating composition. As the substrate, there can be used thin metal plates of stainless steel, aluminum, copper, etc. as well as plastic films such as polyimide film, biaxially stretched polyester film and the like. Of them, a polyimide resin film is most preferable because it has a small thermal expansion coefficient, excellent dimensional stability to temperature change, high flexibility, easy handleability, high adhesion to the adhesive resin of the present invention, etc. In particular, a film made of a polyimide resin having a structure represented by formula (11) or (12) is preferred.

0

0

0

0

( 1 1 )

( 1 2 )

When the polyimide resin is used as a film adhesive by itself, the polyimide resin film formed on a substrate is peeled off from the substrate and used. When the polyimide resin is used as one-piece adhesive integrated with a substrate, the polyimide resin film formed on one or both sides of a substrate is used as such.

The present invention can also be used as an adhesive of a two-layer or three-layer structure when the above substrate itself is used as a base. In that case, a polyimide film can be used advantageously as the substrate. However, in order for the adhesive of the present invention to sufficiently exhibit the characteristics of low water absorption and low ionic impurities content, the present adhesive preferably comprises only the polyimide resin of the present invention and contains neither a substrate nor a base. In the case where the polyimide resin is combined with a solvent having a boiling point of 180°C or below and a polyester film, no releasing agent (this agent is required when a metal substrate is used) is required and the polyimide resin can be easily peeled off from the polyester film. No use of a releasing agent (this agent hinders the adhesion property of the polyimide resin) is very advantageous in the production of an adhesive film, is most suited for the object of the present invention, and enables the best use of the heat resistance and high reliability of the polyimide.

How to use the polyimide adhesive of the present invention is not particularly restricted. It can be used as an adhesive film which can be contact-bonded with heating. That is, it is cut into a desired shape and contact-bonded with heating, using a heated heat block.

The adhesive film of the present invention is characterized by using, as a main constituent, a completely imidized

9

EP 0 598 911 B1

polyimide resin of particular structure soluble in low-boiling organic solvents. The polyimide resin as an adhesive can have a very low ionic-impurities level by being reprecipitated and purified, generates substantially no gas when heated because the imidization is conducted using a low-boiling solvent, has low water absorption and excellent heat resist- ance, and can be applied in a very short time as compared with thermosetting adhesives which give rise to a chemical

5 reaction. The adhesive film of the present invention, by being processed into a tape shape, can have excellent adhesion workability and excellent dimensional precision to bonded portions.

The present invention is hereinafter described in more detail by way of Examples and Comparative Examples. However, the present invention is in no way restricted to these Examples.

10 Example 1

989 g of dehydrated and purified NMP was placed in a four-necked flask equipped with an inlet tube for dried nitrogen gas, a cooler, a thermometer and a stirrer, and was vigorously stirred for 10 minutes with nitrogen gas being passed therethrough. Then, thereto were added 58.47 g (0.200 mole) of 1 ,3-bis(3-aminophenoxy)benzene and 116.00

is g (average molecular weight: 870, 0.1 33 mole) of a,co-bis(3-aminopropyl)polydimethylsiloxane. The system was heated to 60°C and stirred until it became uniform. After the system became a uniform solution, it was cooled to 5°C in an ice water bath. Thereto were added, in 15 minutes, 81 .07 g (0.261 mole) of 4,4'-oxydiphthalic acid dianhydride and 19.22 g (0.065 mole) of 3,3',4,4'-biphenyltetracarboxylic acid dianhydride both of powder form. Thereafter, stirring was con- tinued for 3 hours. During the stirring, the flask was kept at 5°C.

20 Then, the nitrogen gas inlet tube and the cooler were removed. A Dean-Stark tube filled with xylene was fitted to the flask and 109.9 g of xylene was added to the system. The system was heated to 200°C in an oil bath and the water generated was removed out of the system. In 4 hours of heating, the generation of water from the system was not seen. After cooling, the reaction mixture was placed in a large amount of methanol to precipitate a polyimide resin. The solid was collected by filtration and vacuum-dried at 80°C for 12 hours to remove the solvent. The resulting resin

25 was measured for infrared absorption spectrum by a KBr tablet method, which gave an absorption at 5.6 urn by cyclic imide bond but no absorption at 6.06 urn by amide bond. Thus, it was confirmed that the resin was 100% imidized. 251 .56 g (yield: 91 .55%) of the thus-obtained polyimide resin was dissolved in cyclohexanone/toluene (90/10 w/w%) to prepare a polyimide resin varnish (resin content: 30%).

This polyimide resin varnish was coated on a polyimide film (UPILEX S manufactured by Ube Industries, Ltd.) 30 having a thickness of 50 urn The coated polyimide film was heat-dried in a circulating hot air dryer at 120°C for 0.5

hour and at 200°C for 1 hour. After cooling, the film was measured for thickness and the thickness of the formed adhesive layer was calculated. The adhesive layer had a thickness of 1 9 urn. The adhesion surface of the film showed no adhesiveness and was tack-free at room temperature.

This film adhesive was bonded to the metal luster surface of a 35-u.m electrolytic copper foil, using a hot press 35 having a heat block made of phosphor bronze, whereby a test piece was prepared. The adhesion conditions were such

that contact bonding was conducted at 210°C for 2 seconds and, after pressure release, annealing was conducted at 210°C for 10 seconds. The pressure applied onto the adhesion surface was 4 kg/cm2 as a result of calculation from the gauge pressure and the adhesion area. The test piece had a 180° peeling strength of 2.81 kgf/cm. Further, the 180° peeling strength after 168-hourtreatment in an environment of 85°C and 85% was 2.66 kgf/cm. Thus, the adhesion

40 surface of the film showed excellent adhesivity to copper. On the rupture surface, the adhesive resin layer caused cohesive failure and no foaming was seen. It indicated the excellent adhesivity of the adhesive resin layer to the base (polyimide film). There were also examined the adhesivities to a silicon wafer coated with a polyimide resin (SUMI RESI N EXCEL CRC-6061 P manufactured by Sumitomo Bakelite Co., Ltd.). They were 2.01 kgf/cm and 1 .75 kgf/cm, respec- tively. The results are shown in Table 1 , together with other properties.

45 In the above, the molar ratios of the acids and the amines were a/(a+b)=0.8, c/(c+d+e)=0.4 and (c+d)/(c+d+e)=1 , respectively.

Examples 2 to 5

so Polyimide resin varnishes were prepared in the same manner as in Example 2 under the conditions shown in Table 1 . They were coated on a polyimide film to prepare the respective film adhesives. Their properties are shown in Table 1 .

55

10

o o in

(0 f f l f t f t Q O t - H i n c O t - H ft X ft ft Q g D T3 w ci; ai o ft

■P C O

o in m o g 3. Q) cs ,-h o in a U ft g X _ _ _ a> ,_, — ' — — cn o o ft i w o 2 2 A Ph — (Ti to cri cm ,j)m r;T~l g CO ft < '00 <£> . O H ^ 0 ro p Q f t f t f t O i H i n ^ c N ft Eh X ft ft < Q £3 63 rtj < CQ O 1

pr> — — » CO g m in o g 5 0) r-<N © m a u ft g X iH - — - ' — • i H c n o o ft :! 63 o o o t ft ^ w o ro *r M in Tj""* g co <C • CTl CD • O H ^ (0 f f l f t f t o - H i n m c N ft X ft ft a E3 w <! < o

m in o o CN v o r o p - r o g X g — — — — m u u ft g w i _ ^ _ Q) COO o a i J 2 r-H Cf\ U3 <D i— I HO ™ & • r» co • ih ft in ™ g w r t J r t J O r H i n v o r N p <0 cQ ft ft Q X ft ft Q Eh 63 (< < O ffl

t o o o o o o GQ) .,-| us co cm W B

» " " S o " a s B o s s *

■a s i s . s ; h " " g 3 <D -H <0 CO < < ° ^ 10 ^ 1-1 Sj t o t ^ > - i ' a < H m f t f t Q ■J X - H c d C O f t f t Q f t 63 b ft-H g < <$ O CQ

0 •H C . | ■P 0 (d -H u U 4-> -iH <D tQ

CO J - i C t O C + J (0 o u g •p t o i a o o o xi - h o ^ u C + J r _ l . H 0 u - H H -P * — CQ \ C <D C O + J g M O 4-1 -H x> C> •H g 0) g -H O d >, C - 0 0 ) 0 1 to o a ma)ua)(04-)<o to c n o a) ft o o i c u a i i - i f t d r H 4-1 0 3 0 M S f t C < a 3 T > 3 X 0 > to U+J0CD O g .H 4J +J J) -H 0) -H (fl TO V-| Q) u o g 4 J ( 0 r H ( a u > to c n - ^ s > CJ (0 H 10 M H 'H H 01 O Q ) ( 0 ■H 0) ■ s f f l f f l g a i f l w r a u -Hf tOi to to C T3 T 5 t o f t H f t a ) 4 - i ( l ) r a i t o g g d ) a) .h ■ H - H ( o g a ) g c a ) x ; t o 4J 00) - h h £ g U U ^ H a ) ^ a ) - H O T 3 0 ) (0 ,C Eh E-i ft

11

EP 0 598 911 B1

6 0 f t 1/1 > 0 ftcn en r-i cm

CD rnro-ri m r- r-~ m m o-> iH v o c n w s r» vo co in Qj • • 0 i— 1 g CNCNXI-H O l f l O O f (0 O 10 co w

> CD ft H CO CN CN 0) cn ld -H i-i n c n r ^ c o o i rH o co co 3 m r - r ^ r o i H D_i • • CD rH g N H £ -rH o o o o m (0 O <0 f l w

f „ 0 f t ^ > 0 ft co p» r~ m ro 0 iocNH M coror-«>co r— I en r- cn 3 oi h co pj • • 0 i— i g r l H f i - H O C N O O ^ r <a O <0 ro X U 4-1 w

ft 0 0 ft 4-> > 0 co cj r- cn

CTir-l-HJ-l CO O 0 <N CO 0 to h «i 3 t— oi 4-1 ^ en rH • • 0) H . . Q) . . ft (N C\ £ -H O <-H TJ O CN g O <0 ro rfl U >W 4-> X 0 Ed Z

g i U f t £ 0 f t (-r, > 0 n c N c n o i o <-l u H U ' H i-| fO H H MT)

,2 • • 0 rH 7? CNCNJ5-H o u o o m & 0 (0 ro

X Ed

0 o

,C 0 IH CO 4-> 4-> U 0 CP to 0 «H C -P 4-> 4-> 0 CO C -H U -H M 4-1 >i00 ^ co M vo tn f t

«H fi g '«s QIC 1 'H -H i — C W B H O O •HT3CQ0 O i O O + ' 1 ' * r H M K 0 - H c ^ U U l O f f i 0 O ffi Pw C U X — 'Z z 0 o P-l M

12

EP 0 598 911 B1

Example 6

1 ,3-Bis(3-aminophenoxy)benzene, 2,2-bis(4-(4-aminophenoxy)phenyl)propane, a,co-bis(3-aminopropyl)-poly- dimethylsiloxane (average molecular weight: 870), 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and 4,4'-oxydiph-

5 thalic acid dianhydride were reacted in the same manner as in Example 1 at a molar ratio of 0.4/0.4/0.2/0.3/0.7, to obtain a polyimide resin. This polyimide resin was easily soluble in cyclohexanone and could be easily made into a polyimide resin film by using a polyester film as a substrate. The drying conditions were 120°C X 0.5 hour and then 1 60°C X 0.5 hour. The film had a glass transition temperature of 1 65°C, and was bonded to a copper foil at 240°C in 30 seconds and showed a peeling strength of 1 .77 kgf/cm. The film after adhesion gave no foaming. Incidentally, the

10 gas generated in the film was measured under the same conditions as in Table 2 and was 204 ppm.

Example 7

The polyimide resin solution obtained in Example 6 was coated on a polyimide film (UPILEX S manufactured by is Ube Industries, Ltd.) having a thickness of 50 urn, and a film adhesive was obtained in the same manner. This film had

properties similar to those in Example 6.

Example 8

20 750 g of dehydrated and purified NMP was placed in a four-necked flask equipped with an inlet tube for dried nitrogen gas, a cooler, a thermometer and a stirrer, and was vigorously stirred for 10 minutes with nitrogen gas being passed therethrough. Then, thereto were added 73.0847 g (0.250 mole) of 1 ,3-bis(3-aminophenoxy)benzene (APB), 37.8163 g (average molecular weight: 840.36, 0.045 mole) of a,co-bis(3-aminopropyl)polydimethylsiloxane (APPS) and 1.4971 g [0.006 mole, k=1 in formula (10)] of 1 ,3-bis(3-aminopropyl)tetramethyldisiloxane (APPS, k=1). The system

25 was heated to 60°C and stirred until it became uniform. After the system became a uniform solution, it was cooled to 5°C in an ice water bath. Thereto was added, in 15 minutes, 93.4404 g (0.301 mole) of 4,4'-oxydiphthalic acid dian- hydride (ODPA) of powder form. Thereafter, stirring was continued for 3 hours. During the stirring, the flask was kept at 5°C.

Then, the nitrogen gas inlet tube and the cooler were removed. A Dean-Stark tube filled with xylene was fitted to 30 the flask and 1 87 g of toluene was added to the system. The system was heated to 1 75°C in an oil bath and the water

generated was removed out of the system. In 4 hours of heating, the generation of water from the system was not seen. After cooling, the reaction mixture was placed in a large amount of methanol to precipitate a polyimide resin. The solid was collected by filtration and vacuum-dried at 80°C for 12 hours to remove the solvent, whereby 186.28 g (yield: 90.5%) of a solid resin was obtained. The resin was measured for infrared absorption spectrum by a KBr tablet

35 method, which gave an absorption at 5.6 urn by cyclic imide bond but no absorption at 6.06 urn by amide bond. Thus, it was confirmed that the resin was nearly 100% imidized. Incidentally, the molar ratios of the acids and the amines were a/(a+b)=1, d/(c+d+e)=0.83 and e/(c+d+e)=0.17, respectively.

The thus-obtained polyimide resin was dissolved in cyclohexanone/toluene (90/10 w/w%) to prepare a polyimide resin varnish having a solid content of 25%. This varnish was coated on one side of a polyimide film [UPILEX SGA

40 (trade name) manufactured by Ube Industries, Ltd.] having a thickness of 50 urn by use of a reverse roll coater to obtain a film adhesive in which the adhesive layer had a thickness of 30 urn The drying temperature was 185°C (maximum temperature) and the drying time was 6 minutes. This film adhesive was hot-pressed onto a 35 urn copper foil to prepare a test piece. The film adhesive was contact-bonded on the treated surface of the copper foil at 250°C for 2 seconds and, after pressure release, annealing was conducted at 250°C for 30 seconds. The pressure applied

45 on the adhesion surface was 4 kgf/cm2 as a result of calculation from the pressure gauge and the adhesion area. The test piece had a 180° peeling strength of 3.43 kgf/cm and showed excellent adhesivity. On the rupture surface, the adhesive resin caused cohesive failure and no foaming was seen. The results are shown in Table 2.

Example 9 50

The varnish of Example 8 was coated on a biaxially stretched polyester film [DIAFOIL (trade name) manufactured by Mitsubishi Rayon Co., Ltd.] having a thickness of 50 urn The drying temperature was 185°C (maximum temperature) and the drying time was 6 minutes. After drying, the polyester film was removed by peeling to obtain a single-layer film of 32 urn in thickness having no substrate. The peeling was easy and had no particular problem. The results when the

55 film was bonded to the luster surface of a copper foil in the same manner as in Example 8, are shown in Table 2.

13

EP 0 598 911 B1

Examples 10-12

Reactions were conducted in the same manner as in Example 8, using the recipes shown in Table 2, to obtain soluble polyimide resins. Film adhesives were obtained using the polyimide resins. The results of evaluation for the film adhesives are shown in Table 2. Each of the film adhesives shows excellent properties.

14

r a w . co r- co i w p, 0) g rH - o S > ta -a- r*. © CD O -P W -a-

0

a, cm o o m cm o ro x! 1 E rH CO CM -3" -3- rH CO " w

rH _ p. o in m o " 6 rH O rH ID CM ° CO rH H _• W

0) rH „ C U o O O o o o ° £ rH CO CM VO CM CM ° * -1 w

a> cm O. o co m cm ;r E <T\ O CO rH ° 0) g rH rH rQ " rs

rH &■ o co m cm 2 G CO O 00 rH ° CO rH • w

1-1 _ a s *> 00 rH 2 II II w

« S i 4 - 1 » < < < O, a, m "5 ~ O i Q Q p Q t X . O L i C L , CVi "t! H Q Eh d, fu < < [X 0< 5 O ttl oq < m pq < < J%

a cr 1 1 1 1 1 1 <u i i £ O co ai 0 to C "O P. 4J C D. +J "d •h 6 c -h s a £

O O CD g O CD * < <J C < O (5 ~T •a 1 ^ u i C < o o B *J O -H O 0)

15

g !> ff) CO rH 1 O 4-> W M 3

4J ! C co oi 0 In .-H 1 O CO O. rH 6 > CO 0! t-l ^ O *J W H 3 n

E-t

& cm ° ' S -d m ° £ S ' 2 , - , O r < f l ' H O 0! o 0 x s ii o z 3

01

S r H ^ o j Q j C O V I M . O ™ W !>, o> o Is S w OK c

0) ° _i 01 Ps CM o. C <-> in W • — VO CTi 5 o £ £ o o [3 -H t= O a cm

a> 6 ^ m o j c o 4J ai Pj ■ co ^ <3 o X G 1-1 oco c o * !>S 0> O S 3 W O X! C

S c o r - i r t o j o g H ^ r • .

0)

01 C P . £ e D •* a * a 3- E 1) ^ 4J c co j-) oi *H 03 C § E CD CD u 3 ^ c i co b tj oj-a SO J - H c o v D 4 J C O O .CO •ho cu a) o "Ofi h d 2 .C rH u .C X E « -H CO 10) 1 *J U CO 4-1 co -h to J3 o-h ta U U 91 CO-WI) 2 e-i ca e-i 04J as-i-i U>E W fr< S

CO E Ol 4-1 t— I CO M c 4-1 O C *H 0) 4-> > "H rH T3 H o c o u ai o -H OJ U 4J 0) 4J X C O. CO cd CO DO O W CO S -H C - H M O C -H 4J CD CO T) TJ V4 3 -H rCJ 0> 0! CO 1-1 +J 4J C0 4-> 4J > 73 -rH U CO CO 4-1 0) u u u S oi p. a> oi oi rH C O 4-> C C -H 0 14 CO 01 CU fa O Cli > o o

16

a. o ° S 00 Ef cm 8 « ° g ° g CM CM 0 CO W °

o. o ° 2 f- g rH lh CO O Q. O g rt " ^ ^ O co' W 0

u "a o ° 2 ° g O CO O P, rH g N ^ ^ 0 cci w °

11 M "p. O ° 01 CM a o S « ° g "] g M cm <r o co

p. o O 4) CO b m

° si ° a g " ™ N 5" O c w °

CO CM • O S s d u u O — O CJ 14H (4H o 01 00 00 CO ^ ^

1 OI CI) lj 00 n 3 C CD CO -H CLi Ol 0) CO 0 rH 6 u g oi oco 0) 3 -H CO 01 E-I 4J E-" Oh rH a 0) E 0) J-l M

CO C! o •rH J3 •U 4J •H 60 TJ CJ £ 0) o u CJ 4-> CO O C 60 -rH 01 a CD VH -rH 0) CD rH J3 . C O ) •3 T) 0) < < cu

17

EP 0 598 911 B1

In Table 2, ODPA is an abbreviation of 4,4'-oxydiphthalic acid dianhydride; BTDA is an abbreviation of 4,4'-benz- ophenonetetracarboxylic acid dianhydride; BPDA is an abbreviation of 3,3',4,4'-biphenyltetracarboxylic acid dianhy- dride; APB is an abbreviation of 1 ,3-bis(3-aminophenoxy)benzene; BAPPF is an abbreviation of 2,2-bis(4-(4-aminophe- noxy)phenyl)hexafluoropropane; and APPS is an abbreviation of a,co-bis(3-aminopropyl)polydimethylsiloxane.

5 The figures in composition column each indicate an equivalent ratio of each component in acid or amine compo- nents; water absorption refers to the saturated water absorption of total film when the film was allowed to stand in an environment of 85°C and 85% (relative humidity) for 1 68 hours (HH-1 68 treatment); generated gas refers to the amount measured by GC-MS method, of gas generated in total film when the film was heated at 250°C for 15 minutes; and generated water refers to the amount measured by Karl Fischer method, of water generated in total film when the film

10 was heated at 250°C for 15 minutes.

Comparative Examples 1 and 2

Reactions were conducted in the same manner as in Example 8, using the recipes shown in Table 2, to obtain is polyimide resins. Film adhesives were obtained using the polyimide resins. The results of evaluation for the film ad-

hesives are shown in Table 2. In Table 2, PMDA is an abbreviation of 1 ,2,4,5-benzenetetracarboxylic acid dianhydride; and 4,4'-DDE is an ab-

breviation of 4,4'-diaminodiphenyl ether. As is clear from the above Examples, the present invention enables production of a film adhesive having high heat

20 resistance and low hygroscopicity.

Example 13

755 g of dehydrated and purified NMP was placed in a four-necked flask equipped with an inlet tube for dried 25 nitrogen gas, a cooler, a thermometer and a stirrer, and was vigorously stirred for 10 minutes with nitrogen gas being

passed therethrough. Then, thereto were added 100.4400 g (0.120 mole) of a,co-bis(3-aminopropyl)polydimethylsi- loxane (APPS), 77.9978 g (0.190 mole) of 2,2-bis(4-(4-aminophenoxy)phenyl)propane (BAPP) and 10.8957 g (0.080 mole) of 2,5-dimethyl-p-phenylene-diamine (DPX). The system was heated to 60°C and stirred until it became uniform. After the system became a uniform solution, it was cooled to 5°C in an ice water bath. Thereto were added, in 15

30 minutes, 74.4533 g (0.240 mole) of 4,4'-oxydiphthalic acid dianhydride and 47.0752 g (0.160 mole) of 3,3',4,4'-biphe- nyltetracarboxylic acid dianhydride both of powder form. Stirring was conducted for 1 hour, after which stirring was continued for 3 hours. During the stirring, the flask was kept at 5°C. Thereafter, 3.7046 g (0.020 mole) of p-phenoxy- aniline (PPA) was added and stirring was continued for 1 hour.

Then, the nitrogen gas inlet tube and the cooler were removed. A Dean-Stark tube filled with xylene was fitted to 35 the flask and 1 88 g of toluene was added to the system. The system was heated to 1 75°C in an oil bath and the water

generated was removed out of the system. In 4 hours of heating, the generation of water from the system was not seen. After cooling, the reaction mixture was placed in a large amount of methanol to precipitate a polyimide resin. The solid was collected by filtration and vacuum-dried at 80°C for 12 hours to remove the solvent to obtain 284.99 g (yield: 90.6%) of a solid resin. The resin was measured for infrared absorption spectrum by a KBr tablet method, which

40 gave an absorption at 5.6 urn by cyclic imide bond but no absorption at 6.06 urn by amide bond. Thus, it was confirmed that the resin was nearly 100% imidized.

The thus-obtained polyimide resin was dissolved in cyclohexanone/toluene (90/10 w/w%) to prepare a polyimide resin varnish having a solid content of 25%. This varnish was coated on one side of a polyimide film [UPILEX SGA (trade name) manufactured by Ube Industries, Ltd.] having a thickness of 50 urn, by use of a reverse roll coater to

45 obtain an adhesive tape in which the adhesive layer had a thickness of 30 urn. The drying temperature was 185°C (maximum temperature) and the drying time was 6 minutes. The adhesive tape was hot-pressed onto a 35 urn copper foil to prepare a test piece. The adhesive tape was contact-bonded on the treated surface of the copper foil at 250°C for 2 seconds and, after pressure release, annealing was conducted at 250°C for 30 seconds. The pressure applied onto the adhesion surface was 4 kgf/cm2 as a result of calculation from the gauge pressure and the adhesion area.

so The test piece had a 180° peeling strength of 2.75 kgf/cm and showed excellent adhesivity. On the rupture surface, the adhesive resin layer caused cohesive failure and no foaming was seen. The results are shown in Table 3.

Example 14

55 The varnish of Example 1 3 was coated on a biaxially stretched polyester film [DIAFOIL (trade name) manufactured by Mitsubishi Rayon Co., Ltd.] having a thickness of 50 urn The drying temperature was 185°C (maximum temperature) and the drying time was 6 minutes. After drying, the polyester film was removed by peeling to obtain a single-layer film of 32 urn in thickness having no substrate. The peeling was easy and had no particular problem. The results when the

18

EP 0 598 911 B1

film was bonded to the luster surface of a copper foil in the same manner as in Example 13, are shown in Table 3.

Examples 15-18

5 Soluble polyimide resins were obtained in the same manner as in Example 13, under the conditions shown in Table 3. The results of evaluation for these polyimide resins are shown in Table 3. Each of the adhesive tapes shows excellent properties.

10

15

20

25

30

35

40

45

50

19

CU <U S r-H _ C 0 Cu f_ o o m o m -a- S ' O CJ g j UD -* CM CM IO ° o d o) J ^ « m w ;>-, Q) JJ

0 E-(

0) 01 rH C 1 C u o " 1 . m o o o ° ' 0 6 < o c o r . -a- co n " - " O C co rH 2; t i-H CO X rH rH OX w >, oi

O) cu rH C o. „ a in o o o ° i o E "°, oo " j - c n en ° O C cd i " i-H (0 X 1-1 H cj x W f>-» a>

CU 0) rH C 0 , - 3 - 0 o o 10 o i o S ' O CO ^ J rH to X "* cj X Ixl r*% 0)

oi a) rH CJ P. _ O O O O lO ° 1 2 co ^ : H cd X <f rH rj X

OJ3

o •rH 4J CO r4 co -P e c £ ph g n a c u o j c a x < C r t H o g a < f H < a 1 < ! c i , p J r i , g o p - i m w D n ^ p a ^ o & . ^ j j

3 C (T1 0) 1 1 1 1 1 1 1 1 0) > rH 1 , CP 0 O co 0) O CO G CO

•a p. -u s a n « UOO) EOQ) COCO

•a c 1 .,h M U CO i d <; > o o Cu-H E *J O -H O co

20

H r H o cn o ^ o ^ cm 1 SB 3

•0 -P C

S S S ° S o 8

S 3 jq o

- S S d o " « * Z 3

X o 0 CO CO 00 CO rH _ o "< ^ £ ° O O N N * S

r-t r-| 4-1 0) CO * CM * CM ' o co o o " cm -a- Z 3

H h E ° o ^ o ™ cm <r

b TJ 6 3 4J C O +J - H E o ~- * a a. o cj cw u C ' D K G . M O Q 1 0 0 g. I « * E — 01 ^ 4-1 C CO 4-> CO -H CO C 1 CD E S cu cu vj co vi G l cog -a 0) TJ V4 3 E CJ .!<! -H CO CO 4-1 CO O J 3 0 C U CO •HO 0) 01 O TJ G r-ICO i-I U X! CL.Q) Q) CO X E » -H CO Id) 14-1 V4CC4-1 gV4 g CP CO -H rt X! O -H B3V4 r_> 0! CO 'H 01 0)3 -H >4 X E-i « E-i O 4) 3! 4J OS WfcS H U H On

0 u '

C o •H CO 4-1 C •H C O TJ O G -H G -H CO O 14 4J O 4J 0) -H 0) -H CJ 3 -H 4J CO 4J TJ 4-1 4-1 CX co CO G 00 -H lj 14 00 & O G 4J 01 o u ■H co ct, co TJ TJ >s c o xi ai cu c U O U CO 4J 4-1 O TJ O Pi CO CO -H t4 %4 CO E cu cp cu o> oj 0) •H Pj D. 4-) G G J3 -H cd cd cd 0) 0) TJ fci E-i E-i t£ O CS <

21

® u 1 - a *

w u

J5 *

§ ^ £ ^

w °

* U tr m a. r»

w u

a o 4-1 CO a:

00 C •H O rH O CD 00 CP rH P, cn s 0) 4J H

rC oo c 01 u 4J cn ■d C 00 oi c Vj -H 01 rH X! 0) T3 0) < Ph

22

EP 0 598 911 B1

In Table 3, ODPA is an abbreviation of 4,4'-oxydiphthalic acid dianhydride; PMDA is an abbreviation of pyromellitic acid anhydride; PA is an abbreviation of phthalic anhydride; APPS is an abbreviation of a,co-bis(3-aminopropyl)poly- dimethylsiloxane; BAPP is an abbreviation of 2,2-bis(4-(4-aminophenoxy)phenyl)propane; APB is an abbreviation of 1 ,3-bis(3-aminophenoxy)benzene; DPX is an abbreviation of 2,5-dimethyl-p-phenylenediamine; and PPA is an abbre-

5 viation of p-phenoxyaniline. The figures in composition column each indicate an equivalent ratio of each component in acid or amine compo-

nents; water absorption refers to the saturated water absorption of total film when the film was allowed to stand in an environment of 85°C and 85% (relative humidity) for 168 hours (HH-168 treatment).

10 Comparative Examples 3 and 4

Polyimide resins were obtained in the same manner as in Example 1 3 under the conditions shown in Table 4. The results of evolution for the polyimide resins are shown in Table 4.

15 Table 4 Items Comparative Comparative

Example 3 Example 4

Composition Acid ODPA 20 components PMDA

BPDA 50 50

BTDA 47.5 47.5

PA 5 5

Amine APPS components BApp 10Q 10Q

APB 30 Dpx

PPA

Acid/amine equivalent ratio r 1.00 1.00

Varnish solvent NMP NMP 35 Film drying conditions Maximum temperature (°C) 250 200

Time (min) 30 30

Tape constitution Base UPILEX Not used 40 Thickness (urn) 50/20 20

Tape properties Conditions Unit

Water absorption HH-168 % 1.15 0.87 treatment

45 Generated gas GC-MS method ppm 431 542

Generated water Karl Fischer's % 0.78 0.58 method

so Adhesion conditions Temperature °C 250 250

Time Seconds 2/30 2/30

Pressure kgf/cm2 4/0 4/0

Adherend Copper Copper 55 Peeling strength 180° peeling kgf/cm 0.78 (Foamed)

As clear from the above Examples and Comparative Examples, the present invention enables production of a

23

EP 0 598 911 B1

polyimide resin soluble in organic solvents and having high heat resistance and low hygroscopicity.

Examples 19 and 20

5 Soluble polyimide resins were obtained in the same manner as in Example 13, under the conditions shown in Table 5. The results of evaluation for these polyimide resins are shown in Table 5. Each of the adhesive tapes shows excellent properties.

o CM

S CU X w

B c8 X W

o o

O CO

CO s a> 4J < en a o

< o a. PQ

< Q Eh PQ

i O co a. 4-1 E c O 0) cj C

o

o

Pn CM <! PQ

o CM

pq CM <

o CM

Q

o CM

CM P-i < Oi Ph

0) O co a p. ••-> -rj 6 CJ S ° !H

I G O O a, »h O -H O co

o O

o o

M o

cd 1H 4J c 11 rH CO > -H 3 CU cu a •H 6 cd •a •H cj <

u

u O

4J a cu > rH O CO XI co •H G u cd >

o CO VO

o 00

a> u 3 4J cd u cu a. S ai

6 o •H o X ^

CO o

•a c o u oo c •H

T3

TJ +J c. o u <d A 0 Eh

G •H 6

CU 6 •H Eh

50

55

24

EP 0 598 911 B1

5

15

25

30

o U

0J l O r - . O l ^ O C U O rH o c ^ Z l c \ ) " c o o D . r - a - c i o - ^ c] ex • g + j f j j o o ' ^ c n j o - o c n ctj O co U M S5 3 w

ON ^ X o u r H - J - I . "i £- -J- to co o O. oo P P m S 0 th O ^ CN <r O CM cd ^ 10 O !«! w

CO CN •d e B ■u C cj cj •H E o C Oi CJ U Ct-I <4H O fcs M d. »-e o c u o o 00

CD 4J CO CD C 1 CD cu cu u cd u oo d i o o S t ) c u - o v j 3 d ,M -H CO CO 4-1 CA O Xi O Q) CO -H CU O XJC H Cd 2 .C rH O X5 &.CU 0) CO OrH co -h Co icu i-t-i uco4J Em 6 <u o oi cd XJ O-rH O 11 cd 'H CU 0) S -H U CO HI « Eh O+J ffiJ-> OS i*! S EH4-) Eh Ph tHD. CO e CU 4J M

CD g

o a -h xj "H CO O (-1 4-) 4J 4-1 CU -H CU »H 00 3 -H 4J CO 4J 13 C 4-1 4-1 a. cd cd c! cu •H r4 r4 00 t* O U 4-1 CU O O 4-1 CO CL, CO T3 T3 CO C O XI CU 0) d T) O >4 CO +J 4-1 O C 00 u a, cd cd th oj g r4 V4 r4 CO M -H cu cu <d a) <d a> cu rH 0 . & 4 J C C XJ x i a j c d c d c d c u c u xs T 3 a i Eh E-i > O O < < Cn

40

In Table 5, ODPA is an abbreviation of 4,4'-oxydiphthalic acid dianhydride; BPDA is an abbreviation of 3, 3', 4,4'- biphenyltetracarboxylic acid dianhydride; BTDA is an abbreviation of 4,4'-benzophenonetetracarboxylic acid dianhy- dride; PA is an abbreviation of phthalic anhydride; BAPP is an abbreviation of 2,2-bis(4-(4-aminophenoxy)phenyl)

45 propane; APB is an abbreviation of 1 ,3-bis(3-aminophenoxy)benzene; DPX is an abbreviation of 2,5-dimethyl-p-phe- nylenediamine; APPS is an abbreviation of a,co-bis(3-aminopropyl)polydimethylsiloxane; and PPA is an abbreviation of p-phenoxyaniline.

The figures in composition column each indicate an equivalent ratio of each component in acid or amine compo- nents; water absorption refers to the saturated water absorption when the film was allowed to stand in an environment

so of 85°C and 85% (relative humidity) for 168 hours (HH-168 treatment); generated gas refers to the amount measured by GC-MS method, of gas generated when the film was heated at 250°C for 15 minutes; and generated water refers to the amount measured by Karl Fischer method, of water generated when the film was heated at 250°C for 1 5 minutes. S in solubility column indicates "soluble in the relevant solvent".

55 Example 21

688 g of dehydrated and purified NMP was placed in a four-necked flask equipped with an inlet tube for dried nitrogen gas, a cooler, a thermometer and a stirrer, and was vigorously stirred for 10 minutes with nitrogen gas being

25

EP 0 598 911 B1

passed therethrough. Then, thereto were added 65.6823 g (0.160 mole) of 2,2-bis(4-(4-aminophenoxy)phenyl)propane (BAPP), 23.3869 g (0.08 mole) of 1 ,3-bis(3-aminophenoxy)benzene (APB), 10.8957 g (0.080 mole) of dimethylphe- nylenediamine (DPX) and 66.9600 g (average molecular weight: 837, 0.080 mole) of a,co-bis(3-aminopropyl)poly- dimethylsiloxane (APPS). The system was heated to 60°C and stirred until it became uniform. After the system became a uniform solution, 2.3699 g (0.016 mole) of phthalic anhydride was added. The mixture was stirred for 1 hour. Then, the system was cooled to 5°C in an ice water bath. Thereto were added, in 15 minutes, 91 .7966 g (0.312 mole) of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride and 25.7784 g (0.08 mole) of 3,3',4,4'-benzophenonetetracarboxylic acid dianhydride both of powder form. Then, stirring was continued for 3 hours.

Then, the nitrogen gas inlet tube and the cooler were removed. A Dean-Stark tube filled with xylene was fitted to the flask and 1 72 g of toluene was added to the system. The system was heated to 1 75°C in an oil bath and the water generated was removed out of the system. In 4 hours of heating, the generation of water from the system was not seen. After cooling, the reaction mixture was placed in a large amount of methanol to precipitate a polyimide resin. The solid was collected by filtration and vacuum-dried at 80°C for 12 hours to remove the solvent to obtain 257.32 g (yield: 89.7%) of a solid resin. The resin was measured for infrared absorption spectrum by a KBr tablet method, which gave an absorption at 5.6 urn by cyclic imide bond but no absorption at 6.06 urn by amide bond. Thus, it was confirmed that the resin was nearly 100% imidized. Incidentally, the molar ratios of the acid components and amine components were a/(a+b+0.5f)=0.78, b/(a+b+0.5f)=0.2 and e/(c+d+e)=0.2, respectively.

The thus-obtained polyimide resin was dissolved in cyclohexanone/toluene (90/10 w/w%) to prepare a polyimide resin varnish having a solid content of 25%. This varnish was coated on one side of a polyimide film [UPILEX SGA (trade name) manufactured by Ube Industries, Ltd.] having a thickness of 50 urn, by use of a reverse roll coater to obtain an adhesive tape in which the adhesive layer had a thickness of 30 urn. The drying temperature was 185°C (maximum temperature) and the drying time was 6 minutes. The adhesive tape was hot-pressed onto a 35 urn copper foil to prepare a test piece. The adhesive tape was contact-bonded on the treated surface of the copper foil at 250°C for 2 seconds and, after pressure release, annealing was conducted at 250°C for 30 seconds. The pressure applied onto the adhesion surface was 4 kgf/cm2 as a result of calculation from the gauge pressure and the adhesion area. The test piece had a 180° peeling strength of 3.12 kgf/cm and showed excellent adhesivity. On the rupture surface, the adhesive resin layer caused cohesive failure and no foaming was seen. The results are shown in Table 6.

Example 22

The varnish of Example 21 was coated on a biaxially stretched polyester film [DIAFOIL (trade name) manufactured by Mitsubishi Rayon Co., Ltd.] having a thickness of 50 urn The drying temperature was 185°C (maximum temperature) and the drying time was 6 minutes. After drying, the polyester film was removed by peeling to obtain a single-layer film of 30 urn in thickness having no substrate. The peeling was easy and had no particular problem. The results when the film was bonded to the luster surface of a copper foil in the same manner as in Example 21 , are shown in Table 6.

Examples 23-25

Soluble polyimide resins were obtained in the same manner as in Example 21 , under the conditions shown in Table 6. The results of evaluation for these polyimide resins are shown in Table 6. Each of the adhesive tapes shows excellent properties.

26

° CO

x s s _ c 8 CN <J

_ OJ O J o O CTi O O CNl " C o v o l ! r H m m co c o c o " i o co _Q P, ! O C rH E t-H CTJ cd CJ X 0 * >, cu Eh W OX!

1 <-<■> CN

_ OJ o o cn o o c n S C o vo >— i m co co c o c o 0 i 0 c o g< J O C rH S rl H k cd o X X X 0) w o xl

CN CN _ <u < B ' C O O « t f O O O O J? C o CO r r J r - . c M -a- cn cm cm ° ' O c o

a" J 0 rH E H h id cd cj X x x oj W OX!

CN c u ' C O O - d - o o o o £ c ° *o rH c* CM <t CM CM CM l O 0 0 P. r-i O C ■_t E rH Cd cd u X X >, 4) W OX!

OJ u 3 4-> cd u CD ft E CO J-> c •H

o E o •H -HO CO 4-1 « — E cd cd -h H 2 EH

E C i Q O ^ ° J W r < P 4 < d „ M p 4 H < ! < p 4 0 4 C L , p H g ~ « o a P 4 « < ; Q < P H . r ; i j g

3 C -H D* OJ 4J , , _ . . . . . . . . . . OJ > -H rH T3 i i o) o C Oo) OJOco G e n o

•00.4J CO.+J u •H E C -H E C E X ! CJOO) EOO) c o c n ofl < c j C < U C ^ - " d 5 TJ C -H 1 "H iH rS U Cd 1H ' C <! > TJ o o P. -H E

O "H -H O 05 [H

27

& 4 j " o d ^ N ? O d i o o w

TJ d l » ° ° m m O 0 ) 0 0 * 3 o n S *i S £ 2. £ § o o «

o ) W 2 co co o o i i n & £ ° d d ^ C M ^ O N

w

^ « u m CO CO „ CO O Q)~3 - ^ 3 0 CN ° CNl ° CO O g. CO £• 4J " d N d N c s i < r o d a 5 ° w

<N x w S o . „ C 0 o O 0) CM

Pu £ ° d d cm ? o co i £ ° X w

CO cs TJ E B 4-> ( S O U •H E O ~- G ft o u m M-< ^ • D U P , M O CD 00 60 8 co M J4

CO 4J CO co C I OJ 0) d> 14 cd l-l CD G 1 CO E TJ CD TJ U 3 C 4 i j . H c n c D 4 J c O O xi O 0) co -H

0) O TJ fj rH cd £ X! rH U Xi CU OJ Q) CO O rH CO -H CO ID • *■> 14 CO 4-> G U E CD OCL co x! o -H rn in o m cd -h t» oj3 -h u co hi « EH O 4) CC 4-> O £ ibrfltiE EH4J Ei P-, H O.

<o g CD H

CO c C O O C -H rC •H CO O 1-1 4-> 4-> 4J CD "H 0) -H 60 3 -rl 4-> CO 4-> T) C 4-> 4J P. CO cd C 0) -H U 1h 00 ? O In 4J Q) O O 4-> CO CU CO T) TJ CO C O XI 0) 01 C T) O lH Cd 4-1 4-> O C O O CJ CU CO CO *H 01 C In 14 14 CO 1-1 -H 0 ) 0 ) 0 ) 0 ) d) 0) d) rH CU Cu 4-) C C Xi X J C D c d c O C O O ) CU TJ TJ 0) E - i E h ^ O O < < Cm

28

EP 0 598 911 B1

In Table 6, BPDA is an abbreviation of 3,3',4,4'-biphenyltetracarboxylic acid dianhydride; BTDA is an abbreviation of 4,4'-benzophenonetetracarboxylic acid dianhydride; PA is an abbreviation of phthalic anhydride; BAPP is an abbre- viation of 2,2-bis(4-(4-aminophenoxy)phenyl)propane; APB is an abbreviation of 1 ,3-bis(3-aminophenoxy)benzene; DPX is an abbreviation of 2,5-dimethyl-p-phenylenediamine; APPS is an abbreviation of a,co-bis(3-aminopropyl)poly-

5 dimethylsiloxane; and PPA is an abbreviation of p-phenoxyaniline. The figures in composition column each indicate an equivalent ratio of each component in acid or amine compo-

nents; water absorption refers to the saturated water absorption of total film when the film was allowed to stand in an environment of 85°C and 85% (relative humidity) for 1 68 hours (HH-1 68 treatment); generated gas refers to the amount measured by GC-MS method, of gas generated from total film when the film was heated at 250°C for 15 minutes; and

10 generated water refers to the amount measured by Karl Fischer method, of water generated from total film when the film was heated at 250°C for 15 minutes.

The present invention can provide an adhesive film of high reliability having both heat resistance and adhesion workability. The present adhesive film provides an advantage particularly when copper, which is easily oxidized, is used as a lead frame, because the present adhesive film can be applied at low temperatures in a short time without

is incurring the oxidation of copper surface. Further, since the present adhesive film is soluble in low-boiling solvents, the residual solvent content in the film can be controlled at a very low level by using mild drying conditions as compared with the drying conditions used for conventional polyimides. Furthermore, since the present adhesive film is already imidized, no high-temperature step is required for imidization and no water is generated, during the application of the adhesive. Thus, the present adhesive has features such as low water absorption, low impurities content, generation

20 of very small amount of gas during heating, and the like; therefore, it has a very high industrial value as an electronics material in which high reliability and heat resistance are required, particularly as a material for mounting of semicon- ductors.

40

25 Claims

1 . Polyimide resin having a glass transition temperature of 350°C or lower and soluble in organic solvents, obtainable by reacting

(A) 4,4'-oxydiphthalic acid dianhydride 30 with a combination of the following amine components (C) and (D)

(C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount of the amine components:

35

H z N - R r - J - S i - O j - Si-R2-NH2 ( 1 )

40 \R* A Re

wherein R1 and R2 are each a bivalent aliphatic (C-,. or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20,

45 (D) 2,2-bis(4-(4-aminophenoxy)phenyl)propane and/or a bis(aminophenoxy)benzene and/or a dimethyl-phe- nylene-diamine provided that 2,2-bis(4-(4-aminophenoxy)phenyl)propane is not the sole component (D), and

converting the polyamic acid obtained into the polyimide resin.

so 2. Polyimide resin having a glass transition temperature of 350°C or lower and soluble in organic solvents, obtainable by reacting

(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid di- anhydride with a combination of the following amine components (C) and (D)

55 (C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount of the amine components:

29

EP 0 598 911 B1

H j N - R i - j - S i - O — Si-R2-NH2 ( i j

\R4 A

wherein R-, and R2 are each a bivalent aliphatic (C-,. or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20,

(D) 2,2-bis(4-(4-aminophenoxy)phenyl)propane and a dimethyl-phenylene-diamine, and

converting the polyamic acid obtained into the polyimide resin.

Polyimide resin having a glass transition temperature of 350°C or lower and soluble in organic solvents, obtainable by reacting

(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid di- anhydride with a combination ofthe following amine components (C) and (D)

(C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount of the amine components:

wherein R-, and R2 are each a bivalent aliphatic (C-,. or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20,

(D) a bis(aminophenoxy)benzene and 2,2-bis(4-(4-aminophenoxy)phenyl)propane and/or a dimethyl-phe- nylene-diamine, and

converting the polyamic acid obtained into the polyimide resin.

Polyimide resin having a glass transition temperature of 350°C dr lower and soluble in organic solvents, obtainable by reacting a combination of the following acid components (A) and (B)

(A) 4,4'-oxydiphthalic acid dianhydride

(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid dian- hydride

with a combination of the following amine components (C) and (D)

(C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount of the amine components:

30

EP 0 598 911 B1

( 1 )

wherein R-, and R2 are each a bivalent aliphatic (C-,. or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20,

(D) 2,2-bis(4-(4-aminophenoxy)phenyl)propane and/or a bis(aminophenoxy)benzene and/or a dimethyl-phe- nylene-diamine, and

converting the polyamic acid obtained into the polyimide resin.

Polyimide resin according to any one of claims 1 to 4, wherein the polyimide resin is capped, at the molecular ends, with an acid anhydride represented by the following general formula (2)

0

X 0

Y

0

( 2 )

X is at least one group selected from

H , C

HC = C a n d X X -

or an aromatic amine represented by the following general formula (3)

Y ( 3 )

wherein Y is at least one group selected from hydrogen atom and methyl, ethyl, propyl, butyl phenyl methoxy ethoxy, propoxy, butoxy and phenoxy groups.

Polyimide resin according to claim 1 or 4, wherein the polyimide resin is composed by using the acid component

31

EP 0 598 911 B1

(A), i.e, 4,4'-oxydiphthalic acid dianhydride in an amount of 60 mole% or more based on the total amount of the acid components.

7. Polyimide resin according to any one of claims 2 to 4, wherein the polyimide resin is composed by using, as the 5 acid component (B), p moles of 3,3',4,4'-biphenyl-tetracarboxylic acid dianhydride and q moles of 3,3',4,4'-benz-

ophenonetetracarboxylic acid dianhydride in proportions satisfying 0.5 <p/(p+q)<0.9.

8. Polyimide resin according to any one of claims 1 , 3 and 4, wherein the polyimide resin is composed by using, as the amine component (D), 1 ,3-bis(3-aminophenoxy)benzene in an amount of 10-90 mole% based on the total

10 amount ofthe amine components.

9. Polyimide resin according to claim 4, wherein the polyimide resin is composed by using, as the acid components, a moles of 4,4'-oxydiphthalic acid dianhydride and b moles of another tetracarboxylic acid dianhydride and, as the amine components, c moles of a siloxane compound represented by the general formula (1), d moles of 1,3-bis

is (3-aminophenoxy)benzene and/or dimethylphenylene-diamine and e moles of another diamine in proportions sat- isfying a/(a+b) >0.6, 0.6 >b/ (a+b) >0, 0.1 <c/ (c+d+e) <0.6, 0.6 <(c+d)/ (c+d+e), 0 <e/ (c+d+e) <0.6 and 0.950 < (a+b)/ (c+d+e) <1.02.

10. Polyimide resin according to claim 4, wherein the polyimide resin is composed of, as the acid components, a moles 20 of 4,4'-oxydiphthalic acid dianhydride and b moles of another tetracarboxylic acid dianhydride and, as the amine

components, c moles of a siloxane compound represented by the general formula (1), d moles of 1 ,3-bis(3-ami- nophenoxy)benzene and/or dimethylphenylene-diamine and e moles of another diamine, and wherein the poly- imide resin is capped, at the molecular ends, with fmoles of an acid anhydride represented by general formula (2) or g moles of an aromatic amine represented by general formula (3), and wherein the molar ratios of a, b, c, d, e,

25 f and g satisfy 0.6 <aJ (a+b+0.5f), 0 <b/ (a+b+0.5f) <0.6, 0.1 <c/ (c+d+e+0.5g) <0.6, 0 <e/ (c+d+e) <0.6, 0.01 <f/ (a+b+0.5f) <0.05 and 0.01 <g/(c+d+e+0.5g) <0.05 and either of f and g is 0.

1 1 . Polyimide resin according to claim 2 or 3, wherein the polyimide resin is composed by using as the acid components, p moles of 3,3',4,4'-biphenyltetra-carboxylic acid dianhydride and q moles of 3,3',4,4'-benzophenonetetracarbox-

30 ylic acid dianhydride and, as the amine components, c moles of a siloxane compound represented by the general formula (1), c' moles of 2,2-bis(4-(4-aminophenoxy)phenyl)propane and d moles of 1 ,3-bis(3-aminophenoxy)ben- zene and/or dimethylphenylenediamine so that the molar ratios of p, q, c, c' and d satisfy 0.5 <p/ (p+q) <0.9, 0.1 <q/ (p+q) <0.5 and 0.05 <c/ (c+c'+d) <0.5.

35 12. Polyimide resin according to claim 2 or 3, wherein the polyimide resin is composed of, as the acid components, p moles of 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and q moles of 3,3',4,4'-benzophenone-tetracarboxylic acid dianhydride and, as the amine components, c moles of a siloxane compound represented by the general formula (1), c' moles of 2,2-bis(4-(4-aminophenoxy)phenyl)propane and d moles of 1 ,3-bis(3-aminophenoxy)ben- zene and/or dimethylphenylenediamine, and wherein the polyimide resin is capped, at the molecular ends, with f

40 moles of an acid anhydride represented by general formula (2) or g moles of an aromatic amine represented by general formula (3), and wherein the molar ratios of p, q, c, c', d, f and g satisfy 0.5 < p/ (p+q+0.5f) < 0.9, 0.1 < q/ (p+q+0.5f) < 0.5, 0.05 < c/ (c+c'+d+0.5g) < 0.5, 0.01 < f/ (p+q+0.5f) < 0.05 and 0.01 < g/ (c+c'+d+0.5g) < 0.05 and either of f and g is 0.

45 13. Polyimide resin according to claim 4, wherein the polyimide resin is composed of, as the acid components, a moles of 4,4'-oxydiphthalic acid dianhydride and b moles of one or two tetracarboxylic acid dianhydrides selected from the group consisting of 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and 3,3',4,4'-benzophenonetetracarbox- ylic acid dianhydride and, as the amine components, c moles of a siloxane compound represented by the general formula (1), c' moles of 2,2-bis(4-(4-aminophenoxy)phenyl)propane and d moles of 1 ,3-bis(3-aminophenoxy)ben-

50 zene and/or dimethylphenylenediamine so that the molar ratios of a, b, c, c' and d satisfy a/ (a+b) > 0.6, b/ (a+b) < 0.4 and 0.05 < c/ (c+c'+d) < 0.5.

14. Polyimide resin according to claim 4, wherein the polyimide resin is composed of, as the acid components, a moles of 4,4'-oxydiphthalic acid dianhydride and b moles of one or two tetracarboxylic acid dianhydrides selected from

55 the group consisting of 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and 3,3',4,4'-benzophenonetetracarbox- ylic acid dianhydride and, as the amine components, c moles of a siloxane compound represented by the general formula (1), c' moles of 2,2-bis(4-(4-aminophenoxy)phenyl)propane and d moles of 1 ,3-bis(3-aminophenoxy)ben- zene and/or dimethylphenylenediamine, and wherein the polyimide resin is capped, at the molecular ends, with f

32

EP 0 598 911 B1

moles of an acid anhydride represented by general formula (2) or g moles of an aromatic amine represented by general formula (3), and wherein the molar ratios of a, b, c, c', d, f and g satisfy a/ (a+b+0.5 f) >0.6, b/ (a+b+0.5 f) <0.4, 0.05 <c/ (c+c'+d+0.5 g) <0.5, 0.01 <V (a+b+0.5 f) <0.05 and 0.01 <g/ (c+c'+d+0.5 g) and either of f and g is 0.

15. Adhesive film comprising a heat-resistant film base and a polyimide resin of any of claims 1 to 14 applied on one side or both sides ofthe film base.

16. Adhesive film according to claim 15, wherein the heat-resistant film base is a polyimide film having a glass transition temperature of 350°C or higher.

17. A process for producing an adhesive film, which comprises casting, on one side or both sides of a substrate, an organic solvent solution of a polyimide resin having a glass transition temperature of 350°C or lower and soluble in organic solvents, said polyimide resin being obtained by reacting

(A) 4,4'-oxydiphthalic acid dianhydride with a combination ofthe following amine components (C) and (D)

(C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount ofthe amine components:

wherein R-, and R2 are each a bivalent aliphatic (C-|_4) or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20,

(D) 2,2-bis(4-(4-aminophenoxy)phenyl)propane and/or a bis(aminophenoxy)benzene and/or a dimethylphe- nylene-diamine, and

converting the polyamic acid obtained into the polyimide resin.

18. A process for producing an adhesive film, which comprises casting on one side or both sides of a substrate, an organic solvent solution of a polyimide resin having a glass transition temperature of 350°C or lower and soluble in organic solvents, said polyimide resin being obtained by reacting

(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid di- anhydride with a combination ofthe following amine components (C) and (D)

(C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount ofthe amine components:

wherein R1 and R2 are each a bivalent aliphatic (C-|_4) or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20,

(D) 2,2-bis(4-(4-aminophenoxy)phenyl)propane and a dimethylphenylene-diamine, and

converting the polyamic acid obtained into the polyimide resin.

( 1 )

( 1 )

33

EP 0 598 911 B1

19. A process for producing an adhesive film, which comprises casting, on one side or both sides of a substrate, an organic solvent solution of a polyimide resin having a glass transition temperature of 350°C or lower and soluble in organic solvents, said polyimide resin being obtained by reacting

(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid di- 5 anhydride

with a combination ofthe following amine components (C) and (D)

(C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount of the amine components:

10

a2N ~ R l T y 1 " ° T " ~ 1 -Rz-NH2 ( i )

wherein R1 and R2 are each a bivalent aliphatic (C-|_4) or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20,

20 (D) a bis(aminophenoxy)benzene and 2,2-bis(4-(4-aminophenoxy)phenyl)propane and/or a dimethylphe- nylene-diamine, and

converting the polyamic acid obtained into the polyimide resin. 25

20. A process for producing an adhesive film, which comprises casting, on one side or both sides of a substrate, an organic solvent solution of a polyimide resin having a glass transition temperature of 350°C or lower and soluble in organic solvents, said polyimide resin being obtained by reacting a combination of the following acid components (A) and (B)

30 (A) 4,4'-oxydiphthalic acid dianhydride (B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid dian- hydride

35 with a combination of the following amine components (C) and (D)

(C) 60 to 5% by mole of a siloxane compound represented by the following general formula (1 ), based on the total amount ofthe amine components:

40

45

/ ' 3 1 13 H2N-Ri — S i - C H - S i - R 2 - N H 2

\R4 /k FLs

( 1 )

wherein R1 and R2 are each a bivalent aliphatic (C-|_4) or aromatic group; R3, R4, R5 and R6 are each a mono- valent aliphatic or aromatic group; and k is an integer of 1-20, (D) 2,2-bis(4-(4-aminophenoxy)phenyl)propane and/or a bis(aminophenoxy)benzene and/or a dimethylphe-

so nylene-diamine, and

converting the polyamic acid obtained into the polyimide resin.

21. A process for producing an adhesive film according to any one of claims 17 to 20, wherein the polyimide resin is 55 capped, at the molecular ends, with an acid anhydride represented by the following general formula (2)

34

EP 0 598 911 B1

A

Y

( 2 )

X is at least one group selected from

H3C

H3C and ii

or an aromatic amine represented by the following general formula (3)

Y ( 3 )

wherein Y is at least one group selected from hydrogen atom and methyl, ethyl, propyl, butyl, phenyl, methoxy ethoxy, propoxy, butoxy and phenoxy groups.

22. A process for producing an adhesive film according to any one of claims 17 to 21, wherein the substrate is a polyimide film having a glass transition temperature of 350°C or higher.

23. A process for producing an adhesive film according to any one of claims 17 to 21, which comprises peeling the substrate after casting and drying.

24. A process according to claim 23, wherein the substrate is a biaxially stretched polyester film.

25. A process for producing an adhesive film according to any one of claims 17 to 24, which comprises casting said polyimide resin solution on a substrate by use of an organic solvent having a boiling point of 180°C or lower, drying the cast polyimide resin solution and peeling the dried polyimide resin from the substate.

Patentanspruche

1. Polyimidharz mit einer Glasubergangstemperatur von 350°C oder darunter und loslich in organischen Losungs- mitteln, erhaltlich durch Umsetzung von (A) 4,4'-Oxydiphthalsauredianhydrid mit einer Kombination der nachstehenden Amin-Komponenten (C) und (D)

(C) 60 bis 5 Mol-% einer Siloxanverbindung der nachstehenden allgemeinen Formel (1), bezogen auf die

35

EP 0 598 911 B1

Gesamtmenge der Amin-Komponenten,

J ? 1 15 H ^ - R ^ S i - O H - - - S i - R 2 - N H 2

\R4 /k Rfi

(1)

wobei die Reste R-, und R2 jeweils ein zweiwertiger aliphatischer (Ci_4) oderaromatischer Rest sind, die Reste R3, R4, R5 und R6 jeweils ein einwertiger aliphatischer oder aromatischer Rest sind und k eine ganze Zahl von 1 -20 ist,

(D) 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und/oder ein Bis-(aminophenoxy)-benzol und/oder ein Di- methyl-phenylen-diamin, mit der MaBgabe, dal3 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan nicht die allei- nige Komponente (D) ist, und

Uberfuhren der erhaltenen Polyamidsaure in das Polyimidharz.

Polyimidharz mit einer Glasubergangstemperatur von 350°C oder darunter und loslich in organischen Losungs- mitteln, erhaltlich durch Umsetzung von (B) 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und/oder 3,3',4,4'-Benzophenontetracarbonsauredianhydrid mit einer Kombination der nachstehenden Amin-Komponenten (C) und (D)

(C) 60 bis 5 Mol-% einer Siloxanverbindung der nachstehenden allgemeinen Formel (1), bezogen auf die Gesamtmenge der Amin-Komponenten

\R* A Rs

( l )

wobei die Reste R1 und R2 jeweils ein zweiwertiger aliphatischer (C-|_4) oderaromatischer Rest sind, die Reste R3, R4, R5 und R6 jeweils ein einwertiger aliphatischer oder aromatischer Rest sind und k eine ganze Zahl von 1 -20 ist,

(D) 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und ein Dimethyl-phenylen-diamin, und

Uberfuhren der erhaltenen Polyamidsaure in das Polyimidharz.

Polyimidharz mit einer Glasubergangstemperatur von 350°C oder darunter und loslich in organischen Losungs- mitteln, erhaltlich durch Umsetzung von (B) 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und/oder 3,3',4,4'-Benzophenontetracarbonsauredianhydrid mit einer Kombination der nachstehenden Amin-Komponenten (C) und (D)

(C) 60 bis 5 Mol-% einer Siloxanverbindung der nachstehenden allgemeinen Formel (1), bezogen auf die Gesamtmenge der Amin-Komponenten

(1)

wobei die Reste R-, und R2 jeweils ein zweiwertiger aliphatischer (C-,_4) oderaromatischer Rest sind, die Reste

36

EP 0 598 911 B1

R3, R4, R5 und R6 jeweils ein einwertiger aliphatischer oder aromatischer Rest sind und k eine ganze Zahl von 1 -20 ist,

(D) ein Bis-(aminophenoxy)-benzol und 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und/oder ein Dimethyl- phenylen-diamin, und

Uberfuhren der erhaltenen Polyamidsaure in das Polyimidharz.

Polyimidharz mit einer Glasubergangstemperatur von 350°C oder darunter und loslich in organischen Losungs- mitteln, erhaltlich durch Umsetzung einer Kombination der nachstehenden Saure-Komponenten (A) und (B)

(A) 4,4'-Oxydiphthalsauredianhydrid,

(B) 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und/oder 3,3',4,4'-Benzophenontetracarbonsauredi- anhydrid

mit einer Kombination der nachstehenden Amin-Komponenten (C) und (D)

(C) 60 bis 5 Mol-% einer Siloxanverbindung der nachstehenden allgemeinen Formel (1), bezogen auf die Gesamtmenge der Amin-Komponenten

wobei die Reste R1 und R2 jeweils ein zweiwertiger aliphatischer (C-|_4) oderaromatischer Rest sind, die Reste R3, R4, R5 und R6 jeweils ein einwertiger aliphatischer oder aromatischer Rest sind und k eine ganze Zahl von 1 -20 ist,

(D) 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und/oder ein Bis-(aminophenoxy)-benzol und/oder ein Di- methyl-phenylen-diamin, und

Uberfuhren der erhaltenen Polyamidsaure in das Polyimidharz.

Polyimidharz nach einem der Anspruche 1 bis 4, wobei das Polyimidharz an seinen Molekulenden abgeschlossen ist mit einem Saureanhydrid der nachstehenden allgemeinen Formel (2)

H 2 N - R i 4 - S i - i S I -R2-NH2 (1)

0

0 X (2)

0

wobei X mindestens ein Rest ist, ausgewahlt aus

37

EP 0 598 911 B1

oder einem aromatischen Amin der nachstehenden allgemeinen Formel (3)

wobei der Rest Y mindestens ein Rest ist, ausgewahlt aus Wasserstoffatomen und Methyl-, Ethyl-, Propyl-, Butyl-, Phenyl-, Methoxy-, Ethoxy-, Propoxy-, Butoxy- und Phenoxyresten.

. Polyimidharz gemaB Anspruch 1 oder 4, wobei das Polyimidharz gebildet wird unter Verwendung der Saure-Kom- ponente (A), d.h. 4,4'-Oxydiphthalsauredianhydrid in einer Menge von 60 Mol-% oder mehr, bezogen auf die Ge- samtmenge der Saure-Komponenten.

. Polyimidharz gemaB einem der Anspruche 2 bis 4, wobei das Polyimidharz gebildet wird unter Verwendung, als Saure-Komponente (B), von p Mol 3,3',4,4'-Biphenyl-tetracarbonsauredianhydrid und q Mol 3,3',4,4'-Benzophe- nontetracarbonsauredianhydrid in Anteilen, die die Gleichung 0,5 < p/(p+q) < 0,9 erfullen.

. Polyimidharz gemaB einem der Anspruche 1, 3 und 4, wobei das Polyimidharz gebildet wird unter Verwendung, als Amin-Komponente (D), von 1 ,3-Bis-(3-aminophenoxy)-benzol in einer Menge von 10-90 Mol-% bezogen auf die Gesamtmenge der Amin-Komponenten.

. Polyimidharz gemaB Anspruch 4, wobei das Polyimidharz gebildet wird unter Verwendung, als Saure-Komponen- ten, von a Mol 4,4'-Oxydiphthalsauredianhydrid und b Mol eines weiteren Tetracarbonsauredianhydrids und, als Amin-Komponenten, von c Mol einer Siloxanverbindung der allgemeinen Formel (1 ), d Mol 1 ,3-Bis-(3-aminophen- oxy)-benzol und/oder Dimethylphenylen-diamin und e Mol eines weiteren Diamins in Anteilen, die die folgenden Bedingungen erfullen, a/(a+b) > 0,6, 0,6 > b/(a+b) > 0, 0,1 < c/(c+d+e) < 0,6, 0,6 < (c+d)/(c+d+e), 0 < e/(c+d+e) < 0,6 und 0,950 < (a+b)/(c+d+e) < 1,02.

0. Polyimidharz gemaB Anspruch 4, wobei das Polyimidharz zusammengesetzt ist aus, als den Saure-Komponenten, a Mol 4,4'-Oxydiphthalsauredianhydrid und b Mol eines weiteren Tetracarbonsauredianhydrids und, als den Amin- Komponenten, c Mol einer Siloxanverbindung der allgemeinen Formel (1), d Mol 1 ,3-Bis-(3-aminophenoxy)-benzol und/oder Dimethylphenylen-diamin und e Mol eines weiteren Diamins, und wobei das Polyimidharz an seinen Molekulenden abgeschlossen ist mit f Mol eines Saureanhydrids der allgemeinen Formel (2) oder g Mol eines aromatischen Amins der allgemeinen Formel (3), und wobei die Molverhaltnisse von a, b, c, d, e, f und g die nachstehenden Bedingungen erfullen, 0,6 < a/(a+b+0,5f), 0 < b/(a+b+0,5f) <0,6, 0,1 < c/(c+d+e+0,5g) < 0,6, 0 < e/(c+d+e) < 0,6, 0,01 < f/(a+b+0,5f) < 0,05 und 0,01 < g/(c+d+e+0,5g) < 0,05 und entweder foder g ist 0.

1. Polyimidharz nach Anspruch 2 oder 3, wobei das Polyimidharz gebildet wird unter Verwendung, als den Saure- Komponenten, von p Mol 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und q Mol 3,3',4,4'-Benzophenontetracar- bonsauredianhydrid und, als den Amin-Komponenten, von c Mol einer Siloxanverbindung der allgemeinen Formel

38

EP 0 598 911 B1

(1 ), c' Mol 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und d Mol 1 ,3-Bis-(3-aminophenoxy)-benzol und/oder Di- methylphenylendiamin, so dal3 die Molverhaltnisse von p, q, c, c' und d die nachstehenden Bedingungen erfullen, 0,5 < p/(p+q) < 0,9, 0,1 < q/(p+q) < 0,5 und 0,05 < c/(c+c'+d) < 0,5.

5 12. Polyimidharz nach Anspruch 2 oder 3, wobei das Polyimidharz zusammengesetzt ist aus, als den Saurekompo- nenten, p Mol 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und q Mol 3,3',4,4'-Benzophenontetracarbonsauredi- anhydrid und, als den Amin-Komponenten, c Mol einer Siloxanverbindung der allgemeinen Formel (1), c' Mol 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und d Mol 1 ,3-Bis-(3-aminophenoxy)-benzol und/oder Dimethylphe- nylendiamin, und wobei das Polyimidharz an seinen Molekulenden abgeschlossen ist mit f Mol eines Saureanhy-

10 drids der allgemeinen Formel (2) oder g Mol eines aromatischen Amins der allgemeinen Formel (3), und wobei die Molverhaltnisse von p, q, c, c', d, fund g die nachstehenden Bedingungen erfullen, 0,5 < p/(p+q+0,5f) < 0,9, 0, 1 < q/(p+q+0,5f) < 0,5, 0,05 < c/(c+c'+d+0,5g) < 0,5, 0,01 < f/(p+q+0,50 < 0,05 und 0,01 < g/(c+c'+d+0,5g) <0,05 und entweder f oder g ist 0.

is 13. Polyimidharz gemaB Anspruch 4, wobei das Polyimidharz zusammengesetzt ist aus, als den Saure-Komponenten, a Mol 4,4'-Oxydiphthalsauredianhydrid und b Mol von einem oder zwei Tetracarbonsauredianhydriden, ausgewahlt aus der Gruppe, bestehend aus 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und 3,3',4,4'-Benzophenontetracar- bonsauredianhydrid und, als den Amin-Komponenten, c Mol einer Siloxanverbindung der allgemeinen Formel (1 ), c' Mol 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und d Mol 1 ,3-Bis-(3-aminophenoxy)benzol und/oder Dime-

20 thylphenylendiamin, so dal3 die Molverhaltnisse von a, b, c, c' und d die folgenden Bedingungen erfullen, a/(a+b) > 0,6, b/(a+b) < 0,4 und 0,05 < c/(c+c'+d) < 0,5.

14. Polyimidharz gemaB Anspruch 4, wobei das Polyimidharz zusammengesetzt ist aus, als den Saure-Komponenten, a Mol 4,4'-Oxydiphthalsauredianhydrid und b Mol von einem oder zwei Tetracarbonsauredianhydriden, ausgewahlt

25 aus der Gruppe, bestehend aus 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und 3,3',4,4'-Benzophenontetracar- bonsauredianhydrid und, als den Amin-Komponenten, c Mol einer Siloxanverbindung der allgemeinen Formel (1 ), c' Mol 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und d Mol 1 ,3-Bis-(3-aminophenoxy)benzol und/oder Dime- thylphenylendiamin, und wobei das Polyimidharz an seinen Molekulenden abgeschlossen ist mit f Mol eines Sau- reanhydrids der allgemeinen Formel (2) oder g Mol eines aromatischen Amins der allgemeinen Formel (3), und

30 wobei die Molverhaltnisse von a, b, c, c', d, fund g die folgenden Bedingungen erfullen, a/(a+b+0,5f) > 0,6, b/ (a+b+0,5f) < 0,4, 0,05 < c/(c+c'+d+0,5g) < 0,5, 0,01 < f/(a+b+0,5f) < 0,05 und 0,01 < g/(c+c'+d+0,5g) und entweder f oder g ist 0.

15. Klebstoffilm, umfassend eine warmebestandige Filmgrundlage und ein Polyimidharz nach einem der Anspruche 35 1 bis 14, das auf einer Seite oder beiden Seiten der Filmgrundlage aufgetragen ist.

16. Klebstoffilm gemaB Anspruch 15, wobei die warmebestandige Filmgrundlage ein Polyimidfilm mit einer Glasuber- gangstemperatur von 350°C oder hoher ist.

40 17. Ein Verfahren zur Herstellung eines Klebstoffilms, umfassend das Aufbringen, auf einer Seite oder beiden Seiten eines Substrats, einer Losung in einem organischen Losungsmittel eines Polyimidharzes mit einer Glasubergangs- temperatur von 350°C oder darunter und loslich in organischen Losungsmitteln, wobei das Polyimidharz erhalten wird durch Umsetzung von (A) 4,4'-Oxydiphthalsauredianhydrid,

45 mit einer Kombination der nachstehenden Amin-Komponenten (C) und (D)

(C) 60 bis 5 Mol-% einer Siloxanverbindung der nachstehenden allgemeinen Formel (1), bezogen auf die Gesamtmenge der Amin-Komponenten

50

55

(1)

wobei die Reste R-, und R2 jeweils ein zweiwertiger aliphatischer (Ci_4) oderaromatischer Rest sind, die Reste

39

EP 0 598 911 B1

R3, R4, R5 und R6 jeweils ein einwertiger aliphatischer oder aromatischer Rest sind und k eine ganze Zahl von 1 -20 ist,

(D) 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und/oder ein Bis-(aminophenoxy)-benzol und/oder ein Di- methylphenylendiamin, und

Uberfuhren der erhaltenen Polyamidsaure in das Polyimidharz.

Ein Verfahren zur Herstellung eines Klebstoffilms, umfassend das Aufbringen, auf einer Seite oder beiden Seiten eines Substrats, einer Losung in einem organischen Losungsmittel eines Polyimidharzes mit einer Glasubergangs- temperatur von 350°C oder darunter und loslich in organischen Losungsmitteln, wobei das Polyimidharz erhalten wird durch Umsetzung von (B) 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und/oder 3,3',4,4'-Benzophenontetracarbonsauredianhydrid mit einer Kombination der nachstehenden Amin-Komponenten (C) und (D)

(C) 60 bis 5 Mol-% einer Siloxanverbindung der nachstehenden allgemeinen Formel (1), bezogen auf die Gesamtmenge der Amin-Komponenten

wobei die Reste R-, und R2 jeweils ein zweiwertiger aliphatischer (C-|_4) oderaromatischer Rest sind, die Reste R3, R4, R5 und R6 jeweils ein einwertiger aliphatischer oder aromatischer Rest sind, und k eine ganze Zahl von 1 -20 ist,

(D) 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und ein Dimethylphenylendiamin, und

Uberfuhren der erhaltenen Polyamidsaure in das Polyimidharz.

Ein Verfahren zur Herstellung eines Klebstoffilms, umfassend das Aufbringen, auf einer Seite oder beiden Seiten eines Substrats, einer Losung in einem organischen Losungsmittel eines Polyimidharzes mit einer Glasubergangs- temperatur von 350°C oder darunter und loslich in organischen Losungsmitteln, wobei das Polyimidharz erhalten wird durch Umsetzung von (B) 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und/oder 3,3',4,4'-Benzophenontetracarbonsauredianhydrid mit einer Kombination der nachstehenden Amin-Komponenten (C) und (D)

(C) 60 bis 5 Mol-% einer Siloxanverbindung der nachstehenden allgemeinen Formel (1), bezogen auf die Gesamtmenge der Amin-Komponenten

wobei die Reste R-, und R2 jeweils ein zweiwertiger aliphatischer (C-,_4) oderaromatischer Rest sind, die Reste R3, R4, R5 und R6 jeweils ein einwertiger aliphatischer oder aromatischer Rest sind, und k eine ganze Zahl von 1 -20 ist,

(D) ein Bis-(aminophenoxy)-benzol und 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und/oder ein Dimethyl- phenylendiamin, und

Uberfuhren der erhaltenen Polyamidsaure in das Polyimidharz.

(1)

H 2 N - R H - S i S i - R 2 - H H 2 (1)

40

EP 0 598 911 B1

20. Ein Verfahren zur Herstellung eines Klebstoffilms, umfassend das Aufbringen, auf einer Seite oder beiden Seiten eines Substrats, einer Losung in einem organischen Losungsmittel eines Polyimidharzes mit einer Glasubergangs- temperatur von 350°C oder darunter und loslich in organischen Losungsmitteln, wobei das Polyimidharz erhalten wird durch Umsetzung einer Kombination der nachstehenden Saure-Komponenten (A) und (B)

(A) 4,4'-Oxydiphthalsauredianhydrid,

(B) 3,3',4,4'-Biphenyltetracarbonsauredianhydrid und/oder 3,3',4,4'-Benzophenontetracarbonsauredi- anhydrid

mit einer Kombination der nachstehenden Amin-Komponenten (C) und (D)

(C) 60 bis 5 Mol-% einer Siloxanverbindung der nachstehenden allgemeinen Formel (1), bezogen auf die Gesamtmenge der Amin-Komponenten

wobei die Reste R1 und R2 jeweils ein zweiwertiger aliphatischer (C-,. oderaromatischer Rest sind, die Reste R3, R4, R5 und R6 jeweils ein einwertiger aliphatischer oder aromatischer Rest sind, und k eine ganze Zahl von 1 -20 ist,

(D) 2,2-Bis-(4-(4-aminophenoxy)-phenyl)-propan und/oder ein Bis-(aminophenoxy)-benzol und/oder ein Di- methylphenylendiamin, und

Uberfuhren der erhaltenen Polyamidsaure in das Polyimidharz.

21 . Verfahren zur Herstellung eines Klebstoffilms gemaB einem der Anspruche 1 7 bis 20, wobei das Polyimidharz an seinen Molekulenden abgeschlossen ist mit einem Saureanhydrid der nachstehenden allgemeinen Formel (2)

0 )

0

0 X (2)

0

wobei der Rest X mindestens ein Rest ist, ausgewahlt aus der Gruppe von

41

EP 0 598 911 B1

und HC=C

)

oder einem aromatischen Amin der nachstehenden allgemeinen Formel (3)

Y

NH2 (3)

wobei der Rest Y mindestens ein Rest ist, ausgewahlt aus Wasserstoffatomen und Methyl-, Ethyl-, Propyl-, Butyl-, Phenyl-, Methoxy-, Ethoxy-, Propoxy-, Butoxy- und Phenoxyresten.

22. Verfahren zur Herstellung eines Klebstoffilms gemaB einem der Anspruche 17 bis 21, wobei das Substrat ein Polyimidfilm ist mit einer Glasubergangstemperatur von 350°C oder hoher.

23. Verfahren zur Herstellung eines Klebstoffilms gemaB einem der Anspruche 17 bis 21, umfassend das Abziehen des Substrats nach dem Aufbringen und Trocknen.

24. Verfahren nach Anspruch 23, wobei das Substrat ein biaxial gestreckter Polyesterfilm ist.

25. Verfahren zur Herstellung eines Klebstoffilms gemaB einem der Anspruche 17 bis 24, umfassend das Aufbringen der Polyimidharz-Losung auf ein Substrat unter Verwendung eines organischen Losungsmittels mit einem Siede- punkt von 180°C oder darunter, Trocknen der GieB-Polyimidharz-Losung und Abziehen des getrockneten Poly- imidharzes von dem Substrat.

Revendications

1. Resine de polyimide qui possede une temperature de transition vitreuse de 350°C ou plus basse et qui est soluble dans des solvants organiques, que Ton peut obtenir en faisant reagir

(A) le dianhydride d'acide 4,4'-oxydiphtalique avec une combinaison des constituants amine (C) et (D) suivants

(C) 60 a 5% en moles d'un compose siloxane represents par la formule generale (1) suivante, par rapport a la quantite totale des constituants amine:

H 2 N - R i 4 - S i - i T i

j - S i - R 2 - N H 2

k R«

( 1 )

42

EP 0 598 911 B1

dans laquelle R-, et R2 representent chacun un groupe aliphatique en C-1-C4 ou aromatique bivalent; R3, R4, R5 et R6 representent chacun un groupe aliphatique ou aromatique monovalent; et k est un nombre entier de 1 a 20; (D) le 2,2-bis(4-(4-aminophenoxy)phenyl)propane et/ou un bis(aminophenoxy)benzene et/ou une dimethyl- phenylenediamine, a condition que le 2,2-bis(4-(4-aminophenoxy)phenyl)propane ne soit pas le seul consti- tuant (D), et

en convertissant le poly(acide amidique) obtenu en resine de polyimide.

Resine de polyimide qui possede une temperature de transition vitreuse de 350°C ou plus basse et qui est soluble dans des solvants organiques, que Ton peut obtenir en faisant reagir

(B) le dianhydride d'acide 3,3',4,4'-biphenyltetracarboxylique et/ou le dianhydride d'acide 3,3','4,4'-ben- zophenonetetracarboxylique avec une combinaison des constituants amine (C) et (D) suivants

(C) 60 a 5% en moles d'un compose siloxane represents par la formule generale (1) suivante, par rapport a la quantite totale des constituants amine:

H 2 N - R r ( - S i - C > 4 - SL-R2-NH2 (1 )

dans laquelle R-, et R2 representent chacun un groupe aliphatique en C-1-C4 ou aromatique bivalent; R3, R4, R5 et R6 representent chacun un groupe aliphatique ou aromatique monovalent; et k est un nombre entier de 1 a 20; (D) le 2,2-bis(4-(4-aminophenoxy)phenyl)propane et une dimethylphenylenediamine, et

en convertissant le poly(acide amidique) obtenu en resine de polyimide.

Resine de polyimide qui possede une temperature de transition vitreuse de 350°C ou plus basse et qui est soluble dans des solvants organiques, que Ton peut obtenir en faisant reagir

(B) le dianhydride d'acide 3,3',4,4'-biphenyltetracarboxylique et/ou le dianhydride d'acide 3,3',4,4'-benzophe- nonetetracarboxylique avec une combinaison des constituants amine (C) et (D) suivants

(C) 60 a 5% en moles d'un compose siloxane represents par la formule generale (1) suivante, par rapport a la quantite totale des constituants amine:

H 2 N - R i 4 - S i - 0 4 - S i - R 2 - H H 2 ( 1 )

dans laquelle R-, et R2 representent chacun un groupe aliphatique en C-1-C4 ou aromatique bivalent; R3, R4, R5 et R6 representent chacun un groupe aliphatique ou aromatique monovalent; et k est un nombre entier de 1 a 20; (D) un bis(aminophenoxy)benzene et le 2,2-bis(4-(4-aminophenoxy)phenyl)propane et/ou une dimethylphe- nylenediamine, et

en convertissant le poly(acide amidique) obtenu en resine de polyimide.

Resine de polyimide qui possede une temperature de transition vitreuse de 350°C ou plus basse et qui est soluble

43

EP 0 598 911 B1

dans des solvants organiques, que Ton peut obtenir en faisant reagir une combinaison des constituants acides (A) et (B) suivants

(A) le dianhydride d'acide 4,4'-oxydiphtalique (B) le dianhydride d'acide 3,3',4,4'-biphSnyltStracarboxylique et/ou le dianhydride d'acide 3,3',4,4'-benzophe- nonetetracarboxylique

avec une combinaison des constituants amine (C) et (D) suivants

(C) 60 a 5% en moles d'un compose siloxane represents par la formule generale (1) suivante, par rapport a la quantite totale des constituants amine:

dans laquelle R-, et R2 representent chacun un groupe aliphatique en C-1-C4 ou aromatique bivalent; R3, R4, R5 et R6 representent chacun un groupe aliphatique ou aromatique monovalent; et k est un nombre entier de 1 a 20; (D) le 2,2-bis(4-(4-aminophSnoxy)phSnyl)propane et/ou un bis(aminophenoxy)benzene et/ou une dimethyl- phenylenediamine, et

en convertissant le poly(acide amidique) obtenu en resine de polyimide.

Resine de polyimide selon Tune quelconque des revendications 1 a 4, dont les extrSmitSsmolSculairessontcoiffSes par un anhydride d'acide represents par la formule gSnSrale (2) suivante

H2N-Rr

'k Rfi

S i - R 2 - N H 2 ( 1 )

0

( 2 ) X 0

0

(X est au moins un groupe choisi parmi:

1

H C s C et )

44

EP 0 598 911 B1

ou par une amine aromatique representee par la formule generale (3) suivante

5

dans laquelle Y est au moins un groupe choisi parmi I'atome d'hydrogene, et les groupes methyle, ethyle, propyle, butyle, phenyle, methoxy, ethoxy, propoxy, butoxy et phenoxy.

10 6. Resine de polyimide selon la revendication 1 ou 4, dans laquelle la resine de polyamide est constitute a I'aide du

constituant acide (A), a savoir le dianhydride d'acide 4,4'-oxydiphtalique, a raison de 60% en moles ou plus, par rapport a la quantite totale des constituants acides.

is 7. Resine de polyimide selon I'une quelconque des revendications 2 a 4, dans laquelle la resine de polyimide est constitute, en tant que constituant acide (B), de p moles de dianhydride d'acide 3,3',4,4'-biphenyltetracarboxylique et de q moles de dianhydride d'acide 3,3',4,4'-benzophenonetetracarboxylique, dans des proportions satisfaisant a 0,5<p/(p+q)<0,9.

20 8. Resine de polyimide selon I'une quelconque des revendications 1 , 3 et 4, dans laquelle la resine de polyimide est constitute, en tant que constituants amine (D), du 1 ,3-bis(3-aminophenoxy)benzene, a raison de 10-90% en moles, par rapport a la quantite totale des constituants amine.

9. Resine de polyimide selon la revendication 4, dans laquelle la resine de polyimide est constitute, en tant que 25 constituants acides, de a moles de dianhydride d'acide 4,4'-oxydiphtalique et de b moles d'un autre dianhydride

d'acide tttracarboxylique et, en tant que constituants amine, de c moles d'un compost siloxane reprtsentt par la formule gtntrale (1 ), de d moles de 1 ,3-bis(3-aminophtnoxy)benzene et/ou de dimtthylphtnylene-diamine et de e moles d'une autre diamine, dans des proportions satisfaisant a a/(a+b)>0,6, 0,6>b/(a+b)>0, 0,1<c/(c+d+e)<0,6, 0,6<(c+d)/(c+d+e), 0<e/(c+d+e)<0,6 et 0,950<(a+b)/(c+d+e)<1 ,02.

30 10. Rtsine de polyimide selon la revendication 4, dans laquelle la rtsine de polyimide est constitute, en tant que

constituants acides, de a moles de dianhydride d'acide 4,4'-oxydiphtalique et de b moles d'un autre dianhydride d'acide tttracarboxylique et, en tant que constituants amine, de c moles d'un compost siloxane reprtsentt par la formule gtntrale (1), de d moles de 1 ,3-bis(3-aminophtnoxy)benzene et/ou de dimtthylphtnylenediamine et de

35 e moles d'une autre diamine, et dont les extrtmitts moltculaires sont coifftes par f moles d'un anhydride d'acide reprtsentt par la formule gtntrale (2) ou par g moles d'une amine aromatique reprtsentte par la formule gtntrale (3), et dans laquelle les rapports molaires de a, b, c, d, e, f et g satisfont a 0,6<a/(a+b+0,5f), 0<b/(a+b+0,5f)<0,6, 0, 1 <c/(c+d+e+0,5g)<0,6, 0<e/(c+d+e)<0,6, 0,01 <f/(a+b+0,5f)<0,05 et 0,01 <g/(c+d+e+0,5g)<0,05 et soit f soit g est nul.

40 11. Rtsine de polyimide selon la revendication 2 ou 3, dans laquelle la rtsine de polyimide est constitute, en tant que

constituants acides, de p moles de dianhydride d'acide 3,3',4,4'-biphtnyltttracarboxylique et de q moles de dian- hydride d'acide 3,3',4,4'-benzophtnonetttracarboxylique et, en tant que constituants amine, de c moles d'un com- post siloxane reprtsentt par la formule gtntrale (1), de c' moles de 2,2-bis(4-(4-aminophtnoxy)phtnyl)propane

45 et de d moles de 1 ,3-bis(3-aminophtnoxy)benzene et/ou de dimtthylphtnylenediamine, de sorte que les rapports molaires de p, q, c, c' et d satisfont a 0,5<p/(p+q)<0,9, 0,1<q/(p+q)<0,5 et 0,05<c/(c+c'+d)<0,5.

12. Rtsine de polyimide selon la revendication 2 ou 3, dans laquelle la rtsine de polyimide est constitute, en tant que constituants acides, de p moles de dianhydride d'acide 3,3',4,4'-biphtnyltttracarboxylique et de q moles de dian-

so hydride d'acide 3,3',4,4'-benzophtnonetttracarboxylique et, en tant que constituants amine, de c moles d'un com- post siloxane reprtsentt par la formule gtntrale (1), de c' moles de 2,2-bis(4-(4-aminophtnoxy)phtnyl)propane et de d moles de 1 ,3-bis(3-aminophtnoxy)benzene et/ou de dimtthylphtnylenediamine, et dont les extrtmitts moltculaires sont coifftes part moles d'un anhydride d'acide reprtsentt par la formule gtntrale (2) ou par g moles d'une amine aromatique reprtsentte par la formule gtntrale (3), et dans laquelle les rapports molaires de p, q,

55 c, c', d, f et g satisfont a 0,5<p/(p+q+0,5f)<0, 9, 0,1<q/(p+q+0,5f)<0,5, 0,05<c/(c+c'+d+0,5g)<0,5, 0,01<f/(p+q+0,5f) <0,05 et 0,01<g/(c+c'+d+0,5g)<0,05 et soit f soit g est nul.

13. Rtsine de polyimide selon la revendication 4, dans laquelle la rtsine de polyimide est constitute, en tant que

45

EP 0 598 911 B1

constituants acides, de a moles de dianhydride d'acide 4,4'-oxydiphtalique et de b moles d'un ou de deux dianhy- drides d'acide tetracarboxylique choisis dans le groupe constitue par le dianhydride d'acide 3,3',4,4'-biphSnyltS- tracarboxylique et le dianhydride d'acide 3,3',4,4'-benzophenonetetracarboxylique et, en tant que constituants ami- ne, de c moles d'un compose siloxane represents par la formule generale (1), de c' moles de 2,2-bis(4-(4-amino- phenoxy)phenyl)propane et de d moles de 1 ,3-bis(3-aminophenoxy)benzene et/ou de dimethylphenylenediamine, de sorte que les rapports molaires de a, b, c, c' et d satisfont a a/(a+b)>0,6, b/(a+b)<0,4 et 0,05<c/(c+c'+d)<0,5.

Resine de polyimide selon la revendication 4, dans laquelle la resine de polyimide est constitute, en tant que constituants acides, de a moles de dianhydride d'acide 4,4'-oxydiphtalique et de b moles d'un ou de deux dianhy- drides d'acide tetracarboxylique choisis dans le groupe constitue par le dianhydride d'acide 3,3',4,4'-biphenylte- tracarboxylique et le dianhydride d'acide 3,3',4,4'-benzophenonetetracarboxylique et, en tant que constituants ami- ne, de c moles d'un compose siloxane represents par la formule generale (1), de c' moles de 2,2-bis(4-(4-amino- phenoxy)phenyl)propane et de d moles de 1 ,3-bis(3-aminophenoxy)benzene et/ou de dimethylphenylenediamine, et dont les extremites molSculaires sont coiffees par f moles d'un anhydride d'acide represents par la formule generale (2) ou par g moles d'une amine aromatique representee par la formule generale (3), et dans laquelle les rapports molaires de a, b, c, c', d, f et g satisfont a a/(a+b+0,5f)>0,6, b/(a+b+0,5f)<0,4, 0,05<c/(c+c'+d+0,5g)<0,5, 0,01<f/(a+b+0,5f)<0,05 et 0,01<g/(c+c'+d+0,5g) et soit f soit g est nul.

Film adhSsif comprenant un film de base resistant a la chaleur et une resine de polyimide selon I'une quelconque des revendications 1 a 14, appliquSe sur une face ou sur les deux faces du film de base.

Film adhesif selon la revendication 15, dans lequel le film de base resistant a la chaleur est un film de polyimide ayant une temperature de transition vitreuse de 350°C ou plus SlevSe.

ProcSdS de production d'un film adhesif qui comprend le fait de couler, sur une face ou sur les deux faces d'un substrat, une solution dans un solvant organique d'une resine de polyimide qui possede une temperature de tran- sition vitreuse de 350°C ou plus basse et qui est soluble dans des solvants organiques, ladite resine de polyimide pouvant etre obtenue par reaction

(A) du dianhydride d'acide 4,4'-oxydiphtalique avec une combinaison des constituants amine (C) et (D) suivants

(C) 60 a 5% en moles d'un compose siloxane represents par la formule gSnSrale (1) suivante, par rapport a la quantitS totale des constituants amine;

dans laquelle R-, et R2 reprSsentent chacun un groupe aliphatique en C-1-C4 ou aromatique bivalent; R3, R4, R5 et R6 reprSsentent chacun un groupe aliphatique ou aromatique monovalent; et k est un nombre entier de 1 a 20; (D) le 2,2-bis(4-(4-aminophSnoxy)phSnyl)propane et/ou un bis(aminophSnoxy)benzene et/ou une dimSthyl- phSnylenediamine, et

de convertir le poly(acide amidique) obtenu en rSsine de polyimide.

ProcSdS de production d'un film adhSsif qui comprend le fait de couler, sur une face ou sur les deux faces d'un substrat, une solution dans un solvant organique d'une rSsine de polyimide qui possede une tempSrature de tran- sition vitreuse de 350°C ou plus basse et qui est soluble dans des solvants organiques, ladite rSsine de polyimide pouvant etre obtenue par rSaction

(B) du dianhydride d'acide 3,3',4,4'-biphSnyltStracarboxylique et/ou du dianhydride d'acide 3,3',4,4'-ben- zophSnonetStracarboxylique avec une combinaison des constituants amine (C) et (D) suivants

( 1 )

46

EP 0 598 911 B1

(C) 60 a 5% en moles d'un compose siloxane represents par la formule generale (1) suivante, par rapport a la quantite totale des constituants amine:

� 0 — Si-R2-KH2 ( 1 )

dans laquelle R1 et R2 representent chacun un groupe aliphatique en C -C4 ou aromatique bivalent; R3, R4, R5 et R6 representent chacun un groupe aliphatique ou aromatique monovalent; et k est un nombre entier de 1 a 20; (D) le 2,2-bis(4-(4-aminophSnoxy)phSnyl)propane et une dimethylphenylenediamine, et

de convertir le poly(acide amidique) obtenu en resine de polyimide.

19. ProcSdS de production d'un film adhesif qui comprend le fait de couler, sur une face ou sur les deux faces d'un substrat, une solution dans un solvant organique d'une resine de polyimide qui possede une temperature de tran- sition vitreuse de 350°C ou plus basse et qui est soluble dans des solvants organiques, ladite resine de polyimide pouvant etre obtenue par reaction

(B) du dianhydride d'acide 3,3',4,4'-biphSnyltStracarboxylique et/ou du dianhydride d'acide 3,3',4,4'-ben- zophSnonetStracarboxylique avec une combinaison des constituants amine (C) et (D) suivants

(C) 60 a 5% en moles d'un compose siloxane represents par la formule gSnSrale (1) suivante, par rapport a la quantitS totale des constituants amine:

H 2 N - R 1 4 - S i - 0 - j - Si -R2-NH2 ( 1 )

\R« / k R*

dans laquelle R-, et R2 reprSsentent chacun un groupe aliphatique en C-1-C4 ou aromatique bivalent; R3, R4, R5 et R6 reprSsentent chacun un groupe aliphatique ou aromatique monovalent; et k est un nombre entier de 1 a 20; (D) un bis(aminophSnoxy)benzene et le 2,2-bis(4-(4-aminophSnoxy)phSnyl)propane et/ou une dimSthylphS- nylenediamine, et

de convertir le poly(acide amidique) obtenu en rSsine de polyimide.

20. ProcSdS de production d'un film adhSsif qui comprend le fait de couler, sur une face ou sur les deux faces d'un substrat, une solution dans un solvant organique d'une rSsine de polyimide qui possede une tempSrature de tran- sition vitreuse de 350°C ou plus basse et qui est soluble dans des solvants organiques, ladite rSsine de polyimide pouvant etre obtenue par rSaction d'une combinaison des constituants acides (A) et (B) suivants

(A) le dianhydride d'acide 4,4'-oxydiphtalique (B) le dianhydride d'acide 3,3',4,4'-biphSnyltStracarboxylique et/ou le dianhydride d'acide 3,3',4,4'-benzophS- nonetStracarboxylique

avec une combinaison des constituants amine (C) et (D) suivants

(C) 60 a 5% en moles d'un composS siloxane reprSsentS par la formule gSnSrale (1) suivante, par rapport a la quantitS totale des constituants amine:

47

EP 0 598 911 B1

( 1 )

dans laquelle R-, et R2 representent chacun un groupe aliphatique en C-1-C4 ou aromatique bivalent; R3, R4, R5 et R6 representent chacun un groupe aliphatique ou aromatique monovalent; et k est un nombre entier de 1 a 20; (D) le 2,2-bis(4-(4-aminophenoxy)phenyl)propane et/ou un bis(aminophenoxy)benzene et/ou une dimethyl- phenylenediamine, et

de convertir le poly(acide amidique) obtenu en resine de polyimide.

21. Procede de production d'un film adhesif selon I'une quelconque des revendications 17 a 20, dans lequel les ex- tremites moleculaires de la resine de polyimide sont coiffees par un anhydride d'acide represents par la formule generale (2) suivante

A

Y

( 2 )

(X est au moins un groupe choisi parmi:

b o o : - H s C e c - ( • c o

H 3 C \ ^ t v _ / HCsC et T ^ I

ou par une amine aromatique representee par la formule generale (3) suivante

dans laquelle Y est au moins un groupe choisi parmi I'atome d'hydrogene, et les groupes methyle, ethyle, propyle, butyle, phenyle, methoxy, ethoxy, propoxy, butoxy et phenoxy.

22. Procede de production d'un film adhesif selon I'une quelconque des revendications 1 7 a 21 , dans lequel le substrat est un film de polyimide ayant une temperature de transition vitreuse de 350°C ou plus elevee.

23. Procede de production d'un film adhesif selon I'une quelconque des revendications 1 7 a 21 , qui comprend le fait

48

EP 0 598 911 B1

de decoller le substrat apres le coulage et le sechage.

24. Procede selon la revendication 23, dans lequel le substrat est un film de polyester etire biaxialement.

5 25. Procede de production d'un film adhesif selon I'une quelconque des revendications 17 a 24, qui comprend le fait de couler ladite solution de resine de polyimide sur un substrat a I'aide d'un solvant organique ayant un point d'ebullition de 180°C ou plus bas, de secher la solution de resine de polyimide coulee et de decoller du substrat la resine de polyimide sechee .

10

15

20

25

30

35

40

45

50

49