EEE498 Thesis Presentation

21
PERFORMANCE COMPARISON BETWEEN INAS ON INSULATOR AND SILICON ON INSULATOR MOSFETS USING A COMPACT MODEL Presented By – Manan Chowdhury 2008-1-80-052 M. A. Al-Mamun 2008-2-80-074 Shaimum Shahriar 2008-2-80-052

Transcript of EEE498 Thesis Presentation

PERFORMANCE COMPARISON BETWEEN INAS ON INSULATOR AND SILICON ON INSULATOR MOSFETS USING A COMPACT MODEL

Presented By –Manan Chowdhury 2008-1-80-052M. A. Al-Mamun 2008-2-80-074Shaimum Shahriar2008-2-80-052

Outline Introduction Limitation of planer bulk MOSFET Advantage and Disadvantage of SOI MOSFET Model Simulation Result Conclusion Future Work

Introduction

Semiconductor is sandwiched between buried oxide and gate oxide.

SOI MOSFET can be FD (Fully Depleted) or PD (Partially Depleted).

SOI MOSFET can be Single Gate or Double Gate.

Figure 01: Cross-sectional view of the FD SOI MOSFET. [1]

[1] Pradeep Agarwal, Govind Saraswat, and M. Jagadesh Kumar, “Compact surface potential model for FD SOI MOSFET considering substrate depletion region”, IEEE Transaction on Electron Devices, vol. 55, no. 3, March 2008

Limitation of planer Bulk MOSFETSOI MOSFET come because of the limitation of bulk MOSFET –

The carrier mobility is decreasing due to impurity scattering The gate tunneling current is increasing The p-n junction leakage is increasing These trends make conventional scaling less and less feasible

Advantage and Disadvantage of SOI MOSFET

Lower parasitic capacitanceThe supply voltage can be loweredLow power consumptionSteep sub threshold characteristicsSmall short-channel effectsSmall p-n junction leakage

Self heating effects Floating body effects

Advantage Disadvantage

MODELThe 1-D Poisson equation of an FD-SOI MOSFET –

This equation can be further expressed as –

chSi

Nynypy

y

1

2

2

1exp2exp1exp2

2

tt

CBF

tSi

ch yVyqNy

y

i

chF n

NkT lnWhere

MODEL Continued…To calculate surface potential –

sbsft

sb

t

sft

t

CBFsbsf

t

sb

t

sft

sbsbulkox

boxsfg

VCCV

expexp

2exp

expexp

222

22

soi

boxsbulksbsbsf C

C

sbulkbulksbulksb ox

Sich

CqN

2

ox

oxox t

C

box

Sisbbulk C

qN

2

Si

soichtqN

22

soi

oxsoi t

C

box

oxbox t

C

Where

[1] Pradeep Agarwal, Govind Saraswat, and M. Jagadesh Kumar, “Compact surface potential model for FD SOI MOSFET considering substrate depletion region”, IEEE Transaction on Electron Devices, vol. 55, no. 3, March 2008

Figure 02: Cross-sectional view of the FD SOI MOSFET. [1]

MODEL Continued…To calculate current calculation –

To calculate the surface charge –

To calculate the gate capacitance –

To calculate the transconductance –

sd

ss

schSischSisoxsfbgsoxeffds qNq

kTqNCq

kTVVCL

WI

223

221 2/32

Where sfss 0cbV sfsd at dscb VV

sSis EQ 0

sf

sSi d

QdC

Sioxs

sf

oxg CCQdd

CC1111

DSVGS

Dm V

Ig

at

[2]Yuan Taur, Tak H. Ning, “Fundamentals of modern VLSI devices,” Second edition, Cambridge University Press, 2009.

ox

sfGSox t

VE

ox

Si

oxs EE

Simulation Result

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gate Voltage, VGS (V)

sf (V

), sb (V

), sbulk (V)

Three surface potential versus gate voltage curvesbulk

sb

sf

Figure 03: Three surface potentials versus gate voltage curve (Simulated)

Figure 04: Three surface potentials versus gate voltage curve. [1]

The two simulation results are similar. So, our model is correct.

[1] Pradeep Agarwal, Govind Saraswat, and M. Jagadesh Kumar, “Compact surface potential model for FD SOI MOSFET considering substrate depletion region”, IEEE Transaction on Electron Devices, vol. 55, no. 3, March 2008

Vfb = -0.5V, Vsub = 0V, Nch = 1e17cm-3, Nsub = 1e15cm-3, tox = 3nm, tbox = 100nm, tsoi =50nm

Comparison between SOI and XOI MOSFETParameters used in simulation

Parameters SOI MOSFET XOI MOSFETFlat Band voltage, Vfb -0.2 V -0.2VChannel Doping, Nch 4×1016 cm-3 4×1016 cm-3

Substrate Doping, Nsub 1×1015 cm-3 1×1015 cm-3

Intrinsic concentration, ni 1.5×1010 cm-3 1×1015 cm-3

Gate Oxide, tox 7 nm 7 nmBuried Oxide, tbox 50 nm 50 nm

Channel Thickness, tsoi 15 nm 15 nmVacuum Permittivity, o 8.854×10-12 F/m 8.854×10-12 F/m

Relative permittivity of channel material, r,ch

11.7 15.15

Relative permittivity of Zirconium dioxide, r,zr

20 20

Electron mobility, µe 650 cm2/V-s 1300 cm2/V-sChannel Length, L 500 nm 500 nmHyunhyub Ko, Kuniharu Takei, Rehan Kapadia, Steven Cguang, Hui Fang, Paul W. Leu,

Kartik Ganapathi, Elena Plis, Ha Sul Kim, Szu-Ying Cgen, Morten Madsen, Alexandra C. Ford, Yu-Lun Chueh, Sanjay Krishna, Sayeef Salahuddin & Ali Javey, “ Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature, Macmillan Publishers Limited, Vol 468, 11 November, 2010.

Comparison between Surface Potential

0 0.2 0.4 0.6 0.8 1-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gate Voltage, Vgs (V)

sf (V

), sb (V

), sbulk (V)

Surface Potential versus Gate Voltage Curvesbulk

sb

sfdata4data5data6

SOI M OSFETSOI M OSFET

XOI M OSFET

Figure 05: Different surface potentials of SOI and XOI MOSFET

XOI MOSFET’s surface potential saturated faster than SOI MOSFET’s

VDS = 0V

Comparison between Surface Charge

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5 x 1012

Gate Voltage, Vgs (V)

Surfa

ce Charge, Q

s (q/cm

2 )

Surface Charge versus Gate Voltage Curve

SOI M OSFETXOI M OSFET

Figure 06: Surface charge of SOI and XOI MOSFET

XOI MOSFET’s charge goes to inversion region earlier than SOI MOSFET’s

VDS = 0V

Comparison between Gate Capacitance

0 0.2 0.4 0.6 0.8 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gate Voltage, Vgs (V)

Gate Capacitane, C

g (Normalize

d)

G ate Capacitance versus Surface Potential Curve

SOI M OSFETXOI M OSFET

Figure 07: Gate Capacitance of SOI and XOI MOSFET

XOI MOSFET’s Capacitance quickly reaches at strong inversion than SOI MOSFET’s

VDS = 0V

Comparison between Drain Current

0 0.5 1 1.5 20

1000

2000

3000

4000

5000

6000

Drain Voltage, VDS (V)

Drain Cu

rrent, I D

(A/m)

D rain Current versus Drain Voltage Curve

VGS = 1VVGS = 0.5VVGS = 0.1V

Figure 08: Drain current versus drain voltage curve of SOI MOSFET

Figure 09: Drain current versus drain voltage curve of XOI MOSFET

High current of XOI MOSFET, around 6 times higher than SOI MOSFET

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

Drain Voltage, VDS (V)

Drain

Current, I D

S (A/m)

D rain Current versus Drain Voltage curve

VGS = 1VVGS = 0.5VVGS = 0.1V

Comparison between IDS - VGS Curve

Figure 10: Drain current versus gate voltage curve of SOI MOSFET

Figure 11: Drain current versus gate voltage curve of XOI MOSFET

High current of XOI MOSFET, around 6 times higher than SOI MOSFET

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

Gate Voltage, VGS (V)

Drain Cu

rrent, I D

S (A/m)

D rain Current versus Gate Voltage curve

0 0.2 0.4 0.6 0.8 10

1000

2000

3000

4000

5000

6000

Gate Voltage, VGS (V)Drain Cu

rrent, I D

S (A/m)

D rain Current versus Gate Voltage curve

Comparison between IDS - VGS Curve (In Log Scale)

Figure 12: Drain current versus gate voltage curve of SOI MOSFET

Figure 13: Drain current versus gate voltage curve of XOI MOSFET

Threshold Voltage of SOI = 0.54V and XOI = -0.026V The Ion is 1.2 times higher than SOI MOSFET

0 0.2 0.4 0.6 0.8 1 1.210-15

10-10

10-5

100

105

Gate Voltage, VGS (V)

Drain

Current, I D

S (A/m)

D rain Current versus Gate Voltage Curve

Vth

Von

0 0.2 0.4 0.6 0.8 1 1.210-4

10-2

100

102

104

Gate Voltage, VGS (V)

Drain Cu

rrent, I D

S (A/m)

D rain Current versus Gate Voltage curve

Vt

Von

Vth = VGS at which IDS = 1A/m VON = Vth + (2/3)VDD

Comparison between Transconductance

Figure 14: Transconductance versus gate voltage curve of SOI MOSFET

Figure 15: Transconductance versus gate voltage curve of XOI MOSFET

In XOI MOSFET, transconductance is 1.5 times higher than SOI MOSFET (For VDS = 0.5V)

0 0.5 1 1.5 20

1000

2000

3000

4000

5000

6000

7000

8000

Gate Voltage, Vgs (V)

Transcon

ductance, g

m (S

/m)

Transconductance versus Gate Voltage Curve

0 0.5 1 1.5 20

2000

4000

6000

8000

10000

12000

Gate Voltage, Vgs (V)Transcon

ductance, g

m (S

/m)

Transconductance versus Gate Voltage Curve

Comparison between Unity Gain Frequency

Figure 16: Unity gain frequency versus gate voltage curve of SOI MOSFET

Figure 17: Unity gain frequency versus gate voltage curve of XOI MOSFET

In XOI MOSFET, Unity gain frequency is 1.2 times higher than SOI MOSFET

0 0.5 1 1.5 20

5

10

15 x 1010

Gate Voltage, VGS (V)

Unity Gain Frequency, f T (H

z)

Unity Gain Frequency versus Gate Voltage curve

0 0.5 1 1.5 20

2

4

6

8

10

12

14

16

18 x 1010

Gate Voltage, VGS (V)Un

ity Gain Frequency, f T (H

z)

Unity Gain Frequency versus Gate Voltage Curve

g

mT C

gf2Unity gain

frequency,

Conclusion

Finally, we have observed that –XOI MOSFET has

High drain currentLow threshold voltage High ION currentHigh transconductanceBetter switching characteristics

Future WorkQuantum mechanics – Electrons in an ultrathin (5-6 nm) SOI layer

are strongly confined by the gate oxide (GOX) and the buried oxide (BOX).

Dit (Density of Interface Trap Charge) –

Interface states induce stretching of the C-V curve.

THANK YOU

Any Question?