Determination of the rate of photoresist polymer breakdown by ...

171
Lehigh University Lehigh Preserve eses and Dissertations 1977 Determination of the rate of photoresist polymer breakdown by an oxygen plasma Paul Robert Saunders Lehigh University Follow this and additional works at: hps://preserve.lehigh.edu/etd Part of the Chemical Engineering Commons is esis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in eses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. Recommended Citation Saunders, Paul Robert, "Determination of the rate of photoresist polymer breakdown by an oxygen plasma" (1977). eses and Dissertations. 5121. hps://preserve.lehigh.edu/etd/5121

Transcript of Determination of the rate of photoresist polymer breakdown by ...

Lehigh UniversityLehigh Preserve

Theses and Dissertations

1977

Determination of the rate of photoresist polymerbreakdown by an oxygen plasmaPaul Robert SaundersLehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Chemical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by anauthorized administrator of Lehigh Preserve. For more information, please contact [email protected].

Recommended CitationSaunders, Paul Robert, "Determination of the rate of photoresist polymer breakdown by an oxygen plasma" (1977). Theses andDissertations. 5121.https://preserve.lehigh.edu/etd/5121

Dli.1.1aMI.RATION OF THE RATE OF PHOTORmIST .POLlMER BREAIDOWN BY AN OXYGEN PLASMA

! .

- _,._ -~ .

DETERMINATION OF THE RATE OF PHOTORESIST POLYMER

BREAKDmJN BY AN OXYGEN PLASMA

by

Paul Robert Saun~ers

A Thesis

Presented to the Department of Chemical Engineering

of Lehigh University in partial fulfilment

of the requirements for the degree of

Master of Science

in

Chemical Engineering

Lehigh University

1977

(5-1977)

----- ~·--- -

••

This thesis is accepted and approved in partial fulfil~ ment of the requirements for the degree of Master of Science.

ii

·------~----_......... Dr. L.A. Wenzel

Chairman,

Chemical Engineering Dept •

t

••

acKH~DGEMENTS

• I would like to thank Thomas Briggs of Western Electric

for helpful suggestions on Infrared spectroscopy. A special

acknowledgement goes to Charles Pearce of W.E. Co. for his

patience during the six months that I monopolized his spec­

trometer. For their continued aide in the use of the various

computer systems required for this project 7 I thank Dr. Paul

Langer, Bell Laboratories, and the entire Bell Laboratories

Computer group working for William Furjanic for kindness

above and beyond the call of duty. As guiding light to

bring this divergent project to completion and for his help­

ful discussions on polymer degradation theory, I would like

to thank Dr. Anthony McHugh. Also of great help were the

suggestions of Glen Offord of W.E. Co. on effective circuit

design, and Robert Heinz of thew. E. Research center for

laser alignment of the gas cell used in this experiment.

For his fine suggestions on improving this text, I thank Dr.

Gilbert Mowery of Bell Laboratories •

iii

----··-·-· -----· ···---------·--··----·--·-·-- ·-~·-··---·-.. ·-------

Table

Table

Table

1 Reduced Data from Run #1 ••••••••••••••••••••••••• 33a

2 Reduced Data from Run #2 ••••••••••••••••••••••••• 33b

3 Reduced Data from Run #3 ••••••••••••••••••••••••• 33c

Table 4 Reduced Data from Run #4 ••••••••••••••••••••••••• 33d

Figure 5 Plot of Pressure vs. Time for all Runs ••••••••••• 33e

Figure 6 Plot of Temperature vs. Time for all Runs •••••••• 33f

Figure 7 Plot of Absorbance vs. Time for all Runs ••••••••• 33g

Figure 8 Plot of CO2 Wt. Lo~s/Min. vs. Time for all Runs •• 33h

Figure 9 Plot of Total CO2 Loss vs. Time for all Runs •••• 33i

Table

Table

Table

10 Reduced Data from Run #5 ••••••••••••••••••••••••• 33j

11 Reduced Data from Run #9 ••••••••••••••••••••••••• 33k

12 Data from the Weight Loss Experiment ••••.•••••••• 331

Figure 12a Plot of Wt. Loss of Polymer vs. Time ••••••••••••• 33m

Figure 12b Plot of Temperature vs. Time (Wt. Loss Exp.) ••••• 33n

Figure 12c Plot of Pressure vs. Time (Wt. Loss Exp.) •••••••• 33o

Table 13 Data from the Variable Polymer Load Experiment ••• 33p

Figure 14 Plot of Weight Loss/ Wafer vs. Polymer Load ••••• 33q ,;

Figure 15 Plot of Removal Rate vs. % 02 in the Feed Gas •••• 33r

Figure 16 Ra~ Data from Run #6 ~••••••••••••••••o•••••••••••33s

Figure 17 Raw Data from Run #7 ••••••••••••••••••••••••••••• 33t

Figure 18 Raw Data from Run #8 .................... ~ •••••••••• 33u

Figure 19 computer Program - Calculations Block Diagram •••• 34a

Figure 20 Computer Program - Plotting Block Diagram ••••••.•• 34b

Table 21 Cijrbon Mass Balance Comparison ••••••••••••••••••• 35a

iv

Figure

I) Figure

Table

Table

Figure

IJ

22a

22b

23

24

25

0 Plot of ln (Rate) vs. 1/T ( K) •••••••••••••••••••• 36a

Enlargement of Fig. 22a •••••••••••••••••••••••••• 36b

Values for Eact, A in all Experimental Runs •••••• 38

Values for N, h, T"°, T0 , in all Experimental Runs.43

Plot of ln ( T00 - T) vs. Time ••• ,. •••••••••••••••• 43a

iv-a

-

Table AP I-1

Table AP I•2

Table AP I-3

Table AP I-4

oxygen -

Oxy~en •

Hastings

Chart of

carbon Dioxide Pressure conversion •••••• A-6a

Water Vapor Pressure Conversion ••••••••• A-6b

Nomograph for various Gases ••••••••••••• A-6c

Correlating Pressur~ Measurements ••••••• A-6d

Figure AP II'-1 Thermocouple Temp. vs. Time (800 watts) •••••••••• A-Ba

Table AP II-2 Chart of correlating Temperature Measurements •••• A-Bb

Figure AP II-3 aot chuck vs. Chemical Temp. Calibration ••••••••• A-Be

Figure AP II-4 Pyrometer Emissivity Calibration ••••••••••••••••• A-Bd

Fi~ure AP II-5 calibration of Hot Chuck to Reaetor Thermocouple •• AwBe

Figure AP II-6 Plot of Exhaust Gas Temperature vs. Pressure ••••• A-Bf

Figure A~ III-1 overal} Equipment Diagram •••••••••••••••••••••• A-Bg

Figure AP III-2 common Mode Rejection Circuit Diagram •••••••••• A-Bh

Table AP IV-1 Tylan Chart of Gas Factors (Flow) •••••••••••••••• A-9a

Table AP IV-2 CO2 Flow controller Calibration •••••••••••••••••• A~10

Table AP IV-3 02 Flow controller Calibration ••••••••••••••••••• A-11

Figure AP IV-4 Flow vs. Pressure calibration •••••••••••••••••••• A-11a

Table AP IV-5 Flow vs. Pressure for CO2, H20, and 0.2 ••••••••••• A~11b

Figure AP IV-6 Plot of the Data from Table AP IV-5 •••••••••••••• A-11c

T?ble AP IV-7 Oxygen Flow vs. Pressure Data •••••••••••••••••••• A-11d

Table AP V-1a Transmittance calibration Data #1 ••••••••••• ~ •••• A-17a

Table AP V•1b Transmittance Calibration Data #2 •••••••••••••••• A-17b

Figure AP V-2 Plot of Absorbance vs.· CO2 Concentration •••• ~ •••• A-17c

Figure AP V•3 Plot of Transmittance vs. Time for Product Run t~.A-17d

Table AP VII-1 Raw Data for Run #1 (800 watts) •••••••••••••••••• A-45a

V

.-

Table AP VII-2 Raw Data for Run t2 (200 watts) •••••••••••••••••• A~4Sb

~J • Table AP VII-3 Raw Data for Run t3 (400 watts) •..••••.•••••••••• A~4Sc Table AP VII-4 for •••••u•••••••••••·A-45d

Raw Data Run '" {6 0-0 watts)

Table AP VIl-5 Raw Data for Run ts (800 watts) •••••••••••••••••• A-45e Table AP VII-6 Raw Data for Run t9" (800 watts) •••••••••••••••••• A~4Sf

~ •

e • I.

v-a

• ' I.

TABLE OF CONTENTS ---

Certificate Page •••••••••••••••••••••••••••••••••••••• ii Acknowledgments ••••••••••••.••••••••••••••••••••••••••• iii List of tables and figures - Main text ••••••••••••••••• iv List of tables and figures - Appendices •••••••••••••••• v. Abstract .•..........•...••..•.• ~························1

Introduction and Problem Statement •••••••••••••••••••••• 3 Theory - Review of the Literature ••••••••••••••••••••••• 6 Theory Descriptive Equations •••••••••••••••••••••••••• 12 Objective of the Research ••••••••••••••••••••••••••••••• 16 Experimental Equipment Description •••••••••••••••••••••• 15 Experimental Procedure •••••••••••••••••••••••••••••••••• 22 Results•••••••••••••••••••••••••••••o•••••••••••••••••••30 Discussion of Results ••••••••••••••••••••••••••••••••••• 34 Conclusions ••••••••••••••••••••••••••••••••••••••••••••• 46 References ••••••••••••••••••••••••••••••••••••••••••••• 48 Bibliography •••.••••••••••••••••••••••••••••••••••••••• 53

Appendix I - Pressure Measurement and calibration ••••••• A-1 Appendix IA - Pressure Iteration Technique ••••••••••••• A-3 Appendix II - Temperature Measurement and Calibration ••• A-7 Appendix III - Equipment Diagrams ••••••••••••••••••••••• A-8f Appen1ix IV - Flow Measurement and ·Calibration •••••••••• A-9 Appendix IVA - Principle of the Flow controller ••••••••• A-12 Appendix V - Absarbance Measurement and Calibration ••••• A-14 Appendix VI - computer Solution - Program ••••••••••••••• A•18 Appendix VII - Raw Data compilations ••••••••••••••••••••. A-45a Appendix VIII - sources of Error ••••••••••••••••••••••• A-46 Vi ta .•.••••• " .•..•••. .;. ..•.•. ,. ..•••••.•........••......••.. A-- 4 7

., •I;•_,.,,'

~- -

:/\

• ~. I .

The rate of breakdown of cyclic polyisoprene

photoresist has been determined for a range of temperatures 0 between 100-220 c. two oxygen gas feed rates. three com•

positions of the feed gas. and three power levels. Calcula­

tions based on these data indicate a linear increase in the

heat transfer coeffictent to the silicon substrate witr. in-

creasing power. h= 0.00070 - 0.0019 cal./cm~ -min.-· 0 c,

while this coefficient is nearly constant versus oxygen feej

rate (i.e. pressure). On the other hand, the activation

energy for the pqlymer degradation process appears to be es­

sentially constant versus power in the 600-800 watt rf power

region. However. activation energy undergoes a significant

decrease as oxygen feed rate (i.e. pressure) decreases in­

dicating that the rate limiting step for the polymer decom­

position is evaporation of chain fragments from the polymer

surface. Further confirmation of this conclusion is provided

by calculation of the theoreti-cal evaporation energy for the

polymer (i.e. isoprene monomer fragments). This polymer

evaporation energy is calculated as 5.5 Kcal./gmmole. while

the measured activation energy for the degradation process

is 2.5-5.5 Kcal./gmmole. A large increase in the activation

energy of the process to 14 Kcal./gmrnole. was observed at

lower rf power levels (400 watts). This increase indicates

that a change in the nature of the aegradation process oc-

-1-

',[

;. • ')

curs in low power oxygen plasmas. This data base on oxygen plasma decomposition of cyclic polyisoprene will be examined even more extensively in the future for further conclusions •

-2-

----·---"'"---- .~--- ·-- ---- ~'-'------- -~ ______ .,, _ _.._ __ --

i i I I

( I :_ I

I _:' I 1 \ \ ! .,

In the generation of a diffusion barrier, usually silicon dioxide, for group III•A and V-A dopants, the semiconductor industry uses various photosensitive polymers to create a patterned acid etch barrier for the silieon dioxide. currently two common photosensitive polymers (photoresists or simply resistsJ are a cyclized polyisoprene negative-working resist and a novalak (phenol- formaldehyde) resin positive~working resist. The designation negative or positive working is determined by whether the polymer becomes more soluble (positive-working) or less soluble (negative-working) in the~r respective developing solutions after exposure to ultraviolet light. Developing refers to the process of dissolving the most soluble areas of the polymer, thereby leaving the silicon dioxide surface exposed in the required regions. The developing solution for the polyisoprene resist is xylene while the novalak resin is developed in an aqueous alkali solutibn. The regions covered by the polymer will act as a barrier to the hydrofluoric acid used to etch the exposed silicon dioxide areas. The reactions which occur in the etching operation are as fol­lows:

Si02 (s) + IIHF (aq.)

SiF4 (g) + 2HF (aq.)

-3-

SiF4 (g) + 2H20 (1)

H2SiF6 (aq.)

• \

··,.~·, • •• .~ "'' - , r ••

Following the etching of the patterped Si02 diffusion bar­rier, the re£16dual resist layer protecting the non~etched areas of the Si02 must be removed. The present work con~ cerns this operation following the etching step, namely the oxygen plasma removal of the polymer prior to diffusion. Among the methods of negative photoresist removal in current use are J-100 phenolic stripping solution (produced by Indust-Ri-Chem Laboratory), tSI non-phenolic stripping solu• tion (produced by Inland Chemical), sulfuric acid•hydrogen peroxide caros acid stripping solution, OKygen plasma resist removal, and ozone gas breakdow~ of the polymer. The first . three methods comprise the bulk of industrial usage in microelectronics production, while oxygen plasma usage is a steadily increasing alternative to these major wet chemical methods. The two major methods of positive resist removal are dissolution in acetone, ethyl cellosolve (2ethoxyethanol), or another suitable solvent. oxygen plasma

has not been commercially used for positive resist removal due to the slow ebserved removal

resist will be included in

rate • However, positive

ttis study in an attempt to discover the cause of the observed· slow rate of removal.

The oxygen plasma removal method which will be examined in this paper consists of exposing the photosensitive polymer (negative or positive) silicon wafer to an oxygen gas activated by a radio frequency field so that the gas becomes a plasma of oxygen ions and electrons. The removal

• ~< , I • !

7.,i

• "' ') •

'1' I •

'~- ' .• r,,· .. -'- ~ - , __ •. ' 1 .• ·- .,. !· . .; •

occurs under nearly constant pressure vacuum conditions

during the course of the photoresist breakdown. Although

this plasma procedure is being used commercially, little is

known of

mechanisms.

the plasma-polymer reaction kinetics and

The process appears to be oxidation of the

nitrogen, carbon, hydrogen, and oxygen in the polymers to

form volatile gases such as co, CO2, (NO) x, N02, H20, OH-,

02, and 03. The nitrogen molecules are reaction products

only of the n~valak resin polymers (positive resists) which

contain nitrogen and oxygen groups. The cyclic polyisoprene

polymers (negative resists) yield exclusively carbon and

hydroqen containing reaction products; any ozone present is

generated by the action of the rf field on the oxygen gas

reactant.

The scope of this paper will be to determine the reac­

tion rate and possibly the kinetics for the breakdown of the

two types of polymers; of major interest will be cyclic

polyisoprene

p~otoresists •

and novalak resin fphenol-formaldehyde)

-s-

• In the study of heterogeneous chemical reactions, the

usual analysis entails the determination of whether diffu­

sion or chemical reaction is the controlling ,step in the

overall rate. W~en reaction rate is controlling, the study

I would include an analysis of the temperature dependence of

the rate which usually ~akes the form of an Arrhenius type

equation,

dC/dt =Rate= A•exp( -E/RT) * f(C) ( 1 )

Using this equation, mass balances, and kinetic data (e.g.

c vs. t, and Rate vs. T), the value of unknowns E and A can

be calculated for a specific reaction. From this complete

knowledge of eqn. (1), the reactor design can be made.

However, researchers report that reaction processes in a

radio frequency plasma-do not rigorously fit this method of

analysis [ 1 ].

The number of oxygen ion species in the plasma has been

I · examined by several researchers [ 2-11 ]. Hollahan and Carlson

note the presence of: O+, (02) +, o-, (02)-, 0(3P), 02 (1Ag),

and electrons [12). The positive ions and free electrons

are formed by dissociation due to the oscillating radio

.! frequency field, whereas the negative ions and metastable

species are products of electron-neutral ion collisions.

The oxidation reaction has been attributed mainly to the.

metastable species (i.e. 0(3P) and 02(1!g)) because of their

• >,! •,.:.;. ,.'

long lifetimes compared to the charged ion species (12,7,4].

Additionally, to complicate the analysis, Hansen et. al •

have found experimentally that electron bombardment of

polymers increases the rate of decomposition by the

metastable ions (2]. Since electrons are al~o an active

specie in a plasma, Hansen's finding indicates that many

species participate in the polymer oxidation reaction in ad-

dition to the two metastable oxygen species • Therefore,

all the species in an oxygen plasma have a role in the reac­

tion, since even non-reacting ions affect the velocities of

the active species.

Activation of polY{ner surfaces by electron and ion bom­

bardment has been an area of extensive research over the

last two decades (12-18]. One major purpose of this work was

to analyze the reasons for the improvement of adhesive

bonding and printability on polymer surfaces treated in

either a neutral ion or oxygen plasma. some of this research

investigated oxygen plasmas to achieve both improved surface

p;operties and bulk electrical characteristics (18-21 ). The

work with plasma treated polymer surfaces led to speculation

on whether the surface contained large numbers of free

radicals which then degraded to form hydroxy and peroxy com­

pounds on exposure to air [4,12-15]. These peroxy compounds

then might react to form a denser surface layer by cross­

linking than existed in the bulk polymer, thereby improving

the chemical resistance and bondibility of the polymer.

-1-

I.· ); n ,,.

Since the Arrhenius form of the rate equation is not

appl:icable to a plasma reaction, other mathematical

descriptions of the reaction must be examined. The Boltzman

equation which uses a Maxwellian distribution of charged

specie energies might be used to describe the non-reacting

plasma [22]. However, even for non-reacting gas plasmas the

Boltzman equation would be so complex that lengthy computer

solutions would be required. This solution would then be

limited to a non-reacting, "equilibrium" region of the

plasma away from the reactor walls. Another mathematical

description that might be attempted would be to apply quan­

tum mechanics to the plasma reactions. An extensive discus­

sion of this method is presented by venugopalan (23]. Hal­

lahan and Bell have also presented an excellent summary of

the possible mathematical descriptions of a plasma [24]. Al­

though some insight into plasma processes can be obtained

from these descriptions, they are far too limitted to

provide an understanding of the complex interactions of

plasma reactions •

With a mathematical description of the oxygen plasma

reactions being currently incomplete, chemical engineering

kinetic data must be taken and analyzed to describe the

plasma reaction process in terms of engineering concepts

(i.e. boundary layers, film coefficients). Also, the overall

rate of polymer removal can be experimentally determined.

This removal rate can then be studied as a function of power

-a-

• I

•. : I

·--.~ •. ,-,. '·--~~,.-·, , ... ·.--~·· .... ~.µ.-. __ . __ ,_,_~. ·-., •• ,. ,-•.( •. -~---~-~·: ~' ,._.., .. , .. -·· ~· .• ,, ... _

f,

i l

L r, i I 1, ,, r i

t ;:

level, pressure(02 flow), and 02 concentr.ation in a neutral

gas. During these analyses of removal rate, the temperature

of the silicon wafers should be monitored so that the

heating effect ~f the ion energy transfer can be described.

Also, if the polymer phase reactions rather than the plasma

reactions are rate controlling in this process, then an Arr­

henius type of analysis may be performed on these polymer

reactions. Whether plasma or polymer reactions control the

process, meaningful determinations can be made of the con­

centration, temperature, pressure, and wafer loading effects

on the reaction rate.

A very good overview of the recent developments in

plasma polymerization and plasma polymer interactions was

completed by Havens et. al. [33]. However, in order to ob­

tain the specific background information on oxygen plasma.,.

polymer reactions, the review in Hallahan and Bell's book is

recommended [25). This more detailled review was written by

Martin Hudis. Hudis lists the following polymer oxidation

reactions as characteristic in an oxygen plasma [26],

R-H + O•--~ R', + R11 -0•

R-H + 20•~-~~- R• + H• + 02

R.,.H + UV ·--~>rs ... R• + H •

R• + 02 ·-->~R-0-0•

R-0-0• + R 1 -H ---,;~~ R-0-0-H + R '•

2 R~0-0-H----~~-R=O + H20 + R~O-O•

(2)

( 3)

(4)

(5)

( 6)

(7)

~·~. -.....-...··--~--- ....

•• !

r '1 I,

r I

••

R-0• + R1-H .. R• + R'-O-H ( 8)

R-H + 0-B• ... R• + H20 (9)

R• + 0• .. R-0• ( 10)

The most important findings cited in this review are

those of Hansen et. al. whose work with eight polymers in an

oxygen plasma revealed that the major mechanism of polymer

degradation was ablation. Hansen found that for these eight

polymers, the weight loss was a linear function of the time

of exposure to the plasma and that the slope of this line

was determined by the polymer structure. Hudis states,

"Ablation appears to be an exclusive property of oxy­gen containing plasmas. Ablation also causes changes in surface morphology. Small molecular weight degradation products which are covalently bonded to the surface migrate around the surface, producing small bumps which have been detected using a scapning electron microscopy (sic) • " [ 27]

The present research will attempt to determine if the

degradation mechanism of cyclic polyisoprene and novalak

resin resists is by chemical reaction, ablation, or a com­

bination of these two processes.

Also of interest is the formation of multi-ringed com-•

pounds, such as naphthalene, from both linear and cyclic

olefins during plasma reactions. This work is cited in an

article by Harald Suhr in aollahan and Bell [28]. It is

possible that some of the reactions at the polymer surface

are ring formations or ring de-saturations. Hydrogen ab­

straction which would create ring de-saturation in cyclic­

polyisoprene is referred to in the literature as a common

-10-

·. · .. .,.. ,-,:.·

plasma reaction because of the law dissociation energy as­sociated with this process ( 18,30,29] •

-11-

' ,I 4

. , , • .,I

•<.." '~i',·~-~~""""'""""~r,...,,-......',,~;.,.,{·,,'

Since the system being used in this study operates in a

transient mode during most of the reaction, the descriptive

equations whieh must be used are those for a semi•batch

reactor. The material balance for each component is (31],

t t

(v•c.,L- (v•C,) +V. •R = V *(dC•/dt) If le\" t I

( 11)

where R =reaction rate, gmmoles/liter-minute, of component i

• v= volumetric flow rate, liters/minute

V= volume(reactor,r, or total, t)

f,e= subscripts designating feed or exit points

Cj= concentration in gmmoles/liter of component i

t = time

In eqn. (11), the first term accounts for the molar rate of

eomponent (i) entering the ~eactor, the second accounts for

(i) leaving the reactor, the third accounts for (i) formed

by reaction, and the term on the right hand side accounts

for the overall rate of change in concentration of (i) in

the system with time. From the same source, the energy

balance equation for the reactor is ( 32 ],

t

-tul*R*Vt- *dt + (V*C,t)f •cPf * (To-T) = N-4:*CP •dT +

U*AR* (T-Ts) *dt ( 12)

where AH= heat of reaction, kcal/gmmole CP = heat capacity of the feed or reaction mixture,

kcal/gmmole- °!<

-12-

l f, r:' !'

.! ·•.

t

T z temperature, °K

N = tjtal qmmoles of reaction mixture

AR= area for heat transfer to the surroundings U = overall heat transfer coefficient, kcal/cm~-hr-°K

In equation (12), the first term accounts for the heat of reaction, the second for heating the feed, and on the right hand side of the equation, the first term accounts for heating of the reaction mixture, and the second for heat loss to tte surroundings.

In order to simplify solution of equations (11) and (12), several independent relationships were established. First, since the vacuum pump operates as a positive displacement pump down to about 0.01 torr, a linear or quadratic function should exist between volumetric flow rate and pressure

mined, and

eliminating

• This relationship may be empirically deter-it then becomes an additional equation one unknown variable. A slight complication

arises in determining this relationship, however, because the thermal conductivity type of pressure gauge used is com­position dependent due to the differing thermal conduc­tivities of the reaction gases. Therefore, ·an iteration procedure described in Appendix I was required to determine the actual total pressure in the concentration measuring cell •

. once the total pressure has been determined, the volumetric flow rate leaving the system can be calculated

-13-

'i :.i I ,1

·I .. I

'I I

I I

'j I

• I

I

using the flow-pressure relationstip described above. Since

the e~it concentration of the product gases will be

monitored with time and no product gases enter tte system

with the oxygen feed, the first two terms in eqn. (11) will

be known. Only two terms remain unknown in eqn. {11), the

reaction rate and the change of concentration with time in

the whole system, dCj/ dt. However, since no reaction occurs

outside the reactor, then the exhaust gas measuring ap­

paratus can be included in the system for calculation pur­

poses. Now the appropriate smooth function can be fitted to

the exhaust gas concentration-time data and analytically

differentiated to give, dCj/ dt. Thus with these relation~

ships established empirically, a direct calculation of the

plasma reaction rate ean be made.

The scope of the present work does not include a full

thermal study of the plasma reactor system. Therefore, no

solution of eqn. (12) will be examined.

-14-

\

t r

t r I I'

[

• t1 l'· LI

" !,

!:'

• i

.. ""-'• ;..:, -, ,.~ .... , ·l -- •"'' ·:•.,,.,;. j,_ .~, .·,,· •••• , __

• I

•·

The purpose af this study is to provide an under­

standing of those properties of an oxidizing plasma which

are of interest to the chemical engineer ~n the description

of polymer degradation. The experimental work will seek to

determine the rates of breakdown of cyclic polyisoprene and

novalak resin resist in this plasma. Variables affecting t~e

rate to be examined are: radio frequency (rf) power, total

pressure f(02 flow rate), oxygen concentration in a

neutral gas, and initial polymer load (number of coated

wafers) in the reactor.

Since polymer degradation in an oxygen plasma has been

termed "ablative" rather than reactive, this research will

attempt to determine which mode is applicable to cyclic

polyisoprene and ·novalak resin resists. whichever mode is

applicable, this work seeks to utilize the results of the

experiments to improve the reactor and process design not

only for oxygen plasma degradation of polymers, but also

similar plasma processes in the semiconductor industry •

-15-

~.l

I

•• ~OQIPMltn' QESCRIPTlQH

BacJsground

Since the overriding consideration in this study is

that the reaction occurs in a vacuum, the optimum equipment

for the study of the reaction products is a sampling

I residual gas analyzer ( RGA, or mass spectrometer). This

analyzer would not only permit examination of the products,

but also the long-lived intermediates in the reaction. High

eost and lack of availability eliminated use of tte optimum

equipment {most plasma researct is performed with some

variant of the mass spectrometer). The alternatives to the

RGA with the exception of emission spectroscopy all take a

step back from the reaction intermediates themselves to the

reaction products: CO2, H20, and co. The exploration of

workable analytical techniques for examining the concentra­

tion of these reaction products versus time involved a

literature search of CO2, H20, and co detection techniques.

Among the techniques available are sonic velocity of the ex-

haust gas, conductance of a solution in which the CO2 is ab­

sorbed, gaseous ionization, sound and ultrasound attenua­

tion, and infrared ~pectroscopy. Since the infrared spec­

trometer alone could monitor all of the expected reaction

products including the N-0 family of gases from the break­

down of the novalak resin resist, it was chosen as the

detection instrume.nt for studying the exhaust gases.

-16-

ii ,, ;1 fl I' d

I'

5eacto!

The apparatus (see Appendix III for diagrams) used for

this study was a production model International Plasma cor­

poration 'phot~resiat stripper, model no. 2100. The radio

frequency (rf) os~illation of 13.56 megahertz is capaci~

tively coupled and has a maximum forward power of 1000

watts. Balance controls permit adjustment of the rf circuit

to maintain minimum reflected power when varying loads are

present in the reaction chamber. cycle times, gas supplies,

and power levels were set up on tte !PC PM-508 controller.

The reactor has two quartz reaction chambers (6" inches

diameter by 13" inches long). Oxygen flows into the bottom

of the reaction chamber and exhaust gases are drawn out the

top by vacuum, supplied by a 17 cfm Welch oil•diffusion

pump. During all of the experiments, the wafer diameter was

parallel to the reactor diameter.

Pressure §aug~~

Reaction chamber pressure was measured with a Hastings­

Raydist model DV-4DM thermocouple gauge installed in the ex­

hau~t line downstream from the chamber. Since the gauge was

factory calibrated for 0-20 mm Hg {torr) of air, the conver~

sion tables and nomograph to read the correct pressure of a

different gas (e.g. 02, CO2, H20) are reproduced in Appendix

I Tables ~P I-1,2,and 3. The meter for the vacuum gauge was

readable near experimental conditions as 7.0 ~ 0.1 torr.

Since the meter has a log scale, readable precision was

better below 7 torr and somewhat w~rse above it.

-17-

I

• , . I

Due to the remote location of the 17 CFM pump under the

experim~ntal conditions of this study, the minimum pressure

(no 02 flow) obtainable was 0.6 torr. The experimental pres­

sure of 3.0 torr was obtained with an oxygen flow of 55

cc/minute. Under normal production conditions, the pump is

typically connected closer to the reaction chamber exhaust

and can attain a pressure as low as 0.1 torr.

Initially, calibrated Br~oks rotameters were used for

oxygen and carbon dioxide flow measurement durinq the setup

of the experimental apparatus. However, since the gas den­

sity around the float was variable in the vacuum flow

system, the only way to obtain absolute flow rates with the

rotameters was to continually solve the stokes terminal

v~locity equation. A new means of flow measur€ment was ob­

viously needed. Therefore, two Tylan Corp. model FCS-100

mass flow controllers were obtained. Each controller was

factory calibrated for a flow of 0-200 cc/minu~e of hydrogen

at STP (the appropriate conversion factors for other gases

is contained in Appendix IV). The readable precision of the

controller wast 0.5 cc/minute over the entire 0-200 range.

The principle of operation of the controller is differential

thermal conductivity (see Appendix IV-A). One controller was

used for oxygen flow while the other was used for CO2 flow

during the calibration runs. The oxygen and carbon dioxide

were supplied to the controller at 5 psig.

-18-

···1' { i

···-·-···---J--.--·~~;:;..¢" •

I

I

'

( I· '

I

Silicon wafer temperature measurements were made using two

devices, a thermocouple or an infrared pyrometer. The ther­

mocouple was a Simpson model 388-3L iron-constantan type

with. plexiglas protection of the metal leads. A Hewlett­

Packard digital voltmeter was used to read the thermocouple

signal with the high frequency rf pickup appropriately at-

tenuated by the common mode rejection circuit shown in Fiq.

AP III-2. This thermocouple was inserted into the reaction

chamber through an epoxy-sealed tee on a special quartz

adapter for the exhaust line. The junction bead of tpe ther­

mocouple was protected from the rf field by the aluminum ox­

ide binder (Insa-Lute adhesi~e cement no. 1, Sauerrejsen Ce­

ment co.) which was used to attach it to the silicon wafer.

An observation developed from the measurements with this

thermocouple. When the wafer-thermocouple probe was placed

parallel to the reactor diameter (i.e. perpendicular to the

rf electrodes), no rf interference (pickup} ocurred in the

measurement. However, when the probe was perpendicular to ,

the reactor diameter, a +2.3 millivolt jump in the ther-

moeouple signal ocurred whenever the rf power was turned on

at 800 watts. This rf pickup is demonstrated by the large

gap in the two curves of thermocouple data appearing on Fig.

AP II-1. A second identical thermocouple also was inserted

through the adapter into the exhaust line to obtain exhaust

gas temperatures.

-19-

!

) 1,1 ; ~ I,:

:i I, '

••

I

I

••

,,,.·~·.::- . ·,·~~\ ···=-_.,,' . ;, ... .>!. ·--.

~lthough some data were taken with the thermocoup~es,

the maj9rity of the silicon wafer temperature data were

taken with an IR Industries model TD-7B infrared pyrometer.

It operates by measuring the intensity of the infrared rada­

tion being emitted by an object in the 1.75-2.7 micron re­

gion of the spectrum. No significant loss of infrared rada­

tion is caused by the quartz window on the reactor. In com­

paring the pyrometer readings with the earlier thermocouple

temperature measurements, it was noted that the thermocouple

·values were identical to the pyrometer temperatures.

Measurement of the exhaust gas concentrations of H20,

CO2, and co was made by passing the exhaust through a Beck­

man model 22557 variable pathlength (0.01 to 10 meter) cell

which was placed in the sample beam of a Perkin-Elmer model

457 double beam infrared spectrometer. Since both a separate

Nernst glower and a mirror were used in the optical path of

the sample heam, a diagram of this instruments layout is in­

cluded in Fig. AP III-1. A preliminary examination of the

exhaust gas to identify the components, revealed that only

CO2 and H20 were present. Therefore. the spectrometer

wavelength was able to be fixed at the major CO2 absorbtion

peak at 23q9 cm·1 (4. 3· microns) for the polyisoprene exhaust

gas measurements. The Nernst glower for the sample beam was - .

supplied power by a 6.3 Volt, 10 Amp filament transformer

controlled by a 11S VAC variac. The transformer delivered

-20-

approximately 4V at. 10 A to the glower. In order to minimize

the effects of changes in the atmospheric CO2 concentration

on ~he transmittance readings, the entire spectrometer and

qas cP.11 were encl0sed in a plexiglas box purged with

nitroqen.

•21•

.1

. I

"' - .. __ ~- .-- --i - •

_)

In order to obtain close to abaolute temperature

calibration for these experiments, the melting points of

pure chemicals were used. A detailed description of the

calibration techniqae is given in Appendix II. The pertinent

r~lationships derived from the calibration are:

For the thermocouples,

T hot chuck ( 0c)= 1.065•T thermocouple ( 0c) (13)

Tactual (°C)= 1.005*T hot ct.uck + 7.0165 (1ij)

Tactual (°C)~ 1.07*T thermocouple +7.0165 (15)

For the infrared pyrometer,

T hot chuck (°C)= 0.9~22*T pyrometer {0c) +0.1318 (16)

combining equation (14) and (16),

Tactual (°C)= 0.997*T pyrometer+ 7.149

Pressure

( 17)

Using the closest pressure measurement technique to ab-

• solute for the 3 torr region of this experiment, the two

thermocouple pressure gauges were calibrated to a McLeod

gauge by the technique described in Appendix I. From this

calibration work, several important relationships were

,1 developed for oxygen pressure in the system:

P qas cell(torrJ= o.q969*P exhaust gauge{torr) + .0027 (18)

.·• - ·~··•a--<-. •

.. ---~--~·

)

)

I

P reactor (torr)a 0.5960*P exhaust gauge (torr) - .0856

( 19)

Although these relationships apply only to oxygen, they are

very important for deriving the actual total pressure for

the multieomponent mixture of oxyaen, carbon dioxide, and

water created in the experiment. A complete description of

the iteration t~chnique used to obtain the total pressure is

contained in A~pendix I-A.

Absolute gas flow calibration can be done by displacing

a measured volume of liquid in an interval of time long

enough to reduce the error to a small amount. The gas should

be insoluble and unreactive in t~is liquid, therefore, mer­

cury is often used. The calibration of the two mass flow

controllers used in this experiment is described in Appendix

IV. Although the controllers were claimed to be factory

calibrated. the readings from them were approximately 45%

low. The relationships developed are,

• • v 02 (cc/min.)= 1. 38*v reading (cc/min.)*[ 1.0 J (20)

• v carbon dioxide • • = 1.48*v reading •(0.74] ( 21)

I The numbers in the square brackets are the correction fac­

tors from the manufacturer•! literature, Table AP IV-1, to

account for the different properties of the two gases.

-23-

,. / . 1:.'

----· - ··-·----··-··· --. ---· ...--=-•·-,,:4...·- -· . . ... - ~-~---~'----··~---- .. ·-.:---~.:...:,-;A,:~-;=......s....--..-..

I

)

' __. )

• I

I

••

Another important flow relationship needed for the

solution of the system equations (see Descriptive Equations)

was flow vs. pressure for the IR gas cell. Since at the low

pressures involved in the experiment, the gases should all

behave as ideal gases, oxygen was chosen for the actual

measurement used in the experimental calculations. However,

as a precaution pressure v~. flow data were also taken for

CO2 and H20. These raw data were reduced using t~e calibra­

tion equations for flow and pressure previously developed. A

plot of the oxygen data appears on Fig. AP IV-4 while all of

the data are charted on Tabl~ AP IV-5 and plotted on Fig. AP

IV-6. For easy use in the calculations, a quadratic equation

was fitted to the oxyqen data, (Table AP rv-1r

• v (cc/min.) = -7.993 + 5.329 * Pir cell+ 4.789 * Pir cell

(21-A)

where Pir cell= actual gas cell pressure, torr.

~QSOrbance-Tr~nsmittan~

In quantitative infrared analysis, large sections of

many books are dedicated to equipment calibration due to the

low energies being measured. Many factors can lead to inac­

curacies because of the numerous operating components in

both the experimental and mea~uring system. Gases may be ad­

sorbed on t.he measuring cell wall~ and mirrors, mirrors may

be dirty and scatter the infrared signal, mirrors may be

misaligned, amplifiers and electronic eomponents may fail

-24-

I:

;)

,I

' ~

-•• ~~~-~---······ ·-· .• -·-·--·-· ..... -~_--11,_ ---- ···--·-··-··· ~--- ... -.. -.,.......

' I I

I l

! ' ,.

I I. I ;

t r

••

I

,.

causinq signal drift. However. many of these problems can be

avoided through careful recheckin~ of baselines and full

scale deflection points during tte course of the experimen­

tal work. In Appendix V, the details of the calibration

measurements are discussed.

'lt,e relationship between carbon dioxide concentration

and a~sorbance obtained from these quantitative infrared

measurements was,

C co2 (gmmoles/liter)= (8.022E-4)•A gas - (2.139E-S)

( 22)

where A gas= per cent absorbance of the qas

Initially, the cause of the wafer temperature rise was

unknown. However, since the lightly doped (1*10 15 atoms/cc)

silicon used will not couple to the rf field, rf heating of

the wafers cannot occur. Therefore, the a~tivated ions and

electrons must transfer energy to the wafers to cause the

temperature rise. Since this is the mechanism of energy

transfer, the most direct measurement technique would be a

surface temperature method because the polymer removal is a

surface reaction in conjunction with surface heating of

both the polymer and substrate silicon. Thermistors, ther­

mocouples, and infrared pyrometers miqht be used for the

-25-

••

I

, ':I

measurement. However, since rf is present, thermistors can­

not be used because the carbon sensor would couple with the

rf field, absorbing energy and qiving a false reading.

However, thermocouples could be used if the metallic junc­

tion could be shielded from the rf. To test the use of

thermocouples, one was attached to a silicon wafer as

described earlier, and temperature vs. time was measured at

an rf power of 800 watts (each reaction chamber was loaded

with 50 wafers to simulate normal operation). The data from

this experiment are plotted on Fig. AP II-1. The exponen-

tial equation which describes these curves is the solution

to the heat transfer problem of an object with negligible

surface resistance to heat transfer being suddenly immersed

in an ambient of higher temperature. This finding is com­

pletely consistent with ion-electron bombardment as the

mechanism for energy transfer to the wafer. The equation is

shown below (39],

where

(T gas - T} / (T gas - T(O}) = exp( -N*,:) (23)

0 T= temperature of the gas ambient or the wafer, K

N = ( AR*h/ p *CP*V) silicon wafers, a constant

AR= surface area of the wafer, cm~

V= volume of the wafer, cm1

CP= heat capacity of the ail.icon, calories/gram- °K

h= heat ~ra~sfer coefficient to the silicon, cal./cm~-min.-°K

-26-

•, I

'

. )

#' ) ,,

',•- .. " ,_ ·'" _ .. · .. J-o.,_,w,..Ji., ,·.,•:... •' ., ........ :... . .; ... ;,,.·· ...

T(O)z wafer initial temperature, °K

The constants for this equation are listed in Table 24. ~

second thermocouple was used to measure exhaust gas tempera­

ture downstream from the reactor. This thermocouple was

monitored as the pressure in the reactor was varied and

provided a plot

pressure, Fig.

of steady-state exhaust temperature vs.

APII-6. The higher exhaust temperature at

lower pressure is caused by expansion of the plasma into the

exhaust line which increases the energy transfer from the

longer lived excited species to the thermocouple junction.

Of course, the expansion of the plasma is due to the reduced

collision frequency or longer mean free path at low pres­

sures.

~his t~ermocouple system survived about twenty trial

reaction runs after which the fiberglas covering on the

leads finally disinte~rated. Tte exposed metal coupled

directly to the rf field, glowed red hot, and conducted heat

to the junction, ending the feasibility of thermocouple tem­

perature measurement for the set of primary experimental

runs.

In order to obtain long term reproducibility in the

wafer temperature measurement, an inf~ared pyrometer was ob­

tained. The temperature scale on this pyrometer began at 110 0c. Therefor~, the initial heating of the wafer could not be

monitored using this instrument. 'However, since the equation

.. 21-

.. J ,,

... I

I

,,,

I

,, 'I I

I

,:1

· ·,, .. .:v~ ~J.'.- ._.,: -~,.1-, ··.), • ,.,.· •• · .. ,·~., ...... •. ;., •••.. ,

for the temperature rise is.known. eqn.(23). it was used to

estimate this initial temperature rise region by calculating

the eqn.(23) constants from the actual data obtained above

f10 °c. concentrat!Q!! Me!fil!~~

Using the spectrometer system previously described, a

full infrared spectrum was run on the exhaust gases at a

pathlenqth of 6.4 meters. Since the characteristic co bands

between 4.5 and 4.9 microns were absent, the co gas concen­

tration was eliminated from experimental consideration. The

implication of this finding is that either the 800 watt

plasma is energetic enough to completely oxidize all reac•

tion products or that the nature of the reaction precludes

formation of co.

Continuing the check on variables affecting the CO2

concentration measurement I the possibility of H20 vapor ab-

sorbtion interfering with the CO2 absorbtion _,

at 2349 cm was

examined. Since data had already been taken on IR transmit­

tance vs. time for three different groups of product wafers, •

Fig. AP V-3, a calculation was performed to estimate the

total grammoles of CO2 which had been produced. From this

esti~ate the CO2 concentration corresponding to the minimum

transmittance (72.5%) was calculated and found to be

1.345*10-~ gmmoles/liter. After the absorbance-transmittance

calibration was complete. the concentration corresponding to -~ 72,5% transmittance { 141 absorbance) was found to be 1-.0•10

-28-

~. )

. )

, )

/ i

l 'I J

'-· .... -.,._,r . -~ -

• I

I

gmmoles/liter. The close agreement of these values indicates

that there was no H20 interference with the CO2 concentra­

tion measurement. As a final precaution, water vapor was

drawn through the gas cell w~ile the transmittance was

monitored. No absorbtion was observed.

One significant problem with constructing the calibra­

tion curve appeared when tte data were plotted. When a least

square straigh~ line was fitted to tte data. the zero con­

centration point intercepted tte absorbance axis at +2.3i

rather than 0%. No experimental or theoretical explanation

of this offset was apparent, althouqh many possible explana­

tions can be found in the literature on infrared quantita­

tive analysis. The present research will treat this offset

value as zero CO2 concentration.

-29-

,:

I ;j

'

'

'

BESULTS

~ckqrgund ~ ~b~ fiimarx ~xperime~!

In order to determine the removal rate of photoresist

from silicon wafers, the information needed was the total

weight loss of photoresist for the time exposed to the plas­

ma. Also, to define when the weiqht was lost during the

cycle, a plot of CO2 concentration in the exhaust gas vs.

time was required. Since the integral of the CO2 concentra­

tion witt time sha.ild correspond directly to the measured

total weight loss, these data act as an internal check on

the consistency between these two measurements. The weight

loss was obtained simply by weighing the silicon wafers

coated with photoresist bott before and after each plasma

run. Measurement of the CO2 concentration was made with the

Perkin-Elmer spectrometer system and required simultaneous

reading of the transmittance and the total pressure of the

reaction chambers. Ten 3" diameter wafers coated on each

side with resist were placed in each of the reaction

chambers. The quartz rack holding the wafers had a wafer to

wafer spacing of 0.25 inc~es. The silicon wafers were ox­

idized on one side to simulate normal product. To weigh the

wafers, they were stacked on the pan of the Mettler balance

described earlier. An additional parameter, the wafer tem­

perature, was monitored as a measure of the energy input to

the resist surface.In order to prevent inaccuracies in the

i!

j

i

l I. i

i ~

relationship between carbon dioxide formation and polymer

,~ • weight loss, most of the solvents in the resist were driven

'

,,

off by • vacuum and baking treatments (160 C) before the ex-

periments began.

Primar? ~eerime!!!~

The expetiments to determine overall removal rates of

the resists required measurement of: weiqht loss vs. rf

power and time, pressure ( pressure is controlled by the ox­

ygen feed rate), initial polymer load (number of coated

wafers), and the per cent oxygen in the feed. In the first

category of experiments, four runs of 25-44 minutes duration

were made at 200, 400, 600, and 800 watts rf [email protected]. Longer

times were used for the 200, and 400 watt runs in order to

·remove enough resist to reduce the error in the weight 106s

and CO2 concentration measurements. Ten coated wafers were

placed in each chamber and the oxygen feed rate was held at

55 cc/minute. Data from these runs are charted on Tables 1-4

and plotted on Figs. 5-9. For the second set of experiments

two runs were made at 800 watts and a 27 cc/minute oxygen

feed rate. Data on the time variance of absorbance, pres­

sure, and temperature at this ·new oxygen feed rate are

charted on Tables 10 and 11 and plotted on Figs. 5-9.

During the third experiment, the power was held constant at

800 watts and the feed rate at 27 cc/minute, whil€ the time

was varied for each run. The weight loss, wafer temperature,

and total pressure were monitored for run times of 1, 2, 3,

-31-

I

'!

/)

'

'

--------·--·- .,,·---·--·-------------- ·-----·-. ''.,, ,...,;.. ,-;s. :_.\-.'-_I·~,_.~ ........ ._.., t· • •

4, 5, 7, 8, 10, 12, 16, 18, and 24 minutes. The chart of

weight loss vs. time data is Table 12 and Figs. 12a, 12b,

12c. The next experiment measured the weight loss from 2, 6,

and 10 coated wafers per chamber while time, power, and feed

rate were held constant at 20 minutes, 800 watts, and 55

cc/minute, respectively. Table 13 presents the details of

these data and weight loss vs. load is plotted in Fiq. 1~.

In addition to using pure oxygen as the reaction gas for the

negative resist removal measurements, several measurements

were taken of polymer removal cates for O, 12.5, and 22 %

oxygen in nitrogen which acts as a neutral gas. The experi­

mettts were performed at BOO watts of power and weight loss,

wafer temperature, and pressure were monitored. A plot of

the weight loss data is presented in Figure 15. The small

positive removal rate observed in the pure nitrogen run was

caused by a small amount of air leakage into the system.

The attempt to perform these same five primary experi­

ments with positive resist failed. Although three runs were

made in which all parameters were monitored, a rapid pres­

sure rise developed about eight minutes into each run. Ttis

effect brought the run to a halt, since the high pressures

could not be measured pr~cisely and the plasma could barely

be maintained. Consequently, novalak resin resist stripping

was dropped from this project. It was suspected initially

that a byproduct of novalak breakdown was reacting with the

-32-

silicone rubber reactor seals causing an air leak. However,

the seals suffered no damage because this supposed air leak

was absent during subsequent negative resist runs and vacuum

testing. Therefore, an explanation based on the novalak

reaction itself was sought. One possible cause of enhanced

reaction of positive resist is the breakdown of the napht~o­

quinone diazide sensitizer to ketene releasing nitrogen fol­

lowed by the rapid breakdown of the ketene releasing carbon

dioxide. In addition, the oxygen content of both the novalak

resin ( c ?fi ?rf> 9 ) and the sensitizer ( c23

H 140 7

s is

very higr. compared to the nearly pure hydrocarbon structure

of the polyisoprene. Therefore, this positive resist struc­

ture should breakdown more rapidly than the polyisoprene,

yielding a larger pressure rise.

"Fluorocarbon polymers have the smallest ablation rate. Hydrogen polymers have a larger ablation rate and hydrocarbon polymers containing oxygen have the largest ablation rate." (34]

This general observacion by Hudis runs contrary to the ob­

served slow removal rate of positive resist and the data in

D'Allelio and Parker's book which attest to the excellent

resistance to removal of the novalak resin family of

polymers. [35] Recent attempts to recreate this pressure

rise effect have failed, leaving the phenomenon even more <• perplexing. The scant data gathered from these three runs is

presented in Tables 16-18 for completeness.

-33-

' :··'-,,,'.:, ·- .•.

-_:--·· -~-- ·. . - -- -- _;_,_,

• • TABLE 1

RUl'I NIIMB FR l . ---·-Nii. oAtA i>otrns····2s - -

NUMRER Of WAFE~S 20 "'----,PilWf:'R-L°HiEi. ~F WATT'-=se---=eoo.0000

• ·-'Jl2· F.EF.D RATE 55.1qqq66 CC/MINUTE ---::-i\ASEl:"INE -- TR\NSM .. Tt .M~tlt ------0.8650 ......... --- -.- ..... _ - - - -- ... - -- ------ -

·._.,;.__., -, --.----··-- --------· ----·--- -----

-; 0 , THE,·.OAJ,A._ON THl·S PAGE' WAS REOIJCEO USING THfCALIURAJIO~ RELATIO.'IS DEVELOPED CAPLIF.R IN THIS PP.OGIIA't ,, ,·<;t=(OW;,NUltifACfzAffoN FACTOR WAS, 1:-J()qc-jf;--

---THrMf.A~URF.D-lff:-UJS-S-fs----·o.·i 6tf'l ___ GRAHS --- TttE ttJ2Li'S"S""CA('t'.OtATF.O" fl)O~ TRAl',4iM 11 f AIIICE .. nATA- as-·-.· . ~·- - . '.' ,· . . - . -- .. ~ --

:',

··~ .....

. " ~

.......

TRANSMIT- PXN-RATE IR CfLL CO2 HOLE CO2 LUSS TOTAL WAFEA ocn21,0T . ~ <' . ·-:=,:C 'i;lME ARSO=R--::R,-:-A-,-N""'c=e-----, ANC E GR Af04CIL F.S/----i>RE s SUR I: ~r ffrro111 - 1;R .\HS ___ tff2t.nS"sr(;{lif:AA°'fUQ -mJIAnl ... E .... S'""/.---------___ _J_1}.~~T~_s ~- -- ---- · ·· ___ ------- __ . -~~TER-MHI. (JrlPP) --------- PEA HINlJTF. Cr.RA .. SI (OEt;REES Cl IITFR-"ltt. ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

- ---:----c;~·rooo~·+or-··0~2es3~01-0~931,4e•oo·-o.1q6se..:-t>s · o.12li)E•of-o~,u;11,E-02 · o.t.<JSbE-01 o.69St.F-c1 -·o.o o.1Qa2c:-01, -. , Oit:2000E•Ol 0.4492E-Ol 0.()0171: tOO O. l 328E-04 o. ll64F •Ol 0.8663F-Ol o.,.109E-02 o. 7405fc-02 o.o 0.25~ ,e-~ ---..,,0.3000E+Ol 0.477lf-Ol 0.8960!'.+00 0.1554E-04 O.J245C+Ol--0.'17°'rff-=-or-o:·1q)'lf-i>2-0:-f!'r~r-01-o:12oi\~.a~o;-,n;Ar-=ff~

0.4000f+Ol 0.5222E-Ol 0.8867E•OO O.l877f-04 0.3259E•Ol O.ll77f•OO 0.9b71E-02 0.2501E-Ol Oel268E+OJ 0.2174E-04 I ----·u;soooe.-or-o.5ii2oi:-:.01-o::a1ei.e+oo--o.2u~sF-04 · o. 12 nt+o1-o.135t.£:H10 ·· o.1122e-01 · o. 16231:-01 · o. l 34Ri.:+o-, 0.21 ,.,e-01, \.,.) o.oOOOE+Ol o.5907F-Ol .O.R728E•OO 0.235lf-04 o.3248E+Ol 0.1498f+OO 0.1222(-01 0.4R45E-OI 0.1~78[+03 o.21s~e-o~ \.,.) --.-··o~-1oooe+o1--:--o.t,118e..:-01·-·o:essse+oa -·o.101of-04·- 0~1291f•o1 · o.1R1~r+oo · 0~1snF-01 o.64l7f-or - 0.1,;bJE+o, o.2262f-04 ~ O.AOOOE+Ol 0.7369E-Ol 0.8439E+OO 0.34b?F-04 o.~321E+Ol 0.2126F•OO 0.1813F-Ol o.~230E-Ol 0.1667E+03 0.7.215(-04 I o.9000E+Ql o.7968E-Ol 0.8324E+OO 0.3940[-04 o.J3b0Et01 U.23b'l[+oo-o.-2061F-Ol ·o.10101:+oo-u.t l'11f:•Oi--o.~1l,.F-04;__ ______ _

0.10001:+02 0.8576E-Ol 0.8208~+00 0.4341F-04 o.3325f•Ol 0.2669F•OO o.22sor-01 0.17.5RE+OO O.l807E+03 0.2405F-O~ · -_-----o. l HloF·+oz-·o. ill 9zf.: or-o-:·so92r .:oo·- ·o. 48 oR F-o4 ---o. n 38£ • oc- o.19JSF +oo · o. i s2t3F-01 o.1 s 1oe + oo · o. t 96c-E• 01 · o. 2t.4o£ -n1, · O. l200E+02 0.9l92E-Ol' O.R092E+OO 0.48 llf-04 O. 338 7E• 01 O.ZR<)lf +00 O. 2'ib3f-Ol O. l 767E+OO O. ~006f tOl 0.21 ARS:-04 --- 0~ [300f+d2 .... o. 'Ji 92e-=01--o ~6092i: t-00 ·- 0 .4B 11 F..:04 -- o. JJ8 7E +O l - . 0 .28'llf. + 00 o. Z 5b 3i-•H 0.2tl2)F •00 o • ., O~t.J- tOl 0.1 l '11)r-01o . 0.1400E+02 0.9192E-Ol 0.8092E•OO 0.4Rb9F-04 0.33d7E+Ol o.ioq3c+oo 0.2563~-0l 0.7280t+OO o.206bf.t01 0.7191[-0~ --~ o:1 so6F.•oi---0;1rso3!:-or-o-:eo3i!iF."• .rn--o: ~ i ioitE;.._·04--0:3--;.Tti:-+ o 10:-=roo1or+oo-u: 21o<>F:.o r- o ~-a sofioo--«:,;11 oc.i= iM-«r. 2ffil~r-=,~,>...-------­o. 1600F •02 0.9503F-Ol 0.8035F+OO O.'il42f-04 0.3417F+Ol 0.3004f+00 0.770'lr--01 0.7R2l~+OO o.212t.t+03 0.20A5f-04 ----b;f700E+02 0.1013~+00 0.7~19~+00 0.5572(;__04 0.139lf+Ol O.J30bF+OO 0.2Ql1F-Ol 0.3ll~t+OO 0.2l46[t~3 n.7]33F-o, . - -·-­O.l~OOF.+02 O.lOlJS:+00 0.7919E+OO 0.557lf-04 0.3391[•01 0.130bf•OO 0.2937F-Ol 0.1409f+OO o.~lb6f+Ol 0.23llf-04 -,---·-=-o~ii:Joot+02 o.i'Ol3f•00-0~7919i:+00 0.5570F-04 0.33'HE+Ol O.HObl.00 0.2937r-Ol O.H021·+00 .. 0.218hE+03 o.2:n .. e-0,. -- ---------0.2000F•02 0.1013E+OO 0.7919E+OO 0.5569F-04 o.33q1[•0I 0.3306F+OO 0.7.917(-01 o.3'19bE+OO 0.220!>(+03 0.2335E-O,. ---0;2iOOl:'i02 o. ioi 3E+ 00 O. 79 l <lE +00 o. 55b8F-04 O. 3J91F +Ol -0.J 3 06[ HlO ·o. 2'13 7F-O 1- -0. 4290€.+llO-- o. ZZ 15( +03 0.2 .ut.r-O.;.o\--------0.2200E+02 O.l013E+OO 0.7919E+OO 0.5568E-04 0.3391~+01 0.3)0bF+OO 0.293lf-OI 0.4!>83F•OO o.7.2l!>F+Ol n.Zllbf-0,. ----·0;;23nor:+02- ()~ i013f.+00-0~-79l'Jf. +00 0.5567f-04 o. 'iJQlE +01 o. llOhE + 00 o.1q17F-Ol 0.4 8771:' +00 0.22l5E .o, o.2:n1£-0,. -- -- ...... o~2400F+02 O.l013F+OO 0.79l<lE+OO o.5566F-04 0.3391E+Ol O.i)Ob[•OO 0.2937(-01 0.5171(+00 o.724~E+Ol n.2131e-01o -----o~-2'iOOE+02 -O.l013f+OO-··o·.19l'Jr.+OO O.!>'ibt,f-04 o.3i'HE+Ol O.BOhl-+00 o.Z<ll/l-Ol o.S'tb4E+OO o.27i'>l:+03 o.1111s=-n1o -·--···· ·-

·------------------------- ---------------------------- -·-·-· -·

---~-ABSO~nAr,ic E FOP PUl'I NO. 1

·" T~f C~FFIClfNT VALU£S AME A•0.9J52F-Ol YO•O. t'iR'IE-01

PR~SSURE IP CELL . _ f:l•R J!UN-Nn.-1--n,e CoFFIClf'rH-VALUFS Av.F·-·A=o:_7P4At:•oo -·-n=·o.m1~+00--vu .. o.,1Hif-+1'H----- -- -

~i-~':tE~~~RATliRE FOR RtJN Mil. l TliE cnFFICIFNT VAlllFS APE A•0.17251:tO} I'• 0.105"7f+OO

. __ ~'."'_o_ ... ~~!t:-07 . __ t•o.s~12,-cn ______ _

.~:i.~ ... __ _ ,; £.' '."> .. , •

;-1 M 0" ,.::

J;f" •M• ;~ ."

"5.) .... .,,: ... -. -

·t~:.,, f:"-, ~

(1.: :- ;_.

~:. ---·. ~ - .. ·, -~~., .·i"·'~· ._,. . . -·':i :_, t!--"" ~ '~~. -...

t_l ..... •t \,f,._ I

ti'' >. :./:

?j~_J"-·Y;.,; --.~ ... :~ ' .. I

(,,,

--- ·-~ .--- ---~

• ; ft1J't,:,::t'IIJN .. '3R 2

--, HO~.-.:nAU. POiNTS 20 NUHiJER ·tlr:: • wt.rF.RS 20

---=p=ow""'· ER· l-Ive(ti'i=wafts---2=00. 0000 _ 02 FEEfl FATi: 55.199?1,6 C.C/Mll'fUTf -_---BAS£l HIE"' TRANS11I TTAfotCE ----- o~eq50

TAB!£ 2

.. - ~· -~·..,. "" .. -..----':..

~ B ~<J~ii

. -~~ -H~.~-..,_~- -

•;ii~ .

-~-::, '1. •. ~.:f-f::.: -·

.t, .,; •.

~ i ~~;·'I~~-----~- - -·· •, ~-.~·. '~- . '."i'"'... ,: ---

' ~·~ ~ 1e!_:: .. --~

- I~';" __ ;_, .• ,;...._, __

'•.-. :.:~' -·

!.~: ·j,i, \I!

jj 1'~·~, .... ..; ... ~ ...............

-·~---

• • ~-~ ... ~.:.-------

---·-- ··-··-----TH~ OATA ON THIS PAGF WAS RF.fltJCfD USIIIIG THECALIRRATIOfl RElATl~S DEYF.lOPFO fARlHK IN THIS PROr.kAM

~-~FlOW ~OR~AlllATION FA~TOR was. 1.00000~· ~~~~~---~~~~~~~~~~~~~-~~-~----- TH~ M£ASl1REri WT~ UiSS is·-- ---- o .0525 GRAMS - fHE cn2 LOSS t~L~ULATfU FROM TP~~SHIJTANCE DATA 1s· · - o~o

-c TRANSMIT- PX-.-RATf IR CELL coz HOLE cnz LnSS TUTAL w•FCR 01(121/IIT

tHfF ASSO't~ANCF. -TANC-:,F,----=G=PA~HOLES/ PR(SSIJR .;,.e--=F=RAmo=~---c.-RAHS---cdzt.18~T~lTti~~i.U..~s ----------1 .. lNIJTESI LITER-HIN. IT'IRRJ PFR HINIITF CGPAHSI (DEGREES CJ l lTFR-•ctN.

I -----0~1000F.+Ol --O.ll40F-02--0;•n.B2E+OO ... 0.11 ?OJO-Ot. o. 302SE+Ol-- o.o------ o.o o.o o.o o.o o;o n.o-

\..J o.2000E+Ol O.l230E-Ol 0.9721E•OO o.1oq7f-Ot: 0.3221[+01 o.o \.J O. lOOOE•Oi o.12~oe-01 0.9721[+00 o. '1R6lE-07-0. 332C:.F•Ol o.~o-----~ o' _ 0.4000F+Ol o.121oe-01 0.9721F+OO O.A<>46F-07 0.3l16F+Ol o.o o.o o.o I---- -b.5000Eio1 ·-o. 14111.E-Oi -o~-9665[+00 o.,n l5E-07 o. J'tO lf +Ol o.o o.o o.o 0.6000F.+Ol 0.1481E-Ol 0.9665E+OO 0.7362r-07 0.3401~+01 0.0 O.O O.O

--·o.anoor.+·01 o.l7J2E-Ol O.Q609E+OO 0.605?E-07 0.34011'+01 - o.o --- -- - o.o o.o O.JOOOF.+02 0.1986[-0l 0.9553E+OO 0.4Q87F-07 0.3401F+Ol O.O O.O 0.0 ----.O.l200F+02 o.1qa6F-Ol o.9553E+OO 0.4l04F-07 O.l401F+Ol o.o o.o o.o 0.1400E+02 0.2240E-Ol 0.9497Et00 O.JJ7~f-07 0.3401E•Ol o.o n.o o.o ---0.1600~+0}.- o·.2240F;:Oi-o.q4<17~·00 0.218ClF-07 -0.340lf'•Ol -- o.o - -------- o.o o.o o.1aooF~o2 0.2394F.-Ol Cl.9464E+OO O.llS8f-07 0.3401F•Ol o.o o.o o.o ----··o.20,1oe+o2· o.21-J1,f-01 o.'l464F+oo o.18HJE-01 0.34011:•01 ·o.o o.o o.n 0.2400E+02 0.74Q7f-Ol 0.9441E+OO 0.1215(-07 0.340lf+Ol O.O O.O O.O ---0.2800E+02 0.2497E-Ol 0.9441[+00 -O.Ab]8F-OR

0

0.340lf•Ol o.o o;o-----·o.o 0.'3700F+02 0.2651F-Ol 0.940AF•OO o.~H51F-08 0.3401(•01 n.o o.o o.o --- ·o. 3601)l:+02 0.26'iiF-Ol o. 9408E +00 o. 3q(, lF-OR o. 34 O I c • 01 o.o O .o o.o 0.4000F+02 0.2651E-Ol 0.940AE+OO 0.7b~4E-OA 0.3401£+01 o.o o.n o.o - -- ·o.4200F.+02 o. ?.b'iiE-Ol 0.9,.oa~ +oo o.22oqe:-0A o. 3401 c •at o.o o.o o.o __ 0.4400!:+02 0.26511:-01 0.9408E+OO ___ O.lfllRf-08_ O.j40lf+Ol_ O.O O.O O.O

ARS['IJU)ANCf' --- - FOR iuu• tm. 2

PPESSUltE Ill CEll

THI: C.Of'.:FICIEtH VALIJFS /I.Pf" A=0.202dE-Ol

i:oR RUN NO. 2 THf C'lFFICIENT VALU[S• APF A=O.JA31.F+OO -~-- -

TE"IPERATURE FOR Pli~ ·...:o. 2 THE Cll[FICIENT- VALIJ[S IIRf l\=0.4000(•02

n .. o. 9140f-O 1 YO =O. ••eor. -0}

S\=O.f.OOOf-01 RFSJ QUAORATIC-FIT (lF THE TClTAL (02 l.'lSS(GflAMSI odTII TP'll r.rvrs cnfrs. A=0.1)

_)'· o.o·· o.598SE-ns 0.0 -.1~06F-05 ----~:o ----;.--;1~&7e=or----~---~ O.O -.IB21F-04 o.o -.,o~ae-o, O.O -.JOORE-04 o.o -.2001f-04 o.o -.2nn6C-04 ---~o.o - --------;.;·.>nosr-,n----------0.0 -.2005l-04 o.o -.>.004F.-n, o.o -.2004f-04 O.O -.100\11=-04 o.o -.ZOOJE-04 ----o;u----- :..~ 1onl~n .. ---------o.o -.?002f-04 O.O -.ZOOZF-04 O.O -.2002f-O~ o.a -.2002s:'-04 o. o :: •. P!.'!-'~ -:!l~--. -----

··--·· ·--·----- .. -----------------

''

' , ' . :• ~

( ~ •, - :.;

:. <. ..... ~ (' ' .. .,. -

.,?- ':,_..

,· .. - \ .. - ------ -----------·-

••• .TABLE 3

. _.,:,m ... _,)!lJ~BER ... _ 3 .. ___ ... ·---------- .. _ _ __ ... _ --·-- ____ . _____ ... __ ---- _ . ,, ·.: "!'110,. :.,,0.4 TA PO l'tH S 2 2

··1:i"'

'",:'f -----~ .

•.,, -· ' 1 °· i·,·.l!rf'!' r.c·~"'~ ·p

.J .. ·~#:~,f,~'· I• a;:l~.i,P.

.-~ . ~'"'": ~-:.~-=-·.-·- • -.<---

' ~ ~ -~--·-, ;m,---

:,~-,,'Q'

-.. -

• -------------------------------------- - -- ---·-·-·-------.. -;,UMRER :,..r: WI\FtRS 20 ~owER lFY~RF wAns=-"---=,.-o~o~.~o~o~o~o~--------------------------------------------------------

02 .FJ;F.O RATI: 55.l99Q66 CC/MINUTE - . -·RASELINE TRA~S~I TTANCf----0.QlOO ---- -- ---- -- - - ---------- - -·-------- -------·--------------------------- --- -------THE O'lll\ ON THIS PAGE WAS RFOIJCF.D USING THFCALIBKATION RELATIONS OEYflOPEO J;AALIFP IN THIS PIUJGRAM FlUW .NOR~ALIZATIO~ FACTOR WAS, 0.97836

- THE -,_.EASUREO WT. LOSS IS

TRANSlltlT- RXN-PATf IR CELL CO2 MOLE CO2 LOSS TOTAL WAFER 01021/l>f Tl~E 'l6'iOR8A-N=C~E-----T~A~NCF GPA-."IOlf.S/ PRFSSUR E FR ACT in1'1 i'i~Ail1S ·-·--Cll7.l-O""S'"'S..-... T""E""HPt1fiTURF C.RAHNOUS....---------

--.,..•-~~~!!.!~-~-! ___ ----·---·------------...!:._! gQ_-".41~~ ____ ( !.~~~-! .. --·· _ ·-·- .. _____ PE~ Hl~U_!f _ ( GRAr1S I __ ! ~-E~,!IE~~ -~-·- __ ll_!~_:~.1~!-------·---.. O. lOOOE+-01- O. I 456E-Ol 0.9670E•OO O. l863fc-06-0::307eF•Ol-O.o·---- o~o. 0 .. 0 ---·o·.o--- -- o.-,&tJ6F".;.06 ·--------· - --1 o.2000E+-Ol 0.19'52E-Ol o.9560E+-OO O.l723F.-06 0.3277E•Ol o.o o.o o.o o.o -.1379F-o.r.

~---~0.3000E•91~2203E-Ol 0.9505E•OO 0.1595f.-06 0.3376E•OI o.o O.O o;o U.O -.!frO~T----------~ D.4DOOE•Ol 0.2454E-Ol 0.9451E+-00 O.l475F.-06 0.3425E•Ol O.O O.O O.O O.O -.?482F-O~ o o;·sooo~•o1--0;21ose-=·or--o;g396E •oo--o~ s1<i1e~ob-·o.:niisE'+o1--o.:1 r9lr-02- o .. 2126r.:.o·,-- o.2126E=o~c>-;o----- ·--~_.211,1r-04 -- ···------- · ·· I 0.6000E•Ol 0.2962E-Ol 0.9341E+-00 0.3155f-05 D.3492E+-Ol 0.1269F-Ol 0.1599E-02 0.1Rl2E-02 O.O -.1920F.-04

0;10001:·•01-·o.-12u1:-=-01~0--:·ii2"lt6e .:oo ·-o~ s 106F..::o,--o.-1.r.9qE+o1-· o:nt.&Fo1·-,)~·2<>9 3e-02-· o.4aose.;;-02--o.;o - · · ·· -- _;_. 291 lF_;_o~ --- -----·· -0.8000E•Ol 0.3218E-Ol 0.9286t•OO 0.5A54E-05 0.354AE•Ol 0.2333E-Ol 0.)014E-Ol 0.7819~-02 o.o -.3zq3e-o•

-----0.9000E•Ol 0.1218F-01 0.9286E+OO o.5769E-=o5-0.3499F"•OI 0.2366E-o--C---o:Z99~J!::oZ--o.ToH~t""'"'l>-:U -.z~ff<IF'=i),--------~ O.lOOOE+-02 0.3476E-Ol 0.9231F+OO 0.8330F.-05 0.3461E+Ol 0.350RE-Ol o •• 34QE-02 O.l518E-Ol o.o -.2577f-n~

--~0;12·001:+-oz-o.:3i".-32e-01-o.<iC<iot:.·oo-o.9sa n:.;.-05-0~3HoE•iH--0~432·iot--or- o.502oi::-02 - o.2'i221:..::01-o;i 14AE•o1-·--; ac-«.2F:.o,4 - -0.1400F.+-02 0.1632E-01 0.9198E+OO O.Q576F-05 O.l350E+Ol 0.4324E-Ol o.so2or-02 0.)526~-0l 0.118HE•Ol -.l6~1E-04

---. o~ 16Me+o2·--o~THsE=-01--o:-•ff"'r6E·•oo ·- o. ·1os1te.;.04--0~3345t+o1--o:41"16 r=-01-0 .'>ss1o1:-02- o .1o1,J 1l:=-o c-o.1l~itc+o1 - ·-. I 6l~e-=o,.------- - -- -0.180~E•02 0.4523F~Ol 0.9011E•OO o.lA13E-04 0.33lOE•Ol 0.8~17E-Ol 0.9549F-02 0.6547F-Ol o.12au~+03 -.1202E-04

---o.ii'icThF.•02 0.'.523F-Ol o.•rnt lE+IJO O. ltt l 3F-04 o. H 101: •Ol O.H4 I lE-01 o.q549F---02-0.A451(-0l ·o. f31UF+03---=:1202~4.,.--------­o.2200E•02 0.4682E-01 o.~Q78F•OO 0.19h2F-04 0.3]01E•Ol 0.9lb7f-Ol 0.1034F-Ol 0.1052~•00 O.ll38E•01 -.l094t-04

--'---,,r;24hoE-rn2·-·o;,;ti'liiF-Of-i>:·a95t,~+OO ___ o.209f(.:.04- o. 334 3E •O 1-·- o. qi,27~.:01 -- o. 11 O?F-01 . o. P HS: +no-· O. l 348~ •1'11 - -.1 )HOE-04 --·- --------. o.2toor:+02 0.505~E-Ol 0.8901F+OO 0.2i40F-04 0.3324E•Ol 0.1079(•00 O.l234F-OI O.l~20E•OO O.l160f•03 -.11R2E-04

--,-0~2sooi:-.-·ol-il~-so·s6°F-f>1--0~901i=+no ··-o.214oe-04·· ·o. 33·24E +01--0.1 079f + no - o.121"'-o 1 o. 1 fo6F: •00-0.1 36Ae •01·-·..;.; I la 1~:..04 - ·--------· . O.]OOOE+-07. 0.5325F-Ol O.flA46F•OO 0.2583F.:..04 0.3l'l9F•Ol O. l2lOF.•OO O. l363F-Ol 0.2039':+00 0.1408£•03 -.93ROf-05

----o. 12oo·e+ 02 o. 532se-01 o.ee46f +o~:-2·sa°3r--olf-o: 379w~1 o. t 21 nr+o()():i 1&·1F"-=or-o~ 211 u.:n-o-u·.THiir+1fJ--~'i"37A"-o--------------~!.~~ooe+.Q? ___ .!l.•_H25F-o!__~.!~A4t._~:!~o _. ~~?~8.7f:~~4 ___ 9.~~?_9_~~ .!"~ 1 o. ! ? 1:_oi::_• o!~ _0.1361r -o I o • .-n~ 7F. !_oo o. l 408E+-~l :"~q~~~~--~~ _ ----------------· --- .. -- -·

- --------···-------, A8SOPBANrE --- FOR P iJN Nil .-3,---=T-H""F-c-,-1r"""r~1'"'c"""=""1 E~N--.T V Al IJF S II P ( A= 0. 38 7 6 r-o l

·PRFSSIJJtf: IR CELL-------·------ - . -·------· FOR AU"I ''"· 3 TUE cnr:F IC IF.NT VALUES ARE A=0.4198f•OO ~=0.2355[ •OO Y0•0.30R41-•0l ~------. ---- ----------- ------- ., - -

TEl'IP£AATIJRE ~--F=o=R=-RUN NO. 3 T~F COFFICIFNT VAIUfS -AHE-A=0.8072f+-02 ---A.E'ST- oiJ'lllRI\T IC FI r·?JF. Tit[. TPT.AL rn2 L •1$S ( •,HAMS I WI TH

.-

.·-

~--·~ ...... ~- •. _,-

't,i~fi-f1-~ .. ~i' ,-;.--;.1 , ,A fa:,;-1,

.,,.,..

--------- ·- -- ----

(t

• : 'RIJI\I NUMA£~ 4

--~No~·oArA·PnlNTS le

"' ~

- • '!1ABLE 4

-"·y"'!"• - {·Ill'':""

:u• .. ~ .~ f'. '~ 'Ji; ---... -_..,;.,. .. -·­

..:,~ '·'I~·~ .--- . J f-_'. ~- ....,.,J.~ - ~-~?.~---;;:~ "C ~.,.!.·~"m-0" .. -~- ·.;.-~' ···0' ~i . . .

:; :·;::·.::r:-::~::t:r~-=·-· • I~! It,.[: •J)i ..:,. ' --;"·~ [0- - ' -'. .'~ ;:·: -.tt :·:.~:-';k~ '.:._r

.r:,:",1i!:. - ~~I .o--p.~~:...;;, . ."-f~ol,·

J~-_;'!.,'ii:. '.~f

.. I ; ''{ .. iJ.;~ r..:.•- ',,- . .._, .

.• r :~-~~i ... -~ ~ .:::-(t·.

';-,. ~ ~ . :- .,. ~:i~}r-(\·~--- .~; ~·~.N ~!•: -~-.;_-·,...:~:~~~~

'.'.i' ', ~,. \ _,.,. ,-_;.::, ... fl [ ";i. ., '1,, 1.:1 t -:···~:-·~;":;_~-.'.I~;~

·-.-"-~.~-~ ..... ~ ·- 0. IL

1<,; ~ ;c~L,:..;,;..: •,j •-:ij'. ~~

:.r-;_:_\' ..

' .~:~:::~~ '. : ... ~~- -(

•.;"" :~::· . -=-:=-> _.,. -~~~'.::~ ..

-Cl ---------- ~-----

• __ -_.:~ .... 1-~- - - .. - -·

I: I. I,

~UMRFR OF W~FE~S 20 ~-,-.:POWfirLF.VF.L-RF WATTS--~600.0000 -------------------------------------------------,.-----------0~ FEED P~TF. 55.199966 rc,~INUTE • ----BASF.i·.-INE TRANSMlTUNCl: _____ o·.9250 ------------ --

THE DATA ON THIS PJ\GF WAS REDIJCEO USING THECALIPRATION RELATIONS OEVF.LnPFD El'RLIFR IN TltlS PROGRAM ~--=FLOW NORMAi:TzATION FACTOR WAS, o.q716B --·-tHf:-"F.ASUkFi>--wr-:-· LOSS - .s----o:09<1•r--·c;RAMS --· TltE: CO2 "Los··s "CA[COL"Ul:r> FROM TRANS~ I TT ANt:e· oATA"" IS. - -·- - 0. 3232 ... ·cRu,s-·-------·-·-. ---------------·-··-· ----------

·- ----- --- - ---·-------· --··- ............ _ ·------. ---IR. CF.LL C07. MOLF. CO2 LOSS TOTAL WAFfP Df02JIOT -, TJiiil:

TRANSMIT­Attso=R-B_A_N_C_F~----TANCE RXN-RATE

GRAHMli"LES/ LITER.-f41N.

PRESSUR-F~--FRACflON GRA~s--n.Ji-i:~--,~E-q~p-~-R~,-,u~~~E--~Gif"AllRN:.~------------(TIJRRt ____________________ PER HINOTE _ (GRA~SJ IDE(.PEES CJ LIT~R_-_HI_N. ______ --··- -··

OUNIJTES t ------------- --------------·o;-ro.fioE"Hii:--o:1<}20F-=01--o. qs7,sF.·+oo ·-o • .H 9RF-o6-- o.-101AF+o1--n.o ------- ·o. n-· o .o - · --·o.o- - --; 5517£-06- ·-·· - --· - -- - --· ·

I 0.2000F+Ol O.l667E-Ol o.q405E+OO 0.2347E-06 O.l376C+QI o.o o.n o.o o.o -.22oeF-O~ \..J o. ]OOOEt-01 O. l913E-O~OX35 f"F"+oo o. 27821'-05---0. 3481E+OL O .16591:-0r-b~ n~r-=o"2-o; 1 l"JSFO~--n;r; -. 21}1ilj£.--.... n~4--------\..J 0.4000E+Ol o.-J418F-Ol 0.9?43F+OO 0.8013E-05 0.35071:+0l O.J?ll(-01 0.4112f-02 o.5447E-02 o.o -.3032(-0lt P.------ o. 51'>ooF +oi ·--0~·16 72F.~o.--o:9 ffF1E •M---o. l 017.E-oi.--o. 1 '\Q1Ji:+o 1 -o.i;,.i.21:-:.:or ---a~ c; 34 tF.-07. o. 1 n lQF:~oi- ·-0.,1 -- -- · - -~; 213sr--o,. ·- - · ----1 0.6000~+01 0.3Q29E-Ol 0.91J5F•OO 0.17.83[-04 0.3381E•Ol 0.5592f-Ol O.b682f-02 O.l747f-01 O.ll48F+03 -.1QQ4E-04 ---- (j~ 7000E •<>L ·- ·-o~4llJ6F.=-01--o:-9oal~ ... -oo --o. l 'i 35E-0",---· o. ··i 176E f-Ol - ·o;·,;75 7E-Of--l) .R021r:-02 0 ·'-li4 9E'-~·.-Ol - o. l 2 lR~ •01 ~ •• R53F-04t -- - - - - .

o·.Ro00'7+01 o.4342E-Ol 0.9049E +00 O. l686F-04 0.33 70F.+Ol 0. 7461E-Ol o. 'itl27F.-02 0. 44 32(-01 O. l 2tlltf •03 -. l 770E-04 - o.qoooE•o1 --0.4446E-01 o •. 9021c+oo o.11t"11r-04 o. 1tt'><:•01 o. 1a2"IE-01 o.949'>f-o7 o. 1,1u1r-o1~. i"JTI~153 -.,ut~"'o~,.--------­

o.1000F+o2 0.52BF-Ol o.R.865!:+00 o.76001:-04 0.3407E+Ol O. ll llE•OO 0.136 7E-Ol o.574RE-Ol 0.1 }ft81:+0l -. l836E-04 ---·-- o. l2t>OE +02 ----o. 5498~= cr-o~·;ra-1 lE +bO - 0.288bE-04 --- 0 ~ 34 :1 lE+ 01--0.12 3'J(+OO -·· 0. l S l 9f-O l O.ll 7UhF:-01 - o. l 416E+n3 .. ~ •• C)li1tr-04 .. - ----- --~--

O. l400f +07 0.5766E-Ol 0.8757E+OO 0.'\090E-04 0.3358E+Ol 0.13R~F+OO 0.16?RE-OI 0.1204E+OO 0.1551E•03 -.1353r:-04 -·----o. \t,00£"+02 - o;'.i1661:-~ln·-o·.-R757i:•OO ·-o. 31.HF-04- -O. l4013Et-Or--·o. t )c,5F""t-OO ·- 0.165 lF-nt O. l 534F.+ 00 -- 0.1 S97f +01 -·-.1 7l 6f~04 . -- ----- --· -·----

O. l800E+02 - o.5766E-Ol 0.8757!=+00 0.3l 76E-0"'t 0.3458F.+Ol O.ll4b':•OO 0.1674£-01 O.le<'>qf+OO n.t617E+03 -.ZORloF-Olt ---·o~ 2ooi>I=-.:o.z-o:,;·166F-Ol o. RH.7i:"•oo-o: H ·15F::-04--o:J4 satTor-o: i"l-461:-•0o--"o:H, li.t=-=or ·-o~ 2 20~ic+ooo:1687f+i>T-=;~~iiJr,:-_.,.o4o-r----------

-o.2200F.+02 0.5766E-Ol 0.8757E+OO 0.321HE-04 0.3507F+Ol O.l327E+OO O.lb98F-01 0.2544£•00 O.l7Z7E+03 -.Zlo561:-0~ -----o.2;.001:·+02·- -o~a,7,;·;;;t=o·1--o-;,r1•.r11:+oo o. 326tr=-o4 .. o. 35511:•oi"- ·-0.11,\uF·•oo 0.112 tE-ot o.2aoaE+oo - 0.11s1t=+o3 ·-.2R31tf-o, ---- -~- - _ .... _. ------~~?~~oF_•~~---~-~_5_7~~.f:_-:~! ___ <:>~R_!57_!=_~_oo 0~3261E-04 0.3557E•Ol O.l30Rf.+00 0.1721F-Ol 0.323ZE+_f:>O 0.11111-+0J -.283'tf-04 -----. -·-

ARSOROANCE --···Foif'jjiJN-·No.- ·4

--·--PRES$°tJ~F. ·tR-C""ELL -- -·-·-------- --

-- --- -·------------A=O. I tn2r+on - .. 'VO=O • .tll<Jf-Ol

.fllR RUN .NO • .,, ·-- T_HE cnEFIC IENT VAL~JE~-~~-A..:..~~70?_~~_!!.~---~~.!.?A5F+'!_0 ______ !0.:-~.-_30114F•OI -----------------------------~

TEMPER4TURE --,·--;:i)if-Rtiil; tm;· 4 - THF." r-o~FIC:fFNT-V4LIJ£S M<E A=0.1307f •Ol

. ---------- --

R=O. TOn'lf-01 YO =O. 70~'>F. H)2

TJ'lf- GIVf<i cnu=s. A=-.114~1:-0l - -- --- ---·. ··---·-- - . .

0•0.3130E-O? C•0.311 IE;.01 .. - ,. ___ --,

. ------· -·· ···-- ----·-------------

~

., I

••

0 co FIGURE 5 •-,----------------------------, er,

'

'

0 ~ . ('11

0 N •

('11

0:::: 0:::: 0 i-0

I '=: • :"11

(f") lf)

w CL Q..o

a:,

__J~ _J

LL.J u

0:::: a 1-4 (..Q

N

0 "q"' . N

~ I

1- )IE

3 - (!)

5- + 7- t!>

'3- A

i 1 - Y

... "

~-00 7 .oo 14 .oo 21 ,00 28-00 35.00 TIME-MINUTES

THE·SYMSOL NUMBERS ON THE ORAPH CORRESPOND TO RUN NUMBERS RS FOLLO~S1 SYMBOL1-RUNi,SYM.3-RUN2.SYM.5-RUN3.SYM.7-RUN4.SYM.9-RUN5.SYM.11-RUN9

RUN1-8GOWATTS.RUN2-200WRTTS.RUN3-400~RTTS.RUN4-600WATTS---02 55 CC/MIN ' ' . .

RUN5-SOOWRTTS.RUN9-800WRTTS--~--02 28-30 FEED RAtE

- JJe -

DATE. 04/25/77

u 1; ,:

· .... :.,,,:,

f •• \

\J

, '

• ' ,~,

0 0 •

0 CD N

0 0 •

0 ~ N

0 0 •

0 0 N

ug (.'.) 0

LLJ~ 0

I

• 0... 0

0 L· Ll.JO f-N -~ LLJ LLD q:o 3: •

0 CX)

0 0 .

0 0

FIGURE 6

l- * 3- (!)

5- + 7- ¢,

9- ~

11- Y

~

T

7 .oo 14 .oo 21.00 28-00 35-00 TIME-MINUTES

THE SYMBOL NUMBERS ON THE GRAPH CORRESPOND TO RUN NUMBERS RS FOLLCws~ SYMBOL1-RUN1,SYM.3-RUN2.SYM.5-RUN3.SYM.7-RUN4.SYM.9-RUN5.SYM.11-RUN9 THE LI NE WITH NC DATA Is' ESTIMATED CURVE · (RUN2 J. TEMP. RUN2 < 1 DO. 0

~RFER TEM~ERRTURE WRS MEASURED WITH RN IR PYROMETE~~ , . TEMP.· DATA BELOW 100 DEC C IS tRLCULRTED FROM q FIT OF DATA RBDVE 100 DEG C TO Y=A*(l-EXP!-B~TtMElJ + YO . WHERE A,8,YO ARE CONSTANTS - .33f-

iJATE 04125/77

/j

)l .li 'ii! ;; I! '1 J:

j. I

i •I

I

' • ' "'

• ' -~ .,,

r-, FIGURE 7 -. 0

t- * II) 3 - (!) ...

,- + 0

7- <!;

'j- ;( C\J

~ 1- y -a

f-z lJJ ua -

*~ .

O:::a lJJ ~ ::,;:: o._ )\

I lJJ Ur---zo er: •

a £D a::: 0 (J)

co Li'J ,,. r:, cr:a + + +

a

C\J a

,"'.', . a ,,.., ,"'.',

0 0 . 0 o .oo 7.00 14.00 21. 00 28-00 35,00

TIME-MINUTES

THE SYMBOL NJMSERS ON THE GRAPH CGRRESPONC TO RUN NUMSERS RS FOLLCWS; SYMS0L1-RUN1.SYM,3-RUNZ,SYM,6-RUN3,SYM,7-RUN4,SYM,9-RUN5,SYM,11-RUN9 TH~ LINES ON THIS PLCT WRE CRLCULRTEO FROM R ~ELRTIONSHIP OF THE FORM Y=R~!1-EXP(-8*TIMEJJ - YG , ~HERE A,S,YO R~E CONSTANTS

-JJg-

ORTE 04128/77 18=~1 :47

I

1 I

I!

J I, t

4-. ,... .. '-'~

--:...__.;;_...._.....:. -~:..__ ---·· - - .-...

l,1 I

4- I ..,

;, ', ' . ' '

i

f .: l.

I

/I

(\J FIGURE 8 ~ •

0

1- * co

3- ~ (Y)

• 5- + 0

7- ~

9- ~ - 0

11- Y I (Y)

o· _.o

* uJ~ r-N ::) . zo >--4

;r:

" (J) (J) ro -O· -lo

N 0 u

N -(J) •

:r::o er d

(D

a

7.00 14.00 . 21.00 28-00 35.00 TIME-MINUTES

THE SYMBOL NUMBE~S ON THE GRAPH CORRESPOND TO RUN NUMBERS RS FOLLOWS; SYMBOL1-RUN1.SYM.3-RUN2.SYM~5-RUN3.SYM.7-RUN4.SYM.9-RUN5.SYM.ll-RUN9

-JJh-

DATE 04/25/77 16:32:31

42.C

-· -.. :· -----··

- FIGURE 9 \ :1

Cl

!I •

li 0

:i

1- * CD

3- (!) 14') r--

' 0 5- + 7- ¢

9- ;x: l..')

l t- y CD . a

• ' _,

(J)

!: ON I -1;

(J)a U) 0 _J

NC'\ om u~ _J

a: ,:, I-

OCD 1-N .

a

<!> (l")

0 ......

a,

• a a

°o.oo I 7.00 14.00 21. 00 28.00 35-00 '2 ,..., <+ • (; TIME-MINUTES

THE SYMBOL NUMBERS ON THE GRAPH CORRESPONC TO RUN NUMBERS RS FOLLOWS; . SYMBOL1-RUN1,SYM.3-RUN2,SYM.5-RUN3.SYM.7-RUN4,SYM.9-RUN5.SYM.!l-RUNS THE LINES ON THIS PLOT WERE CALCULATED FROM THE RELATIONSHIP Y:R+B~x+c~x~~z WHERE A.B. AND C RRE CONSTANTS .

-JJi-

CATE 04125/77 16132:34

·• .• -:!.i :,.;, t~·-< -::?::-n.;,, ~~-~ _!;. C .,

~~;i -;-~ -~:;;1 '•. ;71· .t ,:'

.'t._-:_ H •• ~, '._:cl,~

__ • t_- .;. '.':t:. .. ~&

:'f£·!5· •• L ."''i t~-·

.~ ~c-t­-~Y ........ ;°':-~')' "\

.. # 1

' '

. -·--r -!",.l; .,._,

.· ::: ,~~ ~~--~ .::"1,. -:·,:: ---: · ·ac - --:1:

i .-.- l"_- ·,i

- ~- --, ·1:i: ', . :{\i. -.~ -· ' ' · .... q_(. .. !·."·!t '~..;i;" ;¢ -

+~~-Cj ;f, .-.-~l!-',f}_'.•,.:

-r-;_}'~: -.,_~·~-:.I•,

'i; ,-~-~ .:<1

:;~~~~( ~(~- : G,','f'

. ~'v 'I

)•

•N; I', 'k".,

.,._' .-;-• _ ... : ::r

,, .:. I·;'

.... ~-

J .... 1- ...

. J1.:i. e ~'il:' {~ s~;'i~.:~

: ~' ,, .1. f ·. l. -

! ·. ·~

l>.e· 1

-i".a''"

• • e -

----· ----------·- -- - - ---- - -·· - - -·-- ------------------------TABLE 10 ---------------

RUN MIJHRER 5 --Nb •. ·oA·T·A:PoJMts--11·-··- · · ---·-·--- --·---------- -----·- - .--------- -··-- ·---·- -----------------------· .Nu~eER OF WAFERS 20 ----=PllWERLEYEL PF wAfTs=-..,... -_--,a=-o=-o=-.=o=oob -02 FFFO IU\TE' 30.~59970 CC/HJNUTF. ---=eASELINE-lRI\NSMJTTANCE 0.9300 ---------- -----------------·-·--·- ----- ...... - - --- -·-------------------------------- ------------·- --- -· ·- ---·------ ---------------___ THE DATA ON THIS PAGE ~AS REl>UCFO USING Tttt:CALIBRATIOl'4 RELATIONS OEVElfJPfO F.ARLIER IN THIS PRflGAAM

FLOW NOR~ALIZATJON FACTOR WAS, 0.12761

---------------. ______________ .. __________________ _ TRANSMIT- RXN-RATE IR CELL ro2 MOLE CO2 LO~S -·- ··-----=Ti"IE ABSOMBANCE -TANCE G!1AMMOLES,-PRESSURE FKACTION c;114Ms

T~TAL WAFER 010?1/DT Cci2LOS·s=--.... t-E"'f41SE ... A'"""l'""f"O...,R~E..-._t. ... A .... ltik1"iil.....,,----------1'4JNIJTFS) l lTER-MIN. I JrlRIU PER HINUTF. I GR A~ S 1 (C~GREES Cl LllEA-MIN.

--------·----·---------·------------· - - ·--·- ·-- ------ - - -----·--------- -- - -- ·-----..... - ------ --- ------- --· - --------·--·------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------o. tOOOE+Ol 0.9442E-02 o.9185E+00--0.C)7l lE-06 ·-o. 26321:+0~o.o----·-o.o - ·- - ·- -- - o.o - ·----o.o ·- --- -."l>'w6E-0~----------

l u.2000E+Ol 0.3398E-Ol O.Q247F+OO 0.9lllE-05 0.2R6lE+Ol 0.3839E-Ol 0.4l77f-02 0.4377E-02 o.o -.6316£-04 \J.> o;'loooe+ol o.46Roi:-01 o.eq1ee+oo o.22°64°E-04 o.-2Tso;e+o1 o.1oci7'E'Tifo--O:Tn9t-oi--o:-1,c}ti:-i~fC--l>.THiiJF"i11l--.:-;"S17-2p,F.--.... a,.,.,---------

\.aJ o.4000E+Ol 0.5203E-Ol 0.8871E+OO 0.2~86E-04 0.28l4E+Ol o.J353F+OO 0.149~~-0l o.3089E-Ol O.l288E+03 -.5497f-04

c....,.--, 1---ii;.soooe-.·or-o.-bi>Odt-Ol--o~TOt+ 00-0.-16 7 lr-04-0;21451:+- or--o: li1'23HocJ-o. l 'H 2F-01--·o·. 5001E..;;01-<J;. l4 lRF.•03". -=; 4 71~E·-=04-' 0.6000E+Ol 0.6812E-Ol 0.854RF+OO 0.446~E-04 0.2696F+Ol 0.2308E+OO 0.2334£-01 0.7335E-Ol O.l527E+03 -.4ll7E-04

0;·10001:•01-o;-n6t1==01-·o-~·044TE+Oo-o.-s11s:J1:~04 --1r;-i1011:+·01·- o·.~·60CJHn·o·-·o. 2«>49E-o 1--- o. 99s4e=o1- -o.11,31e·+o3--:; liOl 9F-o~· ---------­o. noooe+o1 0.7639f-Ol O.R~A7F+OO 0.5306E-04 0.2683f+Ol 0.2783F+OO 0.2786F-01 0.1277~+00 Oel727F+Ol -.~802F.-04

---~o-. lOOOF+02 0.84ft2F.-01 O.R226E+OO 0.606lf-04 o.26 31£"io,:-O-;TIU"r+oo o. 3 [q<il'-'tH-iJ;rC¥0ITlfirD:-1't6&£+01 -. ·n1·.w::-0~4---------­

o.12ooe+o2 0.8767E-Ol 0.8172E+OO 0.6327E-04 0.2bl9(+0l 0.3498f+OO 0.3332f-Ol 0.2583E+OO o.20l6f+Ol -.1026F-04

---o; t i+oo1:+ 02-·-,r;q342E-1>I-o-;11oi;si=+o~: 6fizo~..;:04-0;2"Sli4Hot-o: 1a .,"ir.oo-o. H9SF:..ot- o. no2E +oo-o.20&6F•03 -=: 262c.e;.04 O.l800f+02 O.Q342E-Ol 0.8065E+OO 0.68l5E-04 0.2584E+Ol 0.3879E+OO 0.3595F-Ol 0.4740E+OO o.z1atE+OJ -.2t2ll-04

---·,>";2oooi:"t~o2·-o; 'l6He-or--o:-a0Iif +oo--o:1os3E:.04-o~·g64n-01-o:-t;0Nfioo-o: 11 l2f-01 -o. ,;41\Sc+oo-0-.7.21 ~i:H>l · - .:..21.0~~:.04 --------­o.22ooe+o2 0.9633E-Ol O.H~llF.+00 o.7052F-04 0.2564E+Ol 0.4079E+OO 0.3722f-Ol 0.62lqF+OO 0.22'w~E+03 -.?~ORE-04

----'o:2t.ooe+o·2<>.To22e•oo o. 7903e •oo o. ,se&E-04 o.2s4be+o1 o.4454F+oo 0.400·.ifr-=oi-,r. 1010E +oo o.ir1.~~.r,~rmE---""u-,--------­

o. 2600E•o2 o.1022F+OO 0.7903E+OO o.7586E-04 o.2546E+Ol 0.4454E+OO 0.4004~-0l o.,ullE+OO O.ZZ8Sf+03 -.2131£-04 --'---o·-:-2eoMI•o2-o.-rn22-1:+oo o. 7903F. .=-oo-o:tsRsE::«g·-0~2s46t:·e:o 1- ·o: ,;,;s4n.·ru5-o~ 4o04f:-ot --o~ Al. l~E H)o-o·. '2 3i>5E+0.3 -=;213 7E~M

---·--------------------ABSOP RANC:E ___ FOR JlUN No_._~ THE CllEFIC JENT v~~-.. ~~-~!~ ~_=O_·!~~?~..!..~?-._~E.! 167".i_E +oo_ -·· YO=n.oaoef.-02 PRESSU~F IR C:ELL --~Fnlf°RUN NO • .,--THE Cl1EF IC: JENT VALUE s···AQE- A.;o:-4o4at'•OO

TE!ltP£ RAT URE ·Foll RUN N0. __ 5 __ T~~cm=F(CI_EHT VALUES _APE ~~?~.1~q-~E+~~----- B•O. l 07lf+OO YO:a0.721>RF+O? ___ ll_ES T -OUI\OR I\T I c __ F I_T OF _THr· TOT ,\L CO2 __ LOSS (GRAMS I_ WI Tli_ T (ME GI VE S r.oF.F S. 4=-. 125 lf -o l ~-o.11zoe-01 C•O.S533£-ol ----· --·' ·- . -· - - --- ------·---------~--

-----~--.··--· . - ,-=---~--:--· -.. -~-----~----

\'1 ,,

r.

• • -TABLE 11

RlJ!\I NIJM!lf-R q NO.· OATA. P'Hl'HS 19·-------- - ---NUMRFR nF W~FERS 20 --- POWER-LEV fl AF WATTS ___ s"""'ijcf:0000 _____ --·-------------- -- --------- --··------·02 FfEO PAT': z7.5ggq76 CC/MHUITf RASH 1"11: TRAIIISMitTANCE o.•noo

HIE f)ATA ON Tlll'i PAGF WAS R!:DIJCFD ll'il"lG THECALlt"\RATlllN RflATIONS OEVHIJPl:O E:ARllt.H IN HIIS JJRO<;RAH --- ,a_ ---FLOW NORHALllAT(ON FACTOR WAS, o.q37q4 -W- ----

0-.•nr,3 - C!>"AMs--·-------

TPANSMIT- PXN-RATF IP CfLL CO2 MOLE cn2 Ln<;S TOTAL WAFER 1)((121/01 -T Jrff IIRSOR~R~A-N-C~.F----~T~A"ICF r.HAM·~OLE S/ PP E SSUR F --FRAC TI U_N ___ r.Rf\"15 -rn2-Lll55 Tf Hf'(IU\flJki:-..;i:: ,\"tf411CT'.</ ___ _!~I NUT_ES t ________ ----------- _____ . _ -~ I TE R-_MI ~- _____ CT OP~ I ____ ___ ___ _ PEil. H INIJlf I G_RA~S I t !lEGAFE S Cl l ~ T£ R-l41N. __ ------·-·

-o. 10001: •OL -- 0.4259E-Ol~Oi,6F t-i'>O- o-:.115?f~04- ·o-. 22 32E +0l-o-:.·,011r·· 00 o. 566 lf-02 o.~66 lF.:...02 - o.o - -- . - ..:.. 205U-05 ------- - --' 0.2000F+Ol 0.6417F.-Ol 0.8t26~+00 0.2642f-04 0.2268f+Ol 0.2483~+00 O.l1~9f-Ol O.l925E-Ol 0.0 -.5l94F-06 \.,J-----o.1000E+Ol 0.66q5F.-Ol O.IJ57) F. +00-u.-3075E-C4 o. 24~3E t 01 o. 2466E + 00 o. l 5Q?f-OI . o:~5 t6r-.rr--o.i) ----.10 r.i;r::04--------\.,J 0.4000E+Ol 0. 7530F-Ol O.d407F+OO 0.::\67'}f-04 O.l4,.1F+Ol O.l9')6ft00 O. lQI 5F-Ol 0.543lE-01 O. l 18HE•01 -. 7<JRll -O'i :,;;" ·o.50(}0E+Ol - O~ft3<)RF:.iir--cr:,t?42F + 00 -o.;422 lF-04 -··o.; 2J<}3[+0i--0;35qi,F+ 00 - o. noi,r-01 o.; 76 3Sc-·11,-o.1 );>tH:•03 - -; 1A 19F-05 _____ -·-- -I 0.6000E+Ol O.R609F-Ol O.HIR7E•OO 0.44<}7E-04 0.2426F.+Ol o.372RFt00 0.7.l5lF-OI 0.9Q86E-Ol o.l468f+03 -.5058F-05 ---0. 7000E +01-·o.; 9qiJJ.E=01--. o-;iH321: +oo·-·o~ 4665f~o4-·-·,,. :?408t • 01 -o •. '4l.i"4Hf"+OO o. 7445f-Ol .. o.; I 21i3!;•00 --- O. l 5•HE +Ol -- .;;.. )550E-05 .. - - ------0. 8000[+01 O.<J57ZF-01 O.ROZZF+OO 0.5123f-04 0.2420E+Ol 0.4284ft00 0.768'1F-01 0.1517E+OO O.lhd7E+Ol -.3191E-O'i ---o;<ioiior:"+o i-ll:-i o f7E .ifoo-;'T•H2F • oo"-o. s 5 osr---=-o-4-o:ZHa F+or-o .46 9°9F+oo--o:.2 R iJzi-'::-01-0:-r irtn-i=.ooc'):-t ·n 1r+or-=:-q~1 ·11:-=M--------o. 1000E + 02 O.l078E+OO 0.7802F+OO 0.5<Jl4F-04 0.2387F•Ol 0.5104f+OO O.llllE-01 0.2112E+OU o.t846E+03 O.hHOOF-0~ ---o. i?OOF.+02-0:. i 20if+·oo-o-:t5R2F •OO--ij.;i, 75 7f_:-()4 -- 0~?. j 7'lL+ O i:--·-o. s·gj 7f +oo-· - o. 355 8~-o, - O.l824tF+OO - ·o. fq4i,£: +03 ---. t:9 lc,F-Ou .. --------0. 1400F+ 02 0.12fl2E+OO 0.7582F+OO 0.7061[-04 0.2469E•Ol 0.5689f+OO 0.3721f-01 O.J56HF+OO 0.205bE+03 -.114~t-05 -----·o.16n6E+02 o.i2:i4E+oo--();-757.iF.+OO 0.7453F.-04 0.251Af+o1·--·o:·'>·16~f+on O.l9,0F-01 0.4151tf+OO O.lllt,EtO':\ - -.6;,qc1J:-OS--------O.Jij00E+02 O.l234F+OO 0.7527F+OO 0.7451E-04 0.25l8F+Ol o.57~5f•()0 o.3~301-01 o.5140~+00 o.2Jq6f-+03 -.h27qf-05 ----0. 20QOE+Ol-O. l234E+OO o. 75i7t= i-00-0. 760'>f-ll't 0.25681- +0·1 o-:Sh54F i-00--0. 40 l lf-01 ---u. 5CJ4]E+no O.ll3SE·+o3~<;;>1)t=-O _______ _ 0.2?.00F+02 O.l234F+OO o.7527F•OO 0.7604F-O't 0.25611E+Ol 0.5t,5',F+()O 0.4012f-01 0.6745F.+OO o.;nu'iE+03 -.7508t-05 ----o:24not=+o2·-o; 1B4t+on-o:-ts2n+o<f o.1i;o31-..:.04 -- ·o:25c,a1-+01 o.sc:,,4t-too o.4ot ~f -01 o.1s41J,:·+oo - o.?in'it +03 · -:...1c;oor-os-o.2600E+o2 O.L234fi-OO o.7527F+OO n.7607F-04 0.2~bREt01 0.5~54[+00 0.4017F-01 o.~150Ei-OQ O.Z2~"E•O~ -.7493E-05 -----o.-1.eoo1:+02--o~t234F+l)0-o;1s21F.+OO 0.760iE-0'• 0.2~hdF+Ol i).-'.>6~4E+OO 0.40l)F-Ol 0."Jl5JE:+OO n.2Jl5Et03 --.l',88F~os -------

ARSflRJ\AijCE-- ----- - -- ---------~---FOR P.llN Nil. q TttF Cllf:FICIF~:T VAlllES APE A=0.C)Q1fE-Ol 11= o. l 3<,3F .. no YO =O.J 0801.:-()l PRESSURE IR rftl

---FOP RIJN Nil. q -THF CO[FICIF~JT VIILIJfS J\kf'-A=0.A06'tf'i-OO- -£\~6':-11-b'tftOO-- Yll=ll.l31'ift01 T f'1PFR I\ T1jR F FPR RIJN MO. q --- ---- -- --- THE COEFICIFNT V~lU[S A~E f\=Q.l~t,<J[i-1)3 f'=O.'l501lf--Ol VO=O. 711'-0f: tf'l?

'J

TABLE 12 I

I.

!

All of the temperature and pressure data on this table are uncalibrated, ,, • Wt. Loss ~Jt. Loss Rate Temperature Pressure Time

(grams) (grams/min. ) ( Deg, C) (torr) (min.) 0,0048 0,0048 5,2 1

0.0092 0,0046 5,2 2

' ' 0.0142 0,0047 5.2 J 0.0212 0.0053 109 5,2 L~

0.0291 0.0058 120 5.2 5

0.048J 0.0069 148 5,J 7

0.0552 0.0069 162 5,6 8

O. 067l~ 0.0068 180 6.o 10

0.0954 0.0080 190 6.2 12

O, 11.~6 J 0.0091 205 6.5 16

0.1800 0.0100 210 6.5 18

0.2605 0.0110 216 6,5 24

. i . I

-JJl-

K•E 20 X 20 TO THE INCH• 7 X 10 INCHES K.L & ESSER CO. M.Ul IN u > A 46 1240 • • •

lilt m+t:t:ftf±Httf:H:fl-Hllilli:Hlffi±ffirtl±tfH±HfH±H+Htttt:l-HtH+tt+Hrtt+t+H-H++Htttt+++/Jl-t+t II !+HJ -t+II -H-H+H w...... • ..._w..j ._.l • .. 1_. : I : ! 'J I r fl I I I 1' rt·

. 'rt'' GUR.E ~ I I ! iJi I

I ' t1 'I j 'l ji Ii . ,, ., ., l . I i ! i 1

I I I ll I l I

l 1

11:m l I ,tt· / .l ~tttlr±Hitl±t:lili:f±l:i:HtH±H±H-±±t+±:l±Hi±l:l±l±H±Hffil:tt!l±Hl±HH+ll:tt!rffil+HH-1-1H+H+HtHtHttt+H+HttttttttHtHtilrittif ;." ~ i j 11

1 ,! ,1

t 1

I La i t' I , ,i d l _ m Ii 1 1111 , 1+ 1 Ii II i 11 1 L Hl.liW-l++t+++H+H-H-ll-+t++H+H-H+H+++H+H-H+H+l+-H+H4-1H-14+Ht++H+H-H++++H-H+!++-1f+H+H++++++·H4-1~H .. +H_ +H._ ~H-H+U+!I - TIii I H t1' r' : l I !l tr HI !+it.If.+ +,It !1·:+I H+!-H~:+i m;µ'.;..;l l~+tH.fi~~-~~: l ! I ! ! t j I t ! j 1 j 11 j ! + I i I . 1

~ tt 11

1' I 11

11 11 1+ ~- ! j_ I, l, 11 1· 1 ! ·1 I ! 1· l i; l ll j l, ; l"1· !1• ~~ ITTlT ' I I . 'l . . I . t I ; ii ti tttt· : l, i l Htlltfi:tttttt:tttJl:l±l:fli±l±H±l±H±tttf±tt±l:l±l±tt±f±H±H±JrtH+ttti±HtHtl+tt±HfftH-i:Jt±t-l+H:IMH-fl-+-+-+-+.µ.+H-10~-+4-, ; t I 111 T Tfi I t ! i j ! 1 I 1, '· 11' i ' ! j + ;, ! ' j' ' i! f1.-t1. 1Htt11tl:r:t. ltt:tfflmt

~-;. I I I I +! : i I j i I i : :l 1 t I t : j ! ' i ! il I j i H ! j I i ; l. : ; ' 1 d ~ ;. J ! 1111111 t(!Ji 111: ::!j !!Pt !! 11'! l !_ill jj:'_l! Hll 11·!11 i_)H ::i IH H+H+t-++H+t-++t-++f-HIH+H+H+l++H+H+++!-H+H+H+H+H+H+H..fi+H++++H+++++H+++++++++++++++++-+H·H' ++-++++~ . 1 i .. ! L~- ' ' ' . : : l i: !~ : ! I . ! •. i I ; :-4 ; .!... !;...J -H .!.;~_; ·~! µ' ·~·~· t~i+Hf+H+I : IT i 11 :111· T:11 ;f1: ·.·.·,: ... :. :'ii ·: j :11 :111 !!li i:J: 11'1! ;!" :,., :fiH I ' ' ' ' ' l t ' ' I .. ' ' , 1 r' I. I '. • • • '1· 11 , , 1· • ' • '! I :. =.·. l. ·1 I l, :.·. •, \11 I,~, I'll JI,, 1l.~f1 ·~ ••~~' ••• ,,J,.

,,

11 l, 4, ·1 J it /1 r ! / I 1 ! 1 ! ! : ! 1 1 i' 1 i : 111 1 ! ! T i 1

1

1· ! 1 I : f ·1· 11 ! : Jl i r1· i !: H

T. -+- ,!~! ~.L.! :•:i ::.!: L-, !: I 1i ,;,:11 ;•.i .!.: ii ... :..:~I :1 __ • _._!·-'.·;..u..~~.u ~L~ t I~ lil'' c··I ,1,c:·1 ,.;, I• l I i"f TI1 ,r!'t· :•T+ nt, ···1 ,.,, .... ~ i... II~ · • ,... ~ t .. 1· \I ; : 1 1 -.. ~ j j .... : l I Miioa 11" , ,; l l i i: z l ; : : i ~ ~+ , : . ..1, 1; 1 ~ IM .. , MIi ... ~ .. , ... , ... ~, ·11 ' I ' 1111 ;,111 ·1:;, ::Ii :11,, ·1, ii ·111r1 ·'jl 1·liT 11r·1 :,·,1 ::;_: :::i I l .. ,, •••••.• , •• , ·i ...• ,.. . . ..... rm·· + \ !t, '''l ·••! :•:I :t .•• ; ''U ''l ·•U ... ,;, ... ,+•,~~~+,I ~ 1" ~rt 11'-"1 f1i.1' q1J lt!.1~1( m:rl: .. J!j 'Fil w·1· n11 mi :m IT l:l 11, 1,,,t1 I; 11/J y'C1,,1t,J ,i.Jl,;I t•I+ HU'l:l "!I •'·I .. ,, ... ; ... t.

., ..

H·++l+H++4++++-Hl.l l l ii, l I ! fl! 1 l l n l l : : r ! 1!l ! ii t-·t!' ti! u ! nr,1 i i !+I 1 ! 1i ; 1 ! ! i ill ........ u~n~· ~ ............... 11 11 I l ·1 j :rn 1;· f '''l •••·• -,-, .. ·1 :,H !_0 ;_:, :-;:r:-:1~ ;.,, Hi, , , I!'. 1., , ... '.:;1 ::;i ::!\ ?!, t: ~ ......... ,··Ir'"'" ... t··· I I I I I, i ;:II ::i: , .. , ::11 t:i1 :i, ::!l ::l; :;:: ti 1, :::: ;1! .:ii

II I ljj 1\ 1'111 1! l ·.i.i.lT.! )i,1,:'::'.;'.: "' ::·"'.:) \T ii: : ;: :: .. iu 11rnrn:1 I-~ ·1"1 ~ I !·If Tl'111:111, t:t, ,, ... ,, ~.. .... ..:,: e'·! · .. ·· .. :.··., --· :_·~. J·.· .... ::":llu:: . .. :-:-;-;-~ 1 ... I I ' I' I+ . i ! : ". ~" Ill! . ~~ . .. . .. .. ,11 .\ I , I ,!11 .,/ 1; 11 .. • . .... :::; ,.,,

H++l+H++H+++H+H+H+++++++ii+++++++++++H+lr++++H+~:+++++++++++1-,~11 ...µ+JI jl~;l,t++++:I ;, l++Ht.11' :_µ..: It 1llrt-+-+-jlt1...,.+..; i ;N.,..l-Wj ~1;t,,~. ~--+--? :-~:; ............ --~~ ·--~ .. _.....-_ . ..-+-.~ •.• - .• •-I-----+--.-...... ------. ; ,-. - .... _____.____-4-:: ~}l ! 1111 !! ll1] :11 : 1 ,:.. .. ... ;I·· .. ,.

,.

• Ill

.I t ::1

I II

.. u • .:= ~ TO THE INCH• 7 X 10 INCHES n 6= ..,, ~ a ESSER co. waOI: •• us.._

• 46 124o.:e

11111

• -

' \.,J \.,J 0

'

" ~ t L & ESSER CO. NA~ IN U 5.-A u.~ 2.1 TO THE INCH• 7 X 10 IN. CHES

h

:tnnHIHJ! JIGURE'! h

. ~

• 46124-

I -

1,

• ~ ~

~

!

• •

! H ;

t t l + t • t ., l

J .t l t

~; . j • ! H j "I I : : . . ,; H t i : ij i H. ·l+< ...

• -~~~~--~~-~-"'!'? ___ =;:=:;=::==-=-=--=-~-==------- -- ---------·-

• • • • TABLE 13 All of the temperature and pressure data on this table are uncalibrated.

' \..,.) \..,.)

"d

'

No wafers chamber Temp-. =.5 Press. (Deg. C) ~torr)

6.o 6.o 6.o 6.o 6.o

108 6.o 114 6.o 120 6.o 126 6.o 132 6.o 140 6.o. 11}8 5.9 154 5.9 159 5.9 164 5.9

Resist Wt. Loss in Grams =

Ave. Wt. Loss Rate in Grams/minute

2 wafers chamber 'femp. =.5 Press. (Deg. C) (torr)

5.9 6.1

6.J 6.4

1.10 6.5 120 6.6 130 6.7 140 6.7

153 6.8 162 6.9 170 6.9 175 6.9 End= 16.4min.

0. OlJ-29

= 0.00262

Wt. Loss Ra·te/wafer in gms. /min. -wafer = 0.001.31

6 wafers chamber Ten~. =.5 Press. (Deg. C) (torr)

108 120

130

139

15l~

164 172

17'? 182 186

0.1085

5.9 (,. 1

6.2 6.3 6.5 6.6 6.7+ 6.9

6.9+ 7.0 7.0 7.0 7.0 7.0

0.00542

0.00090

10 wafers chamber Pemp. =.5 Press. Time ( Deg. C) (torr) (min.)

110 120 129 1.38

150 164 174 180

186 1 Q')

~ ,._

O. 1421

6.0 6.3 6.5 6.7 6.8 6.9 6.9 7.0

7.0 7.1 7.1 7.2 7.2 7.2

0.00710

0.00071

1

2

3 4

5 6

7 8

9 10

12

14 16 18 20

I \...,J \...,J .a I

~

-; ~ Ll,o.~ 2'.TO THE INCH• 7 X 10 INCHES

n .:; K. a- ESSER co. MAoc IN u !:, " 461240.

I I '

I 11 ~ 1111

I : I l ' : ; I ., , · 1 ! ; : 'I • I I. .. ';I' : : : ; . j • ; 11 ;1 I: l : ' . ; .. :1· 1' . • . .H

I I I I ! j I I I

· 1 ~ ' ·11 I 'ti .. 11 " I • ' ' I • . . ' ' . ' " ' • I ; • • ! I •• I . . • I. I l 'l • I.. .. ' • 1 t •.·• I ... l-+-14~.j....; I l-W ! j_j 11:~ LL L.!l . : 11 ·-·· •. : ; _ .L: .'..!.iJ~ ·IL_ ;_;_,-4-~L ""/H'. ~- ..,i ,-,+'t-·'+-'~ 1.--,+-,H+~;++f~

F,] . . 1 ~ ,, 1 , ,1 · : : 11 : : ; . ; : • ! : r 1 · , , : n, : : , : : 1· , : j : : : , ·: ,

1 1 • i 1 -H

'I lll ~ ID ' "I. I ! I . j I I 1 .. , . • • . · ' I : . : : ' i i I I : l i i : l ! : ; ; i : . I ' 1 . ' • . l : i i , : : : , ' I . m.w.ttU--1-!.W . .l--W-WU-1-1-UW-WW-t-1-Um_j_;__j~W-t-m-t-W~u~m.w~ium.w~;:i:!=~~_~l::1=1'.~ i' =flf_,;,:11, ~wit[ ~il i i7i -;y , . i : ; ; : ~ , . : : 1· : 1' ! ! ii' ; .. " ·. , '1 :, i : • : • 1 • : U;ill' : i . ; : i ; ' . : i ,

, I,!! . · I· .jl .. ,,. :,,. ·11 ' !1 ' ' ·.·_z •. l,1 ,1. i'1i·.· ... , • •· , .. i·i i,·I. : l !1:, I•!' !1 :·r• ·~1· t ~ t, ! I 1 :j,~ • ,•~_,,t ,, .. ~

1 ' I , , 1 · ~-:-; , -;-1 , ~-i-1.- -1rn , :-,·: 1. , , ; 1 , , , 1; 1 • , , , , , , 11 , ..! !! .11

• ; • , , . n, ,rt1t.rt

1-:-... m:fmw:m

I•

1,

~ lo I! I ii :i'l ;;;i l.lri l;i:;UT: 1·:11~1;; !1 i,i ..... iolil! Ill; 11: ;.;~ H!i :lL l;:i j f-Hl~l++H+H++H+l-!+H+Hl-++H+H+H+++++l-!+H+HH+H+H++++-H+++l+H+HH+H+H+++++H-:.+l+HH+H-;-i-1++;-,-~

++ttlt+t++H+H++++H-t-t+tfflliiH-H+H-H-J++t+H-ttt++++H+H++-H-H+H++++H+H+fmH-++Ht II ! I '1 I ! 111· i 1· , : ; : 1· I ! ' I ' : ' . ' ' I , ; q , ! I :'I i'I ; : l j i : l '. ; l ; l j q : ! q : jl : : i : l l J'i ~

. ~ - .

~

~

~

~- ~~

~~~ ~

~;~ ~

~~~ I' ~

" ~~~

H-t+Hl++H' ._µ_~I-~ i I ! i i I I ! : I . : : ; : : i ; ' : ii l ' / i : ' I : I ! l ! l i.. : . i ' : i : ; ; : : ; : i ; I :

f+++I-HH+++++++f+H-H+l-l+H+-J+.I..Alo..H+++H+t++I-H+H+J.++.l+++++++l-H-l+!-Wf++H..++++++H+l-!+++1f++I++ 1. I+,!!-++: i++-T:;..,....cn la ;[I !I :1 }1 nTI lcU al, i ~ I ~ 1111 g j i u I ~ l I ii ;j j Ji I I ! I I 111 I . . • · 1 I I ._ff' .] ' ' 11 ! ·. I' I I ' ! If I ""!" • , , ... T . I 1 • TI" . I • j l'. l ·1' I I . 'I' ! I . '" . . . ' I' l • . . I . I ' .. . . • I .• 'j 1 1 · 1 j I ··t I H+ ' ,· I ' . ' . ' . " " ! . I ' • f • '. I : : ' . ' ' . ' ' I ' . l ' . '. .. . . il ++-l+HIH-l--l++l-!+H!..J.-l...l--l++l-!++-l!..J.-l...1+-1-+-1-J-I-A"l!--l+-I-H+++-l!..J.-l...1+-1-H+-l-l-l!..J.-1....1-1-t-++++H!..J.-l...l-+++-J.-1.++-l!..J.-1....l+-l-l+l+H!..J.-1...t-++' +I I -L ' l . . ' t ' • I • j , I . ' i f • t ' t • .:.J . ~ ! • ! • ~ * ' ' ~ ~ . • ~ •• ~ ~ ~ t

-l!t~l++++f+H#,H+++++H-l+lf++H++-H++lH+l+f~HjH+t+++H++lH+H++++++lH+H++++++,H+H++H..!.l-H-++Hl1 1...;.i+I H-i+I +I !~~ .. ram, iij~ lft J l: ijq- l ii ;!f i !11 al JYr11 d ~ .. : ~ ~ ii ~ 1

11 ,' Ii '1111 ::1: ,;ir ::,: !!: :!if 'li1' /i; :iii' ;Ii': 1;': :1tn 'i,; :pj :i:1 n +H++llH-H+++t+l-l+I--H+++++H::'N.cH++-H+H--l+H++H+H-R"~H-++H--l+H+++++H--l+f#H-++H--l+l++H-1++-i+I I ! I ' : ! _ I ' ! i j ; l i : :: I . . I i : : I ' : i i : ! ; : ; ; ; Ll : : 1 i • 1 : ; : l 4 ~ : ; : ~ 1 • ' t

I I T i H,-fl r: ; '.' i_- ;-r-: 1· : :·:-:· -: ·,-1' t:-ttr 7'1 '-! I ; ' I -:.n . " . " . ~- ; ; .. " jl 'l ; ' 1· •. 1· .. il 1·· 1·· i I I I'' .. ,.''( ...... ·1 1 • 'fl.,. _,,,.,,;'!"I.,,,'!'':.:! •. lll

I j I 111 ; : ; ; ; ; . : : ; : : : ! i. : Ii! ; i I j i: i . : l l : I : : f;. I;; l l I;; '" I ; ; ; l i j

I I I i I '*! ; j : ' ; ! : I : : : : : : : j i : : ! i : : t I i i 11_ I : i_ I ! : i I ; i I : ; ; I ; '1 ; I ! j : ·1 H j ! !! I l! II 1 , I 1!; ·;:: J;j! ·!:: ;,:: '.j;i !f ~ ~1:1 :!:f !11: '..!! ~I; ::~,. ,~ !?:; i fi I

-l-H++ll+l-l++t-R~IJ+-l-H++++f11+l-l-H++-l~f++I-H,-, f.j· -I T' iT ~-,, -:-'"'-, :-r-; •. -:-rr;- -. I 1 • ;f j •• ••· ,, '··;. !' '1· 1'. ',· 1.· ·' •• ; I ; ! " " -. '· I :_ • I . ; l ; t - 1· .,,1, .. :_:!: :;_:: .::· :i:: :1.:: :'11··· '!' :1: ...... 1. :; ,·.,

~~ I I 1 •• ' . ! ' / t I l ' I . . t ' ' • I ' • ! ' : • 1 : ; t; ' t i • i J ' : \ ; i t; ~ t : ! t l .. 1. t '

~

~~ I. !, r+, il i I '1 Jli• ::11 ' 11i .... 'I":,,: :ii! :\I! :1_:: :1;·1 !.:,:.:. :l:; "'I l 11!

11T r,,.J, I I' i ' , , I I:' . '. : i; t : ; : : : ' 1 i • I · t • I ·' • ''' · ' · ••. l;: I ;tHrt+tt+tttffi-+tllttttt+H-tHH+ttt++tffi+t-tttttt+H+t-H+ttt+H+t-H+ttt++-iR"tto..H·++t+t,+t-+-t+++t+t,H-tl ++l-H--i+Frt,,;.~++-,,-.1-.-' ·~·--"-i· ~' 1 '_...1-:. -- • • t ! ' i ..:.~ r:-4.l .;..!...L. ~ ~ 1 'I• . i 1 ~ , ~ • 4 t

~-~ 1 . 11 1 1 , m mn ~iT : 1r : : l ; 1 ::: :ii 1 : ! : : i , i ;1 1 1 i 1 1 I 1 11 ii ll 11 : I! 1 q q I rn i1 . H"t....i++l-++l+Hl-++H+I-H-++++++++++H++-l+Hf++.H+H++++++.J.+H+H+H4+H+4++++++.J.++l+H-+-R~IJ.l..l-++H+-J..!.l-,J...l~...µ..4+µ....+4-.!.:.t.;_+j-W,.;~

~-~ ~~. J J, . I '1 ! 11 i I 'I ! ; ; : ; : : ; : : : ; : , i ; : : : : : ! I I! ! i ! :: l 1 : ·,· i : : i : : : I : , ; i i : : i : i i U ! 11 ·1· l I

I•

i I I

~

11, . ! I

tr 11~ i:

f i

.,..._. ,1_ WIJ,·1 :.!:: ·.·-· ··'.'·' ... , ,,I: l•I ,.,,. i! ..... ,1 ., .• :.!.:.+ ,,.,. t Hi"4<iio+i-t+'H+H++H+H-lt-t-HH-t+t-l+l-1H+H++H+Hft-t-H+f-H+HH--+-1+1-++++H++-H++H+H+l-H+++++H+J-+++H-- ti , , , 1 1 r: r ··t : :· . , -· ,-- :. :.· •• '. , 1 .. n 7"!1 '.T:'7 :1,-r f---j,j , · ~ , I' · l l

: I 11 '' 'I : 'I: . • d; 'i I' . , 1, . '., I,, l · 1·" : • ; : : : : l • 'I t-a.a-J-l+f+ll~+fiWol+-f#++.J.+H+I--H+++++H+Hl-l+l--l++l-!+H!..J.-l...l--l+-l-l-+++-li..J-l...l--l+-l-l-+++-li..J-l...h++-J.-1.+H!..J.-l...l-++++1+1--1 ·~, µ-:..i.';..4• ..!.I .;+.!I~' l.;11...i..;..· :..:' ·~· ~!~: ~: µ_;._:..: : ! ! ! ! 1 : I . : 1 : • 1 ~ : ' l ~ ! t l : : ! : ! i ; ; ; ! l i • t ] I ;. i

ti 'I I 'I 'l'l 'i1' :1: :i:,: .;., ... , .;., I;;,,,;,; .•.•• ,,;.; "'I 'i

'i ~,, ;i '

1

1 : ; I 'i : : 1; · • " . .. : '! ! ".' "" . ' . ' 'l: i 'l:: 'j l; : : · l 1j 1 l tt-t+HH-+H++++-++i·++-H++ ···1, i T1·,--H,'r!_L, 7:i:i!~i ·-· -···· .... •' :;-,, :::: .r.+, ::;r~~ ~;7"; :frl ;~~ ::,·;,) :::: ;: i,._11 ·,·.II

I-H+t-lH--+-H++-H+H+t-i-.f-H++t-!+t-lH--+-H++t-!-H-1+t-H++t-!+H+t-H++-H+t-!+t-l-++-l+++t-!-++-l-++~+t-!-l-+-H++t-!~...µ...:-µ++4-++-4~hl~ '~ ' . j : : : ! : ; : : '. : l ! : i ; i : ; ; : : : ; : . : ~ , . P ~ : ~ 1

I'! 1i·1 :.j" 1·11 !,;· ,_ ,. ·;!: :::1 ·::1 ·::' :::: ;i:J .::: .1:: :i:! i :1 i I I 11· i : I'.' . ,·' Ii.. . . : . : ::1: : i!l : ::: . :1 / ;!:: I., :i ·: .;:; :::1 . l I I

·+++-H+-t-J:-i- ;_ :,-1!1 r, !1, i;t: .... :_; __ : :_:.'"t.:, :_i,:.l :.~1 }T,: :1:1i :Jti I:,;1 ::i:1 i;:1 n1!11 ,I ,,; 1.1 .. :1:, .. 1 ••••••• , ........ ;::,in!

11 I l I fr 11 : : : 1 · · • .. • · : : 11 : 1 1 I i : ; : • :_ ,

1· •1 : i 1, :_ rt: 1 1 i : ! =_ I ! ; ·,; : : i

1 ! : i· 1

11 +-~ i I: i , : i ' : i:. .::..:..::,. i ! 1 l · '., ·' · t • · • • ·'' l • • • • , . 1 l' -++'1-t-+-+++++-1++-1+ITIT I ' n:. iT:: , . . . . . . : : : : , i;, ::: ! :! I : ; ·1·; 'Tl -h ~=- ·; :i ~-p-: ·1·7i "". ,.-..... ; ... ,+·,· ...;1.· 1·-, -

!Iii I !II! ... , ··· :!:' ;ii! !!,: :, II;:: li idl; :l ~::! , ~K+H++-H~H--+-l-4--i+t-!+4-l-H.!.-"-,-J4-~·~~

: ; 1·1,,· i:;1 :::: i:: tqi :i1 :!1,1, l'1:, ;iii '1.j!I :l:l :l1:! H:!: 111· i J j I Ll ~! ; i 1 : •-• •-• ~: ~ : _ -·-· ~ : I ' : i j ~ t , . , i • 1 , 1 • t • t • • • • • • t : : .. ' r· I I , ' !ii -;-1 , . • . :-: ... 1 • . ; , ' · .. ·,. ,. , · .• , T TT: ~,-1 i'1 -l m· ~-1· .. -::-:, .. . • ·.·,. l i " I • I ! I I , , • • • t • • • I t I I I ! t ; • j • 1 • • • , t • f 1 • • ! ~ I "

j I i ! . i 1 I , 1 11, ! ·: '. '. . , I '.i ! : I • : ,I !! i: :11i : :: ;,:, • :1 :tit :::. ;11 :

ff ~ 1 , I : '. ;. 1 , "· : : ·: .. . . .. . : : 11 i; ,11 : ·i i d t 1 : it: : i;; : p 1 : ·i: l : p: : r:1 · • n l' l HI 11 · l i i ! ; i ; ; : . . : : : : ; : ' • : I i i ; i : i ill1: t i_4 . ' : : : ' ; l ! 1 ' • j : I : ; : l : ! 11 i I , 1 1 i- ~ 1: ]I: n ~-, \ ·, :-: ~ : t: !;I; , , , 1_ •

1 :r. , . : lJ:-1 I -: r:-:- 0:-_ , -:+I: !!'.-:_ ·; •

1 . • • .. , ,

1,

I '. I i : I : I ! I . rJ_ I ! ,' : :, I ' : ; I ; ; • ' • ~: ! : ! I 1 : 1, ! 1_ : : •• : ~; ; ; I ;_ : ~ ,·: ; ; : 'j ;;J,:- ,': : • : : • 'I !' I 1 ,l : I I • . l . ' • ' • • f ! I ' • ' t • • ' •• t I / I I • 1 , • .. • ' I ,. ~ • 1 • • • ~ • ~ : : '

! • !r r r. d ~ J I ~1 jria 18,, R: : : : i ; q 1 : , ! i : : 1 : : 1 i : : : : : ; : -1· : ;_:; : 1 i 1 : : : :i : ii I

in::, f m~ :,1~i~ l :~l ~n, ¥f~~ ~~; . : : : ++ ~f ; 11;: +H ;n! ~-µ; t~l; h ·itf Ht+ ; :: ;:: ::!: I I ll 'i1 .,I .. ,! .,,. •·' ., -•!1 .,,, '·j .. ; :,;,:,·1·· :.:,:;,' '' .. , .... I,•.·•. 1ll, 1."11! , I,•• •I•• 1

1 1, • • • • • ! •• , , •I• ,.. .,., •••• •1•i 4

• e_ .

l.10 ~ 2. TO THE INCH• 7 x 10 INCHES " #::. t- L 8:: ESSER CO. MADI. IN U ~ A 461240. •

! I ij ~ l ' I I 11 ! 11 II I I i I I ! I ii I • ·w . lu ~I l!l l ' ' !j j

1 · . ' 11 · I ' I 1

I i i ! 11 I i J 11 . I

ii 1 rl Ii 11 l,-ttp J1ti ' \ I , 11 I l ~ 11 II ,m, I I; ! I ' I . 1, I I • : ! i I Ii I 11 ! I 111 I I I j i ~

IJ i I I I I 111 I i I I

I 11 I ! l ~~ 11 T -I t l I . I I 1.~ ~ -

~~ 1 l ~ ' . .

I i · 1- I )1 ~~ ~

l 1 I I 1 I

j_ II ! ~t'\ 11 j :'!ii' '1'11 1:'1! :::i: .. ,. :::; :1!\ ::l\ '1l: ::!! :·11·1: ',•l:: :\ij il;: :!'1i l:d ·, 11 .i -~H+H+H+++l-H-il-!+H+++l--1+1H+H+++t-H-l++l+++H++l4-H+-!-l+++l++H+J+l.++l4f+l-++l-++l.++~W.WN~i.o~1 pi+· H++ i' Hi-4-µ..:.• +++'-1..i .µ.i ( l f : ; 1 ; : ; : .. " : ; ! : : i ! 1 • d · · ! , ~ , . t • • : i ~ J • , , , ••. , ! t : i , J I

I ,.~ 1t l 1· ,-, :t~jll 111'1 -•1

11 111: 1,it ,;i: .... :ii: ::11 ::;; :t·! ::!: :! 1 iT':; titi qtr :iH , .. ! •[I · 6 I I , ; 1 11 t I ; : i 1 : ; : : : : ; i! ; ; n ; i! l : ; Ii : ; : : : : n ! I t ; ; 1 • 1 : : : ; :1 i , 11 1, I 1 ,·',! ·1·111 ;i;ji 1·11;·1·_ 11,·i i:11111 1: :1:: :;:, :iii =.:=_-:1·=.; iH_,· :11·1 ;!'; 11:: u,: 11:i ;,!,1:1:11,·11 -~.aJ-l+f-H++-!-+-H.J++-Jli4-+..J..+-l-44~-!+H++-!-+-l+J~j...;.lr++,j~l+J-.µ.j.+..;..Ji+4--l+J-+-!-++I-J+.J.-H+.i-.J...l.-l+J+.J._'4+. -1-U~ i+.J.-H+I .!_jl l-4!...Jj '-l-:..' wl :-4-~i .;..i-;_' .J...4-lf !~ '. i I , " , • · • t • ; ! I • t • • • ! ; i t : : ! ! ! j : ; ? ; t! ~ r ! : l

I j,.~ I ! !l!' 1·1·· ·1·;1 !j!! 111 : ;;l! :::1;:T°:::: :::l !jl! =.111 !iii :111 if:: !1:! :;:: :_l,;_:,· ;1·:, it· • w ·~ I 1, 111. l, I ;, '1· I i, ', :, ! . 1 I · . ' . ' . ' " .. . . " .. .. ' ' '. i i. 1· ' ' I' . f •• I ·,· • ! ·. '· ·. • •. •• I • l,.i • ' '.I! '\!l 'I'', ... "T' '!'' •d ~If ~'fi .,:: •••, I

\..,.) ;.

\..,.) E I"'$

I y

~ ~ .. ·~

~ ! l I I 1. I j I

I 1 I t ' l !

l l !

.-.11 n 1 ~ 1 • 1 ,11

11 :11i :1

:1 11:: !1!: :1i! ,!!j :;: .. , .. :ii: ;i!l :ill : 11 1 :1

:? ... , .... :!!= :i:I •1, , , I 11 ~.:.:_ t' 1 i ; I i 11 ; ; I l l ! 1 i I ! ; ! 1 i I i I ; ; . , , . ; i : : ... , : i i ; : ! : I , : j : .lJ ii i , : : l i I ! ; ; i . ,. . ! : : ! i ; l

11 1,- 1 l ! '1 ' lj ·i ~ I i11 :'1!' ·1:1 Tf: ;1:, !!Ii :i:: :::: r:!! !i!l ::1! :::; :1:: ·1·· ?::1 ::11 :?:i :1:~ l ~ 1 i I ,1 ! 1i I ...:. l; ! ,i ;!:; !1:: :;jj , ... , ....... , .... ''", .. I:::: ;;1: ., .. :ili :;:: ::i: ;!:; !iii t I ·1 I I I I I i I I I l ',ill 11 I ' 'I 11 ' · 1 ,... • • 1 ' 'I 'I Ii 'I •• ''I: '''' . ; .. ! • '. '. i• ; 'I: I' '. . ! ••••••• i • 1; I H+l"++~l++-H+++l+-l H+J-j...j.-4-1-++-;H+i.;1~1·+14+1-!--lli-1-.J--

1 i H+1+.l...µ,i· Ui~

1

.J--l,,W' l-1-!-i-++1-i+.J--l:...ui .J.+4-W-.14-+-i~i.1..I .:.ii i--1.l..j i.;j.u..;w: -l-1.:.1! ~w.l!'N.-1.., ~; ~-~1

,wi -1..i J~;u.l..:.I wi l.!ll [i_LUJj i; '.: ,~. _· _: :_: :_· _. ·,_,_· _· ·.:..·.._:_' i.:..;.;..;l 1-:.:..; .;..;ii....__:·_::_;.._:_,-":-.;..;: 1--";; ~ t j _· ~1• !.:..!~.·-: i_:_,: i-:~( _: =~; i ... : .... i .. l....._..-

ll+!-H\ i...W,..1 H·..++~ttt++t+\Hl-+!-I-H~h'/i+i 1H. +1--1-+iw-++14 . .,.L~~-4-;...il l+!+i 11 1-+l+H 1 4 +

1! µ! •..:.\ .i-;\:...;.!+H

11-+!~1 l.µ.:\ \4\+1 H\1-+i+\ wl ..:.; .i.;! l4\_g..:i 1..:.!.:..! i..;

1..:.! .i..j lw· ..:.) ~! \:...;.\+:..;'! :..:.\ .L\ 1-+i.1..j .L; !+-l :..:: ;..:.! ~· ·..:.· ~· ~~-· :..:' ·_· ~· '...:.: ~: ~:..:--~) /:..:1 .... l.i-:\:..:!.;..; ~) ~:.:..'. '.:..:'.~: ::..::..:.: .i-::..:.).:..1 ~l ..:. . .:..• ·:..:·+:-:: 1..:.:.:...: .i-::..:.:.:..: l:.J...;.l .;.;!!~!~! !i-.+.+1

111',·1' I j Ill,,.~ I I ii; i ., 1111111 i111· 'I ! i; 11;1 m1 iJi'1 i.·:.:_:.i, :i11 :1:1 :;:: ·::· :::: .. , ··.: :·:: ::: :::: :::1 HU i:1 I,, ~ • 'I ,i., l ,Iii I ; ! I.: ! :j! If! :,1 J1L !j;! ;~_;__;_l..;: ;::· :! 1

:::: 8 . .2 :~~~:..:. :1:)_;_;~ ~~._::-::_:_i._._._ .. _:!~i-.-41 1'11'!. I' 1 i, I 11'"' 'I I l,,!'I I ·11· 11,·11· I '·I'·,, I I 'I '''I lF' '!'' 11:: .J,; 77-:-7 .,.. ··- -·- ·--- --· ...... , ... . ........... ' :il' !!li l~! I l:_; iii, 1 I !1. Ii liii Ii I ii ;:i11111 :,Iii;;: :II; :lii i;·'. :,:: .. ,, :;): i::1 :-:I::::·:.: .•. ,.,, ..... :::? ;j:!; ti 1 jli i 1 T ,,. Ji I ~ I ! l '1:1 \1:1 j! ! /IJ! 1: 1111 J;!I ! 11 ; 1 1! ij;i ,:11 ·::: ., .. :. ' ... . ...... , ..... , •.... :!:l ... ,!:! i.:.!.1 .. _ jl i cL: ! i ' h j i i j I 11 ! \ I~ d \ 1 l i l I 1 I I 1 ; ii I i l ! It\ ! Ii; i; i ! ':: ! i:: . .. . .. . I .. : i l: : : : i : : : i ': ! ! : ;:: : : ; ; : l:: : ! : ; 1

'1.·_···:·':·1' it' ,. ,···11.:.. I' : t ,-,.,., :tJ ': I ·11, ,, ! I''! ... , J,··,· 'l'j ,: .. '-:i-rr,. 7777'-,,·-:-7-·- .... ··----·- I :-:-:,·-.,,-, -. j .; ••• ,.. ' •• 'J • 1,

11 11 i 11 "'l' 1 1 ! ; . 1 i 11 ; u 1 : , 1 1 1 i 1, 1 , : : !I , 111 : 11 i 1 ! i: : 11 i : ! : 1 : 1,: . : ! . . : : it ? : : : 1: : ; 11 > 1 = 1 = 1 = i = = =;;: ! ; = 1 mt rn

, . • . , , 'iX • , I i , n 111 ' . , , .. , , 11 I ' I ! , .. , , , • I , ' 11 , I ! , . ; . ! I . . •. , . . .. . . • . . = , i -.. . i · , . . . • , .. ! ! 11· : 'l l 'j 11 ~ ',!l,(li ! 1 l,11 l ,I !Iii Ii I Iii i!I i !I :.i ii: ;lii iiii ::;i T! :,:: ' -~~ ·--· ... ' ... , .... , ·:·:::ii .... ~ :!::1-·....:·;_:_,!.~1-'·, ... _:1..,1.J..J-!~l .... 1Hi

l I •""1· II i' '1 I i'ilj !t I 1.',11 fl",1·,· ·11,.·,1,· '111·,1 ,.· ill :.1,!1'1 :,::,. ;:1·,1'1 ;:i; :i,• :/:1 ·,·: :· : ' .. ··•: •·j .... ::;: ·!·· "': ::: : .. 11:,· 1;-H I I l: i, I,, It I,, ;! I·,: '' II I • I ' :k I' jl:: :,1: Ti:: .. ; .. . . .. :::1 , ... ::;: T: :!:: :i:: ·::. i:i ., •• !tti l Ii 11 ·, 11 I ;\ i il :11:' ii!'· 111: 1:1 \ !! :'., !:;I :ii: i:!: ;,:'. ::: ,::: :: :;:: :::! .. , .... ·,:: :,.:,:_'t :_:.:.·_; • .. : •. :.:_ :,:_·1· •!!• ·1·J!,·t i',, I ' j' I I II' ·,·;!·,;I ':I 'I : I·:, I, .. , ..... , :11! ,:;: .. , .. , ... ,.. .... ., .. , .... , .. , •. ,.. :pl

.. ! 1 I I ·/,: ! ! 1, _;_ T!J ~~-:...l+!- :1 1, HTt ::'l :ltrr\11 ,,~J__:.:_;_: __ ,._,: ... . ..• ; ........ ,,j •10. .:..!.;i...:....:....:.....;...:.·· •• , ,,,+ •t!

. 'I I I I I j 1. I 111 ' j. 'I ' i T1 ;-1·r m' 7i' ' 'I 'I 77lT : I: I Tr. '' ' T ·-·- .. -- - .. - _.. .: :, ·:: ,; : ..• ! =.1' -.-.•. ;-t-:t-:-:-:-:· I ' ' ----1~, ...:_ .-f-'--.,· ,1;..1'~!~',"'!+!..-11 1::1

., I i I! !I ti. i I! i !; !I!:!,, !iii :iii ilit ;Ji! :iii lli1 iii: '.iii ;1:i !::; :::: . , ..... , (1/1 ::;: ;;:; l:i ;I!! ill!

::.:~·:..;._1µ.1~,.l-W.1+

1..-11 _11 i ; 11 n J u_ 1 1 m 1 UllITTi 1

11 lw 11 i 1 ! ! 1 n,· 1 jj 1111 i: : 11 i ill !: : ii llllJi :~~: ·

11

<:_: . ~: ,·:: : ; i: : i: ! ~::: ~11 Lii J:: = = =; : : : : .. · :1 n 11t1 ! l 1 ~ J J I i " i ·, J;'~- I ! 1

I j l , • I ! · j :, : j I · : I ; : 1 ! t j I la i : : 1] i t .. I i j '.,. T · .. · " · ' · 2 II. · · 3 · · · • • • I • !".:11 l. · • · · · · · · • · · · ... I' • • • • q q • t I ', I I - I ,• i ,· ; 1 I ' :-, I I ! . ! 11 ! ! • I ' : ! I ! i : '1 l i I I pit! I !I .. I 1' : : 11 I ;"M . ' 1, : ; ; . ; : : . : • . l't : : ' . : : : : : ! :_ : .. :_ I, :. ~. · .. ~ :. :, ;, ·_. :. : : · .. :. :. ·•. ·.- :. : ·., . :. ·.· :.. :. : •. 1, I, '. •• fl , / ; t 1 'I j r 1 i I! : , I , I I 1 • 1 '1 I ! ; , f 1; 1 • '. • j , ; , • ~ \ j, 1

• I I t, t , I , , , , , ,. , , • -·· '-+·~· .... · ...,· ~.....+--J-....-4--4-;..._~~~-+~-f----.+.~· I ', j ll i I! llli ::,i!1lij'1i '1: ill 1!!1 illi :1:i i,/1 :;,! iiii1i; ii'!·~•\ 1ij' ~ u··r:_ ~:~ 1:i1: ,r:·11":i 'rii ff'C"li;~6- t!;s· :::i :;:! :T :!:; :::: :::; :::: ··- ::? tlil .. !r,·l c-1+H+~~..µcH++-1' '·' 1

; ' 1

' _;1lJ ~ , ' 1

I.:...++; lLL. :;.:..1 ~- ]J~ ~!!· ft; · · (J;l Lil : ,::J /.; .Pl :lw II] ;. r1 _;_;~ _:..;.:.;_ ;~ ;.:..:; _;:_ ~-l ~:~ .,... ' l 11 I I 111 l I I ! I ! 1 ' i : i I ! i I · 1_ I I : ! '· ; ' . " l . ' ; : . ' ' I ' i ; I ' ' . 1_ l j : .• ! ; I ' ' ! • ! • I ; I ' i ' .. . . • . .. . " . • • • • ' •• : " • : ... ! . . .. • ' . ; .. .. . • • . . • • .. 1· i 1 .. 1 !, 1 11 1

1 I '1 :fj· •ii 1 ;1.1 ,I t.•: : 1·,' 11;·1 .!:1 r:1: 11· :i;i i · •111i ;,jj ·1•t; :: ! :1:: l! · ::. :: :t: :·.:: : .. ::: ::;: ........ · .. :.·.1 ..••. ·.•.·•. ·.·.'.·. :i: ... ·_ l,l, i I,! •. 11 . 1, I •1! :111 it 1if, i 1 ! 1,, :.;, •i 1 ! .... ,. ! I" Ii l,1 : •• , 1 ,f :,,: ............ ,, ...... , •. ·:1: ::;:

---

..

• -TABLE 16.

_.,.

·1 ;~.illitrt_ ,' ;.•N.,.....,•I. "'

I ;

~;~~} -·~

- -----.-----------· ·,em, LEVEL RF WATT eoo.0000 -: -

11;~~~H~e~~~-~Ns;n~~i~g~ooo c~~~~!_~--- - ·· ····· ---- - · ------ - ---· · · ----·· ···------------·---- ···-.----·- - ------------- - -- ·--- ------. ----- -- ·---- --------

TJHf RHATIVE TRANSMITTANCE RfACTOR P~ESSURI; METER PYROHETER METER --..,, f•ffNiJti: Sl ---·· ··-·--- ------ ---1 tt'lAP I -- -- -- ·- ·· · -·co~cas-rusr- ---------

- ,_ - ,- ·-- .. --------------1·~ 0000· ··-- o.aaso··----------- s.sooo ·---- --- o.·o 2f0000 O. 8650 5.AOOO

O.O · 1-;~ooo-o---------------o.a500 5."ooo o.o 4.;0000

0.8300 . 5.9000 118.0000

--·-------s.<rooo ·-------·----o~aooo--··----· ·1,:0000--· ·---·- · · ·--us.0000·-- ·----·-·---· ~.0000

0.7850 6.1000 1~5.0000

1;1>000 --------- .. -·0;1aoo -·- ---------z,.1000-- -----········ ---- 150·.0000 ·------- ·- ------·-·--

--- a.o·ooo o. 7600 a.sooo l5b.OOOO

~~~~---~10.0000 0.7500 10.0000 110.0000

_____ 12. 0000 ______ o._1_400 ___________ 1_0_._ooo~---- __ . _______ ··--· _______ 18~-· o_~~o __ _ ------------------ - ---- ---------------------------------·· - . --- ---------- -·------------ --·. -- --

-----·------------------------.. ______ -------·------·---- -----

'---------·--------- -

. ,_· .s .• ----------------. ·--------·--·-- --· - ••.

--------- -- ..... -·

----·. --- --- --------. -·--·· ·-

----·---·-··--- --· -- . ---

---------------------------------

[: l' .I

\ I j

- . '--· - - -

--·-~~~-=--~c~~-~ -~i:_. ----- • -.:, ·-.--~ ---~---~-L--:- -------·---

I ~

~.

i; ~-? _l_ ~

u:t \-

• ·-----··----

PUN NIJMRFR 7

• ---- -- ····------------ -- ___ _TABLE _12 ---NO. OATA .. POHITS -----8--------------- ----··-- ---·- - --- ·-- - ----·-------- ··- --- ....

- ... _..._,.-_

·-

• ., ·---·---------

NUH~ER 0~ ~AFERS 20 --~P~o=wc-:-a~~EVEL R~F~w~A~T~T""S~--8~0~0~.~o~o~o~oa-----------------------------------,--------------------~--~-~-

o~ FEED RATE- 20.000000 CC/MINUTE BASELINF. TRANSHI HANCE - · 0.9200 --- ---·------- _ _,_ - ·-· -----------·. ----· ---------------. ---·----------- ·--------------- ---------------- -----------------· --- ----------------------------TIME RELATIVE TRANSMITTANCE RF.ACTOP. PRESSURE NETF~ PYROMETER HF.TER

------------(HINIJTESt ----------·--·· --- ----rto11w) ___ ------. --- -- -· fbEG:-cE(S"llJS). 1.0000 2.0000

------ ---·--···o.·a100 ···----------- S.4000-· ·-·· ·· -- - -· --- ----· ll.O ----------3;0000,,.---------------- 0.8400 5.6000 b;~,oo s.~~ij~--4.0000 ----5.0000 ___ _

6.0000 1:-0000 8.0000

0.0200 5.5000 -0.8000 ----------·-·s.sooo ·- ---0.1900 5.5000 -------·- o. 7650 ______________ 5.6000 ____ --- ---· -0.7300 5.8000

o.o n:o:odIDr 12,;.0000 - ---- -- l 3it .0000 .. 152.0000 -- ------u.2·.oooo·-112.0000 ~----

·--------- ------------ ···---------------------------

c+

' ·-----------------------------·- ---· -·------- ---- . -·-··---·----- ·------------·

-------------· --------·------ . ---------- ··--.-·- ·-·-------------------- ·--- ·-----· ·----··- ---------- ---------- -- ------ .. ----------··- L.- - ---- ···--·---·----·- ---

--------------- --'--------·-···----- .. - -- - - --· -- .. ------ - ---- --- -·----- -- ...

·---- -·- - ··.--- --------- . .:. _.:-, .. -.·-

...

I j

I I

. - ----------------------------------

I \..A)

\.Al C:

I

f" ;I/

. •• • • • '!'ABLE 18

. RUr-, NIJll•l8.fR 8 ----;,.o;-i>Af°4: .. piiiillTS 11 ---- ----·-.

~IJ~RER nF W~FERS 20 ---P-OWER LEVEL RF WATTS 800.0000

02 FEED PATE 20.000000 Cf/lJ4I~UTE --- RAS.ELINE-TPANSHITTANCE ____ 0.9100 ---------------------------------· ·- -·- -·- --

Tl~E RELATIVE TRANSMITTANCE REACTOR PRFSSURF "'ETFR -----------------··cMINIJTESI---------·-- ·- ·-- -·-. ··-- -·· ·-· ·---·-·ttlJRRt. --·-- -..... PYAOIJ4ET£R '41:TFP · 1nec~·c·en 1us1

·--------------- .1.0000 0.8351)·-------------4.l>OOO --· -- ... ·-·-----o.o - .. 2~·0000 o.s150 4. 1500 o.o --'-------3. 0000 a; 1950 4 .<1000::-------------------1,...,1,.,..o:ooff"'". ----------------, •• oooo o. 1eoo 5.0000 1zn .0000 ----------- ·----·- 5.oooo ·-- --------·--------- ---- -o. 1150 -·-·--- ----·---- --·-5.ooao·- ··-----· 11n.oooo ··· 6.0000 0.7550 5.1000 • 154.0000 ---------- ----- 7~-oooo _______ ------- --- --- -·c>". 7450 ---- --- - · ·-- -- -----5·.7000· ·- ---- - 166.0000 ft .-0000 0. 7'150 5. 3000 117. 0000 ---------9:0000 -o~·nso 5. 6000 ----..... ....,e..,,.r.;...0=0""=0-----------------10.nooo 0.1050 5.aooo 190.0000 -------·----------r2.oooo _______________________ ·- o.c,a50 - ---------1.sono 206.0000

---------------~------·------ ··-·-, .. ·--·- -·

---------···---- ----------~ ---------------- -,------

---------- - -- -- ·------·------------- - . ·---· - ---- - " ---- . ---· - -- ----· -------·-----

- -- --------------

'f.. t.,

ii /,. .'

:I ,: i

I :

,; i t! ' ', f ; I ' '

J ,,i

,,

t

DISCUSSIQt! QI ~ESOLT~

The purpose of this research was to determine the ef­

fect of several variables on the rate of breakdown of cyclic

polyisoprene and novalak resin photore~ists in an oxygen

plasma. Most of the experiments with negative resist were

very successful with a significant addition to the data base

on the process of oxygen plasma removal. However, positive

resist fnovalak resin) was dropped from the project when the

experiments could not be adequately controlled to obtain

useful iftformation.

In order to solve the myriad relationships necessary to

correlate the data into useful information, it was necessary

to construct the computer program which comprises Appendix

VI. A two part block diagram is used to describe this

program's computations in overview. The first part, Table

19, breaks out the major sections of the calibration and ex­

periment calculations including reference to equations in

~ the text. While the second part, Table 20, details the

plotting performed. Since the program is fundamentally al­

gebraic and the method of carrying out the analytical solu­

tion is presented in a previous section of this paper ( see

i' Theory - Descriptive Equations), only the data and new

relationships discovered in data analysis will be discussed.

-34~

c-···-·-· ·.---.: -- ·':.. -.=-= --·~-

~) '

i !,

' I

I

FIGURE 19 ,-----···---Read Calibration Data

Calculate Calib. Eqns. Press., Temp., F:ow E ns. 14 to 21

..... _______ --f Guess Pir cell

[soive for Pobserved!

-·--·-·--"'---·---,. Calculate Absorbance Calibration

Compare Cale. ctual Pobs.

Guess Pir cell

[~efor Pobserved j

Calculate Flow Normalization Factor Factor= Cale. c/ Actual C

A vs. Cone. CO2 En. 22

Read Raw Da taf or o·ne Experimental Run. Print Raw Data.

;f ~: ~~~e~1~h~~!~ff-J···· I Relationships

____.. ~.. ---.-.....

1 Leaving the System as CO2 and Rxn. Rate

~. 11~-~-__....:. l= ___ =r __ i~~~~d~~~t~r~~~~~i~

NO I Compare Cale. C = 11e-----:.~l Actual C

-J4a-

!Vt.<' i Cale. Activation Energy i

1 Eqn. 24

[. -·-···--·····-·-··· .. J __ . -----··-··-· ...... . . Cale. Heat Transfer Coeff., Eqn. 27 · ______ ,,,.,_ ....

I I

' ' .. _,_, ---~~,..-~- ,.., •c,.:".•,·=w."'"i,1,1IJ#

• ~· • ....,. j

'

• i . l t !

, ;: 't

,. ' I' f

f

FIGURE 20

t---··· -·-· . . - -- i

-------------___..Lrlot I~-~-sr ~~ to t:

'

-----------~!'Run Nos. 1-5, and911 1

'. :-··· _All Data Points ___J I------ ·-

. i 1 ·-

!Cal~. a Curve• : from a r,:odel '. !or Connect the Feints

Tcalc. Linear ; Regression of 1

the Data

I Pl~~---X-- ~s. Y Curve

J_· or Line I

I ·-·------r---

NO ~ext ·ar -=~] 0

'--.Bun No.= ,,

"'-! Next Plot No. i

------,-----'-1.N..:..,..O, I 7.7 ·~lot No.=.,,v

' t

',.'-T5fS I ,

: Plot Flow(Y) vs. Fressure(X) ' : for both Transmittance Cali b. r

; Data Set~.-~_nd .Pure Oxygen ! .. -----... ---·-- -. --... r _ .. ·-- .. -·-------- ·- .. ---- .... -j Plot CO2 Cone. ( Y) vs. A bsorbance ( X) : J for both Trans. Calib. Data Sets

I i,. ..... "'!. \ ,:i_ ,• ',:··,

__ -. ' \,..:'' r:··:

'.,'

'\ t .

I' !

I . ( j

' t

'

Data Analysis

The major cross check on the reaction rate calculation

was the measurement of tr.e weight of carbon remove1 from the

polymer. Since the carbon-hydrogen ratio in polyisoprene is

1:1.6, the molecular weight of a fundamental unit of the

polymer is 13.6 grams/ grammole and the carbon removed from

the polymer is simply 12/13.6 of the weight of polymer

removal. Another v~lue for the carbon leaving the polymer

and the system is provided by the carbon dioxide material

balance equation where the carbon weight is 12/44 of the

total calculated weight of carbon dioxide leaving the system

(44 is tte molecular wt. of CO2). Ideally these two indepen-

dently measured values should be identical. rable 21 shows

how these carbon values actually compared in this work. The

extremely poor match in the values for run 2 at 200 watts

was probably because the low transmittance signal being

measured was swamped by the size of the experimental error.

Therefore, tte rate data for 2'00 watts appear to be invalid

and will be excluded from this analysis. The trend of the

remainder of the data on Table 21 reveals that the 55

cc/min. flow rate :runs 1.3,4 have calculated carbon losses

up to 30~ above the polymer weight loss value while the 27

cc/min. runs 5,9 have calculated carbon losses up to 30%

below the polymer weight loss value. The cause of this

deviation is believed to be an inaccuracy in the slope of

the flow vs. pressure curve (Fig. AP IV-~) used in the car­

bon dioxide calculation. !f the slope of this line is

-35-

f i

TABLE 21 I 1, 1:

Run No. Carbon Wt. Loss Carbon Loss Cale, Normalization

~ from the Polymer from CO2 Cone. Factor

'·t (grams) (grams) Calc./Actual

J 0.0779 0.0762 ,978 I· i

4 0.0880 0.0856 ,972

.}) t 1 0.149 O .195". 1. 31

5 0.235 0.171 ,728

9 0.250 0.234 ,936

i ''

i

ii ,I

J ;I ,1 ,I 'I i! • I

.,1 '.I ,,

ll :I

l l ~

J J .. :. j

I ,. : :

-J5a-

.·. ,.\, ·, .... , .. ,.,:

l'

'·' ~!

'

'

i 'I. i

• 0 0 •

N

0 0 . 0

0 0 . N

I

'.L: I

_J

"-o (f)O _J •

'.L:~ d .-

lJJ 1-o C[o Ct:: • I cc

I z X Ct:: '--'

zg _J •

co I

a a

a -a 0

N

FIGURE 22a.

0,05 0.10 0,15 1 .O/TEMP(OEG KJ

0.20 0,25 * 10-2

THE SYMBOL NUMBERS ON THE GRAPH c~RRESPONO TC RUN NJMBERS RS FOLLGWS; SYMBOLl-RUNl,SYN.3-RUNi.SYM.5-RUN~.SYM.7-RUNf,SYM.9-RUNS. iHE RXN RATE HRS UNITS OF G~MOLES/LITER-MINJTE

-J6a-

' : I

l- * 3 - (!)

5- + 7- ~

q _ :x:

0.3G

• Uo,C:: 2(. TO THE INCH• 7 X 10 1.NCHES n c K _ a. ESSER co. NAO[ '" u.s. 46 1240. • I

p

II ,~

I \..,.)

-'~ ~~ °' o' ~, r~

I

r ~p

~ ~~~ ~~

"~ -~~

~

~~ ~~

~~

~~ ~

~~

--

~J I ;.

~:

I

I

,,

..

decreased from 33.3 to approximately 23.2, then the trend in

tiis data would disappear. The only justification for con­

sidering such a c~ange is the effect water vapor might have

in altering this line. Tte flow vs. pressure measurements

for 02, CO2, and H20 vapor are plotted on Fig. M> IV-6 •

However, the water vapor data taken to construct this plot

are not as reliable as the oxygen and carbon dioxide values

due to the ease with which the water vapor could condense in

the system even under vacuum conditions. It is doubtful

whether a reliable flow-pressure curve could be constructed

for this room temperature system. Rather than manipulate

the slope of the flow-pressure line, the same result can be

acnieved by normalizing the calculated exhaust flow rate

This was accomplished by dividing each flow rate by the .

ratio of the total calculated carbon loss to the measured

carbon weight loss. For example, since tr.e carbon loss ratio

for run no. 1 was 1.31, all of the exhaust flow rates cal­

culated were divided by 1.31. With the exhaust flow rates

and consequently the reaction rates normalized, it became

possible to plot the reaction rate data vs. 1/T( °K) in

order to determine the temperature dependence of the rate.

This plot of runs 1, 3, 4, 5, and 9 is Fig. 22a and b. Since

the plot shows the data to be linear, the rate controlling

step in the polymer breakdown must either be zero order or

the concentration must be constant to satisfy equation (2),

.-J6-

~·,) (.

11

I•

.\.

Rate= A. exp(~Eact/R. T) • f( C) (2)

If f ( C ) = (C)" as proposed by o• Allelio and Parker ( 36 J, 0 then only when n=O and f( C ~= (C) =1.0 o; when c= a con-

stant and f ( c ) = (C)" = J, a different constant, will eqn.

(2) yield a linear temperature dependence for the reaction

~ rate. Since the rate in eqn. (2) is dC/dt, a generalized in-

tegration of this eqn. can be carried out with the sub-

stitution of the constant J for f( c) as follows,

dC/dt = A* exp(-Eact/R * T) * J

C = J*A * exp(-Eact/R * T) * t

ln(~C/6t) = ln( J•A * exp(-Eact/R • T))

ln( Rate) = -Eact/R * T + ln( J•A) (24)

The meaning of the concentration independent reaction rate

equation is that none of the chemical reactions, eqns. (2-10)

are rate controlling in the polymer degradation process.

Therefore, a thermophysical limit (i.e. diffusion, heat

flux, or phase change) must be controlling tte rate of the . decomposition.

When thermal or physical processes are rate controlling

in polymer degradation, the process is termed ablation.

Ablation of poly,mers was studied extensively by researchers

working on the space program in the 1960 1 s (35,37]. These

studies were directed toward finding materials which could

-37-

•·

•• I

'

Run #

• . f!

,.. ____

3

4

1 .~ ~'

5

'' ~ '

9 ,, '

·f \

l I '

' "·

l i

dissipate the maximum thermal load per pound on re-entry of

a space vehicle. They discovered that the process of abla­

tion consisted of; energy transfer to the polymer surface.

rupture of the polymer bonds at the surface and/or in the

bulk, melting and charring or sublimation of the surface

layer, diffusion with possible reaction across a boundary

layer into the gas phase, and -possibly further reaction in

the gas phase. In the present experiments although reaction

is undoubtedly occurring in both the boundary layer and the

bulk gas phase to form CO2 and H20. these steps are not rate

limiting as the rate-temperature data demonstrated.

In order to understand thi~ physical process, the a~­

tivation energy, Eact, and the frequency factor. A, are cal-

culated for the various experiwents.

easily obtained from Fig. 22A o.nA b,

!bill 11

Power Flow Eact A (watts) (cc/min.) {cal./ (gmmols/

gmmol) min.) -~--- -~-- -----~ -------

400 55 14000 690.0

600 55 5200 0.0120

8-00 55 4550 0.0059

800 30 3700 0.0033

800 27 2700 0.0012

-38•

These values are

Regression Fit {! 1.0=perfect

fit) ______ .,. _________

.... 97

-.95

-.99

-.98

-.99

1' I

!

From this chart it is readily apparent that chain rupture at the polymer surface cannot be rate controlling since the ac­tivation energies are far too low, 2-6 Kcdl./gmmole. Chain rupture for cyclic polyisoprene would have energies of 80-120 Kcal./gmmole [38].

Although the ~00 watt data give anomalous appearing values of Eact and A, the remainder of the data are in good agreement. The values are clustered by flow rate. At 27 cc/min. Eact averages 3200 + 500 cal./gmmole whil~ A averages 0.0022 + 0.0010 gmmoles/min •• The higher flow, 55 cc/min., yields values of Eact of 4900 + 400 cal./gmmole and A 0.0094 + 0.0040 gmmoles/liter~min •• Since the values for the 600 and 800 watt runs are so close, it is assijmed that no change in the degradation process occurs in this power region. However, the 400 watt data indicate that a sig­nificant change in the degradation process occurrs at the lower power levels.

The lower activation energy and frequency factor for tha low flow condition (low pressure) increases the rate of polymer decomposition at a fixed temperature by approx­imately 28%.. For example, at . 200 C, Vr*R (55 cc/min.)= 0.00069 while Vr*R(27 cc/min.)= 0.00088 gmmoles/min. Since it should be possible to explain this rate increase in terms

,.. of the degradation process, those ablation processes having activation energi~s of the magnitude 1-10 Kcal./gmmole will be explored. These processes are energy transfer to the

-39-

·\ :,I I 'I

-

-

..

-

l

t

polymer surface, sublimation of the surface layer (charring

was not observed in the polyisoprene e~periments and melting

is not favored under vacuum conditions), or diffusion ioto

the bulk gas phase. Alttough the diffusion process cannot be

eliminated rigorously from consideration, under vacuum con­

ditions the resistance to diffusion must be extremely small

due to the large mean free path of the chain fragments (e.g.

an isoprene unit has a free path of 1-10 microns at 3 torr).

In addition, a gaseous diffusion dependent rate would have a

temperature dependence in a 3/2 power of temperature not a

logarithmic relationship. Therefore, the possible rate con­

trolling processes are energy transfer and sublimation of

the surface fragments. Ho~ever, if gas phase thermal

transfer were limiting, then the rate

power dependence on temperature.

process even if not rate limitting is

would have a 1/2

This energy transfer

extremely important

for the understanding of the plasma reactor. Therefore, it

will be examined before proceeding with determination of the

sublimation energies of the surface fragments.

~~~ Transfer ----Heat transfer to the polymer surface for bond rupture

and sublimation is accomplished by ion and electron bombard­

ment. From the data on temperature increase with time, the

heat transfer to the surface can be determined. The tem­

perature rise was found to follow the equation for transient

heating with negligible internal resistance to conduction

-40-

-:.__.. ___ -- - -"'"i:C_ ....

' \

'

,.

f)

compared to the resistance of the surface convection [39] •

This eqn. was previously mentioned under the section,

PROCEDU~E. In more detail, it is,

( Tao- T)/( T00 - T 0 ) = exp(- N•t) (2 3)

where N= (Ar*hlp•cP•V)5i= a constant with the dimension

of 1/time

h= the surface heat transfer coefficient,

cal. /cm,, -min. - 0 c

Ar/ V = t~e area to volume ratio of the wafers, 100 cm·I

0 CP= the heat capacity of the silicon, 0.168 cal./gm.- C

P= t~e density of silicon, 2.33 grams/cm'

Using these values for the constants in the definition of N

gives the simple relationship, h= N/k1= N/ 51.09 (cm~

0ctcal.), where k1 is a constant. These eqns. can be used to

define for a specific power level, the actual thermal energy

input to the wafer as well as the wafer time-temperature

history, a result which allows extrapolation of the low

power runs to low times where pyrometer data were not ob~

taine1. Taking the natural loqarithm of both sides of eqn.

{23) gives,

1 n ( T oO - T) = -N • t + 1 n ( T oO - TO) (27)

Thus plotting the wafer temperature(T) vs. time (t) ex­

perimental data as ln (Tc,0 - T) vs. t for various values of To0

should yield one val~e of To0which makes the plot linear.

-41-

• '

I

\ •. )

Althouqh this problem is in fact a two parameter search,

i.e.~ and T.,o, it wa3 found that a straight line fit was

very sensitive to To0for a small range of values of T. If

further consideration is given to this phenomenon a logical

reason for this effect might quickly become apparent. From

the linear plot obtained, the slope of the line will be N

whose value will determine the heat transfer coefficient ,

h, from eqn. (27). The intercept of this line then deter­

mines the value of the initial temperature, T0 , seen by the

wafers as opposed to room temperatu~e from which they ac­

tually started. Using this information, the thermal energy

flux from ion bombardment at any time is now,

q = h * Ar * ( ~ - T) (2 8)

And in order to obtain the total energy flux from zero to

any time, t, it is only necessary to integrate eqn. (28)

with time,

! t

Q= J. q * dt = J h *Ar* ( Toa - T) • dt (2 9) 0 0

where by r~arranging eqn. ( 23) £or the value of T,

T = f ( t) = To0- (To0- T0

) * exp(- N

and combining eqns. (29) and (30) yields,

Q = f * Ar * (To0 - T0 ) * exp (- N * t) * dt

Substituting N = k1 ·• h into eqn. (31) and

* t) (30)

(31)

multiplying by

-k1/-k1 puts eqn. (31) into the analytically integral form

exp(-u) * du,

•,

I.

di I

'

'

'

'

·t Q • Ar*(T00 -T0 1• l exp(-k1•h•t) • -k1/-k1 • dt

0 (32)

Q 2 Ar/k1 * ( T0 ... T00 ) • exp(-k1 * h *( t - 0)) (33)

Q 2 Ar/k1 • (To0 - T0 ) • (1.0 - exp(-k1 • h • t) (3'1)

This equation with the constant values determined from the

linear fit to eqn. (27) provides the description of the

thermal flux to the polymer surface for any time or power

level. The computet calculations carried out to analyze the

rate data also included a section to determine all of the

constants needed in eqn. (3'1) for each run. These constants

are listed below on Table 24, and the plot from which tr.ey

were obtained is Figure 25.

TABLE 2'1 -~-...-..

Run# T T N h Regression Fit (Deq. C) (Deg. C) (1/min.) (cal. /cm1--min. •c, (:! 1 =perfect) ----~ ------- --------

3

4

1

5

9

---~--- ---------~------ -------------161 97 0.0358 0.0007 0.96

198 76 0.0715 0.0014 0.96

242 86 0.0976 0.0019 0.99

251 102 0.0766 0.0015 0.98

247 84 0.0920 0.0018 0.99

Although the heat transfer coefficient is constant at

the two flow rates ' 27 and 55 cc/min., it does increase

a.lightly (25~) with an increase in power from 400-800 watts.

Constancy of this heat transf~r coefficient with flow rate

compared with the significant change in reaction rate with

-43-

•• • • • ,,

I ,

' I

••

0

"' FIGURE 25

·-r-----------------------------. L/)

0 0 . L/)

0 L/) . ~

.....,.

I-0

I~ 'V

' ~ I-........ z -o LL IJ)

z~ ........

I I-.__,

Zo _JO .

(Y)

0 u? .

0 0

"b.oo·

1- * 3 - C!)

5- + 7 - t!)

g- A

5.00 10.00 15.00 20.00 25.00 TIME(MINUTESJ

T~E SYMBOL NUMBERS ON THE GRAPH CCRRESPONC TO RUN NUMBERS RS FOLLCWS=: SYMBOLl-RUNi.SYM.3-RUNJ,SYM.5-RUN~.SYM.7-RUNf.SYM,9-RUN8 . THE Y-AXIS IS THE NAT. LOG OF THE 9ULK PLASMA GAS TEMP. - THE SILICON WAFER TEMPERATURE. T-INFINITY IS THE GAS TEMPERATURE,

-4Ja-

DATE 04/25/77 1Ss3Z•37

30. c·

6'!

• ,, '

flow rate removes the possibility that heat transfer is the

rate c~ntrolling process in photoresist decomposition •

Only surface fragment evaporation remains as an unex­

plored ablation proc@S'S which might account for all of the

data gathered on photoresist decomposition. The energy of

evaporation of a long polymer chain cannot of course be

determined since the energy to rupture the chain of the

molecule is lower than its evaporation energy. However, thP.

units in which ttis study is interested are the small sur­

face fragments of the polymer. It is the resistance of ttese

fragments to ~vaporation which are believed to be tte rate

limiting. step to this process. An estimate of the evapora­

tion energy of a monomer unit of a polymer may be obtained

based on the monomer's solubility parameter, [40].

~ ~ d = ( Ev a p. / Vl ) '>' { 2 5)

Evap. = ~1,,. Vl ::: ~"". MW !p (26)

where Evap.= energy of vaporization, cal./gmrnole

~ = solubility parameter, (caL/cm~ )~

Vl= molar volume of the monomer, cm~/ gmmole

Mw= molecular weight of t~e monomer, grams/gmmole

fJ = density of the monomer, grams/cm}

For isoprene i has a value of 7.q, Mw is 68 gms./gmmole,

and p is 0.68 gms./cm~ • Therefore, the vaporization energy

is 5.5 Kcal./gmmole which is the same 9rder of magnitude· as

• I

·,I

the activation energy measured for the rate limiting

degradation process. This evaporation energy analysis ought

t~ be done with data on cyclic polyisoprene o~ the cyclic

monomer. However, t~is data is not readily isoprene

available •

"': 'I

t

'

~N~I,USIQ~S

The rate of breakdown of cyclic polyisoprene

photoresist has been determined for a range of temperat.ures

between 100-220 °c, two oxygen gas feed rates, three com­

positions of the feed gas, and three power levels. Calcula•

tions based on these data indicate a linear increase in the

heat transfer coefficient to the silicon substrate. uith in­

creasing power, h= 0.0007 0.0019 cal./cm;,. -min.- 0 c,

while this coefficient is nearly constant versus oxygen feed

rate (i.e. pressure). On th~ other hdnd, the activation

energy for tr.e polymer degradation process appears to be es­

sentially constant versus power in the 600-800 watt rf power

region. However, activation energy undergoes a sianificant

decrease as oxygen feed rate (i.e. pressure) decreases in­

dicating that the rate limiting step for the polymer decom­

position is evaporation of chain fragments from the polymer

surface. Further confirmation of. this conclusion is provided

by calculation of the theoretical evaporation energy for the

polymer (i.e. isoprene monomet fragments). This polymer

evaporation energy is calculated as 5.5 Kcal./gmmole. while

the measured activation energy for the degradation process

is 2.5-5.5 Kcal./gmmoler A large in~rease in the activation

energy of the process to 14 Kcal./gmmole. was observed at

lower rf pow~r levels (400 watts). This increase indicates

that a change in the nature of the degradation process oc-

- •• - 0 •• ---.. ... ·--••• • ~. - • __ • __ ~--··· L ....... -···

4'

-,, ,

curs in low power oxy~en plasmas. T~is data base on oxygen

plasma decomposition of cyclic polyisoprene will be examined

even more extensively in the future for further conclusions.

-- - - ·--------·-~- --- ----~-----

,,

1. M. Venugopalan, Reaction Under Plasma conditions, Vol.

II, New York: Wiley-Interscience, 1971, Pg. 145

2. R.H. Hansen, J.V. Pascale, T. Benedictis, and P.M. Rent­

zepis, 11 Effect of Atomic Oxygen on Polymers", J. of

Polymer Science: Part A, Vol. 3, 1965, Pgs. 2205-2214.

3. J.R. Hollahan, J. of Chem. Ed., Vol. 43, 1966, Pg. A401

4. M.L. Kaplan, Science, Vol. 169, Sept. 1970, Pgs.1206-1207

5. 11 Introduction to Photoresist Stripping",

8214-TAl: LFE Corp., June 1975

Bulletin

6. D.C. Frost, "Ionization and Dissociation of 02 by Elec­

tron Impact", Amer. Chem. soc. J., Vol. 80, Dec. 1958,

Pgs.6183-6187

7. G.S. Egerton and A.G. Morgan, "The Role of Singlet oxy­

gen and Hydrogen Peroxide in the Photosensitized

Degradation of Polymers", J. of the Soc. of Dyers and

Colorers, Aug. 1971, Pgs.268-277

B. A.T. Bell, 11 Models for High Frequency Electric Discharge

Reactors ", Chemical Engineering Progress Symposium

series, Vol. 67, No. 112, Pgs.1-11

. _, --·--- -- --

I

'

9. A.M. Mearns and·A.J. Morris, "Oxidation Reactions in a

Mic~owave Discharge: Factors Affecting the Efficiency

of Oxygen Atom Product.ion", ibid. , Pgs. 37-46

10. V.H. Dibeler and J.A. Walker, "Mass-Spectrometric study

of Photoionization. VI 02, CO2, cos, and CS2", J. of

the Opt. soc. of Amer., Vol. 57, Aug. 1967, No. 8, Pgs.

1007-1012

11. L. W. Si eek and R. Gorden, jr., ,· Photoionization of

co2-co-02- Mixtures 11 , Journal of Research of the NBS~A,

Physics and Chem., Vol. 78A, May-June 1974, No. 3, Pgs.

315-322

12. J.R. Hollahan and G.L. Carlson, " Hydroxylation of

Polymethyl siloxane Surfaces by Oxidizing Plasmas", J.

of Appl. Poly. Sci., Vol. 14, 1970, Pgs. 2499-2508

13. C.Y. Kim and D.A.I. Goring, ti Surface Morphology of

Polyethylene After Treatment in a corona Discharge",

ibid., Vol. 15, 1971, Pgs. 1357-1364 •

14. N.J. DeLollis, "The Use of Radio-Frequency Activated

Gas Treatment to Improve Bondability", Rubber Chem. and

Tech., Vol. 46. June 1973. Pgs. 549-554

15. C.Y. Kim, J. Evans, and O.A.I. Goring, 11 Corona~Induced

Autohesion of·Polyethylene", J. Appl. Poly. sci., Vol.

1S. 1971, Pgs.1365-1375

-49-

- .,.·-.-~----.. - - ... _ .. -~- ... --~. -----

'

' ' :,

16. A. Bradley and J.D. Fales, ft Prospects for Industrial

Applications of Electrical Discharge", Chemical Tech­

nolo~y, April 1971, Pqs. 232-237

17. M. White, "Thin Polymer Films", Thin Solid Films, Vol.

18, 1973, Pgs. 157-172

18. J.R. Hall, C.A.L. Westerdahl, A.T. Devine, and M.J. Bod­

nar, " Activated Gas Plasma Surface Treatment of

Polymers for Adhesive Bondinq", J. of Applied Polymer

Science, Vol. 13, 1969, Pgs.2085-2096

19. s. Morita, G. sawa, M. Ieda, "Influence of Oxygen on

Electrical Properties of Styrene Thin Film Polymerized

in a Glow Discharge", J. of Appl. Poly. Sci., Vol. 44,

May 1973, No. 5, Pgs. 2435-2436

20. M. Akahane, K. Kanda, K. Yahagi, "Effect of Dielectric

Constant on Surface Discharge of Polymer Insulators in

Vacuum", J. Appl. Phys., Vol. 44, June 1973, No. 6,

Pg.2927

21. R.L. Zapp and J.H. Peery," The Ozone Attack on swollen

Elastomeric Networks", J. of Appl. Poly. Sci., Vol. 13,

1969, Pgs. 2097-2112

22. Venugopalan, op. cit.,\ Vol. I, Pgs. 22 and 62-66

23. Venugopalan, op. cit., Vol. II, Pg. 171

-so-

. -·!

t

'

'

24. J.R. Hollahan and A.T. Bell, Techniques and Applications

of Plasma Chemistry, New York: John Wiley and sons,

25. Ibid., Pgs. 116-1QO and 351-355

26. Ibid., Pgs. 125-127

27. Ibid., Pg. 138

28. Ibid., Pg. 91

29. Ibid., Pg. 69 and 104

30. R.H. Still and P.B. ,Jones, " Ttermal Degradation of

Polymers", J. of Appl. Poly. sci., Vol. 13, 1969, Pgs.

2Q33-2043

31. J.M. Smith, Chemical Engineering Kinetics, New York:

McGraw•Hill, 1956, Pg. 187

32. Ibid., Pg. 196

33. M.R. Havens, M.E. Biolsi, and K.G. Mayhan, n survey of

Low Tempe,:ature Rf Plasma Polymerization and

Processing", J. of vacuum science and Technology, Vol.

13, March/April 1976, No. 21 Pgs. 575-584

34. Hallahan and Bell, Techniques, op. cit., Pg. 136

35. G.F. 0 1Allelio and J.A. Parker, Ablative Plastics, New

York: Marcel Dekker, 1971, Pgu •. 1- 35, "37-QSS

... 51-

'IN- - , .. -------- -

36. H. Friedman, J. Poly. Sci., Polymer Symposium No. 6,

1963, aPgs. 532~ 539. Cited in D'Allelio and Parker,

Ablative Plastics, Pg. 3

37. P.J. Blatz and W.H. Andersen, " Fundamental Problems

Relating to the Fabrication 0f Plastics for High Tem­

perature Application", Combustion and Propulsion ( 5th

AGARDograph Colloqium), New York, 1963, Pgs. 317-320

38. Ibid., Pg. 327

39. B. Gebhart, Heat Transfer, New York: McGra~-Hill, 1961,

Po. 83

40. D.H. Solomon, The Chemistry of Organic Film Formers, New

York: John Wiley and Sons, 1967, Pgs. 30-31

-52-

I

Akahane, M., Kanda, K., Yahagi, K., "Effect of Dielectric

Constant on surface Discharae of Polymer Insulators in

Vacuum", J. Applied Physics, 44, No. 6, 2927, (1973).

Baddour, R.F., Timmins, R.s., (Ed.), The Aplications of

Plasmas to Chemical Processing, Cambridge, :-.iass.: The

~.I.T. Press, (1967).

Barnes, R.B., Gore, R.c., fl Infrared Spectroscopy",

Analytical Chemistry, 21, No. 1, 7-12, (1949).

Barr, E.s., "Historical survey of the Early Development of

the Infrared Spectral Region", American J. of Physics,

2 a,, 42-54, C 1960) •

Barrow, G.M., Physical Chemistry, New York: McGraw-Hill,

(1961).

Bauman, R.P., Absorption Spectroscopy, New York: John Wiley

and Sons, {1962i.

Bell, A.T., "Models for High Frequency Electric Discharge

Reactors", Chemical Engineering Progress Symposium

Series, 67, No .• 112, 1-t1 •.

' Bellamy, L.J., The Infrared Spectra of Complex Molecules,

New York: John Wiley and Sons, (1958).

-53-

:.-'--~-----

e

·~

Bevilacqua, E.M., "Degradation of Polyisoprene Networks by oxygen", J. of the ACS, 80, 5364-5367, (1968).

Blatz, P.J., Andersen, W.H., "Fundamental Problems Relating to the Fabrication of Plastics for High Temperature Ap­plication", Combustion and Propulsion, 5th AGARDograph Colloqium, New York: Pergamon Press, (1963).

Blok, J., LeGrand, D.G., "Dielectric Breakdown of Polymer Films", J. of Appl. Phys., 40, No. 1, 288-293, (1969).

Bradley, A., Fales, J.D., " Prospects for Industrial Ap-plications of Electrical Discharge", Chern. Tech., 232-237, ( April 1971).

Burch, D.E., Gryvnak, D.A., Patty, R.R.," Absorption of In­frared Radiation by CO2 and H20. Experimental TP.ch­niques", J. of the Optical society of A~rica, 57, No. 7, 885-895, (1967).

Carstenson, P., "Free Radicals in Dierie Polymers Induced by Ultraviolet Irradiation I. An ESR study of Cis-1,4-Polyisoprene

918-932.

" I Rubber Chemistry and Technology,

Chan, M.G., Hawkins, W.L., "The Relationship Between Rate of Reactio~ with oxygen and Chemical Change in Polymers ••••• ", Polymer Engineering and Science,

~ .

-54-

:1 ,: ,' I

i,

--- - -- - --; ;.t;.;-<= ~-----

...

'

'

I

I

Cross, A.O., An Introduction to Practical Infrared Spec-

troscopy ' London: Butterworths Scientific Publica-

tions, (1960).

D'Allelio, G.F., Parker, J.A., Ablative Plastics, New York:

Marcel Dekker, Inc., ( 1971) •

DeForest, w., ~hotoresist, New York: McGraw-Hill, (1975).

DeLollis, N.J., "The Ose of Radio Frequency Activated Gas

Treatment to Improve Bondability", Rubber Chem. and

Tech., 46, 549-554, (1973).

Dibeler, V.H., Walker, J.A., "Mass Spectrometric Study of

Photoionization VI. 0-2, CO2, cos, and cs2 11 , J. of the

Opt. soc. of Amer., 57, No. a, 1007-1012, (1967).

Doebelin, E.D., Measurement Systems: Application and Design,

New York: McGraw-Hill, 408-416, (1966).

Dushman, s., Scientific Foundations of Vacuum Technique, New

York: John Wiley and Sons, (1962).

Egerton, G.s., Morgan, A.G., "The Role of Singlet Oxygen

and Hydrogen Peroxide in Photosensitized Degradation of

Polymers", Journal of the society of Dyers and

Colorers, 268-277, ( Aug. 1971).

Forman, R., "Electrical Conduction and Breakdown in High

Pressure f 0.25-300 mmHg) Rare Gases", J. of Appl.

Phys.,· 32, 1651-1"658, ( 1961).

-ss-

...

'

' . ,

Frost, o.c., McDowell, C.A., "The Ionization and Dissocia­

tion of Oxygen by Electron Impact", J. of the ACS, 80,

6183-6187, (1958).

Gebhart, B., Heat Transfer, New York: McGraw-Hill, (1971).

Hall, J.R., Westerdahl, C.A.L., Devine, A.T., and Bodnar,

M.J., " Activated Gas Plasma Surface Treatment of

Polymers for Adhesive Bonding", j. of Appl. Poly. Sei.,

13, 2085-2096, (1969).

Hansen, R.H., Pascale, J.V., DeBenedictis, R., " Effect of

Atomic Oxygen on Polymers", J. of Poly. Sci., part A,

3, ·2205-2214, (-1965).

Havens, M.R., Biolsi, M.E., Mayhan, K.G., " Survey of Low

Temperature Rf Plasma Polymerization and Processing",

J. of Vacuum Science and Tectnology, 1J, No.2, 575-584,

(1976).

Hollahan, J.R., Bell, A.T., Techniques and Applications of

Plasma Chemistry, New York: John Wiley and Sons,

(1974).

Hollahan, J.R., Carlson, G. L., " Hydroxylation of

Polymethylsiloxane surfaces by Oxidizing Plasmas", J •

of Appl. Poly, Sci., 14, 2499-2508, (1970).

Hollahan, J.R., J. Chem. Ed., 43. A401, (1966).

-56-.

• I

I

Hull, L.A., Hisatsune, I.e., Heicklen, J., "Low Temperature Infrared Studies of Simple Alkene-ozone Reactions••, J •

of the ACS, 94, No. 14, 4856-4863, (1972).

Jones, W.N., Dennison, J.E., Broyde, B.," Effects of Ozone on the crosslinking of Photoresists", solid state Tech­nology, 56-58, ( Jan. 1974) •

Kaplan, M.L., "Oxidation of a Polymer Surface with Gas Phase Singlet Oxygen

( 1970) •

Kim, c.Y., Goring, D.A.I.,

" ,

"

Science, 169, 1206-1207,

Surface Morphology of Polyethylene After Treatment in a corona Discharge", J. of Appl. Poly. sci., 15, 1357.,.1364, (1971).

Kim, C.Y., Evans, J., Goring, D.A.I., " Corona Induced A.utohesion of Polyethylene", J. of Appl. Poly. Sci., 15, 1365-1375, (1971).

tee, W.G., Paine, J.A., "Stability of Nitric oxide calibra-tion Gas Mixtures in Compressed Gas Cylinders " , Reprint from Special Technical Publication 598,

Philadelphia: American society for Testing and Materials, (1976) •

Legg, B.J., Parkinson, K.J., "Calibration of Infrared Gas Analysers for use with carbon Dioxide", Journal of Scientific Instruments, 1, 1003-1006, (1968).

-57-

LFE Corporation, "Effects of Bare Silicon Back in Plasma

Etching", BullP.tin 82ij1-TA1 •

LFE carp., "Photoresist Removal with and without Equi-Etch

Chamber Insert", Bulletin 8216-TA1~ ( Aug. 1975).

LFE corp., "cornparison of LFE DS-180'

82t5-TA1, (Aug. 1971).

to 02 " , Bulletin

LFE Corp. , "Introduction to Photoresist Stripping 11 , Bul­

letin 8214-TA1, (Jnne 1975).

Madorsky, S.L., "Thermal Degradation of Polymers at Low

Rat~s ", J. of Research of the National Bureau of Stan­

. dards, Research Paper 2957, 62, No. 6, 219-228, (1959).

Madorsky, S.L., Thermal Degradation of Organic Polymers, New

York: Interscience Publishers, (1964).

Maguire, T., n Space Researchers Shed Light on Plasma Sheath

", Electronics, 35, 20-21, (1962).

,, McLafferty, F.w., Mcltdoo, D.J., Smith, J.s., " Unirnolecular

Gaseous Ion Reac~ions of Low Aetivation Energy. Five

Membered-Ring Formation

5400-5401, (1969) •

" , J. of the ACS, 91,

McTaggart, F.K., Plasma Chemistry in Electrical Disctarges,

New York: Elsevier Publishing, (1967).

-sa-

..:......-....---~- ·--

• Mearns. A.M., Morris, A.J., n Oxidation Reactions in a

Microwave Discharge: Factors Affecting Efficiency of

OJ(yqen Atom Production", Chemical Engineering Progress

Symposium Series, 67, No. 112, 37-46.

Meek, J.M., Craggs, J.D., Electrical Breakdown of Gases,

London: Oxford Press, ( 1953).

Molee, c.s., Muller, M., "Gas and Pollution Analysis Using

Infrared Sensors", Design News, Pg. 57, ( Aug. 1976).

Morrison, R.T., Boyd, R.N., Organic Chemistry, Boston: Allyn

and Bacon, (1966).

Morita, s., Sawa, G., Ieda, M., " Influence on Electrical

Properties of Styrene Thin Film Polymerized in a Glow

Discharge", J. of Appl. Phys., 44, No. 5, 2435-2436,

(1973).

Pease, R.N., Equilibrium and Kinetics of Gas Reactions, I

Princeton, N.J.: Princeton University Press, (1942).

Price, D.A., Moruzzi, J.L., "Ionization in Mixtures of Oxy­

gen and carbon Monoxide", J. of Phys. D: Appl. Phys.,

6, 14~ 16, ( 197 3) •

• Scheppele, S.E., et. al., "Internal Energy Distribution and

the Fragmentation of Gaseous Organic Ions ••••• ", J. of

the ACS, 95, No. 16, 5105-5115, (1973).

-59-

• e

' ,,

' i

I

Schissel, P.O., "Production of Oxygen and carbon Monoxide

from Carbon Dioxide in an Ionization Gauge", J. of

Appl. Phys., 2659-2660, (1962).

Segal, C.L., High Temperature Polymers, New York: Marcel

Dekker, (1967).

Sieck, L.w., Gorden, R. Jr., "Photoionization of co2-co-02

Mixtures ", J. of Research of the NBS-A. Physics and

Chemistry, 78A, No. 3, 315-322, ( 1974) •

Smith, J.M., Chemical Engineering Kinetics, New

McGraw-Hill, (1956).

York:

Sokolowski, M., et. al., " Ion Treatment of Silicon in a

Glow Discharge", Thin Solid Films, 30, 29-35, (1975).

Southworth, R.W., Deleeuw, S.L., Digital and Numerical

Methods, New York: McGraw-Hill, (1965).

Speddinq, P.L., "Features of Design and Operation of Elec-

trochemical Reactors

61, No. 112

II , Chem. Eng. Prog. Symp. Ser.,

Stine, K.E., Modern Practices in Infrared Spectroscopy, Ful­

lerton, Calif.: Beckman Instruments Inc., (1970).

Venugopalan 4 M., (Ed.), Reactions Under Plasma Conditions,

VoI. I and II, New York: Wiley-Interscience, (1911).

-60-

·' J • ..

'

'

Von Engel, A., Ionized Gases, Clarendon Press- (1965).

• Vriens, L., "Energy Balance in tow Pressure Gas Discharges

", J. of Appl. Phys., 44, 3980-3989, (1973).

Wall, L.A., Florin, R.E., "Effect of Structure on the Ther­

mal Decomposition of Polymers", J. of Research of the

NBS, Researct Paper 2860, 60, No. 5, 451-458, (1958).

Warshaw_, D., 11 Ionized Band Encircles the Earth

Electronics, 31, 3 8-39, ( 1960) •

II , Radio

Weast, R.c., Selby, S.M., Handbook of Chemistry and Physics,

Cleveland: The Chemical Rubber co., (1966).

Weber, H.c., Meissner, H.P., Thermodynamics for Chemical

Engineers, New York: John Wiley and Sons, (1957).

White, M., 11 Thin Polymer Films", Thin Solid Films, 18,

157-172, (1973).

Zapp, ~.L., Peery, J.H., " The azone A.ttack on swollen

Elastomeric Networks

2097-2112, (1969).

II ,

-61-

J. of Appl. Poly. Sci., 13,

' ' .,

' When the experiments were performed, careful readings

were taken from the thermocouple pressure gauge at the reac-~ tor end of the transfer line from the reactor to tte IR

measuring cell. However, the IR cell pressure is needed for the caleulation of both the gas flow rate and the carbon dioxide mole fraction in the exhaust stream. Therefore, in order to correlate the measured pressures with the IR gas cell pressure, a threaded tee was mounted in the cell and simultaneous readings of the reactor gauge and the IR cell gauge were made. These data appear in Table AP I-4 under the heading, simultaneous IR tc - rxn tc gauges.

Since a McLeod gauge was chosen as the absolute pres­sure standard and the apparatus was too cumbersome to move, it was necessary to use a portable mechanical vacuum gauge as the intermediary between the standard and the thP.r-

,~ mocouple gauges. The calibration procedure consisted of at­taching this mechanical gauge to the McLeod apparatus, pumping tte system to a pressure below 0.01 torr, sealing the system off from the vacuum pump to check for air leaks

' in the apparatus, and then taking simultaneous readings of the McLeod and mechanical gauges while nitrogen was bled in­to the apparatus. Nitrogen was used to perform the calibra­tion because it is inert to the mercury of the McLeod gauge.

)

' • /

·•

\.

Once the mechanical gauge was calibrated, it was attached to the side of the threaded tee in the IR cell while the other side held the thermocouple gauge used to measure the IR cell pressure in the calibration mentioned above. The procedure followed was identical to the McLeod calibration with the exception that the gas used was oxygen. Oxygen was used both because it was the reactive gas for the experiment and its use avoided an extra calibration step (air to oxygen). Next the reactor gauge was calibrated to the IR cell gauge using the same technique. Before each reading in tr.ese calibra­tions was taken, the system was allowed to stabilize for 3 minutes at the new pressure level. All of these calibration data are listed on Table AP I-4 •

A-2

.. ~ •• ,-, •· ,. • -I'- __ ___. .. ...-.-~. r" .r·~

,

,,

APPEN[)IX I-a

Since a thermal conductivity pressure gauge responds to

the thermal conductivity of a gas as well as its pressure, a

means must be utilized to remove the gas composition effects

from the gauge readings. The tables relating the observed

pressure readings to the actual pressure of CO2 or H20

provide part of 'the solution, Tables AP r-1 and 2. These

tables permit any actual partial pressure of carbon dioxide

or water vapor to be converted to the observed partial pres­

sure reading on the meter. A second part of the solution is

the calibration equation relating observed total pressure at

the reactor to the actual total pressure in the infrared

measuring cell. (See Appendix I) This equation is,

Pobserved reactor(torr)= 1.0/0.497 *( Pactual ir

0.0027) (I-1)

However, equation (I-1) is limited to the gas used in the

calibration, oxygen- Therefore, before using eqn. (I-1), the

partial pressure of carbon dioxide and water must be con­

verted to the observed partial pressure on an oxygen basis.

This conveision is done using Tables AP I-1 and 2 mentioned

above.

A-3

(

_ I

: ,---+ ..

• I

• I

The only unknown quantities are the actual partial pressures of carbon dioxide, water, and oxygen. Since the relationship between· partial pressures and total pressure is,

Ptotal= Z.Yi•Ptotal= (Yco2+ Yh2o+ Yo2) •Ptotal (I~2)

OR

1.0= Yco2 + Yh2o + Yo2 (I-3)

And since equation (I-3) can be simplified by use of the stoichiometric link between carbon dioxide and water vapor,

Yh2o= 0.8•Yco2 (I-4)

to yield,

Yo2= 1.0 - 1.8•Yco2 (I-5)

Now a knowledge of the value of Yco2 fixes all 0£ the mole fractions in the IR cell. The only remaining unknowns now are Yco2 and the total pressure int.he IR cell. An indepen­dent equation relating these two variables is,

Yco2= cco2/ ctotal = 24.631*76o.o•cco2/Ptotal (I-6)

where 24.631 is the molar volume of an ideai gas at 27 oc.

Since the concentration of carbon dioxide is a monitored parametet of the system through the absorbance calibrati0n, ., .

this iteration scheme is ready for use.

A-4

• /

I I

I • l

Iteration Procedure (SUBROUTINE PFIND)----------

1. Knowing cco2, Guess Pir ~ell

2. Calculate Yco2 from eqn. (I~6)

3. calculate Yo2 from eqn. (I-5) il.nrl Yh2o from eqn. (I-4)

4. compute partial pressores, Pco2= Yco2*Pir cell, etc.

5. Use the tables (AP I-1 and 2} to determine the observed pressures for CO2 and H20 on an oxygen basis.

Of course, the observed and partial pressures of 02 are inentical.

6. sum the observed pa~tial pressQ~e,. 7. calculate the observed pressure at the rP.~ctor

from eqn. (I-1)

8. compare the monitored value of reactor press. with the calc. value from step 7.

9. If the two values in step 8. differ by more t~an 0.2%, then Pir cell is adjusted and iteration returns to step 2.

This iteration scheme with trivial modification was used to determine the total IR cell pressure for the

-calibration of the spectrometer using carbon dioxide - oxy­gen mixtures. Also this iteration could be generalized for this apparatus and any reacting po.lymer and product gases

A-5

• , •

provided that: the ~xhaust concentration of the product

gases was monitored, the stoichiomettic ratio of the reac­

tant atoms in the polmer is known, and that the thermal con­

ductivity effect of the gases on the thermocouple gauge is

known (Fig. AP I-3).

Of course, this appendix section would have been un­

necessary had a composition independent pressure gauge been

used. However, pressure transducer~ for the vacuum region

studied (0~10 torr) are very expensive and/or are no mo~e

accurate •

,

l r! ·' 1·,; ',

'

• -- • • TABLE AP I-1 PRESSURE-oes·r:RVE_D_ 02-----P-~ESS1jRE" -ACTUAL CO2 -- -- ··---- -------------·-· - --(TORRI _________________ C TOR.R J ____ ___________ --··-··· ____ ,------ ···-----·,

--------· --·--- - - --·- -·------------0.1230E+OO O.RlOOF-01 0.23~0E+OO O.lR60E+OO ---0 :-12e OF. .:·oo O. 218 OF• 00 -- --· -------- - ---- -. ----- - ------------ ---- ---· ----------- -0.4300F.+00 0.3710E+-00 o.-5500E•oo- o.4860F.·+oo·------------- -- ·- -·- - -----. -----------·---· - - --· 0.6440E+~O 0.5850E+-00

-----0.7500F+OO 0.6R70F+OO __________________________________________________________ _ O.R620E+OO 0.7950F+OO ----- 0.9820E•OO - -- 0.9000E+oo·-- ----------- ---- ---,-·------·-·-- - -----------o.1oqoE+Ol o.1020F+o1

. --- O.ll80F+Ol 0.1130E+Ol ---·--- --·- ·--- ---------- ------ - -·· ------------------- ---------

n.tJOOF.+01 n.t250F=·~+~O~J'-----------------------------------------------------------

-----=o.11a5E+Ol 0.1360F+Ol 0.1500E+Ol O.l490E+Ol ------ o.-·1625E+Oi o.°t'6UOE•Ol --·----·------- ---·-------------- --· - --·- ··--0.1710E+Ol o.1·12sE+Ol . - 0.1780E+Ol 0.1840E+OI----------------0.1900E+-01 0.2000E+Ol ~ -----""o·.~2oorie•ol o. 219oe+o=-1:'----------,----"'------------------,------------------------------

°' 0.2150E+Ol 0.2375E+Ol $l> 0.2630E+Ol 0.3100E+OI ---------- --- -------- - ------ ----- ----·--- -·

0.3230E+Ol 0.3900E+Ol I

-----o:37iOf+·o1 ---- o.-:~t50F.+:01 --------------·- - -- -------·--- -----· ---- ·- ·----------o.42soe .. 01 o.s900F.+ot -----0.475-0E+Ol 0.6200E+-. .::O~l'----------------------------------------...... ----------------

0.5100F+Ol 0.8800E+Ol --- --0.6500E+01 -- --------- 0.1364E+02-- - --- - ----- - . -- - - ---- -------- -- - -

APC02z0.1596F•OO- BPC02ao.qo96E+OO C.PCIJ2a-.3313E-Ol STDDEV=0.2024E-Ol

------------·-----------

---------------. --·--- ' - ·---

---------·-------- ------------------- - .. - ----- - --- -- . ·--------------

,,

. , .. C

- ~

----~----------------------· • ,,, • -..__

-· TABLE AP I-2

·----- ----PRF.SSURF. OBSERVED 02 PRESSURE ACTUAL H20 ---------- ·-(TORRI-- ·---·------·- - ----, TORRI····-- ---

0.1230E•OO 0.92-00E-Ol ---- o.z3·3oe+oo--·----·o.-11301:·+oo-···---- -- --- - ---- ···------··--·----- ---· ---- - ·-o.3zaoe+oo o.?.330F.•OO ----- o.·1.3ooe+oo-··------·--o.2e901:+oo··-- - ------ - ·-- ---·------ ---- ------o.s~ooe+oo o.~5101:+oo · if;-64°49E+oo o.4?.00E+ilo-----------·-------------·----'-------·--------------------------

o.1500F.+oo o.4750E+oo .

·- 0.8620E+OO --------- 0.5500E+oo· - ----- -------·--·-·----- ····------·---- --- ·-·-- -0.9ij70E+OO 0,6Z70E+OO -------0~·1c>90E+o1-· -0-.10<.>oE·+oo- · --···---------.----- -------------·------· o.11noe+o1 o.1100E+oo -----~o:l300E+Ol 0.8600E+00;;---------------------------------------------------------0.13R5F.•Ol o.q2501:+oo ----·- O.J51>0E+Ol ______ 0.1040!:+01 ______ - ------- .------. -------·----· . -- .·-O.l625f+Ol O.ll30E+Ol ------·o.-111oe+oi----------0~2201=+01 ··---------·-------- · - · ·----------- -

7"" _ 0.1780E+Ol Oel315E+Ol °' 0~ T<ii'fiW-+1H O. l 400E + O~l------------------------------'-----------------------------

0' 0.2000E+OJ 0.1500E+Ol O. 2l 50E+Ol -- -- O. l 5CJOE+Ol --- --- ---· -- -· -- -------·-·- -- ---- · -- --- ·- -- --0.26'\0E+Ol 0.7050E+Ol --- -- o. "230E+ol -- -------o.26soe·+o1·- ·-·--- --- · ---------- ·--------- ·--------- ·--- -----· <..., __ ... _

0.3710F.+01 0.3300E+Ol ----~0~425iJ°E+Ol 0.4150E+cn---------·---------------------0.4750E+Ol 0.5000E+Ol ------o~S300t=+Ot-·-----·o-;l,c>OOf+Ol ________ ----------------- . -.- ---·----· - - - --0.6500E+Ol 0.7500F.+01 ---_ ----o~ 1sooe+oi--- ·----·--n·;r2abl:+02 -- · --- - - ----·-- ---·---- - -- -- --------·--- ·- - -- · ------o.asooe+o1 o.1900E+o2

STOOEV;0.4847E-Ol

---------------------------------------r-:-- - ----· -···~ --

. -.....::.· ----------------------------·-·--·-·--

''i,

,,, I, I: I'

• FIGURE AP I-] z ~

~ N w z j w N (!)

~ I I ~ s z z z z :::::, 0

~ ffi 0 0 0 :J a:: er· LI.I (!) N w w a:: 0 a:: a:: I-u a:: a:: a:; 0 a:: a:: a:: a:: ct w a:: >- a:: ...

~ ci c c( <i <( <f 0 <i LL.. <i LL.. :i:: :r ; <i a z ci OTO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

" .5

.5 .5 .5 .5 5 .5 .5 .5 .5 .5 .5 .5 .5 .5

.5 .5

.5 5

.5 )> I 2 °' 0

2 2 2 2 2 2 2 2 2 2 2 2 2

2 5 5

5 10

5 20 10

~ 5 5 5 10 5 ATM 5 ATM 5 5 5 5 5 5 20 20 10 10· 10 ATM 10 ATM 10 10 10 10 20

20 \TM

10 10 20 20 20 20 20 20 20 20 ATM ATM ATM ATM ATM ATM ATM ATM ATM

10 5

20 10 ATM 20

ATM

NOMOGRAM SHOWING CALIEIPATION OF HASTINGS VACUUM GAUGES WHICH ol.JSE THE DV-40 GAUGE TUBE FOR GASES OTHER THAN AIR. TO FINO THE PRESSURE

IN A GAS OTHER THAN AIR, LOCATE THE OBSERVED READING ON THF. "AIR" SIDE 0t= THE APPROPRIATE SCALE ANO READ, ON THE OPPOSITE SIDE OF THE $CAL£, THE TRUE PRESSURE IN MILLIMETERS CJ= MERCURY FOR THE GAS BEING MEASURED.

PRINTED IN US.A.

TELEDYNE HASTINGS-RAYDIST HAMPTON, VIRGINIA c- 191

I .

I,,

I

i'

·-!ii'. - 11

t.

'

0

-• • • • • TABLE AP I-4 -----·· --------------·-·----- ---·----·----·--- ------- - --

·---~------ ·-·-··-- --- --- -· - -- ·------ - -----. -- . -----·--· . -·------ --·- ·-- -· ALL PRfSSURES ARF IN Tn.PR

-· --------··-- -···----.NPO=l2

NPl= 7

. .

- . IR IR ~~ACTOR Sl~UL TAP4FOUS

----- _·---~CL Eno ----- MECHANICAL- Hie CH AN I CAL--THf.RMOC:O•JPLE . THF.R"IOCOIJPU:··- THEPMOCIIUPLE - fR TC ___________ .Rjk re--··-------····-· _____ GAIJGE GAUGE GA~!~~- GAUGE G4UC:E C.AUC.E G•UGE GAUGE

---·-------1.0000 0.8000 2.0000 3.1000 o.1soo o.9000 o.q300 1.2~00

1.9000 ______ 1.aooo------2.2000 - - - 3.1500 1.0000-···--·- 1.Jooo 1.1soo 1;6000 3.0000 2.9500 2.3000 3.3000 1.1500 1.3700 2.8500 4.0000

:x;------r.:-0000 4.2000 ·2.5000 ----- ------ 3~6000-- --------- 1.iooo 1.6000 3.ssoo 4.9soo I 5.0000 5.3000 2. 7000 3.8500 1.8600 7. l~OO 4.2500 6.0000

CIK 5·~-9000 6.3000 4.3500 5.aooo=------l-.-9~,..,5~0~0~-----7.4500 --- 4.7000 _____ """6-.5000------------p. 6.6000 7.2000 5.7000 7.6500 4.6000 5.4000 5.0000 J.0500

7.4000 1.CJsoo · ·----------- 4.1000 5.5000 5.6500 e.2oon n._oooo 0.1000

-,.0000 11.11,00 ---- -e.2000 ____ ·- a.aooo ·---------

9.0000 9.7000 -----~9.6000 10.4000 - --- ---------

------------·--- - - -· SLOPE -i>HO~ ---··:o ~ 89 3 i INTfRCEPT PRO= o.2a4g Fit OF LINf:s SLOPE PHl= o.aoos INTERCEPT PBl• -0.315l

)

SL IJPE PMZ= --···a: 8335 --iNTf PCEPT PAZ= -0. 04'H, FIT Of LIN[•

FIT OF LINE• 0.9993

-------- ·-- ---- ·-- .SLOPE PHCOR=-· 0.6950 I NT i:RCE PT P BCUR =

i - -·- _ ...... -·- ·---·-

POM= ·o. 5960 POil= - - ·---.-: ·---·-· - -~-'l -· -0.0856 POt: I RM= 0.00?1

., -·- ··--- ·- .... - - ·--- -· ------------

.,

---------- --·--------- ·------··--- - ··- .. -- -- ----- ----------- -·--- ----------·--··

• I

••

APPENDIX II

CalibratiQ!! gt~~ l£2D·~Qn§tan~ju Ibf"90C9peles

!D~ t~ IDf~aif!l ~m~~

' In order to calibrate the temperature measurin9 equip-ment, a controlled temperature plate f"hot chuck") was ob­tained. This instrument is a R~cker and Kolls model 135 hot chuck probe station which consists of a flat metal disc into which two heating elements and an iron- constantan t.her­mocouole are inserted, and an API model 227 solid state tem­perature controller. The API controller drives the heating elements based on an error signal between the thermocouple and the controller set point (set point range= 0-300 deg. c). Stability of the controller is a temperature of 151.3? 1.1 deg. C (8.08 ! 0.06 millivolts) at the lvw end of the range, whereas at the high end temperatur~ stability was 266.1 ! 2.2 deg. c (14.45 ! 0.12 millivolts). The calibra­tion was accomplished by melting a small amount of a pure chemical on the surface of the hot chuck. Chemicals were chosen which had melting points over the temperature region of this study: Ice m.p. 0 deg. c, Water b.p. 100 deg. C, In­dium m.p. 156.4 deg. c, Silver Nitrate m.p. 212 deg. c, and Bismuth m.p. 271.3

recorded in Table

deg. c~ These calibration data are

AP II-2 and plotted on Fig. AP II-3. In order to calibrate the other thermocouples to the hot chuck, it was only necessary to attach the experimental ther-

A• 7

' ,

'

mocouples to the chuck and chart the calibrated chuck ther~ mocouple against the new unit. Both the reactor and exhaust gas thermocouples read identically during calibration. This data is plotted in Fiq. AP II-5.

In calibrating the IR pyrometer to the hot chuck ther­mocouple. the method consisted of attaching an unoxidized silicon wafer to the hot chuck surface, focusing the pyrometer on the wafer, and reading the thermocouple versus the pyrometer at an "assumed" silicon emissivity of 0.45. comparing the thermocouple data and pyrometer readings, a better ctoice of effective emissivity was made. During these

~ initial setup operations, the pyrometer developed a defec-tive chopper, and subsequently was repaired. Therefore. it was necessary to repeat the emissivity calibration described above. The effective emissivity was now found to be a.so (See Fig. AP II-4). This value is closer to the literature value of the emissivity {i.e. e= 0.65, F.G. Allen BTL-AL, Memorandum. 1957) than was the earlier optimum. e=0.31, and was therefore considered more accurate.

~8

U+~ 20 X - TO Tf!E INCH r\. &:; 7 X ··HES

I L:L 0, r:S~ER en.

46 1240

• • -t· ! ! jJ ~; +•·• .; •. ;1,1 j r; l j f·tJr-t tH1 f!H r n i' fft

L I ! j t t ! ! : t •i l Jlj i fiij ? .,! ll I I! ,,.,

l ,!i i: l i ;tt-t tH !"' Ii j H f· il

--H HH H! Hr It t l n . J ll !I !1 !Jll !Ir l f ., HH ;+

t ·• . -

i ; i

.,

i tr ltl! l ' - -

i ;

I l l -1

! ,fl '!"' t·i• t Ii :t i • lf , .. !-

n

11l1 1::1 . -t I H ll IP ! ' r

t J H l l!- . -I 1

' !i I l r i t l ! 111 j f p • - . ! -

.! i I-

f I

! _,

t f ! !+

i I '

i --

' ~ • -i l t t

r ·-· ~ t .. •

+ -- t --

l ,. f j ••

f I It -

d f -~ ti t ·•

t -

~ liJU 1, •• 'I,

ri f f il f •,t• ip: r f± I ffld ;, t 11 il t -+ •·

~ ~ . •- I -+ - -

1 I t I • i 'T •II• l f 1 ~1 fi ' H ~I wr n t-!tl /! I tttl

t -

I l j • !lll • t • ~

1. .. --· I I ' I l Ill! l!l !j!' ! l tl l ! 1 ! ! r i rm ft - i I . It "r ,- j '!~ ••i· .!.; *r+-j !l '!l! 1•q lilt T ti i t,j, rm t!. t ft iiffl I l. ! l .. ti I I l l. J.t, . ,I. !l ~j -+ -- 1 t :11 It j/ l+lj ll li ll i ... ' - t ! i ;:J UHU 1flU n I I

- f:itn t

-

t + t r+ r! tft --

11 llll!li! !!-Ii ljil I! t M '! HH Hit ·!fl t+H f i ., ! :t {j ;. •H d •••

• •• -4, t --

:j n ll! ! I I' ! lj! I p : !;l ·r ! t

I •r, qi, •.pt p:w-H l !! !.1 ! ;,! ~Ill l, ' l Ii: il.l•: Ln .. .,, . I . . 'l '+ . -

! i ~l!l 1tJ1 !:!t ! t I! ::Ji·! Hi! hd 'it I If ii l 1111 if. ~i 1::1 : :n 1 +

---- .!it ;;;i : ! ; : t tit 1::: ,.,. iH· • I . . .. . ' r

~ ~ ~ . l ti! !' 'l : j ;r ''! ! :ii i!l! !! i ! j• I JI! I!' l •t " ... , l l tl IH 1:!l id !.i! j I tit 'I ij ;11 !! ,. ,.,. 1•·· ii ! :! .... . ..... -

~~ ... . ; . .;. :_._!.!._ .d. • ~ t • . .;,. •t•• 't • -

lirl1 I l jl ! j i j I i1 i: !! if·: • I • • ••• I~ • ~ t ... ; ;::r . .... .... ., qp ::1:ru+ 1 i: i! ,,. I"" j'" ,.,. Hli ii 1 i ~-f . ; ! ! ~ !t . '; : \'. ·t·•. t.,.

ff!; . .... ., . :tH :t ,I+ It• f ~ T T + t -. ?" • ••t-• ... ,, .. t. •

J

• • TA13U .AP _ll_-2_ __ ------·· ___ _

TEHP~PATUPE C.ALJRPATION DATA

NT IS THE NUHKfR Of OATA POINTS TAKEN

NTO= 5 ""Tl= 8 -·------

·~·'9' •• ... . ~ i

-:>\r:' 1·

.. L

... :

- "., , ..

.) ~. -

.. ~ .... ' ;_..._, - .

CHf:'1- Mf:(TlNG H·nr .. CHUCK HnT- CHUCK ____________ ----- -----·---------·-------------- - ----------- ----POINT (DEG Cl TEMPERATURF. TEMPERATURF. IR PYRllMETF.R -----'---~----'----'-;c...;._.;:. ___ ..;;._____ ·---- ---------------------------------------------o.o o.o 136.1000 nm;ooooc------e=1.1tooo --rs~.?.eoo ---135.0000 156.5000--156.4000 151.6600 11q.4400 182.0000 -·- 212~0000 20~6600~---~20!>.°fi300 _____ 208~5000 :t> 271. 3000 266.3899 23?.5000 235.0000 I

8.6001 26~tffi,.--------,----------------------------------O> 284.1699 286.0000 o· 303.·sijqq-----~i)S~llOOO ________________ _

--------------------·-·- --- -·

SLOPE TMO=· 1.0050 t NT nu:·A>.--rno =

1Nl"£1>trPT-rn1 =

1.0165 FIT OF LINF•

TOH= TOA= 7.(489

---· ------·---··---------------· -- .. -··

- -- - -- . ·-·---- ---· -.. -·

•· -- -----------------------------

l

,.

Lio~ 20 ,~o THE INCH• 1 x 1U lr~CHLS I""'\ I;;. KEL ~- ESSER CO """lll 1, u ~ A 46 1240 •

'1H+q 1,.1·'1'1' i1'1 :II '11;1, i'I' ili! ii\ i1i1'1· '[~i~ I :i ·.i,1.:,:, :ii i1ii !': . : ,;: I .. I . i ------ I ' I../. .. J I l , 1 1.j I : I i I I LU.: ; :. l l ". ll . I' ~-' j > .. i,: _:, ..... ), : •.. :.: ·.• . . ·... · j · · .. · · V';

r '1· TI,i, 111'',.,..,crnl• 1 ; I TT111: : ! 1 11 :11 'ij: :~-:; ., ·::, ., '1-~i-:.::: ··:.: .... ·:· ··:: :::· ~::i-:.;r·~· 1

I bii JI I) 1i 1 1 1

i iLJJ i i il!i (i iiii Ji )t · ~Go~: AP ' " -- - • • · ~"'•• .. -~ 1jll~t '1n··~i~tt-t-t-Hi! .,..if il ! I! iii ! l Ill! nn f;T ill: 1rrn ctt,#~·-H+ .... ;k? ~T::• ~~ I ... , I' I I I : 11 t I I l i I I 1 ! : ! : J I I I 11 ; I : I I : 11 : I • • ' ; . : . . ,.,, r' .

-.. ~ .;

.... H1rt:ti't-H-rt-f'I · :H.'tTIH-t-tt , I ! f ! I . I 1 f J I i i ! I I.J .'.J i ! : I '.i • I 1J. ~JU ~jl ~ : i,.:_ -· - --·- - -··- -· . · ·• · · ·· · · · · · · · · 7· · "·· • • • · ·. · • ·--- · ·--· ll i ! I ..,,· , 11 ! ii! , , • t. i , i,, '.m. I .. ,-n :-rl ! "I! . j" .. , , .1-: I . .. . . . . . • I ·1· ! 1' ! I 1,11 :1 i! ji :, ·l :1;1 ::Ii Ii . I • '/ i; .. : ' ·1:1, i.: ... i :·

.. f i I \ : ; ; ( r ' 'I I:! i ' , ! I 'I '• 1 • • I ! '! • • ' ' • • · · • 1". .. - --:~ ··- --- --i'---i!----i--il----l'----ll---l'---il---l•---11----1!---t It ~ I !TT! !HI· r.l++•-'!-+t-+iH-1 t+.Y.1

1

++

1

! +I+ +i! I! I I i ! I. ! ! ~l; Hi) i ; ( :_; 4 .w ! ! :;J) : ! i 1 : /:! . T • • : ~ ~ : --·- e--· ~ l: ~ ii 1

: 11 : ,: : i1: . :, 1 : ! :: :: ! : : :: : i :1r;::: :rn :: ! : jJ: ~ Tir- , : ~ ;;T __ : f-:_:_:_: !--·-·_-_: !---·_·_· 1-·-·_:_:1---1-·-·_·_' ~--'t---t--t---t--t----........ - ... : .. :-:o-t: . fn Ii' l ! i l 11 i!' I ii I il I! i [I! I! I n!i 11tt~ iTI i ! ! i nn :i ! ti !i i !! i 'i: rn 1/ - . . . . '7C7e C: .L C'7~cc, ;; ii 1 u '1 I :,! ,I l · '1 ! : I 1' I 11 ! 'I ! I ! '1 l, ·1· ! I, '1 iii,', 1, li.i'tt I l j 1, '; i I I' l 11, 1_:. 't \: ! . ; : I'../ : . '.: ; : . - ,-- ------+-_..,t---+--+---+-·t----+--. . - .... , -: .-. :---t!

• .u i i I I I 1 ! 1 I ·, ]: , ,,,. iJI ,11 :!ii I :;:; i::·I,'.':; :··: .. :::1 I~ l1·1i 1!, ! i· i \1 I !,i, 11 i ,11 i11i1f :1,·, nn~r1 rl1i, :1·'1! i,1·1·1 ;il·!1u,,;11 :m~0 ··--···· .... .... --- --- -- ·-·- .- .... -·. r:-.-. . .•.

;J:> _I,, r, ii I · I ,, I• I 111• .,, .. 1:• · ii , ~ !,.: .. , .,., ~ ,

111 ri' JJ 1 , 11

1 1. ll! ! 1

11!! :i11 !Ii: ::11 iu ::111J,1t~:1 :!:i .!:! .... .... .... --~~----·-· ····---- -·-r:·- ··• 1J 0 1,1, 1· I·' '1 !I I (1 1, ! t,.

11!'1 ! f I~ Ti\1 l!!,, '.l1'' !!\: 1.l;"i,',ii :1,'J :;;: ·.---·· ... . ...• :1 , , 1 : 1, . , 1 • 1 , : ! : :J 1 ; 11, . 1 1 •. 1 ii . .rr , Ii t : l,: ! , •• • · ·

1 · · · j

Rllilitt-t-rn-t-~liti1~1,~11-tt+j1rrl1~ttl1tt++11~,i.+rrilrrltt.tt1+t+';~1,1~r~11H++-'+i-"!i+t+ilf+t+1ttl.li~:~:i~ll~i~:~1~:1~:~:!,.~!~d~lj~:~::~11~:-::~:~:-::~:~+--+-~·~..------.----+--·-+~r_-_~.-+--+-~l----+--t-~t-~--+-1 1-±::l:B-t+++I-H'--+l++'H-t+ll t I : ! j . 4

! j I ! ! I 1

' I , V,: \ • ! : / I ; I I ' I ' ' ' ' ' •.• • • • • • • • • • • --· - --- • • ·--- ···- • • • j •

"" !'1 i/ /1 11

/ i ', JI ;! 1/! jl 11!! I '_,111.,.1· :\ 1

11' !!'j!l'~/ ,:j!/ ''1!:,·TflT,. ~,111°!'::~:::: ---- -··· :::!

~ '1 Ii r:11 i ! I 11., II I I :,11 11 ·' ., .. ..ll!''Til I'! ,!, !11, .::.

: 11 · f i'i, 1 1, , , , 1 i 1 1 ! : 1 111 i u 1 ; 1 ii : , 1 }. r~ 11 rm i. i 1,, ! 1:: T 1 ti 11 :: , : , ~ j 1 •1: '1· 1 , ; ; ,;,m ;r~ ~:-t1

1 ftT:+ ~ H- H+t ~ ' I 11· : j l I 11 I II I l 1· 11· l i ! i i ! ! !, I ' I, I : I'..!' ' ; ,' \ : i ! : 1· I ' ; : : ; I : i I : . : : : ; M-trrnttr'.,',

1m

1-rrw.-t-i-

1trt11

ttt11 r;-

1rn,..,.'-rr

1 H' r'-1-

1,1

:-r-;-,--rt-:-'t-:-i' n.,'.lf'H-,,,ct+'.,...' h1-i---'.,-' ;--1 ;.....-· ..-:1--r'-:--1 ·-·;.....· t-' ·~·;.....-:--'

1:-"'-t-' .,....· ·m--"--t--t--t·- -- - ·- ------..--·- ---t--t-·-t--t---t--t--t---t- -t--+-·-·-·-·+-·-·-·-1· I I ,, , ii' '1 I I \\!;Ji.·! iii! J!I! J_µj·1

1 ,.,,:, ;,!! 111· ;:: ,''·. 1,: •• 1, ··1·.·.,, !'',!

.... :::: '/ 1 11 iill I ;! ! I I ·1 'if·. I·!,• ,. I" ·11 i' :i; I

1 ! ; , , +ttt I! : ! 111 I I : 1 ~~· µ

1• ,-. '., __ :_ ..;:J_ ;i;_! "-'· ····-·· .... ·· · · · · · • · · · · ..•• .•.. :~-: ~:°77 :-:-:-:

: I I 11 ! i ! l 111 :,· ! I: l, i,, '1 ', ! '111· :, ', 11; i.x, '. J '1 ', . l, ! : : i; : \ i i '.',I : ; ; t j "1 'I. i :, · .. :, 1_. : l"'i• I, I 11,' ! i I: I l,,,'T'I: ! : ; ! ! 11 [ I • ' : ; ; I : Ii: i I j !

I ---· --

1 i , n1

1 , ! i 1

1 : 1 : ~f .. i j : 1 i ; i 1 1 1 : : i i r : i i : i · · , , i j 1 : 1 " , 1 " , -,: 1 j I ' + i 1! i tli~ Ii:::: ,,1;: c.µ.~11'H-,H1'.J ~µ+'.l(j :~~~ih ,, J 1· ' I ; I i I i' j / I H1'1 ! i ! i ! . ' j I i : i " i i ; ; I : ! : ; ' . ' ' : : : : l : '-HH+t-l+tl+t-'H-tffiH++l !t-J, i'ttffi'tt++J,J11'tt1.l,,,rH1-'-,f+i! H'+'+' t+-i-'-i.,..' Hi Hi+1+-' 1 Hi ~'-'-'-li+'-1.......,.... !· 'i+-'+'~ t•+•-'-i H; +-:+-1 ;-,: :+·-· ~· '+·-;-'· •+·~• ,.....· '+--+--"--+---+--.--·~------1 I !I : ! U, ':' 1 ! 1· !. I j ! i 1' ! \ : i: i I! i I ; I: I \ \ 1 i : : I i l '.: : i : : I; : ; : : I I l.iilrl i ! ! I ! i i i : : I I . I I : ; i : i : L ! I ! : L ! I LLt . ' ' I •. ' • ! I ' , i ,L~ ·1 !. ! .•. !.1,1, :,111 i,111,1' i,111,1, !, ,1,·· ,m 'i:r: :iT; :rrr 1'1:i :-~ tf-: :;:; ---- ... Pl "' I ., I :11: ::Ii\\\; :;II!,: ::11 i':! ·I"

i l l I l ! f i ! l JJ~.1 l ll i l 11 l ! ! l i JJ r i I ! ! i : 1 : : : U1

. :W.l i : 1 i :ii i . .. ,I, '.' \ I ': i I j\ TflT ii' t'Ji ! I ! : ! ; ! ·, ! i ::a ,rlTst r.:. :, ~- 11. • ·, !, r.1_ -~! T, ;--!, :T., i, .. : .. ; :I!!. /1: l_ll,. ', ' --~ a121 .. 2 ~B. ··-- ---· --~ t19 ··-· -··· ~:~ ~ t-:~ ht i / 1 ii I i I i l l ·1 1 i j I ; : i ; ; / i ! . , '. ; I J i I / ! . 1 r ', I ; i i _.:.i ! : i ; i r--all

,,

:x> ' CD p.

II • ~

I

II

Ill

,

• L.l•"C: 20 X TQ THE INCH 46 1240 r'\ ~ 7 X 1-iES ••ol '"" u •, A K- ·'EL lla CSSER CO.

-

-

--

--

-

"

~

-

l I -

--

~

r . j r

• . i Pii l •• ·•ti '"l ll f - ,.-

t l ii l Pt i- l

'j

ft l t I + ! +

llll II I I

im

~

t j

~~~ t ~. ~u t 1 .. h li ·rn +-; l: r?"~

!! t i Hl i j ii l,q r

it 1- l l mu H f t I Hlr H ' rr I P I P ff I '' l ! ! I. : i, •.. t

ii ! t! l!ll i!H ! t fl l -t

l H !tU i It' j

f ! i1 I I

i ! l !l - • j !· ;1 T ' 1J il· .. .r

Ji jH' " JF~· ·i:n r 1 1 -, .j d ii l l • t. n- t. ! i1 -l~il ~ rTI rt1J &I: 1Hf I m i.n n 1 :f !ii; •11' 1 1

•• f•jt !I'' ! ! t+ !: H HH iii i ~ t_; i 1 ! ! l ! . ! t f ! ! ! tl ; ' • ? ~ f ' • • • + .... t • ~ ' ' t t ?

• .. •

fa

• • •

~ t i r ; i • t t ! [j

.rl rw JtH .w.] ••• t ~- + • l i,IR .:Q fH± t! •• i l j !1:: :w .,! ,ti; t .f HJ HH .. ·-. .... Hi!liiI t .... ....

' ... n:! : : : ! • ~ + 4 : I:: : ~ t: ! ! :_: ::t.! HH if: ;z:: :lp : ! ! ! t ! t t : I!!

:r> I

CD

;

Ill

II

·~

'

U,o.~ 20 )(9:TQ THE INCH 46 1240 '"' ~ 7 X ES IIU0£ ... ti :, .1,

K.. ,-'EL a CSSER CO.

~' •

j

~

l

w

• ! ti+_; i '!1' ; i. ! i j 1 li ti l i 1 ,_ ' ! ! j ~~ • j

r 1 i, 1 n ll r 1

F l

I ! l

t f

1 !

l ' - I ,;

l I -~

T 1 In f !! I Lfi i • tl 11 : p l

~- I ;l + l i: j

1 1 t n 1111 Hu -! fti!lltHl lif

i ! 111 l 11111 !!11! l !:! H I t t t + • . l • • ' '~ • _..

!,., ·t·· i1+1· ·t. ·,n ill !!ii .r! (J l !1 t.l .. ! ll l l l! ii !i i 1l ! 11 ! n i WH I !l ll! r~JWii r

Ll i j .; +

1 1 ~} I 1: i q: 1 1 ~ , :r . , 1 t l 111 .,tJ t!+l ., : t.l trti itlt i •

,-~ ........... ._! "' lff Ult! !lil:JIJ Ll i (lt1 II J J. ! ~

• -- i 1 ff t '111 i l 1 . ;

t

:; -j

~ l l t . ff

-

-l t t ;l. t t : j •

1

l f 4 HH i!ff

! '

,

• LI.a,~ 20 ')( TQ THE INCH ('"1\ I;;;. 7 X .iES

K... r"EL a ESSi:::H CO.

t-t·

rmnn+m-

46 1240

j

! ~ l

.

r

·1 ·1 _, t. t 'j' • .. '· .. ' .. ! t •f. • •••• ••I t . i; j , t i 1 i l I l \

u 111· 1, lj*i l\l . I~ ~~ ,I t I ! l I 1 j d ·'1 II- '_j f-1 ~ 11 t f-l , - r ;

t . l : .. j·

l r~ M r1

I I I•

l:. l i

I ii ll ' •· j

.... ... ....... !ll! !)!

! ! l

1n ••!

I ll I 11·. ·i 1,,-1

~ I rt Ill!

• • •

I ·! • t l

t ~j t I l l i ' ..t,

t I

1 i

i H' r,,1 l :~ HH 1 f f :t U

..

J :t· ·+ . l !± f fl+ I H tnl fl 1 1 ., l . nn t J H 1 ntnrn l m l I n t rm li il I +- - t l . ! fl r H HH HH ft ! t ~ t+H·t++ll+H . 1 . i- .i:, r,. : !; 1 H 1 llH 1m d 11 i 111 t!H 1 n Hii nu Hlt mt •Ii

tll [l

! It ii! !jjtj! li!tfpH '! .. rl.lil HH±+1·±:t.l+fPHH;:i1t 1 . 1 I ,1 · , · 1 . i 11!, ,r;; : u t •. 1 ti., r.,1 •.+• rti1 ti •! ~l j 1 1 li I t : 1q tit: !,1! 1:t f{ 1 .1 ttf' Hti flH :W Hil .111. t • ,. 1 ! 11 l.11 1111 u!r :n u L t: m tt t qtt ,.tt •... ,:tt ttif t lj II !Hi 11'11 /ll.i i;i'1·-11ll; ll. 11: i.·:+ Ht1'· .li, H'1·l 11 f! ;fz•i !ii: ii:: 11·IH f~ ; f , t + f ff ~ 1 ! • I f'', • i ~ + ~, l • :-! 1.1--i J, t ! • •-t • ---. .. f • • •" •'" '-•• ·t. ·'f l !' l t·1' t !l1'l 11·1··1 ,i/j :'1!: t·1i'1 trtz m ! u'. :!it't t+·i: ii nt· ..•. !tl+ itq. f'.i+ i ' l ; j il ; ; . ' : ! : : ; ':: j. i I ! t:i Hi u ji t I ! t p : !t ! .... : : ! : q4J .tt

1 I 1 1 rt !' l illi !Pl qq i!!i !ii! HU ·;n · p r '* i nn nn Hi: im ~m Hi r1 · · l f l ! ll l!ll !ill l!il l!il \lii »n -hi I l1 HH r11 11!; ini gg UH t I in · 1 ., I, i l 11 ri i I" . , . r ~11'"' J j • I , n· i . . • . . ... LJ !l.l..1 i iuf:l ! Ji 11]; !Uj 1qt i 1 .I JI JI! l.t: :!i.i :::: ::!: :i!:!HH lffiEfffl:ftfflffi)ffli:fffflffli=l:ffl:l:~~ffffi~tfltt~,tttffttffimti:fjtt~r:ffittttH~H:tr!+tttfttttttt l~f l~~·r11r-M1 f:.t tf1,f-H, fr, '~+ • ~f ±~ , "11. • ' " t r j ++ 1· ,. ~ , • • • • • · : N .. .. .. • · •.U t . ~ ~ 1

• 1· ~r- !'P r · ,1 1 11·1 ;::: .tll ,l"!"!1 , 1·1 1• 1,:, 1, H 1i 1• :!:: :;,-ir .... r!.: , f f , . • • • • t • • • • • • I • . ! t • • • •, • • • f • • • • • • • • t •-' 6

..

' !Jr " 1-i ~ "1 t1 ,./ i(j'lt"i"''•r-t :;r: " : :::: :iii l)l :;;: l:l , ... :ii: ::: ···' :::1 :!H rr 1 !I rt r i . 12J1 :re i; 1 : • • :_:;; ; : : : • • .. • •• ~ • • • • • • • .. • • • • • • • • • • , ••• I-t ! ! I 11 I ! •,: ! : : f :. j •, t ~ ~ •1, ! : t:.: · ' : t·! ", t~ •,. -t •, • • • • • : : : : ; ! ; : : ; : : : : • t • • • • • • • t • • n,i 1 1 1 ,1. 1.,1 '".' q,. ,,,, ., . iii,,ti·, :.·,.::.: .• ··.· •• • ··,·· ... 1 u1" ~{f-'f ti-.! I ••t t''' ~'!' :_i••• •t • ••,, •t-1' ••• •••• •••• •,• i! t ••• ,. .. :~

.-... '"

. ..,

~:~?""~.,!_ . . , • . ~t-4;_: """ ;-=- ··-,; ,,_ ..

..... ·- .: .,_''

_ ___; •, ,.,.

~ <.

£' ;-:~

~ ~

-- -- ·-------- . ·-----,.-• • • -

FIGURE AP III-1

Beam R~f'e_rence

1_\and Comb rr . --- ·. -~-- ... - .... ··- ··--------------....

· .... , - .. - --.. ~-f I

·······-------l f

Mirror and . j · ~ample Beam _

Solenoid

Rf Electrodes (4)

i Remote Nernst

J ---j·- ~-/': ,. G 1 owe r

· .... ~. ·~ ...

-, . --- ,-. -l /_// , iJ. x-~1t,Lo _ I u: I ., • ,' l ,,..

i i 1•'1: __ .,.,,.../· ! I I '. • -

j ! ., ,· .,/ ! i 1/ ,; I I i I i- .

t___ - _J :: . ; :-,

Quartz _Reactor Chamber

..-- Long Path Infrared Gas Cell

! I . i

Welch Oil Diffusion .• e- • Pump ( 1 7 CFIV.)

IFC Pl\'-508

Controller ·,"

~ ·./ -..... ~. ----1c_· .. ===( Exhaust •

L·._,.. \ ___ .. _- ___i

Tylan Flow Controll•rs

L ____ _

'· '~

To lt7ain Pump

r - .... --....-J

Carbon Dioxide

-

I l

l

I I -

I I 1· I I I l I

-I I

I ! i i l i I

• Dlgital vo·ltmeter

Chassis Ground

-=--

• • • FIGURE AP III-~

J I Electrically· Shielded

I Shielded Coax -,' Metal Box / Cable ~

........ .;.·.,.1',-, ~,.:·:;>

,1.-~~;.-~.,..-·~I'. •' I ".-•J_

.... --

(!l~ "" ·-_~-1-11.·i ~-

I~-~-.·-.,,· -· :, -. .--- ·4, - .

. t·. f -l t .

,.ff I;' -··--··· " ' ·ii' ¥ ~ .

. ~

--~-.J

:-~-:;· . -... r~r~·· -

,"}--.. '::

t ~ .. ~~~---~;~_:, , ... :-.- :

. "''" ' .

:,'.'.j,~;;

~ .... 111~..,

'!':."' :,

! / t-· - -, ·i I -o---- ·- ~ --- _ _! ________ '..: _____ r-----.-·VV\--------.~-~-: LL.7K ; lmH 4. 7K I

l)tl' 1~ I I

I

I Chas~is Ground m·-_O .. ----· .- -- ---

J_ I ·1 ~· f

- -- --·· I I

/I./

o---

-- .• ...I

1/t:f

4.7K ·N\/v

I i . lmH 4. 7K I ~ . _ __;__.· }o·o~---e-_J r ' l

_.1 ! l ! I

Thermocouple Bead /

• - • _...,.-:-=,;,.;:- ·-~ ., __ .,, .•. ·=--~ .... -

• Although the primary (absolutP.) standard for flow

calibration is measured liquid displacement for an interval ~ of time, this technique was not used. It was decided that a

calibrated Brooks ball and tube flowmeter would be accurate enough for this work. The Brooks R-2-15-D tube with a qlass ball was used by connecting it in series with the mass flow controller being calibrated. Since the controller is driven by a 0-5 volt DC signal, an external power supply was used to drive the controller while a digital voltmeter read both this external signal supplied to the eontroller and the con­troller response in volts. Ideally, both the control voltage and the signal put out by the controller (in response to the control voltage) will be identical. However, for the high flow region of the carbon dioxide controller, significant deviation from ineality was measured, Table AP IV-2. Also monitored to complete the calibration was the height of the ball in the graduated tube and the flow displayed by the controller, Table AP IV-2 and 3. Nitrogen gas was used for the calibration because its controller correction factor is the same as oxygen, 1.00 •. Conversion of the ball height measurement to actual flow was done with the Brooks calibra­tion curve for the R-2-15-D tube.

,A-9

-...

.-- .. ~..._~..,..._....,..-.....,..~~· .. !""t"-¢04_1_#_< -0 S-.-·-A,__.,..,...,, -•-• .... ,,._ ....... ,..~...,._.,,._..,...,......._C_.::.0:_4,,_,.."\. .. •._~ ............ ______., ___ ,,..., ·-··

• - ~

I

DESCRIPTION Acetylene Air Ammonia Argon Arsine Carbon Dioxide Carbon Monoxide Chlorine Oiborane Oichlorosilane Ethane Ethylene Germane Helium* Hydrogen• Hydrogen Bromide Hydrogen Chloride Hydrogen Selenide Krypton Methane Nitric Oxide Nitrogen Nitrous Oxide Oxygen Phosphine Propane Propylene Silane Silicon Tetrachloride Sulfur Dioxide Sulfur Hexafluoride Tungsten Hexafluoride Xenon

TABLEQP IV-1 CONVERSION FACTORS

Specific Hut, Cp SYMBOL Cal/gm-0c C2H2 .383 -- .248 NH3 .5232 A .1253 AsH3 .118 CO2 .1989 co .2478 CL2 .115 B2H6 .5012 H2SiCL2 .080 C2H6 .4097 C2H4 .3592 GeH4 .1335 He 1.248 H2 3.389 HBr .0820 HCL .1939 H2Se .100 Kr .0600 CH4 .5271 NO .2328 N2 .2477 N20 .2004 02 .2177 PH3 .261 C3H8 .3882 C3H6 .3541 SiH4 .3186 SiCL4 .169 S02 .1516 SF6 .1590 WF6 .0954 Xe .0400

Density Conversion g/100°C Factor 1.1709 .61 1.2929 1.00 .7710 .68

1.7837 1.36 3.484 .66 1.9769 .74 1.2504 1.00 3.214 .79 1.2352 .44 4.14 .72 1.3566 .49 1.2604 .60 3.43 .60 .1785 1.43 .0899 1.02

3.6445 1.04 1.6392 .98 3.612 .81 3.700 1.49 .7168 .72

1.3407 .99 1.2506 1.00 1.997 .73 1.4290 1.00 1.5178 .69 2.0199 .35 1.46 .53 1.44 .59 7.569 .21 2.927 .66 6.139 .28

13.296 .22 5.897 1.36

Each flow controller is calibrated at the factory for a particular gas and flow range as etched on the outside surface. For conversioa to another gas, multiply the output reading by the ratio of the conversion factor (above) for the desired gas to the conversion factor for the calibrated gas. For example: Controller calibrated for oxygen When flow is argon, output reads 50 SCCM Corrected flo.w = 50 x ~ :: = 68 SCCM of argon

*Conversion of controller to or from hydrogen or helium may seriously alter dynamic response or stability.

NOTE: Standard Pressure is defined as 760 mmHg (14.7 psig). Standard Temperature is defined as . . o0c as of 4/1/73. (Previous to this date was 59°F).

A-9a -·-

Published by Tylan Corporation

__ ....,;_:;:::;;_ .-::-._ --:-:-----------

'\ABLE~ 12-1

• • ~libration Q!~! !QI ~b~ ~!!!22!! Dioxide~!~~~ ~ontro!l~I

controller Control Display Ball 02 Flow correspondinq Display Voltage Voltage Height to Ball Height (70 F) (cc/min.) (volts DC) (volts DC) (cm.) (cc/min.) --·-----~- ---~-----~ ________ .. _____ '7 ___

--------~-----·--------e 140 s.o 4.05 10.5 220 ~~- 4.5 3.90 10.25 214

4.0 3.88 10.20 214 135 3.5 3.50 9.70 195 115 ... 3.0 3.00 8.80 166 96 2. 5 2.5 8.00 142 77 2.0 2.0 7.10 116 57 1. 5 1. 5 6.0 87 38 1.0 1. 0 4.75 58

0.75 0 .. 74 3.9 44.5 --~ 0.60 0.59 3.4 35 19.5 o.so 0.49 2.85 28 11.5 0.30 o. 29 -----

4 0.25 0.2ft 1. 5 14 3.5 0.10 0.09 o. 5 7

• • ,,

f i11_

A-10

IbBLE ~ IV-3 - -

• caii~{atiOQ Qata f~ the (}!ygen H!!~ r!~ ~ont~gl!e! Controller control Display Ball 02 Flow Corresponding Display Voltage Voltage Height to Ball Height(70 F) (cc/min.) (volts DC) (volts DC) (cm.) (cc/min.) ._ __________

----------- -··------ -------- ----~---~-------~----6 205 5.0 5.0 12. 5 290

--- 4.5 4.5 11. 5 255

4.0 4.0 1 o. 5 220

--- 3.5 3.5 9. 75 195

3.0 3.0 9 .. 0 170 103 2.5 2.5 8.0 140

2.0 2.0 7.0 112

1.5 1.5 6.0 87 ..,. __

1.0 1. 0 4. 75 58

--- 0.5 0.5 3. 0 28 --... o.o o.o o.o a

I

A-11

e

I

. -

t

0 0 •

Lt.) 0 -0 0 . 0 O')

0 0

Lt.) ,....

• Zo ....... 0 ::[:"

"g (_J

u I

3:o/ Oo I _j • LL tD

"'1"

_J

a: f-0 Oo f- •

0 en

0 0

i.O .....

0 0

01 .oo

FIGURE AP IV-4

1- * 3- C)

0 +,

* ,... \.)

+ * ,r-.....,

* ,.., v

*· 0

0

(;)

C)

+ +

1 , 50 2.00 2-50 3,00 IR CELL PRESS.-TORR

3-50

THIS PLCT SHCTWS THE TOTAL FLCW Cf ca2 PLUS 02 VERSUS IR CE~L P~ESSURE FDR THE T~Q TRR~SMITTRNCE CRLIBRRT!GN RUNS RNG R MEASUREMENT OF FLC~ VS. PRESSURE FCTR 02. SYMBOLl rs CRLISRRTION:. SYMBOLS rs CRLIBRRTION2. 8NG SYMBOLS rs THE FLCW vs. PRESS, CURVE USED IN THE CALCULATIONS, ' THE LINES ON THIS Pl~T WERE CRLCULRTEO F~OM THE RELATIONSHIP Y:R+s~x+c~x~~z WHERE R,B. qNc C RRE CGNSTRNTS.

SYMBOL! rs CRL!B~Ri!ONl DRTR. SYMB0L3 rs ORTA FROM CRLIBRRTrON2 A-11a

ORTE 04125177 16:32:4!

~

*

. 4 • C ·~

TABLE AP IV-5 Feed Rate 02 Pressure IR Feed Rate CO2 Pressure IR Feed Rate H20 Pressure IR

(cc/min.} Cell (torr) (cc/min.) Cell· (torr) (cc/min.} Cell {torr} o.o 0.69 0.0 0.58 o.o 0.58 5.0 1.23 3.70 1.01 6.75 0.90 .9. 5 1.47 7.03 1.22 15.00 1.35 15.0 1.77 11. 47 1. 42 22.5 1.72 19.0 1.95 15.54 1.57 29.6 2.0 :i> 25.5 2.16 20.0 1.82 38.25 2.39

I ~

28.o 2.25 25.9. 1.98 45.0 2.65

~ o'~

30.0 _ 2. 31 29.6 2.20 90.75 4.60 35.0 2.49 33.3 2.31 40.0 2.64 37.0 2.44 45.0 2.82 37.74 2.53 50.0 2.94 44-. 4 2.62 55.0 3.09 51.8 2.75 60.0 3.21 59.2 2.98 70.0 J.48 7'~-. O J. 23 80.0 3.78 88.8 3. 4-7 100.0 4. 26

'

-; u.~ 20 ·-o THE INCH• 7 X 10 INCHES n 6=, KEl 1& ESSER CO. MADI: IN U.S.A.

461240 •

I•

I•

, •

,

-D2

• ., TABLE AP IV-7

. ' -.... -:.--,

.r - ,• .~'- t

:"/· - _:

··•••'"° ' - r.

. _ ..... ,

j. ~ .......

• ;;...i ~

• .. 4',' __

-

·,· .! .

.!, ,.~ !! __ ,.

o.o- . o.6qooF.+oo ~-~--'-:;0.5000E+Ol o.iz°30E+oi·----------------------------------------------------------------------------------------------~----~ 0.9500E+Ol 0.14TOE+Ol ------· ·o~ 1500E+ri2-- o. I. 770E+Ol . - . - - --- --o.1qoo!:•02 o.l950E+o1 ~.2550E+02 0.2lbOE+Ol 0.28 OOE+02 O. 22 SOE +01 -------o.~oooe+n? 0.2310F•O~l----------~---------------------------------------------------------------------------------------

:,> I ~

0.3500E+02 0.2490F+Ol ------ 0~4000E+02 O.U40E+Ol ----·- -----·- ---------0.4500E+02 0.2820E+Ol --- · - o.·sooo1:+02___ o.294oe+o1 ---- --------,---------------·----o.ssooe+o2 o.3ogoE+o1 ------o;i;oooe+o2 o.321oe+o1 0.7000F.+02 0.34BOE+Ol - -- -----------------O.BOOOE+02 0.3780E+Ol ----- O.lOOOE+03___ 0.4260E+Ol ___ _

~ FOlt _TRANS. ,CAL.l8FL0k(V-AX1SJ VS. PRESS.CX-AXISJ_ p. ------

------------ -- -- - - .

------------------

---------------------------------- ----·- --··

---------- -· -- ---- .. -

sronFV•0.314~£•~o __ .. ____ , -· . -

.... --- . . -· f.'-\

-.,

APPENQIX ll-A

The temperature of a gas stream is measured before and

after a heat source using thermocouples. The difference in

~ these two temperatures is a function of the density, heat

capacity, flow rate, and controller configuration. For a

given controller and a particular gas, Tylan Corp. adjusts

electronically the difference signal, AT, so that the ratio,

~T/f(f, CP,Kc), is @.qual to the actual volume flow rate in

cc/min. at STP flowing through the controller. Once the

controller is calibrated at the factory, it should be immune

to variations in the environment where it is used since the

variations of gas density and heat capacity near room tem­

perature are small.

These Tylan flow controllers can be used with a dif­

ferent gas than the one for which they were calibrated with

equal accuracy by adjusting the displayed flows (flow

readings) using the conversion factor chart shown in Table

AP IV-1. The equation used to derive these factors is,

Factor= K * (0. 3098/ f * CPJ (IV-1)

where K= a constant dependent on gas type; K is 1.oq for

monatomic gases, 1.0 for diatomic, o.gq for

triatomic, and 0.88 for polyatomic.

A-12

:•• .. ~-•

-- -·.,-..c.•.

I

t

• /J= gas density, grams/liter, at STP (0 °c, 760 mmHg)

CP~ gas heat capacity, calories/gram- 0 c

A-13

• I

~alLbrition 2! ~ EllUn-~lme.J: f!.21 §e~g~!.2m~m !!!S tof£~~ed ~ ~~!!

Calibration of the CO2 detection apparatus shown in Fig. AP III-1, consisted of the following: the spectrometer was set at 2349 cm- 1 by filling th~ system with CO2 and locating the point of maximum absorbance near 2350 c~ 1, the remote Nernst glower variac was set at 90 out of 140, and the secondary or gas cell vacuum pump was turned on. With the gas cell (IR cell) at low pressure, 4•5 torr, the remote glower, IR cell, and concave mirror were adjusted to the maximum obtainable absorbance (minimum transmittance). During these adjustments, the IR cell pathlength was 10 cm. and the "comb" was not in the reference beam. Next the response time of the spectrometer at various gas cell path­lengths. For a cell path of 10 meters, the time for the transmittance to stabilize at a new level after a step e change in CO2 concentration (pure 02 to 44% CO2 in oxygen) was 10-12 minutes. This response was far too slow to ade­quately measure real time CO2 concentration. However, with a pathlength of 6.4 · meters, the stabilization time for the same step change was only 3-4 minutes. This time was probably close to the actual mixing time for full changeover of the gas composition. Although shorter pathlengths con­tinued to reduce the response time of the spectrometer, they

attenuated the sensitivity more than could be tolerated in

this experiment. Therefore, the IR gas cell was set at 6.ij

meters pathlength for all of the experiments.

In order to prevent any doubts about the relationship ,

between calibration and experimental absorbance measure-

ments, the absorbance maximization procedure described above

was carried out before calibrations on different days and a

recalibration was performed the day wten the primary experi­

ments were run. The maximization performed with the IR cell

set at 6.4 meters included using the "comb" in the reference

beam to attenuate the beam's intensity and hence improve the

strength of the measured signal. Usually, the comb was set

such that an 80-90 I transmittance baseline was obtained.

This transmittance baseline was checked both before and

after every experimental run for assurance that the baseline

had not drifted.

A cylinder of pure CO2 was used to perform the calibra­

tion. Delivery pressure was 5 psig and the gas was at room

temperature. This carbon dioxide was supplied to one Tylan

flow controller, while oxygen was fed into the other. Both

gases were mixed after the flow.controllers and fed together

through the whole apparatus (reaction chambers, transfer

line) to the IR cell. The· calibration procedure for the

primary experiments consisted of: turning on the flow con­

trollers to a set flow, allowing the system 5 minutes to

stabilize before each reading, and then reading flows,

A-15

total pressure. and transmittance simultaneously. While the oxygen flow remained fixed, the CO2 flow was varied over a range of flow from 2-60 cc/min •• once the range of CO2 flow had been covered, the oxygen flow was changed and the range of CO2 values repeated.

calculations to reduce the data were the following: 1. Use the flow calibration eqns. (20) and (21)

to obtain the actual flows of CO2 and 02. 2. Calculate the mole fraction of CO2, Yco2= CO2 Flow/

Total Flow.

3. Put the relative transmittance readings on an absolute basis by dividing them by the baseline transmittance.

4. Convert the transmittance values to absorbance, A= log1 O (Trans.)

5. Calculate the actual IR cell pressure using Appendix I-A.

6. Finally, Calculate the CO2 concentration using the ideal gas molar volume at room temperature (27 °c).

ceo2(gmmoles/liter)= Pgas cell/760.0*24.631 (V-1)

where Pgas cell is in torrs.

All the calibration data are charted on Table AP V-1 and ~ graphed on Fig. AP V-2. A least square straight line was

fitted to the absorbance vs. concentration data to yield the important relationship,

A-16

cco2(gmrnoles/liter)= 0.0008022 * Absorbance - 0.00002139 ,,.

(22)

I

I

. ,.-....__

--------------yi-i·e-,;tJM'fiF.1('111=-·oAr,cpnmtrTlKt:N=-a - - -­

tAr-"ttl'.SedNE' ·TRANsHt rtANce c ZERO co21 =

TABLE AP V-1a

TRANSMITTANCf CALIBRATION 04TA -· - . - -- - . - -------------------------------

--·--cnNCEl',tTMATIOIII .-S -m GRAMMOL'ES7LITF.·R------------- --- ·-·- ---

• •

... :

; ~· .. -.

..... !£' ..

_ .... ,:~ •---''':'

~, ,,.>

.,._, • L,,. .,. ,.. , --r -.

;;. :t!'.i1

........

PRF.SStJRE ·1s=--=-1...,H:--.:Tc:O""'R""'R..---------------------------------------------------------------

RAirH-l'tw· "trJ2"1UirH1nrn2~""AwlrEA"CTA ---- RFL AT I \If" - ~iiSOLIJTE. -- Al! SOLUTE - "AI\SOLUTF AO SOLUTE - AOSOl UTF . TOTAL FLOW . :X:,. cr./t4(NlJTE CC/MINUTE PRES.-TOPR TRANSMITT. 1: CO2 CONC. Cll2 TRMISMITT. A13SOR134NCE IR PPF.SS. Cf"/fUNtlTE I ___ _;;;__--~~~-~-- ---~--- -------- -------- -------- -------- ~-------~--=..;.~---==-~------------------------------------------------~ 0.2400E+O?. 0.27001:+02 0.6300E+Ol 0.6900£•00 0.4143E•OO 0.682f.f-0'9 0.7(·67Ct-OO O.ll54F+OO o.·Jo84F•Ol O.t.3t:2f+02

--..J---·0;·1000F +01 ·-0~2100F+ or-o;s-1001:+ ot ·-o. nooe.-oo ··o~ 1 71 l)F.: oo-0~·2s21e-01o - o. o'556F •OO o .,, 11sc..;.01-- o .276bF: •Ol o. 4495F•01 Pl

o.5900F+02 0.2700E+02 0.7250E+Ol 0.5825r+no O.b34qE+OO 0.1305f-03 O.b472F+OO O.lAff~E+OO 0.3R41E+Ol 0.1021F+O) ----o:TriOOE ··02 --o. 27001:+"c)z---o~6300e:•-()1-o.-12sohOO-- o·.- 3590E+OO -0;5993e:...n'i-- o. 805lE•OO . 0.9390E-Ol - 0. 3073E tOl o. 5Rl 2[ t 02 o.3800F+02 0.2700E+O?. 0.6700E+Ol 0.6450[+00 o.5ZR3E+OO 0.9486E-04 o.7167F.t00 O.l447E+OO O.J3blF+Ol u.7R99f+02 ---o=.4000F+oi o.2100E+o2 o.ssooF.+Oi---«I:aooor.oo o.1o;-;r.00--0;1,Tm'-0Z o. ol11}~E+o,Y-o~"51 r!i1:=-01~-;:-26"aoi:.u1-ir.7itT5r+1rl _______ _

O.l300E+02 0.2700E+02 0.6000[+01 0.7600F.+00 0.21,oE+OO 0.4307E-04 o.A444c+OO 0.7)43F-Ol 0.2910F+Ol o.5154[+02 ---·o.-2oooi::-+01--o.-2100F.+02--o:-s-350F.•Ol -o~R'375E•OO ··o.5566F..:.:01 ·- o.,76'if-"05 -0.9306f•OO O.'ll26E-Ol --o;26llE•Ol 0.3946E•02-

FCill tlUNs. CAL. lFLOW(Y-AX ts> ~Plfi:s·s.nf-AXIS") c,sn.o

---------------. -··---··---

---------------------------------------------- -· ·- ·-- ._ ·-- --

------- ------------· --- ---····-------------------------•

• " I' :, .~-:~ :t ·-:-, :;

~ : c:. - ;~~i !::i} i . . • 'I:.·!!!~;- .. !"'

<.; :. , /~.: ir' ~ ~--+~J,._:-~ .. ")~)

_j

• • • -------·---------- ---· . ··--·--TABLE AP V-lb -----· .. ·~--· ·-·- - ·-·-··- ·---·-·--- -----·-------·-- TPANSHJTTANCE CALIRRATION ttATA

• -------------------------------THE .NUMBfR OF DATA-PDJNTS _TAl<EN=l6 ------·--· ------ - --·- ---- ------ - -------- -

THE·~(SELINE TR4NSMITTANCE IZERO CO~J~ O.R300 -------------------------·-------------------------------------------r.o~cl:N'tiU't"ION l ~INGRAl4"0Ll:--s7CJ n~----------·--·----­

·PRE.SSIJRE fsJN TORR

-- -- -------· ---------- -··· ·- - ------- .... -------

-------------------- - ---- . - - --· --· ---,ri·w- FUiw~- co2·-Ra•.rnm,1-021fMr1ti:1\CfR ____ PF:LAl 1v1:---· Ah!il)li]Tf---:an snunr--··A,\C.OLUTF: Al\S0LUTE ___ A8511lUTF - TOTAL Ft.ow·- - -- ------ -:,> CC/MJ"IIJTE CC/MINUTE PRF.S .-TORR TRAN SHI rr. i CO2 CONC. C:02 TRAN'iMITT. AKSORRANCE IR PRESS. ccnUNUTF. I ---=~::=-::- -------- -------- ----~--- -------- -------- ____ -:..-::-==--~-..:.~~--- -------- -------~--------------~ o.2qooe+o2 0.2700E•02 0.6700F•Ol 0.5950E•OO 0.4608E•OO O.Al5lf-04 0.7l69E•OO O.l446f•OO O.JlllE+Ql O.bqllf+02 cr ---o.: 3eoo~ .-·02---0·;2100E+·o2 -,r;c,«;rci-ot +01 ··-o. 5-,>ooe+ oo--· o.; '>2il'lE 1-00-0.9011f~o'i·--o.6741 c +Oll o .110<1E •oo- -o. 348(,E • or · o. 1eq?£•n2·· -- --- ---- -- ·

o.5900F.+Ol 0.2700F•OZ 0~7500F+Ol o.5000F•OO 0.6349E+OO 0.1358F-03 0.6024£•00 o.220lF.tOO 0.4004E+Ol O.I021F.•Ol ----o; t.1oon02·-- o~noono2-o;;-1;3001:+01-o.-6400E+oo-·-0~211oe-+oo-o;'is t"9r=n'i--o. 1111F +oo n.1129r +oo· -o.1os4E• 01 o. st S4E• 02 ·---- ---------- --··

0.7000F.+01 0.2700E•02 0.6000F+Ol 0.6750F.•OO 0.1110~•00 0.2663E-04 O.Al33F•OO 0.8977E-Ol o.z~l~E+Ol 0.44~~F+01 ---~o.4000F+o1 o.2100F+oZ-~SCJooE•o1 0;1;<io()n:t>o o. 105:>t+l:lo o.16zrF=(),;--o~-.nnr. oo-1>:Ao2Jr-01---u-;?l\77Et-or-o;nnnn--------­

o.19ooe•o2 0.2700F:•02 O.l500F.t01 0.6250E•OO 0.3590F•OO 0.6092F-04 o.75JOE+OO 0.1232Et00 O.ll77E+OI 0.5812f•02 ---·0~·2;;00!:•or·--o;·;nooHo,--a;a;100E+o c- 0;1,l)5on 00--0~ ioP.3E-+-oo-0;13 oiu==-0t;-·0~12A·)t: • oo · o. 1, nE • oo- o. 110.>F •Ol --o.i, •6ZF ·"' ----- - --

o. 2400F +02 0.]500E•02 0.7200F.+01 O.hOOOF.•OO 0.3530~+00 0.6647F-04 o.7229~•00 0.1409E•OO 0.3525E+Ol 0.74t~r+oz -.-·-o; ·3900( • 02·-- o; ]500E+ 02--o;;-,·900E .·o 1 ·-o~ 5t.oon 00-·0. 41bOE + CiO -·o: 1002r-03 - O. t, 7', 1f- • 00 o. I 70•)E • oo- 0. 3q9 IE• 01 - o. ''il I )F • 02

0.8500F.+02 0.3500E•02 O.A~OOF+Ol 0.4600E•OO 0.65qOf+OO O.lh49F-03 n.5S42Ft00 o.2563Et00 0.46A4E+Ol O.l416E+Ol ----=o.1Roo'E+o20:-J5oi:>E +02 (). 1TooE•1H--o. t.Uot:iooo-;2,rni.mo---o:-s-151r-04 o;niH,r•M-,1;.-111,;r-.-oo-<'J;;-17ei;~r •u1-o;,,1io1r.u---------­

o.9000E•o1 0.3500E•02 0.7000E•Ol O.b700E+OO 0.1699E+OO 0.3100F-04 O.H077F•OO o.~lOOE-01 0.)4lhf+OI o.~AlUE•02 ----·0;10ME HH-·0;·1gsm=.-02-o-:s-2mw+1>1-·0;?2s·onoo--o; 1091 E+Oo -·o;n, 75F=o..-- o-. a1 JSF• oo - o. se 74E-01-o. 2 532E ••H -- o. Jo2nF • 02

0.7000E•Ol 0.1950[+07 0.5300[+01 0.6800E•OO 0.222?~•00 0.30~3F-04 o.a1qJF•OO 0.0~57E-Ol O.l~7lE•OI 0.3460F.•02 ---(j~ l'\OOt: i-02 ___ (j_ •. l 950f-+02-i)~5hil0Et-Ol -- O.l,450E+Oo-·· o:3466E+On ---o. soo4r=04. - o. 7771 f • 00 - J. l 095E• 00 -- o.2102r+Ol 0.4 l 19F. +02· --

SLOPE CONOH=0.8090f-03 Fir OF [IN~~i:>.9921E+OO

---· ------------------------------

'

-N •

0

(D -0

M u? I -o· _o

* ~C\J uJ­f- • ._.a _J

"­_J

Lo, Lo O• ,a u z 0 uco

0

NO 0 u

Cl")

0 . 0

0 0

FIGURE AF V-2

l - )IE

3- C)

* ·------------------------.----0 o .oo o.os 0.10 · Q.15 0.20

RBSORBRNCE-PER CENT 0 ."\C:

• l. iJ

THIS PLOT SHOWS THE RBSORSRNCE VS, CO2 CCNCENTRRTIQNlGRR~MOLES/LITERJ RELATIONSHIP DETERMINED BY THE TRA~SMITTANCE CALIBRATION. THE LINES CN THIS PLOT WERE CRLCULATED FROM THE RELATIONSHIP Y:R - SlllX WHERE A RND 8 RRE CONSTANTS

A-17c

DATE 04/28/77 lS:52,03

O,JC

• •

-

• -

U,o,11C:: 20 .A.To THE INCH r'\ c;, 7 X ~HES k,.._..;FFEL t!li CSSER CO.

--

-- -

--

46 1240 MAOl. U, U '> A.

fl

--

----

--

'

·I•

~

j

--

~~

.. .. ~

~

! r ! '

di d l

\

f !. ti l

!

I

t ~

I I

w + ; I +

! i

• • • •

.. I!

l j . li tJ •

Hl nrr 1 ! • I '.H Cjj !' j t?it

l j ' ,• I ii;! U 1 • ... ; • 1 'l" ··1 Uf :H I . t •. • ! t t l t

·j ! . I ! M mnm Ht j r:[t t1 j JI !: ·i '.

, C C C C C

• ... C ... ...

• ~•

MSDG 1 THIS PROGRAM CALCULATES CALIBRATION LINES FOR PRESSURE,WAFER TEMPMSDG 2 MSDG 3 ,co2-02 FLOW, AND TRANSMITTANCE FOR A SYSTEM CONSISTING OF AN IPCMSDG 4 MSDG S PLASMA REACTOR MODEL 2000 WITH OUTPUT GAS HOOKED TO AN INFRARED MSDG 6 MSDG 7 0-10 METER PATHLENGTH CELL. VACUUM IS DRAWN ON THE PLASMA REACT.MSDG 8 MSDG 9 THROUGH THZ IR CELL BY A 17 CFM WELCH ROUGHING PUMP. FOLLOWING MSDG 10 MSDG 11 THE CALIBRATION SECTION OF THE PROGRAM, THE INSTRUMENT READINGS MSDG 12

OF THE EXPERIMENTS ARE CONVERTED TO ABSOLUTE, THEN ALL OF THE DATA IS CROSS-CORRELATED FOR EMPIRICAL GRAPHS, RELATIONS, AND RATE OF REMOVAL CALCULATIONS.

MSDG 13 MSDG 14 MSDG 15 MSDG 16 MSDG 17 MSDG 18 MSDG 19 COMMON POM,POB,POCIRM,POCIRB,TOM,TOB,CONOM,CONOB MSDG 20 COMMON FLOWA,FLOWB,FLOWC MSDG 21 DIMENSION POMCL(SO) ,POMECH(SO) ,P1MECH(SO) ,P1TCIR(50),P2TCIR(SO) MSDG 22 DIMENSION P2TCRT(SO),PCORIR(SO) ,PCORRT(SO) ,TOCHEM(20),TOHCTC(20) MSDG 23 DIMENSION T1HCTC(50) ,T1PYR(50) MSDG 24 DIMENSION C02CON(SO) MSDG 25 DIMENSION BLUTE (10) ,F2 (10), CONM(2) ,CONB(2) MSDG 26 DIMENSION FCREM(2,30),FOREM(2,30),RLTREM(2,30) MSDG 27 DIMENSION PREM(2,30)

MSDG 28 DIMENSION CONF(2),C02PR(2,30), C02CN(2,30),ABSRB(2,30),NDATA(10) MSDG 29 DIMENSION AA(3) ,BB(3),CC(3), CDLTOT(10,40),FC02CB(2,30) MSDG 30 DIMENSION F02CB(2,30), PIRCB(2,30), PRCTCB(2,30),XPLOT(102) MSDG 31 DIMENSION YPLOT(102) ,NTRAN(S) ,C02PER(50),ABS0RB(50) ,ABSB(10,40) MSDG 32 DIMENSION TIME(l0,40), POWLEV(lO) ,WTLOSS(10) ,PIR(10,40) MSDG 33 DIMENSION PREACT(10,40), TPYROM(l0,40) ,CDLSPM(10,40),CDL0SS(10,40)MSDG 34 DIMENSION TRANS(l0,40) ,R(l0,40), FLOW2(10,40), YC02(10,40) MSDG 35 DIMENSION DUMX(40),DUMY(40) MSDG 36 DIMENSION TRUE(10) MSDG 37 DIMENSION DUMF(1'0) ,DUMP(40) ,EACT(10).,FREQF(10) ,HEATC0(10) MSDG 38 DIMENSION TMPZER(10) MSDG 39 DIMENSION FITTMP(10) MSDG 40 DIMENSION COABA(10),COABB(10),COABY(10),COPRA(10),COPRB(10) MSDG 41 DIMENSION COPRY(10),COTMPA(10) ,COTMPB(10),COTMPY(10),COTOTA(10) MSDG 42 DIMENSION COTOTB(10),COTOTC(10) MSDG 43 DIMENSION CDL(100)·,FLWA(2) ,FLWB(2l ,FLWC(2) ,FITT(2) MSDG 44 DIMENSION POB1(10,40),C02C(10,40),DC02DT(10,40),Y02(10,40), MSDG 45 1 DUMCflJO) ,DUMH(40) MSDG 46 DIMENSION DUM0(40),D02DT(10;40) MSDG 47 DIMENSION COMNT(240) MSDG 'JS. REAL LGLG,LINR MSDG 49 DATA FLIP,BLANlV'FLIP',' 1 / MSDG 50

A-18

C

Cf C ... ... C C

• C

C

C

C

C

C

• .... ...

DATA SLGX,SLGY,LINR,LGLG,END/ 1 SLGX 1 , 1 SLGY','LINR','LGLG','END 'I CALL PLOTS(0,0,9) TRIS SECTION READS THE CALIBRATION PRESSURE READINGS BETW~E~ THE

MSDG 51 MSDG 52 MSDG 53 MSDG 54 ABSOLUTE PRESSURE MCLEOD GAUGE(PO) ,THE MECHANICAL GAUGE,THE MODEL MSOG 55 MSDG 56 DV-4DM HASTINGS-RAYOIST THERMOCOUPLE GAUGES (ONE IN REACTOR,ONE INMSDG 57

IR CELL). IT PERFORMS LINEAR REGRESSIONS TO ENABLE THE REACTOR MSDG 58 MSDG 59 MSDG 60 PRESSURE DATA TO BE CONVERTED TO ABSOLUTE REACTOR PRESSORES USING MSDG 61

(FUNCTION PORT)AND ABSOLUTE IR CELL PRESS. (FUNTION POIRRT) •

READ (5, 1 0) NPO 10 FORMAT (I2)

REA0(5,15) (POMCL(I) ,POMECH(I) ,I=1,NPO) 15 FORMAT(4(2F10.4)' READ (5, 10) NP1 READ (5, 15) (Pl MECH (I), PlTCIR (I) , I= 1, NP 1)

READ(5,10)NP2 READ (5, 15) (P2TCIR (I) , P2TCRT (I) , I= 1, NP2)

READ(5,10)NCOR READ (5, 15) (PCORIR (I) , PCORRT (I) , I~ 1, NCOR) WRITE (6,40) WRITE(6,41) NPO,NP1,NP2,NCOR 40 FORMAT(1H1,50X,'PRESS0RE CALIBRATION DATA 1 /1X,49X,25('-')I/, 1 42X, 'ALL PRESSURES ARE IN TORR 1 //)

MSDG 62 MSOG 63 MSDG 64 MSDG 65 MSDG 66 MSDG 67 MSDG 68 MSDG 69 MSDG 70 MSDG 71 MSDG 72 MSOG 73 MSDG 74 MSDG 75 MSDG 76 MSDG 77 MSDG 78 MSDG 79 MSDG 80 MSDG 81 MSDG 82 MSDG 83 41 FORMAT(42X, 1 NP IS THE NUMBER OF DATA POINTS TAKEN 1 ///1X,11X, 1 NPO='M5DG 84 1 ,I2,12X,12X, 1 NP1= 1 ,I2,24X,'NP2=',I2,24X,'NCOR=',I2///1X) MSDG 85

~RITE(6, 854) WRITE (6,855) WRITE (6,856) WRITE(6,857)

MSDG 86 MSDG 87 MSDG 88 MSDG 89 MSDG 90 MSDG 91 C WRITE OUT THE PRESSURE CALIBRATION DATA MSDG 92 C MSDG 93 C MSDG 94 854 FORMAT(1X,42X,9X,'IR 1 ,13X,'IR 1 ,11X,'REACTOR',11X,'SIMULTANEOUS') MSDG 95 C MSDG 96

•ass FORMAT(1X,4X, 1 MCLEOD 1 ,7X,'MECHANICAL',5X,'MECHANICAL1 ,4X,'THERMOCOMSDG 97 ' 1UPLE',3X, 1 THERMOCOUPLE',3X, 1 THERMOCOOPLE',7X,'IR TC',9X, 1 RXN TC') MSDG 98 C

MSDG 99 856 FORMAT(1X,4X, 1 GAUGE 1 ,5X,7(5X, 1 GAUGE 1 ,5X)) MSDG100 C MSDG101 MSDG102 MSDG103 MSDG104

C C

857 FORMAT(1X,1~,11('-'),2X,7(2X,11('-'),2X))

A-19

C C

DO 68 KK•1,SO

IF(KK.GT.NPO.AND.KK.GT.NP1.AND.I<K.GT.NP2 .AND.KK.GT.NCOR)GO TO 69 WRITE (6,50) 5 0 FORMAT (1 H ) 52 FORMAT(1R+, F10.4,SX,F10.4,2X) 53 FORMAT(1H+,30X,F10.4,5X,F10.4,2X) 54 FORMAT(1H+,60X,F10.Q,SX,F10.4,2X) 55 FORMAT(1B+,90X,F10.4,SX,F10.4,2X)

DO 200 KKK•1,4 C ,,, )

GO T0(201,202,203,204),KKK ....

,.. ... C

C C C C

GO TO 200 201 IF(KK.GT.NPO)GO TO 200

~RITE(6,52)POMCL(KK),POMECH(KK) 202 IF(KK.GT.NP1)GO TO 200

WRITE(6,SJ)P1MECH(KK),P1TCIR(KK) GO TO 200

203 IF(KK.GT.NP2)GO TO 200 WRITE(6,54)P2TCIR(KK),P2TCRT(KK) GO TO 200

204 IF(KK.GT.NCOR)GO TO 200 WRITE(6,SS)PCORIR(KK),PCORRT(KK)

200 CONTINUE 68 CONTINUE 69 CONTINUE

I

LINEAR REGRESSION ANALYSIS OF PRESSURE DATA

C~LL REGLNR(POMCL,POMECH,NPO,PMO,PBO,PFITO) CALL REGLNR(P1MECH,P1TCIR,NP1,PM1,PB1,PFIT1) CALL REGLNR(P2TCIR,P2TCRT,NP2,PM2,PB2,PFIT2)

PO= MO*(M1*(M2*PRT + B2) + B1) + BO

POM:i:PMO*PM1*PM2

C POB=PMO*PM1*PB2 + PMO*PB1 + PBO

MSDG105 MSDG106 MSDG107 MSDG108 MS0G109 M5DG110 MSOG111 MSDG112 MSOG113 MSDG114 MSDG115 MSDG116 MSDG117 MSDG118 MSOG119 MSOG120 MSOG121 MSDG122 MS0G123 MSDG124 MSDG125 MSDG126 MS0G127 MS0G128 MS0G129 MS0G130 MSDG131 MS0G1J2 MSDG133 MS0G134 MS0G1J5 MSDG136 MSDG137 MSOG138 MS0G1J9 MS0G140 MS0G141 MS0G142 MS0G14J MSOG144 MSDG145 MS0G146 MSDG147 MS0G148 MS0G149 MS0G150 MS0G1S1 MSDG152 MS0G153 MSDG154 'MS0G15S MS0G156 MS0G157 MSDG158

C C

CALL REGLNR(PCORIR,PCORRT,NCOR,PMCOR,PBCOR,PFITC)

POIR= MO*(M1*(MCOR*PRT +'BCOR) + B1) + BO

POCIRM=PMO*PM1*PMCOR 'POCIRB=PMO*PM1*PBCOR + PMO*PB1 + PBO

. WRITE (6, 66)

WRITE(6, 70) PMO, PBO, PFIT0,PM1, PB 1, PFIT1., PM2, PB2, PFIT2,PMCOR, PBCOR, 1 PFITC

· A•20

. -·- , ......... ~-· ' ' -

·C

C

66 P'ORMAT(1X,//) 70 P'ORMAT(1X,19X,'SLOPE PM0•',F10.q,sx,•INTERCEPT PB02 1 ,F10.4,SX, 1 'FIT OF LINE• 1 ,F10.4//1X,19X, 'SLOPE PM1=',F10.4,SX,'INTERCEPT 2PB1• 1 ,F10.4,SX, 'FIT OF LINE=',F10.4//1X,19X, 'SLOPE PM2=',F10.4, 3 SX, 'INTERCEPT PB2a 1 ,F10.4,SX, 'FIT OF LINE= 1 ,F10.4//1X,19X, 4 'SLOPE PMCOR• 1 ,F10.4,SX, 'INTERCEPT PBCOR= 1 ,F10.4,SX, 5 'FIT OF LINE2', F10.4////)

WRITE(6,72)POM,POB,POCIRM,POCIRB 72 FORMAT(1X,19X, 1 POM= 1 ,F10.4,SX, 'P0B=',F10.4,5X, 'POCIRM=',F10.4, 1 SX,'POCIRB2 1 ,F10.4)

l READ THE FLOW (DUMF) VS. PRESSURE (DUMP) DATA FOR OXYGEN. C THIS DATA IS ABSOLUTE PER THE CALIBRATIONS ESTABLISHED IN THIS C COMPUTER PROGRAM. THIS DATA WAS REDUCED BY HAND. C

C

READ(S,15) (DUMF(I),DUMP(I) ,I=l,17) NTR=17 IOR=1

C FLOW VS. PRESSURE DATA IS FITTED TO A QUADRATIC EQN. BELOW C CALL QUADFT(DUMF,DUMP,NTR,IOR,A,B,C,FIT) FLOWA=A FLOWB=B FLOWC=C WRITE (6, 7'3) DO 91 I=l, 17 WRITE(6,7ij)DUMF(I),DUMP(I)

91 CONTINUE WRITE (6, 66) WRITE(6,363)I,FLOWA,FLOWB,FLOWC,FIT 363 FORMAT(lX,'FOR TRANS. CAL.',I2,'FLOW(Y-AXIS) VS. PRESS. (X-AXIS) 1 COEFS. ARE A=',E10.4,SX,'B=',E10.4,SX,'C=',E10.4,5X,'STDDEV=', 2 E10.4/)

73 FJRMAT(1H1, 1FLOW 02 CC/MINUTE',SX,'PRESSURE IR-TORR'//) 74 FORMAT(1X,4X,E10.4,11X,E10.4)

~ READ ON THE THERMOCOUPLE GAUGE, OBS~RVED PRESSURE (OXYGEN C CALIBRATION BASIS) (DUMO) VS. ACTUAL PURE CO2 PRESSURE (DUMC) C

C

READ (S, 15) (DUMO (I), DUMC (I) , I=1, 27) NTR=27 IOR=1

) FIT ABOVE DATA TO A QUADRATIC EQN •• HOWEVER, IN THIS PROGRAM THIS DATA IS USED AS A LOOK-UP TABLE DUE TO.POOR QUADR. FIT C OVER LARGE RANGE. C

CALL QUADFT(OUMO,DUMC,NTR,IOR,A,B,C,FIT) APC02=A BPC02=B CPC02=C

A•21

MSDG159 MSDG160 MSDG161 MSDG162 MSDG163 MS0G16IJ MSDG165 MSDG166 MSDG167 MSDG168 MS0G169 MSDG170 MS0G171 MSDG172 MSOG173 MSOG174 MSOG175 MSDG176 MSOG177 MSDG178 MSOG179 MS0G180 MSOG181 MS0G182 MSOG183 MSOG184 MSOG185 MSDG186 MSOG187 MSDG188 MS0G189 MSDG190 MS0G191 MS0G192 MSDG193 MSDG194 MSDGl 95 MSDG196 MSDG197 MSDG198 MSDG199 MSDG200 MSDG201 MSDG202 MSDG203 MSDG204 MSDG205 MSDG206 MSDG207 MS0G208 MSDG209 MSDG210 MSDG211 MSDG212

C C C

WRITE (6, 75) 75 P'ORMAT (181, 'PRESSURE OBSERVED 02'., SX,' PRESSURE ACTUAL CO2' ,I, 1 7X,'(TORR) 1 ,7X,SX,7X,'(TORR)'//) DO 92 I•1, 27

~RITE(6,74)DUMO(I),DUMC(I) 92 CONTINUE WRITE(6,66) WRITE(6,93)APC02,BPC02,CPC02,FIT

READ OBSERVED PRESSURE (02 BASIS) (DUMO) VS. ACTUAL PRESSURE PURE WATER VAPOR PRESSURE (DUMH) ~ 93 FORMAT(1X, 1APC02•',E10.4,2X,'BPC02=',E10.4,2X,'CPC02=',E10.4,2X,

MSDG213 MSDG21" MSDG215 MS0G216 MSDG217 MSDG218 MS0G219 MS0G220 MSOG221 MSOG222 MSOG223 MS0G224 MSDG225 MSDG226 MS0G227 MSDG228 MSDG229 MSDG230 MSDG231 MSDG232 MS0G233 MSDG234 MSDG235 MSDG236 MSDG237 MS0G238 MSDG239 MS0G240 MSDG21' l MSDG242 MSDG243 MS0G21'4 MSDG245 MSDG246 MS0G247 MSDG248 MS0G249

C C

C C C

••• I;,.

C C C C C C -C

C

1 'STOOEVs 1 ,E10.4) READ(S,15) (DUMO(I) ,DUMH(I) ,I=1,29) NTR=29 IOR=1

FIT DATA TO QUADRATIC. HOWEVER, DATA USED AS LOOK-UP TABLE CALL QUAOFT(DUMO,DUMH,NTR,IOR,A,B,C,FIT) APH20=A BPH20=B CPH20=C WRITE(6,76)

76 FORMAT(1H1,'PRES5UR~ OBSERVED 02•,sx.'PRESSURE ACTUAL H20',I, 1 7X,' (TORR) ', 7X, SX, 7X,' (TORR) '//) DO 94 I=1,29 WRITE(6,74)DUMO(I),DUMH(I} 94 CONTINUE v-1RITE (6, 66) WRITE(6,95)APH20,BPH20,CPH20,FIT 95 FORMAT(1X,'APH20=',E10.4,2X,'BPH20=',E10.4,2X,'CPH20=',E10.4,2X, 1 1 STDDEV~',E10.4)

THIS SECTION READS THE CALIBRATION TEMPERATURE READINGS BETWEEN THE ABSOLUTE TEMP. CHEMICAL MELTING POINTS(TO) ,THE IRON-CONSTANTANMSDG250 HOT CHUCR THERMOCOOPLE,AND THE IR INDUSTIES INFRARED PYROMETER. IT PERFORMS LINEAR REGRESSIONS TO CONVERT PYROMETER READINGS TO ABSOLUTE TEMP. USING FUNCTION TOPYR. THE THERMOCOUPLE READINGS

LAVE BEEN CONVERTED FROM MVOLTS (CORRECTED FOR AIR TEMP.) TO TEMPERATURE USING A TABLE. READ(5,10)NTO . READ (5, 15) (TOCHEM (I) ,TOHCTC (I) , I=1, NTO) READ(5,10)NT1 READ(S,15) (T1HCTC(I) ,T1PYR(I) ,I=-1,NT1)

· A•22

MSDG251 MSDG252 MSDG253 MSDG254 MSDG255 MS0G256 MS0G257 MSDG258 MSDG259 MSDG260 MS0G261 MSDG262 MSDG263 MSDG264 MS0G265. MS0G266

·,

!) I !

• J I

L '·

- --'--=- ---- .

-. ':.. .. ,, ... - . · ... ,.•_

C

WRITE (6, 80)

80 PORMAT(1H1,SOX,'TEMPERA1'uRE CALIBRATION DATA 1 /1X,49X,30('-1)//,

1 1X,41X, 'ALL TEMPERATURES ARE IN DEG. C1 ,//) •

WRITE(6,82)NTO,N'1'1 82 FORMArc,2x, 'NT IS THE NUMBER OF DATA POINTS TAKEN 1 ///1X,11X,

1 'NT0=',I2,24X,'NT1= 1,I2///1X) WRITE (6, Bti)

84 FORMAT(1X, 'CHEM MELTING',SX, 'HOT CRUCK',6X, 'HOT CHUCK') WRITE (6, 86)

MSDG267 MSDG268 MSDG269 MSOG270 MSDG271 MSOG272 MS0G273 MSDG274 MSDG275 ~DG276 MSDG277

'TEMPERATORE',4X,'TEMPERATURE',3X, MSOG278 I, 86 FORMArc1x, 'POINT(DEG C) ',4X, 1 'IR PYROMETER') WRITE (6, 88)

C C C

C

C C

88 FORMAT(1X, 1X, 11 ('-') ,2X,3 (2X, 11 ('-') ,2X))

DO 100 KK=l,50

90 I~(KK.GT.NTO.AND.KK.GT.NT1)GO TO 101 WRITE(6, 50)

C DO 250 KKK=l,2

C

C

C

GO T0(255,256) ,KKK

255 IF(KK.GT.NTO)GO TO 250 WRITE(6,52)T0CHEM(KK),TOHCTC(KK) GO TO 250

256 IF(KK.GT.NTl)GO TO 250 250 CONTINUE

WRITE(6,53)T1HCTC(KK),T1PYR(KK)

100 CONTINUE 101 CONTINUE

MSDG279 MSDG280 MSDG281 ~SDG282 MSDG283 MS0G284 MSDG285 MS0G286 MSDG287 MSDG288 MSDG289 MSDG290 MSDG291 MSDG292 MSDG293 MSDG294 MSDG295 MSDG296 MSDG297 MSDG298 MSDG299 M5DG300 MSDG301 MSDG302 - LINEAR REGRESSION ANALYSIS OF TEMPERATURE DATA MSDG303 MSDG304 MSDG305 MSDG306 MSDG307 MSDG308 C

C C

CALL REGLNR(TOCHEM,TOHCTC,NTO,TMO,TBO,TFITO) CALL REGLNR(T1HCTC,T1PYR,NT1,TM1,TB1,TFIT1)

TOM= TMO*TM1 TOB= TMO*TB1 + TBO

MSDG309 MSDG310 MSDG311 MSDG312 WRITE(6,66) MS0G313

WRITE(6,120) TM0,TB0,TFIT0,TM1,TB1,TFIT1,TOM,TOB MS0G314 120 FORMAT(1X,19X, 'SLOPE TM0=',F10.4,SX, 'INTERCEPT TB0=',F10.4,5X, MS0G315

1 'FIT OF LINE=',F10.4//1X,19X, 'SLOPE TM1= 1 ,F10.4,5X,'INTERCEPT TBMSDG316 21=',Fl0.4, SX, 'FIT OF LINE= 1 ,F10.4////1X,19X,'TOM= 1 ,F10.4,SX, MS0G317 3 'TOB=• ,F10.4) MS0G318

MSDG319 THIS SECTION· READS EQUILIBRIUM VALUES SIMULTANEOUSLY OF CO2 AND 02MSDG320

, A-23

__ ...,.....·.-- ,_

C C C

' C C C C C C

MSDG321 FLOW, REACTOR PRESS.,REL. PERCENT TRANSMITTANCE, AND THE ZERO CO2 ~SDG322 CONC. BASELINE TRANSMITTANCE. MSDG323 MSDG324 THE CO2 AND 02 FLOWS ARE MSDG325 MSDG326 CORRECTED FOR THE TYLAN H2 FLOW CONTROLLER USING TYLAN'S PUBLISHEOMSDG327 MSOG328 FACTORS (FONTION FOC02 AND FUNCTION F002). THE PRESS. READING IS MSOG329 MSDG330

• CONVERTED TO ACTUAL IR CELL PRESS. SUBRTNE PCBFND NEXT THE FLOW ~ CO2 AND THE IR CELL PRESSURE ARE USED TO CALCULATE THE ACTUAL

MSOG331 MS0G332 MSDG333 MSDG334 MSDG335 MSDG336 MSDG337 MSDG338

/"I ...

C C C C C

C C

CO2 CONC. (GM-MOLES/LITER) IN THE CELL WHICH IS FED WITH THE ABSORBANCE = 4 LOG(TRANSMITTANCE) INTO THE LINEAR REGRESSION SUBROUTINE~ THIS RELATION IS USED TO OBTAIN CO2 CONC. FROM TRANS. MSDG339

MSDG340 DATA. TRANSMITTANCE= REL. TRANS./BASELINE TRANS •• THE BEAM PATH MSDG341 MSDG342 IN THE IR CELL WAS SET AT 6.4 METERS LONG.

DO 190 J=l,2

CALIBRATIONS WERE DONE ON TWO DIFFERENT DAYS. J=1 IS THE DAY WHEN THE PRIMARY EXPERIMENTS WERE DONE.

READ(S,10) NCAL READ (5, 10) NTRAN (NCAL) READ(S,15)BLINET

MSDG343 MSDG344 MSDG345 MSDG346 MSDG347 MSDG348 MSDG349 MSDG350 MSDG351 MSDG352 MSDG353 MSDG354 MSDG355 9 0 0 vlRI TE ( 6, 14 0)

BLINET=BLINET + 140 FORMAT(1H1,45X, •

MSDG356 0.07 MSDG357 'TRANSMITTANCE CALIBRATION DATA 1 /1X,44~,30('-')//)MSDG358 MSDG359

C C

vlRITE(6,145) NTRAN(NCAL),BLINET MSDG360 MSDG361 MSDG362

145 FORMAT{1X///1X, 'THE NUMBER OF DATA POINTS TAKEN=',I2//1X, 1 'THE aASELINE TRANSMITTANCE (ZERO C02)= 1 ,F10.4////1X, IS IN TORR'MSDG363.

2 'CONCENTRATION IS IN GRAMMOLES/LITER 1 ,//1X,'PRESSURE 3 ,///) MSDG364 MSDG365 MSDG366 ·~

C vlRITE (6, 150) WRITE(6,151) MSDG367

MSDG368 C

C

C

150 FORMAT(1X,'RAW FLOW C02 1 ,1X,'RAW FLOW 02',1X,'RAW REACTR',3X, 1 'RELATIVE1 ,2X,5(2X, 1 ABSOLUTE',2X ),'TOTAL FLOW') 151 FORMAT(1X,1X, 1 CC/MINUTE',2X,' CC/MINOTE'12X,'PRES.-TORR',2X,

'A-24

MSDG369 MSDG37·0 MSDG371 MSDG372 MSDG373 MSDG374

·•:,n --=, ,'..1 !O.~...: ' •c' ,'t· ·,,.,. "• ~-.,(.. .,( •. ·,:,~: ,;..,.~-' • .,, ,: . \.:,', •'. _, ,-..·__ . __ ,· ; .. ,a.. ; , • ,

I I.

t C C C C C

• C

C C

C

I

C C

•• C C

1 'TRANSMITT.',2X,' 2 'ABS0RBANCE',2X,' 3 ,2X,8('-'))

i CO2 ',2X,'CONC. C02',2X,'TRANSMITT.',2X,MSDG375 IR PRESS. 1 ,2X,' CC/MINUTE'/ 1X,9(2X,8('-'),2X)MSDG376 MSDG377 MS0G378 THIS SECTION READS THE RAW DATA THEN MSDG379 MSDG380 THIS SEGMENT CONVERTS ALL THE UNCALIBRATED DATA TO ABSOLUTE VALUESMSDG381 MSDG382 AND THEN USES THESE TO CALCULATE CO2 CONC.

LINEAR RELATIONSHIP BETWEEN THESE VARIABLES.

, ABSORBANCE ,AND THEMSDG383 MSDG384 MSDG385 MSDG386 NTR=NTRAN ( NCAL)

DO 30 I=1,NTR

READ(S,15) FC02,F02,PRT,RELT RELT=RELT+0.07 C02PER(I)= FOC02(FC02)/(FOC02(FC02) +F002(F02)) TRAN=(RELT)/(BLINET) ABSORB(!)= -1.0* ALOG10(TRAN) FC02CB(NCAL,I)=FOC02(FC02) F02CB(NCAL,I)=F002(F02) PREM(MCAL,I)=PRT FCREM(NCAL,I)=FC02 FOREM(NCAL,I)=F02 RLTREM(NCAL,I)=RELT

C02PR(NCAL,I)=C02PER(I) ABSRB(NCAL,I)=ABSORB(I) YYC02=C02PER (I) CALL PCBFND(PRT,YYC02,DUMO,D0MC ,PACTCB) C02CON(I)=C02PER(I)*(PACTCB/760.0)*(1.0/2LJ.631) C02CN(NCAL,I)=C02CON(I) EQVPRT=(PACTCB-POCIRB)/POCIRM PIRCB(NCAL,I}=PACTCB PRCTCB(NCAL,I)=PORT(EQVPRT)

MSDG387 MSDG388 MSDG389 MSDG390 MSDG391 MSDG392 MSDG393 MS0G39LJ MSDG395 MSDG396 MSDG397 MSDG398 MSDG399 MSDG400 MSDG401 MSDG402 MSDG403 MSDG404 MSDG405 MSDG406 MSDG407 MSDG408 MSDGLJ09 MSD~10 MSDG411 MSDG412 DUMYCI)=FC02CB(NCAL,I)+ F02CB(NCAt,I) MSDG413 DUMX(I)=PIRCB(NCAL,I) MSDG41LJ 30 WRITE(6,32) FC02,F02, PRT,RELT,C02PER(I) ,C02CON(I) ,TRAN,ABS0RB(I)MSDG415 1 ,PIRCB(NCAL,I),DUMY(I) MSDG416 32 FORMAT(1X,10(1X,E10.4,1X)) MSDG417 MSDG418

31 IOR=1

LINEAR REGRESSION OF FLOW (DUMY) VS. PRESSURE (DUMX) FOR THE CALIBRATION DATA

CALL REGLNR(DUMY,DUMX,NTR.CONOM,CONOB,CONFIT) FLWA(NCAL)~CONOB FLWB(NCAL)=CONOM FLWC(NCAL)=O.O

A-25

MSDG419 MSDG420 MSDG421 MSDG422 MSDG423 MSDG42LJ MSDG425 MSDG426 MSDG427 MSDG!l28

.. ·•,_";;. ____ ,,. -.·-~

C

FITT(NCAL)•CONFIT '1fRITE(6,66) WRITE(6,363) NCAL,FLWA(NCAL),FLWB(NCAL),FLWC(NCAL),FITr(NCAL)

LINEAR REGRESSION OF CO2 CONCENTRATION VS. ABSORBANCE FOR THE CALIBRATION DATA.

CALL REGLNR(C02CON,ABS0RB,NTR, CONOM,CONOB,CONFIT) CONM(NCAL)•CONOM CONB(NCAL)•CONOB CONF(NCAL)=CONFIT WRITE(6,160) CONOM,CONOB, CONFIT

~160 PORMAT(1X,'SLOPE CONOM= 1 ,E10.4,5X, 1 INTERCEPT CONOB=',E10.4,SX, 1 'FIT OF LINE= 1 ,E10.4)

HSDG1129 MSDGlfJO MSDG'-31 MSDG432 MSDG433 MSDG'-34 MSDG'IJS MSDG,.36 MSOG,.37 MSOG,.38 MSDG439 MSDG4"0 MSDG,.41 MSDG"'-2 MS0G443 MS0G44Q MSOGQQS MS0G446 MSDG447 MSDGq49 MSDG4Q9 MSDG450 MSDG451

C

C

190 CONTINUE

rHIS SECTION READS THE DATA FOR EACH RUN, ·CORRECTS IT VIA THE CALIBRATION FUNCTIONS, PERFORMS SEVERAL CALCULATIONS AND PRINTS OUT FINAL RESULTS IN CHART FORM.

DO 500 I=1,10

READ(5,400)NRUNNO, NDATA(NRUNNO) ,NOWAFS,POWLEV(NRUNNO),F02, 1 BLINE(NRUNNO),WTLOSS(NRUNNO)

MSDG452 MS0G453 MSDG454 MSDG455 MSDG2'56 MSDG457 MS0G458 MSDGq59 MSDG460 400 FORMAT(I2,1X,I2,1X,I2,2X,4F10.4) MSOG461 II=NRUNNO MSDG462 BLINE(II)=BLINE(II) +0.07 MSDG463 WRITE(6,640) NRUNNO,NDATA(II) ,NOWAFS,POW!.EV(II) ,F02,BLINE(II) MSDG464 640 FORMAT (1H1, 'RUN NUMBER' , 3X,I2/1X, 'NO. DATA POINTS' , 3X,I.2/1X, MSDG465 11 NUMBER OF WAFERS' ,JX,I2/1X, 'POWER LEVEL RF WATTS' ,3X,F10.4/1X,MSDG466

• 2 1 02 FEED RATE'., 3X, F10. 6, 3X, 'CC/MINUTE' /1X, 'BASELINE', MSDG467 3 1 TRANSMITTANCE 1 ,3X,F10.4) MSDG468 650 FORMAT(1H0///7X, ' TIME 1 ,11X, 'RELATIVE TRANSMITTANCE' , MSDG469 1 4X, 'REACTOR PRESSURE METER' ,10X,. 'PYROMETER METER') MSDG470 652 FORMAT (9X, 2X, 1 (MINUTES) 1 , 2X, 37X, ax, 1 (TORR) 1 18X, 1 (DEG. CELSIUS)') MS0G471 WRITE(6,650) MSDG472

.• 660

WRITE(6,652). MSDG473 WRITE(6,660) MSDG474 FORMAT(7X,15('-'),10X,24( 1 - 1 ),2X,24('-'),10X,17( 1-')) MSDG475

MSDG476 CONOM=CONM ( 1) CONOB=CONB ( 1) ND=NDATA (I I) NJ=1 CDLTOT(II,1)=0.0 DO 600 K=1,ND

A-26

MSDG477 MSDG478 MSDG479 MSDG480 MSDG481 MSDGIJ82

•. :

C

,.. R!AD(S,15) TIME(II,K),RELT,PRT,TPYR RELT•RELT +0.07

MSDG1f83

t f' M8DG484

MSDG485 MSOGll86 MSDGQ67 M5DG488 MSDG489 MSDGQ90 MS0Glf91 MS0Glf9 2 MSOGlf93 MS0Glf9lf MS0G495 MS0Gta96 MS0Gta97

c;

C C

C C C C C C C

TPYROM(II,K)=TOPYR(TPYR) IF(TPYROM(tI,K) .LT, 100.0)TPYROM(II,K)=O.O ABS0B••1.0*ALOG10((RELT)/(BLINE(II))) ABSB(II,K)•ABSOB POB 1 (II, K) •PRT DUMX(K)2TIME(II,K) TRANS(II,K)•(RELT)/(BLINE(II)) CONTINUE

MS0Glf98 WRITE(6,670) TIME(II,K) ,RELT,PRT,TPYR MS0Glf99 670 FORMAT(1X, 1X, 6X ,F10.4,5X,11X,5X,F10.4,7X,2X,6X,F9.4,23X,F10.4)MSOG500 600 CONTINUE MSOG501 READ(S,15) COPRA(!!) ,COPRB(I!),COPRY(II) MSOG502 READ(S,15) COTMPA(II),COTMPB(II) ,COTMPY(II) MSDG503 READ(S,15) COABA(II),COABB(II) ,COABY(II) MSDG504 FACTOR=1.0 MSDGSOS MSDG506 THIS NEXT SECTION SENDS THE DATA THROUGH THE FULL SET OF CALCULATIONS ONCE, THEN COMPARES THE CARBON DIOXIDE LEAVING THE SYSTEM WITH THE ACTUAL CARBON LOSl FROM THE POLYMER AND DOES A SECOND SET SET OF CALCUL~TIONS USING FLOWS NORMALIZED BY ~HE CARBON MATERIAL BALANCE. (FACTOR)

731 CDLTOT(II,1)=0.0 DO 680 K=1,ND PRT=POB1 (II,K) ABSOB=ABSB (II, K) C02C2=CDCON(ABS0B) IF(C02C2 .LT. O.O)C02C2=0.0 CALL PFIND(PRT,C02C2,DUMO,DUMC,DUMH ,PACT2)

MSDG507 MSDG508 MSDG509 MSDGS 10 MSDG511 MSDG512 MSOG513 MSDG514 MSDG515 MSDG516 MSDG517 MSDG518 MSDG519 MSDG520

' PIR(!I,K)=PACT2 YC02(II,K)=C02C2*760.0*24.631/PACT2 C02C(II,K)=C02C2

MSDG521 MSOG522 MS0GS23 FLOW2(II,K)=FLOW(PACT2)

FLOW2(II,K)=FLOW2(II,K)/FACTOR CDLSPM(II,K)=C02CtII,l(}*0.001*FLOW2(II,K)*(760.0/PIR(II,K))*44.0 IF(K .EQ. 1) GO TO 685 COLOSS(II,K)= CDLSPM(II,K)*(TIME(II,K)-TIME(II,K-1)) IF(CDLOSS(II,K) .LE. O.O)CDLOSS(II#K) =O.O

MSDG524 MSOG525 MSDG526

&, GO TO 682 ''.S85 COLOS,S (II, 1 J = CDLSPM (II, 1) • 1. 0

IF (CDLOSS (II, 1) • LE. O. 0) COLOSS (II, 1) =O. 0 CDLTOT(II,1)=CDL0SS(II,1) CDL(1)=CDLTOT(II,1)

MS0G527 MS0GS28 MS0G529 MSDG530 MS0G531 MS0G532 MSDG533 MSDG531f MS0G535 MS0G536

GO TO 683 682 COLTOT(II,K)= C~LTOT(II,K-1) + COLOSS(II,K)

CDL(K)=CDLTOT(II,Kl

A-27

I

i i

•• ";; , •• -.:;,,,_ , • y: ~- ,:;- _. ,;; ;-; -,-;;- -: •«.1- ·-_cc:--:;

...

/

C MSOG537 C THE SYSTEM VOLUME IS ESTIMATED AT 20.90 LITERS MSDG538 C MSDG539 Jj683 DC02DT(II,K)•CONOM*(COABA(II)*(+COABB(II))*EXP(-COABB(II)*TIME(II,MSDG540 • 1 K)))/20.90 MSDG541 V'l'•20.90 MSDG542 C MSDG543 C THE SYSTEM VOLUME IS ESTIMATED AT 20.90 LITERS MSDGSQ4 C MSDG545 C THE REACTOR VOLUME IS 12.0 LITERS. HOW MUCH OF THIS IS MSDG546 C EFFECTIVE VOLUME IS UNKNOWN MSDGSQ7 C MSDG548 ' R(II,K) =(0.001•FLOW2 (II,K) • (760.0/PIR(II,K)) •co2C(II,K) + VT• MSDG549 1 DC02DT(II,K))/12.0 MSOGSSO

C C C C

C

Y02 (II, I<) =1. 0-1. 8*YC02 (II, K) MSDGSS 1 IF(Y02(II,R) .LT. O.O)Y02(II,K)=O.O MSDG552 D02DT(II,K)=(-0.001*FLOW2(II,K)*Y02(II,R)/24.631 MSDGS53 1 +0.001*F002(F02)/24.631-(7.0/S.0) *12.•R(II,K))/VT MSDG554 680 CONTINUE MSDGSSS IOR=2 MSDG556

FIT THE TOTAL CO2 LOSS DATA IN GRAMS VS. TIME TO A QUADRATIC EQN.

CALL QUADFT(CDL,DUMX,ND,IOR,A,B,C,F!T) NO=NDATA(II) F2(II)=F002(F02) COTOTA(II)::1A COTOTB(II)~B COTOTC(II)=C WRITE(6,640) II,NDATA(II),NOWAFS,POWLEV(II) ,F2(II), BLINE {II)

MSDG557 MSDG558 MSDG559 MSDG560 MSDG561 MSDG562 MSDG563 MSDG564 MSDG565 MSDG566 MSDG567 MSDG568 WRITE(6,700)FACTOR MSDG569 700 FORMAT{1X,//1X,'THE DATA ON THIS PAGE WAS REDUCED USING THE•, M5DG570 1 'CALIBRATION R!LATIONS DEVELOPED EARLIER IN THIS PROGRAM',l1X, M5DG571 2 'FLOW NORMALIZATION FACTOR WAS,',1X,F10.5/) MSDG572 WRITE(6,710) WTLOSS(II) ,CDLTOT(II,ND) MSDG573 710 FORMAT(1X, 'THE MEASURED WT. LOSS IS' ,3X,F10.4,3X,'GRAMS 1

, SX, MSDG574 ~ 1 'THE CO2 LOSS CALCULATED FROM TRANSMITTANCE DATA IS',3X,F10.4,3X,MSOG575 • 2 'GRAMS' //) MSDG576 WRITE(6,720) MSDG577 ijRITE(6,721) MSOG578 C MSDG579 C THERE ARE TWELVE SPACES PER COLUMN; 10 DIGITS AND ONE MSDG580 C SPACE ON EACH SIDE IN THE FORMATS BELOW. MS0G581 C MSDG582

, 720 FORMAT(1X,24X, 1X, 1 TRANSMIT·',4X, 1 RXN-RATE',5X,'IR CELL',4X, MS0G583 1 'CO2 MOLE 1 ,4X, 1 C02 L0SS',3X,' TOTAL ',6X,'WAFER 1 ,6X,'D(02)/DT')MSOG584 721 FORMAT{1X,4X,'TIME 1 ,SX, 1 ABSORBANCE 1 ,4X, 1•TANCE',4X,'GRAMMOLES/ 1, MSDG585 1 3X, 1 PRESSORE 1 ,4X, 1 FRACTION1 ,3X,' GRAMS ',3X,'C02 LOSS' ,2X, MSDG586 2 1 TEMPERATURE',1X,1X,'GRAMMOLES~') MSDG587 WRITE(6,735)

MSDG588 735 FORMA?(1X,1X,'(MINUTES) •.1x,2qx,2x, 1 LITER-MIN.'. MSDG589 ! 1X,3X,' (TORR) ',16X ,'PER MINOTE 1 ,1X,1X,' (GRAMS) ', MSDG590

A-28

f

I ....

/

C C

2 1X, 1 (DEGREES C) ', 1X, 1X,' LITER-MIN.') MSOG591 MSDG592 MSDG593

• WRITE(6,722)

722 FORMAT(1X,1X,10('-'),1X,9(1X,10('-'),1X)/) . 725 FORMAT(1X,1X,E10.4,1X,9(1X,E10.4,1X))

MSDG594 MSOG595 MSOG596

DO 502 J•1,ND WRITE f6, 725) TIME (II, J) ,ABSB (tI ,J) , TRANS (II, J) , R (II, J) , PIR (II, J),

1 Y'C02(II,J) ,CDLSPM(II,J) ,CDLTOT(II,J) ,TPYROM(II,J) ,D02DT(II,J) 502 CONTINUE

WRITE(6,66)

MSOG597 MSDG598 MSDG599 MSDG600

WRITE(6,602) ~ ~RITE(6,603) II,COABA(II), COABB(II) ,COABY(II)

603 FORMAT(1X,'FOR RUN NO.',I2,3X,'THE COEFICIENT VALUES 1 ,5X,'B= 1 ,E10.4,5X,'Y0=',E10.4/)

MSDG601 MSDG602 MSDG603

ARE A=',E10.4MSDG604 MS0G60S MSDG606 MSDG607 MSDG608 MSDG609 M5DG610 MSDG611 M5DG612 MSDG613

C C C C C C e C C C C C

602 FORMAT(1X, 1ABS0RBANCE') WRITE(6,601J)

604 FORMAT(1X, 1 PRESSURE IR CELL') WRITE(6,603) II,COPRA(II),COPRB(II) ,COPRY(II) WRITE (6,606)

606 FORMAT(1X,'TEMPERATURE') WRITE(6,603) II,COTMPA(II) ,COTMPB(II) ,COTMPY(II) WRITE(6,607) COTOTA(II) ,COTOTB(II),COTOTC(II)

607 FORMAT(1X,'BEST QUADRATIC FIT OF THE TOTAL CO2 LOSS(GR~MS) WITH MSDG614 1 fIME GIVES COEFS. A=',E10.~,5X,'B=',E10.4,5X,'C=',E10.4) FACTOR=((12.0/44.0)*CDLTOT(II,ND))/((12.0/13.6)*WTLOSS(II)) IF(ABS(FACTOR) .LT. 0.01)G0 TO 500 IF(ABS(FACTOR-1.0) .LE. 0.01)GO TO 500 GO TO 731

500 CONTINUE XD=8.5 YD=11.0

MSDG615 MSOG616 MSDG617 MSDG618 MSDG619 MSDG620 MSDG621 MSOG622 MSDG623

THE INITIAL COMMENT CARO READ IS THE SCALE TYPE( LINEAR,LOG~LOG,ETC)MSOG624 THE FIRST CARD READ AFTER THIS GIVES THE X-AXIS TITLE IN COL. 1-20 MSDG625 THE SECOND CARD GIVES THE Y-AX!S TITLE IN COLUMNS 1-20 MSOG626 THE THIRD TO TENTH CARDS ARE COMMENTS TO GO UNDER THE PLOT. MSDG627 UNLESS ALL 8 COMMENT CARDS ARE USED, THE LAST CARD AFTER THE MSOG628 COMMENTS MUST BE AN ENO CARD, 'END' IN COL. 1-4 • MSDG629

READ ( 5 , 17 2) COMNT ( 2 4 0) MSDG6 3 0 172 FORMAT(A4) MSDG631

M5DG632 IR CELL PRESSURE VS. TIME, NEXT IS WAFER TEMP. VS. TIME, THEN ABSORBANCE VS. TIME, CO2 LOSS/MINUTE VS. TIME. CO2 LOSS TOTAL VS. TIME

WRITE (6,372) K=1 IFRAME=O

300 LC=-1 COMNT(239)=BIANK CALL RDPLOT(COMNT,NCT) DO 305 II=1, 10 ITMP=O

A-29

MSDG633 MSDG634 MSDG635 M5DG636 MSOG637 MSDG638 MSOG639 MSDG61JO MSDG641 MSDG642 M5DG643 MSDG644

,.

,,,, •I[-,' •• , .• ;,, ,.·- .. r',-,, •,' L ",,', ,,;,,·.'.<,j' ·:_,,,-

• I

KTINF•O IF(II.EQ.6.0R.II.EQ.7.0R.II.EQ.8.0R.II.EQ.10)GO TO 305 ND•NDATA (II) IF(II .EQ. 2)ND•17 DO 312 I•1, ND GO TO (315,320,325,JJ0,335,336,337),K

315 YPLOT(I)•PIR(II,I) YF=-2.20 YS•0.20 GO TO 310

320 YPLOT(I)= TPYROM(II,I) COEFA•COTMPA (II) COEFB=-COTMPB(II) COEFYO=COTMPY(II) YF=-0.0 YS=40.0 GO TO 310

325 YPLOT(I) =ABSB{II,I) COEFA=-COABA (II) COEFB=COABB ( II} COEFYO=COABY (II) YF=O.O

·YS=2. SE-02 GO TO 310

330 YPLOT(I)zCDLSPM(II,I) YF=0.00 YS=0.006 GO TO 310

335 YPLOT(I)=CDLTOT{II,I) YF=0.00 YS=0.13

310 XPLOT(I)=TIME(II,I) XF=0.00 XS=7.00 GO TO 312

336 CONTINUE IF(II .EQ. 2)GO TO 305 IF (I • EQ. 1) GO TO 332

• IF(TPYROM(II,I) .GT. 100.0 .AND. TPYROM(II,I-1) .LT. 100.0 1 ) ITMP=I-1

332 CONTINUE IF(ITMP .EQ. O)GO TO 312 YPLOT(I•ITMP)= ALOG(R(II,I)) XPLOT(I-ITMP)=1.0/(TPYROM(II,I} + 213.0) XF=O.O

•• XS=O. SE-03 YF=-12.0 YS=2.0 GO TO 312

337 CONTINUE IF(II .EQ. 2)GO TO 305 IF(K'l'INF .EQ. 1)GO TO 339 IF(I .EQ. 1)GO TO 338 IF (TPYROM (II. I) • GT. 100. 0 .AND. TP,YROM (II, I-1) '•LT. 100. 0

A-30

MSDG645 MSDG646 MSDG64 7 MSDG6Q8 MSDG6tf9 MSDG650 MSDG651 MSDG652 MSDG653 MSOG654 MSDG655 MSOG656 MSDG657 MSDG658 MS0G659 MSDG660 MSDG661 MSDG662 MSDG663 MSDG664 MSDG665 MSDG666 MSDG667 MSDG668 MSDG669 MSDG670 MSDG671 MSDG672 MSDG673 MSDG674 MSDG675 MSDG676 MSDG677 MSDG678 MSDG679 MSDG680 MSDG681 MSDG682 MSDG683 MSDG684 MSDG685 MSDG686 MSDG687 MS0G688 MSDG689 MSDG690 MSOG691 MSDG692 MSDG693 MSDG69tf MS0G695 MSOG696 MSDG697 MSDG698

I',

'

•· •

•• •

! ) ITMP•I-1 338 CONTINUE

IF<ITMP .EQ. O)GO TO 312 ITP•ITMP + 1 KTFBES •1 00 308 KTP'•1,20 TINF•TPYROM(II,NO) + FLOAT(KTF) 00 3U6 LL=ITP,ND YPLOT(LL-lTMP)= ALOG(TINF~TPYROM(II,LL))

346 XPLOT(LL-ITMP)=TIME(II,LL) NPNTS•m,.ITMP CALL ~EGLNR(YPLCYI',XPLOT,NPNTS~TSLOP,TINTCP ,FIT) FITTMP (KTF) 2 ABS (FIT) IF(KTF .GE. 2)GO TO 309 FITBES =ABS(FITTMP(1))

309 CONTINUE 308 IF(ABS(FITTMP(KTF)) .GT. FITBES )KTFBES =KT~

KTINF=1 TINF=TPYROM(II,ND) + FLOAT(KTFBES) WRITE(6,311)TINF,FITBES

311 FORMAT(1X,//1X,'T(INFINITY)=',F10.4,3X,'FITCOEF=',E10.4,3X) 339 YPLOT(I-ITMP)= ALOG(TINF-TPYROM(II,I))

XPLOT(I-ITMP)=TIME(II,I) GO TO 312

312 CONTINUE NDREAL=ND IF(K .EQ. 6 .OR. K .EQ. 7)ND=ND-ITMP NDTMP=ND IF(II .GE. 2) LC=77 IF(LC .EQ. 77)GO TO 316 IFRAME=IFRAME+1 IF(IFRAME .EQ. 1)GO TO 316 IF(MOD(IFRAME,2) .EQ. 0) GO TO 317 CALL PLOT(O,-(YD+1.0),-3) GO TO 316

317 CALL PLOT(-(XD+2.0),YD+1.0,-3) 316 CALL GENPLT(XPLOT,YPLOT, ND,LC,COMNT, NCT,XS,XF,YS,YF,XD,YD)

ND=NDREAL IF(K .NE. 6)GO TO 321 CALL REGLNR(YPLGr,XPLOT,

1 NDTMP,SLO,YINT,FITE) EACT(II)=1.986*(-SLO) FREQF(II)= EXP(YINT) t-rn.ITE(6,324)II,EACT(II) ,FREQF(II)

324 FORMAT(1X,l/1X, 1 THE ACTIVATION ENERGY FOR RUN1 ,I2,'=',E10.4, 1 1 CALORIES 1 ,3X, 1 THE FREQUENCY FACTOR=',E10.4) DIV=l.OE-03/90.0 TDIV~DIV DO 327 I=1,90 YPLOT(I)=SLO*TDIV + Y!NT XPLOT(I)"=TDIV

327 TDIV=TDIV + DIV GO TO 307

321 CONTINUE

A-31

MSDG699 MSDG700 MSDG701 MSDG702 MSDG703 MS0G704 MSDG705 MSOG706 MSDG707 MSOG708 MSDG709 MSDG710 MSDG711 MSDG712 MSDG713 MSDG714 MSDG715 MS0G716 MSOG717 MS0G718 M5DG719 MSDG720 MS0G721 MSDG722 MSOG723 MSOG724 MSDG725 MS0G726 MSDG727 MSDG728 MSDG729 MS0G730 . MSDG731 MSDG732 MSDG733 MSDG734 MSDG735 MSDG736 MSDG737 MSDG738 MSDG139 MSDG740 MSDG741 MSDG742 MSDG743 MS0G744 MSDG745 MSDG746 MSDG747 MS0G748 MS0G749 MSDG750 MSDG751 MSDG752

-

...

....... ,,.-....

IP(K .NE. 7)GO TO 322 CALL REGLNR(YPLOI'.XPLOT.NDTMP.TSLOP,TINTCP,FIT) HEATCO(II) ••TSLOP•0.01957 TMPZER(II) ~-EXP(TINTCP) + TINF ijRITE(6,Jq1)II,HEATCO(II) ,TMPZER(Il) • 341 FORMAT(1X,//1X,'THE HEAT TRANSFER COEFFICIENT, H, FOR RUN'• 1 1X,I2,1X,'=',E10.4,'CALORIES/CM**2-MIN-DEG K', /1X, 2 'AND THE TIME(O) TEMPE!t\TURE= 1 ,E10.4, 1 DEGREES C') DIV2TIME(II,ND)/90.0 TOIV=DIV DO 3113 I=1,90 . YPLOT(I)=TSLOP*TDIV + TINTCP • ~ XPLOT (I) =TOIV 343 TDIV=TDIV + DIV

GO TO 307 322 CONTINUE

IF(K .EQ. 1 .OR. K .EQ. 4)GO TO 355 DIV=TIME(II,ND)/90.0 TDIV=DIV IF(K .EQ. S)GO TO 303 DO 318 I=l,90 YPLOT(I)=COEFA*(1.9-EXP(-COEFB*TDIV)) +COEFYO XPLOT(I)=TDIV ·318 TDIV=TDIV+DIV GO TO 307

303 DO 313 I=1,90 YPLOT(I)=COTOTA(II)+COTOTB(II)*TDIV+COTCTC(II)*rDIV**2.0 XPLOT(I)=TDIV TDIV=TDIV+DIV 313 CONTINUE

307 CONTINUE NDIV=90

355 IF(K .EQ. 1 .OR. K .EQ. 4)NDIV=ND LC=77 COMNT (239) =FLIP

.. / CALL GENPLT(XPLOT,YPLOT,NDIV,LC,COMNT,NCT,XS,XF,YS,YF,XD,YD) 305 CONTINUE

K=K+1 IF(K .LE. 7) GO TO 300

MSDG753 MSOG754 MSOG755 MSDG756 MSDG757 MSOG758 MSDG759 MSDG760 MSDG761 MSDG762 MS0G763 MSDG764 MSDG765 MS0G766 MS0G767 MSDG768 MSDG769 MSDG770 MS0G771 MSDG772 MSDG773 MSDG774 MSOG775 MSDG776 MSDG777 MSDG778 MSDG779 MSDG780 MS0G781 MSDG782 MSDG783 MSDG784 MSDG785 MSDG786 MSDG787 MSDG788 MSDG789 MSDG790 MSDG791 MSDG792

C C C C C

THIS SECTION READS AXES AND COMMENT CARDS FOR TWO PLOTS BASED ON THEMSDG793 CALIBRATION DATA. THE FIRST IS TOTAL FLOW(CC/MIN.) VS. PRESSURE MSDG794 IN THE IR CELL.AND THE SECOND PLOT ISC02 CONCENTRATION VS. ABSORB- MSDG795 ANCE.

MSDG796 K=1 -~40 LC=-1 ~ CALL RDPLOT(COMNT,NCT) COMNT(239)=BLANK

DO 360 II=1,3 IF(K .EQ. 2 .AND. II .EQ. J)GO TO 360 NTR=NTRAN (II) IF(II .EQ. 3)NTR=17 DO 350 I=1,NT~

A-32

MSDG797 MSDG798 MSDG799 MSDGSOO MS0G801 MSDG802 MSDG803 MSDG804 MSDGSOS MSDG806

i I ~

.,_. ·~,-~· -·-~·'·'·,.·,;·-···"·"'-·.,,,1,;~. - -... ,, /,,;·· ,;_ :~. - .. ;. -· -:...~-· . t.

C TEMPERATURE ~ND PRESSURE. C

WRITE(6,372) .)372 FORMAT (1B1, 1X) ,a,i WRITE(6,370)

370 FORMAT(1X,2( 1 PYROMETER READING 1 ,SX, 1 REAL TEMP. (DEG C)',5X)) TEMP•95.0 DO 365 I111, 25 TEMP•TEMP+S.O RLTEMP•TOM*TEMP+TOB TMP•TEMP+130.0 RLTMP=TOM*TMP+TOB

~ WRITE(6,375)TEMP,RLTEMP,TMP,RLTMP '375 FORMAT(1X, 2 (3X,E10.4, 12X.E10.4 ,9X)) 365 CONTINUE

PRESS=1.9 WRITE(6,385)

385 FORMAT(1X,2('REACTOR METER',SX,'REAL RXTR PRESS.•,sx, 1 'REAL IR PRESS.', SX)) 00 380 !=1,35 PRESS=PRESS+0.1 RLRCPR=POM*PRESS+POB RLIRPR=POCIRM•PRESS+POCIRB PRS=PRESS+3.6 RLRCPS=POM*PRS+POB RLIRPS=POCIRM*PRS+POCIRB WRITE(6,390)PRESS,RLRCPR,RLIRPR,PRS,RLRCPS,RLIRPS

390 FORMAT(1X,2(1X,E10.4,10X,E10.4,10X,E10.4,SX)) 380 CONTINUE 391 CONTINUE

END SUBROUTINE PCBFND(PRT,YYC02,0UM02,0UMC02 ,PACTCB) COMMON POM,POB,POCIRM,POCIRB,TOM,TOB,CONOM,CONOB COMMON FLOWA,FLOWB,FLOWC DIMENSION D0M02(40) ,OUMC02(40) 4 DUMH20(40) PACTCB=0.2*PRT

10 PACTC2=YYC02*PACTCB PACT02=PACTCB-PACTC2

f DO 20 I=1,27 IF(D0MC02(I) .EQ. PACTC2)GO TO 40 IF(DUMC02(I) .GT. PACTC2)GO TO 30

20 CONTINUE 30 IF(I .EQ. 1)POBC02=0.0

IF(I .EQ. 1)GO TO 50 FRACT= (PACTC2-D.UMC02 {I-1)) / (DUMC02 (I)-DUMC02 (I-1)) POBC02=DUM02 (I-·1) + FRACT* (DUM02 (I) •ODM02 (I-1))

~- GO TO 50 . f ) 40 POBC02=DUM02 (I)

50 CONTINUE P0BTST=(PACT02+POBC02-P0CIRB)/P0CIRM APROCH=(PRT-POBTST)/PRT IF (ABS(APROCH) .LT. 0.002). GO TO 100 PACTCB={1.0+0.2*APROCH)*PACTCB GO TO 10 ,

A-3ti

MSDG861 MSDG862 MSDG863 MSDG86Q MSDG865 MSOG866 MS0G867 MSDG868 MSOG869 MSDG870 MSDG871 MSOG872 MSDG873 MSDG874 MSDG875 MSDG876 MSOG877 MSDGB78 MSDG879 MS0G880 MSDG881 MSDG882 M~DG883 MSDG884 MSDG885 MSOG886 MSDG887 MSDG888 MSOG889 MSDG890 MSDG891 PCBF 1 PCBF 2 PCBF 3 PCBF 4 PC:9F 5 PCBF 6 ·pcsF 7 PCBF 8 PCBF" 9 PCBF 10 PCBF 11 PC!F" 12 PCBF 13 PCBF 14 PCBF 15 PCBF 16 PCBF 17 PCBF 18 PCBF 19 PCBF 20 PCBF 21 PCBF 22 PCBF 23

I.

'

100 CONTINUE RETURN END SUBROUTINE PFIND(PRT,C02C2,0UM02,DOMC02,00MH20,PACT2) COMMON POM,POB,POCIRM,POCIRB,TOM,TOB,CONOM,CONOB COMMON FLOWA,FLOWB,FU>WC DIMENSION DUM02(40) ,DUMC02(40),DOMH20(~0) PACT2=0.2*PRT . 10 yco22~co2c2•160.0•20.397/PACT2 IF(YC022 .LT. O.O)YC022=0.0 IF(YC022 .GT. 0.56) GO TO 20

r GO TO 30 ~ 20 PACT2=1.05*PACT2

GO TO 10 30 YH202=0.8*YC022

Y022=1.0-1.8*YC022 PACTC2=YC022*PACT2 PACTHO=YH202*PACT2 PACT02=Y022*PACT2 DO 40 I=l,27 IF(DUMC02(1) .GT. IF(DUMC02(I} .EQ. IF(OUMC02(IJ .GT.

40 CONTINUE

P~CTC2)GO TO 65 PACTC2JGO TO 60 PACTC2)GO TO 50

50 FRACT~(PACTC2-DUMC02(I-1))/(DUMC02(I)-DUMC02(I-1)) POBC02=DUM02(I-1) + FRACT*(DUM02(I}-D0M02(I-1)) GO TO 70 60 P0BC02=DUM02(I)

GO TO 70 65 P0BC02=0.0 70 DO 75 !=1,29

IF (DUMH20 ( 1) IF (DUMH20 (I) IF (DUMH20 (I)

75 CONTINUE

.GT. PACTHO)GO TO 92

.EQ. PACTHO)GO TO 90

.GT. PACTHO)GO TO 80

80 FRACT=(PACTHO-DUMH20(I-1))/(DUMH20(I)-DUMH20(I-1)) POBH20=D0M02(I-1) + FRACT*(OUM02(I)-DUM02(I-1)) GO TO 95 / 90 POBH20=DUM02 (I) · GO TO 95

C

92 POBH20=0.0 95 POBTST=(PACT02+POBC02+P0BH20-P0CIRB)/POCIRM APROCH=(PRT-POBTST)/PRT

IF (ABS (APROCH) .LT. 0.002) GO TO 100 PACT2=(1.0+0.2*APROCB)*PACT2 GO TO 10

110 0 CONTINUE .J RETURN

END FUNCTION CDCON(ABSOB) COMMON POM,?OB,POCIRM,POCIRB,TOM,TOB,CONOM,CONOB

10 CDCON=CONOM*ABSOB+ CONOB RETURN

A-35

PCBF 24 PCBF 25 PCBF 26 PFND 1 PFND 2 PFND 3 PFNO Q PFND 5 PFNO 6 PFND 7 PFND 8 PFND 9 PFND 10 PFND 11 PFND 12 PFND 13 PFNO 14 PFND 15 PFND 16 PFND 17 PFND 18 PFND 19 PFND 20 PFND 21 PFND 22 PFND 23 PFND 24 PFND 25 PFNO 26 PFND 27 PFND 28 PFND 29 PFND 30 PFND 31 PFND 32 PFND 33 PFND 34 PFND 35 PFND 36 PFND 37 PFND 38 PFND 39 PFND 40 PFND 41 PFND 41 PFND 43 PFN1:> '14 PFND 45 PFND 46 CDCN 1 CDCN 2 CDCN 3 CDCN Li CDCN 5

....

.....

I -C C r, •

C t

~' C C C C C C

C C C C C C

'

END FUNCTION FLOW (PRES) COMMON POM,POB,POCIRM,POCIRB,TOM,TOB,CONOM,CONOB COMMON FLOWA,FLOWB,FLOWC FLOW•FLOWA+ FLOWB*PRES+ FLOWC*PRES**2.0 RETURN END SOBROOTINE QUADFl'(YQ,XQ,NDP,IORIGN, A, B, C,FIT) DIMENSION YQ(QO),XQ(,O) ,AA(10),SIG(40)

I0RIGN=2 IF THE SOLUTION IS TO BE FORCED TH~OUGH T6E ORIGIN,0,0 FITS DATA TO THE EQN. Y=A + B*X + c•x••2 IF(IORIGN .NE. 2) GO TO 10 NDP:NOP+1 KQ (NOP) =O. 0 YQ(NDP)~o.o

10 CONTINUE DO 20 I=1,NDP

20 SIG(I) =0.0 MOD=O NORD=2 CALL POLFIT(XQ,YQ,SIG,NDP,NORD,MOD,AA,CHSQ) A=AA( 1) B~AA (2) C=AA (3) SUM=O.O DO 30 I=1,NDP DIFF=YQ(I)-A-B*XQ(!)-C*XQ(I)**2.0 SUM=SUM+ (ABS(DIFF))**2.0

30 CONTINUE FIT=SQRT(SUM)/(NDP-3) IF(IORIGN .EQ. 2) NDP=NDP-1 RETURN END SUBROUTINE POLFIT(X,Y,SIGMAY,NPTS,NORDER,MODE,A,CHISQR)

CDCN 6 FLOW 1 FLOW 2 FLOW 3 FLOW 4 FLOW 5 FLOW 6 QDFT 1 QDFT 2 QDFT 3 QDFT 4 QDFT 5 QDFT 6 QDFT 7 QDFT 8 QDFT 9 QDFT 10 QDFT 11 QDFT 12 QDFT 13 QDFT 14 QDFT 15 QDFT 16 QDFT 17 QDFT 18 QDFT 19 QDFT 20 QDFT 21 QDFT 22 QDFT 23 QDFT 24 QDFT 25 QDFT 26 QDFT 27 QDFT 28 PLFr 1 PLFT 2 PLFT 3 SUBPROGRAM TO FIT PAIRS OF DATA POINTS TO A LEAST SQUARES POLYNOMIPLFT 4 UP TO ORDER 10. MAXIMUM NUMBER OF PAIRS OF DATA POINTS IS LIMITED PLFT 5 ONLY BY MAIN CALLING PROGRAM. THE ARGUMENTS ARE AS FOLLOWS. PLFT 6

X = ARRAY NAME OF INDEPENDENT VARIABLE Y = ARRAY NAME OF DEPENDENT VARIABLE SIGMAY = ARRAY NAME FOR STANDARD DEVIATIONS ABOUT 'Y' NPTS = NUMBER OF PAIRS OF DATA POINTS NORDER= ORDER OF POLYNOMIAL TO BE FITTED TO DATA MODE• DETERMINES METHOD OF WEIGHTING LEAST-SQUARES FIT +1 (INSTRUM!:NTAL) WE!GHT(I)=1./SIGMA(Y)**2

A-36

PLFT 7 PLFT 8 PLFT 9 PLFT 10 PLFT 11 PLFT 12 PLFT 13 PLFT 14 PLFT 15 PLFT 16 PLFT 17 PLFT 18 PLFT 19

...

.....

-- ,.,_,., .,.,• ...... ' ,,,.,,. •-.-,. - ., ....

~

C C C C C C

t C C C

,,! i

C C

0 (NO WEIGHTING) WEIGHT(I)•1. -1 (STATISTICAL) WEIGBT(I)•1./Y(I)

A - ARRAY NAME FOR COEFFICIENTS OF POLYNOMIAL

CHISQR - REDUCED CHI SQUARE FOR FIT

CALLING PROGRAM SHOULD DIMENSION 'X', 'Y', AND 'SIGMAY' AT LEAST 'NPTS', AND 'A' AS 10.

DATA ARE FIT TO A POLYNOMIAL OF SPECIFIED ORDER, 'NORDER'.

DOUBLE PRECISION SUMX(19),SUMY(10),ARRAY(10,10) ,XTERM,YTERM, 1CHISQ

DIMENSION X(1) ,Y(1) ,SIGMAY(1) ,A(1)

ACCUMULATE WEIGHl'ED SUMS

NTERMS=NORDER+1 NMAX=2*NTERMS-1 DO 1 N=1,NMAX

1 SUMX(N)=O. DO 2 J=1,NTERMS

2 SUMY(J)=O. CHISQ=O. DO 11 I=1,NPTS XI=X (I) YI=Y (I) IF(MODE)3,6,7

3 IF(YI)S,6,11 4 WEIGHT=1./YI

GO TO 8 5 WEIGHT=1./(-YI)

GO TO 8 6 WEIGHT=1.

GO TO 8 7 WEIGHT=1./SIGMAY(I)**2 8 XTERM=WEIGHT

DO 9 N=1,NMAX SUMX(N)=SUMX(N)+XTERM

9 XTERM=XTERM*XI YTERM=WEIGHT*YI 00 10 N=1,NTERMS SUMY(N)=SUMY(N)+YTERM

10 YTERM=YTERM*XI CHISQ=CHISQ+WEIGHT*YI*YI

11 CONTINUE

CONSTRUCT MATRICES AND CALCULATE COEFFICIENTS

DO 12 J=1,NTERMS DO 12 K=1,NTERMS N=J+K-1

12 ARRAY(J,K)•SUMX(N)

'A-37

PLP'T 20 PLFT 21 PLFT 22 PLFT 23 PLFT 24 PLFT 25 PLFT 26 PLFT 27 PLFT 28 PLFT 29 PLFT 30 PLFT 31 PLFT 32 PLFT 33 PLFT 34 PLFT 35 PLFT 36 PLFT 37 PLFT 38 PLFT 39 PLFT 40 PLFT 41 PLFT 42 PLFT 43 PLFT 44 PLFT 45 PLFT 46 PLFT 47 PLFT 48 PLFT 49 PLFT 50 PLFT 51 PLFT 52 PLFT 53 PLFT 54 PLFT 55 PLFT 56 PLFT 57 PLFT 58 PLFT 59 PLFT 60 PLFT 61 PLFT 62 PLFT 63 PLFT 64 PLFT 65 PLFT 66 PLFT 67 PLFT 68 PLFT 69 PLFT 70 PLFT 71 PLFT 72 PLFT 73

- ~~~ --~-- ----- --~ " • -:_-.- ·,:)17

\

. '

• ' '

DELTA•DETERM(ARRAY,NTERMS) IF(DELTA) 15,13,15

13 CHISQR•O. DO 1Q J•1,NTERMS

•. 14 A(J)•O. RETURN

15 DO 18 L•1,NTERMS DO 17 J=1, NTERMS DO 16 K•1,NTERMS , N:sJ+K-1

16 ARRAY(J,K)•SUMX(N)

. 17 ARRAY(J,L) =SUMY(J)

. 18 A(L)=DETERM(ARRAY,NTERMS)/DELTA

C C

C

C C C C C C C C C C C

''\ C C C

'

CALCULATE CHI SQUARE

DO 19 J=1,NTERMS CHISQ=CHISQ-2.*A(J)*SUMY(J) DO 19 K=1,NTERMS N=J+K-1

19 CHISQ=CHISQ+A(J)*A(K)*SUMX(N) FREE=NPTS-NTERMS CHISQR=CHISQ/FREE RETURN END

FUNCTION DETERM(ARRAY,NORDER)

FUNCTION SUBPROGRAM TO RETURN THE VALUE OF A DETERMINANT

CAUTION - THIS SUBPROGRAM DESTROYS THE INPUT MATRIX ARRAY

ARGUMENTS ARE AS FOLLOWS.

ARRAY - MATRIX WHOSE DETERMINANT IS SOUGHT, MAY BE DIMENSIONED BY CALi.ING PROGRAM TO A MAXIMUM OF 10 X 1 O.

NORDER - ORDER OF DETERMINANT, (DEGREE OF MATRIX) •

DOUBLE PRECISION ARRAY(10,10),SAVE DETERM=1. DO 8 K=1,NORDER

INTERCHANGE COLUMNS IF DIAGONAL IS ZERO

IF(ARRAY(K,K))S,1,5 1 DO 2 J=K,NORDER

IF(ARRAY(K,J))3,2,3 2 CONTINUE

OETERM=O. RETURN

3 DO 4 I=K,NORDER SAVE•ARRAY (I,J)

'

A-38

PLFT 74 PLFT 75 PLFT 76 PLFT 77 PLFT 78 PLFT 79 PLFT 80 PLFT 81 PLFT 82 PLFT 83 PLFT 84 PLFT 85 PLFT 86 PLFT 87 PLFT 88 PLFT 89 PLFT 90 PLFT 91 PLFT 92 PLFT 93 PLFT 94 PLFT 95 PLFT 96 PLFT 97 PLFT 98 PLFT 99 OTRM 1 DTRM 2 DTRM 3 DTRM 4 DTRM 5 DTRM 6 DTRM 7 DTRM 8 OTRM 9 OTRM 10 DTRM 11 DTRM 12 OTRM 13 OTRM 14 DTRM 15 DTRM 16 DTRM 17 DTRM 18 DTRM 19 DTRM 20 OTRM 21 DTRM 22 OTRM 23 DTRM 24 DTRM 25 DTRM 26 OTRM 27 DTRM 28

'

\

-_ ... ,-.. ... -.- -~:..... .. ,.. .. ~.!.J.·:-;.::: ·:~

. '

' ... • •

C C C C C C C C

C

o, ·c

C

ARRAY (I,J) •ARRAY (I, K) q ARRAY (I, K) •SAVE

D!T!RM• .. OET!RM

SUBTRACT ROW K FROM LOWER ROWS TO GET A DIAGONAL MATRIX

5 DETERM=DETERM*ARkAY(K,K) IF(K•NORDER)6,8,8

6 K1sK+1 DO 7 I=K1,NOROER DO 7 J=K1,NORDER

7 ARRAY(I,J)=ARRAY(I,J)-ARRAY(I,K)*ARRAY(K,J)/ARRAY(K,K) 8 CONTINUE

RETURN END SUBROUTINE RDPLOT(COMNT,NCT) DIMENSION COMNT(240) DATA END/'END •/ DO 10 I=1,10 N= (I-1) •20+1 NN=N+19 READ (5, 15) (COMNT (NNI), NNI=N, NN) IF( COMNT(N) .EQ. END) GO TO 20

15 FORMAT(20A4) 10 CONTINUE 20 NCT=I-1

RETURN END SUBROUTINE REGLNR( Y,X,NDP,SLOPE,B,FIT) REGLNR PERFORMS A LINEAR REGRESSION ON Y-X DATA PAIRS AND RETURNS

DTRM 29 DTRM 30 DTRM 31 DTRM 32 OTRM 33 D'l'RM 3'­DTRM 35 DTRM 36 DTRM 37 OTRM 38 OTRM 39 OTRM 40 OTRM 41 DTRM 42 OTRM 113 RDPL 1 ROPL 2 RDPL 3 ROPL 4 ROPL 5 RDPL 6 RDPL 7 RDPL 8 RDPL 9 RDPL 10 RDPL 11 RDPL 12 RDPL 13 RGLN 1 RGLN 2 RGLN 3

THE SLOPE,INTERCEPT(B), AND DEGREE OF FIT TO THE MAIN PROGRAM. FORRGLN 4 RGLN 5

FIT=+ OR - 1.0, THE FIT IS PERFECT. FOR FIT=O.O A STRAIGHT LINE RGLN 6 RGLN 7

DOES NOT FIT THE DATA. REGLNR IS NOW DIMENSIONED FOR 50 DATA PAIRSRGLN 8 RGLN 9

DIMENSION X(50},Y(50) XSUM=O.O YSUM=O.O DO 20 I=1,NDP YSUM=YSUM + Y (I)

20 XSUM=XSUM + X(I)

YBAR=YSUM/NDP XBAR=XSUM/NDP

SLOPEN=O.O SLOPED=O.O FITRMY=O.O

DO 30 II=1,NDP

XDIFF=X(II) - XBAR

A-39

RGLN 10 RGLN 11 RGLN 12 RGLN 13 RGLN 111 RGLN 15 RGLN 16 RGLN 11 RGLN 18 RGLN 19 RGLN 20 RGLN 21 RGLN 22 RGLN 23 RGLN 211 RGLN 25 RGLN 26

'

" ~~--._-:-:., ,-,--,, .. -. ~,c-,--, ,S -.,, ."C""'.,, ,-,-,, .-.,., -. ---.• -- ,--- ---, .. - ,--·------- -- .---·- -. ...

. ,.~ •. ,,...,,l .,,.,.~ .. ,, ..• ___ ,- ... _ . -'-' ,.,__ .. .._ - ~

. "

• ... •

C

11 C

C

• C

C

C

C

:6) C C C C C C

30

YDIFFsY(II) - YBAR

SLOPEN2 SLOPEN +(XOIFF • YOIFF) SLOPED= SLOPED+ XDIFF**2 FITRMY=- FITRMY + Y0IFF**2 CONTINUE

SLOPE= SLOPEN/SLOPED

FITN= SLOPEN FITRMX= SLOPED FITD= SQRT(FITRMX• FITRMY)

FIT=- FITN/FITD

B= YBAR - SLOPE* XBAR

RETURN END FUNCTION FOC02 (FC02) FOC02=(1.484•0.74/1.00) *FC02 RETURN END FUNCTION F002 (F02) F002=(1.38*1.00/1.00)*F02 RETURN END FUNCTION PORT (PRT) COMMON POM,POB,POCIRM,POCIRB PORT= POM*PRT + POB RETURN ENO FUNCTION POIRRT (PRT) COMMON POM,POB,POCIRM,POCIRB POIRRT=POCIRM*PRT + POCIRB RETURN END FUNCTION TOPYR (TPYR) COMMON POM,POB,POCIRM,POCIRB,TOM,TOB TOPYR=TOM*TPYR + TOB RETURN ENO

RGLN 27 RGLN 28 RGLN 29 RGLN 30 RGLN 31 RGLN 32 RGLN 33 RGLN 3" RGLN 35 RGLN 36 RGLN 37 RGLN 38 RGLN 39 RGLN 40 RGLN 41 RGLN 42 RGLN 43 RGLN 44 RGLN 45 FOC2 1 FOC2 2 FOC2 3 FOC2 4 F002 1 F002 2 .· F002 3 F002 4 PORT 1 PORT 2 PORT 3 PORT 4 PORT 5 PORR 1 PORR 2 PORR 3 PORR 4 PORR 5 1'0PY 1 TOPY 2 1'0PY 3 TOPY 4 1'0PY 5 TOPY 6

SUBROUTINE GENPLT(X,Y,NPTS,LC,COMNT,NC,XSCL,XFDIV,YSCL,YFDIV,XD,YDGNPL 1 2) GNPL 2

THIS SUBROUTINE WILL PLOT X,Y DATA IN A LINEAR FORMAT SCALED TO THE ARRAY LIMITS

DIMENSION X ANDY IN CALLING PROGRAM AT LEAST NPTS+2 THE ARRARY COMNT SHOULD BE DIMENSION FOR AT LEAT 240 IN THE CALLING PROGRAM

A-QO

GNPL 3 GNPL 4 GNPL 5 GNPL 6 GNPL 7 GNPL 8 GNPL 9 GNPL 10· GNPL 11

. l

• ...

C C C

,.

~ C C C C

C C C

r

\t C

C C

DEFAULT FOR PLOT DIMENSIONS ARE 8.5 X 11

A 77 IN THE LC INPUT OVERIAYS PLOTS.

'LC' LINE CONTROL VALUES LC .GT. 0---LINE AND SYMBOLS LC .!Q. O•--LINE ONLY LC .LT. 0---SYMBOLS ONLY

THE ABSOLU'l't VALUE OF LC DETERMINES THE SPACING OF THE SYMBOLS, IF LC EQUALS 4 EVERY FOURTH SYMBOL IS PLOTED

'PC' IS THE PC = 0 PC = 1 PC = 2 PC = 3

PLOT CONTROL CHARACTER PRODUCES A LINEAR PLOT PRODUCES A SEMILOG PLOT, PRODUCES A LOG-LOG PLOT PRODUCES A SEMILOG PLOT,

LINEAR IN X

LINEAR IN Y

DIMENSION X(1) ,Y(1) ,COMNT(240) ,A(5) ,B(5) ,ISYM(15) ,0(3) ,C(5) INTEGER PC REAL*8 DAT1, TIME DATA C/ 1 LIN ','SLGY','LGLG','SLGX','SMOT'/ DATA DXD,DYD,Z,ONE,HLF,XH/8.5,11.,1.0E-10,1~0,0.5,0.140/ DATA ISYM/11,14,1,2,3,4,5,6,7,8,9,10,00,12,13/ DATA A,BIS•0.0,5•0.0/, BLANK/' 'I DATA FLIP /'FLIP'/

MAXIMUM PLOT DIMENSIONS ARE 120 X 28 INCHES

IF ( (LC .NE. 77) .AND. (COMNT (239) • EQ. FLIP)) LC = - 1 N=NPTS T = COMNT ( 240) PC= 0 00 20 !=1,3 IF(T .EQ. C(I+1)) PC = I

20 CONTINUE IF(LC .EQ. 77) PC= SPC

NEGATIVE VALUES ARE NOT ALLOWED FOR LOG AXIS VARIABLES NEGATIVE VALUES AARE SET EQUAL TO +0.0

ZERO= 1.0E-50 DO fJ2 I=1, N IF ( (PC .GE. 2) .AND. (X (I) IF ( {Y (I) • LT. ZERO) .AND.

.LT. ZERO)) X(I) = ZERO

& Y (I) = ZERO 42 CONTINUE

IF (LC • EQ. 77) IF ( (XO • LT. Z) IF ( (YD .LT. Z) IF (XD • LT. Z) IF (YD .LT. Z)

GO TO 10 • OR. (XO ~ GT. .OR. (YD .GT. XD=DXD YD:=DYD

((PC .EQ. 1) .OR. (PC .EQ. 2)))

120. 0)) 36. 0))

XD = DXD YD =DYD

DRAW A BOX AROUND THE PLOT PERIMETER WITH A* AT EACH CORNER

', ..... ~ -,. ' ,- '; - . , -! .. '/ .' .. "if ;•,I •' ~ ; "

GNPL 12 GNPL 13 GNPL 14 GNPL 15 GNPL 16 GNPL 17 . GNPL 18 GNPL 19 GNPL ;20 GNPL 21

I

GNPL 22 GNPL 23 GNPL 2ij GNPL 25 GNPL 26 GNPL 27 GNPL 28 GNPL 29 GNPL 30 GNPL 31 GNPL 32 GNPL 33 GNPL 34 GNPL 35 GNPL 36 GNPL 37 GNPL 38 GNPL 39 GNPL 40 GNPL 41 GNPL 42 GNPL 43 GNPL fJ4 GNPL 45 GNPL 46 GNPL 47 GNPL 48 GNPL 49 GNPL 50 GNI'L 51 GNPL 52 GNPL 53 GNPL 5ti GNPL 55 GNPL 56 GNPL 57 GNPL 58 GNPL 59 GNPL 60 GNPL 61 GNPL 62 GNPL 63 GNPL 64 GNPL 65

'

C

C r ,~ C C C C C C C

,I)' C C

CALL PLOT (Z, Z,• 3) A(2) • XO A(3) • XO B(3) • YD B(4) a YO DO 1 I•1,S CALL PLOT(A(I),B(I) ,2) CALL SYMBOL(A(I),B(I),XH,ISYM(12),Z,-1)

1 CONTINUE

SCALE DATA

AXLX = XO 7' 2.5 AXLY = YO - 4.0 N = NPTS CALL PLOT(2.0,3.0,-3)

XSCL AND YSCL_FOR LOG AXIS INPUT ARE THE NUMBER OF CYCLES IN THE PROGRAM.''r\EY ARE CONVERTED TO THE NUMBER OF CYCLES/IN

LIMIT ON THE MAXiMoM NUMBER OF CYCLES PER INCH IS rwo IF((XSCL .LT. Z) .AND. (PC .LE. 1)) CALL SCALE(X,AXLX,N,1) IF((XSCL .LT. Z) .AND. (PC .GE. 2)) CALL SCALG(X,AXLX,N,1) IF(PC .GE. 2) XSCL = XSCL/AXLX IF(XSCL .GT. Z) X(N+1) = XFOIV IF(XSCL .GT. Z) X(N+2) = XSCL IF( (PC .GE. 2) .ANO. (X(N+-2) .GT. 2.0)) WRITE(6,24)

24 FORMAT(1H1/// 1 PLOT BYPASSED DUE TO LOG AXIS LIMIT OF NO', & ' MORE THAN TWO CYCLES PER INCH----CHECK INPUT DATA$$$')

GNPL 66 GNPL 67 GNPL 68 GNPL 69 G?1PL 70 GNPL 71 GNPL 72 GNPL 73 GNPL 7fl GNPL 75 GNPL 76 GNPL 77 GNPL 78 GNPL 79 GNPL 80 GNPL 81 GNPL 82 GNPL 83 GNPL Sta. GNPL 85 GNPL 86 GNPL 87 GNPL 88 GNPL 89 GNPL 90 GNPL 91 GNPL 92 GNPL 93 GNPL 94 GNPL 95 GNPL 96 GNPL 97 GNPL 98 IF ( (PC .GE. 2) .ANO. (X (N'+2) .GT. 2. 0)) GO TO 14

IF((YSCL .LT. Z) .ANO. ((PC .EQ. 0) .OR. (PC .EQ. 3))) CALL SCALEGNPL 99 & (Y,AXLY,N, 1) IF((YSCL .LT. Z) .AND. ((PC .EQ. 1) .OR. (PC .EQ. 2)))

& (Y,AXLY,N,1J IF ( (PC .EQ. 1) .OR. (PC .EQ. 2)) YSCL = YSC::L/AXLY IF (YSCL .GT. Z) Y(N+1) = YFDIV

GNPL100 CALL SCALGGNPL101

GNPL102 GNPL103 GNPL104 GNPL105 IF(YSCL .GT. Z) Y(N+2) = YSCL

IF(((PC .EQ. 1) .OR. (PC .EQ. 2)) .ANO. (Y(N +2) .GT. 2.0) ) GNPL106 GNPL107 GNPL108 GNPL109

& WRITE (6, 24) IF(((PC .EQ. 1) .OR. (PC .EQ. 2)) .~ND. (Y(N +2) .G'r. 2.0) )

& GO TO 1LJ IF ( (PC .GE. 2) .ANO. IF (( (PC • EQ. 1) .OR.

& Y (N+ 1) = ZERO

(X(N+1) .LT. ZERO)) X(N+1) = ZERO (PC .EQ. 2) )· .AND. (Y (N+1) .LT .. ZERO))

SAVE·THE SCALE FACTORS FROM THE LAST PLOT

SPC = PC SXF = X (N+1) SYF = Y (N+1J SXS = X (N+2)

A-42

GNPL110 GNPL111 GNPL112 GNPL113 GNPL114 GNPL115 GNPL116 GNPL117 GNPL118 GNPL119

--~---.. .. _·.;J,,_:,

'

I

,.: .. , t ~t

ii

' ' i I

j '

•• ;:.;a -'.-.=,-:• • ·-··-< ~-- ·-·---.--~~--~---·

I

SYS • Y (N+2) •. SXD •XO SYD• YD NCS s NC LCS • LC

11 IF (NPTS • EQ. 0) N • NPTS IF(LC .NE. 77) X(N+1) s SXP' Y (N+1) :1 Sff X(N+2) = SXS Y (N+2) = SYS PC :i SPC GO TO 12

13 CONTINUE

NPTS = N

GO TO 13

C C DRAW AXIS---COMPLETE TWO OPEN SIDES WITH LINES

C C C IF NUMBER OF COMMENTS IS .LE. TOO BLANK OUT ARRAYS

C IF(NC .GT. OJ GO TO 4 DO 5 I=1., 58 COMNT(I) = BLANK

5 CONTINUE 4 CONTINUE

C C THE FIRST TWO COMMENT CARDS CONTAIN THE AXIS INFORMATION C THESE CARDS ARE LIMITED TO 20 CHARACTERS EACH

C C REGULAR COMMENT CARDS MAY CONTAIN UP TO 80 CHARACTERS

C

11~

,,

IF(PC .NE. 0) GO TO 21 CALL AXIS(Z,Z,COMNT( 1),-20,AXLX,Z,X(N+1),X{N+2)) CALL AXIS(Z,Z,COMNT( 21), +20,AXLY,90.0,Y(N+1) ,Y(N+2))

GO TO 30 21 IF(PC .NE. 1) GO TO 22

CALL AXIS(Z,Z,COMNT( 1) ,-20,AXLX,Z,X(N+1),X(N+2)) CALL LGAXS(Z,Z,COMNT( 21), +20,AXLY,90.0,Y(N+1) ,Y(N+2))

GO TO 30 22 IF(PC .NE. 2) GO TO 23

CALL LGAXS(Z,Z,COMNT( 1),•20,AXLX,Z,X(N+1),X(N+2)) CALL LGAXS(Z,Z,COMNT( 21), +20,AXLY,90.0,Y(N+1) ,Y(N+2))

GO TO 30 23 CONTINUE

CALL LGAXS(z,z.coMNT( 1) ,-20,AXLX,Z,X(N+1) ,X(N+2)) CALL AXIS(Z,Z,COMNT( 21), +20,AXLY,90.0,Y(N+1) ,Y(N+2))

30 CONTINUE . CALL PLOT(AXLX,Z,3) CALL PLOT(AXLX,AXLY,2) CALL PLOT(Z,AXLY,2)

12 CONTINUE C C CHECK FOR PLOT OVERFLOW AND UNDERFLOW AFTER FIRST DATA SET

. ,,, -·~ .. ' . . . ' ' ,,;, .... -

GNPL120 GNPL121 GNPL122 GNPL123 GNPL12lt GNPL125 GNPL126 GNPL127 GNPL128 GNPL129 GNPL130 GNPL131 GNPL132 GNPt,133 GNPL13fl GNPL135 GNPL136 GNPL137 GNPL138 GNPL139 GNPL140 GNPL141 GNPL142 GNPL143 GNPL144 GNPL145 GNPt146 GNPL11a7 GNPL148 GNPL1ij9 GNPL150 GNPL151 GNPL152 GNPL153 GNPL154 GNPL155 GNPL156 GNPL157 GNPL158 GNPL159 GNPL160 GNPL161 GNPL162 GNPL163 GNPL164 GNPL165 GNPL166 GNPL167 GNPL168 GNPL169 GNPL170 GNPL171 GNPL172 GNPL173

. ...

• ...

:' j

C C C

C C C

IF EXTENT CONOI'PION IS DETECTED REDEF~NE DATA POINT TO EXTREME VALUE SO THAT IT IS PLOTTED ON AN AXIS

XMIN = X (N+ 1) YMIN = Y (N+ 1) XX = X (N+2) YY = Y (N+2) TEN= 10.00 XMAX = AXLX*XX + XMIN IF(PC .GE. 2) XMAX = (TEN**(AXLX*XX))*(XMIN) YMAX = AXLY*YY + YMIN IF ((PC • EQ. 1) • OR. (PC • EQ. 2) ) YMAX = (TEN•• (AXL Y*YY)) * (YMIN) DO 65 I=1,N PX= (X(I) - XMIN)/XX PY= (Y(I) - YMIN)/YY IF(PC .GE. 2) PX= ALOG10(X(I}/XMIN)/XX IF ( (PC • EQ. 1) .OR. (PC • EQ. 2)} PY = ALOG 10 (Y (I} /YMIN) /YY IF(PX .GT. AXLX) X(I) = XMAX IF(PY .GT. AXLY) Y(I) = YMAX IF(PX .~T. Z) X(I) = XMIN IF(PY .LT. Z) Y(I) = YMIN

65 CONTINUE

PLOT DATA

IF( LC .NE. 77) MM= 1 IF(LC .EQ. 77) MM= MM +1 IF( MM .GT. 15) GO TO 14 IF(LC .EQ. 77) LX = LCS IF((LC.EQ.77).AND. (COMNT(239).EQ.FLIP)) GO TO 345

350 CONTINUE

C

-IY C C C

IF(LC .NE. 77) LX = LC

K = 1 IF (COMNT (240) IF (PC • EQ. 0) IF(PC .GT. 0)

IF (LC • EQ. 77)

• EQ. C ( 5) ) K = - 1 CALL FLINE(X,Y,K*N,1,LX,ISYM(MM) ) CALL LGLI~(X,Y,N,1,LX,ISYM(MM),2-PC)

GO TO 15

WRITE COMMENTS UNDER PLOT

IF(XD .LT. 8) CALL FACTOR(XD/8.5) XH = 0.090 IF(NC .LE. 2) GO TO 7 YI = -1. S*XH YS =-1.40 IF(NC .GT. 10) NC =10 DO 2 J=3,NC M=20* (J-1) CALL SYMBOL(~ONE,YS,XH~COMNT(M+1),Z,80) YS = YS + YI

2 CONTINUE

GNPL17li GNPL175 GNPL176

GNPL177 GNPL178 GNPL179 GNPL180 GNPL181 GNPL182 GNPL183 GNPL184 GNPL185 GNPL186 GNPL187 GNPL188 GNPL189 GNPL190 GNPL191 GNPL192 GNPL193 GNPL 194 _ GNPL195 GNPL196 GNPL197 GNPL198 GNPL199 GNPL200 GNPL201 GNPL202 GNPL203 GNPL204 GNPL205 GNPL206 GNPL207 GNPL208 GNPL209 GNPL210 GNPL211 GNPL212 GNPL213 GNPL214 GNPL215 GNPL216 GNPL217 GNPL218 GNPL219 GNPL220 GNPL221 GNPL222 GNPL223 GNPL224 GNPL225 GNPL226

. •

' ...,...,.....,.__ ___ ····--···---·- ·- - . -· -·· ~'""-- -----------·---·······~ .. -·' "• ,...,.c._,._ ____ 1.· .,,.• ••• .,.. :_.; .,, .•.••• ,~,·-· ~--- _ .• , •• ··i • .r ........ - __ ..,,......., -... ..... ,_ J

--- --- -----....--.-. . -

7 CONTINUE C C WRITE SYMBOL ANO NUMBER IN UPPER RIGHT HAND CORNER OF PLOT ,,.

9 15 XNUM = MM YS 2 FLOAT(MM-1)*(1.5*XH) IF((COMNT(239) .EQ. FLIP) .AND. (LX .EQ. 0)) GO TO 17 CALL NUMBERfAXLX-0.7 ,AXLY-0.S -YS ,XH, XNUM ,Z,-1) eALL SYMBOL(999.0, AXLY•O.S-Ys,xa.•- ',Z,2) CALL SYMBOL(999., AXLY-0.S-YS+XH/2.0, XH,ISYM(MM),Z,-1)

17 CONTINUE IF(LC .EQ. 77) GO TO 14 -L: WRITE DATE AND TIME ON PLOT"

C YS=-2.9

CALL DATE (DAT1) CALL TIMEOD (TIME) CALL SYMBOL(3.0,YS , XH,'DATE ',Z,6)

CALL SYMBOL(999.,YS,XH,D~T1,Z,+8) CALL SYMBOL(999.,YS,XH,' ',Z,6) CALL SYMBOL(999.,YS,XH,TIME,Z,8)

CALL FACTOR(1.000000) C C MOVE PLOT ORIGIN C

14 CONTINUE CALL PLOT(XD,-3.0,-3) RETURN

10 CONTINUE PC= SPC XO= SXD YD= SYD CALL PLOT(-XD,3.0,-3) GO TO 11

C C C -~5

USE THE SCALE FACTORS FOR THE FIRST PLOT ON AN OVERLAY

IF(LX.EQ.-1)GO TO 347

3fJ7

LX=-1 LCS=-1 GO TO 350 LX=O LCS=O GO TO 350 END

A-45

GNPL227 GNPL228 GNPL229 GNPL230 GNPL231 GNPL232 GNPL233 GNPL234 GNPL235 GNPL236 GNPL237 GNPL238 GNPL239 GNPL240 GNPL241 GNPL242 GNPL243 GNPL244 GNPL245 GNPL246 GNPL247 GNPL2Q8 GNPL249 GNPL250 GNPL251 GNPL252 GNPL253 GNPL254 GNPL255 GNPL256 GNPL257 GNPL258 GNPL259 GNPL260 GNPL261 GNPL262 GNPL263 GNPL264 GNPL265 GNPL266 GNPL267 GNPL268 GNPL269 GNPL270 GNPL271 GNPL272

' -

.-

·.i..,

~ .. ,;•

'II~

~-,,

... .-... ~ [ __ ..

--------........... _ .... __ ---J--------------------

TABLE AP VII-1 RUN ,.,.,,.Rf p l ----'·-;,;o.· OATA-Prii~TS ···2s --------- --- - ·- --

'riuMDFR OF WAFERS 20 ---=-po=-:-wFirLEVEL RF WATTS 800.0000 02 FF.F.D PATE 40.000000 CC/MINUTE --RASH INE-·TUNSMl TfANCf: ---o-;8650- - ···-·-

TIMF RELATIVE TRANSMITTANCE . ------·- --· - --- - . - ( M H.IUTE S 1 · ---·-- ------~ - ------- ---- '. - --- ---- -PEACTOR PRESSIIR[ HETER - -- . --- -·-- I-TOM~ I

-----------·-··· _ .. _____ 1·.0000 -----------------·-· ·--· ·----·o.a·100 - · · ·--- - ---· •· --- 6.4000

C>

PYROMETF.P HETER IDfC. CELSIUSI

---·-- o.o 2.0000 0.7800 6.6000 o.o -------_,-i~. ·oooo o:71Sl> E. '1011-------- --iv.-;noi'lo _ . 4.0000 o. 7670 t..9000 120.0000 -------~-----5.0000 --------------·- --- ··o. 7600 ---------·-·- - - ---- 1~0000 · -· - ·- 1211.0000 6.0000 0.7550 1.0000 141.0000

--------· 1. 0000 · ---- · ---- 0.1400 -- ·- --·· -- - ··- -- ·-- 1. :moo · 1 so.0000 tl.0000 0.7300 7.3500 160.0000 ---------=q-:ofioo a:n oo 1.s-,rn,,---------------..61-=nooll 10.0000 0.1100 7.5000 174.0000 -------------11.0000--··--- .----------- 0.1000·--· -- - --------7.t.OOI) l'lil.0000 - - 12.0000 0.7000 7.7000 19,,.0000 ---·---·-··---n.0000··-------·---------- ···0.1000 -· --·- ·--··-·1.1000·· ·191).0000 14.0000 0.1000 7.7000 200.0000 15~·0000 cr:-;;950 ;;,1000 """2,v. :.oootl · 16.0000 0.6950 7.8000 206.0000 --------------·--11.0000-·------ ----- --·-o.6tt'iO ·--- · 1.aooo zoa.0000 18.0000 0.6850 7.ROOO 210.0000 -- --·· -----· ·::-·- 19. 0000. . -----·· o. 6850 - - --·-. - . ----- 7. ttOO'l - --- 212. 0000 ·20.0000 0.6Rt;O 7.8000 7J't.OOOO --------zr~oooo o;i.e5o 1-:a-00---------------is-~ooilh·-2.?.oooo 0.61150 1.aooo 216.0000 -- .. - ... ------··-··-21.0000 ···----·-· -·------------ O.t.850 7.ROOO. 21/.0000 24.0000 0.6R50 7.HOOO 2113.001)0 ---------·- ---·--· 25. 0000 -- ----·------- ____ ,._ i:>.6850 - .. . . ·-- 7 ~8000 21 •1.0000

---' ----·-·-·---·----- -·-

----------- , __________ -- ·-·---~- ------ _______ , __________ _ ---------- ·-------· - ·- . ·- ----- - ---·

I I /· i j

n··--~,.··,.;,.--,

·~

._--- , -·-- -

~ ·~ ·-

; ~.:-:;.:f'~ ~: ~ :·~: , ; . ·--1 ~': ~ i_i-. \.' .L

.. TABLE .AP VII-2

RUN NUMI\FR 2 -·-· NO. OIHA-·POJl'ITS -· .. ?0 __________ --------. - ---····---. ·- --· ·-··•·- .. ------&-.---· -- ·-NIJrtBFR. OF WI\FEltS ?.O --POWEP LEVEL-RF W~A~T==T=s---,,2~0~0~ .. ~o~o~o=-=o---· 02 FfED PATE 40.000000 CC/MINUTE -·-RASEL INF TRAN SM I TTA.NCE o.aq,;o --- ------ ----

Tl MF. RELATIVE TRANSMITTANCE REACTnR PRESSUPf HETER PYRO~ETER METER -- ------- (HINUTF.S) -----------------------·-------------,rnRR>··-------- --- · -·--- ---(or,r:·c~rstusa ··-·-----------·-·- ·1·.0000--··-· o.eaoo----------6.1000 ___ ----- ·---- - ------- ---- o.o- --· ----·- · ---------- · ---- ·· · 2.0000 0.8700 <>.5000 o.o ·3:·oOtlO o;-R700 6 .1000·----------------6::.-------------------4. 0000 0.8700 6.8000 u.o - ·5·;0000 - . 0.8650 6.d500 ... --·· ----- . o.o . 6 0000 0.8650 6.8500 o.o

·:Po ----·--0:0000 --- o.R600 -------·--·--<>.HSoo-· ··· ·-· -·--· -·o.-n-- ----------- ----------· -1 10!.~.QOO O!.!J~'>-~ 6. d5P.O=---------------- oo··.~~-------------------t=" 12.0000 o. 8550 6.8500 u V\ . 1-, •• 0000 0.8500 6.11500 o.o o'----------- 16.0000·- ·-·-·-o.esoo -b;nsoo----·---- --- o.o··-10.0000 0.8470 6.8500 o.o

- 10.0000 ---------·-·-o.847cr--·-- ·---6·.-11500 · -- · · ·- ·- --·-· · -------o.·o . - ?.4.0000 0.8450 6.8500 o.o ------- za:ooo·o 0.64~0 .8500~----------------....-. ...-----------------32.0000 O.R420 6.8500 -------- 36.0000-- -----O.R420·----- - b.8500- --- ---·-40.0000 0.1147.0 h.J:1500 ·---· 42.0000--------~--- ··----- - o.a4zo ------- t.-.·ao:;oo·- ··--· -- · ________ 4_4_.0000 0.8420 6.8500

------ ·--------------·------------· ------- ------ --------- -- ----- ·-- -

___ __:. _____ _ ----------------------------- ------------ --·--·------.

--------------------

-------- ------- ·----·-- ·--· -- ..

----·------ ----··--· ------·----- - --- -------' --------------------------·--·-·

o.o - --·---- o.o···· · o.o -----o.()-- -o.o

-- ------- --· -- --- --- ··------ ----------

.. ·-'< .· -~-. ----·r- , .. , . ..._._

................ -.JI"

':.: ~ "' t :- -·

" .. _.:a;P

.- ... """'

'.

0 C C C

TABLE AP Yll.-J,_ RUN NU"RF~ 3 ---.. llii:1~- ou·A· POIN ts 22 __________ _

.,.- ___ ., _________ -------· NU"RER or WAFERS 7.0 --POWl:'R LEVEL RF WATT""S ___ 4,...0~0~.-o~ooo 02 FFF.D P.Uf= 40.000000 CC/HINUTE ---RASEL rne· TRA .. iSiiti HiNC:E- 0:9100·· --- -

·---------------· --- ---- -------------------. ------- --. JlflE RF.l.ATIVF TRANSMITTANCE AF.ACTOR PRECiSUPF Mt:TFR PYIU) .. ET£R .. c;JFR

.---------«HINIJTEs·, ·-------·· ··---· - ·-·· -· · ·· -· -- ----------·,tnPPJ · -·-urec-.- ens 1,,sa · -------------·. 1.ooo<r-·- ·--···- -- - ···-. ·- o. 8800 - -- ··- ----. --- 6-.2ootl - - - ·-· ---· -· - I) • 0 . - - - .. 2.0000 0.8700 6.6000 o.o --..a.----·---,=-3. 0000 ·o. R650 6. 8000--------------<>.0 4.0000 O.B600 6.9000

0.1) s.0000··----------- ·--·----- O.B550 --------- 6.HOOO --------- c>.o 6.0000 0.8500 6.9000 o.o

----------7.0000- ----··---·O.B450 6.11000 ----------- O.O :t> 8.0000 0.0450 6.91)00 o.o , . 9. 6000 o:n;;so 6 .aooo- u.·o--

-t=- 10.0000 O.R400 6.9000 O.O ~ --i2.or;no ---·-----o.iu10 --·--------i..'looo·- --··-----1011.oouo 14. 0000 o. fl 3 70 6 .?ooo ll z. oono

·. ------·-·-16.0000 ___ . -----------· o.R3'i0 -------·--· 6.'1000 ·-·-·-·- - - - ---· llA.llllOO _________ 11:t.0000 0.8?01) 6.<1000 12?.0000

20~ 0000 o: il2 o,, 6. <1<rn,~.--------------~ "21j-:.ou,,u----------------22. oollo 0.0110 6.9000 121.0000

· · 24.oono -o.a1so-· - ---------,.0000~- ·--- - · ---·---120.onoo ~6.0000 o.e100 1.0000 110.nono

-----.-----213.0000 _________________ -- -- ··o.a100 ---- ---------- 1:0000 -- --·-·--- -·· -·--------110.0000 3'1.oooo o.aoso 1.ooOll 13~.oooo 32.0000 o:ao5o 1.0000 1 'H:oootr----------------

_____ 36~C!Q<!Q.. ·----·------- _ _ 0.8050 ___ .. __ .. ___ _ 1 ~ ~?~~ _ ... -··--- .. 13c,. OO'lO

--- --··---------

----------' l

l

\

I L l

r

---(',r:1,-...

. \_--~ ~·:·_:

---,"'r···.~=

C

-- --;r----.

0 L 0 TABLE AP VII-4

RUN f'IUll4RtR 4 -- No.;-· nATA-Pri"INTS -· lit --NUHRF.R OF ~AFERS 20 ---,P~OWER-C-f.VEL RF w~~=r=t~s;c.;;,. ____ 6_0~0-.~o~o~o~o~--------------------------02 FEED RAT~ 40.000000 CC/~INUTE -- HASEl ·1NF-TRANS~I TTANCE·----- o.'i250 --- ----------- -------------- ----------

TIME RELATIVE TRANSMITTANCE REACTOR PRESSURF HETER PYRON!:TER H!:TER

-- ----------·-·cHINUTFS]- - --·--- ·--- ·--- - -·-----·- ---, trJR!t ,---- --- - . -----. CDEC;-'CELSIIJS)"- -- . ------·-1.ocioo____ ---- --- o.easo-·-- --------------- 6.i'OO() ___ _ --·----- o.o-· -- -

o.o

2.0000 O.R700 6.8000

---------3-.0000 o;R650 6.9000 4.0000 o.asso 1.0000

i>.o

-----------·s.oboo_____ ---- o.e;·oo ·----1~0000·--- · ---· -- - -- · · -- --- ·11.0 ·- - - ·---------· -------------

6.oooo o.R450 1.0000

1oe.oooo

:,:,. - 1.0000 --------------- - -0.0400 -------· ·----- - ··1.0000 - - - - -- -- - - - ---·11,.oono I R.0000

0.8370 7.0000 1?2.0000

-t::- <i:-0,100 o:-a3so ,.1000

126.oooii------------------

"" 1-0. 0000 0.8200 1.2000

132 .0000

p;--. ·--------iz~oollo- -- ·---·- ----- o.a1so -- ---- -------- 1.1000·-- --- --· ---· ---··11o1:oooo·-l4.oooo

o.e100 1.2000 llt9.oooo

--------------r6.00•ll'.f-o:eioo -- -- --- --- - 1.3000 - ·- · - --- --·-· 1s1.oooo ·-

1e.oooo 0.8100 1.4000

1s1.uooo

--------20.0000 o.Rioo 1.1oooo 1~:liooo-----·-----------

22. 0000 o. 8100 1. 5000 l 6fa • 0000

-----. ------- 2~·;-0000 ---- - -- -- o.13100 ---- -- --·--7~6000 -- ------ l69~oooo - - --- - - ·----·-- ---- - -- - - ·- -

26.0000 O.R 100 7. 6000

171.0000

--------- -------

--·- --·---------

______ ...;,_ _____________ _ ------------ ·····---------· ·-- - -----·------------------------·--------.------- ·-- . -· --- . ------ ~. - .. _: _____ _

-------- -·- -----

-· -·-. -----~-

i 1 I 1·

' '

--~·---.---~-•• C'- _ ...... , ••• ':;-":,~:-. - _._'

.::.-·.r:

·- o ... -!;::•··~--

..... --~ --• .:i ~· .

,.... -·

0 L 0 ·------- ---- --·----------------

-------------- - .. -----------------------TABU: AP VII-5 RU .... NIJMR[ R 5 ----Nh~- hATA PiH~ts .... 17···-----···-. Nllt4Rf P llf WI\FERS 20 - POWER LEVEL RF WATT s,----e,..-o=o-.""'o"o"-=o-=o,---------' oz FFED RATE 22.000000 CC/MINUTE ---- BASEL.I NE. TR'.'\NS~ITTANCE 0~9-300 - --- - --- --- ·------------------·---------- -----. -- -- - ---· -- -- ···------- -- ------- ·--- -- - - -- -

--------------------------TIME ---- ----(MINUTESf

RELATIVE TRANSMITTANCE REACJUR PRES'ilJRF HF.TFR ---- ------------·------- ----------f'tORR). -- .. - PYAOICETER Hf TER ····10£~~-c: Fl SI iJS I

· · ----- --1.0000 ·---·o.9illo ___ ---- --·-· ·5;3·oorJ · · ·--- ------------- :>~o · 2.0000 o;e6oo 5.1000 o.o

----------=--i ;·oooo=--------------- o. a 1so s. aooo u1>"~ orfoo 4.oooo o.a2so b.onoo

122.0000

-----------5.0000 ------ - O.AlOO---·---------- 6·.0000 .... -· ...... -··· ---···. ---- 111.0000 .. -- -----·- ----- --

6.0000 o. 7950 6.0000 14,..0000

-- ·1.0000 - -----0 .. 7850 --------- --------6 .1000 ------ -- ··-·- - - ------·151;0000 . -- --------·-- - ----------

::i> 8.0000 0.7800 6.1000

166.0000

• ---------,1=-o. oiioo o. 765 o 6. 1 ooo 1110 ;o·o-0-0-----------------

,_ ~ 1?.. OO'lO o. 7600

t, .1000 I qr;. 0000

-~------ 14.00110 ··-·------ · -- o. 1500------- ----6. H>ou· · -· - -· ·- · ·----- --·-202 ;oooo -------. - ---- ---- ·· ·· ---· ·

18.0000 0.7500 6.1000

Zll.0000

----------·20:-0000 ----·-o.14sn------------6.1000·-------- -·-· - · ·--·---.zl'i~oooo····- ···-··-·--- ·----------·

22.0000 0.7450 b.1000

210.0000

--------·24.00·00 o.11so 6.1000___ r.nmrn----------------

. 26.0000 0.7350 b.1000

222.0000 .

?.8 .0000 -----o: nso 6. tooo···---- · -·-----22:-..0000··---·--· ·- ---- ------------ --··

----------------------·-----· -------. ----·---- - ... ------- - --- --.--·-

- - - -------.·- - .------- -- .

---------·--------·-- -- -· ·-·--------·-·. ····•

.. -------- -----··------ ·--·---·----·- - ·-- ·----- ---·--------

. . .

f

r ..

'- .,-.• -- • • • 'r ·-· •••s

:· ,·?., .• ·• -

RUN f,JI_J~!UR q --·--:-No~· ·04u·· i>nf NtS ..... 19. ·--------- ·- -- .

~UM~FR nr WAFERS 20 ---PnWfP 0

LFVEL RF-WAllS~--=a-00.0000 02 FEF.D RATE 20.000000 C:C/HI_NUJE

----·L'ASEI.JNE-TRI\NSHJTTA"'ICE - . -0~9100 ·-- -

TABLE AP VII-6

TIME RELATl~E TRANSMJTlANCE REACTOP PRFSSUHF METER -~----------- (~INUTES·I---------------- -·---- ------. ···-------- ------CTOP.Pf- -- --- -

-- .--------·--·1.0000___ ·------·-0.0250 ---------- ---4.7000 -- ·-· 1..0000 0.7850 5.1000 --~---'-'------3.0000 o~--1000___ -;1;000 _______ _

PYROMFlf P f"IE TEP 10Fc;·cns1us1

-- ··-·--· .. -o.o o.o --------=o·: o

. , •• 0000 o.7650 5.6000 112.oono

,..._ ..

··- ·-" --· -·-----

-----------5.oooo · --------·-------·--o.1,;oo·--------------·5.,,000· · 12t..oooo·- --- --------·--· ----6.oooo 0.1450 5 .1000 140.0000 :t> ------------ · ·-;:·0000-- -----·--o. 7400·----· - - ------ s~ 1000 ------ -· 1s3.oooo

I 8.-0000 0.7300 5.8000 l6l.OO•l0 ~ q;1io"oo 0:-1200 5.ocioo iTL.-6000----------------\.n ,• 10. 0000 o. 7100 5. 8000 l 70. 0000 HJ ---.-----,----·-12~0000 --------· ·-··0~6900. -- --- ··---------···,. Aono· - ··------ lHA .0000 . - . - ... - ··- --- - ·---· -- ··-· --.14.0000 o.6qoo 6.001>0 1 q~.0000 ._· lb.0000 . • . 0.6A50 ·------6.1000 ... - - . --·207.01100·- --··----·----------- ----\8.0000 0.6850 6.1001.) 213.0000 --. ------·20~-ooiio o·. 6"as·o 6.?1Jh~---------------rr;oi>oo----------------22. oooo 0.1,050 6.?ooo 220.0000 24.0000 o.<>850 · ---- ----6.2000·--··------· · ·· -------- ---zl2 :0000 - -- ···-- --·-- ----- -26. 0000 0.6850 6 .2000 22). 0000 -·--------------·-·ia:·0000:·---- -- -- --· 0.6850 ---------------6.7000 ·····-- Z?S.0000--··-- ·- -·---. --··- --·

-------------- ---------------------------

--'------------~----- --------------------.

------ --- ··----------- ·---------'----·

• - -- ·- 1' - ,.. ... _........,.., _,. ,-_-__ ----

l

'

'

,§Qurces gt Error

During the experiments, radio frequency (rf) inter-, ference was noticed in the recording instruments. The rf problem with the thermocouple inserted directly into the plasma has been discussed. Eliminating the interference was not possible, however, the effect was minimized by use of a common mode rejection circuit. Rf interference with the mass flow eontroller was also experienced. This was not a sig­nificant problem because even though the rf shifted the preset flow value, the indicated flow rate always cor­responded to the actual flow. For example, with rf power off the flow was preset at 20 ce/min •• When rf power (800 watts) was turned on the controller might change to 30 cc/min •• Al­though the rf had changed the preset value, the indicated flow , 30 cc/min., was always consistent. This supposition was verified by comparing the system pressure before and ~\ after the rf •was turned on. The pressure gauges were not af­fected by rf.

No rf influence was detectable in the infrared pyrometer used to measure wafer temperature. However, from .~ analyzing the data for the 800 watt runs, it appears that there might be a +S c offset in all of the temperatures above 180 c caused by rf pickup. This pickup even if real is insignificant since it represents an error of only 3%.

-. -.-· ·--~ __ -_...,. __ - --~· --

I .1 ,,

• i'.

Paul Saunders was born in Woburn, ~a-ssachusetts on

Sept. 14, 1948 to Mr. and Mrs. Robert J. Saunders. Following

public high school, he attended the University of Mas­

sachusetts at Amherst from 1966 to 1970, graduating with a

Bachelor of Science degree in Chemical Engineerin~ in June

1970. From June of 1970 to the present, he has worked on

the processes and equipment for the cleaning,

photolithography, diffusion, and ion implantation of silicon

semiconductors at Western Electric co., Allentown, Pennsyl­

vania.

A-1'7

~ • • • c , , ,-.1- > /·J/ ·~ (14. -!!·'1.~i.:,,.-' ', ,, ,,";_ ,~·,,., :·.i•" Ji •. l i '