DESIGN, MANUFACTURE, AND TEST OF COOLANT PUMP ...

204
NASA CONTRACTOR REPORT NASA CR-2176 c*«4 wo FILE 1 I In £— c DESIGN, MANUFACTURE, AND TEST OF COOLANT PUMP-MOTOR ASSEMBLY FOR BRAYTON POWER CONVERSION SYSTEM by Louis E. Gebacz Prepared by PESCO PRODUCTS Bedford, Ohio 44146 for Lewis Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. • MARCH 1973

Transcript of DESIGN, MANUFACTURE, AND TEST OF COOLANT PUMP ...

N A S A C O N T R A C T O R

R E P O R T

N A S A C R - 2 1 7 6

c*«4

wo

F I L E1 I In £—

c

DESIGN, MANUFACTURE, AND TEST

OF COOLANT PUMP-MOTOR ASSEMBLY

FOR BRAYTON POWER CONVERSION SYSTEM

by Louis E. Gebacz

Prepared by

PESCO PRODUCTS

Bedford, Ohio 44146

for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1973

Page Intentionally Left Blank

1. Report No.

NASA CR-21762. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle ,DESIGN, MANUFACTURE, AND TEST OF COOLANT PUMP-MOTOR ASSEMBLY FOR BRAYTON POWER CONVERSIONSYSTEM

5. Report Date

March 19736. Performing Organization Code

7. Author(s)

Louis E. Geba.cz

8. Performing Organization [Report No.

None10. Work Unit No.

9. Performing Organization Name and Address

Pesco Products24700 North Miles RoadBedford, Ohio 44146

11. Contract or Grant No.

NAS 3-10935

12. Sponsoring Agency Name and Address

National Aeronautics and Space AdministrationWashington, D. C. 20546

13. Type of Report and Period Covered

Contractor Report14. Sponsoring Agency Code

15. Supplementary Notes

Project Manager, Guy H. Ribble, Jr., Power Systems Division, NASA Lewis ResearchCenter, Cleveland, Ohio

16. Abstract

This report covers the design, development, fabrication, and testing of seven coolantcirculating pump-motor assemblies. The pump-motor assembly is driven by the nominal44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in aBrayton cycle space power system. The pump-motor assembly develops a nominal headof 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The report includes thedesign description, drawings, photographs, reliability results, and developmental andacceptance test results.

17. Key Words (Suggested by Author(s))

Pump; Pump motor assembly; Centrifugalpump; Coolant pump; Circulating pump;Hermetically sealed pump; Wet motor; 400 Hzmotor; Inverter; Hydraulic

18. Distribution Statement

Unclassified - unlimited

19. Security Oassif. (of this report)

Unclassified20. Security Classif. (of this page)

Unclassified21. No. of

200

22. Price*

$3.00

*For sale by the National Technical Information Service, Springfield, Virginia 22151

fSftte; yvy : vjr.iflhilr.-aj

TABLE OF CONTENTS

Page

SUMMARY 1

INTRODUCTION . . 2

UNIT DESIGN 3

Pump Assembly 3

Pump design 8Hydraulic calculations 8Bearings 8Filter 10Barstock unit tests 10

Motor Assembly 10

Motor design 11Motor laminations 12Motor insulation 12Connectors . 12Thermocouples 13Speed sensor 13Motor development tests 13Motor-pump development tests in cold box . . . . 15Connector cross-talk test 15Dow Corning DC-200-2 compatibility tests . . . . 16Final design motor performance 16

PUMP-MOTOR ASSEMBLY DEVELOPMENT TEST PROGRAM .- . 17 -

Pump Calibration - Sine Wave Power . 18Pump Calibration - Inverter Power 18Reduced Diameter Impeller Tests 22Net Positive Suction Head Tests 23Low Temperature and High Temperature Tests 23

111

Page

Shutoff Flow Tests ............ .......... 24Reverse Rotation and Dry Start-up . . . . ......... 25Dielectric and Continuity Check ............... 25250 Hour Design Assurance Test .............. 25Unit Disassembly and Inspection .............. 2620, 000 Hour Endurance Test ............ . . . . 26

PUMP-MOTOR ASSEMBLY ACCEPTANCE TESTS

Motor Acceptance Tests ................... 31PMA Unit Acceptance Tests ................. 31

RELIABILITY PROGRAM - PUMP MOTOR ASSEMBLY ...... 32

Component Reliability Analysis for Pump-Motor Assembly 32Reliability Failure Mode, Effect and Criticality Analysis

for Pump-Motor Assembly ............... 34

CONCLUSIONS ............................ 35

REFERENCES ............................ 36

APPENDIXES

Page

APPENDIX A - Figures

1 Specific gravity versus temperature. Dow-Corningsilicone fluid 200-2 centistokes. 37

2 ASTM Standard viscosity - temperature chart.Dow-Corning silicone fluid 200-2 centistokes. 38

3 Barstock Pump Test Performance - head versus flowcomposite curve for various unit configurations. 39

4 Barstock Pump Test Performance - input HP versusflow composite curve for various unit configurations. 40

5 Barstock Pump Test Performance - efficiency versusflow composite curve for various unit configurations. 41

6 Motor Performance Curve - predicted versus prototypetest results, wet motor, 43. 5 volts quasi-square wave,three phase, 400 Hz input. 42

7 Prototype motor no-load saturation test curve - drymotor with sinusoidal voltage input. 43

8 Prototype motor no-load saturation test curve - wetmotor with sinusoidal voltage input. 44

9 Prototype motor iron loss test curve - wet motor,sinusoidal and quasi-square wave inverter input. _. .45

10 Prototype motor test performance curve - wet motor,38. 8 volts, sine wave input, 400 Hz - three phase. 46

11 Prototype test performance curve - wet motor, 43.5volts sine wave input, 400 Hz - three phase. 47

12 Prototype test performance curve - wet motor, 46. 5volts sine wave input, 400 Hz - three phase. 48

Figures Page

13 Prototype motor test performance curve - dry motor,38. 8 volts, sine wave input, 400 Hz, three phase. 49

14 Prototype motor test performance curve - dry motor,43. 5 volts, sine wave input, 400 Hz, three phase. 50

15 Prototype motor test performance curve - dry motor,46. 5 volts, sine wave input, 400 Hz, three phase. 51

16 Prototype motor locked rotor saturation test curve, wetmotor, sine wave input, 400 Hz. 52

17 Prototype motor two-phase test performance curve, wetmotor, 46. 5 and 38. 8 volts, sine wave input, 400 Hz. 53

18 Prototype motor two^-phase locked rotor saturation testcurve, wet motor, sine wave input, 400 Hz. 54

19 Prototype motor test performance curve, wet motor, 39volts, quasi-square wave input, 400 Hz, three phase. 55

20 Prototype motor test performance curve, wet motor, 43. 5volts, quasi-square wave input, 400 Hz, three phase. 56

21 Prototype motor test performance curve, wet motor, 47volts, quasi-square wave input, 400 Hz, three phase. 57

22 Prototype motor test performance curve, dry motor, 39volts, quasi-square input, 400 Hz, three phase. 58

23 Prototype motor test performance curve, dry motor, 43. 5volts, quasi-square wave input, 400 Hz, three phase. 59

24 Prototype motor test performance curve, dry motor, 47volts, quasi-square wave input, 400 Hz, three phase. 60

25 Motor test performance curve, dry motor with 0. 188 inchesrotor skew, 39 volts, quasi-square wave input, 400 Hz,three phase. 61

26 Motor test performance curve, dry motor with 0.188 inchesrotor skew, 43.5 volts, quasi-square wave input, 400 Hz,three phase. 62

vi

Figures Page

27 Barstock PMA acceleration test curve at -65 °F, sinewave input, 41 volts, 400 Hz, three phase, 30 minutetest. 63

28 Barstock PMA acceleration test curve at -65°F, sinewave input, 47.0 volts, 400 Hz, three phase, 20 minutetest, 64

29 Barstock PMA acceleration test curve at -65 °F, sinewave input, 41. 0 volts, 400 Hz, three phase, threesecond test. 65

30 Barstock PMA acceleration test curves at -65 °F atvarious voltages - sine wave input, 400 Hz, three phase. 66

31 Barstock PMA acceleration test curves at -65 °F atvarious voltages - pump discharge pressure versus time,quasi-square wave input, 400 Hz, three phase. 67

32 Barstock PMA acceleration test curves at -65 °F atvarious voltages - motor current versus time, sinewave input, 400 Hz, three phase. 68

33 Barstock "PMA acceleration test curves at -65 °F atvarious voltages - motor current versus time -quasi-square wave input, 400 Hz, three phase. 69

34 Barstock PMA acceleration test curves at +78 °F atvarious voltages - speed versus time - quasi-squarewave input, 400 Hz, three phase. 70

35 Barstock PMA acceleration test curves at +78 °F atvarious voltages - speed versus time - quasi-squareinput, 400 Hz, three phase. 71

36 Barstock PMA acceleration test curves at +78°F atvarious voltages - speed versus time - sine wave input,400 Hz, three phase. 72

37 PMA S/N X2149 test performance - calibration perE. R. 5289B para. 4. 2. 2, sine wave power, 39. 8 v ac. 73

VI1

Figures Page

38 PMA S/N X2149 test performance - calibration perE. R. 5289B, para. 4 .2 .2 , sine wave power, 44. 4 v ac. 74

39 PMA S/N X2149 test performance - calibration perE. R. 5289B, para. 4 .2 .2 , sine wave power, 47. 5 v ac. 75

40 PMA S/N X2149 test performance - calibration perE. R. 5289B, para. 4.2.3, inverter power, 39. 6 v ac. 76

41 PMA S/N X2149 test performance - calibration perE. R. 5289B, para. 4.2.3, inverter power, 44. 4 v ac. 77

42 PMA S/N X2149 test performance - calibration perE. R. 5289B, para. 4.2.3, inverter power, 47.5 vac. 78

43 Barstock pump test performance - calibrations on adynamometer at various impeller diameters perE.R. 5289B, para. 4.2.4. 79

44 PMA S/N X2149 test performance - NPSH calibrationper E.R. 5289B, para. 4.2.5, at 39-6 v ac. 80

45 PMA S/N X2149 test performance - NPSH calibrationper E. R. 5289B, para. 4.2.5, at 44. 4 v ac. 81

46 PMA S/N X2149 test performance - NPSH calibrationper E.R. 5289B, para. 4 .2.5, at 47. 5 v ac. 82

47 PMA S/N X2149 test performance - calibration at -71 °Fand 39- 6 v ac inverter power per E. R. 5289B, para.4.2.6. 83

48 PMA S/N X2149 test performance - calibration at -71 °Fand 44. 4 v ac inverter power per E. R. 5289B, para.4.2.6. 84

"49 PMA S/N X2149 test performance - calibration at -71 °Fand 47. 5 v ac inverter power per E.R. 5289B, para.4.2.6. " 85

50 PMA S/N X2149 test performance - calibration at+ 150°F and 39- 6 y ac inverter power per E. R. 5289B,para. 4. 2. 6. 86

VI11

Figures Pag

51 PMA S/N X2149 test performance - calibration at+ 150°F and 44. 4 v ac inverter power per E. R. 5289B,para. 4. 2. 6. 87

52 PMA S/N X2149 test performance - calibration at+ 148°F and 47. 5 v ac inverter power per E. R. 5289B,para. 4. 2. 6. 88

53 PMA S/N X2149 test performance - calibration at 44.4v ac inverter power (prior to starting 250 hour assurancetest) per E. R. 5289B, para. 5.2. 89

54 PMA S/N X2149 test performance - calibration at 44.4 v acinverter power (after 250 hour assurance test) per E. R.5289B, para. 5. 4. 90

55 PMA S/N X2149 test performance - test calibration at44.4 v ac power before 20,000 hour endurance test. , 91

56 PMA S/N X2149 test performance - test calibration at44.4 v ac power after 5000 hours of endurance test. 92

57 PMA S/N X2149 test performance - test calibration at44.4 v ac power after 20,000 hour endurance test. 93

58 PMA S/N X2149 head and speed versus running time0 to 3300 hours. Twenty thousand hour endurance test. 94

59 PMA S/N X2149 head and speed versus running time3300 to 6700 hours. Twenty thousand hour endurance test. 95

60 PMA S/N X2149 head and speed versus running time6700 to 10,000 hours.Twenty thousand hour endurance 96test.

61 PMA S/N X2149 head and speed versus running time10,000 to 13,300 hours. Twenty thousand hour endurance 97test.

62 PMA S/N X2149 head and speed versus running time13,300 to 16,700 hours. Twenty thousand hour endurance 98test.

63 PMA S/N X2149 head and speed versus running time16,700 to 20,000 hours. Twenty thousand hour endurance 99test.

IX

Figures Page

64 Motor test performance variation of all motors (X2143through X2149), wet motor, 39 volts, 400 Hz, threephase quasi-square wave input taken from acceptancetest calibration data. 10°

65 PMA S/N X2143 test performance - final acceptancetest calibration at 39. 8 v ac inverter power. 101

66 PMA S/N X2144 test performance - final acceptancetest calibration at 39. 6 v ac inverter power. 102

67 PMA S/N X2145 test performance - final acceptancetest calibration at 39- 6 v ac inverter power. 103

68 PMA S/N X2146 test performance - final acceptancetest calibration at 39. 6 v ac inverter power. 104

69 PMA S/N X2147 test performance - final acceptancetest calibration at 39- 6 v ac inverter power. 105

70 PMA S/N X2148 test performance - final acceptancetest calibration at 39- 6 v ac sine -wave power. 106

APPENDIX B - DESIGN DATA

Pump Hydraulic Calculations 107Bearing Design Data 114Motor Design Data Sheets

Table Bl AC motor computer calculation run-off38. 8 L-L volts, three phase, 400 Hz -predicted hot performance at +100°F.

Table B2 AC motor computer calculation run-off--"• 38. 8 L-L volts, three phase, 400 Hz -

predicted cold performance at -100°F.

Table B3 AC motor computer calculation run-off43. 5 L-L volts, three phase, 400 Hz -predicted hot performance at +100°F.

Page

Table B4 AC motor computer calculation run-off43. 5 L-L volts, three phase, 400 Hz -predicted cold performance at -100°F. 128

APPENDIX C - MOTOR TEST DATA

Table Cl Prototype motor test performance -sample of computer reduced data.

Table C2 Prototype motor no-load saturation -sample of reduced data. 130

Table C3 Cross talk between thermocouple pins,power pins, and rpm pickup pin. 131

Table C4 Dielectric, continuity, and insulationresistance checks on PMA'S/N X2149-A(typical) 132

Table C5 PMA electrical test data sheet forPMA S/N X2149-A (typical) 133

Table C6 Computer run-off - reduced motor datathru C12 from acceptance test calibration for

PMA S/N X2143 through S/N X2149,respectively. 134

APPENDIX D - DISASSEMBLY INSPECTION RECORDS PMA S/N2149-A 138

APPENDIX E - RELIABILITY ANALYSIS DATA

1. Failure Rate Analysis Sheets - ComponentReliability Report 151

2. Failure Mode Cause Analysis 159

APPENDIX F - DEVELOPMENT TEST PROGRAM PLAN

. 5289B 170

XI

SUMMARY

Pesco Products has designed and developed a hermetically sealedpump-motor assembly (PMA) to circulate Dow Corning coolant in aBrayton Cycle Space Power Conversion System.

The PMA has a nominal rating of 3. 7 gpm and 70 psi head rise atan operating speed of 11,200 rpm with a nominal inverter input of 56 v dc,and an over-all PMA efficiency of 26%. The specification requirement is60 psi minimum head rise at rated flow. The PMA has an average weightof 15 pounds and the average weight of the inverter is 25 pounds sixounces.

This report includes a description of the pump and motor design,assembly and envelope drawings, reliability results, pump, motor, andbearing calculations, development test results, and acceptance testresults.

Seven PMA's were fabricated and acceptance tested under the con-tract. Six assemblies were shipped to NASA-Lewis Research Centerand the seventh unit was used for development testing. Test results showa pumping ability down to five feet NPSH at 79°F; a starting capability at-71 °F with a head rise of 62 psi at 3. 7 gpm and at +150°F with a head riseof 68. 6 psi at 3. 7 gpm flow. A 20, 000 hour endurance test on the PMAand inverter was successfully completed.

No degradation in unit performance was observed during the 20, 000hour test. Disassembly inspection showed the unit to be in excellentcondition with the parts meeting the original blueprint requirements. Theunit was reassembled as is and seal-welded for use as a spare unit.

A minimum of design and testing problems were encountered duringthe performance of this program. The PMA meets or exceeds the require-ments of the contract specification.

INTRODUCTION

NASA-Lewis Research Center issued contract number NAS3-10935 for the design, development, fabrication, and testing of a pump-motor inverter assembly for the circulation of Dow Corning 200 coolantin a Brayton Cycle Space Power Conversion System.

The power conversion system has potential use with solar, radio-isotope and nuclear reactor heat sources. The power output is Z. 0 KW to15 KW at 1200 Hertz. The system is designed for an unattended space lifeof five years.

The PMA is a hermetically sealed unit that is powered by a staticinverter designed and developed by Gulton Industries, Incorporated undera subcontract, for the Borg-Warner Corporation, Pesco Products Division.A portion of the 1200 Hertz Brayton Power System electrical output is con-verted to dc power. The static inverter inverts and conditions the dc power(50 to 60 v dc), to 400 Hertz quasi-square wave three phase power (approxi-mately 39. 5 v ac - 47. 5 v ac) to drive the PMA. All inverters were accep-tance tested for 100 hours at Gulton. The work conducted by GultonIndustries on the inverter - Gulton P/N EMIU-104D - is documented inNASA CR-72671 entitled "Final Report - Design and Manufacture of StaticInverter for Brayton Power Conversion System" (Reference 1).

The purpose of the program is to develop flight type hardware withmaximum reliability during the design life as the primary objective. Otherobjectives are maximum combined efficiency of the pump, motor, and in-verter, small size and light weight. The units are designed to meet NASAenvironmental specifications P-1224-1 and P-1224-2 but were not tested tothese specifications.

The development PMA and inverter were assurance tested for 250hours running time with 250 start-stop cycles. Also run were cold starttests at -65°F, hot tests at 150°F, NPSH tests down to 5 feet, reverserotation tests, and dry start-up tests. This same unit has subsequently com-pleted a 20, 000 hour endurance test in the test loop at Pesco/- The test loopis automated for unattended operation and has hot and cold ambient capabilitybut no vacuum ambient capability. The other six PMA's were acceptancetested at Pesco for 100 hours prior to shipment to NASA-Lewis ResearchCenter, five with inverters and one using sine wave power.

The PMA is similar to liquid hydrogen and liquid oxygen chilldownpumps that Pesco has developed for use on the Saturn vehicle. Thesepumps are also powered by a 400 cycle quasi-square wave inverter.

UNIT DESIGN

Pump Assembly

The pump assembly is of the centrifugal type mounted directly onthe same shaft with the 400 Hz electric motor. The unit is designed topump Dow Corning 200 (dimethyl silicone fluid) with a viscosity grade of2. 0 centistokes at 77°F and to meet the following performance requirements.

Pump Design Capacity - 3. 7 gpnaPump Design Head Rise - 60 psi (159 ft) min.Available Net Positive Suction Head - 20 psi (53 ft) min.Steady-State Fluid Temperature - 20° to 100°FMinimum Temp - Initial Start-up - -65 °F

The PMA and integral filter are contained in a stainless steelcylindrical casing. The design includes provisions for seal welding forhermetically sealing the assembly. The seal weld joints provide a minimumcapability of three (3) rewelds with only minor machining for disassemblyand reassembly. Drawing 115146-100, Figure A and Figure B shows theunit assembly and envelope dimensions. Figure C is a photograph of thePMA, and Figure D is a photograph of the individual components in the PMA.

ill

FIGURE A

*i*»£o« iMl§;

eSfit'y .•s5:i?!-

rS.id(?)i

?KojEi

|5-fi*Bs*i"Si"ltr.fpss

I!f^-'ff-f ,1

! 1 1 ; : I • - . i ! nJ—illUuP

J 1sS .< |Z|! JB*| ?I8s

»P-?5«S§

MSMilS

FIGURE B

INLET

OUTLET

PUMP MOTOR ASSEMBLY

Ioc<a.

FIGURE D

Pump design

Pumping is provided by a radial flow impeller discharging into adiffuser. The flow is then directed through the motor cavity. In thismanner, the entire pump flow is used to cool the motor windings and helpsto promote long unit life.

The pump design includes a replaceable orifice in an external bypassfrom the pump discharge to the pump inlet. The design provides for eithero-ring sealing or seal welding. Present units have the bypass blocked off andthe assembly seal welded.

The unit pressure and flow requirements dictate a specific speed ofapproximately 480, which is at the low end of the specific speed rangenormally covered by centrifugal pumps. A radial flow impeller design witheight drilled . 123" diameter holes and a diffuser with nine . 056" diameterholes was utilized to obtain the required performance. The efficiency of thistype of pump design is inherently low and the pump efficiency obtained forthis unit is approximately 45% to 50%.

The general head-flow characteristic of this low specific speed pumpis relatively flat from shut-off to rated flow conditions. The head character-istic is flat or rises slightly to approximately 60% rated flow, then itdecreases slowly as it approaches rated flow. Beyond rated flow, the headdecreases more rapidly.

Hydraulic calculations

The hydraulic calculations for the pump impeller and the diffuserare included in Appendix B.

Bearings

The pump rotating assembly support is provided by two hydro-dynamically lubricated sleeve-type bearings. These carbon graphite bearingsare used in conjunction with chrome plated journals on the shaft. Hydrodynamiclubrication is provided by the Dow Corning ZOO (2. 0 centistokes) fluid beingpumped.

8

Figure 1 in Appendix A is a plot of the specific gravity versustemperature for the Dow Corning silicone fluid 200 at 2 centistokes.Figure 2 is a plot of the ASTM Standard viscosity versus temperaturefor Dow Corning 200 fluid at 2 centistokes.

Bearing design calculations were based on the design criteriadefined in the Cast Bronze Bearing Design Manual, Franklin InstituteResearch Laboratories (Reference 2).

A copy of the bearing computer study for the journal bearings isincluded in Appendix B.

All axial thrust is taken by the bearing installed in the diffuserhousing assembly. This bearing includes two thrust faces and one radialbearing in one assembly. The bearing in the motor cover assemblycarries only radial loads.

Bearing lengths determined by the foregoing procedure were:

. 365 diameter journal - .2625 length

. 300 diameter journal - . 210 length

Diametral clearance between journal and bearing bore were:

. 365 diameter journal - .0015 in.

. 300 diameter journal - .0015 in.

Based on 110 °F ambient oil temperature, fluid temperatures ofthe film in the bearings were:

. 365 diameter journal - 120 °F

. 300 diameter journal - 120°F

The minimum film thickness (ho) was calculated to be . 000181inches for the . 300 diameter bearing assuming a one pound load, and. 000163 inches for the . 365 diameter bearing assuming a three pound load.

9

Filter

The full flow filter is located integrally in the pump housing at theimpeller inlet. The filter element is of all metal woven mesh construction,and has a nominal rating of 2 microns and an absolute rating of 5 microns.The maximum allowable design pressure drop is 5 psi at 30 7 gpm, butactual test experience has shown the filter drop to be less than one psi atrated flow. The filter element is assembled in the unit with two o-ring sealsto prevent contaminant leaks past the filter element.

Barstock unit tests

An aluminum barstock pump was fabricated to the selected diffuserand impeller hydraulic design. The unit was mounted on a dynamometerand tests were conducted to evaluate pump performance with and without adiffuser, with two holes plugged in the diffuser, two holes plugged in theimpeller, and with increased hole size in the diffuser. A plot of pump per-formance at 11, 300 rpm with each of the above unit configurations is shownon Figures 3 through 5 in Appendix A.

Motor Assembly

The 4-pole, 3-phase motor in the Model 115146-100 PMA is used todrive a centrifugal pump which circulates coolant in the Brayton power con-version system. The motor is rated at . 6 hp at 11, 000 rpm. It is designed forcontinuous and unattended operation in a space environment for a minimumperiod of five years and is designed to achieve maximum efficiency with anobjective of 0. 7 power factor at the design point. It is also designed to runfor a period of five minutes at maximum pump capacity without exceeding awinding temperature of 180°F.

In the preliminary design stage of the program, three alternativemotor designs were offered. These were briefly:

10

Alternative 1 - A motor and inverter design to meet allof the listed requirements of the initialRFP.

Alternative 2 - A motor design to meet all of the listedrequirements driven by a previouslyqualified inverter.

Alternative 3 - A motor design which exceeds the 5% sliprequirements at 150% of rated torquedriven by a previously qualified inverter.

Alternative 3 was chosen for reasons discussed in the motor designsection, and was modified to obtain maximum efficiency during the finaldesign stage. Development tests were then performed on a prototypemotor and compared to predicted performance.

Motor design

A motor designed to meet the requirements of the initial requestfor proposal was large in size and had a rotor resistance such thatthe existing qualified static inverter could not be utilized. The large sizeof the motor also yielded a very high pull-out to running torque ratioresulting in a lower than peak value of efficiency at the operating point.The larger rotor size also increased the hydraulic fluid losses whichfurther reduced the efficiency.

A motor design to meet all of the listed requirements driven by apreviously qualified inverter would be feasible, but would have to becoordinated with the invertei supplier because the operating power factorwould be low. This alternative would necessitate deviations from theinverter specification since the inverter would not have sufficient capacityto drive the motor.

An alternate motor design was proposed which exceeded the specified5% slip requirement at 150% of rated torque and which produced slightlyless than 150% starting torque at -100°F. The 5% slip requirement, whilein the original request for proposal, was not included in the final contractspecifications. This design, however, was capable of meeting all of the

11

application requirements with the advantages of minimum weight, higherefficiency and power factor, and lower current drain. The final computercalculation is included in Appendix B, Tables Bl through B4, and the motorcharacteristic performance curve is shown in Figure 6., Appendix A.

Motor laminations

The motor laminations are of a new optimized design, specificallydeveloped for this unit. They are silicon sheet steel per AISI M-19, 29gage (. 014 inch), heat treated after punching to restore permeability lostdue to punching stresses and to reduce iron losses. The stator slot sizewas designed to provide maximum efficiency. The L/D ratio for the rotorwas optimized for wet running in DC 200-2 fluid. The rotor cage wasdesigned to provide the necessary starting torque over the specified tempera-ture range of +100°F to -100°F.

Motor insulation

The motor insulation system is composed of polyimide coated glass,Teflon, and DuPont Pyre ML impregnating varnish. These materials haveproven to be effective in motors running submerged in various fluids attemperatures comparable to the specified operating temperatures. Tests•were conducted which showed compatibility with Dow Corning DC-200-2.The test results are included in the section titled "Dow Corning DC-200-2Compatibility Tests. "

Connectors

In the initial design Pesco proposed using three separate connectors,one for power input, one for thermocouple output, and one for th<2 speedsensor. An investigation was conducted concerning the possibility of using asingle connector for all leads. Cross-talk tests were performed at Pescousing a dummy motor. No cross-talk or interference could be detectedduring the performance of these tests. Details are included in the section"Connector Cross-Talk Test. "

12

In the final design, two connectors were used, ITT Cannon PartNo. PV3H14B5PN SPCL for the power lead connector and ITT CannonPart No. PV3H12B10PN SPCL, for the instrumentation connector.

T he r mo c ouple s

Two iron-constantan thermocouples are used to sense statorwinding temperature in the PMA. The thermocouples are located in thecenter of the end turns approximately 180° apart on the lead end ofstator.

Speed sensor

The speed sensor used is a standard catalog item purchased fromElectro Products Lab, Incorporated - Chicago, Illinois. This transducerhad previously been used satisfactorily on the Saturn chilldown pumps. Acompatibility test with DC-200-2 was performed at Pesco and no ill effectscould be detected.

Motor development tests

The original design called for the use of eighteen turns per coilof No. 20 AWG magnet wire. In order to minimize the possibility of wireand insulationdimage, and to allow easier assembly, equivalent coilsconsisting of one No. 22 and one No. 24 AWG wound in parallel were used.

Upon their completion, the prototype stator and rotor assemblieswere placed in a bar stock body having the same internal dimensions asthe final pump body configuration. Also incorporated into this body werethe final design carbon bearings.

13

The following tests were performed on the prototype motor usingsinusoidal input from a standard 400 Hz generator:

1. No load saturation-dry motor.

2. No load saturation-wet motor (submerged inDC-200-2 fluid)

3. Locked rotor saturation-wet motor.

4. Wet motor performance at 38. 8, 43. 5, and 46. 5line-to-line volts.

5. Dry motor performance 38. 8, 43. 5, and 46. 5 volts.

6. Two-phase performance-wet motor, 38. 8 and 46. 5.

A breadboard static inverter was then obtained from Gulton and theabove tests were repeated with the exception of the two-phase tests (No. 6above).

In order to improve starting at low temperature, a second rotor wasfabricated with a 0. 188 skew (skew of the first rotor was 0. 094). This rotorwas assembled in the prototype housing and stator and performance tests•were run at 39- 0 and 43. 5 volts. Results showed that the . 094 skew rotorwas more efficient and therefore it was used in the final design.

Plotted results of above tests are found in Figures 7 through 26,Appendix A.

Test data on the prototype unit with . 094 skew rotor revealed that thelosses due to fluid friction and the iron losses were less than those calculatedresulting in a slightly higher efficiency than was calculated. The lower powerfactor resulted from the test current value being higher than the calculatedcurrent. These results are shown in Tables Cl and C2 of Appendix C, andgraphically on Figure 6, Appendix A.

14

In comparing a motor tested dry to one submerged in DC-200(Figures 11 and 14), the speed is higher while the current and power inputis lower for a dry motor. This results in a significantly higher efficiencybecause of the absence of the fluid drag on the rotor.

In comparing a motor tested with a sine wave voltage input to onewith a quasi-square wave input (Figures 11 and 20) the speed is lower whilethe current and input power are slightly higher for the inverter poweredmotor. This results in a slightly lower efficiency which is attributed tothe increase in iron losses due to the shape of the input wave form.

A motor test using a rotor with a larger skew (0. 188 versus 0. 094)resulted in a fairly large drop in efficiency (6%) Figure 26. Based on this,it was decided to retain the original rotor with the 0. 094 skew.

Motor-pump development tests in cold box

Since the predicted starting torque was not realized during the motorprototype test, several tests were performed with the barstock motor-pumpcombination placed in a cold chamber at a temperature of -65 °F. (Acontract modification changed the minimum fluid temperature requirementfor start-up from -100°F to -65 °F. )

Acceleration and voltage variation tests showed that the motor wascapable of starting and accelerating the unit to rated conditions, at voltagesthat were below the low specification limit. These test results are showngraphically in Figures 27 through 36, Appendix A.

Connector cross-talk test

An MS3102A connector and mating plug with pins for two iron-constantan thermocouples was used for the test.

The connector was mounted to an available Pesco motor of similarsize. Two I/C thermocouples were taped to the end turns of the motorwindings. A speed pickup was mounted in the motor cavity and leadsincluding the power leads were brought out through the connector. The

15

motor was operated no-load and the speed was monitored on a digitalcounter and also by a Strobotac. Temperature was recorded on a stripchart recorder. Phase resistances were taken before and after the test.Since the counter and strobe readings agreed and no noise could be detectedon either the counter or temperature recorder signals, it was concludedthat a single connector could be used for all leads and that accurate datacould be obtained without cross-talk interference. Results are shown inAppendix C, Table C3.

Dow Corning DC-200-2 compatibility tests

In order to determine if the working fluid in any way affected thematerials in the motor assembly, a stator assembly and all assemblyparts were submerged in 1000 ml of the fluid for a period of four weeks;no evidence of deterioration, weight loss or gain, color change, softening,or crazing was detected.

A Model 115146-100 speed pickup was submerged in the fluid for aperiod of nine weeks. Coil resistance, insulation resistance and dielectricstrength were measured and recorded during this period. No deteriorationwas detected during this test.

Final design motor performance

Table I is a tabulation of motor performance at rated horsepower(0. 36) with nominal voltage input.

16

TABLE I

MOTOR PERFORMANCE

rpm

efficiency (%)

power factor (%)

locked rotor torque (Ib. in. )

torque at operating point (Ib. in. )

life

PredictedValue

11,280

67.0

67.0

2.60

2.00

5 years

ActualValue

11,280

68.5

64.5

2.06

2.00

See note

NOTE: Endurance tested for 20,000 hours with no deteriorationin performance.

Although the motor did not develop the predicted starting torque, thenature of the centrifugal pump is such that very little starting torque is re-quired, and this was not considered to be critical. The motor met orexceeded all of the application requirements.

PUMP-MOTOR ASSEMBLY DEVELOPMENT TEST PROGRAM

The development test program was performed on the final packageddesign of the coolant circulating pump, Pesco Model 115146-100, UnitS/N X-2149.

The development tests were run in accordance with Engineering Report5289, Revision B, entitled "Development Test Program Plan for PescoModel 115146-100 Coolant Circulating Pump for a Brayton Cycle Space PowerSystem. " A copy is included in Appendix F.

17

PMA S/N X-2149A was mounted in the test loop per test schematics,Figures 1 through 5 of Engineering Report 5289, Revision B. Figure E isa photograph of the test setup used for the hot and cold ambient testing.Figure F is a photograph of the PMA installed in the test loop, and FigureG is a photograph of the Gulton inverter installed on the cold plate.

Electrical checks (dielectric, resistance, and continuity) were con-ducted at various times during the development program. No performancedegradation was noted.

Test Series 1 - PMA Calibration-Sine Wave Power

Tests were made to determine the head-flow performance to substantiateanalytical pump characteristics and to determine motor performance using400 Hz sine wave power. Testing was conducted at the conditions defined inparagraph 4. 2. 2 of Engineering Report 5289-B.

Figures 37 through 39 show unit performance with sine wave power.

Test Series 2 - PMA Calibration-Inverter Power

The calibrations outlined in Test Series 1 were repeated using quasi-square wave input power (Gulton Inverter S/N 25509). Motor input voltagewas the same as in Test Series 1. Figures 40 through 42 are plots of the unitperformance at the three input voltages.

Table II compares the pump performance at 78°F and 3. 7 gpm flow fora sine wave input and a quasi-square wave input. The tabulation shows thatthe PMA head rise is slightly higher with sine wave power than the quasi-square wave power for an equivalent input voltage. The PMA efficiency,however, is approximately the same.

18

Q.

(/>

LLJ

UJ

ffl

8QZ

FIGURE E

19

FIGURE F

20

0.OO

V)tu

z

Q

Q.oo

Q.

Q

O

FIGURE G

21

TABLE II

PMA PERFORMANCE AT 78°F AND 3. 7 GPM

Inverter inputvoltage, dc

Motor inputvoltage, ac

Head, psi

Line current, amps

Motor input, watts

PMA Efficiency, %

Sine Wave

39.8 44.4 47.5

69 71.9 73

9.1 9.0 9.1

454 473 480

24.5 24.5 24.5

Square Wave

50

39.6

68.0

9.2

456

24.0

56

44.4

71. 1

9.1

465

24. 6

60

47.5

72.6

9.2

475

24.6

Test Series 3 - Reduced Diameter Impeller Tests

Tests were performed to determine the maximum amount that the outsidediameter of the impeller could be reduced before the head rise and the pumpefficiency decreased approximately 20%. It was determined that the impellerO. D. could be reduced from 2, 120" O. D. to 1. 820" O. D. This amount ofimpeller trimming reduced the head rise from 66 psi to 49- 5 psi and the pumpefficiency from 40% to 33% at a nominal pump flow of 3. 7 gpm and a pumpspeed of 11, 300 rpm. Tests were run on a dynamometer using the bar stockpump assembly. Figure 43 is a plot of the test results.

22

Test Series 4 - Net Positive Suction Head Tests (NPSH)

These tests were run to determine the effect of reduced inletpressures on pump performance in accordance with paragraph 4. 2. 5 ofEngineering Report 5289-B. Pump inlet pressures were varied from0 psig to 25 inches Hg vacuum (37 feet to 5 feet NPSH, approximately) asmeasured ahead of the integral filter rather than at the pump inlet down-stream of the filter. At 79°F fluid temperature, a NPSH of seven (7)feet was obtained before pump performance fell significantly with anaudible cavitation noise. This means the pump will function normally atinlet pressures as low as 2. 7 psia which far exceeds the 20 psia (53 feet)minimum required by the contract. Due to the low vapor pressure of DC-200, the NPSH and pump inlet pressure values are practically the same.

Figures 44 through 46 show NPSH performance at three inputvoltages and four pump flow rates.

Test Series 5 - Low Temperature and High Temperature Tests

The purpose of these tests was to determine the effect of fluid viscosityand temperature on motor-pump performance. Pump calibrations asdescribed in Test Series 2 were conducted at an ambient and pump inlettemperature of -65°F and also with an inverter cold plate outlet temperatureat 150°F maximum.

Table III shows the DC-200 viscosity effects on pump performance.The DC-200 viscosity varies from two centistokes at 78°F to approximatelyone centistoke at 150 °F and to approximately twelve centistokes at -65 °F.

23

TABLE III

PMA PERFORMANCE - SQUARE WAVE AT 3. 7 GPM

Input voltage, dc

Head, psi

Line current, amps

Motor input, watts

PMA efficiency, %

78°F

50 56 60

68 71.1 72.6

9.2 9.1 9-2

456 465 475

24 24.6 24.6

150°F

50 56 60

64.5 68.6 70.1

8.8 8.5 8.8

433 425 431

24 26 26.3

-65°F

50 56 60

57.2 62 62.5

11.8 10.8 10.6

562 571 580

16.4 17.5 17.5

The test loop side and top covers were in place for the hot and coldambient temperature testing.

Figures 47 through 49 are plots of performance at three input voltagesand -65°F ambient, and Figures 50 through 52 are performance plots with150°F fluid and three input voltages.

During the -65 °F temperature run, the unit reached operating speed in1.01 seconds with the maximum starting current at 21.0 amperes. This agreeswith the cold test results obtained with the barstock unit - Figure 29. The roomambient temperature acceleration time is one-half second.

Test Series 6 - Shut-off Flow Tests

The PMA was operated at shut-off conditions for three minutes witha fluid inlet temperature of 80°F and an inverter input voltage of 60 v dc. Unitspeed increased from 11, 340 rpm at a flow of 3. 7 gpm to 11, 500 rpm at shutoffand the motor winding temperature increased from 87°F to 110°F. Pump headdecreased from 72. 7 psi to 69. 5 psi.

24

Test Series 7 - Reverse Rotation and Dry Start-up

With the PMA filled with fluid, the unit was subjected to three reverserotation starts with 50 v dc input to the inverter. Pump head dropped from68. 3 psi at 3. 7 gpm to 22. 6 psi at 1. 94 gpm and the unit speed increasedfrom 11, 040 rpm to 11, 350 rpm.

The PMA was drained and the unit was subjected to two dry startsof 10 seconds maximum each conducted thirty minutes apart. No adverseeffects were noted in unit performance.

Dielectric and Continuity Check

A dielectric check was performed on the power connector only byapplying 1500 volts (rms) and 60 Hz between the four motor pins connectedtogether and the motor housing. The current leakage was less than 500micro-amperes.

Table C4 in Appendix C shows the results of the dielectric, continuity,and insulation resistance checks. This is typical of the electrical checksmade throughout the program.

250 Hour Design Assurance Test

The 250 hour design assurance test with 250 start-stop cycles wasperformed on unit S/N X2149A which had been used for series 1 through 7development tests. A pump calibration was performed prior to the start ofthe assurance test and Figure 53 is a plot of the unit performance. At theconclusion of the test, a recalibration of the pump was performed andFigure 54 is a plot of the post test unit performance. Unit performanceafter the 250 hour test was better than at the start.

25

No unit performance degradation was noted after the environmentaltests, NPSH tests, dry start-ups, reverse rotation tests, or 250 hourassurance test with 250 start-stop cycles. In fact, performance continued toimprove throughout the developmental program, as shown in Table IV.This appears to be due to "wearing in" of the bearings.

TABLE IV

PMA PERFORMANCE AT 3. 7 GPM, 56 V DC INPUT TO INVERTER, AND78 °F FLUID

Accum.hoursrun

0.4111129381

PMAEfficiency

21.924.625.727.0

11,10011,21011,24011,280

CalibrationTest

InitialTest Series 2Before 250 hour testAfter 250 hour test

Unit Disassembly and Inspection

The PMA was disassembled and inspected after a total running time of384. 3 hours and 314 starts. Critical dimensions were inspected and recorded.Unit condition was excellent with dimensions repeating original inspectionrecords. Testing and inspection results indicate that the unit design life offive (5) years is attainable. Copies of the inspection records are included inAppendix D.

Unit 20,000 Hour Endurance Test

The unit was reassembled with no change of parts and a 20, 000 hourendurance test was conducted. The unit was tested in accordance with paragraph6. 0 of test procedure ER-5289-B which is included in Appendix F. After 5000hours of running time the unit was removed from test, the seal welds weremachined off and the unit disassembled for inspection.

Unit disassembly showed the unit to be in excellent condition with nomeasurable wear evident on the bearings, the shaft bearing journals, orpump-motor components. Disassembly inspection records are included inAppendix D.

26

The unit was reassembled, rewelded and retested in accordance withparagraph 7. 0 of Engineering Report 5289-B. Testing was continued for atotal of 20,000 hours. Figures 55, 56 and 57 are calibration curves at thestart of the 20,000 hour test, at 5000 hours and at 20,000 hours, respectively.Unit performance at the conclusion of the 20, 000 hour test was better by 1. 0psi head rise thanat the start, as shown in Table V.

TABLE V

PMA PERFORMANCE AT 3. 7 GPM, 56 V DC INPUT TO INVERTER, AND78 °F FLUID

Ac cum. PMAhours Head Efficiency Speed Calibrationrun psi % rpm Test

0.0 71.9 25.2 11,260 Initial5063. 72.7 26.4 11,270 After 5000 hours20008. 72.9 26.5 11,280 After 20,000 hours

No degradation in performance was encountered during the test as shownby the head and speed versus running time curves on Figures 58 through 63 forthe 20,000 hours of endurance testing.

Unit disassembly showed the unit to be in excellent condition with themeasurement of critical shaft and bearing dimensions meeting the original blueprint requirements. Disassembly inspection records are included in AppendixD. Photographs of the unit integral filter, the rotor and the thrust-radialbearing are shown on Figures H, I and J, respectively.

The unit was reassembled with all the original parts, rewelded andacceptance tested for use as a spare unit.

27

CO CO

CJ CJ53 23I—1 M

LO

CM Ul

FIGURE H

28 I

w wW WCJ Oz z

oo o• •rf- H

1 i

PiW

W H

z'V WX H

en

Q

>H °J

CQ °SH Oi< oW 0-

< S

<JKw

FIGURE I

29

\

PUMP-MOTOR ASSEMBLY ACCEPTANCE TESTS

Motor Acceptance Tests

The PMA's were tested in accordance with Pesco Acceptance TestProcedure TR-700, Revision B. The motor for each assembly wasassembled into a test housing and calibrated as a component. Componenttesting included a dielectric check of the power connector to 1500 v rms60 Hz for one minute, an insulation check of each pin with a 50 v dcmegger, and a continuity check of each pin of both connectors.

The motor calibration consisted of mounting the motor on a torquemeasuring stand and connecting it to a slave inverter. A typical electricaldata sheet, Table C5, and the results of the motor calibrations for allse.ven units, Tables C6 through C12, are included in Appendix C. A com-posite torque-speed curve based on the test results of all units is shown onFigure 64-.

PMA Unit Acceptance Tests

Unit acceptance tests were performed in the test loop with installationand instrumentation as shown in Figures 1 through 5 of Engineering Report5289, Revision B, in Appendix F. .

Six PMA's, S/N X2143 through S/N X2148, were acceptance tested andshipped to NASA-Lewis Research Center. The acceptance test included thefollowing individual tests in sequence:

a) Dielectric and resistance checksb) Pump calibration testsc) 100 hour endurance testd) Pump calibration test

.e) Seal welding - helium leak testf) Proof pressure testg) Helium leak testh) Dielectric and resistance testi) Pump calibration test

31

All units were tested and shipped with an inverter with the exceptionof unit S/N X2148. This unit was tested on sine wave power since this unitwas scheduled for sine wave power testing at NASA-Lewis Research Center.

A plot of head, current, power, and efficiency versus flow of eachunit shipped, based on the final calibration test, is included in Figures 65through 70.

All units passed the 100 hour acceptance test without difficulty. Oneunit, S/N X2144, was rejected at the dielectric check after seal weldingjust prior to shipment. The unit dielectric leakage exceeded the maximumof 500 micro-amperes at 1000 v ac 60 Hz. Specification limit is 500 micro-amps at 1500 v ac 60 Hz. Disassembly of the unit revealed that a stator endturn was assembled too close to the motor cover assembly, thus providinga high resistance short circuit. The unit was rebuilt with a new stator,re-tested and shipped.

Another unit, S/N X2147, has a different head characteristic than theothers which is probably due to a deviation in angle of one of the diffuserholes. It still meets the performance specifications, however.

All units showed an improvement in performance with running timesimilar to that experienced with the development PMA. Efficiencies at theend of the 100 hour acceptance test ranged from 0. 4 to 2. 2 percentage pointsbetter than at the start of the test.

RELIABILITY PROGRAM - PUMP MOTOR ASSEMBLY

Component Reliability Analysis for Pump-Motor AssemblyPesco Model No. 115146-100

This analysis consists of the generic failure rates of each of the com-ponents of the PMA. The following two documents have been used inacquiring the generic failure rates of the individual components:

32

Reliability Analysis Program Handbook prepared byGeneral Electric, Large Jet Engine Division atCincinnati for Mechanical Components.

MLL-DHBK-217 for electrical components.

Detailed failure analysis sheets appear in Appendix E.

The inherent reliability estimate for the pump-motor assembly is51,576 hours Mean Time Between Failure (MTBF) as against the 57,412hours MTBF which was the preliminary estimate. The present analysisincludes the failure rate modifiers which have been calculated by takinginto consideration the stress levels, material strengths, the environmentconditions, et cetera. These modifiers are then used in estimating theupdated failure rates. The summary of the total failure rates of the pumpand motor are listed below:

Sub-Assembly Failure Rate per 10" Hours

Pump and Housing 9-401

Electric Motor 9- 988

Total 19.389

= 1^000,00019.389

51,576 hours

33

Reliability Failure Mode, Effect and Criticality Analysisfor Pump-Motor Assembly, Pesco Model No. 115146-100

This study was performed to determine the feasible modes of failureand their criticality in the PMA used in the Brayton Cycle Systems. Theanalysis has been made starting at the system level and expanding downwardto the component system level and finally to the component level.

The analysis of failure modes for the PMA has been performed in twophases. The first phase takes each subassembly and part individually anddetermines its failure modes and the effect of each failure mode on thecomponent output. The failure rate (in events per one million hours) foreach failure mode is included. The results of this analysis are presentedin the "Component Reliability Report" which is included in Appendix E.

The second phase takes each failure mode and classifies it inaccordance with the criticality or consequence of the failure. Thecriticality categories are such as "Pump inoperative, no flow or pressure"and "Low discharge flow and/or pressure. " The reasons why each failuremode should not occur or why its probability of occurrence has beenminimized are given for each failure mode. The results of this analysisare presented in the "Failure Mode Cause Analysis" which is also includedin Appendix E.

The new failure rate for the pump-motor (centrifugal) assembly wasestimated to be 19- 389 occurrences in one million hours or 51, 576 hoursMean Time Between Failure.

Relative probability of occurrence of the different failure modes isas listed below:

Failure Type % Failures(Relative Probability of Occurrence)

Pump Inoperative (no flow or pressure) 60. 69

Low Discharge and/or Pressure 39. 31

The critical components are the two sleeve bearings, the stator androtor assemblies, the filter and the weld joints.

34

CONCLUSIONS

A pump-mo tor assembly, Pesco Model 115146-100, was designed,developed, and tested which meets or exceeds the specified design require-ments, A pump head rise of 68 psi was obtained compared to the requiredminimum of 60 psi at the minimum 50 v dc input to the inverter, with 80°Ffluid, and at the rated flow of 3. 7 gpm.

The pump suction performance is much better than specified. Thepump will function normally with an available NPSH as low as 7 feet comparedto the required minimum of 53 feet.

The performance of all units improved with running time, apparentlydue to wearing in of the bearings. .The efficiency of the development PMAincreased from 21. 9% to 27% at rated conditions during the first 381 hoursof operation.

Test experience to date indicates that the design life of five years isattainable. A 20, 000 hour endurance test was completed on Unit SerialNumber X2149 with no degradation in performance. Unit disassembly atthe conclusion of the test indicated no signs of wear with critical bearing andshaft journal dimensions within the original print dimensions. The unit wasreassembled and rewelded as is for use as a spare unit.

35

REFERENCES

1) Lachenmeier, G. , "Design and Manufacture of StaticInverter for Brayton Power Conversion System, "NASA CR-72671, Gulton Industries Report No. 2403,dated December 3, 1969-

2) Rippel, H. C. , "Cast Bronze Bearing Design Manual, "The Franklin Institute Research Laboratories,Philadelphia, Pennsylvania. Third Printing datedSeptember, 1967.

36

APPENDIX A

FIGURES

oo

2•«t

_lLUOO

-1

80

40

20

_

g ooen to M-at en CN ooo co •»en co oq oq cq CMoo oco <or-.

AIJABJ& OjjjDadc;

37

oo

$in

_iLJJQ

O

s

>

e

/f

•3 u

/

/

•> c_ ^

/

3

/

C

>

/

>

/

'

C

/f

) C

//

D C

///

3 C

/

/

/

/

/

f

\ C

y/

ua r-

y//

2 5

/

/

> u? f

f/

t4

(<

o00

oCD

O•<fr*™

OCN

OO

o t! „.00 _g U

o -g£ tt

O 3 '^10 TO C

Q-CNo E .

o -S-"SCN 0 ^

LL w

o > c

I |l2 S o>

O o_ CO •—^ E ^- E

QJ S O

"T <Q

§ «OJ

S

oo

1

o

33

- AIJSOOSIA oueoiaujx

38

Model 115146-100 Unit S/N S-4944

I IFluid D.C. 200-2Inlet Press. 15 PSIGSpeed 11.300RPMTemperature 78°F.

Legend

Calibration with diffuser

Calibration with diffuser removed

Calibration with diffuser with two

holes plugged

Calibration with diffuser holes increased

to 0.0625 dia.

Calibration with two holes plugged in

impeller

Calibration with two holes plugged in

impeller & with 0.0625 dia. holes in diffuser

—•— Calibration with two holes plugged in impeller

& diffuser

30

Flow - GPM

Figure 3. - Barstock pump test performance - Head vs Flow composite curvefor various unit configurations

39

Model 115146-1000.60

Unit S/N S-4944

0.55

0.50

0.45

x; 0.4000

^ 0.35QiC

0.30

0.25

0.20

0.15

Legend—A— Calibration with diffuser

Calibration with diffuser removed_O_ Calibration with diffuser with two

holes plugged0 Calibration with diffuser holes increased

to 0.0625 dia.A Calibration with two holes plugged in impeller

Calibration with two holes plugged in impeller

& with 0.0625 dia. holes in diffuser—•— Calibration with two holes plugged in impeller

& diffuser

FluidInlet Press.SpeedTemperature

D.C. 200-215PSIG11,300RPM78° F

Flow - GPM

Figure 4. - Barstock pump test performance - Input H.P. vs Flow composite curvefor various unit configuration

40

Legend

Calibration with diffuser

Calibration with diffuser removedCalibration with diffuser with two

holes pluggedCalibration with diffuser holes increased

to 0.0625 dia.Calibration with two holes plugged in impellerCalibration with two holes plugged in impeller

& with 0.0625 dia. holes in diffuserCalibration with two holes plugged in impeller

& diffuser Unit S/N S-4944Model 115146-100

FluidInlet Press.SpeedTemperature

D.C. 200-215PSIG11,300RPM78°F.

Flow - GPM

Figure 5. - Barstock pump test performance - Efficiency vs FlowComposite curve for various unit configurations

41

spuesnoqi u; \|dH -

qeg

qd

oO)

qod

qto

q10

qri

oo o

COo•3-

juao jad - JOJOBJ jaiuod

OCM

g or-

r-.

oCD

CO

gih

s. ..jndui - sue

*

• co CM'H(

CO CM

O

*-

0

6

indjno -

42

8CM

OQ.c

n o0) O

DO •*

CM

CM

QO

V

3Q.c

.E 2inco o

o >8 I

O

"8o

2O

Is2Q.

Oco sjaddoo Ajeoiud ssa| indu; sue/v\

43

ooCM

OO £>c g

! €'g

_ ^ to .

\

!. I

o „, °" il8.2

o ,_> 2o

\

oCO

oCO g ?

jaddoo AjBLUud ssa| jndw SJJBM

44

oo

3Q.c

ooo

or-

s£CD3

sr3cr

o>

3O

I oCO

o

oCM

sIoi£g,

Q

O

in(O

oto

oin o int coSUBM - sassoi ;

oCM

45

CM

CM

QO

\

"D 0)

- l i f e .o o fc JP-J H < 5

\

inin"

oin

in

*

q•*'

inCO

qco

inCM

qCM

CO

8oo

I.

I?> CO

S 5

oo r~ tospuesnoq; uj |/\)du

6d

qod

5r-'

6co

oin

§Oo> g S S

juao jad u; JOIDE.J ja/wodco

o o oCM "-

8r-.

indui -

oCD

8jndjno

46

I

V -AV

o °> o°. •* inCM CM r- '

1 la*O " c *-"O O c ra-J H- < 3-

into

os

Ia>3

3^2 If

i,

r-- «D

spuesnom ui - paadg

p p p pv-' O OJ CO

p o<o ui

p•*

pco

8 o00

o(O

oin

oCO

oCMjuao jad ui JOIOBJ ja/wod pue

§00

8

i s oCM

indino -

47

CM

CM

UlQO

OOCM

c £

oO)

. c

g•g

o o-I ^ CD

° CM CM

-

o> co co in t

l/\ljy paads

CO CM

iqin

pin

inCD

sinco

oco .1 g£

•S of

§ &£?• so» 2^tCT fe *--

° II

oo^

8

0cri

pO)

o00

§

pr^

0i .

0CO

sajaduie - iu

gIU33 J3d • J3

0in

3JJR3

^iwodasjo

o•*'

$u DUB Aoi

O 0co CM'

CO CM

jaioiija

pi-

O

o

o

jnduj -

indjno - jaModasjO|-|

8CM

oCM

48

8i

uiQO

Q.

E<

Q.

x

3E

oo i>> <o in

spuesnou)} ui |/\|jy

oq8os

0> ".C 0> .g O

-

CT

fc-c.g «-•Qj N"D.X

o *JIIas> raS 5ISa. •«

£

p p p p p o p pCM' «-' o o> od r»' <6 in

8 0en

8en

0 0

JU33

8 8

oq p-

oCD

jad u;

8

<q

o oin •*

joiDej jawod - ADU

o os 1indui - sue;

in «*

indjno - ja/wod<

oroia»W3

o8

V\CO

»SJOH

oCM

OOCM

CM

O

8

-

0

o

49

If)CO

-o

ifQ) QJ

£ Io s

2 =a. "3

s

3 0D CDr—

000

qr>C

0 0CD U>

sajaduie - JUSJJT

o o*t' CO

O

0oi

q cr^

8

8o>

oo r- co 10

juao jad u; JOIOBJ. ja/wod <

8

8oo

8 8 8

indjno -

50

8i

LJJQO

co r CD inspuesnoqi uj i/^y - paadg

ro 01

qo

qoi

qco

q qto vo

sajaduie •

qm

qc>i

ou>

luao jad ui JOJOBA ja/wod -

oCO

oCM

§ 800

oo

os §ininduj

§rt

O0CM

OO

indjno

51

8

in

LLJ

Q

O

<

O

CO

qoi

co o

a.

CO

o>c

o*Jo

<B

°P £< 3i 4_f

£

o c> o

Oo

IIo

E

Ioo

CO*

CDl_

O)

j -sq| -anbjoj_

oo 0

0O

ooO)

oo00

ooCO

.indm -SUBM

OO

oo>

oCO

oLO

sajaduiB -

OO

oCO

oCN

52

8iin

LUOO

.

<

"V

\

coCM'

s.

*

\

\\

\\

A

\x

~~ 8o o'> >

SI

81

a.X

/

VA

cd oci^- co

-9

\ii

S 5i I& 5t l

i,

co r» CD inspuesnom ui i/\|jy -

CO CM

qc\i

gou>

qco

qco

qin

q qco CN

ooo S

1U93 jad u; JOJOBJ jaMOd -

oco

o o oCM «-

CD

O

§

co

8r-.

r~.

8CD

CO

O O

S °jnduj - SUB/

in j-indu; jaMod

o o o

IA

CO CM •—

asjoH

o

o

53

o

8CN

OO

o8

cq •* CM q oq cq t CN o

S9L|3uj 'q| - anbjox

8 8 8 8 8 8 8 8 °

<u

_g

8(0

£ N

fiIIil§ iIMQ. tA

CO

n>

oCM

54

CTVI

§

CM

CM

LUQO

Q.

<

\\

/

s

ini- o> i— /-,2 «"> o CM _Jo i- CM in ^

•D O)

I !&f i

J

iCT

I

.g

spuesnom uj \fidtiO 0)8 £E 5

qCM'

cjo

poi

csod

cacd

pLO

oa> o

00oCO

JU33 J3d • JO»OBJ J3MOd°

pCM"

oCM

« Io

II

ooCD

8induj -

ooCM 8

jndjno

55

Io

8CM

6Q

OO

UJV

eto

O ^

O CM

•a <u

•coCM

or~-

c» co in <*

spuesnoq; u| |/\|da 1

3

8"

3CT

£o>inco'

4-10)

i sII *o tet- Q. N

oo

2 «o g

oCM

0 0CM —

o0

0 0O5 CO

or^

oCO

0 0in ^

oCO

oCM

0

•~

o

*~ *~ *~ sajadoie - luajjnQ

8 o oen co

8co

Or~

oo

r-

oco

1U33 Jad

0

CO

CO

g §- aopej jaMod pue A:

8 8in "*

indui - sui

in r

oCO

>uap!W3

0

CO

°'Mco

1

oCM

8CM

CM

O

8~

i-

o

o

fajndino

56

r*-sCM "

co O

cctf§

CM

CM

Q

O

\\

\

\rCOg

i-. CD in

spuesnoqi uj

CM 5 °CM' CM oo

I f e£ JiH

qin

3CJ

oS

s

I I

* 8 I. C -C

co Q.

S I «E o £o t .c

-•

o „

CM

S

qd

qoi

qod

oen ooo

qin

sajaduie

qco

oi—

oCO g oco

juao jad - JOJOBJ ja/wod

8 8in S °;ndu| - sue/v\

p q oCM' i-'

oCM

o oo

indjno -

57

inDO

<j)

I I5 IO 0)c -Q •

'— 0)

> TO

2 •=> .a£ = •I Bz -a

CO CM

5 6ac o'» -"

I!?? Q-

/I

-s ".

I

3 8-0 •— CM in•a a)

1 f f fi- j

r~ (0 in *spuesnoqi ui i^jy - paadg

3C7

Qi - E gj

111o S **o a>I- a

5

2o.

CM'CM

1

poi

GTo

qid

sajadtue

qin

qpj

qCM

<5 i

i S oCO

8CO

6r*.

oo

r-*

o(O

luao jad

oS

<o

oin? ^

ACM

6 o

• JOJOEJ ja/vtod pue Aoua|O|^3

oS

in

o o

- jndui - SUB/V\ .

f CO

indjno - jaModasjoi

8

CM

H

8

^

o

o

58

S B '.E "*

!i<D o.E "^ .— .Q

§ -2I «.£ "8.§ 3

5 ciac otn •a f -si«> >3 o

f\

\

ei

\

pin

5 8 3 §tN f-

\

pCO

inCM"

p(N

s S

II£ €s.

IO a>Osa.

CO(N

to

spuesnoL|i inCO CM

pd

pai

pad

pto

pin

pci

OO) § (O

IU3D iad •10 t CO CM

puE

8

induj -

' ;ndjno -

59

CMCM

UJQO

\

o CM • o*- . P- r*»O CM CM CO

•a <oz §• a £

So>CD3

?'«»ra3CT

(O

cc»o

&

O'oCM6o

Q_

oo r- co in t

spuesnoqi u| i/yjjy - paadg

inin

3cr

?2 I

Q)

.O *-> Nl

I— » Tt~ QJ X

k. O

II2 o>E |a. 5

Od

ooi

pCO

oo>

oCO

p pto insajadiue -

pci

oco

luao jad u; - JOIDEJ jaMod

oCO

oCM

8CO

8

o

8"CO

8 "ininduj

§ o oLA ^

jndjno - j

8

°aModas

8CM

OCM

JOU

8

o

o

1

o

60

8

IIIao

s.<

V

oo r»

spuesnOL|j u{

2E 8»!^ Q-u

•£ Soo £co •£

<=' M•£ I

£ 0) >

ill3 OCT O 0)

o c «

O 5>•t gQ. O"

inCM£

oo

qCN

qo

poS

oooO)

qcd

o qi--' to

sajadiue -

oin

pci

qCM'

or- oinluao jad u; JOJOBA jaMod

oco

oCM o o

8en

8oo

CO

8

r~

indui - sue/v\

cr> LO rt

indino - jaModasjc

i i

CO CN

>H

oo

r—

0

o

61

OO

LUQO

OQ.

\

\

oo r- co in

spuesnoqi ui i |jy - psadg

qin

2 So n

c £q g-g

"~. NO X

3 *lI -2 3

°. IMn o ?C "D a,

— £ s

"> T 3oi » ° £

2 5C

O co

qCN

os

co(N

q 0 0>-' C3

8

q qG) 00

O> 00

q

o

o o ocb in •y'

sajaduue - juajjnQ

o • o oCD in 9

o oto CN

o o

q

o

o

o

tuao jad ui. joaoej jBMOd - ADuapi.ua

1 1 8r-

o o o

indui - suen CM 8 0

;ndino

62

co inl/\ldy puesnoqi - paadg

OL * ISd -

CM oCM CM

oCM

63

l/\jdU puesnoL)! - paads01 x'i'S'

01 - 1 - SINH si|OA

CMCM

CM O

saasdme -

64

inCO

f i

; s s*15ila. f

2 ?« >55O)CM

l/\ldy puesnoqi uj paadg01 x ISd -ajnssajj

01 XSI/\I« 1-T A-sil°A

CMCM

OCM

Sl/\ld sajaduue

65

a

I

-oa

I

5O <-.

CO

«

I is *

_OJ

09

< IS .c

3 1

V> QJ

DO '«

g

0>

oCO

oin o

CM

66

67

68

CM

S1AIU

69

•&O)

JS

ra•oc

oU>

0>

I"O N

S I< 2 0

i:-O Q)

< is »

srS 3

OQ CT

1/MdU

70

o (o co £ in o>d o o o o o2 z Z Z Z Zc c c c c c

OC cc or OC oc OC

71

CO

*^> O"

°- o,J« >U CDO 5

tt «

<o .£CD w

£i.

WdU

72

Sine Wave Power

VoltsFrequencyFluid D.C.Fluid Temp.Inlet Press.

Model 115146-10075

39.8 (L-L)400 Hz200-2 7078° F5.0 PSIG

Q.

0)

10

£OJQ.

ECD

co>

oCDc

CO

Q.C

ao

CDQ.

UC(U

65

60

55

50

500

400

300

200

100

040

30

20

10

Cur r e n t ,

1 2 3 4Flow - G.P.M.

Figure 37. - PMA S/N X-2149 test performance per ER 5289B Para. 4.2.2 - sine wavepower, 39.8 V.A.C.

73

Model 115146-10080

Sine Wave PowerVolts 44.4 (L-L) 75Frequency 400 HzFluid D.C. 200-2Fluid Temp. 79° FInlet Press. 5.2 PSIG

70

COa!

<uO.

co

I3Oa>c

ca>o

u

u

"i"sa.'

65

30

20

10

1 2 3 4

Flow-G.P.M.

Figure 38. - PMA S/N 2149 test performance- calibration per ER 5289B Para. 4.2.2.sine wave power, 44.4 V.A.C.

74

Model 115146-10080

Sine Wave PowerVolts 47.5 (L-L) 75Frequency 400 HzFluid D.C. 200-2Fluid Temp. 79°F.Inlet Press. 5.2 PSIG

70

12

10

E 6(D

•M

I 4oCDC

cqa!

65

60

csO)Q.

30

,2 20

10

7

1 1 2 3 4 !

Flow - G.P.M.

Figure 39. - PMA S/N X-2149 test performance - calibration per ER-5289B Para. 4.2.2,

sine wave power, 47.5 V.A.C.

75

Inverter S/N 25509 on Model 115146-100

Volts 39.6 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 79° FInlet Press. 5.0 PSIG

12

10

Q.

to

c0)

<Bc

s.£ 20

i10

00 1 2 3 4

Flow-G.P.M.

Figure 40. - PMA S/N X-2149 test performance - calibration per ER 5289B para. 4.2.3,inverter power, 39.6 V.A.C.

76

Inverter S/N 25509Volts 44.4 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 79° FInlet Press. 5.2 PSIG

80Model 115146-100

12

10

Q.

£

I

75

inoL

70

65

60

55600

500

42IS

o300O

200

10040

Z 300)Q.

>.O

I 20

5 10

1 2 3 4

Flow - G.P.M.

Figure 41. • PMA S/N X-2149 test performance-calibration per ER-5289B para. 4.2.3,

inverter power, 44.4 V.A.C.

77

Inverter S/N 25509Volts 47.5 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 79°FInlet Press. 5.4PSIG

12

10

Q.E

80

75

70

65

60

Model 115146-100

B 30

Sa.'

10

7

1 2 3 4

Flow-G.P.M.

Figure 42. - PMA S/N X-2149 test performance - calibration per ER-5249B para. 4.2.3,inverter power, 47.5 V.A.C.

78

MODELS-4944

Speed 11,300RPMFluid DC 200 - 2Fluid Temp. 80°FInlet Press. 20 PSIA

3 4Flow - GPM

Figure 43. - Barstock pump performance - calibration on dynamometer at various impellerdiameters per ER-5289B, para. 4.2.4.

79

Iin

~~ I CM LL"P o e6oO) O O-CO .co ^* CM r> .

Q.ocJ E

-o

s s ^•£ 2 2 |

U_ LL LL _±

en -5

Q. a.•- 5 °-CO Om. to r-. C3 r-_w ^ co CM ci

A 1

aofenooCMintr.LU0)Q.

O'£J3

I II 8o c

» 1.5 o

8.

«X <.

2 s< CO

00 «I,

§ oto

om

oco

oCM

'I'S'd - asu ajnssajj

80

— I CM U-o cbo

? o o en•* CM

CD

CMinocLLI

Io

I 1Ise

o 01o

tJ g£ Eo> £

I I <•>en Q, <

4-1 0)<B +-

CM (0

X in§3< 2S HQ. &

ino>O)

'I'S'd ajnssajj

81

CDO>OO(NU)

teQ.CO

s I

Ti

8. I

CO *

< ra

i S.

CD

'I'S'd -

82

Volts 39.6 (L-L)Frequency 400 Hz 75

Fluid D.C. 200-2Fluid Temp.-71° FInlet Press. 5.9 PSIG 70

co 65a.

60

Model 115146-100

a>a.Ea

c03

DUa>

14

12

10

o>ol

55

50

700

ca>2 300)a.

oc03

<5CL

20

10

\

1 2 3 4

Flow - G.P.M.

Figure 47.- PMA S/N X-2149 test performance - calibration at -71°F and 39.6 V.A.C.inverter power per ER-5289B para. 4.2.6

83

Volts 44.4 (L-L)Frequency 400 HzFluid D.C. 200-2 75Fluid Temp.-71°FInlet Press. 6.0 PSIG

_• 70inCL.

I 65

14

12

I 10

I 60

55

Model 115146-100

30

20

10

00 1 2 3 4 5

Flow - GPM

Figure 48. - Pump S/N X-2149 test performance - calibration at -71°F and 44.4 V.A.C. inverterpower per ER-5289B, para. 4.2.6

84

Model 115146-100Volts 47.5 (L-L) 80Frequency 400 HzFluid D.C. 200-2Fluid Temp-71°F 75Inlet Press. 6.2 PSIG

70

14

12

a •iio

I

C/3a.'

£I

65

60

55

50700

600

? 500•*-•

|

I 400o

300

20040

§ 30

20

10

\

1 2 3 4Flow - GPM

Figure 49. - PMA S/N X-2149 test performance calibration at -71°F and 47.5 V.A.C.inverter power per ER-5289B para. 4.2.6

85

Volts 39.6 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 150°FInlet Press. 5.1 PSIG

Model 115146-100

70

-. 65cqCL

<i>v>*k.03

60

55

12

30c0>u<UD.

Xu

.i 20u

10

) 1 2 3 4

Flow - G.P.M.

Figure 50. - PMA S/N X-2149 test performance calibration at +150°F and 39.6 V.A.C.inverter power per ER-5289B para. 4.2.6

86

80Volts 44.4 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 150°F 75

Inlet Press, 5.2 PSIG

Model 115146-100

12

10

.£ 8<t3

3 6

COCL

_0>Q.

70

65

60

30

O

.1 20u

10

1 2 3 4

Flow-G.P.M.

Figure 51. - PMA S/N X-2149 test performance calibration at +150°F and 44.4 V.A.C.inverter power per ER 5289B para. 4.2.6

87

Volts 47.5 (L-L) Model 115146-100Frequency 400 Hz 80

Fluid D.C. 200-2Fluid Temp. 148°FInlet Press. 5.0 PSIG

12

«'°CDQ.

E? 84-1

<B

COc

3001Q.

.£ 20oit0>

< 10

1 1 2 3 4

Flow-G.P.M.

Figure 52. - PMA S/N X-2149 test performance calibration at +148°F and 47.5 V.A.C.inverter power per ER 5289B para. 4.2.6

88

Model 115146-10080

Volts 44.4 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 80° FInlet Press. 5.0PSIG

Q_

0)tn'i_

£D

<UL.Q.

70

65

60

12

10

o>a(0

IuCDC

1

a.

'I 300

30<uQ.Xuc

20

10

00 1 2 3 4 5

Flow - G.P.M.Figure 53. - PMA S/N X-2149 test performance calibration at 44.4 V.A.C. inverter power

(prior to starting 250 hour assurance test) per ER-5289B para. 5.2

89

Volts 44.4 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 80° FInlet Press. 5.0PSIG

80Model 115146-100

10

OJa.E

CDc

toQ-'

i'i-O)

75

70

65

60

55500

400

i 300

a.

'i 200

100

040

§ 30L_0)a.

ui 20(J

10

C u r r e n t

0 ""• 1 - • - • — • 2 - ' 3 ^ • -=- 4

Flow-G.P.M.

Figure 54. - PMA S/N X-2149 test performance calibration at 44.4 V.A.C. inverter power(after 250 hour assurance test) per ER-5289B

90

Inverter PowerVoltsFrequencyFluidFluid Temp.Inlet Press.

44.4 {L- L) Model 115146-100400 Hz 80D.C. 200-283°F.5.0 PSIG

10

0)Q.

to

u<Dc

Flow - G.P.M.Figure 55. PMA S/N X-2149 test performance - test calibration

at 44.4 V.A.C. power before 20,000 hour endurance test

91

Inverter PowerVolts 44.4 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 81 °F.Inlet Press. 5.0 PSIG

Model 115146-100

75

C/3o.'

70

65

60

5510 500

i

8 400

I6 1 300

3ac4 o 200

o

100

r e n tCu r

Flow - G.P.M.

. Figure 56. - PMA S/N X-2149 test performance - test calibrationat 44.4 V.A.C. power after 5000 hours of endurance test

92

Inverter Power

Volts 44.4 (L-L-)Frequency 400 Hz 80Fluid D.C.200-2Fluid Temp.79°F

Inlet Press. 5.0 PSIG 75

70

65

60

Model 115146-100

10

I 6

3 40>c

55

500

400

fico

~ 300Q.

200

100

040

30

20

10

Cu r r e n t

1 2 3 ^

Flow • G.P.M.

Figure 57. - PMA S/N X-2149 test performance - test calibrationat 44.4 V.A.C. power after 20,000 hour endurance test

93

cd Q F&S4^^ "- 3^H3iSH355• * • ^lifiHj-"----i-"*'—H--—!-- :-:-.-!-;- -r — ',~±± r

u > s bJ fc- JzT^v.iig^OTCJ CO PH H|t'-'T rtri---:-t-::':m-:-ffi -rri- -fH^-HSRoo to P-i

in -f\

o ioCO

% felr |fe^S*^ :4^4?: i . ^=sS

t?^Sg||te^ ^2 !£gzTHHrii -ij-HJiw-H-.-rTT'.---r-.- •'•:±~-riSJ-H-l-i---'-ti-

l |s| |ggspg

ifipa5^

."Tri4ii".t:.. - l. rTj.~;ibXH44 !~-H-i-T J-t-'-M-jj. T1—i • • • • ••• i^,»• r^ i— • •' - !r • • -' • •

: ^4-l q^TM;^^^ --:j:! iii ^:rH^11g iM^nfeid-

p^4i=3±sisafiE iffi?i-s:£iE:-

E±±d±r

gig5i®:qnteEfer:i~Bi-~-\ ±?f

Sffi3±a

± JES J :/;/ fEpp. 1H5 t± j|j93±±•j.-:.-:Ji—4^1^g;i-!4 i5*SSZS^± : H:H±t i

+f]iiii iT^t . ," i

Stfcl^-d:assj§iS?[ ssia3iS

Sffig

HW

O OO Oto w

rasaist^ggftT^---^-* •U—J—j-l-t-fi-f--^-rf

33 S

O rai o <u

10 EH

rf 3 Pi

- pasds dranj

<o-p0)o

Icl0)

ooo

*\

oIM

CO

CO10

ISd - 3STJ pBaq dranj

94

[i S^p.i;;4±iil::j/ ^ ryji

" liK ll3:*^£lB ilSi ^ 1• _..'.LT.,.3», :.... - i ..t * • T ."•" _£ . i. — -, • j.i t. . • •. ..•

.0 1_L| [.-.;-. ;-,»" ---:• ' • • • • ( • --J-h-'H-rj-' ; •-•- : ' -l-

j! 5 • HS^SSSffifJ=• h gpilg^^^iS^H:^• SHh£ttE;tSEE:;:':sfi^fe;ii-;:;±i,

an

./ .: ';.i rLriJ-.-'V^-.'' -'''".'- 'v'^'^.j:.: '!-!:r^l o ,.:;-.

' " ; : - ' - -';" • ' "

r^ : .'

l1 §i:liiipKSi^K^^iis^ii^ssSil|lil |zp ;;li;.. .... •|,-rJ-..| 1 -,':-' - . .r - . : • fi; - -4 • • • • ; - •; "•-:-_;;-

It-i—i-'--^4: —^-r~»i —3--"--.-. l^-i- .,'d..\:;.:±'.. Lv. .13.7; .ii

fe|^4M:^-:'^4l^r-[^^£

i gg i ; i- : - :: '• ^ L: ;;8 8to cvi

o3

S i ^ felf;

lf-'-t"L-. ' 4 • -':.:!! i jr '-:R ••i-T'

I 'l"'""'"^".!""/ ^":"T .7i""^T"I"t"",".'~'"T.iri, '.Tj .'- TT'""!. "'~:'

^^-jLCUHi^ili

-T"?f^

-j^-.^—r^-M-,-^^—L;J-J.... ..-.J.. ;;.. ;-.T..•:_•_! ur-;:n;: {•i:;-':"':-:•-.••-:.:'-•r-^i.i.•:;:.--i;.y "j.. J/:-;, J^JV-V-H..p,.-.:-:{.. .•j:'.-;-.^4ri;1:.:.£[:.,..f.Hv..1;ip•!?-£• ^rv',:.i]l-ifcrj-i .J-±-:->^VFvr^: v~r:^::.T :;h—..-..^ur^i^-^^^v.-tT

... . • f._•... j^, :.. ^^--•j :J,- -•• 7-"^;-r' r- —-v; T - -_^_- Vvl

. '• - '-,- :-_ : t-: - •' , ; ' jt-^'i-\ _"!_• -*•!•••• ' • -»L _t-j!_ jft"'. '••= •-•••-

m•- to

re;,

is• '1-.-J

o: O

i3

•*r- co

r~-or--

w

£O

-PW

-p0)<u-p

1

oOJ

H(M

S;

CQ

05in

- paads ISd - 8STJ

95

. i-.'., ^^-i^^Hj-ii: -HT^ flf'+i

±£35f3:t?hE W -jd^1^ !. S

-pra

co<u-po>o

I0)

OfiOOO

IenH<MI

X

•HP-H

ISJ - asfj p^aq dranj

96

!

W<U

EH

-Pca(U-P

Ia0)

iooo•\oCVJ

X!

(=3

CO

CD

ISd - p'Bstj

97

88

S "fpmwHasar-^1-. w^H^^^^^

lf2ir

Sfe ,[*-?? -li tlM^tjg^iQ^iifcrii ^p-H-pJ-^fcrtf ^wF^^& iKis"'•-•-••! fW'-^tpr.'-Vsa.i. •rtir:-pfcTTlfK^FTfer

' • -l ! J-~--^Rft*r.-f^fcHSt4\Tfj

>ffi| ^ t ^gi:uy4K?1±:-f -Jp --

^^ :fe feKaMpte®ti?te-{J7?; il/.nt^«i^HiaHffi:c;r:l4;

-*vv-' !+4v 1 '* ^-'-u.Tj'j JT~- f- ^F-^~4-iiLl±r i-1-t-f.r' •

ii fertisiissp

1^^-^^-"-t'fF-7^+:^«^-£;-

CO0-p

0)o

S-oG

oCV?

Oj

><

§

CVICO

sbo

98

• v r-i ii.py, ,.:_H*u.i4^4-:-

o

"'"yr ' ir'nifc-''!-- —•— H .-• i. f|: I v'fl-rtT ~ pj;AU-1.:../--r.-j-Pf-:-^-;- S-'^- J3 i'.'-::;>;p-np.U.'.i': ;uihskiHtE^^; hfei "3 ..-jiafem»*5a±tty±h'-i55P«rair::±i -S3±^±t1±<»:L"i_ir

i_U j CD -:.^--:-| '-i-i-U-i. -t'~H-T-1 ,_i *> ;.;.C-U.,-.— ; TCuII 7 .

f&SIKafllisE;;->^.5|plppS|

liii tmilili|8T? **

^°>

3^'7M- vH-:4^ -: T~ !- -7i"-.--:-i- -<<H-i+3- .-;-<

" O

:•;. o;;g

ra(UEH

CO0)-P

Igoaoooo"CV]

H(M

(OCD

WJH - paacis dranj; ISd - 3STJ drary;

99

100

Model 115146-100

Inverter PowerVolts 39.8 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 79° FInlet Press. 10.5 PSIG

10

0)Q.E

ca)

OJ

c0)

O)Q.

>-ocCD

O

it(U

70

65COa."

60

£ 55Q_

50500

400

300

«1 200Q.

100

040

" 30

£ 20

10

Cu r r e n t>

0 1 2 3 4

Flow - G.P.M.

Figure 65. - PMA S/N X-2143 test performance - final acceptance test calibrationat 39.8 V.A.C. inverter power

101

Model 115146-100Inverter Power 75Volts 39.6 (L-L)Frequency 400 HzFluid D.C. 200-2 70Fluid Temp. 81°FInlet Press. 5

10

V)a!

CD.«'L.0)

COQ.

03

C .cu ^I- D

o D"o 4 ~

5 1

c(Uo1_CDQ.

>Uccu

65

60

55

50500

400

300

200

100

040

30

20

10

C u r r e n tx

1 2 3 4

Flow-G.P.M.

Figure 66. . PMA S/N X-2144 test performance - final acceptance test calibrationat 39.6 V.A.C. inverter power

102

Inverter PowerVolts 39.6 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 79° FInlet Press. 5.5 PSIG

c/ia.'

i'l_0>

10

S 8<uQ.E(O

~ 6

I3« 4

75Model 115146-100

70

65

60

55

50500

400

300

a~ 200o

100

040

§fca.uc0)

30

20

10

C u r r e n t

Flow-G.P.M.

Figure 67.. - PMA S/N X-2145 test performance - final acceptance test calibration

at 39.6 V.A.C. inverter power

103

Inverter PowerVolts 39.6 (L-L)Frequency 400 HzFluid D.C. 200-2Fluid Temp. 76° FInlet Press. 5.0PSIG

10

£ao.

to

£DU0)c

75Model 115146-100

_• 70COa.'

8 65<u3</)C/»

I 60

55

50500

400

300DQ.C

200

100

cU

fcQ.

Uc«'o

040

30

"S3 20<S

" 10

Flow - G.P.M.

Figure 68. - PMA S/N X-2146 test performance - final acceptance test calibrationat 39.6 V.A.C. inverter power

104

Inverter Power

Volts 39.6 {L-UFrequency 400 HzFluid D.C. 200-2

Fluid Temp. 78° FInlet Press. 5.0 PSIG

<na.'

CDk_D

10

03a.

to

c<u

Ua>c

Model 115146-100

m

£c

400

300

2 200o

100

£ 40CDU

IO

30

20

10

1 2 3 4

F low-G. P.M.

Figure 69. - PMA S/N X-2147 test performance - final acceptance test calibration

at 39.6 V.A.C. inverter power

105

Sine Wave Power

Volts 39.6 (L-L) 75Frequency 400 HzFluid D.C. 200-2Fluid Temp. 73° FInlet Press. 5.0 PSIG

Model 115146-100

10

a>a.

oa>c

a.

oj

70

65

£ 60

i55

Figure 70. - PMA S/N X-2148 test performance - final acceptance testcalibration at 39.6 V.A.C. sine wave power

106

APPENDIX BDESIGN DATA

PUMP HYDRAULIC CALCULATIONS

iPRQJEJlL:

JViSCCmTiYlJ^

G^CLE... COOLANT PUMP FOR JWASA-L...: . . - ; . : • ' : . LEWMS

C 5 > @....SPECIFIC 16 RAVI! Y.; ,873<

MP T>/5C///3e6£:AT.7.tMPT_..

>lS.C..lV£ ,J_.r^.rrr

..UJOOLira-

; l40r

.22"FT V V M :

&tM:fO.J.O IN. QO..J)}6C.Hr.J..UBE.!:

.^,fO IN....IDL.

MEL. f09 X3..7

w 18 FT,?Y.

_ .^C>9X3:7J ._ 9

I

-,j

jdARilJ.OIL f f E A R. i . --h

£ 1,000 RPM

r _lj_

!.,UX

4.3.SDG)a/?k$.

/,l

MiW//HR

107

^il2J!

Mly^moitD}!

6T4Tir MF4h v59ni.: ; -i—1—-rH^-

'MM. S I ! i :'LMll.6lJ_ijt/. ..LLiJ.

LH. ^4/./!Z..i 71 .2^X:8J -g43|._:- 4

ar~r r

-1--t—

108

MF

109

no

-T/iNO 7VN

. I

ME

22Y

%*.0

0

^

^O£-72tiMU-4

r i

JL

- 1

ZT'

A 0

1

a!

T^ -u

SUi£

i.

JL

1 i oiot--i- ,

_-iVH^tf°

mm*.

_ . i

_i_ i _LJ '- L

H- t

i I

T T T-

iiMJi^..:!.:_:_!.

— 4—

'

111

I -.•T-::T -:-i;-i\. 1rr~ rj~ -. , . j -K V ]

•_ _:. __ - __ _ _ _ _ j _ _• i - ' i : I • • i

112

113

*JOURNAL BEARING DESIGN CALCULATIONS

bear i n~:U -v:;-:tor

I rcl-.os

0.3000

cnnti stokeviscosityit -100 f

15.0

not usnr!

-0.

amhi en if luH

tnrnp f

-100.

thornnloxpar.s i or,

rnte shaft

5.10

shocklo;H

pounds

• 1 r'

1 "P.^tni nches

0.. 210

cent! s to!;evi scos i tyat 100 f

1.7

oil f 1 o\vp. "••:;,;, :;:-.-;

P s i

0.

surfacearea

ratio

10.5

thorn;?. Voxpnns i on

rn to bear i r.r,

3.70

shockIOT!

seconHs

'fla.-.-jetra 1c 1 e~ rpnce

i nches

0.0005

a p tf r a v i t ydcsroes

30.5

hore ^roov?j -. «-'-

i nch^s

0.

surfaceheat loss

rate

50.0

not used ;

-0.

tennera turcrise

i ntnrvnl

shaftSprjfi •>.

rp;:i

11COO.

inlet oilt^-nperat'.ire

-•c-roes f

-100.

o? cro?! n! i!v

r~is

o*•' •

hear i r.j.hent flov/

rate

mo.

h sa t f 1 ov.1

hear i nr.netn 1

"«5.

heatinput

h t'J/ni n

bear i n~lo-"^

rour.Js

!.

'naxi ~U71

allo-;nhleoi 1 trnp

170.

S-r« '-t«1c-' ^V • 7-

co°rr.i ci "nt

0.1.0

ho;.isi n^heat flov/

r a t o

1730.

rota t i n?weightnoun'ls

0.15

staticnress-ire

9 S ?

0. 0. 10. 0. 75.

* Truline Bearing Company, 29000 Lakeland Boulevard, Wickliffe, OhioSee Pages 123 and 124 for description of calculated operating characteristics.

114

r.3 leu IT to'f opnr.^tinr: condit ions 5U5

?n-!ex

05

15

snr.cinl corHit ions

bpnr ip-v. lo= -foi 1 ' inlrt t"np«r

^n-t oil tonporn ttifrler. fdf?* f

n »?'•.' va 1 M

-100.i

o00

J

0

0

racntemp

cl«*r

.0005

.0010

.0015

co*fJ "o f

f r i c t

i "• 0 I. 0 3 !v 1.0717

opcroi 1

v i s e

7 . 2 ^" ii i .•.» • f -^9 . 'J t

f inalop«rcorM

1.1.1.

horseOO'./rrhen t

i> . 'l\j J-i

O . Q C 2 2O . C O l ' J

SO-TPr

- f n 1 •"?ninbcr

3 . D 2 fj n1.13030.5131

oi 1f ? Intonp

-50 .-70.-80.

oi 1out

tO.:ip

- j u «-35.-30.

ebb Ibr-

C . 0 0 0O . O C 10 .003

brrhack'tenp

-33.-73.- 3 2 .

br~hsr:

t*np

Z Z- 1 '-', '.-S3.

p-v1 T ^ S S

000 .

I1- "ij»!1 '•! .'

rii r> "ni n oilf i lm shoe!; flr>v;

tbi c!: f i l"i ^p'T

257 . S 2 5 7 . 8 0.00016U2K. '5 !',2R.q O . O C O P , 55^.2 5 ^ 6 . 2 O.no in^

sh^ f t r-r^s fn- fuc-Hecc f lov/ flov/

rnt.io np;v !^P"i

.'].":':':. ^ ' i • • • • • • ,0 1 Tj ' C . 0 . 0 0 C ' "i C'0 . 3 C 1 C . 0 .001?"

un'^nl h.:- hphent to to

btu/:"iin oil i;nbirnt

— . A - « ^ A / ^ r * ^ o 0 ft ^ "^-0.0 0 .000 ' ) 0 .002 1 !

O ^* A rt »1 "1 J» /"* O A T C>; * 1J J « ^ »J J. •«• o • v *J JL ••>

shift=jnr;le

^-rr-05

SI.7U .57.

nor,pT03ff

ps i

i .r

1") .

1".

o--!«rcl n-~?rrnt!.^

1 n .1. r> y

3*. 5 2 2 35. 2 IOC

•F i 1

0-7^1rl-^r

0 . 0 0 0 50.00110.1016

r-sti-!.^ te.hot spot

t-np

_ c o .-70.-3 3 .

cri ti T!','Spr;r-:f

r ? t i o

, n

y|ls'.-s

! ~rt

115

cor.-f i t lons Slki

spec ia l conlit ions new vf-

nnV

fl

0

00

CD091G

tn~iprlenr

.0005

.0010

.0015

co^f,, rO i

f r i c t

.0203

.0177

.01^2

o-^roi 1

v ise

1.311.311.31

f inn!opnrcorH

1.1.1.

norsepov/^r

hent

0 . 0 0 0 80 . 0 0 0 5O . O O O f f

sonr-ier- F s 1 -'I

nuribrjr

0 .35100 . 2 0 5 30.010!-,

benr i r.zo-i 1 i n 1 'amhi'en t

oi 1f i lmtemp...

. 120.120.120.

oi 1OUt

tmp

115.115.115.

cbhibrz

n'lnber

0 . 0 0 20 .0080.019

10--M;t to ripe_ o i 1 t-rn

br~b^c?'.tonp

110.110.no.

brr

poundsra tur'ipor^tti

r ;

thi

IS 3215IPO

sh?

re

i r.l:.ick

.2

.3

•r «.i L

hs^; occte~ip

119.119,110.

p-v1 ess

000

i'f.I1* .1 '5 .

rat

0 . 2

i o

350 . 5 G O0.7

unhn *v

!»3

Tl

3 t

b tu/rii n

-0-0-0

.0

.1

.1

df.d^

nl nsho'c'-'f iln

133.2215.3120. H

or»sf 1 ov;

CP^I

0.0.0.

bpto

oil

0 . 0 0 0 20 . 0 0 0 0O.OP1«

.- c

z f

oilf 1 ov.'.

cnn

O . G O O ' } 7o ! c Q 2 3 10.001:53

I n d u c ° *?f 1 ov:

fr O'"*l-^ .

O . O O O U 70 . 0 0 2 3 ]O . C O U 5 3

bpto

•imb i nnt

O . C O O S0 .0008O . O O O S

1.0110,110,

sh.^ftnn.^1 r

'j ^ •* r" f* * S

71.51.37.

•n^TT

<1

o

f imOp^

1r

nl e-ir

• 0 . 0 0 00.00!0.001

-Sx'-iT-

r;

o

?

^1 O =J -^ h ? t S ~ 0 t

psi

15.16.10.

opcrc lp^rra t io

1.50P73 . 2 6 3 3U.0300

tPT

120IT120

c r i t i css r>f"*r-iti

10.7 .5.

P

1-i

D

G!;

0

116

alcu 1 otrd opontir,5 condi t ions 5U6

i ndox special <~ond i tlons n«?v/

050916

roomtP"10

clear

0 . 0 0 0 5o.,ooio0.0015

COPf

off r i c t

0.722!*0 ^ 5 0 7 2O . < > 0 6 9

oneroi 1

vi sc

6 . 2 28 . lj 09 . 9 2 .

'.finalopercond

1.1.1.

horsppov/prhe-it

O rt n *t n. M U £ 3

0.0021 .0.0017

sonrnpr-f pH

nu~ibor

19.9(4357 . 2 7 4 33.9(485

bear i P°; looil inletanbi put oi

o i 1f i Intenp

-50.-70.-80.

oi 1out

ternr

-75 .-35.-90.

cbhihr*;

number

0 .0000 . 0 0 00 .000

ad poundsto.-ipp r=)turp do

*•

1 tpmpr-r-n tiir^- de^ f

hr<r

back••PHP

-5U.-73.-82.

brr.

hs7tenp

-56.-7'».,-83

p-v1 ess

000

2.2.2.

roi nf i 1-^

thick

271.5510.6732.1

sh?f tPCC

rst i o

O f\ ^ -r• t' J. J>

0.0350 .053

unha 1hp?t

b tu/iii n

-0.0-0.0-o; o

^ii nshorkf i lm

271.5510.fi732.1

presf 1 ov;

.^P'-i

Q

o!0.

hpto

o ! 1

0*00010 .000?0..0003

oilf 1 ov-/

KP. 1

0 .000030.00015O . O O O H 2

i nducedf 1 ov/

cron

0 .000030.000160.000' i2

hpto

^nb i en t

0 .0030O./102'i0.0016

0.155-100-100

sh?.ft^n^-1 «?

dP^reps

81,.8.3!81.

Tipjirlo^dpsi

2.2.2.

onerclMr-ra t io

1.P-3U73 . 5 2 9 35.2100

.0

.0

f Innloner

cl par

0 .00060.00110.0015

<>sti-^t«hot spot

t«"in

-50.-70,-80 .

cr i t i ca lS p p o H

ra t io

3.9?. %2 . 3

117

oper?iti r.«* condit ions .51't 6

index

00:

•jr»

050915

roonfvno

dorr

.0005

.0010

.0015

coefof.

f r lct

1 / S I• JL * J i-

n n TV"). »J - J L.

P. p !•. 3

oporoi 1

vise

1.311.311.31

finnlopnrcond

1.-1.1.

horsepov:er

hc-nt

c ! o 0 0 5

so-ri-r- fo ld

n'j-brr

5. 5 5'; 5• 1 .3297

0 . 5 3 2 S

hear i n-roil inl inmh i nn't

oi 1f i lmt<vnp

120.120.120.

oilout

t'"' .":!">

"1 1 ^J. — - .115.115.

chbj* ' * * - >

r.inbpr

0.0000.0010.003

lond=?t tonoorOi l tOTf

hr-backt«i-rp

119.119.no.

* **Lhs-

t.-ip

110

IIQ!

p-v1 PSS

r> r> o

2.2. .2.

• a 1 11 r p>.pr f tur^

ni nf i In

thick

2 2 2 . 5it 08.1503 . S

shnffecc

ra tFo

0.1 G-30.3,12

unh.nlheat

b tu/ ii n

-0.0-0.0-0.1

POL

d»<. drr

ninshockf i l-n

2 2 8 . 5'40*. 1

50?,. 3

p r r sC 1 r**t

'-•"

0.0 .

hpto

oil.

o.enonO . O O C 30 . 0 0 0 ^

jnds* fi f

oilf 1 OV.'

?w

0 .00009o . o o o s gC.CQ13 f i

f n uc^'if 1 ow

"• 0 0 j r'

«- h to

••>-ih i rnt

p 0 0 0 3C . C 0 0 80 . 0 0 0 2

0.1110110

s'-.f trJPC-1 i«'

do.~r«rs

82.75.37.

".' ° =? n1 0--:d

ps i

2 .*- •

2.

• o r> s rclearr ?« t i o

1.50573 . 2 6 3 3!;.9300

55.0.0

f inal 'op^r

clp.^r

0 .0005o.ooir0 .0015

0 „ ». : -, -, f.

hot spott«---ip

12'!.

j '0 .120!'

cr i t ic^ ls n r e .!r t i o

'; . 72 io2. U

118

? 1 cu 1 .T t.»'' o po r =11 i *">" co rH i t i o n s

condi t ions. nov;

010217202505go15

roomtenp

clear

0.00050.0010O.Q015

-~n*' .of

frir.t

0.05U20 . 0 'i ? 3O'.0it75

OT-r •oi 1

vise

5.1)57.210 . o <3

f l'nnl-oppr

. corH

1. .1.1.

ho'rscpov/orho*t

•0.0053O . O O U 7 - .O. .OOU7

sorrier-f f»1 "?

nu'"ibfir

2 1 U f5 0o!.77h1O.U9.00

" henr ? n£b o T r i n. 3hons ? n <jhousi r.rde^'1 •.."?bnr i nr:oil Inl^rnbi nnt

oi 1f Fint»-np

• - H Q .„ -so!

-80.

oilou t

temp

-70.-80.-00.

cbbibr.^

number

0.001O . C 0 20.003

'\\ a-.i«.tprlon^t!-surf nc?h«?it flo

i'.rht rot--!* i

ot trTper

rat iov/

TnthInchr? t?

r>sRS

O

factortin^ p^rts pour Is

n tur^pOMT!

dc?*oil tmpera turc rfe;;

br.3b?ic!:tnnp

-f^'v.-53.-31.

br ~- bsr. •tr-np

-U7.'-65'!-32.

p-Vless

000

33.33.33.

n?»filn

thick

2'vS.l39 8. "2513.1

r u -. r i•* i : : i i i.

»;ccrat io

0.1.100 . 2 5 'f0 . 5 5 0

unhalhrnt

b tu/^ii n

-0.0-0.1-0.0

ni nsboc'<f il-i

2«vR. l 0308 .2 0513.1 0

->-;:.- *

f 1 OVf

«pn

0. 0'0. 00. 0

hoto

o 1 a

0.00000.0/1250,0028

^•!sf 'c

oilf 1 ow

SP'"1

. O O Q J v Q

.00179

.0035!}

n-.!uco-:!f 1 o-. .'

CP^

.000140

.00179

.003BU

hpto

nbi PR t

.0.00650 . 0 0 '» '••,0 .0022

0.3750 . 2 r, 2 50.351'juo.n0.7953.0-10C.O-100. 0

shaftin^le

'J o n |- fS f> 5

7 q >

70!5H.

r 1 *i rl 1 '! P b

lO^^ hn

PS?

30.30.30.

oper crr 1 o-n rrati s.

l . t»8732 p t> S 7'> . 2 1 fl 0

finMop»r

cl ear

0.0^050.00110.001G

L i r 1? LP

t spottP-nr.

-«»o.-50 !-SO.

it i c?l5 ^ O ^M

rat io

7.5^ (^

U -r

119

c a l c u l a t e d con-iitlons 511*0

sppciai con-fl.t Ions ncv:

000

00

050915

:roo°itenp

cl<V^r

.0005

.0010

.0015

coofof

fr ict

.0131

.0121

.0093

opf.roil

vi sc

1.2H1.311.31

bear i n.r loadoil in!°t trnperatur0

anhi«nt oil tenpor.aturr

f inaloprrcond

1.1.1.

horsnpov/orheat

O . C C 1 Q0.00120.0010

somer-feld

mnSer

0 .59090.1.6990.071*2

oilfilntemp

130.120.120.

oilout

tor.p

t -i rX £. U .

115.115.

cbbihrr,

number

U.0020.0100.023

brrbacktpnp

129.ll'J .119.

br£hss

tenn

.123.110.119.

f;-vloss

000

33.33.33.

rni nf i In

th i ck

160.it191.3152.8

shaf t«cc

r f. t i o

C . /. 1 70.50*70 .779

unbalhost

btti/nir.

-0.0-0.1-0.1

noirvlsHer f

d°C f

ninsborkf i lm

16'9.i»191.3162.8

prnsf lev;,i:pn

it .0.0.

hpto

oil

o..ono70.00150 .0030

oilf 1 0'.-.'

»P"1

0 . - O O O R 5P.n03?, f '0 . 0 0 7 5 S

I mu co if 1 OV/

rnn

G . 0 0 0 « 50.003390.00755

hpto

r.nbi rnt

0 . 0 0 2 20.00110.0011

3.0110.110.

shaftan.^1 />

rj e* rr f f* r* $

b?.f*?.3U.

mranIpi'!osi

"it).30.30.

oporcl oarrat io

1.21^32 . 5 0 6 73.9300

n0

f inalopor

cl »ar

0 .00050.00100.0015

r*s t ITI^. t"hot spot

trrnp

:i.5'.'.120.120.

cr i t ica lS pood

ra t io

8.25 .7

'4.*

120

ca oporat i n^^oncli t ions 51UG

I niex spec I'll coalitions */••>! ue

05091G.

roomte-p

cl cor

0 .0005c .cc io0.0015

.CO -if-, c

f'rict

P. 2 3 7 20 . 1^523.1351

o««roil

vi sc

5 . ^ 3?!l3S . U O

f i pa 1opor

• con.'J

1.1.1.

horsopov/^rhent

-> r, n - ->*j *,-j ** 1 1.

0.00'430 .0035

so"r,pr

— ^ rv 1 •*

numbnr

5-. 075 32.91571.5700

bear in?:oil i n 1 «n;nbf-»r. t

oilftl.-ite.-ip

-'*0.-50 !-70.

oi 1out

te~r

"F f\

- / L! *

-30.-85.

cbblhr i;

nunbcr

0 .0000.0010.001

oil t-<

back• te^ip

-'»!».

-5?!-72.

brrhs3

t^P

-^ 7 .-55.-7«..

p-v1 °5S

000

3.0.9*.

po'Jtv'sraturf: .-for fpen turo '!-?i: f

rii n P. 5 s- oilf i lm .shock flov;

thick fi ln

259 .9 ?S1.q^ H 9 . !i h S 0 . U673.0 r>73 .n

shift pros»^cc vlov/

r^ f t lo

0.0-32' . 0.0 . 0 ?. I; - 0 .Ovl!i5 o!

. -.ir.l--.Tl hphe?, t to

b t'.i/!*.i n oil

-0.0 0 . 0 0 0 3-0.0 0 . 0 0 0 8-0.1 0 .001G

*^ p "-1

0.000120 . 0 0 0 5 30.00150

i n:Jur-- -'f low

CPn

0.00012o". 000500.00150

,,nto

.?nb ! « n t

O . C O G 50 . 0 0 '; '40 . 0 0 3 3

0.795-100.0

shaft f lml'inrlr oprr

^.f ^

33.C O .77.

rvrnrIOT!psi

* * •0•-* •

8.

oo«rc learr.-.ti.-.

- H8752 . 8 •'; 5 7U.10GO

cl-3r

0 .00030.00110.00 IT

r-s ti "-.-• t-*-ot spot

trnp

- to. -CO

-fo!

c r i t i ca ls p c o J

rst ln

T O

2. "2.3

121

en 1 ru 1 --.tfH opcr.Ttinr; CDM? tior.s c i i, r.> A -T w1

spec! nl cor,-!i t ions

0500

rooTit r<vt p

000500100015

cocf. of

0371

operoi 1

v ise

1.231.311.31

benrir.n lorid pour !s 0 .795oil .inl»t tr- ipornturo -!c~ f 110. oamhiont oil frin^m t'.ir" do 5 f 110."

f inalop.nrcon-f

i:1.1.

horse

0.0017O . C 0 1 0O . O O O /

number

2 . ^0200. Bii 010.27TI ;

oilf i In

130.120.120.

oi 1out

120.115.115.

cbbi

number

O.oni0 .0030 .006

b r .": n i n ^n ? nb-icf: fil-i shock

-trnp thick riln

120. 212.5 212 .5119. W-\.1 3'-!^. 5119-. 370. '4 379 , Sj

' br~ shaf t pr-=shs^; P.CC flo-'

tp^ip r T t i o r.V^'

128. .0 .003 0.110. 0 . 2 9 2 0.110. 0.485 0.

p-v unbnl bploss h^.-it to000 htu/nin oil

0 . -0 .0 O . o n n ?9 . - -0.0 0 . 0 0 0 70. -0.1 O . O Q 1 S

oi l sbrf t ^ i n -1flo'.v Tin^lp op^rr n"'! 'fn^rros c 1 r -T

0 . 0 0 0 2 9 3 0 . 0 . 0 0 0 50.001-27 68 ! " i oo iOO . O O U 7 1 55 . 0.0015

indue*?"! ~?.?*.3n cstiTit'''flo''/ Ir*^^ HD*~ '^nDt'

• .D 'T O S 1 L *^ "^ T^

0 . 0 0 0 2 0 5. 13°.0.001?7 8. 120.o o Q ' j 7 1 ^ i?^

hn o^pr c r i t i r ^ lto c 1 P "> r s o0^"1

^•nb i « n t r a t i o r 1 1 i o

r j o Q o o i 91 . o 7 i iOoiooi l -2 ! 59 £7 2!o0.0011 3 . 0 3 0 0 2. it

122

PTiON OF CA L O U L A T K J ) O J ' K H . - V ; J K G C H A R A C i 'KKKSTlCS

K

T-FILM

T-BACK

THICK

TII-S

Q-ACT

P

M

Clearance of bear ing at 70°F in inches. Difference between bore of.bearing and shaft d in rne te r .

Final condition of operation of bearing.

1-. Full f i l m operation - load is completely' supported on oilfi lm, reaching a stable operating condition.

2. Bearing is partially f i lm supported, but partial contact isexpected. Oil f i lm is too thin relative to roughness ofbearing and shaft.

3. Oil supply is inadequate to maintain oil film.

4. No oil supply. Bare metal friction only.

11. Bearing is out,of control. Bearing was full f i lm supportedat highest permissible temperature, but temperature wasstill rising.

12. Bearing is out of control. Highest allowable temperaturewas condition i-2.

' 13. Bearing is out of control. Last calculation was conditionS3 with temperature still rising.

14. Bearing is out of control, with no lubricant.

.15. Bearing is seized with zero clearance.

Temperature of average oil film - °F.

.Temperature of Bearing back - °F.

Minimum Oil film thickness under average load - Micro inches.

Minimum Oil film thickness under shock load - Micro inches.

Oil Flow through bearing - gallons per minute. (In some programsalso reported in DROPS/MIN.)

Back - Pressure of oil supply to bearing - psi.

Clearance r a t i o ur.dor operat ing coal i t ion, 1000 C/D.

123

i ." - C o e f f i c i e n t of f r i c t i o n in b e a r i n g under J U K I ) o u C M / r t i i n f ; eoMil i l ion .

HP - Horsepower absorbed by bo a ring".

T--OUT -• Temperature of out fio'.ving oil - ^F.

T-I1SG - Temperature of housing surface - °F.

ECC - Eccentr ic i ty ratio of bcr t? . . , - ; under average load. (Zero indicatesshaft is running in centov of bearing; 1.000 indicates shrift isresting'on bearing).

E--S - Eccentricity ratio of bearing at end of shock load.

Q--MIN - Oil flow min imum required to supply"full oil f i lm.

W/DL —' Average unit load over projected area, W/DL psi.

L/J3 - Length to diameter ratio.

Z - Operating viscosity of oil, absolute viscosity centipoises.

B - Sommerfeld number, dimensionless.(D/C) un/P - (P is W/DL, u is viscosity in Rcyns, and n is F->eed

in rps.)

A - Bearing characteristic number, dimensionless. M W/DZN.

XN/P - Reynolds number.

DH - Unbalanced heat of bearing, RUi/minute. If positive, bearing isabsorbing more heat from friction than it is giving off to the airand the oil, and is still rising in temperature. If negative, bearingtemperature will stop rising before, it reaches this value.

HR.. - Heating rate of bearing. Degrees F per minute which bearingtemperature is rising.

M.iME - Time in minutes, from start of bearing operation, to roach stabletemperature.

HC - Heat capacity of bearing - Btu bearing will absorb per degree F. ~~ " """" rific in temperature.

NO -, Ratio of critical speed to actual speed. A ratio of 1.0 or lessindicates bearing will be subject to half frequency whirl.

124

TABLE B 1

PESCO AC MOTOR COMPUTER CALCULATIONS

38.8 VOLTS L-L MOTOR INPUT

400 HZ, 3 PHASE, 50 VOLTS PEAK

HOT +100T

3t 10to

u. o

Z Jto a><x o

— inor t/>0. O

vOZ U.o a

_i u.< b.u u;

a.o0 a1 i

cj•r.' ju. aa a

D ccC -I

,M ^-cco-m.*

•Nj Oj CM CM OJ f\l (NJ

<f 1*4 *\ IB *\ r*- &

<s r- ••* «n o -c *-•

f*- «r» c «-«*•» -»

O 00 O 0 C C

o c c o o o o

^^*^^-^.^

c; o o o c- c oc r: c o o c o

«. C ***«-• T <* O1

o 9* «c a- •* f-

MMfl

:o c»-

C 0

-^

= «

C O

c oJ <N(

- o

w O

c o

c-cr-

LJ

^O J>m 0 .orgo.«r>, 0 .«^a, i n^ooa%^ 0>^~osor ,or -<r- ,a>^

<n<nf r ,mm<ni "<M<MiMrgcMiMoargf 1 J rM<Nrg i> j (v , ( \ j rg iM<\ jo J r< jo i (M < ^<M

m K i n m m m n m m m m m m m m m e n r ' , m m m m m n c n i n m m m m m

^t f>^^ f v ,o .m««>^^ r - -o .m m or - *<M-»o«oorgcM-c 0 j »

:::::::::;:::::::::::::::::::;:

»o^.o<D».oo^<n m or-^ovo««>«r-«o.oo>*~«,*«»4

^c^^«o-«.ro~« :r :»7- ;- ;r ;c-^»*»o-r ;^* f :o ;

B....eo- t«-^«.^«»-.-.-^^-r«*-.^c.«

o o o c o c o o o o c o o o o o o o c o o c o c o o c o o o o

o c c o o o c c c c c o o o o c o o c o c o o o o o c o c o o

o o o o o o o o c o c o o o < > ? a o o o a ^ * > o - a o o . a e > e > a .

c c c o o o o o c c c c o o o o c o o o c o c c o o o o c o o

rrrrrirrmrr;mrrrrrecrrrc"rr^^^oo^ccaacc^ - ^ ^w i - i r * * . * * ^ ^ ^^^^ * * *

* * o v, o o <r - o o 3 m

cMrMfMOjo j fMfMiMrg iMZt / )

(n^^t^cntocn^citn

r^o-* »Mir>oo<r»«-«f^iiJ*')

-oC( r >»r» ' j j r ^ -eJDCOC*o

a: w>

--"^^"•• joo <

o c o c o c o c c c

c c o o c - c c c c c s

ect^ < ^ r- cg^

aC C C C O C C C C O - Jo c c c e c o c o c * / )

mmllll•- -

z

I/)1

z

b.

in -» <*•

• • •Ift O •»

I/I

o

X u U.

<£ •£ COr-> rv c^

O 0 O

a a x

0 0 O

22

.40

3.0

02

00

0.0

0

Iuj o. a

a

t

*-« rst a

C C •

_j •

C -J CC < Us c tr

1Z5

TABLE B Z

PESCO AC MOTOR COMPUTER CALCULATIONS38. 8 VOLTS L-L MOTOR INPUT

400 HZ, 3 PHASE, 50 VOLTS PEAKCOLD - 100°F

2 u> oo r- >o -a t

U.O - * ( n c g ^ o o o o r - O t r t

. \'X .-

So

u v>UJ t/lu) o

i ; I • '. : I ii n r ^ ^ c r c j o o i n r - ^ ^ c n i ^ r ^ r N j W c n o ' i ^ r - o * w o * * o » n « * > f f ' r * ' - « o t ' J » O ( n m * o t n < » i r - t r ' . i * - m o » O ' O a o o r v j « O f ^ ( > < * U * / )

l/>I>cz<

r * 0 » m * * c o ' - H o < > ' J * o o r - ( * > o * m i o - 3 ' f - o r v j < n ; ' 3 ' < n r v j o i * - ( r » i : * c ^ t n % o < o > o i n c ntr. i*- m o» o•-< fco m .* rsi ( n s o a o c o o * c o c g < j - l u i / )

v)|

51

01U!

o!»- :o:

! ; ;

: i

! : 'j

*Oi-«iNccO'<»i'-«mr*cr, .-i Id w r\

«^io"iui"t!!]*L*ro<n*Mcoa>*nr^in<ro.»|aof>i ir*

cnmsO'Oi^r- i- i^r^i^r-^r-^

•r^Li iM<n«>^-o^ •M-i'Umm

r-mo-ca-o^^L-ioolvcMr

i • ' j

S££oa<*™°fr.S£|KiiS!

,o<nr«-«oo<M-.ccnr~p«l-

^ in^ j l ^coO-O-Cp- lM^mmm

ssbssg? = s5f issso o o o c o o o o o o o o o

o o c o o o o o c o o o c o

S E S S S S S S S S S g g S

i

,,n-L,>-HCO * lo a>

o *o ro k> *o o

^ IM tn o* CNJ tr*

D a> r- ko ^ «n•o *o <o *>o >o <o

t\ tt\ CD r*- «^ ^*

D 0)l^t~ <0 -C• ««p>««

fo~ *Vrv5 S

Lr » -» -» IT.

A S S E S S3 0 0 0 O 0

!......

C C O 0 C O

3 O O 0 0 0

OD ^ O> O* O O

I

i-* -4 *o r- eo CD

i-t CM en ft r- o*ID -* ^ o o•* •& en \i eg r*O 4> ^ 4) o <o

Otfi » |» <n CM

i

«»P .c«?

ocoo ^ir. -o

f ir< -o lo .0 «

^J?SS,S O 0 fe C O

D O O O O O

3 o o t> » a

D O -' — -<-'

1

iI

D eo r^ U) (Ti ^D CD ou a, <c oo

n t^ ^ D* «o - O ** f •-* m

D o o* oo oo r-o <C m u> «rt m

i| r-« GV In f\J OD

n r- eg *o o u>M r* i-4 O O O*

-« t- tr. ic «-• O»

D O CM 1^ tf> «O

or- r-e- r- r-

- r- « in IT -t

3 0 O 0 0 O

3 C O C C O

;£:SSS:?

:

£22222

_

«1 •* lA K O iTtj» <n r~ M >c oo *o m in -» •*n tn tr\ m IT

b ao r^K <o o

-4 r- OD m m o>D O* O K- f<\ •*•1- r- ec cc a: OD

n m i *-• •-* o

3 O O O O O

D O O O C C

i

^ ^ 7•—m m o - *QC t/) W

«

X V U.

000

no*^-*D»c ^ r -a>oma'cou.(rrs iooo^jrgO'r^^oin ^ -*r m ^ ^ c n n f N * f s j f M r g r s j f v ^-»rg

a; a: x

n t n e T o ^ ^ ^ r - o ^ r g ^ o <»oo

fW 0

E f S S S ^ S ^ S S S S ^ J 2j n<om<r . . - i * ^aDO>ocO! <c a j a o ^ ^ ^ ^ t ^ r M ^ r g .

i r

> o o o o o o o o o c o x aIL a a

3 O O O O O O O O O C 0 3 E

jlIEiliES2^^01

' . . • i I , ; i ; I £• «O O C O_O O.O..C O_C^ O D O O O O O OOO O:O OOO O 0 O-O-O^O O OOO OOO p O OOO OOO O O O O -J «-t* • • * * • » • • * • • • • • ] • • • ! • • • ! * « « : * * « i * * * « * • • • • • • • [ • • • • • • • • • • • • r ^ r -

J ^ 03 O* O^ C O-

D CCC_la •oz

^ t « o « - t i f > o * i » > o aC C ^ « ~ * * ~ ) * * y < v * r w

c -< a.c « u.S C1 w

126

TABLE B 3

PESCO AC MOTOR COMPUTER CALCULATIONS43. 3 VOLTS L-L MOTOR INPUT

400 HZ. 3 PHASE, 56 VOLTS PEAKHOT + 100'F

I/IU. O

S gZUI O O O O O O O O O O O O O O O O O O O O O O O O O O D O O O O O O O O O O O O O O O O O O O O O O O Z « / > lA

So « r n « < n « « n m m « < n « r J < n m m c n < n « n « ( n r t ( n ( n m < n m ' " i o ^ ' m r t m t n t n 0 " * '

(LO mr f \ J i

: X X li.

W) • • • • » • • • • • • • • * • • • • • • * • < • • • • • • • • • • • • • • • • • • • • • • • • • • • • < / )

i i X •-« <M O-i • • • •| O O O

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • a

aO

o o o. o c c

> 4 > O 4 > O < 6 ' £ | O ^ > O < O 4 > ^ < 0 ^ > 4 > * ? ^ < ^ » 4 * < * O C ' G C X

U i O C O O O O O C C O O O C C O O O O O O O C O C O O O O O O O C C O O O O C O O O C O C - O O O O O C<,

o ;\ J • • • • • • • • • • • • • • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • • • • • • • •»/) x o o o o c o o c c o o o c c o o o o c c o c c c c o o r i o c o c c o o o c c - c c o c o o o o c c - c . cy

a a J_J O O C O O O O C O O C O C O O O O O O O O O O C C O O O O C O O C - O O C J O O O O O C C C O O O O O O J •-!

OJ ^ "^ »j» • * ^ ^ c C * C « ^ « ^ ^ r ! « p t i ^ ^ ^ ^ J J J J J J « » » < r J J J < ? J ^ J J ^ -*' J J ^ « ^ r ! i ^ c C f C f ^ w ? " i _i .^o £ c a* in w »-•- .- t- « r _i c

C < L

127

TABLE B 4

PESCO AC MOTOR COMPUTER CALCULATIONS43. S VOLTS L-L MOTOR INPUT

400 HZ. 3 PHASE. 56 VOLTS PEAKCOLD - 100 T

•3u. O

ZKIOtO

Hl<n<fl O

— <a5 <O

o

« r - i o « A . * « m i m m « < X B m B

§3 ?

1 (* tO O> CO•^O*(»t f t f l<OtO^4 i

B> V «> CO <

.! 3fc> a. ux * it

•o * 0 ** ^ «n rf\ <

o o oo o o«-* o o

axo

a. *% r- «' o « * •» «o -o tn

ooococooocooococooocooococooocoooooooooocoooooooco

ooooooocooococooocoooocoocococcoooooocoocooooooocox3^tf^**-*m«r» rjcg*-tooc*c*ecfi~r-^'Ou>oc oooo

30:O -Iac •O Z b. U •-

c -j aC < b.

128

APPENDIX C

MOTOR TEST DATA

TABLE Cl

PERFORMANCE TEST DATA - MODEL 115146-100AT 39.VOLTS, 400.CYCLES, 3 RIASE

PROTOTYPE MOTOR

TORQUE RPM HP WATTS EFF AMPS POWER SLIP VOLT WATTS TE1PLB-IN INPUT FACTOR AMPS LOSS OEG C

0. 11980. 0. 32.09- 0. 4.583 10.3 0.002 309.6 32.0 42.

0.500 11820. 0.094 .102.00 68.6 4.803 31.4 0.015 324.5 32.0 43.

1.000 11640. 0.185 176.00 78.3 5.347 48.7 0.030 301.2 38.2 46.

1.500 11450. 0:.273 256.00-'. 79.4 6.300 60.2 0.046 425.6 52.6 47.

2..0QO 11220.._.. 0.-356 336.00 79.1 7.380 67.4 . 0 . 0 6 5 498.5 70.3 49.

2.500 10890. 0.432 424.00 76.0 8.947 70.2 0.092 604.3 101.6 50.

PULL-OUT-TORQUE IS 3.50 Ip.. IN.

REGULAR SKEW (. 094)

129

TABLE CZ

PROTOTYPE MOTOR

AC MOTOR SErWPATIOM. Or LOSSES

•-HJ!lnFr? 252202-1

-:F>ATF ^-o-sp T^ST

MO LOAH SATUHATIOM 'IHT MSt'F MAVP U5PMT ItOO r.°T, (.094 SKEW)

RATED VOLTAHF UG.5Q RT P.ATF.P 90.0

:LI .Nf : . ; - : .v"vAVfi AMPS FACTOR TOTAL <T^PR.

55.0 8.FJ 825.fi 13.8 * l l«v.O' 39,0

-50.0:-,: 6.91 598.1 15. k * -92. Ov 25. U

U 5 . 0 5 . 6 S b!»2.7 1P.1 *•'"" "0.0 17.2

UO.O 4. 75 328.8 20:1. * RF .O 12.1

;-: 35.0 V.-U.07 - - • - 2U6.5 2U.3 * HO.O 8.0

30.0 3.U4 173.7 31.3 * 56.0 . 0.3

P+'.' '^7.00

;;%.. ..-/ ' -s'. Iv7.0 27.1 * lOH. 5

Jt7.0 . 19. G -.*--..,-• Qf^.S

U7.0 15 i?5 * f?7.1

U7.0 G.11 * 77.lv

-,117.0 ,::=It.l ,=-* . - , - - G7.7

. H7.n ; 2.7 * 5 H . T

i rr-r* / l *

2h. 1

17.U

l':..n

r>.2

3.7

2.'.

130

x|*

<u

RE

CO

RD

S

HE

ET

toO

wJ

\to4-»

. n) O

S&

8"7

.2 *lHC >

^

C< v

tin?vWH ^

O/

ik

«oS

S*

^

4x

^^

^^

*0)

vS\o ^^

M

0

o o

II M

C

(V

Q

\

ft

X

!i

1X5

ft

Xl

Ml

131

X>

o

IBa>.

!

tf

T)O

K

T

wJcq

P

S yO v;

s«(

J*

VJ

c«? CE^

v:

«c_5.

M

i:

5

Q)

$Q

01

£

V

t

132

u>OttOu

mO

HJn<JH

(SvS1

xf\

M(Uw

V(X

0o>

^,.. 0u N

•& I

oO, '

k0

II.

N

"\\•»

Vj

.«V

Vj

IK

i

4N*.

N°o|rlN

09

N ^ x

NOs

n^

^N"

yojoo

•IH^H^

vc<

Ao\

64K

1?^

IXS.

^^»«o

133

TABLE C6PERFORMANCE TEST DATA - MODEL 11511*6-100

AT 39. VOLTS 1*00. CYCLES 3. PHASE

PROJECT 101*081 A

DATE OF TEST 10/1/68 TEST NUMBER 1. TESTER KADES

X-21U3EXC 711

TORQUE RPMLB-IN

0. 11930.

0. 11930.

0. 11880.

1.000 11560.

2.000 1111*0.

1.1*1*0 0.

HP WATTS EFF1 NPUT

0. 1*6.00 0.

0. 68.00 0.

0. 82.00 0.

0.183 223.00 61.1*

0.351* 394.00 67.0

0. 570.00 0.

AMPS POWER SLIP VOLT WATTS TEMPFACTOR AMPS LOSS DEG C

4.300 15.9 0.006 289.0 46.0 38.ORV

4.567 22.2 0.006 306.9 68.0 39. "DRV

4.580 26.6 0.010 307.8 82.0 33. W

5.813 57.1 0.037 390.7 86.1 36.

8.400 69.8 0.072 561*. 5 130.2 39.

21.533 39.4 1.000 1447.1 570.0 44. ,

ET

1

TABLE C7

PERFORMANCE TEST DATA - MODEI 11511*6-100AT 39. VOLTS 1*00. CYCLES 3. pi!ASc

PROJECT 104081 A

OATE OF TEST 10/10/68 TEST NUMBER

X-2144EXC713

TORQUE RPMLR-IN

IIP WATTS EFF1 NPUT

2. TESTER KADES

AMPS POWER SLIP VOLT WATTS TF.HPFACTOR AMPS LOSS DEG C

0. ' 11990. 0. 36.00 0. 4.573 11.7

0. 11900. 0. 78.00 0. 4.640 25.0

1.000 11590. 0.184 230.00 59.7 5.973 57.3

2.000 11150. 0.354 404.00 65.4 8.480 70.9

1.580 0. 0. 605.00 0. 21.733 41.4

PJLL-OUT-TOROjJE IS 1.95 LR.IN. AT 8000. RPM

0.001 307.3 36.0 46.

0.008 311.8 78.0 33.

0.034 401.4 92.8 34.

0.071 569.9 139.9 37.

1.000 1460.5 605.0 48.

I

134

TABLE C8PERFORMANCE TEST DATA - MODEL 11511*6-100

AT 39. VOLTS 1*00. CYCLES 3. PHASE

PROJECT 10U081-A

DATE OF TEST 11-19-68 TEST NUMBER 1* TESTER KADES

BRAYTON CYCLESTATOR S-l» ROTOR R-1U S/N 2145

TORQUE RPMLB-IN

HP WATTSINPUT

EFF AMPS POWER SLIPFACTOR

VOLTAMPS

WATTS TEMPLOSS DEO C

0. 11990. 0. 38.00 0. I*.573 12.U

0. 11900. 0. 76.00 0. I*.693 2i*.l

1.000 11570. 0.18U 227.00 60.U 5.987 56.U

2.000 11150. 0.351* 390.00 67.7 8.1*87 68.U

1.1*70 0. 0. 51*0.00 0. 21.1*00 37.5

1.720 0. 0. 51*0.00 0. 21.533 37.3

0.001 307.3 38.0 3i*?-VWiTFlu io ON

0.008 315.1* 76.0 31*. H/f~r

0.036 1*02.3 90.0 28.

0.071 570.3 125.9 29.

1.000 11*38.1 51*0.0 33.

1.000 11*1*7.1 51*0.0 37.

TABLE C9PERFORMANCE TEST DATA - MODEL 11511*6

AT 39. VOLTS 1*00. CYCLES 3. PHASE

PROJECT 101*081

DATE OF TEST 1/10/69 TEST NUMBER 1 TESTER KADES

BRAYTON CYCLEX 211*6

TORQUE RPMLB-IN

HP WATTSINPUT

EFF AMPS POWER SLIPFACTOR

VOLTAMPS

WATTS TEMPLOSS DEC C

0. 11950. 0. 36.00 0. l».800 11.2

0. 11890. 0. 66.00 0. i».873 20.2

1.000 11560. 0.183 222.00 61.7 6.087 5i*.3

2.000 11220. 0.356 382.00 69.6 8.1*33 67.1*

1.520 0. u 0. 51*5.00 0. 21.667 37.1*

0.001* 322.6 36.0 1*5.

0.009 327.5 66.0 31*.

0.037 1*09.0 85.1 39.

0.065 566.7 116.3 38.

1.000 11*56.0 51*5.0 1*2.

135

TABLE CIOPERFORMANCE TEST DATA - MODEL 11511*6

AT 39. VOLTS 1*00. CYCLES 3. PHASE

PROJECT 101*081

DATE OF TEST 1/17/69 TEST NUMBER 1

RRAYTON CYCLEX 21U7

TESTER K.AOES

TORQUE RPMLB-IN

HP VJATTSINPUT

EFF AMPS POWER SLIPFACTOR

VOLTAMPS

WATTS TEMPLOSS DER C

0. 11960. 0. 3U.00 0. I*.1*00 11.5

0. 11880. 0. 70.00 0. l*.l*87 23.2

1,000 11560. 0.183 220.00 62.2 5.753 56.9

2,000 11110. 0.353 392.00 67.1 8.31*0 69.9

1.600 0. 0. 51*0.00 0. 21.167 38.0

0.003 295.7 31*.0 38.

0.010 301.5 70.0 29.

0.037 386.6 83.1 32.

0.071* 560.5 128.9 36.

1.000 1U22.1* 51*0.0 1*3.

TABLE Cll

PERFORMANCE TEST DATA - MODEL 1151U6AT 39. VOLTS UOO. CYCLES 3. PHASE

PROJECT 101*081

DATE OF TEST 2/11/69 TEST NUMBER

BRAYTOM CYCLEX 211*8

TESTER KADES

TORQUE RPM13-1N

HP WATTSI?'PUT

rFF AMPS POV-FR SLIPFACTOR

VOLTAMPS

WATTS TeMPLOSS DEO C

0. 11930. 0. U8.00 0. 1*.920 Ik.5

0. 11860. 0. 80.00 0. I*.967 21*.0

1.000 11560; 0.183 225.00 60.8 6.060 55.2

2.000 11160. 0.35'* 386.00 68.5 8.327 69.0

1.620 0. 0. G15.00 0. 22.167 1*1.3

0.006 330.6 1*8.0 37.

0.012 333.8 80.0 28.

0.037 1*07.2 88.1 31.

0.070 559.G 121.7 33.

1.000 11*89.0 615.0 1*1.

F~L U I D

136

TABLE C12PERFORMANCE TEST DATA - MODEL 1151U6

AT 39. VOLTS 400. CYCLES 3. PHASE

PROJECT 101*081

DATE OF TEST 3/3/69 1 TEST NUMBER

BRAYTON CYCLEX 21^9

TORQUE RPMLB-IN

HP WATTSINPUT

TESTER KADES

EFF AMPS POWER SLIPFACTOR

0. 1191*0. 0. 50.00 0. l*.813 15.5

0. 11880. 0. 71*.00 0. l*.867 22.6

1.000 11550. 0.183 220.00 62.2 6.060 51*.0

2.000 11150. 0.351* 386.00 68.1* 8.1*80 67.7

1.1*50 0. 0. 550.00 0. 21.267 38.5

VOLTAMPS

WATTS TEMPLOSS DEG C

0.005 323.5 50.0 39.

0.010 327.0 71*.0 25.

0.037 U07.2 83.2 26.

0.071 569.9 121.9 33.

1.000 lt*29.2 550.0 3&.

137

APPENDIX D

DISASSEMBLYINSPECTION

DIMENSIONAL

RECORD

IDR No. .IssuedRevision.Page .of.

vlASA BRAYTON CYCLE PROGRAMV10DEL NO: 115146-100REFERENCE: 12QC-112-1

Pesco End Item Part No. //£/*?£ - 'OO

Pesco Part No. /&/~ &88 Rev.

Part Name

Serial No. _

Eng. Appv._

Q. C.

Inspected by

Dimensional

DescriptionZone

Dimensional Tolerance -Concentricity - Finish

Drawing Actual

- D. V* .3L»t.3 - .'

Z " -p\i_crr E-fc - a

PvuoT 5-4 3.1420- , /y/

OP . OOoS T.\.g.

.759.75??C-l . Coo 5 F. l.R.

V* *v«iT> ^l"

• OooS

TO "

Remarks:

138

INSPECTION

DIMENSIONAL

RECORD

Pe sco End Item Part NFn, I 514£>~lOO

Pe s co Part No. \ l | - \ l l l Rf>v. A.

Part Name RoToR ^ KAoToR ( CaNVPV-^Te'

Serial Mn. /

Dimensional

Description

SUfVfT r\L-oT Y OlkMETER

QEi\R.\»jG jaofevJkjL. ^— Difs,.

De^Ri<.iG TTooeuku Jv DilV,

F"\avsU OM Z Ol^rAeTEC

P"ll4»SU OM X. DlklASTE.^

CoMC£OTE<CvrV KCTv.JEtvl

j /^oD . OlK^srreSS

CoKiceOTevc^y Be.TV*)f€*l*'"V *' "* r "

O O O £^£&t»AT5S5 OF S rV tkFT"

SV\DOLDH.^ TO V" DiKWSTtS

SaoKSvie&s OF SHKFT

SHoout>e«. -ro"7:"^^veTER.

Remarks: / > Af / 7~ S -^7

Zone'

fc-4

P.-4-

?>-1

B-4

B-lB-8

a-8

c-s

c-4

IDRIssuRevPag

NAS/MODREFE

No.ed.si one of

k BRAYTON CYCLE PROGRAMEL NO: 115146-100RENCE: 12QC-112-1

Eng.

Q. C

Inspi

A tf^r^£<-^<-^A CZ^qw^P*

^ ^N»rtoH Viy ( 7 )

;^;v-r:>/Dimensional Tolerance - /\Concentricity - Finish /NASRy

Drawing

. zacn- .zfcH

.-3U50 - - 3 U A 8

, IOOQ - ,19952/

N^

, 000 5 T: t.R

. oooS T. l.£.

. 0005 rr°T^-^-

. OOO 5 -rcnAA-

Actual

,^^^r' i Ji^O y •

-•^ fy^}Q ~~-~ *!«^7X5/'T

5v- ^s <r\^ —*y —

,d)^3^"

,^^-J"

/•^ '/^

.fttrS'

r^2z^«~r139

INSPECTIONDIMENSIONAL

RECORD

IDR No.

RevisionPage of

NASA BRAYTON CYCLE PROGRAM-f-.^ODEL NO: 115146-100REFERENCE: 12QO112-1

Pesco End TtPm Part No. \ \ S \ 4 k ~ l O O TTng r AppV'"- '•',..• '

Pesco Part No, Q\ "* \ £>O 32 Rev, Q rr Appv £r'*"&f'Vy£&^>

Part Name \A/ Nv*5V\t-R. . ~T\\£.O<ST" Tnapp^torl V.y V 7 /

Q -• • '. • • *•Serial No. 7 Hat* . '. •' - '

Dimensional

Description

\A/A.S\AeR W\OTV\

FMtsu o^VJissttee F«K.SFKorwE'aS OF \AJK.-Ste^ r\.cs«,

P^RN.v. -£.u\';^A OF \VNSV\tK FtocS

Remarks: l_J A/ / 7" ~5 '.•£7J

^a-'^ "^^

Zone'

c--s'b-^-

D-3

^>-3

?//5>^

Dimensional Tolerance -Concentricity - Finish

Drawing

. \TU -.17.5

<y.000046,4 TtfTXU

. OOO £ TOTK.V-

Actual

jaf?&

,40042?

.ov&y

^/^. Ax -2/ ^-^ -^.__

140

INSPECTIONDIMENSIONAL

RECORD

1 —

IDR No.Tssi i fd .

RevisionPage r,<

JASA BRAYTON CYCLE PROGRAM/IODEL NO: 115146-100DEFERENCE: 12QC-112-1

Pesco End Item Part Mo, l \ 5 l 4 ( o - l O O p^g Appv '

Pesco Part No. O\ -\5833 RPV. Q C. A ppT^vC^V^^^^^

Part.Name WA^SVAtB.. "TvVSoST TnspPct^H hy \U ''•" '• ' '

/5"~ - • ' * ^'Serial No. Hate. .-<-'"

Dimensional

Description

\A/NSV\e.N2. N/S/ID~V\

^xv^xS^ o^ W^SV\eR FKUS

ru^Tviess OP \A/KS\\E« VKctsPKEKVV.tV.V5vA OF Wi\£\\eS. r^CES

Remarks: {.>!A// 7 <t> , 72

^"'""^ ZJ

Zone

C-3

8-^V

?-3

B-3

Dimensional Tolerance -Concentricity - Finish

Drawing

. \8\ - . 180

y. oooo4fc4 TOTW.

.OOO 5 TCfTNU

Actual

</$o/&"

-OOG013

-*£><>»£-

?//5>^- /l/^. -V .'2-/' ^^"^ ^

141

IDR No. .IssuedRevision.Page

INSPECTION

DIMENSIONAL

RECORD

.of.

MASA BRAYTON CYCLE PROGRAM

dODEL NO: 115146-100

REFERENCE: 12QC-112-1

Pesco End Item Part No. //S/4& -

Pesco Part No. /&/- & 88.

, '7l>~t/>

No.

Eng.

Q. C. Appv. V85,J

Inspected by.

Dimensional

DescriptionZone'

Dimensional Tolerance -Concentricity --Finish

Drawing Actual

31. D. V*

©Pxusr Ed>_ - a

0-4 J . I4EO-

B-A .ooos r. \.g.

C-T . OooS F.t.R.

V* ^«4t> Z.

E-(o .OOOS TOTfrJU

-TOra.c.

000-5 T-l-Remarks:

PPD-9JJ

142

INSPECTIONDIMENSIONAL

IDR No.

Revision.Page .of.

NASA BRAYTON CYCLE- PROGRAM

MODEL NO: 115146-100

REFERENCE: 12QC-112-1

Pe sco End Item Part TVrnr 1 5144~|OO

Pesco Part No. \ 2-1 - \ 2 - l l

Part Name RoVoR t MoTog t

Serial No.

Eng.

Q. C. V85

Inspected by_

Dimensional

DescriptionZone

Dimensional Tolerance -Concentricity - Finish

Drawing Actual

C)DlK. rr

, "Sooo - . 1995

"Z"

B-8 . ooo5 T-i .R.

V

R-8X'

op oooS

V "

OP c-4 , ooo 5

TO ' tZ"

Remarks; /JA/1 /

143

INSPECTION

DIMENSIONAL

RECORD

CX/w 7~ 3/*» X— *l/ V 7- •/?.

Pesco End Item Part No. \ \ 5 \ 4 k - l O O

Pesco Part No. O\ — \B>o32. Rev.

Part .Name \A/ K.'oVXt-R . ~T\\£.OST

Serial No, f

Dimensional

Description

VA//VS \Aefi. W\DTV\

r~\vl isU ovi V^NSHeR Ffvcts

n-^orvje^s OF vJtv.'SVfc?, FKCH.S

P^UJBOSM OF \A/K£V\« FA^5

Remarks: _ _ .

^^—"'^

Zone1

C-7

D--V

D-3

IDRTssn

No.ed

RevisionPage of

NASA BRAYTON CYCLE PROGRAM;.•.^ODEL NO: 115146-100 """ ,^cFERENCE: 12QC-112-1 . ..,.; j

Q. C

Insp<

A v^^Zfe^7'

(^App" V. 85 ;

><-«-f>rl hy V?y'

Dimensional Tolerance -Concentricity - Finish

Drawing

. i-a.--.i-isy

.000046,4 TtfTM-

. OOO S TOT^V-

'""-**""" A«/ "

Actual

, /2-5> (T)^ — (^.0Q&03& ^

.0009JT

^j-7

v~-<~~r-~r-

144

INSPECTIONDIMENSIONAJ

RECORD

IDR No.

RevisionPage nf

JASA BRAYTON CYCLE PROGRAM

/10DEL NO: 115146-100. REFERENCE: 12QC-112-1

Pe SCO End Item Part Nf>, l \ 5 l 4 ( o - l O O TTna. Appv.t?^^^-*-^— «-v

Pesco Part No. O\ -\383i Rev. Q P. Appv V85J

Part Name W fVSVAtVC. ^ ~TV\1fJO'S\ Tnsp^rtpil >iy •' -^

Serial Nn /6 Hatp

Dimensional

Description

\A/NSV\eS WlDT\\

^xvivSvX o^4 \A/KSUe.R sO:S

FUKTUSSS OV7 NA/K'S'AE.^ ^KctS

PKSKV.LtV-\^xA OF V/A£V\£$. t-f^ES

Remarks:

* -.

Zone

C-3

B-4

?-^

B-3

Dimensional Tolerance -Concentricity - Finish

Drawing

. \ 8 \ - .180

y, OOOO46>4 TOTNU

.OOOS TOTNU

Actual

, /$#¥ S)x^___ /f^

tOOQ£&&

,c>QO(yi~.o v .'

x '- _/""•'

145

INSPECTIONDIMENSIONAL

RECORD

1DR No.I.ssuecl__RevisionPage of

MASA- BRAYTCN CYCLE FROGRAsfl

(/SODEL NO: 11514G-1GOREFERENCE: 12QC-112-1

Pesco End Item Part No. //S/J?6~S°° v.nv. Appv

Pesco Part No. /0/~G>£S RP V . /? Q C.t ^pp".

Part Name P/ff^^ /%ZP , '7 'xVfX' TnSp*rtoH hy

Serial No, X - ^V^'O Date

Dimensional

Description

8vr.fvS.vWiC> 31. P. V* VxMAe;^

B«AV<\UG Eov/.C _t:ir.V

*Z> P \i-crr fts/vMerciJ.

PILOT Dii^. roe. XrvM?E iA.c-;i

Coo.Cfi.

SG>iJf^.s.«idS 'OF D\fP->ss.'ft.

P.KCVT. FNX£ -ro"7."*V"0!^

H^pv:v'..'t;R WCK»-~V^£. T.t>.

Cciiict.vtTVAcvvv/ Pe^'vJviR «.\

V A.nt> 2." CuXv.e'.^E-.-S

B'v.f-^c.\viC-. Ffvct.-i S*0f*?-v

TO V" Dl^W>uTc.vX

CoviCevSTP-VClT-/ CfcT^ec^ WfcNfc

fewii ^.X>. AiiD "'Z-" t)ltX.

CoiV-tJiTP..?^-!*/ Ber-iE;c.A fttoTO'.f .vv«-.ii - 1 1- K^Ci •••^ (ji [^ ,

Remarks:

77/^f?? <&#£. /^^TZtusr- #*&. S^^//.-• • • ' • . • • • • • '-;/

Zone

D-4>

D-(s"

E-'t

0-4

B-4

D-^V

C-T

E-(o

C-4

C-^

CCCL/^-

'/lc<-*

Dimensional Tolerance -Concentricity - Finish

Drawing

.3Uk3 --z>y*\". 'A.I 5S" '"-'"" 3"ib'O- ~~

a.fcX^o- P.. -49

P. 14 20 - &.&IS

ooo5 T. \.C,

.1t.o - .15^„ Coo 5 r, (• R.

.oooS T^nfsi_

-.ooo?>' T.l.fc.-^

, OOO'ii T'*-f~

-r,&r-s (_£:—5s • "'

^V^'X ^^- ^) /./?

Actual

.J'^^1' i'-.'.V

i, i-^ #^rz^/f/4'

ro&&3' '"]

,7s- ?f-,&e>e>5^

. & o &3 , )

, o<s>oi

, ,(j? & o 5"~ ?

SL.-..^o'/ -.-.^"*Xj

•g^. /./flT=//*^e

PPD-3J3

146

INSPECTION

DIMENSIONAL

RECORD

IDE. No.T < ; ! ; i i r > f l

l\c V^ °:ion -. . »Page . nf

NASA BRAYTON CYCLE PROGRAMMODEL NO: 115146-100REFERENCE: 12QC- 112-1

Pe sco End- Item P;irt: Nn. 1 S M & j - l O O irnfr. Appv,

Ppsro Part No. \ ll ~ \ ?- U R P V , /V O f^ Apr".. / 'V:

Part Name RoToR ^ MoToR. CavAPu=:TC TnspprtPr l hy '. 7

S.H., NO Y~--£/*9- <T n*tf r/^7^

Dimensional

Description-

SvXf^TV P\uoT y Olf,wETtP

BtK«\'.sr> Tovop^jr-A- "£•* PIN.P)t^.R\OG- ToOf?Ot.,L' X" l")lk,

Fivu?, v\ DM "Z Dl^^Hnte

F"\i-ivSU OrJ K. DlKNVe-VtV-

CoMce>-iTPvC>W f? t-T-.' v;-.V;>! .

''y ' /<Ot>"'Z" OlKT«Vi-T?-^S

C O*J C. Ev^~P vC \Tv/ p —.TU.) :i.V.V\

"X" p^.-.r^Z" ^lP^i^.=T\.ps

S O O Ki?fj \.\~:.-'.< 0- S r\ t^^T

SV\Ti 0 Lt5 H.5 TO " V " Dl WAt— 5

SoONCv^EC-C, OF 5HKPT

StAooLSC-v. -ro ' *Z" DiMrvr.?..

Reinarks:

/ • • • • • , • - • • •

Zone'

S-4

t2 x

7">~ *~~

P.-1

6---1

B-l

B-8

B-8

C-a

C-4

Dimensional Tolerance -Concentricity - Finish

Drawing

. 2. Sol- .2504

. "3U^O - . 3U48, ^oOvO - , 2 9 9 ?

?/•

^/, ooo5 T. I .R. .

. ooo5 T: -R.

. oooS -ro-TNv-

. OOO S -TCTTK*^

Actual

. 2. ¥0? ' • 7)

>2£^°.-2-779't^^

000 -*i- '

\f &> d -o -T—

.

0oo£"

,e e # 5

;•-. . -' -. : ,-. • •

147

INSPECTIONDIMENSIONAL

RECORD

1DR No.Is suedRevisionPage , of

NASA BRAYTON CYCLE PROGRAM

MODEL NO: 115146-100REFERENCE: 12QC-112-1

Pesco End'Ttpm Part N". \ \ S \ 4 k - \ O O Rng. Appv

Pesco Part Nn. O\" \?>S32 Kf , v _ Q r., App,;

Part Name \A/ k'o^Afc-R ( T\\?_O S V Tnsper fpH hy A/

Serial No, /T ~ ^.' V? "" /J Hatp

Dimensional

Description

XA//VSVAE.R w \DT\-\

ITvvJ isv\ o\> VJr-r^'F.;?! F'ks.'c-.Ci

B-krwe^s o^ W^fc^ Vk^sP^R^.v.\-9.u\<5^A OF \A/l-6V\tR Ffv«S.5

Remarks:

/P^T-'Cs? Z-<-\ v^*

Zone'

C.-1

\>-+V5-3

\>-3

Dimensional Tolerance -Concentricity - Finish

Drawing

. i r k . - - . i - z *.-4/

,oooo4t>4- Ti.TrN.i-.

. OOO 5 To-r^u

-

Actual

./i<r*' r^^^ \u

.OOOOK?

f& o o 0<&f~'\y_

--

- • < " • — r— " "

148

INSPECTION

DIMENSIONAL

RECORD

Pesco End'Item Part No, \\ 5 I 4k - I DO

Pesco Part No. O\ -\3§33 Rev.

Part Name WX"5\Afc£. T V\£O<=,Y

Serial NO. /** /> .* ' if 7 ~~ -^

Dimensional

_ Description

\A/M=> \\E.>£ W/ \ I5TV\

^xvixSvX O^-i \AVsv\'H:R. VW-tS\

VV,fcTvlc-SS o1^ \VKCA^S? \-r^tS

PfSEK\.Lt.\-V?^A C? Wf-5\\f;R. ^rf^l5

-

Remarks:

Zone

C-3

R-4?;_v

B- 3

1DRIssuRevPag

MSA

,/IODt

<EFE

No.f>H.sione nf

BRAYTON CYCLE PROGRAM

[L NO: 115146-100

RENCE: 12QC-112-1

Q. C

Insp

A

"' APPV.

C*prt^rl V»y | V£P

r.

X'''

Dimensional Tolerance -Concentricity - Finish

1 Drawing

. \ 8 \ - .180

y-'.0300444 -TO-VKU

.oooS TC-XNU

Actual

,/^o^" Dv^' ^u

^oooortY (T-/^ N

- - -

/9-f^T^ R o o o o *«.- £-^^*~~^

149

INSPECTIONDIMENSIONAL

HE CORD

IDR No.

Revision^f

Pesco End Item Part No. /ISM'? - JQO Rng. Appv,

Pesco Part No, /O/'ff 'SY R PV . 8 Q, C. ' Appv,

Part Name L-0IS&/S. //'?'->]/, MoTO^. . Inspector] by • — '

Serial TMn. X-^-~ «^-^ *7 — & Date */y?Ssr

Dimensional

Description

BEAE tr>{(:> JZ.D.

BENR106 Bo*G.x'.D

^!l P \v_oT tli^s^^trvtS

Co^lCG»-ST"Vi\c;Ty OP ^£»s.e.v»J6

*r-»"X. D- SA/ITVA /I Dl^.^Afre^

Soo^R6ue« oc CoMtefbo*

F^c*? ^V-TK"^" DlN^CTt-e

Remarks:^AT-^ c^c^oc

Zone"

B-SR.q

C.-f»

6-5

. a.u

Dimensional Tolerance -Concentricity - Finish

Drawing

•. 30.13 -. "30 U

.SWo-SfcZS"

"S. HSO - S-IX45

.0005 T.l.R.

. OCO S To"Tfvv_

Actual

^^«. '(T)MA*Mtf'

Mft'

.— ;PPO-9M

150

<H

PP

EN

DIX

E

TY

AN

AL

YS

IS D

A

* 3<3rj

w

\T

E

AN

AL

YS

I

^i

PiW

3,_)M

^h

'

M-J

CU

UM"O

O

a|ft

agft

(!)

gct)

g >.

Asse

mb

ly

Na

Sll

l-l-

Acc«

.l-r,K

l

oor— 1

If)

r-1

Ug•r-1

C

O•r-t

COto

<jTo

tuW

tu 3FQ 2jg >,?.6i- tuJQ

•tutjctu

&tuftj

^ NO

nj • l•+J DH OO . — iH b, X

•o0

p • 1

3 . 2W ft X

. gO p-t2 W

to

"dCUgW

•O

6 tu£ PH

+j ,

^ O^ft

tug

«2•M

Mct)

ft

susin

g

W

x l

00vO

1,_,o•— '

CO

Jf<

^hi

usin

j

offi

^

4

cu&wW

Oh

T—t<atuw

isS

vOCO

o

ro

-'

CO

o

Fatigue

^

o.gaft

j^o

toCOnJ

f-H

O

2i

W1

aa

^t*ro

o

rJ

r-4

CM

0

(U

ftto'cd

i-H

a,CV)

.

^•dCoo

41

oO

r— t

OCOvO

1,_!

0•—I

COCO<JJ

ooro

cuaWW

U0

r— <

tutuW

4-1

a)

<>

vOCOo

o

ror— 1

. COO

o

Fs.tig

ue

^

^HO

OvCftQ

O

J'•t

1

oCO

toCOcs

oCOvO

1W

aa

C-1c

c

ro

-

c

c

«*.iC

a

5ro

^

T3

OU

vOCOo

0

M

•—t

CO0

0

CO0ft

Ch

an

ge

o

CO

oO

_

COCOCO,_{

1!— <

o

cu

•T-4

ft1L,tu>OU

CO

SO

COo

o

ro

-'

M

o

0

0)

W)

la

-1

• >COo

0

ro.-H

CO

O

0

cu0

'to'rS

ft

ro

sOCO0

0

rJ

-<'

COo

0

tooft

Change

o

CO

cu

^-r-l

lap

pe

r/O

r

U,

r-cocoCO^~ti

r— (

O

cuU

ta

o

^

0COracu

oC

•H

C•rH

•"coCO

•0totu

PH

roo

0

^H

ro

o

Ero

sio

n

to3O

'•^

CU

CO

0

^6

toto

p,0

151

co

W

W

n)00

cuo

ft

J? «,O W

Cfl

M

<

*J.-H

!h< w

.ssio

n T

ime

§

^CO

cu*•'C<ut4CD

W-!Otf

- .?"! fV <-»+-* m fo . ~*H fc X

•do•^

c ^g „; 'cu K o

W h X

fi0 ^2 W

CO•Mcl

Ele

mei

•o. ~a>

O CD

2 OJ

•4-1 e

- •§ft -21

IDg

-& —A

tnrtft

CD.a

H

PJ

4-a

"c

CO

MOft

m

OJ

d

o

~i

oCM

d

to0<ub/4-1rt

fc

<

^

4-1CD

4.

^O

*+*0)

Q

COrt

ftCD"h

4-1oIn

4Jc

• •HO1-1•d,— t0)

£

O

U3-M

•' H"

'ot-3

1

T3i— i(U

£vQ

U)•*-»tn0)

4->

f^

O-4_)

o0)

•4_)

cuTJ

Xrt<u

grj

.,_(

r— <

(U

ffi

Oo

d

0

r-«

0t— 1

o

Fatigue

r-«

CDtoQ

»*-!

CO,Q

T3Q)dGho

tM

cuaCD

J3

O

00O

t— 1

CO

d

o•*o

r-t

rtCU

W

Imp

erf

ect

CM

OJC•d+->a<U

ort

4-1(3

ilte

r E

lem

e

fc

^

CX)ro0000

1*— 40

'•scu

CUr~\

W"" 1

ho(3rtto

4->W

r--

i

JD13affi

^.r4

4J

IH

rt

^

CD>CCD

P

O

C-J

0

•—1

o

CM

r-1

3O

M-l

t— i

r4-»

(3CD

g•o0W

43•fJ

'0

in^fo

iCOCD4-1<\)

tf

CDf4

^!-H•r-t

rt[-1

CM

d

o

,-<"

CM

O

Fatigue

CM

O

II

rty

o•t~44-»rt

W

enboC

21

0

CM

O'•— iI

vOTfCOft*vj>

O^0

T3Ci

g^

-Pre

fo

W)c!3urt

OH

co"

0m

d

in

o

in

o

do•H

&tMocublr3rt

43U

r— *

vD

O

d

oo

d

•— t

o

Extr

ud

e

CM

0•

d

0

t-4

CM

O

>,tn!D

<4-1rtcu60rtgrtQ

CO

152

W

H•<Pi

KrtP-1

Re

fere

nc

e

-H .*>

O . -,H h X

•s

6 •*<U PH O

W k X

• ci2 W

U)

fl<uSw

TJ

o <u£H Pi

^ o"n "w

am

e

n)

Co

ver

~*_

r— 4CO

•—41

O

oOiTJ

W

?

"o

coef

fici

ent

>oZ<u

^0COoo

OJ

^CO0

0

1)

Fati

gu

e

M<a

t-H1)

P.

g

;xp

an

sio

n.

"itg

x

NO

oo

OJ

J

COo

°

, *

tuQ

tord

,—4

OJ

COoo

OJ

^(O0

0

too(^V4o<u01s

XU

Sc

rew

s

OJ

CO,—4

in<2;

aOi"1

f-tU

O

.

0

ot

red

un

dan

cy

<u"tdto

(X

i-H

O

IT,

O

o~4

o

3

oo

oU

•ord(0

i

Ooto

-dCOrd

grd

T3

to

1^

to<uog

Imp

ell

er

""

oCOooCOf— 1

'o

to<u

Imo

ell

-

COCT-0

0

^

^

OJoCJ

1)

Ero

sio

n

0

0

0

^

^CD

toto

2) O

ve

rstr

e

i

turt

PH4->

Imp

ing

em

en

^

0000

1

Q

toU)

M(D

Dif

fusi

00

OJt>

0

^Jcr-

OJC3

o

1) A

-bra

sio

n

CO

0

r-rNO

OJoo

toCO

2)

Ov

ers

tre

UUrtP

Sn

ac

ei

5

COO

o

o-I

COoo

I)£4-rt=

CO0

o

o

^COoo

tl '

0)

Q

COn)

(M

COCtoSO"~4-i

n)x;W

InototU

n)In

<Uto

a

"rtx:CO

oOJI—)

1

OJ

4-1

XI(O

3?

•oo

inc

orp

ora

t

to4J

tug0)

tu

OJpo

,_,

o

t-0

o

01

t— 1

3

O

—1

o

>4

O

Hrttuto0?

153

to

WH

niCO

sIa,Sft

p-

«srt

_>s3

X 6X D3 w

9],fl

- §2 &

r N

um

bl

--S

<i)o

<u

(!)rt

3 oi oO . -H

f-,' & X

TJ0

A

g -a) K o

W h X

g• fl)

0 ^^ W

01

C

s<u

3

T)

o' <u2 CH

« Q.

ft

<U

*52*jrtft

Th

rea

d

0

CJ

_J

rt<uIn

H

U?r-H

00

a-H

nj0)SI

13C

o

^1nj

(M

O

in

o

•*

o

060art

6

<uQ

1

w

2niJH

<U

3

wO

O

roO

o

'o

,-<'

roo

o

r-H

<i

Wa

sh

er,

ooO0

1

^

£^

}_<0)

CO

nj

^Co"r-H

Locknut

•~o•#oc- iPOCO

s

ud

•H

^1Oo-qi, — ira

CO

^^p-

1 — 1

o"

o

r-H

— <

0

, — 1

00oo

to3£.t-1

Wa

sh

er,

roro00ro

1

o

tn2H,£H

In<U

a

^5

<n0

o

o

^-

ro0

0

GO

-MUl

rt^3•f, t,

• I-t

ininmvO

CO

•s

Jl60

'rttH

CO

C-iH

0-,

^

o

0

r-H

O

— '

O

<udM

4-1rtU.

0rv)

i/ien0)

T3n)tl)ffi

•— iO

0

-1o

—>0

rt(UXCO

(M Co

ve

r

00vO

o

oosUltn<ji!-O

CC

o

roO

0

(M

-H'

roO

O

turH

S

.rH4-1

tih

oo

M

-1

roO

O

.

*3Q

enn!

ro

COo

0

rj

^

roO

O

oft

o0)cl

nJ

bro

154

CO

WH

W

rt60

tuU

o-4-JO

aS

O

3

oo

S

,0

CO

S .2

CO

(J

C!LJ<U

o-^P-<

+5 cd o0 . -Mt-* &X

tios

jrttW h X

• §O r-H

Z M

CO-MdCUa

•-H

T3

O <I>z rt

^

cugrt

•M

rt

/ockn

ut

^

n

CM

xO

•— io

Lo

ckn

ut-

Assy

. ,,-H

CM

OGa

TJf.3

T3cu

pcj,_,cu

rt

rtPi

CMO

O

r~*

O

o

*->

cu

COrt

^

CO

00ooxOCf~

"6<

Wa

sh

er -F

lat

^_CMCM

<JC

*oc3

CUrtr- 4

|~]

cd

td0

0

o

m

o

0

cu

•r-l4J

rt

-1

roo

o

m

o\

rOO

O

CU

Q

CO

rtr- 10,

CM

CO

cre

ws

CO

CO

inp-

MS

35

2

cur*

Scre

w -M

achir

(\iC4

UCCO

T3

C

•6cu

fY

V•—re

hrtn

MO

O

•— i

o

,— 4

O

i— 4i-H

•-1

r-mCMi

•ortcuKinCU

CO

^~l•r-t

h

Ccu

o^4

£>

CUMcsf^co

fn

cre

ws

CO

^

rMin

NA

S13

artO

iowJ_i

^

^

c.frttC

T;acr__c

ct

rto

in• — i

o

m

o

o

o

<3— '

CO1

xO

00

rtcuK

cu

oo

CO

c r e

w s

CO

^

t-Hin

NA

S1

3S

cre

ws

-Ca

p

.mCM

o

rtT3C3

T3CU

Pn•— iCU

rt

nHi

inr-H

O

m

o

o

,—4

-<

00CM

O

T3rtcu£

cu

oo:o

.JJ

^

•*CO

1

r'

4-

xO

CM

t.Crt

T[

T4

P_

4

^2rtj-ft

p

r\C

c

c

o

CM

<

•-1

rash

er

^

00

xO

O

1 A

N9

60

Wa

sh

er-

Fla

t

, — .t —CM

U

rtT3

•aCU

, — icu

rt

rt0.

c

c

.r

roO

o

CM

cu

• H-Mrt

i

— '

o

0

in

_o.

o

CD

CM

vt-4CUQo

• ri

CO

rt

S(M~

155

to

wH

w

rton

aoO

a|ft

ag3

ft

OoI

vO

2 6 >•CO ^H

55 fi3CO

s<

XIs

CUoaCU

•2<u

•3 J?0 . ,-<H tn X

T3o

. 2

5J PJ oW ft X.

g0.32 W

CO

Q>

g<uW

•a. "a-

O CUZ p*(

4J

rd •?ft

• <ug-' -nl -

£

cd

^

cu

CJ

ft)In

(

CM

00ro

i

0

-1"-*-»cu

o

ffl^— •

CM

(Mr-

o

OJ

en

o

cu

rdhi— <

(

CO

00CO

1o

•>-4

c3O

2

CO

o

(V!

CM

O

v;cuQ

cart

^

: -~

-

. _t-£ -

- -

'

1

156

rtM

CD

O

o4-1O

a.g£,

wHH

W

fi >,rt -H.

I*J?* 0)

<! w

W

fa

si1 >.^ -H

x"a^v ""43 «

<!

ren

ce

«2

rf

*rt rJ4-t PJ O0 . ~H

H fa X

•ao•

• -ou PJ o

W fa X

. gO —<2 W

to'3IUgtu

r_|

W

•O

. "o*O IB

£ Xrt >2r

k

tuS

_rt

rt

MO

TO

R

>•

3*n04-1rt4-1W

-1

PJrJ

i

M"*

1)

Sta

tor

-Mo

tor

i—™XCCCs

1

sinCJ

-1

_,

mevi

~*

^<

>,

to<to0O

^H

^H

rJi

r-HrJ

2)

Ro

tor -M

oto

r

ire

we

lde

d.

i<u

to

rt

!M

in

•*"

_

^H

0

to

r-4

tntort

.C

"o

o

o4-1

Dam

age

up

<u(jc

t p

erf

orm

a

oIU

M-4a!

O

to<uord

_

^JogO

o

rtT3

Pesc

o t

est —

Mo

del

Z1.

95.

to0

-4

to0

ooIU

doO

r— 1

3) C

on

ne

cto

r

W)> C

n>(f]r-H

Hi

b

vj*

o

Hy

dro

dy

na

mi

bi*HJj

n!IUP^

rt

^Q

OCci")

1

0

4.

1 B

ea

rin

g A

toT3rtO

to(U

to

Reli

ab

ilit

y

00

-<

J•*0

intM

fiO

•r-iton)Mn

N

co

r-o•odrt

JO

mm

o

"o

00

o

oJ

ooo

"30

1JSu<a

^

•ori

(be

ari

ng

s A

faoo0

14JrtIU

•i-irt

"rto

*Hdrt

n(M

— 'm0

o

mrq

C0

01ni

X^

^

OOro

1

O

4.

2 B

ea

rin

g B

CO

o

o~i

00

o

•;Cfa

157

CO

;*j<^

wH

W

3

fa

cti00

ft

s

CUgri

<u ^g >.nj -H2 g4T S_Q w

g ^™ d<1 w

CU

Re

fere

nc

{H?H fa X

13O

2

i PJ oW fa X

go' J}£ w

CO

CU

gJH

w

13

. O1

O <U2: erf

^ oft

CU

gn)

4->

rd

P,£

O.

Ocu

14-1

"rt

OaCOcuofi

o

o

0

•ocu

" CUn

nso

r-S

]

CU

lO1

CUocK

gc"ECUP

ftovO

cin

o

CVJo

^

(M0

^H

^O4JoCU

oO

(VI

0t—

CMPJ

•sO1-)

CU

2"o

o*

[j_

ooCO

g'oP

a

cu

}-Q•t-JU4

C-CL

0o

.soP

1

158

zg

o

aDt

«,.

0oo

13g(AWaH

j*J9•J

fo

g

g

J c

OF

FA

ILU

RE

TY

PE

CA

USE

usH OSS g

2 . 1H k aI *Ss

u

iP<

ua,**"uDi:DJ

1*4

to0

0

IM

m

Id

Fra

ctu

re o

f eh

aft

in f

ati

gu

e o

r sh

ftV

«lJS(0

0

1

J.£?Vag V

n. «

^ M. C- a

•o

0

2

a.

i

Ch

an

ge

of

posi

tion,

imp

ell

er

mis

ali

gn

men

t le

ad

ing t

o it

s ja

mm

ing

*8

*

1k,

JSh-

t*e

I

•g

Nu

t lo

ose

ns.

Im

pell

er

mis

ali

gn

men

din

g i

n i

mp

ell

er

jam

min

g.

^«.

*

**

z

TJ0

A C

I *

< .-s2 "

11•£ ti« Ze "o •sa1 i

U1/1 O.

0 JI "0 "v

S "° *• *•s- •- » •

,3 c « «- S 3 2Iw ; i/5 « W

-^ u u

Co

nta

min

ati

on

(ex

trem

e co

nd

itio

nco

nd

itio

nal.

Fra

ctu

re u

nd

er

fati

gu

e an

d p

last

id

efo

rmati

on

Fra

ctu

re u

nd

er

fati

gu

e an

d p

laB

tid

efo

rmati

on

— 1 ~H IS]

* ^

ce5rt

A

, i i— & T)

b. JT «

o

cV

u

iACJj*00c

sjaV,c

o **» "O•n cs s

B

Mag

neti

cav

oid

th

i.B

eari

ng se

izu

re d

ue

to h

alf

fre

-q

uen

cy w

hir

l condit

ions.

3•oC

«- —

i1<da

0

0C0f-££rtVO.

i £ts§ !3 M

1% a

•o"3cV•*C

•oV

V

I

V

E0u

>.20

Mot

or a

sB

eari

ng s

eizu

re d

ue t

o ex

cess

ive

heat

and

tac

k of

lub

rica

tion

^

irt

-"

10

1

A

>,3E

" V

i ^It

tO

•c

1' V

1

Flu

id i

s i

pu

mp

ing

c.2

(sil

t/si

ze)

_

_;

3

A

s

1hrt

A

«

fc0

«

V

6•5

«T)V

.0 .

<9

E ««u

• *«03w .

Fra

ctu

re o

f in

let

an

d

ou

tlet

pip

ei

(co

nd

itio

nal-

co

mp

lete

b

reak

ag

e)

eit

he

r in

pip

e o

r at

the

weld

jo

int

o

*-"

-1O

I' i>3k*

0.

C'o.(0

Pas

t ex

pre

mot

eF

ract

ure

und

er f

atig

ue a

nd s

hear

(im

pell

er r

ubbi

ng)

.

osO

fi£

0•o'i14

X

•fct0V

0

Eoi*S»<•aV

« c

Coi

ls a

nin

aula

tloi

Gro

und-

Coi

l to

tta

tor

core

. EJ

CC• I

ve c

urre

nt d

raw

n le

adin

g to

o—

oc

o•^j

w

h0

oCoc«*.i

i"*Vo.3 "'

.— **•X «

5 !3 h*-. a

inve

rter

bu

rn o

ff.

159

VIS

ION

OR

AT

ION

AN

AL

YS

IS

DU

CT

S D

IIE

R C

OR

PE

CA

US

E

S s §O ^ Wu o S

b,

oo

i3

^eSKy

«

O5a2a

Mao8f«o

rPE

S

HO

UL

D

H

WH

Y F

AIL

UR

E

IOS

j "' aS ^ ctj

"• o

,UR

E T

YP

E

CA

US

E

•j

IKIN0

W a!t/l u3 n< 3<-> 3

S t^i8

w

H

S

H0,

H

S5Jah.

•£ "SJ, •« tov B

6 S1 "3

1- 1

£^J'-

« ?S -9 o

:tu

re (

con

dit

ion

al*

one

<le

ro

tor

bars

die

inte

grt

un

der

fat

igu

e an

d p

laat

ion

or

cra

ck

s.

2' 1• ^ E

I! 1

o. (O

1gi

o «

04 U

0 *S

9 th

"0055

Sta

inle

s

u

un

der

fat

igu

e an

d p

laat

Ion

or

cra

ck

s.F

ractu

red

efo

rmat

:

CM

19

&

0

6cu

j

|

5

wel

d jo

intB

. H

e!

u

VX

atio

n o

f w

eld

a.D

isin

teg

r

o

m

"o

•o0

**

0

•aV

Hel

ium

on

nec

tor-

her

met

ic a

eal

u"o

3

o

hOU

ou

0

0

3

1

I•o

V

3

0c

con

nec

tor-

cov

er w

eld

.

.

O

o

o

oU

•o(0

•o0

3 •'0

•O

O

e

• S

teel

iro

carb

on

or

tefl

<:e

d.

«a fa °C "Jj"3 ? .0

*®oo

uid

ov

ers

tre

aa

of

O-r

ing

in

ex

tru

sio

n,

: p

osit

ion etc

.

S o0 0uU fa u

(si n

k

i0,

iM0

o S.U 6

& I

s,?t» {•

||

ouEmh0

3ik

• -j

i Ec -

Pre

-fil

lab

solu

te

*o(S)

nta

min

atio

n

ou

0

£

0

U

50

Ck

o

1<tts«

%JS

BB

'b

per

form

ed d

u

0

on

tin

uit

y te

sta

an

ee t

est

ing

.P

has

e c

acce

pta

M

1 f

ail

ure

. O

pen

win

din

Ele

ctr

ica

0

o

is

leak

to

t.

E

1

2•3wt«

i

bre

ak a

l-w

eld j

oin

t o

fo

re r

oto

r b

ars

.

S E

J l

O

(M

O

I

tmv

V

"OG

"3ao

•ell

ev

ed

wit

h ail

iS

trai

n x

*a

'ractu

re d

ue

to v

lbra

tio

Win

ding

1et

c.

o

5U

J

•d0

0

U

1

X0M

"o^ •;"0 *•0

||

ur* •

un

der

fat

igu

e an

d p

laal

ion,

cra

ck

s,

or

dis

inte

f w

eld

join

t.

0 ** OM <5 „a £ g

1^fa t) 00

o

11

10

160

i D

ivis

ion

RP

O R

AT

ION

SE

AN

ALY

SIS

146-

1CO

hfi 3 s

|«s =§1§ri « oM«S .

PE

SC

OB

OR

G-V

FA

ILU

RE

BLY

rjtoto

ct0

O

0.

30.

gaS3

Hai ,

83a.

zZ

Sj

.;i

i

Iii

1

|1

• 1

Ua.s§3

Sb,Oto*

ITIA

L C

AU

SE

)

H

S

i>»•bC

•i

>Jah

g

|i|

J1,»*•!•

33

<•<H

6JSj

N

CA

US

E!F

.S

ff N

UM

BE

R

osg

u

zS£

4

*•1

j

t

J

3

H

* S

** ^» C£ 0u . u

•* - M • '•*

' 5-5 °•s "• -s^5 2 S S .e i- * i« c *•

l-o "5 D " c•3 -3 « a« -3 -o „•" C 5 .5 • C «S"2 v • «£ « h •

S || |g | j|*3 * ' *o * h O * *E

• " 5 S h t d 0 1 0 b S e *

: i a 1- IS 1 f-• j j 1 " " " 2 s * *11 1 1 11 al- ! 05

S

1 •s >• sa f f> •1 s •§E "3 *

^ * 12 S -8" ~ 's S

T e i s ^ e B 3« C A O | ^ O _ O J 5

"° "a ° « t - S ° o ^ **

-S !T 3 0 - 2 2 5 , u2 « = ° ? ^ » s 5J J « U U, O O U U. ^ H

o o o— . — (M 0 IM

fj 2 2 » V a> V 2'

s=•= . . 1" 0 ° 2 » • . ° h

^ ^ ^ c S. ^ 3 ^ £w ^ u u S a o Q t o

V

SSo

0 '«-i. a,1 S-« §• a

A Ot> V M

•u M *^

•'3 2 a

n 5 "J a Z

161

*o«— 4

4>bof*

PH

RE

PO

RT

P^HjjPQ

l-l

9H

ioHo3

u(4(4(XV

I

f-H

10)00<:at

Cen

trif

ug

;

*-o4J

O

1a

<u

1"osgt^

n\

ompo

n<

Cj

<aCO

• r-4

<U

«

4)4-tn)Q

1

mP<«goCO3

F-*

1

t— <

2

~4

. .

O

4-1l->

&

uto<0ft,

"4?uv a3 <u

•S o-1

°sS uC ^"^O 4Ja ug ^JO *«o w

jtT? •0 0 ™

£ X ffi

rto. i

Co

nsi

dera

t

*tf9co

0

cd

boco

Q

<u•O CO

'" O CQ ••§ <u« o

'rt

-*- • .

to ^*to a- Ato

^"o> >?

leak

age

j E

xte

rnal

o

0)&,toWrfOr— tHI0)

toIDto1)

"3"(3w

i

Mate

rial

<a

ractu

r

fa

hr— — ul,c'to3O

ffi

Ex

tern

;

o.-H

"ointoO

t— 4

1 E

ven

tual

a

tL C

on

dit

io

oCO

to(0

T— tO«

vOp-itoaa

atig

ue

fa

o.s3

syst

em.

*wa)Q

tad, — i

«4-n)11Cc

CO

uoO

cW

0

CO

leak

age;

Ex

tern

al

00o•

0•

tott)<u

to

<u

ractu

r

fa

(U4-»i-H

fa

Co

ve

r-

r— 1

rj

c04J

n)

co

nta

rnin

Gre

ate

r

<o3tu

•rH

1=4

I t

(U

. — i•(-i

v«-iO

**H0)

Q

to<6

S

Z

leak

age.

Ex

tern

al

000

0•

to

(U

to

0)

ractu

r

fa

1 1

o•y(jj- pjoO

Co

ver

-

N

N

ao•a

Ev

entu

al

i54-ri

fr

(J

| d

isch

arg

U_i

P

tort

r-H

leak

age.

Inte

rnal

ooo

0

ton)0)

to

(U

rac

tur

fa

h<u

*T^<uaS

CO

Ve

r-

on

N

i— t

.Htotoo

oE

fr

'-M

Q

inrt

(X

seiz

ure

.B

eari

ng

000

,_;

atoWtf0•— (<utoCOto<u•a

'<34-1to

Mate

rial:

(U

rac

tur

fa

10'o

Co

ve

r-

^(M

•Ci

bre

akd

o'

Ev

entu

al

,

•aC!oOJocotato

• aU•

covOf-

1toaa

tu3

"Sfa

^j4O

aR

^

.

v

CO

o

CM

<Obo

8SW

•2

gH-l

•Ocurd

(X4-1<dQ D

ate

Rev

ised

i-H

1

§CO

Sivlw 13bfi

NE

NT

Cen

triJ

2<mrf>

O

' f(X

CU

hn)

(X

cugo4JCO

3

U

00

^n^ TTi

rd ini—" — i

cu8- „•g 2|f 4->

C Hcu *«c! (X

g, oS <no <aO (X

Co

mp

on

ent

Ou

tpu

tE

ffec

t (C

on

seq

uen

ce)

•vO ,

° ° 2(X X ffi

coao

1•o

COaoO•a3-CO

O4-»Urd

_bpcocuQ

.ilu

re M

od

eP

rocess 1 1

CO

h

„„ :-

>• f10 Mco <orw

VM '*o oPi 2

•y

Wg

r— t

W

cui — i•rH

O

f)

Co

nta

min

atio

n:

Lo

w

CM

CM'

mcu

"3cu

4-»cn

COCOcu

"TJ

'!t4-1W

f— 1rt

Mat

eri

• •(H

on

tam

inati

o

U

--

cu^^

^B

ro

"3.

dCO

T)'5,— (

•3.Sgoti

mic

ron

CM

•OH

§

CU

Ht-4010

.nn)ClO

y

gIT)

Fra

ctu

rb

U

--:

TJCUIH

4-

a

c.reV<

Ch

"cccc

refe

— •'•

.

Co4->U<u

CO

0

o>Mre

rtu

vO

^

flcu

J3

•7;£

Lli

cone

CO

'DCU

+Jrt

_C'h

S

It

Mate

ri

cu01rtXacu

t—

_.

.1in01C

PC1

qCM

f)

pu

mp p

erf

orm

an

ce

. 1

jCOCOn

UCMCMOin

a.a:oyCOcu

a0

1

O

AocuM

1U

Fra

ctu

re:

Po

ssib

ilit

y

,

o.

.._.

of s

mal

l fr

ac

ture

d O

- 1

cu01n

£•—re

T)cu

"C

£n

rin

g p

iece

s en

teri

ng

1

1cuCO

CO

rt

n

cu

cua

•H

.-_."JK

3gCOCO

a

(X

0

•*'

*

Oa>

^4-4

o

r—ti— iaJ

•H

'fli— i

,0

^H

tt)^_»

COCO

tain

les

w

o

nu

m• p4

r— 11

•5

Mate

ri

CU•oo

W

CUi — iag

.— 1.

n-

ia.•co

>.n4^

a>

W

ver

stre

sfe

O

,_...

CO

C•OCn

I

a)W

n

c. sure

. 1

— —

o•ao

•o•5r- 1

CMco

M<u"3gCOn)4)I

W

•3

Mat

eri

bra

sio

n

<

<

..<t>

1 D

iffu

s

fM.

f

tab

le d

ue t

o e

nla

rge

- 1

cuT3O

W

1bo

"a

oCOCU

"o

"o

CU

g

bi

iOcuf

4-1

boC

°b mate

rial.

1

„_ :

163

00

"o

4)bOrd

ft

r .

PjsaH3S

RE

LIA

;

H1oft*g

1.

{

T3<urta4>

4-1nJP

p-H£1

gto10

<

rtSM

4->(34)U^«*

0+•*os(X

4)

iu

g0S84)

OP.g0J

TJ

Dat

e R

evis

e'

o

f4ft

4>

gOCOaU

ooi— i

i

r^in^

,o

rtfto -uCO4)

-ft

"4?

U

•s s0, 34-* rj<

Co

mp

on

ent

OE

ffec

t (C

on

s.

o o £'M — 1 Mft X ffi

mao•tH

134)•0•Hataoo

1COf4oun)

bp'CD<uP

TJ 10!F

ail

ure

Mci

i P

roces ,

!•

' '" "~~~"~

to h

o> n)rt ft

CO

. .t"3 o*

Hi•r-f

1 P

um

p in

op

eral

n>0

r->

•O

•M

1)

4-*

4)

l-H4)4)

CO

I— Iog0)

gO(-1

U

Fra

ctu

re:

!

-

co

CO

«

,—^

»•uca

4^

s

4

4

CD(00)

4-CO

1

4

E(1

4

•t-

| P

um

p i

no

pera

lS

hear

!

Cc

gc0

^

1 Im

pel

ler

mis

a

ro_r

ccac4iN

a£c

•o(i"cM4^

0uboC

"H

CH

ic

1 P

last

ic

del

Th

rea

d

^*

/ea

r

4>

ua

t.

(

"OC3tt)

mati

on

. !

"

i

oo^4HO

4)01C

4:U

'

rto

,

| Im

pel

ler

wea

r

r-H

^

ht

-lo

ckin

j

"M(0

t— 1rt1ugr-l•ai -»— i.5

r— tr-H

Lo

ckn

u

IT

^

.

Imp

ell

er

wear

coo

^

^4J>(U

mCO4)

1C

1

Ssf(

^4cu43tort

vO

^r

i0

Pla

stic

dei

mat

ion

|

\

--

164

CO

VM0

•*

CUt>0cd0,

sPS

'8sH-l

><H1-4.JHHV-4

PQ-<<2j•jns-H

£ •

51<H

Oo

1

(

13cuf4

aP-<uhfLmd)

tso

>.>-XIgSCOCO

<F— 1

(300

^MttCtl)Jw^l-lO

o§1&

&

V«.§rtu

g

om

ponent w

<

J

•dVto

••H>cu

fy*M4

tu•4JcdQ

14-*fc

*P<h<U

>_0

Custo

m

ii— ii

vO•*IT)

-1

Oz44H

SOuCOCUPi

"«"y

^ a3 «&. 3• o1

5 «O co

t! §ti o4) OC *-*0 .Ma, uS4Jt 3w\^ r—l

13 T~43 1 m

o o 2, ^^ MM •— 1 HH

DH X ffi

caao•i-i13hcu-d-Hcofl0O•d1toco(4

0•MUcd

fcC!60

• rtcocuQ

lure

Mode

Pro

ce

ss i

•Mcd

ta

>» f(0 ^ca <drt Pi

"§W

• «'

^^

c3CO

Scre

ws,

Nut

oin

— :

Wa

sh

ers

?

t-<a

r—(Uagtu>

xc

es

si

W

mi— t

o

cakcuhO

CO

pHCO

.4I— 1

s

cu-3u•H•Mcd

fcj

f— 1

<

cu4i!Uo

co

Sc

rew

s C

at)

t— tin

T>Cn

CO

'oC

•M

c

i.ncujj

y•«»CO

-ct

"c

1.cdcu

43cr

l-icu!>O

"Ot-id;

1DgI

•oCt:cu

43

O*—

c

CO

CO

O

1fo

rmation)

cu•d

— -

1C

cuh

J'3c

earins

«

mf— i

o

COJj

6MCJ

CO

PHCO

t—»-*i^

1 (F

atigue

f— t<

4->tuj«-yO

CO

Sc

rew

s C

ap,

•ro

in

irative

cuaoc

aEc

0• H•W

--CS

cdl-HQ.

*7cd<u

45co

j.

V

0u

head-

Moto

r

form

ation)

cuT)

TCU

4->h

O4:

CO

hCC•

^

PJ0

o

CO

[

Hu

copEHco

K->-

c--5

b+:cdh

,—t

i— 1

<

cuC•i-i

Scre

w-M

ach

rr

ir

i

•4

1iI

Ii

I

ear, p

lastic

43CO

•d

fillis

ter -h

ea

form

ation)

cu•d

CO

incccdcugft

10

pjO

o

pHto

t—1— <

2

cu.. . *TH

b*+jcd

fc^H

i— 1

<q

CO

gj<:o0

•*in

CJ•d•4->

CO

• «1— 1a

JH"cdCU

43CO

form

ation.

cu•d

— -

4-*ucu

U-l^4-1

tua

c'f.nCO

OZ

vO0

o

^ cu

ct^

COyCU14

4->CO

£C

cuh

•*->ocdi

h

Wa

sh

er-F

la1

IT

ir

OnCl

M

(X

" >

^

ventu

a

W

cubi

•i-i•ucd

^

cucf

(Sr re

w-m

acl

fe. O

4->O

gT:

<t

ed

uce

s

\-t

«4-CU•d

cr]cd

r- 4

CU

rrl

fillis

ter

hea<

crd

ct

c

Cr

£i-c

V-1-cuo

.

165

00

V,o

in

4>00

hfSj

pft

?Ht-«

3K!

V3

9Hj?1- .

OftS8V.f

f

<urtaV

ft<u+Jn)Q

1COCO

1

-^

00

•gcuU

o0s(Xa3

P^

O«.H3IS"o(••Mmag

ompo

nent

U

Dat

e R

evis

ed

o

£nj

^IO

•MCO

U

0ot— *1

„,

*H*-H

n)&, -OU<am

ft

U

Co

mp

on

ent

Ou

tpu

tE

ffec

t (C

on

seq

uen

-0 • o?O O ^,

ft X ffi

CO(3.2

24)

IS'(03oO•o• 3

m

O•wUrt

C!00

'co<uQ

4)

SH ^>

« yu o2 rt•H<!-<rt

to ^*

F

. .'$ o

(Xa3(XCO

•4-*CJ<u

<u

o

<uhS•MUrt£4

fc

®•Mrt-s(U

Scr

ews

-N

xO.m

m

1 p

erf

orm

an

ce

. N

ami

COO

1 o

late

wou

ld c

om

e Ic

<a•M

"o

3r— ii— i• r-l

aS3

m

0-

Va0

f-H

1

<ul-l4Jocd£4

tn

§

Sc

rew

s-C

^ir

| m

ou

nti

ng

. P

um

p

nJf-,

co

tdtuffi4-1-(1)

OoV)

.

1 in

op

erat

ive.

t>0_£}waso5

(Bra

ck

et

i

r-^in

COrtcuHrtw

rvjo,_:

T3rt0

1

i — (

«MUrt!H

ffl1

•M3z00.

in

Scre

w i

Mo

un

tin

g

ITCOrtvsrt

vD0,-,•

•drtO

r— 1

O

T~4

Was

her

CT-.in

CI(U

a

11aS

0

0'

CD

COrt0)

Bc/^

CO

• Hmnn

£I-H

Ij

Pr*

Sp

ace

tf-J

rr

o""*m'

-

166

CO

*o

<Dbort

(X

HP5

2

ME

NT

RE

LIA

BIL

ITY

RE

S

OO

«

i

(

•o<U

rtatu

(X0>4-1n)Q

^

atotc

rf—

nb

"EcU7"cc

D

IX

V

5un)-^us8o3

<uCOQ,

EoJ

1 1D

ate

Rev

ised

§

nlIXi^V

SI oS5

0or-H

1

vO

-1

mf— i*""*

•oi?t:n)

IXOUtotu

(X

u

Co

mp

on

ent

Ou

tpu

tE

ffec

t (C

on

seq

uen

41 •o o ^( X X

a(3

-213M4)

•rlm

Des

ign F

acto

rs a

nd

Co

n;

all

ure

Mode

Pro

cess 'j

fe

*"""•

>. *-»en Hu) nJret IX

.jj O

tft *•*

\

Late

ral

shaf

t m

ov

e

COoo

,

Car

bo

n b

eari

ng

m

ater

ial

Ab

rasi

on

aoaJHr3

«t .CO

3

H

o.

vO

n<U

N

"aO£

1

ag

•ctu

•cnjC

>

B

"

s"acto|t

a

ro0

O

Ste

el-L

ow

str

ess

lev

el

aE4-n)h

Cix

cr-

Bea

rin

g,

imp

ell

er

ri0)

we

ar.

o

"oCO

toO

(M

C)

.

Mat

eria

l: S

tain

less

- st

eel

o<u

• rH

Iti

t— 1

*jt~ t30TJ

td4-»cu3

CO

0(X

o.oo

Oa

n

a

W

Lo

w s

tress

lev

el.

ic

~" a

4-COn

"S

1

n

Inc

rea

se i

n fl

ow (n

<

ro0

Mate

rial:

Sta

inle

ss s

teel

Ero

sio

n

t

COtonlO

«cuu

_Q

rifi

o,CT

a se

rio

us

effe

ct)

Ex

cess

ive

exte

rnal

OOa*-H

Ttua

Hel

ium

lea

k d

etec

tio

n t

ei

Fra

ctu

re :

CO

'ci

T

"a

o.o—<

an_s4-

cn)cuocn

na

tu

E4-

bre

akd

ow

n.

"rt

Imp

erfe

ct' s

e

oN

-J

Fra

ctu

re !

ac.n

PC

cp-

bo

h

^^tl

C".JJC

£

HI•aCOrt

IX

167

"•"o

«00

IX

Hrt

NE

NT

RE

LIA

BIL

ITY

R

EP

O

0X

*^>

D *' ^ *

(

_ •

11

t

1

ojrtft«

<a4->

Q

3EcuCOCO<aaol-ll-l

gcuJM^

3MO§e|

o.3

X

1)

u*rt-4U

g-^

M3

So(X

30J

1 1D

ate

Rev

ised

0*

•j->rt

PHh0•fio4^(0

U

oo

1

f—4in•— i

O*2finj

-o.

esco

P4

"«"u

4-» d3 <U

Co

mp

on

ent

Ou

tpE

ffec

t {C

onse

qu

•Q i to)"* t .H

D4 X E

CO

Q

rtf-icu

Des

ign

Facto

rs a

nd

Co

nsi

d

<uT3 to

- O -toNg (1) "«*5 o

CU O

S i xf— 1

3(^

-•*= "*-•-

wto Mto rt

pw

."3 otf ^H

1

~^

Ecu(OCO

*MOos

c

CJ

"TlC

c.(1

p

~CU

fe

Mate

rial:

4 P

ole

, 3 P

hase

A

u

ocu

1 — tw

ort

o.(M

|

|

f

C•4-

a

a

4-

aCoU

<u

r-H

rt

fe

Cot:

to

to4-

"oPoom*""*

100%

die

lectr

ic t

est

ing

wit

h

dcuaO

ocu

' CO

"*£

. **•CO

t— 4O>Oinr-4

Ocu

•T-4

Ef— (MO

CO

oh

mic

resi

stan

ce

test

ing

.

ojj

411JH)•

U

aCOcu

t

t<oM

1

wo

uld

lo

ad

th

e in

4->

ve

rte

r an

d b

urn

i

54.srt

•«^_,rt

o

cm

4.

J

l-lCUftoc

n\

(X000

_

cCU

•4-

°5

Mat

eria

l:

Car

bo

n -

Lig

ht p

c

do• H

COrt

<j

<&Jdrtcu

X

rtn

ibjd£

i — (

OT3

10

CU4J(IU

"^

XI

Fil

tere

d f

luid

to

coo

l an

d lu

i — i3ofa

<

4-1U(

Vt-

Cllc

nC

d

bea

rin

g.

aonftCO

t-,cu4-

cc

1*!

1

C.

(

ccu(4

nE

<ri.

wit

h u

ltim

ate

se

ij

*

Sam

e as

Beari

ne

v£o(V

Mat

eria

l: C

arb

on

cccrt

^

CQbi

•H

rtcu

pq

XIm

Sam

e as

Bea

rin

g A

__

o

- _

-

_ ^

168

1

>«' fHO , r t

a! i>

'ft60 £a aA Q

Hrto&

>>* 2»— i c

1— 1 (0

PQ ®5 ^

WE

NT

R

EI

Cen

trif

ug

al

g -^*^ O

O 5n SW ^-t

sft

4>

%

rt*o

az4-;d

om

po

ne]

U

Dat

e R

ev

ised

0*

4J

aftVa2to3U

oo

ivO

-P— t

""*• ,o^4-»

rt

Outauft

4>U4-. a

3 a)C

om

po

nen

t O

utp

Eff

ect

(Co

nse

qu

.vO .

o o 2h f— l Mft X K

(0

o-•-I*-•rt<o3toCi0O•0

9toflo°urtfa

•Hto0)Q

4)*O to

" O""10". '"*e 4)^^ Uo> o3 ft

'rtfa

rt ft

.

S ^

i

Pre

ssu

re a

nd

dis

in•*

•d"3

0

rt

"a;ffi

ij4_lCJ

rt

fa

t:o

MO

4->O

ti

O

t-H

O4->

aT

PoT0)bl

nt.

"'" '

T

0i

the

red

uct

ion

in

•."

i

•'ii

enPi

T

rd0)(Uc

CO

0

aa(1

Ct4

;

n

Hel

ium

le;

~~~

O

Co

nn

ec

o

ikH

n

.-.

C£c4-Oaj

re4-1OCa>410P

O

o

u

anft

Mate

rial:

Sen

sor

ovO

pe

rfo

rma

nc

e.

1^

1

>9

d

co

1'

1P

(

"cu

f(1

"~

0

c

c

4PO

4J

.O

So

lder

o

£

b1

4

1

<*—

^

ao<

•g

fiorrH4

r~mitoaa

c

Co

nn

ec

QO' 'O

rf4-c'cPfec

u-l

n

fa0

c'

t'c

. — • . —-.

APPENDIX F

ENGINEERING REPORT NO. 5289-B

DEVELOPMENT TEST PROGRAM PLANFOR

PESCO MODEL 115146-100COOLANT CIRCULATING PUMP

FOR A

BRAYTON CYCLE SPACE POWER SYSTEM

1. 0 Introduction

The test program plan described herein is prepared in compliancewith Task IV of NASA Contract NAS 3-10935 for the Lewis Research-Center.

2.0 Object

The object of this report is to present a developmental test programplan for Pesco Model 115146-100 coolant circulating pump for aBrayton cycle space power system.

3.0 Discussion

3. 1 Components

3. 1. 1 Motor Description

The motor is a . 60 hp, 4-pole, 3-phase, 400 cycle acmachine. The inverter input is 56 volts dc nominal with a quasi-squarewave output. The motor can be operated with a sine wave input. Motorspeed is approximately 11, 000 rpm at rated load. The motor is equippedwith thermocouples and a speed sensing device.

170

3.1.2 Pump Description

Pumping is provided by a radial flow impeller discharginginto a radial diffuser and through the motor cavity. In this manner,the entire pump flow is used to cool the motor windings. The pump isdesigned to deliver 3. 7 gpm flow at 60 psi minimum head. The availableinlet pressure, supplied by an accumulator in the system, is 20 psiaminimum. An integral two micron nominal filter in the pump inlet isdesigned to have a AP of 2. 5 psi maximum (clean) at the rated 3. 7 gpmflow. See Assembly Drawing 115146-100 in Appendix for pump designdetails.

3. 2 Test Equipment

The test loop for all tests will consist of the followingequipment: fluid reservoir, heat exchanger, discharge throttle valve,inlet and discharge thermocouples, inlet and discharge pressure gages,inlet pressurizing system, inlet vacuum system, filter bypass systemfor filling, ammeters and voltmeters, turbine flow meter, electroniccounter, system clean-up filter, removable sample patch system. Thepiping will include provisions for the cold plate. In addition, a coldtest loop will be added for low temperature tests. A test set-up schematicand equipment list is shown in the Appendix.

Equipment and instrumentation of the following accuracy shallbe used in conducting tests. The frequency of instrument calibrationis every three months.

171

Index Equipment Identification Accuracy Tolerance

1. Throttle Valve2. Cold Plate Throttle Valve3. Fill Filter4. System Clean-up Filter5. Removable Sample Patch6. Temperature Indicator7. Digital Counter8. Voltmeter9- Ammeter

10. Wattmeter11. Dielectric Tester12. Recording Oscillograph13. Flow Meter (Pump Flow)14. Flow Meter (Cold Plate Flow)

Not applicable - micro-needleNot applicable - micro-needle5 micron nominal5 micron nominal8 micron nominal±1% of scale1 count + time base±1% of F.S.± 1% of F.S.± 1% of F.S.

±2% of F. S.± 1/2% of Indie.± 1/2% of Indie.

The test schematic and the electrical schematic for the testloop are shown in Figures 1, 2, 4, and 5. Figure 3 identifies theinstrument and equipment callouts on the test schematics. (Contractprovided equipment is indicated with an asterisk. )

A contractor provided dc static power supply and temperaturerecorder was utilized at the 10, 000 hour point to facilitate unattendedunit operation.

3. 3 Cleanliness Requirements

The following specifications cover cleanliness of the components:

Components Specification

PumpMotorPump-Motor Assy.Cold Plate

FilterTest Equipment

EDI-107EDI-108EDI-108Marshall Space Flight Center Spec. 164, Type III,Class I with exceptionsMSFC Spec. 164, Type II, Class I with exceptionsApplicable Specifications

172

The test fluid, DC200-2CS Grade, cannot be purchasedconforming to any cleanliness requirements. The fluid used to fillthe test reservoir will be filtered.

Contamination level of fluid in test equipment shall not begreater than SAE, Class 2 (see Table below).

SAE, ASTM, AIA Tentative Contamination Level Standards

Size Range(Microns)

5-1010-2525-5050-100100 +

Class Level0

2,70067093161

1

4.-6001,340210283

2

9,7002,680380565

3

24,0005,36078011011

4

32,00010,7001,51022521

5

87,00021,4003,13043041

6

128, 00042,5006,5001,000

92(including Fibers)

Particles per 100 milliliter sample, as determined by SAE AircraftRecommended Practice 598 (ARP 598).

3.4 Test Conditions

Unless otherwise specified, the following conditions will applyto all tests of motor and/or motor-pump assembly:

a) Ambient Temperatureb) Fluid

c) Fluid Temperatured) Motor Power Input

e) Equivalent Inverter Inputf) Pump Inlet Pressureg) Room Ambient Humidity

& Atmospheric Pressure

60° - 100°FPer Interim Federal Spec. W-D-00107(D. C. 200 Grade 2 C. S. )80° ± 10°F39/47 volts at 400 Hz ± 4 HzQuasi-square wave 3-phase50 - 60 volts D. C.15 psia to 30 psia

Instrumentation voltage drop shall be compensated for by increasingthe dc input to the inverter.

When testing of a motor or motor-pump assembly is required usingsine wave power, the motor voltage shall be the same as that obtained if aninverter were used at the specified dc input voltage.

173

4. 0 Development Tests

4. 1 Motor Tests

The purpose of these tests will be to determine motorperformance, circuit constants, and separation losses withsine wave and quasi-square wave power. The specifictests to be performed are:

4. 1. 1 Sine Wave Power

a) No load saturation - motor wet and dryb) Locked rotor saturation - wet motorc) Speed torque performance curves - motor wet and

dry at 38. 8 volts, 43. 5 volts, and 46. 5 volts rms L/Ld) Two-phase sine power tests

1. Speed-torque performance at 38. 8 volts L-L rms2. Speed-torque performance at 46. 5 volts L-L rms3. Locked rotor saturation.

4.1.2 Quasi-Square Wave (Inverter)

a) No load saturation - motor wet and dryb) Locked rotor saturation - wet motorc) Speed torque performance curves - motor wet and dry

at 50 volts, 56 volts, and 60 volts dc.

4. 1. 3 Dielectric Check (Power Connector Only)

Apply 1500 volts (rms) 60 Hz for one minute between the fourmotor pins connected together and ground (motor housing). There shallbe no arcing or other evidence of insulation breakdown. The currentleakage shall not exceed 500 micro amperes.

4.1.4 Resistance and Continuity Check

Measure insulation resistance of each pin in the instrumentand power connectors to case with a 50 v dc megger. Resistance ofeach pin to case shall exceed 20 megohms. Measure the resistance ofeach phase winding and the speed pick-up coil. Check thermocouplecontinuity A-B and C-D.

174

4.2 Motor-Pump Tests

4,2, I Following assembly of the motor into the pump housing, repeatthe dielectric and continuity tests of para. 4. 1. 3 and para. 4. 1.4.

4.2. 1. 1 Test Mounting

4.2.2

The motor-pump shall be mounted on test fixture97-1212. External plumbing shall be per test schematic asin Figure 1, or equivalent.

4.2.1.2 Wiring

Unit wiring is to be in accordance with Figure 4.

Test Series 1

The purpose of these tests will be to substantiate analyticalpump characteristics necessary to provide the required head-flow curveand to determine motor performance using a sine wave power supply.Testing will consist of calibrations conducted at the following conditions:

1. Pump Inlet Pressure2. Pump Inlet Temperature3. Fluid4. Motor Voltage

5. Cold Plate Flow Rate

20 psia80°F ± 2°FDC 200, 2 C. S. GradeEquivalent of inverter output voltagewhen inverter input voltage is 50, 56,and 60 volts dc.0. 58 gpm at pump flow rate of 3. 7 gpm

175

The data listed below will be recorded at the following flowconditions: 0, 0.6, 1.0, 1.5, 2 .0 , 2.5, 3.0, 3.5, 3.7, 4.0and maximum flow in gpm

Inverter Input DC VoltsInverter Input DC AmperesInverter Output AC VoltsMotor Input AC VoltsMotor Input AC AmperesMotor Input AC WattsPump Inlet PressurePump FlowPump SpeedFilter APPump Inlet TemperaturePump Discharge TemperatureStator Winding TemperaturesCold Plate Inlet TemperatureCold Plate Discharge TemperatureCold Plate FlowClock TimeTotal Unit Running TimeAmbient TemperatureBarometric Pressure

All temperatures shall be recorded on a recording potentiometer.

4.2. 3 Test Series 2

Calibrations as described in Test Series I will be repeatedusing quasi-square wave input power (inverter) instead of sine wavepower.

Motor voltages will be the same as in Test Series I. Pertinentdata will be recorded.

4. 2. 4 Test Series 3

Calibrations will be run on a dynamometer using the barstockpump assembly at successively smaller impeller diameters until thepump head drops below 50 psi at 3. 7 gpm and 11, 300 rpm with a fluidtemperature of 80°F ± 2°F.

176

4.2. 5 Test Series 4

The purpose of this test will be to determine the effect ofvarious inlet pressures on pump performance. Inverter power will beused. NPSH calibrations at the same voltages and fluid conditions, asdescribed in Test Series I, will be conducted with pump inlet pressuresranging from 0 psig to 25 in. Hg vacuum. Net positive suction headrequirements will be determined at 0. 7, 2. 0, 3. 7 and maximum gallonsper minute flow.

4.2. 6 Test Series 5

The purpose of this test will be to determine the effect offluid viscosity and temperature on motor-pump performance. Calibra-tions, as described in Test Series 2, will be conducted at two temperatureconditions. One condition will be at a PMA inlet and ambient temperatureof -65"F. The other will be at an inverter cold plate outlet temperaturenear 150DF. The 150°F temperature is not to be exceeded and testingat this temperature shall be limited to 2-hour periods. Cold plate flowrate shall be 0. 58 gpm at a pump flow rate of 3. 7 gpm.

The test loop side and top covers shall be in place for the hotand cold ambient testing.

During the cold testing a starting current trace will be takenwith 50 v dc input to the inverter. Motor acceleration and torque willbe determined at cold start-up.

4.2. 7 Test Series 6

The motor-pump will be operated on quasi-square wave powerat a shut-off condition for three minutes. Winding temperatures will bedetermined and pertinent data recorded. Test conditions will be:

1)2)

Initial pump fluid temperature - 80° ± 2'Inverter voltage input - 60 v dc

177

4o 2. 8 Test Series 7

With the motor-pump filled with fluid the unit will besubjected to three reverse rotation starts on quasi-square wave power,not exceeding 60 seconds of total operation. The motor-pump will bedrained and the unit subjected to two dry starts not exceeding 10 secondstotal running time. The two starts will be conducted 30 minutes apart.As much data will be recorded as possible. These test conditions willbe:

1) Initial pump fluid temperature - Ambient2) Inverter voltage input - 50 v dc

5. 0 Design Assurance Test

5. 1 Dielectric and Continuity Check

Repeat the dielectric and continuity check of paragraphs4. 1. 3 and 4. 1.4.

5. 2 Pump-Motor Calibration

Perform a pump-motor calibration at the following conditions:

Inlet Pressure - 20 psiaInlet Temperature - 80°F ± 2°FInput Power - 56 v dc to inverterPump Flow - 0.6, 1.0, 2 ,0 , 3.0, 3.7, and

maximum flow in gpm

Record data listed in paragraph 4. 2. 2.

Repeat above tests at 50 v dc input to the inverter.

5. 3 Performance Test - 250 Hours

A 250-hour performance test will be conducted using thedevelopment pump-motor assembly, inverter, and cold plate.

178

The test will be conducted at the following conditions:

Pump Inlet Pressure - 20 psiaPump Temperature - 80°F ± 2°FFluid - DC 200 - 2 C. S. GradeInverter Voltage Input - 56 v dc

(Ref: 44. 4 v dc motor input

The pump shall be tested as follows:

Phase

III

in

Time(Hours)

25200

25

Flowgpm

0.63.7Maxim

During each phase the pump-motor assembly will be stoppedtwice every two hours for one minute each stop with one minuteoperation between the stops for a total of 250 stops. The testparameters listed in paragraph 4. 2.2 will be recorded prior to thefirst of the two stops every two hours.

At least one oscillograph trace of the start-up and coast downtransient shall be obtained during each phase.

5. 4 Pump Calibration

Repeat the pump calibration of paragraph 5. 2 at the 56 v dcinverter input.

5. 5 Resistance and Continuity Check

Repeat the resistance and continuity check of paragraph 4. 1.4.

5. 6 Disassembly and Inspection

The pump-motor assembly shall be disassembled and inspected.Critical dimensions shall be inspected and recorded, including the pumpshaft and bearings.

179

5, 7 Dielectric and Continuity Check

Clean and reassemble unit. Perform, the dielectric checkof paragraph 4. 1. 3 but at 1000 v ac and for 10 seconds maximum.Perform the resistance and continuity check of paragraph 4. 1.4,but at the 100 volt dc megger voltage.

6. 0 Endurance Test

A 20, 000 hour accumulative endurance test will be conducted on thedevelopment pump-mo tor assembly, inverter, and cold plate. Thetest will be conducted at the following conditions:

Pump Inlet Pressure - 20 psiaPump Inlet Temperature - 80°F ± 5°FFluid - DC200 - 2 C. S. GradeInverter Input Voltage - 56 v dc

(Ref: 44. 4 v dc motor input)

6. 1 Pump Calibration

Repeat the pump calibration of paragraph 5. 2 at the 56 v dcinverter input.

Clean unit and remove o-rings from end covers.

6. 2 Resistance and Continuity Check

Perform resistance and continuity check of paragraph 4. 1. 4,but at the 100 volt dc megger voltage.

6. 3 Seal Weld " • -

After cleaning, the end covers of the unit shall be seal weldedin accordance with Note 3 of Pesco Drawing No. 115146-100, Sheet I -Government furnished fittings shall be welded to the inlet and dischargetubing in accordance with Pesco Drawing No. 115146-100, Sheet 1.

180

6. 3. 1 Proof Pressure Test

Prior to the helium leak test the unit shall bepressurized to 150 psig for five minutes minimum withan inert gas through the pump inlet line.

6.3.2 Helium Leak Test

The pump-motor assembly shall be helium leaktested in accordance with paragraph 4. 3 of Pesco TestSpecification TR-700.

6.4 Resistance and Continuity Check

Perform the resistance and continuity test in accordance withparagraph 4. 1. 4, but at the 100 v dc megger voltage.

6.5 Pump Calibration

Perform the pump calibration of paragraph 5. 2 at the 56 v dcinverter input. Obtain an oscillograph trace of the start-up andcoast down transient.

6.6 Endurance Test - First 5000 Hours

A 5000-hour accumulative endurance test will be conducted onthe development pump-motor assembly, inverter, and cold plate. Theunit will be run continuous, where possible, 24 hours a day on a normalwork week basis. Unit will be operated at 3. 7 gpm pump flow, 0. 58 gpmcold plate flow, and nominal 56 v dc inverter input (Ref: 44. 4 v ac at themotor input).

Data listed in paragraph 4. 2. 2 will be recorded at least onceper shift. ,

6. 7 Pump Calibration at 5000 Hours

Perform pump calibration per paragraph 5. 2 at the 56 v dcinverter input after 5000 hours total running time. Obtain the oscillographof the start-up and coast down transient.

181

6. 8 Resistance and Continuity Check

Perform, resistance and continuity check per paragraph 4. 1.4but at the 100 v dc megger voltage.

6. 9 Disassemble and Inspect

Cut off seal welds on the PMA end covers, disassemble andinspect unit. Critical dimensions shall be recorded including pumpshaft and bearing dimensions.

7. 0 Reassembly and Re weld

7. 1 Resistance and Continuity Check

Clean and reassemble unit. Perform resistance and continuitycheck of paragraph 4. 1.4, but at the 100 v dc megger voltage.

7. 2 Pump Calibration

Repeat the pump calibration of paragraph 5. 2 at the 56 v dcinverter input.

Clean unit and remove o-rings from end covers.

7. 3 Resistance and Continuity Check

Perform the resistance and continuity check of paragraph 4. 1.4but at the 100 v dc megger voltage.

7.4 Seal Weld

After cleaning, the end covers of the unit shall be seal weldedin accordance with Note 3 of Pesco Drawing No. 115146-100, Sheet I.

7.4.1 Proof Pressure Test

Prior to the helium leak test the unit shall bepressurized to 150 psig for five minutes minimum with aninert gas through the pump inlet line.

182

7. 4. 2 Helium Leak Test

The pump-motor assembly shall be helium leaktested in accordance with paragraph 4. 3 of Pesco TestSpecification TR-700.

7. 5 Resistance and Continuity Check

Perform the resistance test in accordance with paragraph 4. 1.4,but at the 100 v dc megger voltage.

7. 6 Pump Calibration

Perform the pump calibration of paragraph 5. 2 at the 56 v dcinverter input voltage. Obtain an oscillograph trace of the start-upand coast down transient.

7. 7 Endurance Test - Last 15,000 hours

Conduct an additional 15, 000 hour accumulative endurance teston the development pump-motor assembly, inverter and cold plate. Theunit will be run continuous, where possible, 24 hours a day on a normalwork week basis. The unit will be operated at 3. 7 gpm pump flow,0. 58 gpm cold plate flow, and nominal 56 v dc. (Ref: 44. 4 v ac at themotor input).

Data listed in paragraph 4. 2. 2 will be recorded at least onceper shift.

7. 7. 1 Endurance Test at 2. 0 gpm

At an accumulated running time of 19, 600 hours, thepump discharge flow shall be changed to 2. 0 gpm and the unitrun for 100 hours.

7. 7. 2 Endurance Test at 0. 6 gpm

At an accumulated running time of 19, 700 hours,the pump discharge flow shall be changed to 0. 6 gpm and theunit run for 100 hours.

183

7.7.3 Endurance Test at Maximum Flow

At an accumulated running time of 19,800 hours, thepump discharge flow shall be changed to maximum flow and theunit run for 100 hours.

7. 7. 4 Endurance Test at 3. 7 gpm.

At an accumulated running time of 19,900 hours, thepump discharge flow shall be changed to 3. 7 gpm. Obtain anoscillograph trace of the startup and coast down transient.The pump-motor and inverter shall be run for 100 hours and asufficient number of start-stop cycles performed toaccumulate a total of 100 start-stop cycles for the 20,000 hourendurance test.

7. 8 Pump Calibration

Perform the pump calibration of paragraph 5. 2 at the 56 v acinverter input voltage.

7. 9 Resistance and Continuity Test

Perform the resistance and continuity check of paragraph 4. 1.4but at the 100 v dc megger voltage.

8. 0 Disassemble and Inspect

Cut off seal welds on the PMA end covers, disassemble and inspect unit.Critical dimensions shall be recorded.

184

185

15 AMP

A,

CYCLE ELECTRICAL SCHEMATICFIGURE 2

136

EQUIPMENT LIST

CODE TYPE ITEM OR FUNCTION

*T1*T2

T3T4

*T5*T6#T7#T8

HCl/Cl/Cl/CHCHeHeHe

Pump Fluid Inlet TemperaturePump Fluid Discharge TemperatureMotor Winding TemperatureMotor Winding TemperatureColdplate Inlet TemperatureColdplate Outlet TemperaturePump Ambient TemperatureReservoir Fluid Temperature

PIP2P3P4P5P6

*V1#V2*V3*V4#V5*V6*V7*V8*V9

#HE1

#HE2*F3*R1

SGTCI

BourdonBourdonBourdonBourdonBourdonBourdon

TubeTubeTubeTubeTubeTube

GlobeThrottleThrottleFlow ControlSolenoidSolenoid.SolenoidCheckSolenoid

Shell & lube

Shell & TubeSurface

Thermocouple

Reservoir PressurePump Inlet PressurePump Discharge PressurePump Filter Downstream PressureColdplate Inlet PressureColdplate Outlet Pressure

Manual Shutoff ValvesColdplate ThrottlePump Discharge ThrottleDiaphragm Operated 3-Way Diverting Valve3-Way - Air Service2-Way - Water Service2-Way - Steam ServiceFlow Directional Control2-Way - Liquid CO2 Service

Stainless Steel Heat Exchanger(Water and Hydraulic Oil)Brass Heat Exchanger (Steam & Water)4 Micron Absolute System FilterStainless Steel ReservoirLiquid Level Sight GlassHydraulic System Temperature Controller

*Indicates contract provided equipment

FIGURE 3

187

EQUIPMENT LIST

CODE TYPE . ITEM OR FUNCTION

TC 2 Thermocouple Ambient Temperature ControllerFM-1 Turbine Pump Output Flow MeasurementFM-2 Turbine Coldplate Hydraulic Flow Measurement

* MV - Quick Release Valve for ContaminationBomb Sample

#CP-1 Avco ColdplateVI - Voltmeter (DC)S - Shunt (As required by amperes)AMP - AmmeterCount- - Frequency Counter

*INV. - InverterA - Ammeter (per line)W - Wattmeter (per line)V2 - Voltmeter (AC)O - Oscilloscope (Wave Form)

*DC Power - Voltex Static DC Power Supply Mod. 82-253-1* Temp Recorder - Minneapolis-Honeywell Mod. RY15306836

* Indicates contract provided equipment.

FIGURE 3 (continued)

188

rNVE

ttS-isiise-Jl COWN

F rnt

(•X/}\ -/V-/

4- -OFF

" R T £

HR

TN

L

BU0r

K

-12-1 OS

r> rU v-

CV-Ivx

ON

R

'

w\ nPb

50-6OV

A1 ,_1 r

L

1

1

1

|

|

1 hf >

\ 4-

TEMR_ r\— (AK&CO R0t= r\

STTHSRN

A O T O R — PO/AP

nA w ,71 E

R ID CD o

C c

Pvs^r^mopA/lWSTRv.N\£NTAT\ONf

COtvJMECTOR.

R r n f=- c^ w

4 -

SHIELD

C ^ c V —\ ^x^- »v

PLPCT"^rtfi/r*

ATOR rouM-p-oNOCOUr-'L£5 <^t^v=r>

PICKUP

PULSE SOURCE2. - SO VOC

TEST

FIGURE 4

189

190

Page Intentionally Left Blank

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON. D.C. 2O546

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE S3OO FIRST CLASS MAIL

POSTAGE AND FEES PAIDIATIONAL AERONAUTICS AND

SPACE ADMINISTRATION431

POSTMASTER : If Undellverable (Section 158Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall beconducted so as to contribute . . . to the expansion of human knowl-edge of phenomena in the atmosphere and space. The Administrationshall provide for the widest practicable and appropriate disseminationof information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONSTECHNICAL REPORTS: Scientific andtechnical information considered important,complete, and a lasting contribution to existingknowledge.

TECHNICAL NOTES: Information less broadin scope but nevertheless of importance as acontribution to existing knowledge.

TECHNICAL MEMORANDUMS:Information receiving limited distributionbecause of preliminary data, security classifica-tion, or other reasons. Also includes conferenceproceedings with either limited or unlimiteddistribution.

CONTRACTOR REPORTS: Scientific andtechnical information generated under a NASAcontract or grant and considered an importantcontribution to existing knowledge.

TECHNICAL TRANSLATIONS: Informationpublished in a foreign language consideredto merit NASA distribution in English.

SPECIAL PUBLICATIONS: Informationderived from or of value to NASA activities.Publications include final reports of majorprojects, monographs, data compilations,handbooks, sourcebooks, and.specialbibliographies.

TECHNOLOGY UTILIZATIONPUBLICATIONS: Information on technologyused by NASA that may be of particularinterest in commercial and other non-aerospaceapplications. Publications include Tech Briefs,Technology Utilization Reports andTechnology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O NWashington, D.C. 20546