Continents divided

15
Continents Divided: Understanding Differences on GM Acceptance between Europe and North America David Zilberman Robinson Chair and Professor of Agricultural and Resource Economics Department of Agricultural and Resource Economics University of California, Berkeley Scott Kaplan Research Assistant Department of Agricultural and Resource Economics University of California, Berkeley Eunice Kim Research Assistant Department of Agricultural and Resource Economics University of California, Berkeley Gal Hochman Associate Professor of Agriculture, Food, and Resource Economics Department of Agriculture, Food, and Resource Economics Rutgers University Gregory Graff Associate Professor, Economics of Innovation and Entrepreneurship Department of Agricultural and Resource Economics College of Agricultural Sciences Colorado State University

Transcript of Continents divided

Continents  Divided:  Understanding  Differences  on  GM  Acceptance  between  Europe  and  North  America        David  Zilberman  Robinson  Chair  and  Professor  of  Agricultural  and  Resource  Economics  Department  of  Agricultural  and  Resource  Economics  University  of  California,  Berkeley      Scott  Kaplan  Research  Assistant    Department  of  Agricultural  and  Resource  Economics  University  of  California,  Berkeley      Eunice  Kim  Research  Assistant  Department  of  Agricultural  and  Resource  Economics  University  of  California,  Berkeley      Gal  Hochman  Associate  Professor  of  Agriculture,  Food,  and  Resource  Economics  Department  of  Agriculture,  Food,  and  Resource  Economics  Rutgers  University    Gregory  Graff  Associate  Professor,  Economics  of  Innovation  and  Entrepreneurship  Department  of  Agricultural  and  Resource  Economics  College  of  Agricultural  Sciences  Colorado  State  University          

Continents  Divided:  Understanding  Differences  on  GM  Acceptance  between  Europe  and  North  America    

 Key  words:  GM  Crops,  Biotechnology,  Economics,  Policy,  Europe,  United  States,  Regulation,  Interest  Group,  Political  Economy    Abbreviations:  

1. GM:  genetically  modified  2. GHG:  greenhouse  gas  3. Agbiotech:  agricultural  biotechnology  

 Abstract    

The  differences  between  GM  policies  in  the  US  and  Europe  have  several  causes.  GM  technology  holds  a  home  court  advantage  in  the  US  and  European  chemical  companies  did  not  support  its  introduction.  The  technology  did  not  seem  to  provide  benefits  to  consumers,  and  the  crops  it  applied  to  were  not  significant  in  Europe.  Green  parties  and  politicians  in  Europe  have  held  significant  power  in  coalitions  government,  and  have  used  their  leverage  to  influence  policies  that  aim  to  block  GM  technology.  There  is  also  much  less  trust  in  the  government’s  capacity  to  handle  food  safety  regulations  in  Europe  than  there  is  in  the  US.  The  technology  was  introduced  during  a  time  when  the  political  influence  of  green  parties  in  Europe  was  especially  significant,  and  European  trust  of  government  capacity  to  enter  food  security  issues  was  at  its  lowest.          

Introduction    

The  discovery  of  DNA  in  1953  by  an  American  and  a  European  (albeit  British)  scientist1  ushered  in  an  era  of  modern  biotechnology.  As  medical  biotechnology  flourished  and  was  adopted  enthusiastically  around  the  world,  the  genetically  modified  [GM]  organism,  a  major  form  of  agricultural  biotechnology,  was  introduced  in  19422  in  the  form  of  the  Flavr  Savr  tomato.  Sold  on  both  sides  of  the  Atlantic,  this  product  was  discontinued  later  on  for  commercial  reasons,  and  the  next  wave  of  GM  crops  were  introduced  in  the  form  of  insecticide  resistant  (Bt)  and  herbicide  resistant  varieties  which  were  quickly  adopted  in  North  America  and  the  Western  hemisphere  for  corn,  soybean,  cotton,  and  rapeseed,  but  have  been  practically  banned  in  the  European  Union  [EU]  since  1999.  This  paper  uses  a  political  economic  lens  to  explain  the  differences  in  acceptance  of  GM  in  America  and  in  Europe.    

The  political  economic  perspective  introduces  political  science  and  legal  considerations  to  economic  decision-­‐making  frameworks.3  This  framework  suggests  that  policies  are  outcomes  of  political  processes  that  reflect  the  gains  and  losses  of  various  groups  in  society  (e.g.  consumers,  farmers,  chemical  manufacturers,  etc.).  However,  the  power  of  different  groups  varies,  which  affects  final  policy  outcomes.  The  same  types  of  groups  in  different  countries  may  have  different  perspectives  and/or  interests,  one  example  being  the  difference  in  perspective  on  GM  taken  by  the  agrichemical  industry  in  the  US  and  Europe.  As  a  result  of  the  commercialization  of  GM  technology  by  Monsanto  (a  US  company),  European  agrichemical  suppliers  have  seen  significant  decreases  in  sales.  Differences  in  the  perspectives  of  different  groups,  their  political  weights,  and  perceptions  evolve  over  time,  which  may  lead  to  either  the  cementing,  or  reform  of  regulations.    

We  find  that  the  main  differences  between  US  and  European  GM  policies  represent  differing  perspectives  of  the  same  groups  in  their  respective  regions.  In  the  US,  the  biotechnology  industry  and  their  academic  and  agricultural  allies  were  able  to  overcome  the  objections  of  environmentalists  and  convince  consumers  and  legislators  that  the  introduction  of  GM  was  worthwhile,  while  in  Europe  opposition  to  GM  was  stronger  and  able  to  dominate  the  debate  and  determine  policy.  To  better  understand  these  outcomes,  we  separate  the  players  into  five  groups  and  assess  their  perspectives  on  GM  and  how  they  have  evolved  over  time.      GM  technology  and  input  suppliers      

Modern  biotechnology  is  essentially  a  product  of  the  educational-­‐industrial  complex  that  reached  its  height  in  the  United  States.  University  scientists  frequently  develop  innovations  and  may  sell  the  rights  to  develop  these  innovations  to  multinationals  or  startups,  and  at  times  may  lead  these  scientists  to  become  investors  in  these  startups.4  These  patterns  of  innovation  were  dominant  in  medical  biotechnology  where  companies  such  as  Genetech,  Chiron,  and  Amgen  built  on  initial  university  innovations  to  develop  numerous  medical  advancements.  Agricultural  biotechnology  was  also  based  on  university  innovation,  however  two  American  companies,  Monsanto  and  Dupont,  were  the  first  to  follow  this  path.  At  the  

same,  European  companies  were  the  dominant  players  in  the  supply  of  chemical  pest  control  for  agriculture,  and  while  Monsanto  had  its  own  successes,  it  realized  that  to  become  a  major  player  it  had  to  transform  itself.  Monsanto,  as  opposed  to  other  major  agrichemical  companies,  invested  heavily  in  agricultural  biotechnologies,  and  some  of  its  fundamental  patents  were  obtained  from  university  scientists  at  a  time  when  other  companies  were  skeptical  of  these  patents’  potentials.5    Once  Monsanto  and  Dupont  obtained  patents  for  major  GM  enabling  technologies,  other  input  suppliers  felt  threatened,  realizing  that  it  would  take  time  and  money  to  catch  up  and  were  thus  reluctant  to  support  their  introduction  into  the  market.  In  2001,  most  of  the  sales  and  patents  in  agbiotech  ended  up  with  American  companies  (75%),  while  the  resulting  reduction  in  sales  of  agrichemical  pest  control  products  took  place  primarily  in  European  companies.6  As  time  went  on,  the  range  of  companies  investing  in  GM  were  mostly  American;  thus  for  European  pest  control  companies,  chemical  pesticides  remained  a  dominant  part  of  their  business  while  for  Monsanto,  and  later  on,  Syngenta  and  Pioneer  Hi-­‐Bred,  GM  became  their  major  source  of  income.  Thus  American  GM  companies  would  later  on  become  the  main  contributors  to  political  campaigns  and  other  efforts  supporting  GM7  and  these  companies  are  likely  to  be  more  effective  on  their  home  turf.  Furthermore,  the  relatively  larger  number  of  American  scientists  that  work  on  GM  have  contributed  intellectual  support  in  debates  that  aim  to  restrict  the  use  of  GM.8  Thus,  the  dominance  of  American  GM  companies  from  the  beginning,  and  the  resulting  losses  inflicted  on  European  chemical  companies  have  played  a  major  role  in  the  differences  between  GM  policies  in  America  and  Europe.9,10      Farmers  

Farmers  are  heterogeneous  and  include  many  groups:  some  may  win  while  others  may  lose  from  agricultural  biotechnology.  We  will  distinguish  between  3  types  of  farmers:  (1)  growers  of  crops  (2)  livestock  operators  and  (3)  organic  growers.  Crop  growers  tend  to  have  mixed  perspectives  about  innovations.  They  appreciate  innovations  that  reduce  costs  while  maintaining  constant  supply.  Farmers  may  be  less  enthusiastic  when  a  particular  technology  increases  supply  and  thus  reduces  prices.  GM  technology  was  introduced  in  cotton,  corn,  and  soybean,  which  are  major  crops  in  the  US  but  much  less  significant  in  Europe.  In  the  case  of  corn  and  soybean,  while  concerns  about  lower  prices  might  have  been  a  factor,  farmers  expected  growth  in  demand  resulting  from  rapid  economic  growth  in  China  and  other  countries  and  the  resulting  increase  in  consumption  for  meat,  which  relies  heavily  on  corn  and  soybean  feed.11  Thus,  corn  and  soybean  farmers  in  the  US  were  much  more  interested  in  technologies  that  would  increase  yields  to  meet  growing  demand.  GM  was  not  introduced  in  North  America  for  wheat  primarily  due  to  growers’  concerns  about  their  ability  to  sell  their  product  to  Europe  and  because  of  the  resulting  price  effect  (decreased  prices  because  of  increased  supply).12  The  realization  that  demand  for  rice  was  not  likely  to  increase  dramatically  was  one  factor  that  delayed  the  introduction  of  GM  rice  to  China.13  Cotton  production  has  increased  significantly  because  of  the  introduction  of  Bt  cotton.  GM  has  been  estimated  to  increase  the  supply  of  cotton  by  ~40%  resulting  in  a  ~33%  decrease  in  its  price.14  Note  that  some  cotton  producers  who  saw  significant  gains  in  yield  

because  of  Bt  cotton  are  gaining  from  the  GM  adoption  while  others  who  used  GM  to  replace  pesticides  (and  did  not  gain  much  in  yield)  may  have  lost  because  of  lower  prices.  Thus,  within  GM  adopters  there  may  be  varying  intensity  of  support  for  GM.  

As  of  now,  GM  has  mostly  been  introduced  in  field  crops,  yet  there  is  one  example  where  GM  was  introduced  to  a  specialty  crop,  papaya,  which  has  been  adopted  by  growers  in  Hawaii  where  it  has  helped  prevent  disease.  Farmers  who  recognize  that  GM  technologies  may  provide  an  effective  solution  to  some  diseases  both  in  the  present  and  into  the  future,  and  are  likely  to  adopt  this  technology  if  it  can  solve  a  severe  disease  problem.  Their  support  depends  largely  on  their  ability  to  sell  their  product  to  consumers,  so  while  farmers  support  research  on  the  use  of  GM  to  control  against  Pierce’s  disease  in  California,  they  would  be  reluctant  to  adopt  the  technology  if  it  meant  a  reduction  in  market  size.  The  same  logic  that  applies  to  US  markets  applies  to  Europe.  Farmers  will  support  pro-­‐GM  legislation  especially  in  cases  where  they  can  overcome  severe  disease  problems  without  much  loss  in  market.      

Livestock  operators  are  likely  to  support  GM,  as  it  increases  supply  and  reduces  the  price  of  feed.  This  does  not  apply  to  small  groups  of  organic  livestock  producers,  and  enthusiasm  for  GM  crops  will  decline  if  it  reduces  access  to  the  market.  GMs  has  already  significantly  benefited  livestock  producers.  While  GM  was  adopted  on  only  25%  of  corn  globally,  it  increased  the  global  corn  supply  3-­‐19%.  GM  also  contributed  to  the  doubling  of  the  acreage  of  soybean  over  the  last  20  years,  much  of  it  by  allowing  double  cropping  of  soybean  with  other  crops,  and  its  contribution  to  increased  soybean  output  ranges  between  12-­‐42%.  Furthermore,  GM  increased  the  supply  of  cotton  between  25-­‐55%.  These  increases  in  supply  have  resulted  in  an  estimated  decline  of  13%  in  the  price  of  corn,  33%  in  the  price  of  cotton,  and  38%  in  the  price  of  soybean.15  Livestock  producers  as  well  as  processors  of  cotton  are  major  supporters  of  GM  in  this  case.  

Organic  farmers  may  have  benefited  from  GM,  as  it  differentiates  their  products  from  mainstream  products,  and  there  is  actually  a  strong  case  for  incorporating  GM  into  organic  farming.16  However,  organic  farmers  have  been  a  major  opponent  of  GM,  both  for  ideological  and  market  reasons.  For  example,  they  elected  to  exclude  GM  from  organic  certification  in  the  US  and  have  been  strong  supporters  of  GM  labeling  regulations.17  The  organic  movement  in  Europe  has  also  led  to  strong  opposition  of  GM.      Consumers    

There  is  a  large  literature  on  consumer  nutritional  choices  showing  that  the  same  primary  factors  affect  consumer  behavior  each  year,  and  the  differences  between  years  are  quantitative.18  Consumers  are  more  likely  to  buy  a  product  if  its  price  decreases.  On  average,  they  tend  to  identify  similar  quality  attributes,  and  consumers  with  lower  incomes  are  more  likely  to  purchase  low  quality  products  because  of  the  price  differential.19  Yet,  there  is  a  significant  heterogeneity  among  consumers  in  terms  of  their  product  choice.20  This  heterogeneity  is  apparent  when  it  comes  to  decisions  regarding  products  with  environmental  attributes,  like  pesticide  free  products,  where  a  substantial  minority  may  have  significant  

willingness  to  pay  for  these  specific  attributes  while  a  significant  number  of  consumers  are  not  willing  to  pay  any  premium  for  pesticide  free  products.21    

Consumers  in  both  the  US  and  Europe  tend  to  have  a  negative  prior  towards  GM  food,  and  therefore  may  state  that  they  will  pay  a  premium  to  label  GM  food  and  to  avoid  it.  Alternatively,  they  will  take  price  discounts  to  buy  GM  food.  However,  this  willingness  to  pay  for  non-­‐GM  is  greater  in  Europe  than  in  the  US.22  Both  the  US  and  Europe  are  heterogeneous,  and  there  are  significant  differences  in  willingness  to  pay  to  avoid  GM  across  regions  of  the  US.  Stated  willingness  to  pay  to  avoid  GM  is  likely  to  be  much  larger  than  actual  willingness  to  pay,  and  stated  willingness  to  pay  may  vary  over  time  as  new  information  becomes  available.23  The  difference  in  attitudes  towards  GM  between  the  US  and  Europe,  for  example  in  the  late  1990s  when  GM  was  introduced,  was  expanded  because  of  food  safety  concerns  due  to  the  BSE  (Bovine  Spongiform  encephalopathy)  crisis.24  

A  major  reason  for  avoiding  GM  food  is  the  presumed  risk,  and  indeed  willingness  to  pay  to  avoid  GM  food  is  related  to  the  level  of  risk  aversion  of  the  individual.25  Lower  willingness  to  pay  for  GM  products  is  more  prevalent  in  the  UK  because  of  higher  perceived  risk.26  The  differences  in  perceived  risk  between  the  US  and  UK  may  represent  big  difference  in  trust  in  food  safety  authorities,  as  well  as  media  coverage  in  each  country.27  Consumer  concern  about  food  safety  is  also  increasing  with  the  discovery  of  food  safety  problems,  like  the  emergence  of  mad  cow  disease.28  Even  without  significant  evidence  of  any  negative  environmental  or  health  effects  from  GM  food,  consumers  may  still  be  willing  to  pay  a  premium  to  avoid  them.  Behavioral  economics  suggests  that  consumers  tend  to  overweigh  small,  perceived  probabilities  as  long  as  they  are  unconvinced  that  the  products  are  risk  free.29    

Attitudes  towards  GM  are  also  affected  by  socio-­‐economic  variables  such  as  education,  religious  beliefs,  and  gender.  Furthermore,  attitudes  and  judgments  are  affected  by  framing  of  different  alternatives  and  by  the  introduction  of  new  knowledge.  Negative  attitudes  towards  GM  can  be  amplified  by  exposure  to  negative  information  and  may  be  somewhat  reversed  with  positive  information.30Actually,  there  is  also  evidence  that  consumers  are  willing  to  pay  positive  premiums  for  GM  products  that  have  beneficial  health  traits.31  This  suggests  that  with  the  continuous  supply  of  negative  information,  the  negative  attitude  towards  GM  in  Europe  has  hardened.32  But  this  attitude  may  be  reversed  if  and  when  evidence  of  benefits  from  the  use  of  GMOs  is  presented.  There  is  early  literature  that  indicates  that  the  gain  from  the  adoption  of  GM  is  contained  mostly  by  product  developers  but  is  shared  between  farmers,  product  sellers  (markets,  etc.),  and  consumers  (in  the  form  of  lower  food  commodity  prices).33  There  is  more  recent  evidence  on  the  significant  reduction  in  commodity  prices  due  to  GM34,  but  this  new  information  is  not  widely  available  and  price  reductions  in  food  commodities  are  much  more  significant  for  consumers  in  developing  countries,  as  the  cost  share  of  raw  commodities  in  consumer  food  prices  is  high.        

Political  choices  (for  example,  voting  for  a  proposition  to  ban  GM  products)  are  not  always  linked  to  willingness  to  pay  to  avoid  a  certain  trait,  even  though  there  is  a  high  correlation  between  willingness  to  vote  and  willingness  to  pay  to  avoid  

chemicals  in  food,  for  example.  Some  individuals  may  not  vote  against  GM,  but  at  the  same  time  will  pay  a  high  premium  for  non-­‐GM  food.  Others,  sometimes  poor,  may  not  be  willing  to  pay  much  to  avoid  GM  but  may  support  banning  it.36  Thus,  consumer  attitude  towards  GM  technology  should  reflect  both  a  concern  about  the  human  health  effect  (in  this  case,  consumers  will  be  willing  to  pay  a  lot  for  GM  free  food)  and  the  environmental  effect  of  GM,  and  if  the  latter  is  the  main  concern,  consumers  may  vote  to  ban  GM  products  but  will  not  be  willing  to  pay  much  extra  if  these  products  are  available.35    

Another  factor  that  may  contribute  to  different  attitudes  towards  GM  in  the  US  and  EU  is  the  “  invisible  flag”.  There  is  evidence  that  consumers  hold  preferences  for  local  products  and  ideals,  denoted  as  the  “home  bias”.36  In  many  people’s  minds,  GM  was  associated  with  Monsanto,  which  is  an  American  company,  so  some  of  the  negative  attitude  towards  GM  is  due  to  the  perception  that  it  is  a  technology  has  been  imposed  upon  Europe  by  a  US  company.    Much  of  the  debate  on  GM  in  Europe  was  conducted  during  the  Bush  administration  when  the  United  States  was  portrayed  as  environmentally  irresponsible  because  of  its  refusal  to  sign  the  Kyoto  Protocol,  which  contributed  to  the  negative  attitude  towards  GM  in  the  EU  as  well.      Environmentalists  

There  is  ample  evidence  that  the  introduction  of  GM  in  agriculture  has  had  positive  environmental  effects.  It  reduces  exposure  to  toxic  chemicals  and  even  saves  lives  by  increasing  productivity.  It  has  reduced  the  footprint  of  agriculture  and  the  pressure  on  land  resources,  it  reduces  greenhouse  gas  (GHG)  emissions  by  facilitating  low  and  no-­‐tillage  agriculture,  and  it  reduces  chemical  contamination  of  groundwater  by  reducing  runoff.  Several  studies  by  major  national  academies  of  science  have  suggested  that  it  is  no  worse  for  the  environment  than  traditional  forms  of  agriculture.  There  is  also  evidence  that  GM  has  contributed  to  food  security  and  the  wellbeing  of  the  poor.37  However,  the  assessments  of  technologies  by  environmental  groups  are  not  necessarily  based  on  measured  impact  on  the  environment.  Environmentalists  have  been  suspicious  of  GM  from  the  beginning,  and  over  time  it  has  become  an  accepted  norm  that  GM  is  undesirable.38      

There  are  several  objections  to  GM.    The  first  is  that  it  is  a  new  technology  representing  the  human  desire  to  tinker  with  nature  and  a  key  element  of  the  environmental  movement  has  been  focused  on  conserving  nature  rather  than  altering  it.  A  related  objection  is  that  GM  is  typically  associated  with  monoculture  and  commercialization  of  agriculture  while  environmental  groups  usually  advocate  for  small  scale,  diversified  farming  systems.  A  third  objection  is  that  agricultural  biotechnology  has  been  associated  with  large,  multinational  companies  and  modifies  the  traditional  ways  that  agricultural  genetic  material  is  produced  and  distributed.  There  were  also  concerns  about  “gene  flow”,  build  up  of  resistance  to  Bt  and  other  pest  controlling  agents,  and  damage  to  non-­‐target  species.39    

When  the  first  version  of  GM  (ice  minus,  a  trait  aimed  to  allow  strawberries  to  survive  frost)  encountered  legal  challenges  by  activists,  field  tests  were  delayed  four  years.40  Over  the  years,  the  US,  as  well  as  the  rest  of  the  world,  established  biosafety  procedures  and  regulations  that  incorporated  many  environmental  

objections.  One  of  the  implications  of  these  biosafety  procedures  has  been  that  compliance  has  become  very  costly,  strengthening  the  capacity  of  major  corporations  who  had  the  financial  muscle  and  ability  to  develop  these  technologies,  and  delay  the  introduction  of  technologies  such  as  golden  rice  that  enhance  the  nutritional  well-­‐being  of  the  poor.41  In  1998,  activists  attempted  to  restrict  GM  technologies  using  evidence  from  studies  that  were  later  discredited  both  in  the  US  and  EU,  and  despite  the  proven  lack  of  credibility,  they  were  eventually  successful  in  the  EU.42  Furthermore,  activists  have  attempted  to  place  global  restrictions  on  GM  via  labeling  regulations  and  strict  purity  requirements,  resulting  in  the  Cartagena  Protocol  that  was  signed  by  most  of  Europe  but  not  the  United  States.43    

Activist  organizations  have  gained  credibility  and  impact  through  the  use  of  the  media  in  both  Europe  and  the  US.44  The  symbiotic  relationship  between  anti-­‐GM  activists  and  the  media  stems  from  the  fact  that  media  revenues  are  often  enhanced  by  emphasizing  bad  news  and  controversies  over  good  news.45  

In  addition  to  use  of  the  political  arena,  the  media,  and  the  courts  to  slow  the  introduction  of  GM,  environmental  groups  realized  that  consumers  buy  food  through  retailers  and  other  middlemen,  and  one  way  to  affect  availability  or  access  to  GM  is  by  affecting  the  supply  chain  and  placing  pressure  on  major  companies  to  avoid  GM  products.  46  One  success  story  from  the  activist  perspective  was  their  ability  to  pressure  McDonalds  to  stop  using  GM  potatoes,  leading  to  the  halt  of  commercialization  of  this  GM  product.  47  While  the  regulatory  pressure  in  Europe  resulted  in  a  practical  ban  of  GM,  pressure  by  activists  in  the  US  contributed  to  the  restriction  of  GM  to  only  a  few  crops  and  resulted  in  a  status  quo  where  GM  is  used  for  feed  and  fiber  is  rarely  used  in  food  for  human  consumption.    

Finally,  the  debate  about  GM  continues.  Some  environmental  groups  state  that  they  do  not  oppose  it  in  principle,  but  that  so  far  its  implementation  has  not  benefited  the  poor.    However,  this  issue  is  not  a  problem  inherent  in  the  technology  itself,  rather  a  direct  effect  of  the  regulatory  environment  that  has  to  a  large  extent  been  shaped  by  the  environmental  groups.  The  heavy  regulatory  burden  makes  it  very  costly  to  introduce  a  new  technology,  and  is  likely  to  minimize  the  introduction  of  GM  innovation  that  is  targeted  to  markets  with  small  earning  capacity.  For  example,  markets  that  serve  specialty  crops  as  well  as  ones  that  enhance  the  wellbeing  of  the  poor.48    Policymakers  and  Policy  Systems  

The  political  economic  literature  recognizes  different  systems  of  governance,  translating  the  desires  of  various  players  into  different  outcomes.  Anthony  Downs  argued  that  the  median  voter  affects  the  outcome  of  direct  elections  on  a  proposition  and  that  various  interest  groups  allocate  resources  to  capture  the  swing  vote.49    In  a  regulatory  environment,  there  are  situations  where  the  regulator  is  ‘captured’  by  those  being  regulated,  or  where  the  regulatory  outcome  reflects  the  efforts  and  power  of  the  affected  parties.50  In  an  electoral  system,  politicians  are  directed  by  the  pursuit  of  both  voters  and  campaign  contributions.  Under  the  proportional  electoral  systems  where  people  vote  for  parties  (some  continental  countries  in  Europe),  there  are  likely  to  be  more  parties  and  coalition  governments  than  under  majoritarian  electoral  rule  where  regions  select  an  individual  

representative  (i.e.  in  the  US).  Coalition  governments  are  more  likely  to  turn  to  higher  spending  to  accommodate  coalition  members.51       While  the  European  commission  has  frequently  taken  a  pro  GM  position,  the  current  strict  regulation  in  Europe  was  a  result  of  political  choices  at  the  country  level.52  Environmental  groups  have  taken  advantage  of  the  proportional  electoral  system  in  European  countries,  where  the  green  parties  and  green  movements  play  a  key  role  in  the  balance  of  power.  During  the  period  where  GM  was  introduced  to  Europe  (1996-­‐2000),  the  continent  went  through  political  change  as  power  shifted  to  the  left.  Tony  Blair  replaced  Thatcher  in  England,  Lionel  Jospin’s  government  in  France  included  members  of  the  green  party,  and  Gerhard  Schroder  established  a  “red  green”  coalition  in  Germany.    The  power  of  the  greens  in  Europe  at  the  time,  combined  with  the  loss  of  trust  to  governments’  handling  of  food  safety  issues  because  of  the  BSE  problem  and  the  lack  of  trust  in  Monsanto  and  American  agribusiness  led  to  strict  regulation  that  resulted  in  a  de  facto  moratorium  on  GM  in  Europe.53     Domestic  agribusiness  in  the  US  shaped  a  relatively  favorable  environment  for  GM,  including  the  use  of  the  notion  of  “substantial  equivalent”  to  analogous  traditional  products  to  determine  whether  to  raise  new  regulatory  concerns  about  GM  products.  The  industry  received  support  from  the  US  government  in  accusing  the  EU  for  violating  the  WTO  provision.  The  lack  of  news  grabbing  biotechnology  incidents  in  the  US  has  not  allowed  NGOs  to  utilize  the  legal  system  and  the  media  to  redefine  biotechnology  policies.54  The  attempts  by  environmental  activists  to  use  the  direct  voting  legislation  system  to  control  GM  technologies  have  not  been  very  successful.  A  prominent  example  is  the  recent  failure  of  a  2012  proposition  to  require  mandatory  labeling  of  GM  food  in  California.  While  early  polls  suggested  that  the  majority  supported  the  proposition,  campaigning  by  the  opposition  emphasized  that  these  propositions  for  labeling  of  GM  in  food  would  be  costly  to  the  consumer,  leading  to  its  eventual  defeat.    An  earlier  proposition  to  ban  pesticide  use  in  California  underwent  a  similar  fate.  California  is  perhaps  the  state  that  has  the  closest  preference  to  the  EU;  it  passed  its  own  carbon-­‐trading  scheme.  Anti-­‐GM  regulation  was  first  introduced  in  California,  partially  because  of  this  perception.  This  suggests  that  there  may  be  broad  support  for  GM  regulation  in  principle,  as  long  as  it  is  not  costly  to  the  consumer,  as  their  willingness  to  pay  is  low.55  But  support  for  restricting  GM  will  decline  as  the  realized  cost  of  banning  GM  increases.    Conclusion     The  differences  between  GM  policies  in  the  US  and  Europe  are  not  merely  the  result  of  differences  in  consumer  attitudes56,57,  but  because  of  the  interaction  between  different  factors  that  has  led  to  different  outcomes.       First,  GM  technology  has  held  a  home  court  advantage  in  the  US.  The  companies  that  develop  the  technologies  were  much  more  skilled  and  influential  in  the  US  political  economic  systems  than  in  the  EU,  while  the  European  consumers  and  voters  saw  it  as  an  invasion  by  US  corporations.  Moreover,  the  European  chemical  companies  were  standing  to  lose  from  the  introduction  of  GM,  and  thus  they  did  not  support  its  introduction  and  may  have  implicitly  helped  to  oppose  it.    

  Second,  the  nature  of  the  technology  was  such  that  it  did  not  seem  to  provide  benefits  to  consumers,  and  the  crops  it  applied  to  were  not  significant  in  Europe.  At  the  same  time,  corn,  soybean,  and  cotton  are  major  crops  in  the  US,  and  the  demand,  especially  for  corn  and  soybean,  was  on  the  rise  and  thus  the  industry  was  behind  the  technology.  In  Europe,  industry  might  have  implicitly  accepted  a  policy  against  the  technology  because  it  was  able  to  provide  justification  for  product  differentiation  and  higher  prices.       Third,  in  some  European  countries’  governments,  green  parties  and  politicians  have  held  significant  power  in  coalitions  government,  and  have  used  their  leverage  to  influence  policies  that  aim  to  block  GM  technology.     Fourth,  there  is  much  less  trust  in  the  government’s  capacity  to  handle  food  safety  regulations  in  Europe  than  there  is  in  the  US,  and  relatively  more  trust  in  NGOs,  thus  their  objections  to  GM  carried  more  weight  in  the  EU.       Fifth,  environmental  activists  have  realized  that  retailers  and  large  food  corporations  are  the  soft  link  in  the  supply  chain  and  most  vulnerable  to  pressure,  and  have  taken  advantage  of  this  to  prevent  introduction  of  GM  crops  both  in  the  US  and  in  Europe.     Finally,  the  technology  was  introduced  during  a  time  when  the  political  influence  of  green  parties  in  Europe  was  especially  significant,  and  European  trust  of  government  capacity  to  enter  food  security  issues  was  at  its  lowest.     There  is  a  growing  realization  of  the  importance  of  path  dependency.  The  specific  constellation  that  led  to  the  practical  ban  of  GM  in  Europe  in  the  late  1990s  established  a  path  that  has  continued  ever  since.  Some  of  the  negative  attitudes  towards  GM  have  hardened  with  time.  However,  there  is  ample  evidence  in  the  US  reflecting  that  attitudes  towards  GM  technology  can  change;  some  anti-­‐GM  activists  have  recanted  realizing  the  benefits  that  GM  crops  can  provide  in  a  world  with  increasing  food  prices  and  further  threatened  by  climate  change.58  There  is  also  evidence  that  consumers’  attitudes  can  change  once  they  realize  the  economic  and  health  gains  that  can  be  obtained  from  GM  varieties.       Acceptance  of  GM  is  more  likely  if  traits  that  provide  immediate  benefit  to  consumers,  for  example  improvement  in  nutrition,  obvious  environmental  benefits  (drought  tolerance),  and  significant  reduction  in  price  are  introduced.  Introduction  of  such  innovations  will  trigger  further  acceptance  of  GM  because  it  will  be  a  mechanism  to  save  face  for  its  opponents.  However,  the  strict  regulatory  environment  has  reduced  the  incentive  to  pursue  and  invest  in  new  GM  technology59,  which  has  reduced  the  likelihood  of  the  introduction  of  breakthrough  innovations  in  the  near  future.     The  literature  on  political  economy  suggests  that  policy  reform  is  triggered  by  crises  where  parties  realize  the  losses  from  the  status  quo.60  GM  technology  is  likely  to  be  accepted  in  Europe  as  concern  over  food  prices  and  food  availability  increase,  and  especially  in  cases  where  it  can  provide  solutions  to  plant  diseases  that  cannot  be  addressed  through  other  means.  It  will  also  be  adopted  heavily  elsewhere,  say  China,  in  a  way  that  will  threaten  the  economic  well  being  of  Europe.  Continuous  success  of  the  performance  of  GM  technology  in  places  it  has  been  adopted  and  better  reporting  of  the  benefits  of  GMOs  and  the  implications  can  also  push  for  regulatory  changes  in  Europe.    

Acknowledgements    Research  leading  to  this  program  was  supported  by  Cotton  Inc.,  BARD,  the  Giannini  Foundation,  and  the  Energy  Biosciences  Institute.      

REFERENCES:                                                                                                                    1  Watson,  J.D.,  and  F.H.  Crick.  (1953).  "A  structure  for  deoxyribose  nucleic  acids"  (PDF).  Nature  171  (4356):  737–738.  2  James,  C.  (1996).  "Global  review  of  the  field  testing  and  commercialization  of  transgenic  plants:  1986  to  1995".  The  International  Service  for  the  Acquisition  of  Agri-­‐biotech  Applications.    3  Rausser,  G.  C.,  J.  Swinnen,  and  P.  Zussman.  (2012).  Political  power  and  economic  policy.  Cambridge  University  Press.  4  Graff,  G.,  A.  Heiman,  and  D.  Zilberman.  (2002).  “University  research  and  offices  of  technology  transfer,”  California  Management  Review,  Vol.  45,  no.  1:  88-­‐115.  5  Charles,  D.  (2001).  “Lord  of  the  harvest:  biotech,  big  money  and  the  future  of  food”.    Perseus  Publishing,  Cambridge  Mass.  6  Graff,  G.,  D.  Zilberman,  and  G.  Hochman.  (Forthcoming).  “Political  economy  of  technology  regulation  in  the  face  of  creative  destruction:  the  case  of  agricultural  biotechnology.”  Oxford  Handbook  of  Food,  Politics,  and  Society.  7  Zilberman,  D.,  S.  Kaplan,  E.  Kim,  and  G.  Waterfield.  (Forthcoming).  "Lessons  from  the  California  GM  labeling  proposition  on  the  state  of  crop  biotechnology."  Handbook  of  Biotechnology.    8  Ibid  9  Graff,  G.,  and  D.  Zilberman.  (2004).  "Explaining  Europeʼs  Resistance  to  Agricultural  Biotechnology."  Agricultural  and  Resource  Economics  Update  7,  no.  5.    10  Graff,  G.,  and  D.  Zilberman.  (2007).  "The  political  economy  of  intellectual  property:  Reexamining  European  policy  on  plant  biotechnology."  Agricultural  biotechnology  and  intellectual  property:  seeds  of  change.  Cambridge,  MA:  CAB  International  (2007):  244-­‐267.  11  Zilberman,  D.,  G.  Hochman,  D.  Rajagopal,  S.  Sexton,  and  G.  Timilsina.  (2013).  "The  impact  of  biofuels  on  commodity  food  prices:  Assessment  of  findings."  American  Journal  of  Agricultural  Economics  95,  no.  2:  275-­‐281.  12  National  Research  Council.  (2010).  Impact  of  genetically  engineered  crops  on  farm  sustainability  in  the  United  States.  Committee  on  the  Impact  of  Biotechnology  on  Farm-­‐Level  Economics  and  Sustainability.  Washington,  D.C.:  The  National  Academies  Press.  13  Personal  conversation  with  Jikun  Huang,  Founder  and  Director  of  the  Center  for  Chinese  Agricultural  Policy  (CCAP)  of  the  Chinese  Academy  of  Sciences  (CAS).  (2013).  14  Barrows,  G.,  S.  Sexton,  and  D.  Zilberman.  (2013).  "The  impact  of  agricultural  biotechnology  on  supply  and  land-­‐use."  University  of  California,  Berkeley  CUDARE  Working  Paper  No.  1133.  15  Bennett,  A.  B.,  C.  Chi-­‐Ham,  G.  Barrows,  S.  Sexton,  and  D.  Zilberman.  (2013).  "Agricultural  biotechnology:  economics,  environment,  ethics,  and  the  future."  Annual  Review  of  Environment  and  Resources  38,  no.  1.    16  Ronald,  P.  C.,  and  R.  W.  Adamchak.  (2008).  Tomorrow's  table:  organic  farming,  genetics,  and  the  future  of  food.  Oxford  University  Press.  

                                                                                                                                                                                                                                                                                                                                         17  Zilberman,  D.,  S.  Kaplan,  E.  Kim,  and  G.  Waterfield.  (Forthcoming).  "Lessons  from  the  California  GM  labeling  proposition  on  the  state  of  crop  biotechnology."  Handbook  of  Biotechnology.  18  Seale,  J.  L.,  A.  Regmi,  and  J.  Bernstein.  (2003).  International  evidence  on  food  consumption  patterns.  Economic  Research  Service,  US  Department  of  Agriculture.  19  Andreyeva,  T.,  M.W.  Long,  and  K.D.  Brownell.  (2010).  “The  impact  of  food  prices  on  consumption:  a  systematic  review  of  research  on  the  price  elasticity  of  demand  for  food.”  American  Journal  of  Public  Health  100,  no.  2:  216-­‐222.  20  Kiesel,  K.,  J.J.  McCluskey,  and  S.B.  Villas-­‐Boas.  (2011).  "Nutritional  labeling  and  consumer  choices."  Annual  Review  of  Resource  Economics  3,  no.  1:141-­‐158.  21  Hamilton,  S.  F.,  D.  L.  Sunding,  and  D.  Zilberman.  (2003).  "Public  goods  and  the  value  of  product  quality  regulations:  the  case  of  food  safety."  Journal  of  Public  Economics  87,  no.  3:  799-­‐817.  22  Moon,  W.,  and  S.  K.  Balasubramanian.  (2002).  "Public  perceptions  and  willingness-­‐to-­‐pay  a  premium  for  non-­‐GM  foods  in  the  US  and  UK."  Agbioforum.org  4,  no.  3  article  10.    23  Lusk,  J.  L.,  M.  Jamal,  L.  Kurlander,  M.  Roucan,  and  L.  Taulman.  (2005).  "A  meta-­‐analysis  of  genetically  modified  food  valuation  studies."  Journal  of  Agricultural  and  Resource  Economics  30,  no.  1:  28-­‐44.  24  Moore,  J.  A.  (2001).  "Frankenfood  or  doubly  green  revolution:  Europe  vs.  America  on  the  GMO  debate."    In  AAAS  Science  and  Technology  Policy  Yearbook,  Albert  H.  Teich,  Stephen  D.  Nelson,  and  Celia  McEnaney  editors:  173-­‐179.  25  Lusk,  J.L.,  and  K.H.  Coble.  (2005).  "Risk  perceptions,  risk  preference,  and  acceptance  of  risky  food."  American  Journal  of  Agricultural  Economics  87,  no.  2:  393-­‐405.  26  Moon,  W.,  and  S.  K.  Balasubramanian.  (2002).  "Public  perceptions  and  willingness-­‐to-­‐pay  a  premium  for  non-­‐GM  foods  in  the  US  and  UK."  Agbioforum.org  4,  no.  3  article  10.    27  Gaskell,  G.,  M.  W.  Bauer,  J.  Durant,  and  N.  C.  Allum.  (1999).  "Worlds  apart?  The  reception  of  genetically  modified  foods  in  Europe  and  the  US."  Science  285,  no.  5426:  384-­‐387.  28  Loureiro,  Maria  Lus,  and  Jill  J.  McCluskey.  "Consumer  preferences  and  willingness  to  pay  for  food  labeling:  a  discussion  of  empirical  studies."  Journal  of  Food  Distribution  Research  34  (2000):  95-­‐102.  29  Kahneman,  D.,  and  A.  Tversky.  (1979).  "Prospect  theory:  an  analysis  of  decision  under  risk."  Econometrica:  Journal  of  the  Econometric  Society:  263-­‐291.  30  Heiman,  A.,  and  D.  Zilberman.  (2011).  "The  effects  of  framing  on  consumers’  choice  of  GM  foods."  (2011).  Agbioforum.org  14,  no.  3  article  9.  31  Colson,  G.  J.,  W.  E.  Huffman,  and  M.  C.  Rousu.  (2011).  "Improving  the  nutrient  content  of  food  through  genetic  modification:  evidence  from  experimental  auctions  on  consumer  acceptance."  Journal  of  Agricultural  and  Resource  Economics  36,  no.  2:  343.  32  Twardowski,  T.  (2008).  "Societal  attitudes  regarding  GM  food:  the  case  of  Poland  within  the  European  Union."  Environmental  biosafety  research  7,  no.  4:  181  

                                                                                                                                                                                                                                                                                                                                         33  Qaim,  M.  (2009).  "The  economics  of  genetically  modified  crops."  Annual  Review  of  resource  Economics  1:  665-­‐693.  34  Barrows,  G.,  S.  Sexton,  and  D.  Zilberman.  (2013).  "The  impact  of  agricultural  biotechnology  on  supply  and  land-­‐use."  University  of  California,  Berkeley  CUDARE  Working  Paper  No.  1133.  36  Hamilton,  S.  F.,  D.  L.  Sunding,  and  D.  Zilberman.  (2003).  "Public  goods  and  the  value  of  product  quality  regulations:  the  case  of  food  safety."  Journal  of  Public  Economics  87,  no.  3:  799-­‐817.  35  Aerni,  P.,  J.  Scholderer,  and  D.  Ermen.  (2011).  "How  would  Swiss  consumers  decide  if  they  had  freedom  of  choice?  Evidence  from  a  field  study  with  organic,  conventional  and  GM  corn  bread."  Food  Policy-­‐Economics  Planning  and  Politics  of  Food  and  Agriculture  36,  no.  6:  830.    36  Coval,  J.  D.,  and  T.  J.  Moskowitz.  (1999).  "Home  bias  at  home:  Local  equity  preference  in  domestic  portfolios."  The  Journal  of  Finance  54,  no.  6:  2045-­‐2073.  37  Qaim,  M.,  and  S.  Kouser.  (2013).  "Genetically  modified  crops  and  food  security."  PloS  one  8,  no.  6:  e64879.  38  Lynas,  Mark.  (2013).  Lecture  to  Oxford  Farming  Conference.  http://www.marklynas.org/2013/01/lecture-­‐to-­‐oxford-­‐farming-­‐conference-­‐3-­‐january-­‐2013/    39  Pollan,  M.  (2001).  The  botany  of  desire:  a  plant's-­‐eye  view  of  the  world.  Random  House  Digital,  Inc.  40  Bratspies,  R.  (2007).  Some  Thoughts  on  the  American  approach  to  regulating  genetically  modified  organisms.  Kansas  Journal  of  Law  and  Public  Policy  16:  393.  41  Bradford,  K.  J.,  A.  Van  Deynze,  N.  Gutterson,  W.  Parrott,  and  S.  H.  Strauss.  (2005).  "Regulating  transgenic  crops  sensibly:  lessons  from  plant  breeding,  biotechnology  and  genomics."  Nature  biotechnology  23,  no.  4:  439-­‐444.  42  Smyth,  S.,  and  P.  Phillips.  (2002).  "Science  and  Regulation:  Assessing  the  impacts  of  incomplete  institutions  and  information  in  the  global  agricultural  biotechnology  industry."  Market  development  for  genetically  modified  foods:  191.  43  Phillips,  P.,  and  H.  McNeill.  (2002).  "Labelling  for  GM  Foods:  Theory  and  Practice."  Market  development  for  genetically  modified  foods:  245.  44  Brossard,  D.,  J.  Shanahan,  and  T.C.  Nesbitt,  T.C.  (2006).  The  public,  the  media,  and  agricultural  biotechnology.  Wallingford,  UK:  CAB  International.  45  McCluskey,  J.  J.,  and  J.  Swinnen.  (2004).  "Political  economy  of  the  media  and  consumer  perceptions  of  biotechnology."  American  Journal  of  Agricultural  Economics  86,  no.  5  (2004):  1230-­‐1237.  46  World  Wildlife.  (2013).  http://worldwildlife.org/initiatives/transforming-­‐business.  47  “Why  McDonalds  pulled  frankenfries  from  the  menu.”  (2000).  TIME  Magazine.  http://archives.cnn.com/2000/US/04/28/fries4_28.a.tm/.  48  Potrykus,  I.  (2012).  "’Golden  Rice’,  a  GMO-­‐product  for  public  good,  and  the  consequences  of  GE-­‐regulation."  Journal  of  Plant  Biochemistry  and  Biotechnology  21,  no.  1:  68-­‐75.  49  Downs,  A.  (1957).  An  economic  theory  of  democracy.  260-­‐276.  

                                                                                                                                                                                                                                                                                                                                         50  Posner,  R.  A.  (1974).  "Theories  Of  economic  regulation,"  Bell  Journal  of  Economics  5,  no.  2:  335-­‐358.  51  Persson,  T.,  G.  Roland,  and  G.  Tabellini.  (2007).  "Electoral  rules  and  government  spending  in  parliamentary  democracies."  Quarterly  Journal  of  Political  Science  2,  no.  2:  155-­‐188.  52  Kurzer,  P.,  and  A.  Cooper.  (2007).  "Consumer  activism,  EU  institutions  and  global  markets:  the  struggle  over  biotech  foods."  Journal  of  Public  Policy  27,  no.  2:  103.  53  Moore,  J.  A.  (2001).  "Frankenfood  or  doubly  green  revolution:  Europe  vs.  America  on  the  GMO  debate."    In  AAAS  Science  and  Technology  Policy  Yearbook,  Albert  H.  Teich,  Stephen  D.  Nelson,  and  Celia  McEnaney  editors:  173-­‐179.  54  Doh,  J.  P.,  and  T.  R.  Guay.  (2006).  "Corporate  social  responsibility,  public  policy,  and  NGO  activism  in  Europe  and  the  United  States:  an  institutional  stakeholder  perspective."  Journal  of  Management  Studies  43,  no.  1:  47-­‐73.  55  Zilberman,  D.,  S.  Kaplan,  E.  Kim,  and  G.  Waterfield.  (Forthcoming).  "Lessons  from  the  California  GM  labeling  proposition  on  the  state  of  crop  biotechnology."  Handbook  of  Biotechnology.    56  Bernauer,  T.  (2003).  Genes,  trade,  and  regulation:  the  seeds  of  conflict  in  food  biotechnology.  Princeton,  NJ:  Princeton  University  Press,  2003.  57  Sheldon,  I.  (2004).  "Europe's  regulation  of  agricultural  biotechnology:  precaution  or  trade  distortion?"  Journal  of  Agricultural  and  Food  Industrial  Organization  2,  no.  2:  1-­‐28.  58  Lynas,  Mark.  (2013).  Lecture  to  Oxford  Farming  Conference.  http://www.marklynas.org/2013/01/lecture-­‐to-­‐oxford-­‐farming-­‐conference-­‐3-­‐january-­‐2013/    59  Graff,  Gregory  D.,  David  Zilberman,  and  Alan  B.  Bennett.  "The  contraction  of  agbiotech  product  quality  innovation."  Nature  biotechnology  27,  no.  8  (2009):  702-­‐704.  60  Rausser,  G.  C.,  J.  Swinnen,  and  P.  Zussman.  (2012).  Political  power  and  economic  policy.  Cambridge  University  Press.