Complement activation-‐ good or evil in HIV-‐1 infection?

81
Linköping University Medical Dissertations No. 1281 Complement activation good or evil in HIV1 infection? Interaction of Free and Complement Opsonized HIV1 with Monocyte Derived Dendritic Cells and Immune Cells in the Cervical Mucosa Veronica Tjomsland Department of Clinical and Experimental Medicine Linköping University, Sweden

Transcript of Complement activation-‐ good or evil in HIV-‐1 infection?

 

Linköping  University  Medical  Dissertations  No.  1281  

 

 

 

Complement  activation-­‐  good  or  evil  in  

HIV-­‐1  infection?    

Interaction  of  Free  and  Complement  Opsonized  HIV-­‐1  with  

Monocyte  Derived  Dendritic  Cells  and  Immune  Cells  in  the  

Cervical  Mucosa    

Veronica  Tjomsland  

 

   

   

Department  of  Clinical  and  Experimental  Medicine  

Linköping  University,  Sweden  

 

 

 

1

 

 

Copyright © Veronica Tjomsland, 2011

Division of Molecular Virology

Department of Clinical and Experimental Medicine

Linköping University

SE-581 85 Linköping

Cover: The Human immunodeficiency virus

The cover is designed by Caroline Dennerqvist, Pixeltown Arts, all rights reserved.

The pictures in this thesis are illustrated by Rada Ellegård. Published articles have been

reprinted with permission from respective copyright holder.

Printed by LiU-Tryck, Linköping, Sweden, 2011

ISBN: 978-91-7393-010-9

ISSN: 0345-0082

2

 

”They  don't  actually  see  the  real  world,  where  95%  of  the  people  with  HIV  are  not  treated  

and  are  dying.  And  even  though  we  have  some  blue  sky  now  in  our  country,  the  sky  could  

become  cloudy  again  very  soon”  

 

Luc  Montagnier  

 

 

 

 

“The   world   needs   people   who   dare   to   think   differently,   you   don’t   change   anything   by  

walking  in  other  peoples  footsteps”  

 

Veronica  Tjomsland  

 

 

 

 

 

 

 

 

 

 

Dedicated   to   my   husband   and   children   for   their   unending   love   and  

support  

 

3

 

Linköping  2011  

 Supervisor    Marie  Larsson,  Associate  Professor  Division  of  Molecular  Virology  Department  of  Clinical  and    Experimental  Medicine  Linköping  University,  Sweden    

 Faculty  opponent    Barbara  L.  Shacklett,  Associate  professor  Department  of  Medical  Microbiology    and  Immunology  University  of  California,  Davis,  USA      

 Co-­‐supervisors   Committee  Board    Jorma  Hinkula,  Professor     Kristina  Broliden,  Professor  Division  of  Molecular  Virology     Unit  of  Infectious  Diseases    Department  of  Clinical  and       Department  of  Medicine    Experimental  Medicine     Karolinska  Institute,  Sweden  Linköping  University,  Sweden      Karl-­‐Eric  Magnusson,  Professor     Maria  Jenmalm,  Associate  professor  Division  of  Molecular  Virology     AIR/Clinical  Immunology  Department  of  Clinical  and       Department  of  Clinical  and  Experimental  Medicine       experimental  Medicine    Linköping  University,  Sweden     Linköping  University,  Sweden            

Sven  Hammarström,  Professor  Division  of  Cell  Biology  Department  of  Clinical  and  Experimental  Medicine  Linköping  University,  Sweden  

4

PREFACE  

 This   thesis   describes   the   results   of  my   research   carried   out   during  my  PhD   study   at   the  

University  of   Linköping.  The   thesis   gives  you   first   a   general   introduction   to   the  world  of  

HIV-­‐1,   the   complement   system,   dendritic   cells   (DCs),   and   antigen   presentation.   This   is  

followed  by  a  presentation  of  the  papers.  Not  much  is  known  about  the  MHC  class  I  and  II  

antigen  presentation  pathways  used  by  immature  and  mature  DCs  to  present  antigens  from  

whole  HIV-­‐1  particles  and  the  first  project  focused  on  this  topic.  In  the  second  project  we  

studied   the   initial   interactions   of   free   and   opsonized   HIV-­‐1   with   DCs   with   the   focus   on  

receptor  families  involved  in  the  viral  binding.  Since  our  results  had  shown  that  opsonized  

HIV-­‐1  interacted  with  DCs  in  a  unique  way  we  continued  in  the  third  project  to  study  the  

receptors  and  pathways  used  by  DCs   to  process  and  present   antigens  derived   from  both  

free   and   complement   opsonized   HIV-­‐1.   In   addition,   this   project   also   studied   the   effects  

these  viral  sources  had  on  the  antigen  presentation  machinery.  In  the  final  project  we  used  

the   knowledge   acquired   from   our   in   vitro   experiments   with   free   and   complement  

opsonized  HIV-­‐1  and  applied  it  on  an  ex  vivo  study.  The  HIV-­‐1  interactions  and  infection  of  

immune   cells   located   in   cervical   mucosa   were   studied   using   an   explant   model   and   we  

examined   if   infection   could   be   prevented   by   targeting   different   receptors   expressed   by  

immune  cells  and  mucosa.  Finally,  I  want  to  thank  my  supervisor  Marie  Larsson  for  making  

this  thesis  possible.  

 

 

Veronica  Tjomsland         November  2011  

 

 

 

 

 

 

 

5

ABSTRACT  

 Worldwide,  the  heterosexual  route  is  the  most  common  mode  of  sexual  transmission  of  

HIV-­‐1  and  women  are  particularly  susceptible  to  this  infection.  After  penetration  of  the  

mucosal  epithelium  HIV-­‐1  interacts  with  potential   target  cells,   i.e.  dendritic  cells  (DCs)  

and   CD4+   T   cells.   The   complement   system,   a   key   component   of   the   innate   immune  

system,   is   immediately   activated   by   HIV-­‐1   in   vivo.   However,   HIV-­‐1   can   resist  

complement  mediated   lysis   and   become   coated   with   complement   fragments   and   this  

opsonization   influences   the  viral   interaction  with   immune  cells.  The  DCs  are   the  most  

potent  antigen  presenting  cell.  This  cell  effectively  links  the  innate  recognition  of  viruses  

to  the  generation  of  an  adaptive  immune  response.  However,  HIV-­‐1  exploits  the  function  

of   the   DCs   to   facilitate   viral   spread   and   infection.   HIV-­‐1   interacts   with   a   range   of  

receptors   expressed   by   the   DCs   including   C-­‐type   lectins,   integrins   and   complement  

receptors  (CRs).  The  uptake  of  virions  by  DCs  leads  to  their  activation  and  migration  to  

the   lymph  nodes.  At   this  site  DCs  present  HIV-­‐1  derived  antigen  on  MHC  class   I  and  II  

molecules  and  trigger  an  HIV-­‐1  specific  T  cell  response.  The  interplay  between  the  virus  

and   the   DCs   is   complex   and   the   initial   receptor   binding   may   affect   antigen   uptake,  

infection,  and  antigen  presentation.  

The   fundamental  questions  of   this   thesis  are   the   following:  How  is   free  and  opsonized  

HIV-­‐1   internalized,   processed,   and  presented   on  MHC   class   I   and   II  molecules   by  DCs  

and   how   do   free   and   opsonized   HIV-­‐1   particles   interact   with   immune   cells   in   the  

cervical  mucosa?  

Our   results   indicate   that   opsonization   of   HIV-­‐1   plays   a   critical   role   in   the   interaction  

with   immune   cells.   Complement   opsonization   of  HIV-­‐1   (C-­‐HIV)   significantly   enhanced  

the   internalization   by   the   DCs   compared   to   free   HIV   (F-­‐HIV).   Both   C-­‐HIV   and   F-­‐HIV  

interacted  with  the  CD4  receptor,  C-­‐type  lectins  and  integrins.  In  addition,  opsonization  

of  HIV-­‐1  favored  an  MHC  class  I  presentation  by  DCs  compared  to  F-­‐HIV.  However,  the  

endocytic   receptors   macrophage   mannose   receptor,   β7   integrin,   and   CR3   guided   the  

antigens   to   different   compartments   with   distinct   properties   and   efficiencies   for  

degradation   and   MHC   class   I   and   II   presentation   of   viral   antigens.   MHC   class   I  

presentation   of   F-­‐HIV   and   C-­‐HIV   was   dependent   of   viral   fusion   in   a   CD4/coreceptor  

dependent  manner.  Moreover,  MHC  class  II  presentation  of  antigens  derived  from  HIV-­‐1  

required   endocytosis   and   proteolysis   in   acidified   compartments.   HIV-­‐1   infection   of  

cervical  mucosa  immune  cells  and  tissue  was  assessed  in  a  cervical  tissue  explant  model.  

6

 

C-­‐HIV   significantly   enhanced   infection   of   DCs   compared   to   F-­‐HIV,   whereas   C-­‐HIV  

decreased  the  infection  of  CD4+  T  cells.  Blocking  the  viral  use  of  integrins  in  the  cervical  

tissue  explants   significantly  decreased   the  HIV-­‐1   infection  of  both  emigrating  DCs  and  

CD4+  T  cells  and  the  establishment  of  founder  populations  in  these  tissues.  This  thesis  

work  has  brought  forward  new  facts  that  can  be  used  to  facilitate  the  development  of  an  

effective  vaccine  or  microbicide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

LIST  OF  PAPERS  INCLUDED  IN  THE  THESIS  

 

 

I   Pathways   utilized   by   dendritic   cells   for   binding,   uptake,   processing  

and  presentation  of  antigens  derived  from  HIV-­‐1.  

Sabado   RL,   Babcock   E,   Kavanagh  DG,   Tjomsland   V,  Walker   BD,   Lifson   JD,  

Bhardwaj  N,  Larsson  M.  

Eur  J  Immunol.  2007  Jul;  37(7):1752-­‐63.  

 

II   Complement  Opsonization  of  HIV-­‐1  Enhances  the  Uptake  by  Dendritic  

Cells   and   Involves   the   Endocytic   Lectin   and   Integrin   Receptor  

Families. Tjomsland  V,  Ellegård  R,  Che  K,  Hinkula  J,  Lifson  JD,  Larsson  M.    

PLoS  One.  2011;  6(8):e23542.  Epub  2011  Aug  11.  

 

III   Complement   opsonization   of   HIV-­‐1   results   in   a   different   intracellular  

processing   efficiency   and   pattern   leading   to   an   enhanced  MHC   I   class  

presentation  by  dendritic  cells.    

Tjomsland  V,  Ellegård  R,  Burgener  A,  Hinkula  J,  Lifson  JD,  Larsson  M.    

Manuscript  

 

IV   Blocking   of   integrins   significantly   inhibits   HIV-­‐1   infection   of   human  

cervical   mucosa   immune   cells   and   development   of   founder  

populations.    

Tjomsland  V,  Ellegård  R,  Kjölhede  P,  Hinkula  J,  Lifson  JD,  Larsson  M.  

Manuscript  

 

 

8

ABBREVIATIONS  

 Ab   Antibody  

ABC   Avidin  biotin  complex  

AIDS   Acquired  immunodeficiency  syndrome  

APC   Antigen  presenting  cell  

APOBEC3G   Apoplipoprotein  B  mRNA-­‐editing,  enzyme-­‐catalytic,  polypeptide-­‐like  3G  

ART   Antiretroviral  therapy  

AT-­‐2   Aldrithiol-­‐2  

AZT   Azidothymidine  

CCR5   CC  chemokine  receptor  5  

CXCR4   CXC  chemokine  receptor  4  

C-­‐HIV   Complement  opsonized  HIV-­‐1  

C-­‐IgG-­‐HIV   Complement  opsonized  HIV-­‐1  in  combination  with  immune  complex  

DAPI   4’,6’-­‐diamidino-­‐2-­‐phenylindole  

DCs   Dendritic  cells  

DC-­‐SIGN   Dendritic  cell-­‐specific  ICAM-­‐3-­‐grabbing  non-­‐integrin  

dsDNA   Double  stranded  DNA  

EDTA   Ethylene-­‐diamine-­‐tetra-­‐acetic  acid  

ER   Endoplasmic  reticulum  

F-­‐HIV   Free-­‐HIV  

fH   factor  H  

FITC   Fluorescein  isothiocyanate  

gp41   HIV-­‐1  glycoprotein  41  

gp120   HIV-­‐1  glycoprotein  120  

HAART   Highly  active  anti-­‐retroviral  therapy  

HIV-­‐1   Human  immunodeficiency  virus-­‐1  

ICAM   Intercellular  adhesion  molecule  

IgG-­‐HIV   IgG  opsonized  HIV-­‐1  

IDCs   Immature  dendritic  cells  

IFN   Interferon  

IFRs   Interferon  regulatory  factors  

IL   Interleukin  

ISG   IFN-­‐stimulatory  genes  

9

 

LFA-­‐1   lymphocyte  function-­‐associated  antigen  1  

LCs   Langerhans  cells  

LTR   Long  terminal  repeats  

MAC   Membrane  attack  complex  

MHC   Major  histocompatibility  complex  

MDC   Mature  dendritic  cells  

MDDC   Monocyte  derived  dendritic  cells  

MMR   Macrophage  mannose  receptor  

Nef   Negative  factor  

PAMPS   Pathogen  associated  molecular  patterns  

PBMC   Peripheral  blood  mononuclear  cells  

PBS   Phosphate-­‐buffered  saline  

PDCs   Plasmacytoid  dendritic  cells  

PE   Phycoerythrin  

PFA   Para  formaldehyde    

PHS   Pool  human  serum  

PIC   Pre-­‐integration  complex  

PR   HIV-­‐1  protease  

RNA   Ribonucleic  acid  

RT   Reverse  transcriptase  

SIV   Simian  immunodeficiency  virus  

SAMHD-­‐1   SAM  domain  and  HD  domain  containing  protein  1  

ssRNA   Single  stranded  RNA  

TAR   Transactivation  response  element  

TLR   Toll  like  receptor    

TRIM   Tripartite  motif-­‐  containing  protein  

Vif   Viral  infectivity  factor  

 

 

 

 

 

 

 

10

 

TABLE  OF  CONTENTS  

 PREFACE………………………………………………………………………………….................................................I  

ABSTRACT…………………………………………………………………………......................................................  II  

LIST  OF  PAPERS…………………………………………………………………………..........................................III  

ABBREVIATIONS……………………………………………………………………………………………………...  IV  

 

CHAPTERS  

1.  INTRODUCTION……………………………………………………………………………………………………...1  

2.  HIV-­‐1……………………………………………………………………………………...............................................3  

2.1  Life  cycle.………………………………………………………………………........................................4  

  2.2  Relevant  aspects  of  HIV-­‐1  innate  and  adaptive  immunity……………………………..7  

 

3.  THE  COMPLEMENT  SYSTEM…………………………………………………………………………………10  

  3.1  Overview………………………………………………………………………………………………….10  

  3.2  Complement  opsonization  of  HIV-­‐1…………………………………………….....................12  

3.3  Outcomes  after  complement  activation  by  HIV-­‐1……………………………................15  

   

4.  DENDRITIC  CELLS.......................................................................................................................................16  

4.1  The  role  of  dendritic  cells  in  immunity…………………………………………..................16  

4.2  Dendritic  cell  lineages  and  subsets  …………………………………………….....................17  

    4.2.1  Plasmacytoid  dendritic  cells  (PDCs)……………..…………………….................17  

    4.2.2  Myeloid  dendritic  cells  (MDCs)…………………………………….........................18  

    4.2.3  Monocyte  derived  dendritic  cells  (MDDCs)…………………………………….19  

4.3  HIV-­‐1  capture  by  dendritic  cells………………………………………………………………..19  

4.4  Intrinsic  antiretroviral  factors…………………………………………………………………..21  

 

5.  ANTIGEN  PRESENTATION  BY  DENDRITIC  CELLS…………………………………………………..23  

  5.1  Overview………………………………………………………………………………………………….23  

5.2  MHC  class  I  restricted  antigen  presentation……………………………………...............24  

5.3  MHC  class  II  restricted  antigen  presentation……………………………………………...27  

11

6.  MUCOSAL  IMMUNITY  AND  HIV-­‐1…………………………………………………..................................30  

6.1  Transfer  of  HIV-­‐1  through  the  female  genital  tract…………………………….............30  

 

7.  AIMS  OF  THESIS……………………………………………………………………………………………………33  

 

8.  METHODS………………………………………………………………………………..........................................34  

  8.1  Propagation  of  monocyte  derived  DCs………………………………………..……………..34  

8.2  Virus  propagation  and  opsonization…..………………………………………………………34     8.3  ELISPOT  assays………………………...……………………………………….................................35  

  8.4  Quantification  using  Real-­‐time  PCR…………………………………………….....................35  

  8.5  Preparation  of  cervical  tissue  samples…………………………………………...................36  

  8.6  Flow  Cytometry………………………………………………………………………………………..37  

  8.7  Immunofluorescence  and  confocal  microscopy………………………………………….38  

  8.8  Immunohistochemisty  (IHC)……………………………………………………………………..38  

  8.9  Statistical  analysis…………………………………………………………………………………….39  

   

9.  RESULTS  AND  DISCUSSION…………………………………………………………....................................40  

  9.1  Paper  I……………………………………………………………………………………………………..40  

    9.1.1  Background…………………………………………………………………………………..40  

    9.1.2  Principal  findings………………………………………………………...........................41  

    9.1.3  Discussion/  Conclusion…………………………………………………………………41  

  9.2  Paper  II…………………………………………………………………………………………………….42  

    9.2.1  Background…………………………………………………………………………………..42  

    9.2.2  Principal  findings………………………………………………………...........................42  

    9.2.3  Discussion/  Conclusion…………………………………………………………………43  

  9.3  Paper  III………………………………………………………………….…….………………………….43  

    9.3.1  Background…………………………………………………………………………………..43  

    9.3.2  Principal  findings……………………………………………………...…………………..44  

    9.3.3  Discussion/  Conclusion…………………………………………………………………45  

  9.4  Paper  IV…………………………………………………………………………………………………...45  

    9.4.1  Background…………………………………………………………………………………..45  

    9.4.2  Principal  findings…………………………………………….……………………………46  

    9.4.3  Discussion/  Conclusion………………………………………………………………....47

12

10.  CONCLUSIONS  AND  FUTURE  DIRECTIONS  ………………………………………………………….48  

10.1  Complement  activation-­‐  good  or  evil  in  HIV-­‐1  infection?......................................48  

10.2  Future  Challenges……………………………………………………………................................49  

 

11.  POPULÄRVETENSKAPLIG  SAMMANFATTNING………………………………..............................50  

12.  ACKNOWLEDGEMENTS…………………………………………………………….....................................53  

13.  REFERENCES…………………………………………………………………………........................................57  

 

14.  REPRINTS  OF  ORIGINAL  PAPERS  AND  MANUSCRIPT  

  14.1  Paper  I  

  14.2  Paper  II  

  14.3  Paper  III  

  14.4  Paper  IV  

 

 

 

13

Introduction  

1  

1.  INTRODUCTION    In   1981   a   new   syndrome   appeared   in   the  United   States.   The   patients   had   an   acquired  

immune   deficiency  with   a  marked   depletion   of   the   CD4+  T   cell   count.   Two   years   later  

HIV-­‐1  was   identified   by   Luc  Montagnier   and   Françoise   Barré-­‐Sinoussi   as   the   causative  

agent   of   acquired   immune   deficiency   syndrome   (AIDS)   (1).   Currently   more   than   30  

million  people  are   infected  with  HIV-­‐1  and  an  estimated  2.6  million  are  newly   infected  

every  year  in  the  world  and  millions  have  died  from  AIDS  (2).  This  makes  this  infection  

one   of   the   worst   epidemics   of   this   century.   Moreover,   the   HIV/AIDS   epidemic   is  

accompanied   by  many   tragic   and   difficult   social   challenges   like   discrimination,   stigma,  

denial   and   a   growing   number   of   children  who   have   lost   parents   to   AIDS   (3).   In   2005,  

thirteen  million   children   younger   than  15   years   of   age  had   already   lost   one  or   both  of  

their  parents  to  AIDS  (4).  

The   natural   history   of   HIV-­‐1   infection   involves   a   long   period   of   clinical   latency  with   a  

gradual  loss  of  CD4+  T  cells  before  the  infection  progresses  to  AIDS.  AIDS  are  defined  by  a  

CD4+   T   cell   count   below   400cells/µl   blood   and   without   treatment   this   will   lead   to  

opportunistic  infections,  the  appearance  of  rare  malignancies  and  ultimately  death.  

The  most  prevalent  route  of  sexual  transmission  is  by  heterosexual  intercourse.  Women  

are  particularly  at  high  risk  to  acquire  HIV-­‐1  infection  due  to  social  and  biological  factors  

and   therefore  bear   the   greatest   burden   (5).  However,  much   is   still   unknown  about   the  

biological   factors   in   the   female   genital   tract   contributing   to   resistance   against   HIV-­‐1  

infection.      

HIV-­‐1  is  a  retrovirus  that  belongs  to  the  genus  Lentiviridae.  Lentivirus  is  characterized  by  

a   long   incubation   period,   however   it   is   now   clear   from   studies   in  Macaques   that   local  

events  important  to  establish  an  systemic  infection  take  place  quickly  in  the  early  stages  

of   simian   immunodeficiency  virus   (SIV)   infection   (6).  Following  entry  of  HIV-­‐1   through  

the  mucosa   epithelium   founder   populations   are   established   in   the   submucosa   and   the  

dendritic   cells   (DCs)  will   transfer   the   virus   to   CD4+  T   cells   in   the  mucosal   stroma   and  

lymph  nodes  (7).  In  the  lymph  nodes  the  DCs  will  efficiently  present  HIV-­‐1  antigens  to  T  

cells  via  MHC  class   I  and  II  restricted  pathways  and  mount  a  specific   immune  response  

against  HIV-­‐1.  MHC  class   I  and  II  presentation  and  activation  of  CD4+  and  CD8+  T  cells  

are   important  events  that  will  determine  the  outcome  of   the   infection.  Most   individuals  

control   the   viremia   poorly   in   the   absence   of   antiretroviral   therapy.   Today   the   only

14

Introduction  

    2  

 effective  approach  against  HIV-­‐1  infection  is  antiretroviral  therapy  but  many  limitations  

exist   such   as   toxicity,   costs,   distribution   in   developing   countries,   and   resistance.  

Unfortunately  strategies  to  prevent  HIV-­‐1  transmission  have  had  limited  success  over  the  

past  three  decades  (6).  Vaccines  or  microbicides  have  not  proven  efficient  and  have  even  

in  some  cases  enhanced  HIV-­‐1   infection  (8,  9).  An  effective  HIV-­‐1  vaccine  will  probably  

require   activation   of   CD4+   and   CD8+   T   cell   responses   directed   against   crucial   HIV-­‐1  

epitopes  (10).    

There  exists  an  urgent  need  today  for  an  HIV-­‐1  vaccine  or  microbicides  to  prevent  HIV-­‐1  

transmission  and  constrain  the  ongoing  pandemic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

HIV-­‐1  

3  

2.  HIV-­‐1  

 HIV-­‐1  belongs  to  the  genus  Lentivirus  and  is  further  divided  into  the  family  Retroviridae.  

HIV-­‐1  has  a  spherical  morphology  with  a  diameter  of  100-­‐120  nm  and  is  surrounded  by  a  

lipid  bilayer,  an  envelope.  This  envelope  is  acquired  from  the  host  cell  during  the  process  

of  viral  budding  and  contains  approximately  72  spikes  of  the  viral  receptor  gp120  bound  

together   with   the   transmembrane   spanning   glycoprotein   gp41(11).   The   envelope  may  

also  express  many  other  receptors  like  ICAM-­‐1  and  HLA  class  I  and  II  molecules,  acquired  

from   the   infected   cell   during   the   budding   process   (12).   The   nucleocapsid,  which   has   a  

conical  shape,  contains  a  viral  protease  (PR),  reverse  transcriptase  (RT),   integrase  (IN),  

and  two  copies  of  a  single  stranded  RNA  (ssRNA)  molecule  (13)  (Fig.  1).  

 

   

Figure  1.    Structure  of  the  HIV-­‐1  particle.  

The HIV-1 is composed of two copies of positive ssRNA encoding the 9 viral genes. The viral

genome is enclosed by a conical nucleocapsid composed of 2000 copies of the viral protein gag

p24 (14). In the nucleocapsid are the pol encoded enzymes, integrase (IN), reverse transcriptase

(RT), and protease (PR), all needed by the virus for infection. Surrounding the nucleocapsid is a

matrix composed of the p17 gag protein and the matrix is in turn surrounded by a viral envelope.

The HIV protein Env protrudes from the viral envelope and is composed of gp120 and gp41

proteins. gp41 is an anchor protein, attaching gp120 to the viral envelope and HIV-1 uses this

glycoprotein complex to attach and fuse with target cells (15).

16

HIV-­‐1  

4  

2.1  HIV-­‐1  life  cycle  The   infection   begins  with   the   binding   of  HIV-­‐1   to   the   target   cells   by   the   viral   receptor  

gp120   to   a   58kDa   glycoprotein,   the  CD4   receptor.   The  CD4   receptor   is   expressed  on  T  

cells,  monocytes,  macrophages,  DCs,  eosinophils,  and  microglia  cells   (16).  Upon  binding  

to  CD4,  gp120  undergoes  a  conformational  change  and  is  able  to  bind  the  coreceptor  CC-­‐

chemokine   receptor   5   (CCR5)   or   CXC-­‐chemokine   receptor   4   (CXCR4).   The   binding   of  

gp120   to   both   CD4   and   coreceptor   leads   to   further   conformational   changes   that   allow  

gp41   to   penetrate   the   cell   membrane   (17,   18).   Following   membrane   fusion   the   virus  

capsid   is   uncoated   in   the   cytoplasm  of   the  host   cell   and   the   viral  RNA   is   released.   The  

capsid  undergoes  a  progressive  destabilization  during  its  transport  towards  the  nucleus  

to  ensure  productive  infection  as  uncoating  should  not  occur  too  early  or  too  late  in  the  

process  (19)  (Fig.  2).  The  viral  RNA  is  transcribed  into  a  double  stranded  DNA  (dsDNA)  

by  RT,  but  this  transcription  is  negatively  affected  by  the  presence  of  the  host  cell  protein  

APOBEC3G.  However,  the  HIV-­‐1  protein  Vif  counteracts  the  cell’s  antiviral  effect  by  down  

regulation  of  APOBEC3G  and  prevents  incorporation  of  this  protein  into  progeny  virions  

(20).   The   pre-­‐integration   complex   navigates   through   the   pores   of   the   nucleolus.   In   the  

nucleus  the  viral  DNA  can  be  found  in  three  different  forms,  linear,  a  circular  form  of  2-­‐  

long  terminal  repeats  (LTR),  or  a  circle  of  1-­‐LTR  (21).  None  of  the  circular  forms  lead  to  

the  production  of  infectious  virus  but  the  viral  genes  Tat  and  Nef  can  be  transcribed  from  

them  (22).  The  linear  dsDNA  of  the  pre-­‐integration  complex  is  integrated  in  the  host  cell  

genome  and  this  is  mediated  by  IN  (23).  The  integration  might  lead  to  a  latent  infection,  

i.e.  nonproductive  (24),  but  if  cellular  proteins  bind  to  the  viral  LTR,  transcription  of  Nef,  

Tat,   and   Rev   can   occur   and   these   HIV-­‐1   proteins   are   normally   expressed   very   shortly  

after   infection.  When   sufficient   amount  of  Tat  protein  has  been  produced,  Tat  proteins  

start   to   control   further   transcription   of   HIV-­‐1   genes   by   binding   to   the   TAR   site  

(Transactivation   response   element).   In   the   early   phase   of   replication   only   multiply  

spliced  mRNA  are  produced,  but  when  sufficient  amounts  of  Rev  proteins  are  produced,  

non-­‐spliced  or  single  spliced  mRNA  can  be  generated  as  well  (25)  (Fig.  2).  The  core  of  the  

maturing  HIV   particle   is   formed   by   the   gene   products  pol   and  gag.   The   gene   products  

coded  by  the  env  gene  form  the  glycoprotein  120/41  spikes  in  the  viral  envelope  (Fig.  3).  

The   proteins   Gag   and   Pol   are   also   derived   from   a   big   precursor   polyprotein.   The  

formation  of  a  new  viral  particle  occurs   in  several  steps;   two  copies  of  ssRNA  associate  

together  with   the  RT  enzymes,  while   core  proteins   assemble   around   them   forming   the  

viral   capsid.  The   immature  particles  migrate   toward   the   cell   surface   and   assemble,   the

17

HIV-­‐1  

5  

large  precursor  polyproteins  are  then  cleaved  resulting  in  the  viral  budding  from  the  cell  

plasma  membrane  and   thereby   the  acquiring  of  a   lipid  envelope.  The  budding  of  HIV-­‐1  

virions   is  believed  to  occur  through  areas   in  the  host  cell  membrane  rich   in  cholesterol  

(26).   During   the   budding   it   is   essential   that   the   expression   of   CD4   receptors   are  

downregulated  in  the  host  cell  membrane  to  avoid  the  interaction  with  gp120  (27).  Nef  

(negative  factor)  is  important  for  replication  and  the  pathogenesis  of  HIV.  Many  functions  

have   been   described   for   Nef,   including   the   down   regulation   of   CD4,   coreceptors,   MHC  

class   I   and   II   molecules   by   inducing   endocytosis   of   these   molecules,   consequently  

affecting   antigen   presentation   and   recognition   by   the   HIV-­‐1   specific   immune   response  

(28-­‐30).  Later  in  the  replication  cycle  the  env  gene  product  trap  CD4  in  the  endoplasmic  

reticulum  (ER)  (31).  

 

 

 

 

 

 

 

 

18

HIV-­‐1  

6  

 

 

 Figure  2.  Life  cycle  of  HIV-­‐1  

The  life  cycle  of  HIV-­‐1  begins  when  the  virus  binds  to  CD4  and  coreceptor  on  a  target  cell.  

When   HIV-­‐1   have   bound   to   the   infection   receptors   the   envelope   complex   undergoes   a  

structural   change   resulting   in   fusion   with   the   cell   membrane   and   the   virus   inject   its  

contents  into  the  cytosol  (17,  18).  The  viral  genetic  material  is  transcribed  from  ssRNA  into  

dsDNA  by  the  use  of  the  HIV-­‐1  enzyme  RT.  The  viral  dsDNA  is  then  integrated  into  the  host  

genome  by  the  help  of  IN.  From  the  integrated  DNA  the  cell  produces  RNA  and  viral  proteins  

(32).  The  HIV-­‐1  protease  cleaves  the  newly  synthesized  proteins,  enabling  them  to  join  the  

RNA  and  assemble  by   the  cell  membrane.  Finally,  new  viral  particles  bud  off   from  the  cell  

membrane  and  can  infect  new  target  cells  (32).  

 

19

HIV-­‐1  

7  

 

   

Figure  3.  Organization  of  the  HIV-­‐1  genome.  HIV-­‐1  has  nine  genes  coding  for  15  viral  proteins.  The  structural  genes  gag,  pol  and  env  are  

the   same   in   all   retroviruses   and   these   genes   contain   information   necessary   to  make   new  

viral   particles.   The   other   six   genes,   tat,   rev,  nef,  vif,  vpr,   and  vpu,  are   regulatory   genes   for  

proteins  that  control  the  ability  of  HIV-­‐1  to  infect  and  replicate  in  a  host  cell.  Long  terminal  

repeats  (LTR)  are  regions  controlling  the  production  of  new  virions  and  is  triggered  by  HIV-­‐1  proteins  or  host  cell  proteins  (16).  

   

2.2  Relevant  aspects  of  HIV-­‐1  innate  and  adaptive  immunity  It   is   well   established   that   HIV-­‐1   infection   results   in   strong   activation   of   the   immune  

system   (6).   The   innate   immunity   conducts   the   first   line   of   defense   followed   by   the  

adaptive   immunity.   The   innate   and   adaptive   responses   are   closely   interlinked   and   a  

strong   initial   innate   response   is   likely   to   lead   to   potent   adaptive   immunity.   Several  

components  of   the   innate  defense  are  activated  by  HIV-­‐1,  e.g.   the  complement  cascade,  

type   I   IFNs,  and   inflammatory  cytokines   (33).  HIV-­‐1   is   transmitted   through   the  mucosa  

and  targets  specific  immune  cells,  i.e.  CD4+CCR5+  T  cells  and  DCs  (34,  35).  The  adaptive  

immune  response  is  incapable  to  mount  a  defense  sufficient  to  clear  the  infection  and  the  

onset   is   too   late   to   stop   the  massive  destruction  of   the  CD4+CCR5+  T   cells   that   occurs  

within  two  weeks  after  onset  of  infection  (34,  35).    

       The  first  line  of  defense  does  not  require  previous  antigen  encounter  and  may  if  strong  

enough   limit   replication   of   the   microbe   giving   the   adaptive   immunity   enough   time   to  

mount  a  potent  and  efficient  immune  response  (36).  The  innate  immune  response  can  be  

divided   in   to   three   groups;   cellular,   intracellular,   and   extracellular   (37).   The   cellular

20

HIV-­‐1  

8  

 components   of   the   innate   immunity   are   for   instance   Langerhans   cells   (LCs),   DCs,  

monocytes,   γδ   T   cells,   and  natural   killer   cells   (NK   cells)   (38).   To  begin  with   these   cells  

have  innate  effector  functions  but  later  they  may  play  a  part  in  the  induction  of  adaptive  

immunity  (36).  For  instance,  DCs  produce  factors  important  for  the  initial  innate  defense  

but   they   also   prime   the   naïve   T   cells   in   the   lymph   nodes   and   activate   the   adaptive  

immune   response   (39).   In   the   initial   immune   response   two   families   of   transcription  

factors   play   a   major   role   in   the   innate   anti-­‐viral   defense,   the   NFkB   family   and   the  

interferon   regulatory   factors   (IRFs).   The   IRFs   play   a   central   role   in   the   induction   and  

regulation   of   proteins,   type   I   IFNs,   and   chemokines  mediating   antiviral   responses.   The  

production   of   type   I   IFNs   has   an   important   role   in   the   innate   antiviral   response,   they  

attract  immune  cells  to  the  site  of  infection,  increase  the  function  of  macrophages,  T  cells,  

NK  cells,   and  B   cells   and   induce  maturation  of  plasmacytoid  DCs   (PDCs)   (40-­‐42).   IRF-­‐3  

plays   a   central   role   in   the   induction   of   antiviral   response.   The   viral   activation   of   this  

factor   leads   to   production   of   IFNβ,   which   stimulates   the   transcription   of   IRF-­‐7   that  

further   augments   the   synthesis   of   IFNβ.   The   antiviral   effect   of   IFN   is  mediated   by   the  

induction  of  a  large  amount  of  cellular  genes,  i.e.  IFN-­‐stimulatory  genes  (ISG),  ISG15  was  

one  of  the  first  ISG  identified  and  has  been  shown  to  have  antiviral  effects  (43).  

   Toll   like   receptors   (TLRs)   is   a   family   of   receptors   important   in   the   innate   immune  

response.   TLRs   detect   microbes   and   induce   antimicrobial   host   defense   responses   by  

recognizing  conserved  regions  on  pathogens,  denoted  as  pathogen-­‐associated  molecular  

patterns  (PAMPS)  (44).  TLRs  are  involved  in  the  destruction  of  pathogens,  coordinating  

the   immune   response,   and   regulating   the   functionality   of   DCs   (42).   The   presence   of  

ssRNA   activates   TLR7/8  while   dsRNA   activates   TLR3   (45).   HIV-­‐1   is   recognized  mainly  

through  TLR7  on  PDCs  and  TLR8  on  blood  myeloid  DCs   (MDCs)  and  monocyte  derived  

DCs   (MDDCs).   PDCs   are   an   important   component   of   the   innate   immune   defense   and   a  

main   producer   of   type   I   IFNs   (46).   Another   part   of   the   innate   immune   defense   is   the  

restriction  factors  including,  tripartite  motif-­‐containing  protein  (TRIM),  5α,  1,  19  and  22,  

tetherin,   SAM   domain   and   HD   domain-­‐containing   protein   1   (SAMHD-­‐1),   and  

apoplipoprotein   B   mRNA-­‐editing,   enzyme-­‐catalytic,   polypeptide-­‐like   3G   (APOBEC3G)  

(47-­‐50).   APOBEC3G   is   found   in   T   cells,   monocytes,   macrophages,   and   DCs.   The  

incorporation  of  APOBEC3G  into  the  HIV-­‐1  genomes  leads  to  extensive  mutations  in  the  

viral  DNA,  rendering  them  nonfunctional  and   inhibiting  viral  replication  (51).  However,  

HIV-­‐1  counteracts  this  defense  mechanism  by  the  production  of  the  viral  protein  Vif.  Vif  

decrease   the   synthesis   of   APOBEC3G   and   enhances   the   26S   proteasome   mediated

21

HIV-­‐1  

9  

 degradation  making  APOBEC3G  unavailable  for  budding  virions  (47).  Innate  factors  that  

exert  their  effects  in  an  extracellular  manner  are  produced  as  a  part  of  the  innate  defense  

and  include  large  amounts  of  type  I  interferons  (IFNs),  i.e.  IFN-­‐α  and  IFN-­‐β.  Type  I  IFNs  

are  produced  by  mainly  by  PDCs  but   also  by  MDCs,   and  macrophages  during   the   early  

phase   of   a   viral   infection   and   they   promote   TH1   cell   development   by   activating   the  

transcription   factor   STAT4.   In   addition   IFNs   also   prevent   activated   T   cells   from  

undergoing  apoptosis  (52,  53).  The  CC  chemokines  CCL5  (RANTES),  CCL3  (MIP-­‐1α)  and  

CCL4  (MIP-­‐1β)  are  secreted  by  activated  DCs,  macrophages,  NK  cells,  and  γδ  T  cells  and  

these  factors  can  block  the  CCR5  coreceptors  and  prevent  HIV-­‐1  infection  (54).  However,  

some  cellular  proteins  downregulate  the  antiviral  response,  among  them  are  the  cellular  

DNAse  TREX1,  which  degrades  unintegrated  proviral  DNA  and  thereby  helping  the  virus  

to  be  undetected  by  TLR9  or  cytoplasmic  DNA  sensors  (55).  Defensins  are  extracellular  

innate  peptides  that  can  contribute  to  protection  against  HIV-­‐1  infection  in  the  mucosa.  

Another  essential  component  of  the  innate  immune  response  is  the  complement  system  

(56)  and  this  part  of  the  innate  immunity  is  described  and  discussed  in  depth  below.  

 

       Figure  4.  Approaches  by  HIV-­‐I  to  circumvent  the  cell  mediated  antiviral  responses.  

Complement  factors,  type  I  IFNs  and  the  intrinsic  cellular  proteins  TRIM,  tetherin,  APOBEC3G,  and  SAMHD-­‐

1  contribute  to  the  inhibition  of  viral  replication  inside  the  host  cells.  On  the  other  hand,  some  of  host  cell  

proteins,  e.g.  TREX1,  contribute  to  the  down  regulation  of  the  antiviral  response.  In  addition,  the  virus  has  

genes  encoding  for  proteins  that  can  impair  the  antiviral  defense.  

APOBEC3G

SAMHD1

TRIM5!, 1, 19, 22

Tetherin

ISG15

Type I interferons

Vif

Vpx

Vpu, NefIRF-3

Vpr, Vif

TREX1

Complement

22

The  complement  system  

10  

3.  THE  COMPLEMENT  SYSTEM  

 3.1  Overview  The   complement   system   is   composed   of   more   than   30   cell   surface   and   serum  

components  (57)  and  around  90%  of  them  are  produced  by  hepatocytes  but  complement  

proteins   can   also   be   produced   by  monocytes,  macrophages,   endothelial,   and   epithelial  

cells   (58,   59).   The   human   complement   system   is   the   first   line   of   the   defense   against  

pathogens  by  inducing  complement  mediated  lysis  and  tagging  targets  for  phagocytosis.  

However,   lately   it   has   been   shown   that   complement   also   plays   an   important   role   in  

induction  and  maintenance  of  the  adaptive  immune  responses,  i.e.  antigen  presentation,  

and   T   cell   activation   (60).   In   addition,   the   complement   system   is   involved   in   the  

enhancement  of  the  antibody  induced  responses  via  complement  receptors  (CRs)  and  Fc  

receptors  (FcRs)  (60).  

 

The   complement   system   can   be   activated   in   three   different   ways   dependent   on   the  

trigger.   All   pathways;   the   classical   pathway,   the   lectin   pathway,   and   the   alternative  

pathway  converge  at  the  activation  and  triggering  of  complement  component  3  (C3).  

The  classical  pathway  is  sometimes  also  referred  to  as  the  antibody  dependent  classical  

pathway   and   is   activated   by   the   binding   of   complement   component   1q   (C1q),   a  

subcomponent  of  the  C1  complex,  to  IgG/IgM  clusters  bound  to  cell  walls  of  pathogens  or  

apoptotic  cells,  or  by   the  pentraxin   family  members.  Alternatively,  direct   interaction  by  

C1q  with  some  types  of  pathogens  can  also  trigger  this  pathway.  The  C1  complex  attracts  

C2  and  C4  and  generates  the  C2C4  convertase,  which  is  able  to  cleave  the  C3  protein  and  

results  in  C3a  and  C3b  (61,  62).  

The   lectin  binding  pathway  or   the  mannose  binding  pathway   (MBP)   is   initiated  by   the  

recognition   of   characteristic   carbohydrate   patterns   expressed   on   the   surface   of  

microorganisms.  Binding  occurs  via  the  mannose-­‐binding  lectin  (MBL)  protein  family  and  

ficolins  and  activates  MBP  associated  serine  proteases  (MASPs)  (62).  The  different  MASPs  

are   similar   to   C1r   and   C1q,   therefore   the   following   cascade   resembles   the   classical  

pathway  and  will  converge  at  the  activation  and  cleavage  of  C3  (63,  64).  

The  alternative  pathway  of  the  complement  cascade  represents  a  process  that  needs  no  

exogenous   trigger.   By   spontaneous   C3   hydrolysis,   new   binding   sites   are   exposed   and  

factor  B  binds  to  hydrolyzed  C3  and  is  cleaved  by  factor  D  and  results  in  formation  of  C3

23

The  complement  system  

11  

convertase,  which  is  cleaved  into  C3a  and  C3b.  C3b  interacts  with  factor  B  and  this  factor  

in  turn  is  cleaved  by  factor  D,  creating  a  full  C3  convertase  (C3bBb)  that  is  stabilized  by  

the   binding   of   properdin   (65,   66).   Subsequently,   more   and  more   C3b   is   drawn   to   this  

multiprotein   complex   attached   to   the   surface   of   the   microbe   leading   to   an   effective  

opsonization  (60).  

After   opsonization   of   the   pathogen,   the   terminal   complement   pathway   is   triggered  

resulting  in  formation  of  a  terminal  membrane  attack  complex  (MAC).  The  MAC  is  a  pore  

like   structure   created   in   the   membrane   of   the   pathogen   leading   to   its   lysis   and  

destruction  (60).  The  complement  system  is  strictly  controlled  to  protect   the  host   from  

complement  mediated  damage.  This   is  mediated  by  soluble  and  cell  bound  complement  

regulators.  

Among  the  regulators  is  C1  esterase  inhibitor  (C1-­‐INH).  This  inhibitor  have  an  effect  on  

several  proteases  in  the  classical  and  lectin  binding  pathway.  The  abundantly  expressed  

factor  H  (fH)  acts  on  the  C3  convertase  or  serve  as  a  cofactor  for  degradation  of  C3b,  but  

can  also  prevent  self  attack.  The  C3  convertase  is  also  regulated  by  factor  I  (fI),  factor  H  

like  protein,  and  C4  binding  protein.  In  addition,  most  cells  in  the  body  express  receptors  

that  function  as  convertase  regulators,  e.g.  complement  receptor  1  (CR1)  and  CD55,  but  

they  also  express   receptors  working  as   cofactors   for   fI,   e.g.  CR1  and  CD49.  The  plasma  

membrane   bound   protein   protectin   (CD59),   a   complement   regulatory   protein,   inhibits  

the  formation  of  the  MAC  complex  (67,  68).  The  inactivation  and  degradation  of  C3b  leads  

to   the   production   of   inactivated   C3   fragments   iC3b,   iC3dg,   and   iC3d   and   these  

complement   fragments   do   not   have   any   further   function   in   the   lytic   cascade   but   are  

ligands  to  complement  receptors.  

Complement   receptor   1   (CR1:   CD35)   is   a   cell   membrane   receptor   expressed   on  

leucocytes,  erythrocytes,  and  podocytes.  CR1  binds  C3b  and  C4b  and  plays  an  important  

role  in  the  regulation  of  the  complement  cascade  but  CR1  also  binds  immune  complexes  

coated  with  C3b  and  remove  them  from  circulation  by  transporting  them  to  the  liver  or  

spleen  (69).  Complement  receptor  2  (CR2:  CD21)  is  predominantly  expressed  on  B  cells,  

T  cells,  and  follicular  dendritic  cells  (FDCs)  and  interacts  mainly  with  C3dg  and  C3d.    

       Complement  receptor  3  (CR3:  MAC-­‐1)  and  complement  receptor  4  (CR4:  pl  150,95)  are  

both  members  of  the  β2-­‐integrin  family.  CR3  consists  of  two  chains,  an  165  kDa  αM-­‐chain  

(CD11b)  and  an  95  kDa  β-­‐chain  (CD18)  and  is  expressed  primarily  on  myeloid  cells  but  

also  on  NK  cells  ,  microglia,  osteoblasts,  and  some  epithelial  cells  (70).  CR4  has  the  same  

β2-­‐chain  but   instead  this  chain   is   linked  to  a  150  kDa  αX-­‐chain  (CD11c)  and  the  CR4  is

24

The  complement  system  

12  

basically   found   on   the   same   cell   types   as   CR3.   CR3   has   been   shown   to   be   involved   in  

many   coordinating   and   adhesion   functions   in   the   immune   system,   e.g.   adhesion   and  

migration  of   leucocytes  during  homing,   and   the  binding  and  phagocytosis  of  opsonized  

particles  (70-­‐72).  CR3  can  bind  to  several  ligands  with  high  affinity  including  iC3b,  ICAM-­‐

1,   fibrinogen,   and   clotting   factor  X   and  with   low  affinity   to  C3b  and  C3bg   (70,  73).  The  

binding  site  for  iC3b,  C3b,  and  C3bg  are  located  on  the  α-­‐chain  (CD11b)  and  the  binding  is  

Ca2+   dependent   (73).   Several   studies   have   reported   that   cells   expressing   CR3   and   CR4  

have  an  enhanced  HIV-­‐1  replication.  The  CR3  and  CR4  expressed  by  DCs  are  involved  in  

trans  infection  of  HIV-­‐1  (74).  In  addition,  an  increasing  amount  of  evidence  indicates  that  

CR3  and  CR4  also  play  a  role  in  antigen  presentation  and  CD8+  T  cell  activation  (75).    

 

3.2  Complement  opsonization  of  HIV-­‐1  Several  viruses  including  HIV-­‐1,  Vaccinia  virus,  Herpes  simplex  virus  (HSV),  and  Epstein-­‐

Barr   virus   have   been   shown   to   directly   activate   the   complement   system   (76).  HIV-­‐1   is  

able  to  activate  all  three  pathways  of  the  complement  system  already  in  the  initial  phase  

of  infection  (76).  The  lectin  pathway  is  activated  by  the  binding  of  MBL  to  high  mannose  

carbohydrates  on  HIV-­‐1  gp120  (77)  and  the  classical  pathway  is  activated  by  the  binding  

of   viral   gp41   to   the   A-­‐chain   of   C1q   (78).   The   activation   occurs   in   the   absence   of  

antibodies.   However,   after   seroconversion   the   presence   of   HIV-­‐1   specific   antibodies  

further   enhances   the   activation   of   the   classical   complement   pathway   (79,  80).   Of   note,  

due   to  mechanisms   developed   by  HIV-­‐1,   virions   resist   complement  mediated   lysis   and  

the  activation  of  the  complement  cascade  result  in  deposition  of  inactivated  C3  fragments  

on  the  viral  surface,  i.e.  opsonization  (81,  82)  (Fig.  5  and  6).  HIV-­‐1  acquires  complement  

lysis   resistance   factors   during   the   budding   from   the   host   cell   plasma   membrane   and  

these   receptors   are   incorporated   in   the   viral   envelope.   These   factors   that   inhibit   the  

complement  cascade  are  the  membrane  cofactor  protein  (MCP:  CD46),  decay  accelerating  

factor  (DAF:  CD55),  and  CD59  (83).  In  addition,  HIV-­‐1  can  bind  soluble  fH,  which  further  

protects  virions  from  destruction  (64,  84).  There  are  many  other  pathogens  besides  HIV-­‐

1  that  have  developed  different  methods  to  escape  the  complement  system  (81,  82,  85).    

However,  HIV-­‐1  is  not  only  spared  from  lysis   it  also  uses  the  deposition  of  complement  

fragments  on  the  surface  to  its  own  advantage  (86).    

The   interaction   of  HIV-­‐1  with   cells   is  mediated   by   the   viral   receptor   gp120   binding   to  

multiple  receptors  including  CD4  and  coreceptors  (87).  However  when  HIV-­‐1  is  covered  

with  C3   fragments   the  carbohydrates  expressed  on  gp120  may  be  partly  or   completely

25

The  complement  system  

13  

covered   by   complement   fragments   and   thereby   poorly   accessible   for   receptor   binding.  

Experiments  in  macaques  and  in  vitro  T  cell  experiments  have  shown  that  opsonization  of  

virions   by   C3   fragments   masks   epitopes   on   the   viral   envelope   leading   to   reduced  

infection   of   T   cells,   which   are   CR3   negative   (88-­‐90).   Moreover,   virions   also   use   the  

complement   fragments   to   increase   their   infectivity   by   interacting  with   cells   expressing  

CRs.  The  complement   fragment   iC3b   is   the  major   ligand   for  CR3,  but   this   receptor  also  

binds  to  other  ligands  like  ICAM-­‐1,  which  is  an  adhesion  molecule  acquired  by  the  virions  

from  the  host  cell  plasma  membrane  during  the  process  of  budding.  In  addition  the  gp41  

part  of  the  HIV-­‐1  envelope  receptor  can  also  interact  with  CR3  (91).  Finally,  complement  

opsonized  HIV-­‐1  have  been  found  throughout  the  body,  e.g.  in  blood,  breast  milk,  mucosa,  

seminal   fluid,   and   lymph   nodes   (64),   and   should   be   taken   in   consideration   when    

studying  HIV-­‐1.    

 

   

Figure  5.  Free  and  opsonized  HIV-­‐1.  

HIV-­‐1  immediately  activates  the  complement  cascade  but  is  protected  from  complement  mediated  lysis  

leading  to  deposition  of  C3  fragments  on  the  surface  of  HIV-­‐1  (C-­‐HIV)  (92).  After  seroconversion,  HIV-­‐1  can  

be  covered  with  HIV-­‐1  specific  antibodies  (IgG-­‐HIV)  and  HIV-­‐1  specific  antibodies  in  combination  with  

complement  fragments  (C-­‐IgG-­‐HIV)  (93).  Seroconversion  enhances  the  activation  of  the  classical  pathway  

and  increases  the  amount  of  C3  cleavage  products  deposited  on  the  surface  of  HIV-­‐1  (64,  94).  

26

The  complement  system  

14    

Figure   6.   Complement   activation   on   the  

viral  surface  of  HIV-­‐1.  

HIV-­‐1  can  activate  all  three  pathways  of  the  

complement   system,   classical,   mannose-­‐

binding-­‐lectin   (MBL)   and   alternative  

pathway.   The   initiation   of   the   classical  

pathway   can   occur   in   the   absence   of   HIV-­‐

specific   antibodies   but   they   enhance   the  

activation   of   the   classical   pathway   after  

seroconversion   (95,   96).   The   classical  

pathway  is  initiated  by  the  binding  of  C1q  to  

gp41   (97).   However,   activation   by   the  

mannose-­‐binding-­‐lectin   (MBL)   pathway   is  

triggered   by   the   binding   of   MBL   to  

carbohydrate   side   chains   expressed   on  

gp120  (98).  

The   alternative   pathway   is   independent   of  

antibodies  and  starts  by  the  hydrolyzation  of  

C3  to  C3(H2O).  All   three  pathways  result   in  

the   formation   of   C3   convertase,   which  

cleaves  C3  into  C3b  and  C3a.  However,  HIV-­‐

1  escape  compliment  mediated  lysis  by  MAC  

(C5b6789),  owing  to  factors  acquired  during  

the  budding  from  the  host  cell.  These  factors  

are   incorporated   in   the   viral   envelope   and  

include   CD55,   CD59,   and   CD46   (99).   CD55  

dissociates   the   C3   convertase   and   CD59  

blocks  the  formation  of  the  MAC  complex  by  

the   polymerization   of   C9.   CD46   interacts  

with   factor   I   (fI),   which   cleaves   C3b   to  

inactive  C3b  (iC3b)  and  subsequently  to  C3c  

and  C3d.   Factor  H   (fH),   incorporated   in   the  

viral   envelope,   interacts   with   gp120   and  

gp41   and   this   protects   the   virions   from  

complement   mediated   lysis   (86,   100-­‐102).  

However,   fH   also   plays   role   in   the  

inactivation   of   C3b   by   working   as   an  

additional  cofactor  for  fI  (73,  103).  

27

The  complement  system  

15  

3.3  Outcomes  after  complement  activation  by  HIV-­‐1  A  fraction  of  the  HIV-­‐1  particles  trigger  the  terminal  activation  pathway  and  are  lysed  by  

the  MAC,  but  a  substantial  amount  of  the  virions  remains  opsonized  and  mediates  their  

effects  on   the   immune   system  by   interacting  with  CRs   and  FcRs   (60).  The   complement  

opsonized  virions  affect  the  immune  system  in  many  ways  (60).  For  instance,  interaction  

of  complement  opsonized  HIV-­‐1  with  CR1  on  erythrocytes  might  facilitate  the  spread  of  

opsonized  HIV-­‐1   to   the   liver  and   spleen  where  HIV-­‐1   can  be   transferred   to   target   cells  

(104).  CR2  is  involved  in  trapping  HIV-­‐1  in  the  centers  in  the  lymphoid  organs  by  binding  

complement  and  immune  complex  opsonized  HIV-­‐1  to  FDCs.  In  fact,  CR2  is  the  main  HIV-­‐

1  binding  receptor  on  FDCs  in  vivo,  no  involvement  of  CR1  or  CR4  (105).  HIV-­‐1  opsonized  

with  complement  and/or  immune  complex  binds  to  the  surface  of  the  FDCs  and  can  stay  

trapped  there  for  months  without  infecting  the  FDCs  (106).  During  this  time  the  trapped  

virions   are   highly   infectious   for   CD4+   T   cells   even   in   the   presence   of   neutralizing  

antibodies  (107).    

       Virions   opsonized   by   complement   fragments   and   immune   complexes  mark   them   for  

uptake   by   phagocytosis   and   destruction.   Phagocytes   like   DCs   and   macrophages  

internalize  the  opsonized  virus  mainly  via  FcRs  or  CRs.  The  presence  of  iC3b  on  the  viral  

surface   leads   to   the   interaction   with   CR3   and   CR4   and   several   studies   have   shown   a  

highly   increased   HIV-­‐1   infection   in   cells   expressing   these   CRs   (73).   For   instance,   DCs  

infected  with  HIV  opsonized  with  complement  and  anti  HIV-­‐IgG  had  a  10-­‐fold  increased  

infection   compared   to   cells   infected   with   free   virions   (108).   Of   note,   viral   replication  

increased   in   latently   infected  monocytes   following   stimulation   of   CR3   (109).   A   twofold  

increase  in  HIV-­‐1  infection  was  seen  in  an  epithelial  cells  line  when  infected  with  seminal  

fluid  opsonized  virions  compared  to  free  virions  and  this  enhanced  infection  was  due  to  

CR3   engagement   (110).   We   have   previously   shown   in   our   group   that   complement  

opsonized   virions   are   more   efficiently   internalized   via   receptor   mediated   endocytosis  

than  free  viral  particles  (111).    

 

 

 

 

 

 

28

Dendritic  cells  

16  

4.  DENDRITIC  CELLS  

 For  a  long  time  immunology  research  focused  on  lymphocytes  and  antigens  but  a  major  

player  essential  for  immunity  was  missing.  However  in  1972  a  third  party,  the  dendritic  

cell   (DC)   was   discovered   by   Ralph   Steinman   and   Zanvil   Cohn   at   the   Rockefeller  

University,  USA  (112).    

Ralph   Steinman   passed   away   2011   three   days   before   he  was   announced   as   one   of   the  

laureates  for  this  years  Nobel  Prize  in  Medicine  due  to  his  life’s  work  on  DCs  (113).  This  

antigen  presenting  cell  (APC)  was  found  to  be  an  initiator  and  modulator  of  the  adaptive  

immune  response  (114).  The  fist  DC  subtype  was  visualized  already  1868  in  the  skin  by  

Paul   Langerhans   and   named   Langerhans   cells   (LCs)   (115),   but   the   characterization   of  

other  DC   subtypes   did   not   start   until   the   finding   by  Ralph   Steinman   38   years   ago.  We  

know  today  that  DCs  are  specialized  APCs,  crucial   for  our  protection  against  pathogens,  

bridging  both  the  innate  and  the  adaptive  immunity  (116).  

 

4.1  The  role  of  dendritic  cells  in  immunity  DCs   are   specialized   APCs   capable   of   priming   naïve   T   cells,   which   leads   to   induction  

memory   responses.   These   cells   are   essential   in   the   defense   against   pathogens   and  

throughout   the  whole   body   they   are   forming   a   tight   network  with   their   long   arms,   i.e.  

dendrites  that  sense  pathogens.  DCs  are  continuously  produced  from  hematopoietic  stem  

cells   and  distributed   from   the   bone  marrow   to   all   organs   in   the   body,   such   as  mucosa  

tissues,   skin,   liver,   lung,   heart,   and   blood   making   them   well   positioned   to   quickly  

encounter  invading  pathogens  (117).  

The  DCs  exist  in  three  different  differentiation  stages  including  precursor,  immature,  and  

mature.  Precursor  myeloid  DCs  (MDCs)  migrate  to  the  tissues  attracted  by  the  chemokine  

and  cytokine  gradients  and  in  the  tissue  the  DCs  remain  in  an  immature  state  (118,  119).  

Immature  MDCs   are   highly   endocytic   but   less   potent   immune   stimulators   than  mature  

MDCs  (117).  After  antigen  exposure  the  immature  DCs  become  activated  and  undergo  a  

maturation  process.  This  process  guides  the  DCs  during  the  migration  to  the  lymph  nodes  

where  large  numbers  of  naïve  T  cells  and  resting  memory  T  cells  continuously  circulate  

through.   The   maturation   of   the   DCs   increases   their   immunostimulatory   capacity   by  

upregulating  of  an  array  of  receptors  resulting  in  high  surface  expression  of  MHC  class  I  

and   II-­‐   peptide   complexes,   costimulatory   molecules   CD40,   CD86,   and   CD80   (120),

29

Dendritic  cells  

17  

adhesion   molecules   CD44   (121),   and   α6β1integrin   (121),   and   receptors   for   T   cell  

activation   such   as   CD48   and   CD58   (122)   all   which   benefit   their   interaction   with   and  

activation  of  T  cells.  At  the  same  time  the  antigen  capture  activity  is  downregulated  (120).  

The  maturation   also   results   in   a   change   in   the   chemokine   receptor   expression   with   a  

decreased  expression  of,  e.g.  CC-­‐chemokines  CCR5  and  CXCR4,  and  upregulation  of  CCR7  

(119).  In  the  lymph  node  paracortex  area,  the  mature  DCs  present  antigen  peptides  in  the  

context  of  MHC  class  I  and  II  molecules  to  naïve  T  cells.  T  cells  with  a  TCR  specificity  that  

recognize   the   peptide-­‐MHC   complex   presented   by   the   DCs   and   are   activated   and   an  

immune   response   is   triggered   (114).   However,   only  mature   DCs   can   elicit   an   immune  

response   resulting   in   long   lasting   immunologic  memory   (116).   Even   in   the   absence   of  

inflammation  and  maturation  signals,  a  small  number  of  DCs  migrate  to  the  lymph  nodes  

carrying   self   antigens  and   induce  and  maintain   tolerance   rather   than   inducing   immune  

activation  (118).  In  addition,  priming  of  immune  responses  by  the  wrong  DC  subset  can  

also  lead  to  suboptimal  and  even  silencing  of  the  immune  response  (122).    

PDCs   are   the   most   potent   responders   to   viral   infection   by   production   of   type   I   IFNs,  

which  alerts  and  sets   the  body   in  an  antiviral   state.  The  MDC  subsets  can  also  produce  

type  I  IFNs,  but  not  at  the  same  high  levels  as  PDCs  (123).  In  addition,  MDC  subsets  and  

PDCs  differ  in  which  TLRs  they  express,  indicating  that  they  sense  different  sets  of  danger  

molecules   and   their   response   to   a   specific   pathogen   differs.   These   overlapping   and  

distinct  functions  of  the  DC  subsets  have  in  all  probability  evolved  in  order  to  achieve  an  

optimal  sensing  and  immune  defense  against  different  pathogens.  

 

4.2  Dendritic  cell  lineages  and  subsets  4.2.1  Plasmacytoid  dendritic  cells  (PDCs)  

There  are  two  major   lineages  of  DCs,  MDCs  and  PDCs.  PDCs  are  of   lymphoid  origin  and  

found  mainly   in  blood,   cerebrospinal   fluid,  and   lymphoid   tissues   (118).  This  subtype  of  

DCs    lack  the  classical  myeloid  markers  and  are  called  “linage  negative”  and  express  high  

levels   of   CD123,   and   CD62L   (119,   124),   but   they   are   also   known   to   express   receptors  

including   BDCA-­‐4   (CD304),   CD45RA,   CD4,   CCR5,   TLR7,   and   TLR9.   PDCs   are   the   most  

potent   inducers   of   type   I   IFNs   and   represent   a   key   effector   cell   in   the   innate   response  

against   pathogens,   especially   viral   infections   (125-­‐127).   In   addition,   PDCs   activate   NK  

cells   and   are   important   APCs   that   activate   T   cell   responses   (128).  

30

Dendritic  cells  

18  

4.2.2  Myeloid  dendritic  cells  (MDCs)    

MDCs   are   considered   to   be   the   “classical”   population   of   DCs   and   consist   of   several  

different   subtypes,   including   blood   MDCs,   LCs   and   tissue   interstitial   MDCs   (129).   The  

majority   of   DCs   in   the   body   are   of   myeloid   origin   and   express   the   myeloid   markers  

CD11c,   and  CD33  and   lack  markers   like  CD14,  CD19,  CD20,   and  CD56   (130).   Immature  

MDCs   have   a   high   capacity   to   capture   antigens   via   receptor   mediated   endocytosis,  

macropinocytosis,  and  phagocytosis  and  mature  MDCs  have  very  potent  T  cell  activating  

capacity.  The  LCs  are   located   in   the  epidermis,   the  mucosal  epithelium  of   the  male  and  

female  genital   tracts   and   rectum  (131).  They  express   surface  markers   such  as  HLA-­‐DR,  

CD11c,  CD1a,  CD4,  CCR5,  Langerin  (CD207),  and  E-­‐Cadherin,  (132),  with  the  C-­‐type  lectin  

Langerin  being  a  unique  marker  for  LCs.  LCs  were  initially  identified  by  the  presence  of  

Birbeck  granules,  “tennis-­‐racket”  shaped  granules  in  the  cytoplasm  (133).  It  was  recently  

discovered  that  Langerin  is  crucial  for  the  formation  of  the  Birbeck  granules  and  that  this  

organelle   is   a   part   of   the   endosomal   recycling   pathway   (134).   LCs,   as   all   DCs,   capture  

antigens  and  migrate   to   the   lymph  nodes  and  mount   specific   immune   responses   (118).  

The   antigen   capture   and   migration   leads   to   maturation,   which   changes   the   receptor  

expression   with   upregulation   of   MHC   class   I   and   II   and   costimulatory   molecules   and  

downregulation   of   Langerin   and   E-­‐Cadherin.   LCs   express   only   one   C-­‐type   lectin,   i.e.  

Langerin,  and  are  negative  for  other  C-­‐type  lectins  such  as  DC-­‐SIGN,  DCIR,  DEC-­‐205,  and  

MMR,  commonly  found  on  other  subtypes  of  MDCs  (135).    

Blood  MDCs   constitute   only   a   small   percentage   (~0.5%)  of  mononuclear   cells   in   blood  

and   are   characterized   by   the   expression   of   HLA-­‐DR,   CD11c,   CD11b,   BDCA1   (CD301),  

CD45RO,  and  DC-­‐SIGN.  They  also  express  an  array  of  TLRs  including  TLR  3,  4,  5,  6,  and  8  

(136).   Blood  MDCs   are   believed   to  migrate   from   the   blood   out   to   infected   or   inflamed  

tissues   (117).   However   not  much   is   known   about   the   differentiation   and  migration   of  

blood  MDCs  into  tissue  MDCs  and  some  studies  have  shown  that  blood  MDCs  are  destined  

for   direct   migration   to   lymph   nodes   or   thymus   (117).   Another   subtype   of   MDCs   is  

interstitial  MDCs  and  these  cells  are  found  in  e.g.  the  submucosa,  heart,  liver,  and  kidneys.  

However,  unlike  LCs,  interstitial  MDCs  do  not  express  Langerin  and  lack  Birbeck  granules  

and  have  10  times  higher  capacity  for  antigen  uptake  than  LCs  (137).  

31

Dendritic  cells  

19  

4.2.3  Monocyte  derived  dendritic  cells  (MDDCs)  

In   vitro   model   MDCs,   monocyte   derived   DCs   (MDDCs),   are   DCs   propagated   from  

stimulation  of  blood  monocyte  precursors  with  IL-­‐4  and  GM-­‐CSF  for  5-­‐7  days.  This  model  

of  interstitial  tissue  MDCs  is  widely  used  in  experiments  since  blood  MDCs,  LCs  and  MDCs  

derived  from  human  skin  or  mucosa  explants  are  difficult  to  isolate  in  high  numbers.  The  

immature  MDDCs  express  markers  such  as  CD11b,  CD11c,  MHC  class  I  and  II  molecules,  

CD1a,   DC-­‐SIGN,   MMR,   and   low   levels   of   CD80   and   CD86   (117,   138).   These   immature  

MDDCs  have  similar  characteristics  to  tissue  MDCs,  such  as  immature  dermal  MDCs  and  

intestinal  MDCs   (138).   In   response   to   different   stimuli   such   as   TLR3   ligand  poly   I:C   or  

TLR4   ligand   LPS,   immature   MDDCs   differentiate   into   mature   cells   (111).   The   use   of  

MDDCs   have   provided   many   important   insights   in   the   interaction   of   HIV-­‐1   with   DCs,  

however  it  is  important  to  remember  that  MDDCs  do  not  fully  resemble  the  MDC  subsets  

interacting  with  HIV-­‐1  in  vivo.  

 

4.3  HIV-­‐1  capture  by  dendritic  cells  DCs  are  important  in  the  pathogenesis  of  HIV-­‐1  but  also  in  the  generation  of  a  specific  

immune  response  against  HIV-­‐1  (139).  After  transmission  through  the  mucosal  

epithelium  DCs  are  among  the  first  potential  targets  for  HIV-­‐1  (140).  The  virus  hijack  the  

DCs  to  be  transported  to  the  lymph  nodes  and  HIV-­‐1  utilize  several  receptors  expressed  

by  DCs  for  binding  and  uptake.  Except  for  the  infection  receptors  CD4  and  coreceptors  

(CCR5  or  CXCR4),  HIV-­‐1  can  interact  with  CRs,  FcRs,  integrins,  syndecan-­‐3,  and  C-­‐type  

lectin  receptors  on  the  DCs  (Fig.  7).  However,  C-­‐type  lectins  including  DC-­‐SIGN,  MMR,  

DEC-­‐205,  DCIR,  and  Langerin  are  the  main  attachment  receptors  for  HIV-­‐1  on  dermal  and  

mucosal  DCs  and  this  family  of  receptors  facilitates  endocytosis  of  glycolsylated  antigens  

(139).  Uptake  by  C-­‐type  lectins  may  be  a  natural  route  for  degradation  of  HIV-­‐1,  but  viral  

usage  of  different  C-­‐type  lectins  guides  virions  to  different  routes  inside  the  DCs  (119).  It  

has  been  shown  for  MMR  that  ligand  binding  to  this  receptor  can  route  the  ligand  to  a  

recycling  early  endosome  (141).  However,  this  seems  to  depend  on  the  type  of  ligand  that  

binds  to  MMR,  for  instance,  MMR-­‐bovine  serum  albumin  enters  the  early  recycling  

endosome  and  avoids  degradation  by  recycling  back  to  the  plasma  membrane  (142).  

However,  the  binding  of  ligands  rich  in  oligomannose  residues  like  gp120  routes  to  

endosomal  uptake  and  trafficking  to  late  endosome  (143).  DC-­‐SIGN  is  shown  to  be  a  

major  receptor  for  HIV-­‐1  gp120  and  HIV-­‐1  binding  to  DC-­‐SIGN  mediates  internalization  

32

Dendritic  cells  

20  

into  a  nonlysosomal  compartment  (144).  In  addition,  DC-­‐SIGN  facilitates  HIV-­‐1  transfer  

from  MDDCs  to  CD4+  T  cells  (145).  Moreover,  Langerin  has  a  great  capacity  to  bind  large  

amounts  of  HIV-­‐1  gp120  and  probably  play  an  important  role  in  the  transmission  of  HIV-­‐

1  through  the  epithelium  in  the  genital  mucosa  (146).  Free  and  complement  opsonized  

virions  interact  both  with  C-­‐type  lectins  and  integrins  and  free  HIV-­‐1  binds  to  β1-­‐integrin  

and  complement  opsonized  HIV-­‐1  to  β7-­‐integrin  (111).  Integrins  are  one  of  the  major  

families  of  cell  adhesion  receptors  and  they  all  contain  one  α-­‐chain  and  one  β-­‐chain.  It  has  

previously  been  shown  that  HIV-­‐1  binds  to  α4β7  integrin  expressed  on  CD4+  T  cells.  The  

region  of  HIV-­‐1  gp120  interacting  with  α4β7  has  been  mapped  to  the  V2  loop  (147,  148).  

The  integrins  CR3  and  CR4  are  involved  in  the  binding,  uptake,  and  HIV-­‐1  infection  of  

target  cells  (60,  111).    

 DCs   express   relatively   small   amounts   of   the   infection   receptors,   CD4   and   coreceptors  

CCR5/CXCR4,  but  both  R5  and  X4  tropic  HIV-­‐1  can  productively  infect  DCs.  However,  this  

infection  is  10-­‐100  times  lower  compared  to  CD4+T  cells  (149-­‐151).  In  in  vitro  cultures  it  

is  clear  that  only  a  fraction  of  the  DCs  become  productively   infected  and  that   immature  

DCs   are   more   susceptible   to   the   HIV-­‐1   infection   than   mature   DCs   (152).   Some   of   the  

reasons   for   the  moderate   infection   in  DCs  may   include   the   low   expression   of   CD4   and  

coreceptors,  degradation  of  internalized  virions,  expression  of  restriction  factors,  and  the  

low  metabolic  activity  in  these  cells.    

A  direct  productive  HIV-­‐1  infection  of  the  DCs  is  called  cis  infection.  DC  mediated  HIV-­‐1  

trans  infection  is  a  distinct  mechanism  where  virions  are  internalized  into  nonacidic  

compartments  and  transported  to  the  contact  zone  between  the  DC  and  a  CD4+  T  cell  

without  directly  infecting  the  DC.  At  this  contact  zone,  i.e.  the  virological  synapse,  whole  

HIV-­‐1  virions  are  transferred  from  the  DC  to  the  CD4+  T  cell.  DC  mediated  trans  infection  

of  T  cells  is  the  most  efficient  way  to  establish  viral  replication  in  CD4+  T  cells  (153,  154).    

DC-­‐SIGN  has  been  shown  to  enhance  both  the  infection  of  DCs  and  the  transfer  of  HIV-­‐1  

through  the  virological  synapse  (155-­‐157).

33

Dendritic  cells  

21  

   Figure  7.  Interaction  of  free  and  complement  opsonized  HIV-­‐1  with  immature  and  mature  DCs.  

HIV-­‐1  interacts  with  many  receptors  expressed  by  the  DCs.  Except  for  the  main  receptors  utilized  by  HIV-­‐

1   for   infection,   CD4   and   CCR5/CXCR4,   HIV-­‐1   interacts   with   several   receptor   families,   e.g.   complement  

receptors   (CR),   Fc-­‐receptors   (FcRs),   integrins,   syndecan-­‐3,   and   C-­‐type   lectins.   The   expression   levels   of  

these  receptors  are  dependent  on  the  subtype  and  maturation  status  of  the  DC.  In  addition,  HIV-­‐1  utilizes  

different   sets   of   receptor   depending   on   if   the   virions   are   free,   opsonized   with   complement,   immune  

complexed,  or  covered  in  both  complement  and  antibodies.    

 

4.4  Intrinsic  antiretroviral  factors  Approximately  8%  of  the  human  genome  is  comprised  of  endogenous  retroviral  

elements.  Over  the  past  years  it  has  become  apparent  that  the  human  genome  

counteracts  this  by  the  development  of  antiviral  proteins  referred  to  as  restriction  

factors  (158).  DCs,  but  also  monocytes  and  to  a  lesser  extent  macrophages,  utilize  

different  mechanisms  to  restrict  retroviral  infection,  such  as  the  production  of  

restriction  factors  including  APOBEC3G,  TRIM5α,  tetherin,  and  SAMHD-­‐1  (159).  

APOBEC3G  was  first  identified  as  a  cellular  factor  making  the  host  able  to  resist  HIV-­‐1  

infection  when  the  virus  was  lacking  the  vif  (viral  infectivity  factor)  gene  (160).  

APOBEC3G  targets  the  negative  sense  ssDNA  generated  during  HIV-­‐1  reverse  

transcription  and  catalyzes  the  hydrolysis  of  cytosines  (C)  to  uridines  (U).  The  editing  of  

C  to  U  leads  to  substitutions  of  guanine  (G)  to  adenine  (A)  in  the  positive  sense  strand  

leading  to  a  noninfectious  virion.  However,  the  Vif  protein  counteracts  APOBEC3G  by  

tagging  it  for  ubiquitylation  and  proteasomal  degradation  and  the  intracellular  levels  of  

APOBEC3G  are  reduced  (161).  For  this  reason  APOBEC3G  is  not  incorporated  into  

progeny  virions.  Of  note,  APOBEC3F  also  inhibits  HIV-­‐1  in  a  Vif  dependent  manner  (161-­‐

164).  

34

Dendritic  cells  

22  

TRIM5α   interferes   with   the   viral   coat   when   HIV-­‐1   enters   the   cytoplasm,   causing  

premature  uncoating  (159,  165).  However,  exactly  how  TRIM5α  blocks  HIV-­‐1  infection  

is  not  known.  The   restriction   factor   tetherin   (BEST2  or  CD317)   inhibits   the   release  of  

enveloped   viral   particles   from   infected   cells.   Tetherin   has   been   shown   to   restrict   the  

release  of  a  wide  range  of  viruses  including  filoviruses,  arenaviruses,  rhabdoviruses,  and  

all  retroviruses  tested  so  far.  The  HIV-­‐1  protein  Vpu  binds  to  tetherin  and  counteracts  its  

antiviral   function   (166,   167).   SAMHD-­‐1   was   recently   identified   as   an   antiretroviral  

protein  and  for  HIV-­‐2  this  is  counteracted  by  the  viral  protein  Vpx  (50,  168).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

Antigen  presentation  by  dendritic  cells  

23  

5.  ANTIGEN  PRESENTATION  BY  DENDRITIC  CELLS  

 

5.1  Overview  DCs  are  specialized   for  antigen  presentation  and  T  cell  activation  and  can  capture  and  

present   a   broad   variety   of   different   classes   of   antigens   in   the   body,   e.g.   soluble   and  

particulate  antigens,  pathogens,  and  dying  cells.  Most  exogenously  acquired  antigens  are  

processed   in   acidic   endosomal/lysosomal   vesicles   and   presented   on   MHC   class   II  

molecules  and  activate  CD4+  T  cells   (169).  DCs   that  have  been  exposed  to  viruses  and  

bacteria   can   have   antigens   derived   from   the   pathogens   in   their   cytosol,   either   due   to  

that   they  are  productively   infected  or   that  pathogenic  antigens  have  been  delivered  to  

this  site.  These  cytosolic  antigens  are  degraded  and  almost  exclusively   loaded  on  MHC  

class  I  molecules  in  the  ER  by  a  process  called  direct  or  classical  endogenous  MHC  class  I  

presentation.   Furthermore,   exogenous   antigens   can   also   be   presented   on  MHC   class   I  

molecules   and   this   process   is   called   cross   presentation   or   cross   priming   and   was  

discovered  in  1976  by  Michael  J  Bevan  (170)  in  mouse  APCs  and  1998  by  Nina  Bhardwaj  

in   human   DCs   (171).   Several   antigens   have   been   reported   to   be   cross   presented   and  

include  proteins,  immune  complexes,  intracellular  bacteria,  parasites,  and  infected  dying  

cells   (172,  173).   The   antigens   are   in   part   proteolysed   in   the   endosomal   compartment  

and  presented  either  by  direct  loading  on  MHC  class  I  molecules  in  recycling  endosomes  

or   by   active   translocation   out   to   the   cytosol   (174-­‐178).   In   the   cytosol   the  

proteins/antigens  are  further  processed  by  the  proteasome  and  either  guided  back  into  

the  endosomal  compartment   for   loading  on  MHC  class   I  molecules  or   transported   into  

ER  via  transporter  associated  with  antigen  processing  (TAP)  and  loaded  onto  MHC  class  

I  molecules.  When  the  peptides  are   loaded  on  MHC  class   I  molecules,   these  complexes  

are   transported   to   the  cell   surface  where   they  can  be  presented   to  CD8+  T  cells   (174-­‐

178).   In   the   case   for   HIV-­‐1,   DCs   can   efficiently   cross   present   antigens   from   HIV-­‐1  

infected   dying   cells   leading   to   efficient   CD8+   T   cell   activation   (179).   A   third   way   of  

presenting   antigens   in   the   context   of   MHC   class   I   molecules   is   called   cross   dressing.  

Cross-­‐dressing   is   a   phenomenon  where   a   peptide-­‐MHC   class   I   complex   is   transferred  

from   the   cell   surface   of   an   infected   APC   to   an   uninfected   APC   that   can   present   this  

complex  (180).  Cross  dressing  occurs  in  viral  infections  and  activates  the  memory  CD8+  

T  cell  population  (180).  

36

Antigen  presentation  by  dendritic  cells  

24  

The  DC   is   the   only  APC  with   the   ability   prime  naïve  T   cells.   An   activated   naïve  T   cell  

rapidly  undergoes  up  to  15  cell  divisions  and  these  cells  develop  into  effector  T  cells  that  

migrate  to  and  enter  specific  tissues  where  they  can  destroy  infected  cells  and  clear  the  

infection   (181).   In   addition,   some   of   the   primed   naïve   T   cells   develop   into   central  

memory  T  cells  that  persist  long  term  and  can  be  reactivated  when  the  body  encounters  

the  antigen  a  second  time  (181).    

 

5.2  MHC  class  I  restricted  antigen  presentation  Endogenous  HIV-­‐1  antigen  presentation  on  MHC  class  I  molecules  require  fusion  of  the  

viral  gp120  with  the  infection  receptors  CD4  and  coreceptors  (CCR5/CXCR4),  i.e.  viral  

access  to  the  host  cell  cytosol.  The  viral  proteins  are  processed  in  the  cytosol  by  the  

proteasome  and  guided  into  the  ER  for  MHC  class  I  molecule  loading  by  TAP1/2  (182,  

183).  In  early  1970,  ubiquitin  was  recognized  as  a  molecules  that  covalently  marks  

intracellular  proteins  for  transport  and  degradation  by  the  26S  proteasome,  a  multi  

enzymatic  complex,  and  is  therefore  known  as  the  ubiquitin-­‐proteasome  system  (UBS)  

(184)  (Fig.  8).  The  UBS  plays  a  major  role  in  the  MHC  class  I  restricted  processing  of  

cytosolic  proteins  and  ER  targeted  proteins,  including  mutant,  damaged,  partially  

unfolded,  or  miss  folded  proteins  (185).  Some  of  the  viral  proteins  released  in  the  

cytosol  are  ubiquitinated  and  ubiquitins  are  progressively  added  and  form  a  chain,  a  

process  catalyzed  by  three  enzymes  E1,  E2,  and  E3.  The  ubiquitin  is  activated  by  E1,  

conveyed  to  E2  ubiquitin  carrier  proteins,  and  subsequently  transferred  by  E3  ubiquitin  

ligase  to  a  substrate  protein.  This  ubiquitinated  protein  is  transported,  recognized,  and  

degraded  by  the  26S  proteasome  (186).  Over  time,  several  proteins  similar  to  ubiquitin  

have  been  identified,  i.e.  ubiquitin  like  proteins  (UBLs).  UBLs  are  divided  into  two  

groups,  ubiquitin  domain  proteins  (UDP)  and  ubiquitin-­‐like  modifiers  (ULM)  (187-­‐189),  

some  involved  in  escorting  polyubiquitinated  proteins  to  the  26S  proteasome  and  others  

function  in  an  ubiquitin  like  manner  (190).  The  binding  of  UBLs  can  affect  different  

biological  events,  such  the  enzymatic  activity,  half  life  of  a  protein,  facilitate  or  inhibit  

the  binding  of  the  protein  to  another  molecule  (191).  ISG15  was  the  first  identified  UBL  

and  it  tags  proteins  and  interacts  with  the  proteasome  system  (191,  192).  For  instance,  

inhibition  of  the  proteasome  increases  the  levels  of  proteins  conjugated  with  ISG15  and  

overexpression  of  ISG15  decreases  polyubiquitinilation  of  proteins,  indicating  that  

ISG15  antagonizes  the  activity  of  the  ubiquitin-­‐proteasome  system  (193-­‐195).  HIV-­‐1  

37

Antigen  presentation  by  dendritic  cells  

25  

replication,  assembly,  and  release  of  virions  are  inhibited  by  ISG15  (196,  197).  NEDD8  is  

another  UBL  and  conjugation  of  this  UBL  to  proteins  can  lead  to  their  degradation  via  

the  proteasome.  This  is  mediated  by  the  adaptor  protein  NEDD8  ultimate  buster-­‐1  

(NUB1)  (198,  199).  A  portion  of  the  viral  proteins  entering  a  cell  is  ubiquitinated  and  

tagged  for  proteasomal  degradation,  whereas  misfolded  HIV-­‐1  proteins  are  degraded  in  

the  20S  proteasome  in  an  ubiquitin  independent  manner  (200).  

However,   many   viruses   modulate   the   ubiquitin-­‐proteasome   pathway   thereby  

modulating   cellular   signaling   and   antiviral   responses   (201,   202).   HIV-­‐1   Vif  modulates  

this   pathway   by   ubiquitination   of   APOBEC3G,   which   helps   viral   fitness.   Vif   itself   is  

monoubiquitinated,   which   helps   to   recruit   this   protein   to   the   site   of   viral   assembly.  

Ubiquitination  of  Gag  by  an  Ubiquitin  ligase  is  also  an  important  step  for  the  assembly  of  

HIV-­‐1  proteins  (20,  203-­‐206).  

The  proteasome  is  involved  in  many  degenerative  and  biological  processes  in  the  cytosol  

including   removing   ubiquitinated   and   misfolded   proteins   (200).   Several   kinds   of  

proteasomes   exist   in   the   cell,   20S,   26S  proteasome,   and   immunoproteasome.  The  20S  

proteasome  contains  multiple  peptidase  activities  and  is  shaped  as  a  barrel,  composed  

of   four   rings,   each   with   seven   β1,   β2,   and   β5   subunits   (207).   The   26S   proteasome  

recognizes   polyubiquitinated   proteins   (208)   and   consists   of   a   20S   subunit   and   a   19S  

regulatory  complex,  which  degrades  the  ubiquitinated  proteins  (200).  20S  subunit  also  

associates   with   the   11S   regulatory   complex   and   this   opens   a   channel   through   the  

complex   and   this   proteasome   complex   degrades   non-­‐ubiquitinated   short   peptides.   In  

the   presence   of   IFN-­‐γ   the   homologous   subunits   β1i   (LMP2),   β2i   (MECL1),   and   β5i  

(LMP7)  are   incorporated   in   the  26S  proteasome  and  19S   subunit   is   replaced  with   the  

11S   subunit,   giving   rise   to   the   immunoproteasome   (200,   209,   210).   The  

immunoproteasome   has   an   increased   proteolytic   activity   favoring   the   production   of  

peptides  for  MHC  class  I  presentation  (209).  Immature  MDDCs  express  equal  amounts  of  

the  20S  proteasomes  and   the   immunoproteasomes,  while  mature  MDDCs  contain  only  

immunoproteasomes  (211).  The  proteasomal  cleavage  generates  the  N-­‐terminus  of  the  

peptides   presented   by   MHC   class   I   molecules,   whereas   the   amino   terminus   of   the  

proteins   and   peptides   can   be   further   edited   by   cytosolic   aminopeptidases   (210).   For  

instance,   the   cytosolic   aminopeptidase   tripeptidyl   peptidase   II   is   essential   for   the  

generation   of   the   immunodominant   HIV-­‐1   Nef   MHC   class   I   epitope   in   DCs   (212).

38

Antigen  presentation  by  dendritic  cells  

26  

Peptides   generated   in   the   cytosol   by   proteasome/immunoproteasome   and  

aminopeptidase   proteolysis   are   transported   to   TAP,   which   translocates   the   peptides  

into   the   lumen   of   ER   (213).   In   the   ER,   the   peptides   can   be   further   trimmed   by   ER  

aminopeptidases  (ERAP)  to  produce  8-­‐10  amino  acid  long  peptides  that  fit  into  the  MHC  

class  I  molecule  peptide  binding  grove  (213).    

Newly  synthesized  MHC  class  I  proteins,  i.e.  MHC  class  I  heavy  chain  and  β2  

microglobulin  (β2m),  are  transported  to  assemble  in  the  ER  lumen  and  remain  there  

until  they  bind  peptides.  This  process  is  strictly  controlled  to  ensure  the  highest  possible  

efficiency  of  the  antigen  presentation  (214).  For  instance,  the  folding  and  assembly  of  

the  MHC  class  I  heavy  chain  is  controlled  by  the  molecular  chaperones  including  BiP,  

calnexin,  calreticulin,  and  ERp57.  The  chaperones  also  play  an  important  role  in  

stabilizing  the  empty  MHC  class  I  molecule.  The  MHC  class  I  peptide  loading  complex  is  

composed  of  MHC  class  I  molecule,  TAP1/2,  calreticulin,  tapasin,  and  ERp57  (215).  The  

association  of  MHC  class  I  molecule  with  the  TAP-­‐tapasin-­‐calreticulin  complexes  leads  to  

the  release  of  calnexin,  but  the  MHC  class  I  molecule  is  released  first  when  binding  of  a  

peptide  with  fitness  for  its  peptide  grove  has  occurred.  The  fully  assembled  peptide  

loaded  MHC  class  I  molecule  is  transported  from  the  ER,  through  the  Golgi  apparatus,  

and  via  vesicles  out  to  the  cell  surface  (Fig.  9).

39

Antigen  presentation  by  dendritic  cells  

27  

 

   

Figure  8.  Transportation  and  degradation  of  ubiquitinated  proteins  by  the  26S  proteasome.    

When  a  substrate  protein  becomes  polyubiquitinated  by  a  chain  of  at  least  four  ubiquitins  (Ub),  it  can  bind  

to  an  adaptor  protein,  containing  binding  domains  for  both  the  polyubiquitin  and  the  proteasome.  In  

addition,  the  polyubiquitinated  protein  can  also  bind  directly  to  intrinsic  Ub  binding  sites  in  the  19S  

regulatory  complex  of  the  26S  proteasome.  Why  some  substrates  must  be  escorted  to  the  proteasome  by  

an  adaptor  protein  and  others  can  associate  directly  with  polyubiquitin-­‐binding  subunits  in  the  

proteasome  is  not  fully  understood.  Binding  of  the  substrate  protein  to  the  proteasome  is  followed  by  

protein  unfolding  by  the  half-­‐dozen  ATPases  encircling  the  pore  of  the  proteasome  catalytic  core,  removal  

of  the  polyubiquitin  chain  by  proteasome-­‐associated  deubiquitylation  enzymes  (DUBs),  and  translocation  

of  the  unfolded  protein  into  the  central  proteolytic  chamber,  where  it  is  cleaved  into  short  peptides  (216).  

 

 

5.3  MHC  class  II  restricted  antigen  presentation    Before  HIV-­‐1  derived  antigens  can  be  presented  by  the  DCs  on  MHC  class  II  molecules  

they   are   processed   in   the   endosomal/lysosomal   compartment   (217).   Virions   are  

internalized   by   DCs   via   macropinocytosis,   receptor   mediated   endocytosis,   and/or  

40

Antigen  presentation  by  dendritic  cells  

28  

clathrin   mediated   endocytosis   (218,   219).   The   endocytic   compartments   become  

gradually  more  and  more  acid  and  in  the  lysosomes  the  pH  is  4.5-­‐5.0.  Protein  antigens  

are  processed  in  endosomal  compartments  by  endosomal  proteases,  e.g.  Cathepsin  B,  C,  

D,  and  E,  and  hydrolases  and  this  degradation  in  the  acidic  endosomal  compartments  is  

necessary   for   MHC   class   II   presentation   (220).   The   degradation   of   antigens   in   the  

endosomal   compartments   includes   reduction   of   disulfide   bounds   by   IFN-­‐γ   inducible  

thiol  reductase  (GILT),  and  proteolysis  by  an  array  of  proteases,  e.g.  Cathepsin  B  and  D,  

and  aminopeptidases  (221).  These  enzymes  function  best  in  an  acidic  environment  and  

an  optimal  rate  of  peptide  production  is  achieved  at  pH  4.5-­‐5.0.  The  pH  optimum  does  

not  only  depend  on  the  peptide,  but  also  on  properties  of  the  whole  peptide-­‐MHC  class  II  

complex  (221).  

 The  MHC  class  II  molecule  is  synthesized  in  the  ER  and  the  invariant  chain  (Ii)  prevents  

peptides   from  binding   to   its  peptide  binding  grove.  When  assembled,   the  MHC  class   II  

molecules  are   transported   through  the  Golgi  and  directed   in   to   the  endocytic  route  by  

the  help  of   the   Ii.  Before   the  MHC  class   II  molecule   can  bind  a  peptide,   the   Ii  must  be  

removed   and   this   is   achieved   by   a   stepwise   proteolytic   degradation   of   Ii   by   the  

endosomal  protease  Cathepsin  S,  which  is  found  in  a  very  high  concentration  in  the  late  

endosomes,   e.g.  MHC   class   II   compartments   (MIIC)   (222).   The   proteolysis   of   Ii   leaves  

only   the   one   part   of   the   Ii   attached   to   the   binding   grove,   i.e.   CLIP.   Antigenic   peptides  

compete  with  CLIP  for  the  binding  site  on  MHC  class  II  molecules  and  peptide  binding  

can  only  occur  when  CLIP  is  removed.  HLA-­‐DM  retains  the  MHC  class  II  molecule  in  the  

MIIC  and  assists  in  the  process  of  removing  CLIP  from  the  peptide  binding  groove.    First  

when  a  peptide  has  bound  to  the  groove  of  MHC  class  II  molecule  can  it  migrate  up  to  

the  cell  surface  and  present  the  antigenic  peptide  to  the  CD4+  T  cells  (221)  (Fig.  9).    

41

Antigen  presentation  by  dendritic  cells  

29  

 Figure  9.  MHC  class  I  and  II  antigen  processing  and  presentaton  pathways  by  HIV-­‐1.  

HIV-­‐1  can  be  internalized  by  endocytosis  and  processed  in  the  MHC  class  II  restricted  pathway.  The  

internalized  antigens  traffic  via  early  endosomes  to  late  endosomes.  This  pathway  is  dependent  on  a  

gradual  acidification  for  proteolytoc  activity  and  endosomal  hydrolases  for  the  removal  of  the  invariant  

chain  and  loading  on  antigen  peptides  on  MHC  class  II  molecules.  The  peptide-­‐MHC  class  II  complex  is  

transported  to  the  surface  and  the  antigen  peptide  is  presented  to  CD4+  T  cells  (223).  HIV-­‐1  can  enter  the  

endogenous  processing  pathway  by  fusion  following  interaction  of  HIV-­‐1  gp120  with  CD4  and  coreceptor.  

The  viral  proteins  are  processed  in  the  cytosol  by  the  proteasome  and  guided  into  the  ER  for  MHC  class  I  

molecule  loading  by  TAP  (182,  183).  In  the  ER,  the  MHC  class  I  molecules  are  assembled  with  the  help  

molecular  chaperones  that  stabilize  them  when  they  are  assembled.  The  peptides  transported  into  the  ER  

are  loaded  on  the  stabilized  MHC  class  I  molecules  and  the  complexes  transported  to  the  cell  surface  for  

presentation  to  CD8+  T  cells  (221).  

endosome

ER

MHC I

golgi

lateendosome

tapasin

ERp57 calreticulin

TAP 1/2

proteasome

HIVcell membrane

cytososol

cytosol

cell membrane

cathepsinMHC II

TCR

CD8 T cell

MHC I+HIV peptide

TCR

CD4 T cell

MHC II+HIV peptide

42

Mucosal  immunity  and  HIV  

30  

6.  MUCOSAL  IMMUNITY  AND  HIV    

The   innate   immunity   of   the   mucosa   is   the   first   line   of   defense   against   invading  

pathogens.  The  mucosa  in  the  female  genital  tract  has  a  unique  architecture  to  provide  

protection   against   pathogenic   microbes.   However,   the   epithelial   layer   does   not   only  

serve   as   a   passive   barrier   with   epithelial   integrity   and   low   pH,   the   mucosa   innate  

immunity   also   has   active   defense   mechanisms   and   secretes   mucus,   defensins,   whey  

acidic   proteins,   type   1   IFNs,   secretory   leukocyte   protease   inhibitors   (SLPIs),   and  

complement  proteins   (224).  Defensins   are  produced  by   the   epithelial   cells   and   inhibit  

HIV-­‐1  replication  in  vivo  (225)  and  whey  acidic  proteins  have  anti-­‐microbial  activities.  

SLPIs   can   reduce   viral   transmission   through   the   mucosal   epithelium   and   they   are  

produced   by   epithelial   cells   upon   sensing   pathogens   through   TLRs   (226).   The  

microenvironment   in   the   female   genital   tract   is   influenced   by   female   reproductive  

hormones  and  these  hormones  have  diverse  effects  on  the  HIV-­‐1  infection.  For  instance,  

progesterone   increases   the   susceptibility   to   HIV-­‐1   infection,   whereas   estradiol   has   a  

preventive  effect  (227-­‐230).  

 

6.1  Transfer  of  HIV-­‐1  through  the  female  genital  mucosa  

The  typical  mode  of  HIV-­‐1  transmission  is  by  heterosexual  intercourse  and  the  mucosa  

is   the   first   site   of   interaction   between   the   virus   and   the   host.   Mucosal   tissues   are  

characterized   as   either   type   I   or   type   II.   Type   I   mucosa   consists   of   a   single   layer  

epithelium  covering   the   intestine,   lungs,   endocervix,   and  uterus.  Physiologically   type   I  

mucosa   serves   as   an   area   of   respiration,   absorption,   and   exchange.   Type   II   mucosa  

consists   of   a   stratified   epithelium,   covering   vagina   and   ectocervix,   and   this   is   a  

protective  barrier.  In  general,  DCs  residing  in  type  I  mucosa  have  a  regulatory  function  

and   maintain   the   balance   between   tolerance   and   inflammation   while   DCs   in   type   II  

mucosa   protect   the   host   against   pathogens   through   the   induction   of   inflammatory  

responses  (231,  232).  The  most  common  site  of  HIV-­‐1  infection  the  female  genital  tract  is  

unknown   (7).   However,   HIV-­‐1   can   cross   both   the   stratified   epithelium   of   vagina   and  

ectocervix   and   the   single   layer   epithelium  of   endocervix   and   the   transformation   zone.  

Penetration   through   the   mucosal   epithelium   occurs   fast,   within   30-­‐60   minutes   after  

exposure   the   virus   have   reached   the   submucosa   (233).   The   stratified   epithelium  

provides   the   better  mechanical   protection   than   the   single   layer   epithelium.   However,  

43

Mucosal  immunity  and  HIV  

31  

the  greater  surface  area  of  vagina  and  ectocervix  provides  a  more  potential   target  (7).  

The  transformation  zone  may  be  especially  susceptible  to  HIV-­‐1  infection  since  this  area  

is   enriched  with  CD4+   target   cells   (7).  HIV-­‐1   can  penetrate   the  mucosal   epithelium   in  

several  different  modes;  it  can  penetrate  down  between  the  epithelial  cells  and  this  may  

give  HIV-­‐1  an  opportunity  to  come  in  contact  with  and  infect  LCs  and  CD4+  T  cells  (234).  

However,   a   recent   study   concluded   that   productive   HIV-­‐1   infection   of   vaginal   LCs   is  

absent  or  minimal  but   that   they   transmit   infectious  virions   to  CD4+  T  cells   (235).   It   is  

also   likely   that   virus   can   enter   the   submucosa   by   a   mechanism   called   transcytosis.  

Transcytosis  is  a  nondegenerative  process  and  the  virus  is  transported  in  vesicles  from  

the  apical  side  of  apolarized  epithelial  cell  in  the  ectocervical  columnar  epithelium  to  the  

baselateral  side  without  infecting  the  cell  itself  (236,  237).  In  addition,  if  there  is  a  break  

in  the  epithelium,  virions  get  direct  access  to  the  submucosa  and  the  target  cells  located  

at  this  site.  LCs  in  the  epithelium  can  pick  up  HIV-­‐1  and  migrate  to  the  lymph  nodes,  and  

have   therefore  been  proposed   to  be   the   first   target   cells   for  HIV-­‐1   (145)   (Fig.   10).  Of  

note,  genital  mucosa  CD4+  T  cells,  macrophages,  and  DCs  have  also  been  shown   to  be  

targeted   by   HIV-­‐1   upon   the   first   encounter   (238).   Our   study   showed   that   HIV-­‐1  

opsonized  with  complement  fragments  gave  rise  to  an  increased  infection  in  the  DCs  and  

infection  decreased  infection  in  the  CD4  +  T  cells  (239).    

In  the  submucosa  and  lymph  nodes,  the  DCs  transfer  the  virus  to  CD4+  T  cells  in  a  trans-­‐

infectious  mode   (240,  241)   and   this  DC-­‐T   cell   spread  highly   amplifies   the  CD4+  T   cell  

infection.  The  productive  HIV-­‐1  infection  following  mucosal  transmission  is  usually  the  

expansion  from  a  single  founder  virus  (242,  243).  3-­‐4  days  postinfection,  small  founder  

populations   can   be   detected   in   the   transformation   zone   or   the   endocervix   (244).   The  

small  founder  population  must  be  sustained  at  a  basic  reproductive  rate  to  give  rise  to  

systemic  HIV-­‐1   infection.  The   founder  populations   consist  of  CD4+  T  cells   and  around  

90%  of  these  cells  are  resting  CD4+  T  cells.  The  virions  in  the  founder  population  have  a  

small  diversity  until  the  host  develops  an  adaptive  immune  response,  which  drives  the  

virus   to   great   diversity   (6).   We   showed   that   blocking   the   integrins   α4   and   β7  

significantly  reduced  the  establishment  of  founder  populations  in  cervical  tissue  (239).  

DCs  exposed  to  HIV-­‐1  at  the  portal  of  entry  migrate  to  the  lymph  nodes,  within  18-­‐24h  

after  exposure  the  DCs  reach  the  lymphoid  tissue,  which  is  before  the  local  infection  has  

expanded  to  the  lymph  nodes  (233).  In  the  lymph  nodes  the  DCs  activate  the  CD4+  and  

CD8+  T  cells   and  mount  a   specific   immune  response  directed  against  HIV-­‐1  (Fig.   10).  

44

Mucosal  immunity  and  HIV  

32  

However,  the  adaptive  immune  response  develops  late  too  prevent  the  systemic  spread  

of   HIV-­‐1   and   the  massive   destruction   of   CD4+T   cells   in   the  mucosa   and   can   in  most  

individuals  only  partially  control  the  infection.    

 

   Figure  10.   Interaction  of  HIV-­‐1   in  the  female  genital   tract-­‐  entry,   infection  and  delivery  to   lymph  

nodes.  Endocervix  is  composed  of  a  single  layer  columnar  epithelium  while  ectocervix  and  vagina  include  

a   stratified   epithelium.  HIV-­‐1   can   penetrate   the   epithelium   in   several   different  modes   and   CCR5   tropic  

HIV-­‐1   is   preferentially   transmitted   through   the   epithelium   and   has   an   advantage   in   establishing   an  

infection   in   the   female   genital   tract.  After   crossing   the   cervicovaginal   barrier,  macrophages,  DCs,   and  T  

cells  become  infected.  DCs  transfer  HIV-­‐1  to  T  cells  in  DC-­‐T  cell  conjugates  and  the  virus  is  then  spread  to  

the  lymph  nodes.  DCs  pick  up  HIV-­‐1  and  migrate  to  the  lymph  nodes  where  they  present  HIV-­‐1  antigens  

on  MHC   class   I   and   II  molecules.   This   activates   both   CD4   and   CD8+   T   cells,  mounting   a   HIV-­‐1   specific  

immune  response  (6,  245,  246)  

 

 

 

 

45

Aims  of  thesis  

33  

7.  AIMS  OF  THIS  THESIS  

 The  majority  of  HIV-­‐1  infections  are  acquired  by  mucosal  exposure  and  the  DCs  are  one  of  

the  first  cells  targeted  by  HIV-­‐1.  The  general  aims  of  this  thesis  were  to  study  the  infection  

of  DCs  and  T  cells  in  the  cervical  mucosa  and  to  investigate  how  free  and  opsonized  HIV-­‐1  

interact   with   human   MDDCs.   Little   is   known   about   the   cellular   mechanisms   leading   to  

antigen  presentation  of  HIV-­‐1  and  wether  opsonized  HIV-­‐1  has  a  different   fate   inside  the  

DCs  compared  to  free  HIV-­‐1.  

The  specific  objectives  were:  

 

 Paper   I:   To   study   the   different   steps   leading   to   MHC   class   I   and   II   restricted   antigen  

presentation   by   immature   and   mature   DCs   of   HIV-­‐1   antigens   derived   from   whole  

noninfectious  and  infectious  HIV-­‐1  particles.    

 

Paper   II:  To  study  the  binding  and  uptake  of   free  and  opsonized  HIV-­‐1  by  immature  and  

mature   MDDCs   and   establish   the   receptors   involved   in   binding   and   internalization   of  

virions.  

 

Paper   III:   To   assess   how   opsonization   of   HIV-­‐1   affects   the   processing   pathways,  

degradation,  and  storage  of  HIV-­‐1  by  immature  and  mature  DCs  and  how  this  affects  MHC  

class  I  and  II  antigen  presentation.  

 

Paper   IV:  To  study   the  effects  opsonization  of  HIV-­‐1  has  on   infection  of   cervical  mucosa  

using   a   human   cervical   tissue   explant   model   and   identification   of   cellular   receptors  

involved  in  the  HIV-­‐1  infection  of  immune  cells  and  establishment  of  founder  populations.  

 

 

 

 

46

Methods  

34  

8.  METHODS  

 

8.1  Propagation  of  monocyte  derived  DCs  Peripheral   blood   mononuclear   cells   (PBMCs)   were   isolated   from   Buffy   coats   or  

leukapheresis   after   Ficoll-­‐Hypaque   density   gradient   centrifugation.   DC   progenitors,   i.e.  

CD14+  monocytes,   were   differentiated   into   immature   DCs   by   the   growth   factor   GM-­‐CSF  

and  cytokine  IL-­‐4.  Maturation  of  immature  DCs  was  induced  by  exposing  these  cells  to  Toll-­‐

like  receptor  ligands  such  as  dsRNA  (poly-­‐I:C)  or  LPS.  The  immunophenotype  of  immature  

and  mature  DCs  was  assessed  by  analyzing  the  surface  expression  of  CD14  and  CD83  using  

flow  cytometry.    

 

   

Figure  11.   Propagation  of  human  monocyte  derived  dendritic  cells  (MDDCs)  from  PBMCs.  

To  differentiate   the  CD14+  precursor  cell   into   immature  DCs,   the  cells  were  stimulated  with  

GM-­‐CSF  and  IL-­‐4.  To  induce  maturation  were  the  DCs  exposed  to  dsRNA  (poly  I:C).  

 

 

8.2  Virus  propagation  and  opsonization  HIV-­‐1BaL/SUPT1-­‐CCR5   CL.30   was   produced   using   chronically-­‐infected   cultures   of  

ACVP/BCP   cell   line.   Virus   was   purified   by   continuous   flow   centrifugation   and   sucrose  

density-­‐gradient  fractions  were  collected  and  virus  containing  fractions  pooled  and  virus  

pelleted.   The   virus   pellet   was   resuspended   and   aliquots   frozen   in   liquid   N2   vapor.   All  

virus   preparations   were   assayed   for   infectivity.   Non-­‐infectious   HIV-­‐1BaL   and   HIV-­‐1MN  

virions  were  prepared  by   chemical   inactivation  with  2,2’-­‐dithiodipyridine   (Aldrithiol-­‐2,  

AT-­‐2);  AT-­‐2  inactivation  eliminates  infectivity  by  covalent  modification  of  internal  virion  

proteins  but  preserves   conformationally   and   functionally   intact   envelope   glycoproteins  

on  the  virion  surface  (247).  GFP  HIV-­‐1BaL  was  propagated  by  transfecting  a  239  T  cell  line  

with   HIV-­‐1BaL   and   GFP-­‐VPR   plasmids.   The   virus   were   harvested   after

47

Methods  

35  

36h  and  concentrated  by  ultracentrifugarion  before  determing  the  p24  concentration  by  

ELISA.    

Opsonization  of  HIV-­‐1  was  performed  using  human  serum  (HS)  or  seminal  plasma  (SP)  

from   healthy   volunteers.   Different   constellations   of   HIV-­‐1;   free   HIV-­‐1   (F-­‐HIV),  

complement   opsonized   HIV-­‐1   (C-­‐HIV),   HIV-­‐specific   and   unspecific   IgG   opsonized   (IgG-­‐

HIV),  or  a  combination  of  both  complement  and  IgG  (C-­‐IgG-­‐HIV)  was  used  to  mimic  the  in  

vivo  situation.  C-­‐HIV  was  obtained  by  incubation  of  HIV-­‐1  with  HS  or  SP  in  Veronal  buffer  

(248).   For   C-­‐IgG-­‐HIV,   HIV-­‐specific   and   unspecific   IgG   were   added   besides   the   HS   in  

Veronal  buffer,  whereas  IgG-­‐HIV  was  obtained  by  adding  the  HIV-­‐specific  and  unspecific  

IgG.  F-­‐HIV  was  treated  with  media  alone.  As  a  control   for  the  complement  opsonization  

was  heat   inactivated  HS  was  used   to   opsonize  HIV-­‐1   as  heat   inactivation   abolishes   the  

complement  activation.    

 

8.3  ELISPOT  assays  Immature  dendritic  cells  (IDCs)  or  mature  dendritic  cells  (MDCs)  were  exposed  to  different  

binding   and  uptake   inhibitors   for   30  min   at   37°C.   IDCs   and  MDCs,  were   exposed   to   free  

HIV-­‐1BaL   (F-­‐HIV),   complement   opsonized   HIV-­‐1,   antibody   opsonized   HIV-­‐1   (IgG-­‐HIV)   or  

HIV-­‐1   opsonized   with   a   combination   of   complement   and   antibody.   The   samples   were  

incubated  over  night  at  37°C  and  unbound  virus  were  removed  before  coculturing  MDCs  

and  IDCs  with  HIV-­‐specific  CD4+  (HLA-­‐A*DRβ04+)  or  CD8+  T  cell  (HLA-­‐A*0201+)  clones  in  

precoated  96  well  IFN-­‐γ  ELISPOT  plates  or  in  96-­‐well  plates.  After  the  overnight  coculture  

the   ELISPOT   plates   were   washed   and   developed   and   the   detection   of   IFN-­‐γ   spots   was  

performed  as  described  previously  (249).  

 

8.4  Quantification  using  Real  time  PCR  Real-­‐time  PCR  is  a  method  to  analyze  gene  expression  and  has  an  advantage  compared  to  

more  traditional  PCR  with  a  greater  sensitivity,  reduced  time  per  analysis.  Compared  to  

traditional  PCR  which  only  measures  the  final  phase  of  the  reaction,  Real  time  PCR  

measures  the  kinetics  of  the  reaction  and  therefore  allows  the  detection  of  amplification  

of  DNA  in  real  time.  The  method  involves  several  steps  including  isolation  of  RNA  and  

digestion  of  genomic  DNA.  Using  the  RNA  Easy  Mini  kit,  RNA  was  prepared  Quantitative  

PCR  was  performed  with  Fast  SYBER  Green  Master  Mix  on  7900  Fast  Real-­‐Time  PCR  

system  with  7900  system  SDS  2.3  Software.  SYBER  Green  binds  dsDNA  with  high  

48

Methods  

36  

specificity  and  the  fluorescence  emission  of  the  DNA-­‐dye  complex  will  be  measured,  and  

the  intensity  of  the  fluorescence  emission  is  in  direct  proportion  to  the  amount  of  DNA  

being  produced.  In  our  experiments  the  final  results  were  analyzed  using  the  ΔΔCt  

equation.  

 

   

Figure  12.   Real  time  PCR  technology.  

In  contrary  to  conventional  PCR,  real  time  PCR  includes  detection  steps  combined  with  the  

amplification.  First  the  primer  and  the  polymerase  bind  to  the  target  nucleic  acid  (cDNA)  to  

make  a  complementary  strand.  To  visualize  the  target  nucleic  acid  specific  oligonucleotide  

probe,   linked  to  a   fluorophore  dye(SYBR  green),  hybridizes  with  the  amplified  dsDNA  and  

emits   light  when   exposed   to   blue   light   (488   nm).In   every   cycle   the   optical  module   of   the  

real-­‐time  PCR  system  measures  the  fluorescence  signal,  and  the  associated  software  plots  a  

graph  of  the  fluorescence  intensity  versus  the  number  of  cycles.  

 

8.5  Preparation  of  cervical  tissue  samples  Cervical  tissue  was  received  from  women  undergoing  partial  or  full  hysterectomy  at  the  

Gynecology   Clinic   in   Linköping,   Sweden   and  women  with   conditions   not   involving   the  

cervix   were   chosen   to   be   involved   in   this   study.   The   tissues   were   kept   on   ice   and  

processed  in  the  lab  within  30  minutes  after  resection  and  the  epithelial  layer  and  lamina  

propria  were  separated  from  the  underlying  stroma  using  a  surgical  scissor.    

Cervical  tissues  with  a  size  of  3mm2  or  8mm2  were  placed  in  a  cell  culturing  plate  and  pre  

incubated  for  30  min  at  37°C  with  mock  or  different  inhibitors.    

Tissue   samples   (8mm2)   were   challenged   with   HIV-­‐1or   incubated   with   GFP-­‐HIV-­‐1  

(3mm2),  spinoculated,  cultured  and  washed.  The   tissue  were   then  transferred  to  6-­‐well  

plates   and   cultured  at  37ºC.  After  3-­‐6  days   the  emigrating   cervical   cells  were   collected  

and  stained  for  acquisition  by  flow  cytometry.  

49

Methods  

37  

8.6  Flow  Cytometry  On  day  3,  5,  or  6  cells  migrating  from  the  cervical  tissue  were  harvested  and  subsequently  

stained   using   the   following   anti-­‐human   antibodies;   CD4-­‐APC   (BD   Biosciences),   CD3-­‐

PerCP  (BD  Biosciences),  and  CD1a-­‐PE  (BD  Biosciences).  The  cells  were  incubated  for  30  

min  at  4°C  and  than  fixed  in  4%  PFA  and  permeabilized  in  0.2%  Saponin.  For  detection  of  

HIV-­‐1  the  cells  were  incubated  with  the  anti-­‐HIV-­‐1  mAb  (KC57,  clone  FH190-­‐1-­‐1)  and  the  

corresponding   isotype   control   (BD   PharMingen,   San   Diego,   CA)   for   45   min   at   room  

temperature.   The   stained   emigrating   cells  were   assessed   by   four   color   flow   cytometry  

using  FACS  Calibur.  The  acquired  data  was  analyzed  using  FLowJo  (Treestar,  Ashland,  OR,  

USA).    

 

 

 

Figure  13.  The  samples  were  analyzed  using  fluorescence  activated  cell  sorting  (FACS).  

Cells  migrating  from  cervical  tissue  were  labeled  with  different  fluorochromes  and  directed  into  a  

hydrodynamically  focused  single  stream.  As  the  cells  pass  through  the  laser  the  fluorochromes  will  emit  light.  

The  emitted  light  is  then  transferred  to  detectors  that  convert  the  emitted  light  into  signals  that  can  be  

processed  by  computers.    

50

Methods  

38  

8.7  Immunofluorescence  and  confocal  microscopy    Uninfected  cervical  tissues  or  tissues  frozen  down  2h  or  5  days  post-­‐infection  were  cryo  

sectioned.  Tissue  sections  or  slides   from  cytospin  of  a  single  cell  suspension  using  IDCs  

and  MDCs  were   fixed   in   4%   PFA,   quenched,   and   stained  with   primary   antibodies   and  

incubated   over   night   at   4°C,   washed   3   times   and   stained   with   a   secondary   mAb  

(Rhodamine  Red-­‐X  conjugated)  for  1h  at  room  temperature  (RT).  The  sections  were  then  

washed  and  mounted  using  mounting  medium  for  fluorescence  containing  DAPI  (Vector  

Laboratories,  Burlingame,  CA).  The  samples  were  analyzed  by  a  LSM  510  META  confocal  

microscope  (Carl  Zeiss  AB,  Stockholm,  Sweden)  using  the  LSM  510  software.  

 

8.8  Immunohistochemistry  (IHC)  Infected   and   uninfected   cervical   tissue   (4%   PFA   fixed),   cultured   for   5-­‐6   days   were  

embedded   in   paraffin   and   cut   in   5μm   sections.   The   sections   were   rehydrated   and  

endogenous   peroxidase   was   eliminated   by   incubating   in   H2O2   for   10   min.   To   prevent  

nonspecific  binding  the  sections  were  quenched  in  1%  bovine  serum  albumin  for  10  min.  

The  sections  were  immunostained  with  anti-­‐HIV-­‐1  mAb  overnight,  washed  and  incubated  

with   a   biotinylated   secondary   rabbit-­‐anti-­‐mouse   Ab   (DAKO),   followed   by   streptavidin-­‐

biotin-­‐peroxidase   complex   (HRP).   HRP   was   detected   by   development   in   TRIS-­‐buffer  

containing  diaminobenzidine  tetrahydrochloride  (DAB)  and  10μl  30%  H2O2.  The  sections  

were  counterstained  with  methyl  green  solution  containing  1%  Methyl-­‐green.  

 

 

 

51

Methods  

39  

 

 Figure  14.   General  method  of  Immunohistochemisty.  

A   primary   antibody   recognizes   an   antigen   and   a   secondary   biotinylated   antibody   binds   the  

primary  antibody.  Subsequently  a   complex  consisting  of  avidin,  biotin  and  HRP  binds   to   the  

biotin  attached  to  the  secondary  antibody.  The  peroxidase  is  developed  by  diaminobenzidine  

(DAB)  and  a  brown  colorimetric  end  product  is  developed.  

 

 

8.9  Statistical  analysis    The  statistical  analysis  was  performed  using  GraphPad  Prism  5  (GraphPad  Software,  La  

Jolla,  CA).  Results  were  tested  for  statistical  significance  using  a  two-­‐sided  paired  t-­‐test  or  

non-­‐parametric   Mann-­‐Whitney   test.   A   p-­‐value   of   less   than   0.05   was   considered  

statistically  significant.  N  denotes  the  number  of  times  each  experiment  was  replicated,  in  

all  figures.    

 

 

 

 

52

Results  and  discussion  

40  

9.  RESULTS  AND  DISCUSSION    

Most   HIV-­‐1   infections   are   transmitted   through   the   mucosal   epithelium   and   activate   the  

complement  system  immediately.  Therefore,  both  free  and  opsonized  virions  are  present  in  

the   initiation  and   throughout   the   infection.  The  altered  surface  of   the  virus   changes  how  

the  virus  interacts  with  immune  cells.  For  this  reason  is  it  important  to  take  both  free  and  

opsonized  HIV-­‐1  particles  into  consideration  when  studying  this  chronic  disease.  One  of  the  

first   cells   that   comes   in   contact   with   HIV-­‐1   is   the   DC   but   the   virus   hijacks   this   cell   for  

transportation   to   the   lymph   nodes   (250).   In   the   lymphoid   organs,   the   virions   are  

transferred   from  the  DCs   to   the  CD4+  T  cells,   the   foremost   target  cell   for  HIV-­‐1   infection  

(251).  However,  at  the  same  time  in  the  lymph  the  DCs  present  antigens  derived  from  the  

captured  HIV-­‐1   and   activate  HIV-­‐1   specific   CD8+   and  CD4+  T   cells.  We  have   studied   the  

initial  infection  of  mucosa  and  the  events  leading  to  DCs  uptake,  processing,  and  activation  

of   HIV-­‐1   specific   T   cells.   The   increased   knowledge   of   how  HIV-­‐1   interacts  with   the  DCs,  

mucosal   immunity,   and   initiation   of   HIV-­‐1   infection   is   essential   and   should   be   the  most  

promising  approach  to  take  when  considering  how  to  design  HIV-­‐1  vaccines.  

 

9.1  Paper  I  9.1.1  Background  

The  primary  function  of  the  immune  system  is  to  protect  the  individual  against  pathogens,  

such  as  viruses  (252).  The  DCs  are  the  most  efficient  APCs,  linking  the  innate  and  the  

adaptive  immune  system.  In  HIV-­‐1  pathogenesis,  DCs  play  a  central  role  throughout  the  

infection  (152).  DCs  pick  up  antigens,  process,  and  present  them  on  MHC  class  I  and  MHC  

class  II  molecules.  In  general,  peptides  originating  from  the  cytosolic  or  nuclear  proteins  

are  processed  by  the  proteasome,  a  multi  catalytic  protein  complex.  This  is  followed  by  a  

transport  of  peptides  via  TAP1/2  into  ER,  loading  onto  MHC  class  I  molecules,  and  

presentation  at  the  cell  surface  and  activation  of  CD8+  T  cells.  Activation  of  the  CD4+  T  cells  

is  dependent  on  endocytosis  of  exogenous  antigens,  degradation  in  the  acidified  endocytic  

compartments,  and  peptide  loading  onto  MHC  class  II  molecules.  DCs  express  many  

different  receptors  on  the  surface  and  the  array  of  receptors  utilized  by  the  antigen  for  

binding  and  uptake  can  determine  processing  route  and  the  fate  of  the  antigen.  In  this  

paper  we  have  studied  the  pathways  utilized  in  immature  or  mature  MDDCs  for  MHC  class  I  

and  II  presentation  of  antigens  derived  from  whole  virions.  

53

Results  and  discussion  

41  

9.1.2  Principal  findings  

We   examined   whether   C-­‐type   lectins   were   involved   in   the   uptake   of   virions   leading   to  

processing   and   antigen   presentation   in   the   context   of   MHC   class   I   and   MHC   class   II  

molecules  by  DCs.  When  the  use  of  C-­‐type  lectins  by  HIV-­‐1  was  inhibited,  the  level  of  MHC  

class   I   presentation   of   HIV-­‐1   derived   antigens   by   immature   and   mature   DCs   decreased  

leading   to   a   reduced   CD8+  T   cell   activation.   Furthermore,   blocking   the   use   of  MMR,  DC-­‐

SIGN,   or   DEC-­‐205  with   antibodies   did   not   affect   the   level   of   MHC   class   I   and   II   antigen  

presentation.  Active  receptor  mediated  endocytosis  and  viral  proteolysis  in  late  endosomal  

compartments   was   required   for   optimal   MHC   class   II   presentation   of   HIV-­‐1   derived  

antigens   by   both   immature   and   mature   DCs.   Viral   gp120   CD4   binding   and   subsequent  

fusion  was   required   for  MHC   class   I   presentation   of  HIV-­‐1  derived   antigens   by  DCs.   The  

role   of   endosomal   acidification  was   examined   and  we   found   significantly   increased  MHC  

class   I   presentation   while   MHC   class   II   presentation   was   significantly   decreased.   This  

indicated  that  MHC  class  II  presentation  was  dependent  on  endosomal  acidification.  In  the  

case  for  MHC  class  I  presentation,  the  elevated  levels  were  due  to  the  prolonged  ability  of  

virions   localized   in   the   endosomes   to   bind   and   fuse  with   CD4/coreceptor   located   inside  

these   compartments.   After   viral   fusion   the   virions   were   subsequently   degraded   by   the  

proteasome,  transported  via  TAP1/2  into  ER,  and  HIV-­‐1  derived  peptides  were  loaded  on  

newly  synthesized  MHC  class  I  molecules.    

 

9.1.3  Discussion/Conclusion  

This  study  clearly  showed  that  MHC  class  I  presentation  of  HIV-­‐1  derived  antigens  followed  

the   classical   pathway.   In   addition,   the  viral   gp120  binding   to  CD4/coreceptor   and   fusion  

followed   by   proteasomal   degradation   and   transport   via   TAP1/2   was   essential   for   MHC  

class  I  presentation  of  the  HIV-­‐1  derived  gag  SL9  epitope  to  CD8+T  cells.  Of  note,  the  level  

of   MHC   class   I   presentation   was   highly   elevated   when   acidification   of   endosomal  

compartments  was  inhibited.  This  clearly  indicated  that  viral   fusion  and  access  to  cytosol  

can  occur  in  the  endosomal  compartment  when  the  virions  are  rescued  from  degradation  

by  acid  dependent  proteases.  A  large  fraction  of  the  CD4  and  coreceptors  are  located  in  the  

endosomal  compartments  and  not  at  the  plasma  membrane  of  the  DC,  providing  a  source  of  

binding   and   fusion   receptors   in   these   compartments.   It   has   been   proven   that   the   HIV-­‐1  

infection   is   initiated   in   the  endosomal  compartments  and  not  at   the  cell  surface  (253).  C-­‐

type   lectin   receptors   were   involved   in   the   uptake   leading   to   MHC  

54

Results  and  discussion  

42  

class  I  presentation  but  is  far  from  the  only  receptor  family  used  by  HIV-­‐1.  Most  likely  there  

are  multiple   receptors   involved   in   the  uptake   and   trafficking  of   viral   particles   leading   to  

MHC   class   I   and   II   antigen  presentation.   In   addition,   how   the   virus  has  been  propagated  

and  the  HIV-­‐1  strain  might  affect  the  viral  interaction  with  host  cells  including  the  specific  

array   of   receptor   used   for   the   initial   cell   binding.   The   MHC   class   II   restricted   antigen  

presentation   of   HIV-­‐1   derived   antigens   by   DCs   was   strongly   dependent   on   endosomal  

acidification   and   transport   from   early   to   late   endosomal   compartments   where   the  MHC  

class  II  peptide  loading  occurs.  This  process  is  independent  on  viral  binding  and  fusion  via  

CD4  and  coreceptor  (176,  183,  218).    

 

9.2  Paper  II  9.2.1  Background  

The  DCs  play  a  central  role  in  the  establishment  of  and  throughout  the  HIV-­‐1  infection.  The  

initial  interaction  and  uptake  of  HIV-­‐1  involves  the  viral  binding  to  an  array  of  cell  surface  

receptors.  DCs  express  many  different  surface  receptors,  including  C-­‐type  lectins,  integrins,  

FcRs,  CD4,  and  chemokine  receptors.  Receptors  differ  in  their  ability  and  affinity  to  interact  

with  and  to  endocytose  and  phagocytose  antigens.  For  instance,  cross  linking  of  FcRs  and  

CRs   is   required   for   efficient   endocytosis   of   antigens   (254).   Consequently,   the   array   of  

receptors  used  by  virions  influences  the  rate  of  internalization  and  where  the  HIV-­‐1  ends  

up  inside  the  cell.  The  interaction  between  DC  receptors  and  HIV-­‐1  might  be  influenced  by  

the   state   of   the   virions,   i.e.   if   they   are   free,   opsonized   or   immune   complexed   (255).   In  

addition,   the  binding  of   the  HIV-­‐1   to   infection   receptors   gp120   to  CD4  and  CCR5/CXCR4  

expressed  on  DCs  can  give  rise  in  a  direct  productive  infection,  i.e.  cis  infection.  At  the  same  

time,   binding   and   uptake   of  HIV-­‐1   by   other   receptors   such   as   the   C-­‐type   lectin  DC-­‐SIGN  

leads   to   internalization   into   the   endocytic   compartments   where   the   virions   remain  

infectious   and   can   be   transferred   by   the   DC   to   CD4+   T   cells,   i.e.   trans   infection.   Taken  

together,  it  is  clear  that  the  initial  interactions  between  HIV-­‐1  and  DCs  influence  the  uptake  

and  handling  of  the  virions  but  also  the  effect  the  virions  exert  on  the  DCs.  

 

9.2.2  Principal  findings  

Several  integrins  were  involved  in  the  binding  and  uptake  of  F-­‐HIV  and  C-­‐HIV.  Both  C-­‐HIV  

and  F-­‐HIV  utilized  the  two  chains  of  CR3,  however  distinctive  for  C-­‐HIV  was  the  use  of  β1  

integrin   and   for   F-­‐HIV   the   use   of   β7   integrin.   We   showed   in   this   study   that   C-­‐HIV   was  

55

Results  and  discussion  

43  

internalized  more  efficiently  by  the  endocytic  receptors,  C-­‐type   lectins  and   integrins,   into  

both   immature   and   mature   DCs   compared   to   free   HIV-­‐1   despite   the   fact   that   similar  

receptor   repertoire  was  used  and   the  same  amount  of  C-­‐HIV  and  F-­‐HIV  bound   to   the  DC  

surface.  This  is  probably  due  to  higher  levels  of  cross-­‐linking  of  endocytic  receptors  due  to  

the   complement   fragments   and   anybodies   disposed   on   the   viral   surface.  Blocking  C-­‐type  

lectins,  integrins,  and  CD4  more  or  less  abolished  both  F-­‐HIV  and  C-­‐HIV  binding  to  DC  cell  

surface  at  4°C,  when  the  endocytic  machinery  is  inactive.  

 

9.2.3  Discussion/  Conclusion  

This  study  showed  that  even  when  HIV-­‐1  was  opsonized  with  complement  fragments,  the  

virus  still  interacted  with  the  same  receptor  families  as  free  virions,  i.e.  CD4,  C-­‐type  lectins,  

and  integrins.  Blocking  viral  binding  to  CD4  together  with  the  C-­‐type  lectins  and  integrins  

to  the  DC  surface  nearly  abolished  the  ability  of  HIV-­‐1  to  bind,  indicating  that  we  identified  

most  of  the  receptor  families  used  by  HIV-­‐1  for  binding  to  MDDCs.  Although  opsonization  

of   the   virus   did   not   affect   the   amount   of   virus   binding   to   the   surface   of   immature   and  

mature  DCs,  they  both  internalized  significantly  more  C-­‐HIV.  This  indicated  that  C-­‐HIV  was  

more   efficiently   taken   up   by   DC   than   F-­‐HIV   and   this   depended   on   the   complement  

fragments   and   antibodies   deposited   on   the   viral   surfaces,   which   gives   higher   levels   of  

cross-­‐linking   of   endocytic   receptors   leading   to   a   more   efficient   receptor   mediated  

endocytosis.   This   provides   distinct   intracellular   handling   of   C-­‐HIV   leading   to   both  

increased  infection  and  altered  activation  of  HIV  specific  immune  responses.  

 

9.3  Paper  III  9.3.1  Background  

DCs  are  essential  for  initiating  and  regulating  T  cell  activation  and  they  play  a  central  role  

in   the  pathogenesis  of  HIV-­‐1.   Immature  DC  pick  up  and  proteolyticly  process  HIV-­‐1.  This  

initiates  activation  of  the  DCs   leading  to  their  migration  to  the  afferent   lymph  nodes.  The  

DCs   that   reach   the   lymph   nodes   will   be   in   a   mature   state   and   present   HIV-­‐1   derived  

antigens   to   CD8+   and   CD4+  T   cells.   The   complement   system   is   an   important   part   of   the  

innate   defense   against   viral   infections   and   is   potently   activated   by   HIV-­‐1.   However,   like  

other  retroviruses  HIV-­‐1  acquire  proteins  from  the  host  cell’s  plasma  membrane  during  the  

process  of  budding  that  have  the  ability  to  protect  the  virions  from  complement  lysis  (91).  

Instead,  the  virions  become  covered  with  complement  fragments,  which  may  change  how  

56

Results  and  discussion  

44  

the   virus   is   taken   up,   processed,   and   presented   in   the   context   of   MHC   class   I   and   II  

molecules   by   immature   and  mature   DCs.   In   addition,   the   HIV-­‐1  might   exert   detrimental  

effects  on  the  DCs  antigen  presenting  machinery.  For  instance,  it  has  been  shown  that  the  

protease  activity  is  affected  in  immature  DCs  after  exposure  to  HIV-­‐1  (220).    

 

9.3.2  Principal  findings  

In  this  study  we  investigated  the  effects  opsonized  HIV-­‐1  had  on  the  uptake  and  processing  

pathways   in   mature   and   immature   DCs,   leading   to   antigen   presentation   and   T   cell  

activation.  The  results  showed  that  C-­‐HIV  and  C-­‐IgG-­‐HIV  significantly  enhanced  MHC  class  I  

presentation  by  immature  and  mature  DCs  compared  to  F-­‐HIV.  Of  note,  C-­‐HIV  did  not  affect  

the   MHC   class   II   presentation   for   immature   DCs,   whereas   the   effect   on   mature   DCs  

resembled  the  profile  seen  for  MHC  class  I  presentation  with  enhanced  presentation  for  the  

opsonized  virions.  CR3  was  involved  in  guiding  the  free  and  complement  opsonized  virions  

to  both  MHC  class  I  and  MHC  class  II  presentation  pathways  as  inhibition  of  this  receptor  

decreased   the   presentation.   In   contrast,   blocking   of   the   β7-­‐integrin   on   immature   and  

mature  DCs  resulted  in  a  significantly  enhanced  MHC  class  I  and  II  presentation  for  both  F-­‐

HIV   and   C-­‐HIV.   We   also   examined   if   C-­‐type   lectin   receptors   intersected   the   antigen  

presentation   pathway   and   concluded   that   binding   of   F-­‐HIV   or   C-­‐HIV   to   C-­‐type   lectins  

promoted  the  delivery  of  antigen  for  MHC  class  I  presentation  in  immature  DCs  but  not  in  

mature  DCs.  However,  when  F-­‐HIV  or  C-­‐HIV  used  the  specific  C-­‐type  lectin  receptors  MMR  

or  DEC-­‐205,  decreased   the  amount  of   antigen  accessible   for  MHC  class   I  presentation  by  

immature   DCs.   C-­‐HIV   had   a   slower   degradation   rate   in   DCs   than   F-­‐HIV.   In   addition,  

neutralization  of  pH  in  endosomes  did  not  affect  DC  MHC  class  I  presentation  of  antigens  

derived  from  C-­‐HIV,  while  it  had  a  strong  enhancing  effect  on  F-­‐HIV,  indicating  that  C-­‐HIV  

was   processed   differently   by   the   DCs   than   F-­‐HIV.   In   addition,   the   exposure   to   C-­‐HIV  

decreased   the   protease   activity   in   both   immature   and   matured   DCs,   whereas   F-­‐HIV  

increased   this   activity.   In   the   case   for   the  proteolysis   in   the   cytosol,   C-­‐HIV   enhanced   the  

proteasome   proteolytic   activity,   whereas   F-­‐HIV   decreased   its   activity.   Quantitative  

proteomics  and  PCR  showed  that  several  proteins  and  genes  involved  in  degradation  and  

regulation  of  the  proteasome  were  affected  in  immature  DCs  after  exposure  to  either  F-­‐HIV  

or  C-­‐HIV.  

57

Results  and  discussion  

45  

9.3.3  Discussion/Conclusion  

This   study   takes   our   previous   findings   further   by   investigating   in   detail   the   processing  

pathway   and   machinery   in   immature   and   mature   DCs   leading   to   MHC   class   I   and   II  

presentation   of   HIV   antigens   derived   from  whole   free   or   opsonized  HIV-­‐1.   The   elevated  

uptake  of   C-­‐HIV   lead   to   enhanced  MHC   class   I   presentation   in  DCs.  Neutralization  of   the  

endosomal   compartments   proved   that   the   free   and   opsonized   virions   were   handled  

differently   inside   the  DCs  and   this   gave   the   free  virions  greater  opportunity   to   enter   the  

cytosol  and   the  MHC  class   I   restricted  pathway,  whereas   it  did  not  affect   the  C-­‐HIV.  This  

indicated  that  C-­‐HIV  ended  up  in  endosomal  compartments  with  a  higher  pH  than  F-­‐HIV.  In  

addition,  C-­‐HIV  had  a  slower  degradation  process,  probably  due  to  the  decreased  protease  

activity   this   source   of   HIV-­‐1   induced   in   DCs.   The   guiding   to   special   more   protective  

endosomal  compartments  and  a  slower  degradation  process  might  help  the  virus  to  enter  

the  cytosol  and  the  MHC  class  I  restricted  antigen  presentation  pathway.    

HIV-­‐1   interacts  with  many   receptors   expressed   on   the   surface   on   the  DC   and   uptake   by  

these  receptors  can  lead  to  different  pathways  inside  the  cell.  Clearly  the  use  of  β7-­‐integrin  

and   MMR   guide   viral   particles   to   pathways   is   less   involved   in   MHC   class   I   and   II  

presentation,  whereas  CR3  enhances  the  delivery  of  virions  to  the  presentation  pathways.  

In   addition,  when   virions   are   unable   to   bind   β7-­‐integrin   or  MMR,   other   receptors  might  

take  over  that  induce  a  more  efficient  uptake  and  guiding  of  the  HIV-­‐1  to  MHC  class  I  and  II  

presentation.    

The  majority  of  all  HIV-­‐1  particles  is  taken  up  by  the  endosomal  route  and  a  part  of  these  

virions  binds  and  fuses  and  accesses  the  cytoplasm  where  the  viral  proteins  are  tagged  for  

destruction  by  the  ubiquitin-­‐proteasome  pathway.  The  exposure  of  DCs  to  C-­‐HIV  enhanced  

the  proteasomal  activity  in  both  immature  and  mature  DCs,  which  could  play  a  role  in  the  

enhanced   MHC   class   I   presentation.   Both   F-­‐HIV   and   C-­‐HIV   had   a   different   expression  

profile  of  proteins  and  genes  affecting   the  regulation  and  degradation  of   the  proteasome,  

which   also   could   affect  MHC   class   I   presentation.   Taken   together,   the   initial   interactions  

between  HIV-­‐1  and  DCs  highly  influence  the  uptake,  processing,  and  antigen  presentation  

of  virions  and  also  the  direct  effects  virions  have  on  the  DCs.  

 

9.4  Paper  IV  9.4.1  Background  

58

Results  and  discussion  

46  

The  female  genital  tract  is  the  major  portal  of  entry  for  HIV-­‐1  and  at  this  mucosal  site,  DCs  

and  CD4+  T  cells  are  considered  early  targets  for  HIV-­‐1  (256,  257).  It  is  still  not  completely  

clear   how   HIV-­‐I   penetrate   the   epithelial   layer   but   evidence   from   the   SIV   studies   in  

macaques  and  a  few  in  vitro  studies  using  mucosal  explants,  indicate  that  the  LCs  localized  

in   ectocervix   and   vagina   pick   up   virions   and   transfer   them   to   the   submucosa   (7).   In  

addition,  if  there  is  a  break  in  the  epithelium,  the  virus  gets  direct  access  to  the  submucosal  

tissue  and  DCs  and  CD4+  T  cells  located  at  this  site  (7).  In  the  submucosa  can  DCs  that  have  

captured   HIV-­‐1   can   transmit   the   virions   to   nearby   CD4+   T   cells.   The   DC-­‐CD4+   T   cells  

conjugates   drastically   facilitate   the   viral   infection   of   the   CD4+   T   cells.   After   3-­‐4   days   of  

virus  inoculation,  small  founder  populations  of  infected  cells  emerge  and  they  first  expand  

locally  in  CD4+  T  cells  and  then  spread  the  infection  to  the  draining  lymphoid  tissues  and  

give  rise  to  a  systemic  infection.  HIV-­‐1  exposed  mucosal  DCs/LCs  also  migrate  to  the  lymph  

nodes   and   spread   the   virus   to   CD4+   T   cells.   DCs/LCs   and   CD4+   T   cells   localized   in   the  

female  genital  tract  might  interact  differently  with  free  and  opsonized  HIV-­‐1  and  therefore    

these   different   groups   are   examined   in   this   study   of   the   initial   HIV-­‐1   interaction   and  

infection  of  mucosa  using  human  cervical  explants.  

 

9.4.2  Principal  findings  

We   found   in   this   study   that  C-­‐HIV  significantly   increased   the   infection   in  DCs  emigrating  

from   cervical  mucosal   tissue   compared   to   F-­‐HIV.   In   contrast,   the   infection   in   emigrating  

CD4+  T   cells  was  decreased  when   the   tissue  was   challenged  with  C-­‐HIV.   In   addition,   the  

level  of  C-­‐HIV  infection  was  higher  in  mucosal  DCs  in  women  younger  than  50  years  of  age  

compared  to  women  older  than  50,  even  if  this  infection  in  both  age  categories  was  higher  

than   for  F-­‐HIV.  We  studied   several   receptors  known   to   interact  with  HIV-­‐1  and  detected  

that   cervical   mucosa   tissue   explants   and   emigrating   DCs   and   T   cells   expressed   C-­‐type  

lectins,  DC-­‐SIGN,  MMR,  and  DEC-­‐205,  and  integrins  β1,  β2,  β7,  α4,  and  αM.  We  next  studied  

the   involvement   of   these   receptors   in   HIV-­‐1   infection.   Blocking   the   viral   use   of   C-­‐type  

lectins   decreased   the   infection   in  migrating   DCs   but   not   in   CD4+   T   cells.   The   decreased  

infection   in   the  CD4+  T  cells   is  probably  due   to   the   lack  of   complement  receptors  on   the  

surface  of  CD4+  T  cells  and  possibly  also  because  the  CR  fragments  on  the  surface  of  HIV-­‐1  

left  gp120  poorly  accessible   for  binding   to  other  receptors  expressed  on   the  CD4+  T  cell.  

Inhibition  of  αM/β2  integrins  (CD11b/CD18)  decreased  HIV-­‐1  infection  of  emigrating  DCs  

and  T  cells,  with   the  highest  effect   for  C-­‐HIV.   In  addition,   the  blocking  of   the  α4-­‐integrin,  

59

Results  and  discussion  

47  

β1-­‐integrin,  and  β7-­‐integrin  decreased  the  HIV-­‐1  infection  in  both  DCs  and  T  cells  and  the  

level  of  inhibition  of  HIV-­‐1  infection  was  more  prominent  in  DCs  than  the  T  cells.  Of  note,  

we  detected  viral  founder  populations  in  the  cervical  tissue  explants  challenged  with  HIV-­‐1  

and  when  α4-­‐integrin  or  β7-­‐integrin  was  blocked   the  establishment  of   these  populations  

was  gone  from  more  than  70%  of  the  tissues  examined.  

 

9.4.3  Discussion/Conclusion  

The  initial  events  of  the  HIV-­‐1  infection  in  the  genitals  are  poorly  characterized  and  little  is  

known  about  the  factors  influencing  initiation  of  HIV-­‐1  replication  in  the  cervical  mucosa.    

The  cervical  mucosa  immune  cells  expressed  an  array  of  receptors  known  to  affect  the  HIV-­‐

1  infection.   In  this  study  we  show  that  complement  opsonization  of  virions  gave  a  higher  

infection  in  the  emigrating  DCs  than  free  virions.  This  is  probably  due  to  the  C-­‐HIV  use  of  

the  CR3  expressed  by  mucosal  DCs.  Of  note,   infection  of  DCs  was  reduced  even  for  F-­‐HIV,  

when   CR3   was   blocked,   although   not   to   the   same   degree   as   C-­‐HIV,   and   this   can   be  

explained   by   the   expression   of   a   CR3   ligand,   i.e.   ICAM-­‐1   in   the   envelope   the   virions.   In  

addition,   the   HIV-­‐1   envelope   protein   gp41   shares   four   regions   of   homology   with   the  

complement  protein  C3,  another   ligand  for  CR3.  The  decrease   in   infection  of  T  cells  with,  

which  are  CR3  negative   for  C-­‐HIV   is  possibly  due  to   that   the  deposition  of   inactivated  C3  

fragments  on  the  surface  of  HIV-­‐1  sterically  interferes  with  viral  attachment  of  HIV-­‐1  to  the  

T   cell   surface   and   masks   some   viral   gp120   epitopes   so   they   cant   bind   CD4   and/or  

coreceptor   (60).   Blocking  CR3   significantly   reduced   the   infection   in   both   emigrating  DCs  

and   CD4+   T   cells   using   C-­‐HIV.   Of   note,   blocking   integrins   had   the   best   effect   regarding  

infection  of  DCs,  T   cells   and  preventing  establishment  of   founder  populations.  Therefore,  

integrins   should   be   taken   in   consideration   when   developing   microbicides   since   the  

blocking  of  integrins  seems  to  reduce  the  infection  in  thereby  also  the  spread  of  HIV-­‐1.  

60

Conclusion  and  future  directions  

48  

10.  CONCLUSION  AND  FUTURE  DIRECTIONS  

 

10.1  Complement  activation-­‐  Good  or  Evil  in  HIV-­‐1  Infection?  HIV-­‐1  immediately  activates  the  complement  system,  which  is  a  part  of  our  innate  defense,  

but  will  the  complement  system  really  do  us  any  good  in  this  setting?  Is  complement  good  

or  evil  in  HIV-­‐1  infection?    

To   answer   the   title   of   my   thesis   one   must   remember   that   HIV-­‐1   has   developed   escape  

mechanisms   that   protect   it   from   complement   destruction.   The   complement   system   is  

generally  a  dangerous  weapon  against  microorganisms  and   is  strongly  activated  during  a  

HIV-­‐1   infection,   but   instead   of   getting   lysed   the   virions   are   opsonized  with   complement  

fragments.  Usually,  when  pathogens   are  opsonized   they   are   eliminated   and   cleared   from  

the  system  by  binding  to  phagocytes  expressing  complement  receptors  (CR)  (64).  However,  

for  HIV-­‐1,  the  opsonization  seems  to  be  rather  an  advantage,  even  though  a  minor  fraction  

of  virions  are  destroyed  by  the  complement  system  (60).  The  advantages  of  opsonization  

for   HIV-­‐1   include   the   ability   to   interact   with   cells   expressing   CRs,   e.g.   erythrocytes  

expressing   CR1,   or   FDCs   expressing   CR2   and   CR3,   B   cells   expressing   CR1,   and   DCs  

expressing   CR1,   CR3,   and  CR4,   the   elevated   infectivity   (64),   and   transfer   of   virions   from  

DCs   to   target   cells   (258).   C-­‐HIV   binding   to   FDCs   on   one   hand   activates   B   cells   and  

production  of  antibodies,  but  on  the  other  hand  the  deposition  of  C-­‐HIV  on  FDCs  is  the  far  

largest  reservoir  of  HIV-­‐1  in  an  infected  individual  (64).  C3a  and  C5a  are  factors  produced  

by  the  activated  complement  cascade,  these  anaphylatoxins  attract  DCs  and  other  APCs  to  

the   site   of   infection,   which   then   can   then   be   exploited   by   HIV-­‐1   (60).   Results   from   our  

group   have   shown   that   opsonized   virions   are   more   efficiently   internalized   via   receptor  

mediated   endocytosis   by   DCs   compared   to   free   HIV-­‐1   (259).   In   vivo,   DCs   capture   and  

internalize   C-­‐HIV   and   migrate   to   the   lymph   nodes   where   they   subsequently   transfer  

infectious   virions   to   the   CD4+  T   cells.   Our   studies   demonstrated   that   C-­‐HIV   significantly  

enhanced  immature  and  mature  DCs  MHC  class  I  presentation  of  HIV  derived  antigens  by  

DCs.  An  increased  MHC  class  I  presentation  and  activation  of  CD8+  T  cells   is   indeed  good  

for   the   host.   However,   during   the   priming   of   the   naïve   T   cells   HIV-­‐1  will   be   transferred  

through  the  infectious  synapse  and  infect  the  newly  activated  cells.  An  increased  MHC  class  

I  presentation  implies  that  a  larger  amount  of  C-­‐HIV  gains  access  to  the  cytosol  compared  

to  F-­‐HIV,  which  can  lead  to  a  higher  infection  of  the  DCs.  A  higher  infection  was  indeed  seen  

in  cervical  mucosal  DCs  using  C-­‐HIV  compared  to  F-­‐HIV.  C-­‐HIV  slightly  decreased  the  direct  

61

Conclusion  and  future  directions  

49  

infection  of  CD4+  T  cells.  Then  again,  transfer  of  complement  opsonized  virions  from  DCs  

to   CD4+  T   cells   creates   a  much   higher   infection   (218,  260,  261),   probably   due   to   the  DC  

induced  activation  of  the  CD4+  T  cells.  To  answer  the  question  I  made  in  the  beginning;  the  

virus  infects  the  host  and  the  initial  immune  system  immediately  strikes  back.  However,  in  

the  long  run  the  virus  seem  to  be  the  winner  of  the  battle  and  complement  activation  does  

more  harm  than  good  in  HIV-­‐1  infection.    

 

     

Figure  15.    The  battle  between  complement  opsonized  HIV-­‐1  and  the  immune  system.    

The   complement   system  plays   a   role   in   clearing  HIV-­‐1.  However,   at   the   same   time   complement   opsonized  

HIV-­‐1   facilitates   the  DC  spread  of   the  virus,   increases   the   level  of   infection  of  DCs,   and   functions  as  a  viral  

reservoir  on  FDCs  in  the  lymph  nodes.  In  summary,  it  seems  the  balance  will  be  tipped  in  favor  ofHIV-­‐1.    

 

 

10.2  Future  challenges  The  results   from  our  studies  show  the  importance  of  studying  both  free  and  complement  

opsonized  HIV-­‐1.  Complement  opsonized  HIV-­‐1  exists   in  every  compartment   in   the  body  

and   the   C3   fragments   deposited   on   the   viral   surface   may   alter   the   interaction   with   the  

immune  cells.  Therefore,   the  effect  complement  opsonized  HIV-­‐1  has  on  the  ability  of  the  

DCs  to  function  as  potent  antigen  presenting  cells  and  the  mechanism  behind  the  increased  

infection  induced  by  opsonized  virions  should  be  taken  in  consideration  for  future  studies.  

The   finding   that   blocking   of   CR3,  α4   and   β7   integrins   inhibited   HIV-­‐1   infection   of   both  

immune   cells   and   cervical   mucosa   tissues   would   be   of   a   great   interest   to   continue   to  

explore  to  identify  potent  inhibitors  of  these  receptors  that  can  be  used  as  microbicides  or  

vaccines.    

62

Populärvetenskaplig  sammanfattning  

50  

11.  POPULÄRVETENSKAPLIG  SAMMANFATTNING  

 Humant   immunbrist  virus-­‐1   (HIV-­‐1)   identifierades   av   två   forskare,   Luc  Montagnier   och  

Françoise  Barré  Sinoussie   på   Pasteurinstitutet   i   Paris.   HIV   är   en   infektion   som   angriper  

kroppens   immunförsvar  och   långsamt  bryter  ner  det  och  orsakar  en   immunbristsjukdom  

som   1982   fick   namnet   förvärvat   immunbrist   syndrom   (AIDS).   AIDS   uppträder   först   när  

kroppens   immunförsvar  blivit  så   försvagat  att  vi   inte   längre  kan  försvara  oss  emot  andra  

virus   och   bakterieinfektioner.   Fram   till   idag   har   HIV-­‐1   orsakat   25   miljoner   dödsfall   i  

världen   vilket   gör   den   här   infektionen   till   en   av   de   värsta   epidemierna   som   drabbat  

mänskligheten   under   det   här   årtiondet.   Det   finns   idag   inget   botemedel   eller   vaccin  

emot  HIV-­‐1   men   det   finns   bromsmediciner   som   kan   kontrollera   virusinfektionen.   De   är  

dock  inte  tillgängliga  för  alla,  har  höga  priser  och  ger  många  gånger  biverkningar.  Det  finns  

idag  ett  akut  behov  av  ett  HIV  vaccin  eller  microbicider  för  att  hindra  spridningen  av  HIV  

och  stoppa  epidemin.  

Majoriteten  av  HIV  infektionerna  sker  via  samlag  och  när  viruset  kommer  in  i  kroppen  

kommer  det  omedelbart  att  aktivera  en  del  av  vårt  immunförsvar  som  heter  

komplementsystemet.  Komplementsystemets  funktion  är  bland  annat  att  försvara  oss  emot  

inkräktare  som  bakterier  och  virus.  HIV-­‐1  har  emellertid  utvecklat  försvar  som  gör  att  

komplementsystemet  inte  kommer  att  förgöra  viruset,  istället  kommer  virusytan  att  täckas  

av  komplement  proteinfragment  vilket  kallas  opsonisering.  Den  förändrade  ytan  kommer  

viruset  istället  använda  till  sin  fördel  genom  hela  infektionsförloppet.  När  HIV-­‐1  tagit  sig  in  

i  kroppen  angriper  det  celler  viktiga  för  ett  fungerade  immunförsvar,  dvs.  

immunceller.  HIV-­‐1  tas  upp  av  en  specifik  immuncell  som  kallas  dendritiska  cellen  (DC)  

som  transporterar  viruset  vidare  från  slemhinnan,  dvs.  platsen  för  sexuellsmitta,  till  

speciella  körtlar,  kallade  lymfkörtlar  där  viruset  överförs  till  ytterligare  en  immuncell  dvs.  

T  hjälparceller.  T  hjälparcellerna  är  de  celler  i  kroppen  som  HIV-­‐1  framför  allt  infekterar  

och  tar  död  på.  DC  är  viktiga  både  i  vårt  naturliga  och  förvärvade  immunförsvar  och  vid  en  

infektion  verkar  de  lokalt  bland  annat  genom  att  attrahera  andra  immunceller  till  platsen  

för  infektion.  Deras  viktigaste  uppgift  och  special  funktion  är  att  plocka  upp  t.ex.  virus  eller  

bakterier  från  sin  omgivning  och  bryta  ned  dem  i  småbitar,  så  kallade  antigen  peptider.  

Dessa  peptider  visas  upp  för  både  T  hälparceller  och  T  mördarceller  (en  immuncell  som  

kan  ta  död  på  infekterade  celler)  och  leder  till  aktivering  av  ett  specifikt  immunförsvar  som  

kan  bekämpa  det  virus  eller  bakterie  som  angripit  kroppen.  

63

Populärvetenskaplig  sammanfattning  

51  

Vi  har   studerat  mekanismer   involverade   i  DC  upptag  och  nedbrytning   av   fritt  HIV-­‐1   som  

leder  till  uppvisade  av  antigenpeptider  och  aktivering  av  T  hälparceller  och  T  mördarceller.  

Uppvisandet  av  HIV-­‐1  antigenpeptider  för  aktivering  av  T  mördarceller  krävde  att  viruset  

band  och  togs  upp  av  DC  och  levererades  till  cellens  insida  (cytosol)  och  denna  aktivering  

blev   effektivare   när   viruset   fick   längre   tid   på   sig   att   förflytta   sig   till   cellens   cytosol.  

Aktivering   av   T   hjälparceller   krävde   att   viruset   togs   upp   i   specialavdelningar   så   kallade  

endosomer  och  att  de  hade  en  sur  miljö  så  att  viruset  kunde  brytas  ned.    

HIV-­‐1  kan  binda   till  olika  proteiner  som   finns  på   immuncellernas  yta  och  vilka  proteiner  

det  binder  kan  bero  på  om  viruset  är  fritt  eller  täckt  med  komplement  proteinfragment.  Vi  

studerade   inbindningen   och   upptaget   av   fritt   och  opsoniserat  HIV-­‐1   till   DC   och   om   det  

fanns  skillnader  i  receptoranvändning.  Komplement  opsoniserat  HIV-­‐1  togs  upp  effektivare  

av   DC   antagligen  pga.   av   effektivare   upptag   via   komplementreceptorer.   Trots   den   ökade  

mängden  opsoniserat  virus  som  togs  upp  av  DC  var  det  inga  stora  skillnader  när  det  gäller  

receptoranvändning.

Nästa  studie  undersökte  hur  fritt  och  opsoniserat  virus  hanterades  och  bröts  ned  inne  i  den  

DC   samt   hur   antigenpeptider   från   virusen   presenterades   för   att   starta   ett   immunförsvar  

mot   HIV.   Vi   hittade   att   DC   som   presenterade   opsoniserat   virus   aktiverade   mer   T  

mördarceller  än  de  som  presenterade  fritt  virus.  Vid  jämförelse  mellan  fritt  och  opsoniserat  

HIV  kunde  vi  också  se   intressanta  skillnader  som  indikerade  att  när  viruset  var  maskerat  

med  komplement  fragment  så  processades  det  annorlunda  än  fritt  HIV.  Dessutom  så  hade  

fritt   och   komplement   opsoniserat   HIV   olika   effekt   på   DC   maskineri   som   ansvarar   för  

nedbrytning   av   antigen   så   som   virus.   Våra   resultat   visar   också   att   olika   receptorer  

transporterar   HIV-­‐1   till   olika   avdelningar   inne   i   DC,   vilket   påverkar   aktiveringen   av  

immunsystemet.    

I  den  sista  studien  undersökte  vi  hur  fritt  och  opsonizerat  HIV-­‐1  påverkar  immunceller  i  

livmoderhalsslemhinnan  eftersom  HIV-­‐1  vanligen  överförs  och  smittar  denna  slemhinna  

vid  samlag.  Dessutom  var  syftet  att  se  om  det  gick  att  stoppa  infektionen  genom  att  

blockera  olika  receptorer  som  finns  på  cellerna  och  i  vävnaden.  I  vår  studie  fann  vi  bland  

annat  att  blockering  av  integriner  drastiskt  minskade  infektionen  i  både  DC  och  CD4+  T  

celler,  samt  uppkomsten  av  infektion  i  de  kluster  av  T  celler  ”founder  populationer”  som  

normalt  initierar  att  denna  infektion  kan  sprida  sig  i  hela  kroppen

64

Populärvetenskaplig  sammanfattning  

52  

För  att  kunna  ta  fram  HIV  vaccin  och  microbicider  är  det  viktigt  att  förstå  hur  HIV  påverkar  

DCs  och  hur  viruset  processas  och  presenteras  av  DC  och  att  förstå  hur  infektionen  av  

slemhinnor  så  som  den  i  livmoderhalsen  går  till.  

65

Acknowledgements  

53  

12.  ACKNOWLEDGEMENTS  

 This  work  could  not  have  been  completed  without  the  help  from  others.  

First   I  want   to   acknowledge  and   thank  my   supervisor  Professor  Marie   Larsson   for  her  

guidance  and  mentorship  during  my  training  experience.  The  support  and  enthusiasm  from  

my   mentor   have   encouraged   me   though   my   projects   and   the   scientific   freedom,  

constructive   criticism   and   many   discussions   have   contributed   a   lot   towards   my  

understanding  and  personal  development,  this  are  invaluable  tools  for  my  future  carrier.  

 

To  my  co-­‐supervisor  Professor   Jorma  Hinkula   thank  you   for  helping  me  whenever  you  

could  and  always  taking  time  to  discuss  science  with  enthusiasm,  I  have  always  felt   like  I  

can  come  to  you  with  questions.  

I  also  want  to  thank  my  co-­‐supervisor  Professor  Karl-­‐Erik  Magnusson.  

 

A   special   thanks   to  my   colleagues   and   friends   in  my   lab   group.  Rada   Ellegård,   I  was   so  

impressed  by  you  when  you  first  became  my  student.  After  a  while  I  also  learned  that  you  

were   quit   a   computer   expert   and   a   talent  when   it   comes   to  making   illustrative   pictures.  

Thank  you  for  always  having  time,  your  help  in  the  lab  and  the  pictures  in  this  thesis.    Also  

want   to   thank   you   for   all   the  discussions   and   your   intelligent   inputs   regarding  dendritic  

cells  and  science  in  general.  Karlhans  Che  you  mean  a  lot  to  me  and  you  have  always  been  

a  big  support,  if  I  ever  needed  to  talk  about  work  or  anything  else  you  took  your  time  plus  

you  almost  always  had  candy   for  me   in  your  office.  Sundaram  Muthu   thanks   for  all   the  

discussions  we  had,  I  enjoy  talking  science  with  you  and  thank  you  for  helping  me  keeping  

me  updated  on  the  latest  big  new  news  in  the  field  of  HIV-­‐1.      

 

I  also  want  to  acknowledge  Professor  Lennart  Svensson’s  group  we  go  way  back  and  we  

share  the  passion  for  virology.  Lennart  Svensson  thank  you  for  always  having  time  for  me,  

all  the  advices  I  have  got,  and  sharing  your  experience  with  me.  Caroline  Jönsson  you  keep  

track  of  absolutely  everything  and  you  have  a  lot  of  experience,  thank  you  for  all  the  help  

I’ve  got  during  my  PhD  period  but  also  for  being  a  wonderful  coworker  and  friend.  I  also  

want  to  thank  Johan  Nordgren,  Malin  Vildevall,  Elin  Kindberg,  Beatrice  Karlsson,  

Marie  Hagbom,  Sumit  Sharma,  and  Claudia  Istrate  you  have  all  helped  me  in  different  

ways  and  made  me look  forward  to  come  to  come  to  work  every  day.

66

Acknowledgements  

54  

Lena   Svensson  we  have  known  each  other  since   I   first   came   to  Linköping  and  you  have  

always  been  supporting  and  helpful.  I  enjoyed  working  together  with  you  but  also  spending  

time  outside  work.  Thank  you  for  everything!  

 

Lotta  Lenner  and  Pia  Druid  thank  you  for  always  being  so  helpful!  

 

I  want  to  thank  all  my  coworkers   in  Professor   Stephan  Thor’s  group.  I’m  glad  you  guys  

moved  from  Valla  to  us  here  at  floor  13  so  that  we  could  get  some  action  up  here!  

Especially   I   want   to   acknowledge   Daniel   Karlsson   for   discussing   immunofluorescence  

staining,  confocal  etc  and  for  being  a  good  friend.  Magnus  Baumgaurt   for  supporting  my  

research  in  his  own  way,  I  can’t  thank  you  enough!    I  also  want  to  thank  you  for  “saving”  my  

computers  a  couple  of  times,  discussing  experiments,  making  me  laugh  so  much  and  being  

the  person  you  are.  Annika  Starkenberg  for  always  making  me  laugh  and  being  the  happy  

person  you  are.  

I   want   to   thank  Tina   Falkeborn,   Josefine   Åberg,   Camilla   and   Johanna   for   being   nice  

coworkers  and  all  the  discussions  over  a  cup  of  coffee.    

Thanks  to  Amanda  Nordigården  for  always  being  so  happy  and  positive!  In  addition,  you  

know  you  inspire  me  with  your  classy  clothes  and  a  sophisticated  life  style!  

I  wish  you  all  good  luck  with  your  PhD  and  in  the  future!  

Thanks  to  Robert  Blomgran   for  being  who  you  are  and  good   luck  with  your  research   in  

the  future!    

 

Thanks  to  all  of  my  colleagues  at  floor  13,  “Labbettan”!  

 

I  want  to  acknowledge  our  collaborators  at  the  National  Laboratory  for  HIV  Immunology,  

Winnipeg,   Canada.   A   special   thanks   to   Dr.   Adam   Burgener   for   making   me   better   in    

English,    many  interesting  discussions  and  thank  you  so  much  for  analyzing  our  samples  it  

have  resulted  in  great  and  valuable  data.    

 

I  also  want  to  acknowledge  our  collaborators  at  the  division  of  Gynecology  and  especially  

Preben  Kjölhede.

67

Acknowledgements  

55  

I  want  to  acknowledge  Café  Cellskapet  for  their  great  food  and  the  nice  people  who  work  

there,  Rebecka,  Jessicka  and  Kristina.  

 

I  wish  to  express  my  sincere  gratitude  to  the  my  opponent  Associate  professor  Barbra  L.  

Shacklett   and   review   committee;   Professor   Kristina   Broliden,   Associate   professor  

Maria  Jenmalm  and  Professor  Anders  Rosén.  I’m  sure  you  will  give  me  a  hard  time  at  my  

defense  and  I  look  forward  to  interesting  discussions.  

 

Finally  I  want  to  acknowledge  my  family.    

My  mother  Annicka  Dennerqvist  who  supported  me  a  lot  by  babysitting  Isabelle  when  I  

was   working.   To   my   father  Miran   Dennerqvist   who   always   have   been   interested   and  

supportive  of  my  carrier.  To  my  wonderful  sister  Caroline  Dennerqvist  who  lives  in  USA.  

Thank  you  for  making  such  a  beautiful  cover  to  my  thesis!    

To  my  extended  family  Tjomsland  in  Norway,  thank  you  for  your  concern!  

 

To   my   wonderful   friend   Jenny   Hällsten,   who   always   support   and   encourage   me,   you  

should  know  a   lot  about  viruses  by  now!  You  are  making  me  run  when   I   feel   like   I  don’t  

have   the  strength   to  stand.   I  want  you   to  know  that   I  consider  myself  very   lucky   to  have  

you  as  a  friend!  

 

To   my   children   Isabelle   Tjomsland   and   Alexander   Tjomsland   for   being   a   source   of  

happiness  in  my  life!  

 

A  very  special  thanks  to  my  loving  husband,  coworker  and  office-­‐mate  Vegard  Tjomsland.  

You  have  encouraged  me  through  all  the  ups  and  downs  in  science.  Being  in  the  same  group  

for  five  years,  married  for  seven  years  and  before  that  class-­‐mate  as  undergraduates,  what  

can  I  say,  no  one  understands  me  like  you  do!    We  share  the  same  passion  for  science  and  

you  have  motivated  me  during  hard  times  and  you  have  been  the  most  important  support  

in  my  life!  Remember,  amor  vincit  omnia…

68

Acknowledgements  

56  

All  good  things  come  to  an  end  but  I  will  take  with  me  everything  I  learned  and  the  experience  

I  got  and  I  won’t  forget  the  people  who  helped  me!  

69

Acknowledgements  

57  

13.  REFERENCES      

1.   A.  Vahlne,  A  historical  reflection  on  the  discovery  of  human  retroviruses.  Retrovirology  6,  40  (2009).  

2.   U. R. o. t. G. A. Epidemic.  3.   T.  Hirbod,  K.  Broliden,  Mucosal  immune  responses  in  the  genital  tract  of  HIV-­‐1-­‐exposed  

uninfected  women.  Journal  of  internal  medicine  262,  44  (Jul,  2007).  4.   J.   K.   Leyenaar,   HIV/AIDS   and   Africa's   orphan   crisis.  Paediatrics  &   child  health  10,   259  

(May,  2005).  5.   UN  AIDS  data  on  sub-­‐Saharan  Africa.  Joint  United  Nations  Program  on  HIV/AIDS.  Journal  

of  the  International  Association  of  Physicians  in  AIDS  Care  2,  54  (May,  1996).  6.   A.   T.   Haase,   Targeting   early   infection   to   prevent   HIV-­‐1   mucosal   transmission.  Nature  

464,  217  (Mar  11,  2010).  7.   F.   Hladik,   M.   J.   McElrath,   Setting   the   stage:   host   invasion   by   HIV.   Nature   reviews.  

Immunology  8,  447  (Jun,  2008).  8.   S.   P.   Buchbinder   et  al.,   Efficacy   assessment   of   a   cell-­‐mediated   immunity  HIV-­‐1   vaccine  

(the   Step   Study):   a   double-­‐blind,   randomised,   placebo-­‐controlled,   test-­‐of-­‐concept   trial.  Lancet  372,  1881  (Nov  29,  2008).  

9.   E.  Check,  Scientists  rethink  approach  to  HIV  gels.  Nature  446,  12  (Mar  1,  2007).  10.   M.  Altfeld,  T.  M.  Allen,  Hitting  HIV  where  it  hurts:  an  alternative  approach  to  HIV  vaccine  

design.  Trends  in  immunology  27,  504  (Nov,  2006).  11.   P.   D.   Kwong,   R.   Wyatt,   Q.   J.   Sattentau,   J.   Sodroski,   W.   A.   Hendrickson,   Oligomeric  

modeling   and   electrostatic   analysis   of   the   gp120   envelope   glycoprotein   of   human  immunodeficiency  virus.  Journal  of  virology  74,  1961  (Feb,  2000).  

12.   H.   R.   Gelderblom,  M.   Ozel,   G.   Pauli,  Morphogenesis   and  morphology   of  HIV.   Structure-­‐function  relations.  Archives  of  virology  106,  1  (1989).  

13.   S.  Sierra,  B.  Kupfer,  R.  Kaiser,  Basics  of  the  virology  of  HIV-­‐1  and  its  replication.  Journal  of  clinical  virology  :  the  official  publication  of  the  Pan  American  Society  for  Clinical  Virology  34,  233  (Dec,  2005).  

14.   S.  L.  McGovern,  E.  Caselli,  N.  Grigorieff,  B.  K.  Shoichet,  A  common  mechanism  underlying  promiscuous  inhibitors  from  virtual  and  high-­‐throughput  screening.  Journal  of  medicinal  chemistry  45,  1712  (Apr  11,  2002).  

15.   D.  C.  Chan,  D.  Fass,  J.  M.  Berger,  P.  S.  Kim,  Core  structure  of  gp41  from  the  HIV  envelope  glycoprotein.  Cell  89,  263  (Apr  18,  1997).  

16.   E.   Fanales-­‐Belasio,   M.   Raimondo,   B.   Suligoi,   S.   Butto,   HIV   virology   and   pathogenetic  mechanisms   of   infection:   a   brief   overview.  Annali  dell'Istituto   superiore  di   sanita  46,   5  (2010).  

17.   D.  C.  Chan,  P.  S.  Kim,  HIV  entry  and  its  inhibition.  Cell  93,  681  (May  29,  1998).  18.   R.   Wyatt,   J.   Sodroski,   The   HIV-­‐1   envelope   glycoproteins:   fusogens,   antigens,   and  

immunogens.  Science  280,  1884  (Jun  19,  1998).  19.   N.  Arhel,  Revisiting  HIV-­‐1  uncoating.  Retrovirology  7,  96  (2010).  20.   A.  M.  Sheehy,  N.  C.  Gaddis,  J.  D.  Choi,  M.  H.  Malim,  Isolation  of  a  human  gene  that  inhibits  

HIV-­‐1  infection  and  is  suppressed  by  the  viral  Vif  protein.  Nature  418,  646  (Aug  8,  2002).  21.   Y.   Wu,   HIV-­‐1   gene   expression:   lessons   from   provirus   and   non-­‐integrated   DNA.  

Retrovirology  1,  13  (2004).  22.   Y.  Wu,   J.  W.  Marsh,   Selective   transcription   and  modulation   of   resting  T   cell   activity   by  

preintegrated  HIV  DNA.  Science  293,  1503  (Aug  24,  2001).  23.   M.   D.   Miller,   C.   M.   Farnet,   F.   D.   Bushman,   Human   immunodeficiency   virus   type   1  

preintegration   complexes:   studies   of   organization   and   composition.   Journal  of   virology  71,  5382  (Jul,  1997).  

24.   M.  Adams  et  al.,  Cellular   latency   in  human   immunodeficiency  virus-­‐infected   individuals  with  high  CD4  levels  can  be  detected  by  the  presence  of  promoter-­‐proximal  transcripts.  

70

Acknowledgements  

58  

Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  91,  3862  (Apr  26,  1994).  

25.   V.  W.  Pollard,  M.  H.  Malim,  The  HIV-­‐1  Rev  protein.  Annual  review  of  microbiology  52,  491  (1998).  

26.   W.   C.   Greene,   B.  M.   Peterlin,   Charting  HIV's   remarkable   voyage   through   the   cell:   Basic  science  as  a  passport  to  future  therapy.  Nature  medicine  8,  673  (Jul,  2002).  

27.   C.  A.  Lundquist,  M.  Tobiume,  J.  Zhou,  D.  Unutmaz,  C.  Aiken,  Nef-­‐mediated  downregulation  of   CD4   enhances   human   immunodeficiency   virus   type   1   replication   in   primary   T  lymphocytes.  Journal  of  virology  76,  4625  (May,  2002).  

28.   P.   Stumptner-­‐Cuvelette  et  al.,  HIV-­‐1  Nef   impairs  MHC  class   II   antigen  presentation  and  surface  expression.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  98,  12144  (Oct  9,  2001).  

29.   M.   Geyer,   O.   T.   Fackler,   B.   M.   Peterlin,   Structure-­‐-­‐function   relationships   in   HIV-­‐1   Nef.  EMBO  reports  2,  580  (Jul,  2001).  

30.   J.   F.   Roeth,   K.   L.   Collins,   Human   immunodeficiency   virus   type   1   Nef:   adapting   to  intracellular   trafficking   pathways.  Microbiology   and  molecular   biology   reviews   :  MMBR  70,  548  (Jun,  2006).  

31.   R.  L.  Willey,  F.  Maldarelli,  M.  A.  Martin,  K.  Strebel,  Human  immunodeficiency  virus  type  1  Vpu  protein  induces  rapid  degradation  of  CD4.  Journal  of  virology  66,  7193  (Dec,  1992).  

32.   Y.   H.   Zheng,   N.   Lovsin,   B.   M.   Peterlin,   Newly   identified   host   factors   modulate   HIV  replication.  Immunology  letters  97,  225  (Mar  15,  2005).  

33.   P.   M.   Pitha,   Innate   Antiviral   Response:   Role   in   HIV-­‐1   Infection.   Viruses   3,   1179   (Jul,  2011).  

34.   S.  Mehandru  et  al.,   Primary  HIV-­‐1   infection   is   associated  with  preferential  depletion  of  CD4+   T   lymphocytes   from   effector   sites   in   the   gastrointestinal   tract.   The   Journal   of  experimental  medicine  200,  761  (Sep  20,  2004).  

35.   J.   J.   Mattapallil   et   al.,   Massive   infection   and   loss   of   memory   CD4+   T   cells   in   multiple  tissues  during  acute  SIV  infection.  Nature  434,  1093  (Apr  28,  2005).  

36.   T.  Lehner,  Y.  Wang,  T.  Whittall,  T.  Seidl,  Innate  immunity  and  HIV-­‐1  infection.  Advances  in  dental  research  23,  19  (Apr,  2011).  

37.   T.   Lehner   et   al.,   The   emerging   role   of   innate   immunity   in   protection   against   HIV-­‐1  infection.  Vaccine  26,  2997  (Jun  6,  2008).  

38.   J.  A.  Levy,  The  importance  of  the  innate  immune  system  in  controlling  HIV  infection  and  disease.  Trends  in  immunology  22,  312  (Jun,  2001).  

39.   R.  M.  Steinman  et  al.,  The   interaction  of   immunodeficiency  viruses  with  dendritic   cells.  Current  topics  in  microbiology  and  immunology  276,  1  (2003).  

40.   T.  Taniguchi,  K.  Ogasawara,  A.  Takaoka,  N.  Tanaka,  IRF  family  of  transcription  factors  as  regulators  of  host  defense.  Annual  review  of  immunology  19,  623  (2001).  

41.   B.   J.   Barnes,   P.   A.   Moore,   P.   M.   Pitha,   Virus-­‐specific   activation   of   a   novel   interferon  regulatory   factor,   IRF-­‐5,   results   in   the   induction  of  distinct   interferon  alpha  genes.  The  Journal  of  biological  chemistry  276,  23382  (Jun  29,  2001).  

42.   A.   Iwasaki,  R.  Medzhitov,  Toll-­‐like   receptor   control   of   the   adaptive   immune   responses.  Nature  immunology  5,  987  (Oct,  2004).  

43.   R.  N.  Harty,  P.  M.  Pitha,  A.  Okumura,  Antiviral  activity  of   innate   immune  protein  ISG15.  Journal  of  innate  immunity  1,  397  (Aug,  2009).  

44.   S.  Akira,  TLR  signaling.  Current  topics  in  microbiology  and  immunology  311,  1  (2006).  45.   S.  S.  Diebold,  T.  Kaisho,  H.  Hemmi,  S.  Akira,  C.  Reis  e  Sousa,  Innate  antiviral  responses  by  

means  of  TLR7-­‐mediated  recognition  of  single-­‐stranded  RNA.  Science  303,  1529  (Mar  5,  2004).  

46.   A.  Lepelley  et  al.,  Innate  sensing  of  HIV-­‐infected  cells.  PLoS  pathogens  7,  e1001284  (Feb,  2011).  

47.   Y.  L.  Chiu  et  al.,  Cellular  APOBEC3G  restricts  HIV-­‐1  infection  in  resting  CD4+  T  cells.  Nature  435,  108  (May  5,  2005).

71

Acknowledgements  

59  

48.   E.   E.   Nakayama,   T.   Shioda,   Anti-­‐retroviral   activity   of   TRIM5   alpha.   Reviews   in  medical  virology  20,  77  (Mar,  2010).  

49.   S.   J.  Neil,  T.  Zang,  P.  D.  Bieniasz,  Tetherin   inhibits  retrovirus  release  and  is  antagonized  by  HIV-­‐1  Vpu.  Nature  451,  425  (Jan  24,  2008).  

50.   N.   Laguette  et  al.,   SAMHD1   is   the  dendritic-­‐   and  myeloid-­‐cell-­‐specific  HIV-­‐1   restriction  factor  counteracted  by  Vpx.  Nature  474,  654  (Jun  30,  2011).  

51.   J.  L.  Croxford,  S.  Gasser,  Damage  control:  how  HIV  survives  the  editor  APOBEC3G.  Nature  immunology  12,  925  (2011).  

52.   P.   Marrack,   J.   Kappler,   T.  Mitchell,   Type   I   interferons   keep   activated   T   cells   alive.  The  Journal  of  experimental  medicine  189,  521  (Feb  1,  1999).  

53.   S.  S.  Cho  et  al.,  Activation  of  STAT4  by  IL-­‐12  and  IFN-­‐alpha:  evidence  for  the  involvement  of   ligand-­‐induced   tyrosine   and   serine   phosphorylation.   J   Immunol   157,   4781   (Dec   1,  1996).  

54.   T.   Lehner   et   al.,   Protective   mucosal   immunity   elicited   by   targeted   iliac   lymph   node  immunization   with   a   subunit   SIV   envelope   and   core   vaccine   in   macaques.   Nature  medicine  2,  767  (Jul,  1996).  

55.   N.   Yan,   A.   D.   Regalado-­‐Magdos,   B.   Stiggelbout,   M.   A.   Lee-­‐Kirsch,   J.   Lieberman,   The  cytosolic   exonuclease   TREX1   inhibits   the   innate   immune   response   to   human  immunodeficiency  virus  type  1.  Nature  immunology  11,  1005  (Nov,  2010).  

56.   D.   T.   Fearon,   R.   M.   Locksley,   The   instructive   role   of   innate   immunity   in   the   acquired  immune  response.  Science  272,  50  (Apr  5,  1996).  

57.   T.  Fujita,  Y.  Endo,  M.  Nonaka,  Primitive  complement  system-­‐-­‐recognition  and  activation.  Molecular  immunology  41,  103  (Jun,  2004).  

58.   B.  P.  Morgan,  P.  Gasque,  Extrahepatic  complement  biosynthesis:  where,  when  and  why?  Clinical  and  experimental  immunology  107,  1  (Jan,  1997).  

59.   C.  Speth  et  al.,  Human  immunodeficiency  virus  type  1  induces  expression  of  complement  factors  in  human  astrocytes.  Journal  of  virology  75,  2604  (Mar,  2001).  

60.   G.   Huber,   Z.   Banki,   S.   Lengauer,   H.   Stoiber,   Emerging   role   for   complement   in   HIV  infection.  Current  opinion  in  HIV  and  AIDS  6,  419  (Sep,  2011).  

61.   M.  Bennett,  T.  Leanderson,  Was  it  there  all  the  time?  Scandinavian  journal  of  immunology  57,  499  (Jun,  2003).  

62.   D.  Ricklin,  G.  Hajishengallis,  K.  Yang,  J.  D.  Lambris,  Complement:  a  key  system  for  immune  surveillance  and  homeostasis.  Nature  immunology  11,  785  (Sep,  2010).  

63.   C.  B.  Chen,  R.  Wallis,  Two  mechanisms   for  mannose-­‐binding  protein  modulation  of   the  activity  of  its  associated  serine  proteases.  The  Journal  of  biological  chemistry  279,  26058  (Jun  18,  2004).  

64.   H.  Stoiber,  Z.  Banki,  D.  Wilflingseder,  M.  P.  Dierich,  Complement-­‐HIV  interactions  during  all  steps  of  viral  pathogenesis.  Vaccine  26,  3046  (Jun  6,  2008).  

65.   H.  U.  Lutz,  E.  Jelezarova,  Complement  amplification  revisited.  Molecular  immunology  43,  2  (Jan,  2006).  

66.   P.   J.   Lachmann,   The   amplification   loop   of   the   complement   pathways.   Advances   in  immunology  104,  115  (2009).  

67.   P.   F.   Zipfel,   C.   Skerka,   Complement   regulators   and   inhibitory   proteins.  Nature   reviews.  Immunology  9,  729  (Oct,  2009).  

68.   D.  D.  Kim,  W.  C.  Song,  Membrane  complement  regulatory  proteins.  Clinical  immunology  118,  127  (Feb-­‐Mar,  2006).  

69.   A.  Rochowiak,  Z.   I.  Niemir,   [The   role  of  CR1  complement   receptor   in  pathology].  Polski  merkuriusz  lekarski  :  organ  Polskiego  Towarzystwa  Lekarskiego  28,  84  (Jan,  2010).  

70.   M.  S.  Diamond,  J.  Garcia-­‐Aguilar,  J.  K.  Bickford,  A.  L.  Corbi,  T.  A.  Springer,  The  I  domain  is  a  major   recognition  site  on   the   leukocyte   integrin  Mac-­‐1   (CD11b/CD18)   for   four  distinct  adhesion  ligands.  The  Journal  of  cell  biology  120,  1031  (Feb,  1993).  

71.   S.  D.  Wright  et  al.,  Identification  of  the  C3bi  receptor  of  human  monocytes  and  macrophages  by  using  monoclonal  antibodies.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  80,  5699  (Sep,  1983).

72

Acknowledgements  

60  

 72.   H.  V.  Nielsen,  J.  P.  Christensen,  E.  C.  Andersson,  O.  Marker,  A.  R.  Thomsen,  Expression  of  

type   3   complement   receptor   on   activated   CD8+   T   cells   facilitates   homing   to  inflammatory  sites.  J  Immunol  153,  2021  (Sep  1,  1994).  

73.   H.   Stoiber,  M.  Pruenster,  C.  G.  Ammann,  M.  P.  Dierich,  Complement-­‐opsonized  HIV:   the  free  rider  on  its  way  to  infection.  Molecular  immunology  42,  153  (Feb,  2005).  

74.   L.   Kacani   et   al.,   Dendritic   cells   transmit   human   immunodeficiency   virus   type   1   to  monocytes   and   monocyte-­‐derived   macrophages.   Journal   of   virology   72,   6671   (Aug,  1998).  

75.   M.  Suresh  et  al.,   Complement   component  3   is   required   for  optimal  expansion  of  CD8  T  cells  during  a  systemic  viral  infection.  J  Immunol  170,  788  (Jan  15,  2003).  

76.   B.  L.   Sullivan  et  al.,   Susceptibility  of  HIV-­‐1  plasma  virus   to   complement-­‐mediated   lysis.  Evidence  for  a  role  in  clearance  of  virus  in  vivo.  J  Immunol  157,  1791  (Aug  15,  1996).  

77.   X.   Ji,   H.   Gewurz,   G.   T.   Spear,   Mannose   binding   lectin   (MBL)   and   HIV.   Molecular  immunology  42,  145  (Feb,  2005).  

78.   U.  Kishore  et  al.,  Modular  organization  of  the  carboxyl-­‐terminal,  globular  head  region  of  human  C1q  A,  B,  and  C  chains.  J  Immunol  171,  812  (Jul  15,  2003).  

79.   H.   Stoiber,   L.   Kacani,   C.   Speth,   R.   Wurzner,   M.   P.   Dierich,   The   supportive   role   of  complement  in  HIV  pathogenesis.  Immunological  reviews  180,  168  (Apr,  2001).  

80.   Y.   Xu   et  al.,   A   novel   approach   to   inhibit  HIV-­‐1   infection   and   enhance   lysis   of  HIV   by   a  targeted  activator  of  complement.  Virology  journal  6,  123  (2009).  

81.   S.   Dopper   et   al.,   Mechanism(s)   promoting   HIV-­‐1   infection   of   primary   unstimulated   T  lymphocytes  in  autologous  B  cell/T  cell  co-­‐cultures.  European  journal  of  immunology  33,  2098  (Aug,  2003).  

82.   Z.   Banki   et   al.,   Complement   dependent   trapping   of   infectious   HIV   in   human   lymphoid  tissues.  AIDS  19,  481  (Mar  25,  2005).  

83.   D.  C.  Montefiori  et  al.,  Complement  control  proteins,  CD46,  CD55,  and  CD59,  as  common  surface   constituents   of   human   and   simian   immunodeficiency   viruses   and   possible  targets  for  vaccine  protection.  Virology  205,  82  (Nov  15,  1994).  

84.   H.  Stoiber,  C.  Pinter,  A.  G.  Siccardi,  A.  Clivio,  M.  P.  Dierich,  Efficient  destruction  of  human  immunodeficiency   virus   in   human   serum   by   inhibiting   the   protective   action   of  complement   factor   H   and   decay   accelerating   factor   (DAF,   CD55).   The   Journal   of  experimental  medicine  183,  307  (Jan  1,  1996).  

85.   D.  Tortorella,  B.  E.  Gewurz,  M.  H.  Furman,  D.  J.  Schust,  H.  L.  Ploegh,  Viral  subversion  of  the  immune  system.  Annual  review  of  immunology  18,  861  (2000).  

86.   Z.  Banki,  H.  Stoiber,  M.  P.  Dierich,  HIV  and  human  complement:  inefficient  virolysis  and  effective  adherence.  Immunology  letters  97,  209  (Mar  15,  2005).  

87.   P.  D.  Kwong  et  al.,  Structure  of  an  HIV  gp120  envelope  glycoprotein  in  complex  with  the  CD4  receptor  and  a  neutralizing  human  antibody.  Nature  393,  648  (Jun  18,  1998).  

88.   M.  Scherl  et  al.,  Targeting  human  immunodeficiency  virus  type  1  with  antibodies  derived  from  patients  with  connective  tissue  disease.  Lupus  15,  865  (2006).  

89.   B.  L.  Sullivan,  D.  M.  Takefman,  G.  T.  Spear,  Complement  can  neutralize  HIV-­‐1  plasma  virus  by  a  C5-­‐independent  mechanism.  Virology  248,  173  (Sep  1,  1998).  

90.   B.  Falkensammer  et  al.,  Role  of  complement  and  antibodies  in  controlling  infection  with  pathogenic   simian   immunodeficiency   virus   (SIV)   in   macaques   vaccinated   with  replication-­‐deficient  viral  vectors.  Retrovirology  6,  60  (2009).  

91.   I.  Frank  et  al.,  Acquisition  of  host  cell-­‐surface-­‐derived  molecules  by  HIV-­‐1.  AIDS  10,  1611  (Dec,  1996).  

92.   M.  Pruenster  et  al.,  C-­‐type  lectin-­‐independent  interaction  of  complement  opsonized  HIV  with  monocyte-­‐derived  dendritic   cells.  European  journal  of   immunology  35,   2691   (Sep,  2005).  

93.   H.  Stoiber,  M.  Pruenster,  C.  G.  Ammann,  M.  P.  Dierich,  Complement-­‐opsonized  HIV:  the  free  rider  on  its  way  to  infection.  Mol  Immunol  42,  153  (Feb,  2005).

73

Acknowledgements  

61  

 94.   P.  Tacnet-­‐Delorme  et  al.,  In  vitro  analysis  of  complement-­‐dependent  HIV-­‐1  cell  infection  

using  a  model  system.  J  Immunol  162,  4088  (Apr  1,  1999).  95.   V.   Boyer,   C.   Desgranges,   M.   A.   Trabaud,   E.   Fischer,   M.   D.   Kazatchkine,   Complement  

mediates  human  immunodeficiency  virus  type  1  infection  of  a  human  T  cell  line  in  a  CD4-­‐  and  antibody-­‐independent  fashion.  The  Journal  of  experimental  medicine  173,  1151  (May  1,  1991).  

96.   Z.   Bajtay,   L.   Kacani,   A.   Erdei,   M.   P.   Dierich,   HIV-­‐1   induces   human   monocyte-­‐derived  macrophages   to  produce  C3  and   to   fix  C3  on   their   surface.   Journal  of   leukocyte  biology  63,  463  (Apr,  1998).  

97.   C.   F.   Ebenbichler   et   al.,   Human   immunodeficiency   virus   type   1   activates   the   classical  pathway   of   complement   by   direct   C1   binding   through   specific   sites   in   the  transmembrane  glycoprotein  gp41.  The  Journal  of  experimental  medicine  174,  1417  (Dec  1,  1991).  

98.   N.  M.  Thielens,  P.  Tacnet-­‐Delorme,  G.   J.  Arlaud,   Interaction  of  C1q  and  mannan-­‐binding  lectin  with  viruses.  Immunobiology  205,  563  (Sep,  2002).  

99.   P.   K.   Datta,   J.   Rappaport,   HIV   and   complement:   hijacking   an   immune   defense.  Biomedicine  &  pharmacotherapy  =  Biomedecine  &  pharmacotherapie  60,  561  (Nov,  2006).  

100.   C.   Pinter,   A.   G.   Siccardi,   R.   Longhi,   A.   Clivio,  Direct   interaction   of   complement   factor  H  with   the   C1   domain   of   HIV   type   1   glycoprotein   120.   AIDS   research   and   human  retroviruses  11,  577  (May,  1995).  

101.   C.   Pinter,   A.   G.   Siccardi,   L.   Lopalco,   R.   Longhi,   A.   Clivio,   HIV   glycoprotein   41   and  complement  factor  H  interact  with  each  other  and  share  functional  as  well  as  antigenic  homology.  AIDS  research  and  human  retroviruses  11,  971  (Aug,  1995).  

102.   H.  Stoiber,  R.  Schneider,  J.  Janatova,  M.  P.  Dierich,  Human  complement  proteins  C3b,  C4b,  factor  H  and  properdin  react  with  specific  sites  in  gp120  and  gp41,  the  envelope  proteins  of  HIV-­‐1.  Immunobiology  193,  98  (Jun,  1995).  

103.   J.   Alsenz,   J.   D.   Lambris,   T.   F.   Schulz,   M.   P.   Dierich,   Localization   of   the   complement-­‐component-­‐C3b-­‐binding   site   and   the   cofactor   activity   for   factor   I   in   the   38kDa   tryptic  fragment  of  factor  H.  The  Biochemical  journal  224,  389  (Dec  1,  1984).  

104.   C.  Hess  et  al.,   Association  of   a   pool   of  HIV-­‐1  with   erythrocytes   in   vivo:   a   cohort   study.  Lancet  359,  2230  (Jun  29,  2002).  

105.   L.   Kacani   et   al.,   Detachment   of   human   immunodeficiency   virus   type   1   from   germinal  centers   by   blocking   complement   receptor   type   2.   Journal   of   virology   74,   7997   (Sep,  2000).  

106.   R.  Tsunoda,  K.  Hashimoto,  M.  Baba,  S.  Shigeta,  N.  Sugai,  Follicular  dendritic  cells  in  vitro  are  not  susceptible  to  infection  by  HIV-­‐1.  AIDS  10,  595  (Jun,  1996).  

107.   J.   Schmitz   et   al.,   Follicular   dendritic   cells   retain   HIV-­‐1   particles   on   their   plasma  membrane,   but   are   not   productively   infected   in   asymptomatic   patients   with   follicular  hyperplasia.  J  Immunol  153,  1352  (Aug  1,  1994).  

108.   Z.   Bajtay,   C.   Speth,   A.   Erdei,   M.   P.   Dierich,   Cutting   edge:   productive   HIV-­‐1   infection   of  dendritic   cells   via   complement   receptor   type   3   (CR3,   CD11b/CD18).   J   Immunol   173,  4775  (Oct  15,  2004).  

109.   N.   Thieblemont   et   al.,   Triggering   of   complement   receptors   CR1   (CD35)   and   CR3  (CD11b/CD18)   induces   nuclear   translocation   of   NF-­‐kappa   B   (p50/p65)   in   human  monocytes   and   enhances   viral   replication   in   HIV-­‐infected   monocytic   cells.   J   Immunol  155,  4861  (Nov  15,  1995).  

110.   H.   Bouhlal   et   al.,   Opsonization   of   HIV-­‐1   by   semen   complement   enhances   infection   of  human  epithelial  cells.  J  Immunol  169,  3301  (Sep  15,  2002).  

111.   V.  Tjomsland  et  al.,  Complement  Opsonization  of  HIV-­‐1  Enhances  the  Uptake  by  Dendritic  Cells  and  Involves  the  Endocytic  Lectin  and  Integrin  Receptor  Families.  PloS  one  6,  e23542  (2011).

74

Acknowledgements  

62  

112.   R.   M.   Steinman,   Z.   A.   Cohn,   Identification   of   a   novel   cell   type   in   peripheral   lymphoid  organs   of   mice.   I.   Morphology,   quantitation,   tissue   distribution.   The   Journal   of  experimental  medicine  137,  1142  (May  1,  1973).  

113.   J.   Travis,   Nobel   Prize   in   physiology   or   medicine.   Immunology   prize   overshadowed   by  untimely  death  of  awardee.  Science  334,  31  (Oct  7,  2011).  

114.   R.   M.   Steinman,   Dendritic   cells:   understanding   immunogenicity.   European   journal   of  immunology  37  Suppl  1,  S53  (Nov,  2007).  

115.   K.  Tamaki,  G.  Stingl,  S.  I.  Katz,  The  origin  of  Langerhans  cells.  The  Journal  of  investigative  dermatology  74,  309  (May,  1980).  

116.   J.  Banchereau,  R.  M.  Steinman,  Dendritic  cells  and  the  control  of   immunity.  Nature  392,  245  (Mar  19,  1998).  

117.   H.  Donaghy,  J.  Wilkinson,  A.  L.  Cunningham,  HIV  interactions  with  dendritic  cells:  has  our  focus  been  too  narrow?  Journal  of  leukocyte  biology  80,  1001  (Nov,  2006).  

118.   L.  L.  Cavanagh,  U.  H.  Von  Andrian,  Travellers  in  many  guises:  the  origins  and  destinations  of  dendritic  cells.  Immunology  and  cell  biology  80,  448  (Oct,  2002).  

119.   S.  Turville,  J.  Wilkinson,  P.  Cameron,  J.  Dable,  A.  L.  Cunningham,  The  role  of  dendritic  cell  C-­‐type   lectin   receptors   in  HIV   pathogenesis.   Journal  of   leukocyte  biology  74,   710   (Nov,  2003).  

120.   I.  Mellman,  R.  M.  Steinman,  Dendritic  cells:  specialized  and  regulated  antigen  processing  machines.  Cell  106,  255  (Aug  10,  2001).  

121.   J.  M.  Weiss  et  al.,  An  essential   role   for  CD44  variant   isoforms   in  epidermal  Langerhans  cell  and  blood  dendritic  cell  function.  The  Journal  of  cell  biology  137,  1137  (Jun  2,  1997).  

122.   J.  Banchereau  et  al.,   Immunobiology  of  dendritic  cells.  Annual  review  of  immunology  18,  767  (2000).  

123.   S.  J.  Gibson  et  al.,  Plasmacytoid  dendritic  cells  produce  cytokines  and  mature  in  response  to  the  TLR7  agonists,  imiquimod  and  resiquimod.  Cellular  immunology  218,  74  (Jul-­‐Aug,  2002).  

124.   A.  Dzionek  et  al.,  Plasmacytoid  dendritic  cells:   from  specific  surface  markers   to  specific  cellular  functions.  Human  immunology  63,  1133  (Dec,  2002).  

125.   N.  Teleshova,  I.  Frank,  M.  Pope,  Immunodeficiency  virus  exploitation  of  dendritic  cells  in  the  early  steps  of  infection.  Journal  of  leukocyte  biology  74,  683  (Nov,  2003).  

126.   M.   Cella  et  al.,   Plasmacytoid  monocytes  migrate   to   inflamed   lymph  nodes   and  produce  large  amounts  of  type  I  interferon.  Nature  medicine  5,  919  (Aug,  1999).  

127.   F.  P.  Siegal  et  al.,  The  nature  of  the  principal  type  1  interferon-­‐producing  cells  in  human  blood.  Science  284,  1835  (Jun  11,  1999).  

128.   M.  Lambotin,  S.  Raghuraman,  F.  Stoll-­‐Keller,  T.  F.  Baumert,  H.  Barth,  A  look  behind  closed  doors:  interaction  of  persistent  viruses  with  dendritic  cells.  Nature  reviews.  Microbiology  8,  350  (May,  2010).  

129.   D.   N.   Hart,   Dendritic   cells:   unique   leukocyte   populations   which   control   the   primary  immune  response.  Blood  90,  3245  (Nov  1,  1997).  

130.   K.   Shortman,   Y.   J.   Liu,   Mouse   and   human   dendritic   cell   subtypes.   Nature   reviews.  Immunology  2,  151  (Mar,  2002).  

131.   M.   A.   de   Jong,   T.   B.   Geijtenbeek,   Langerhans   cells   in   innate   defense   against   pathogens.  Trends  in  immunology  31,  452  (Dec,  2010).  

132.   T.  Kawamura  et  al.,  R5  HIV  productively  infects  Langerhans  cells,  and  infection  levels  are  regulated   by   compound   CCR5   polymorphisms.   Proceedings   of   the  National  Academy  of  Sciences  of  the  United  States  of  America  100,  8401  (Jul  8,  2003).  

133.   K.  Wolff,  The  fine  structure  of  the  Langerhans  cell  granule.  The  Journal  of  cell  biology  35,  468  (Nov,  1967).  

134.   R.  McDermott  et  al.,  Reproduction  of  Langerin/CD207  traffic  and  Birbeck  granule  formation  in  a  human  cell  line  model.  The  Journal  of  investigative  dermatology  123,  72  (Jul,  2004).

75

Acknowledgements  

63  

135.   T.   Kawamura   et   al.,   Candidate  microbicides   block   HIV-­‐1   infection   of   human   immature  Langerhans   cells  within  epithelial   tissue  explants.  The  Journal  of  experimental  medicine  192,  1491  (Nov  20,  2000).  

136.   N.  Kadowaki  et  al.,  Subsets  of  human  dendritic  cell  precursors  express  different  toll-­‐like  receptors   and   respond   to   different   microbial   antigens.   The   Journal   of   experimental  medicine  194,  863  (Sep  17,  2001).  

137.   C.   Caux   et   al.,   CD34+   hematopoietic   progenitors   from   human   cord   blood   differentiate  along  two  independent  dendritic  cell  pathways  in  response  to  granulocyte-­‐macrophage  colony-­‐stimulating  factor  plus  tumor  necrosis  factor  alpha:  II.  Functional  analysis.  Blood  90,  1458  (Aug  15,  1997).  

138.   T.  B.  Geijtenbeek  et  al.,   Identification  of  DC-­‐SIGN,  a  novel  dendritic  cell-­‐specific   ICAM-­‐3  receptor  that  supports  primary  immune  responses.  Cell  100,  575  (Mar  3,  2000).  

139.   L.   Wu,   V.   N.   KewalRamani,   Dendritic-­‐cell   interactions   with   HIV:   infection   and   viral  dissemination.  Nature  reviews.  Immunology  6,  859  (Nov,  2006).  

140.   V.   Holl   et   al.,   Efficient   inhibition   of   HIV-­‐1   replication   in   human   immature   monocyte-­‐derived  dendritic  cells  by  purified  anti-­‐HIV-­‐1  IgG  without  induction  of  maturation.  Blood  107,  4466  (Jun  1,  2006).  

141.   A.   J.   Engering   et   al.,   The   mannose   receptor   functions   as   a   high   capacity   and   broad  specificity   antigen   receptor   in   human   dendritic   cells.   European   journal   of   immunology  27,  2417  (Sep,  1997).  

142.   M.  C.  Tan  et  al.,  Mannose  receptor-­‐mediated  uptake  of  antigens  strongly  enhances  HLA  class   II-­‐restricted   antigen   presentation   by   cultured   dendritic   cells.  European   journal  of  immunology  27,  2426  (Sep,  1997).  

143.   T.  I.  Prigozy  et  al.,  The  mannose  receptor  delivers  lipoglycan  antigens  to  endosomes  for  presentation  to  T  cells  by  CD1b  molecules.  Immunity  6,  187  (Feb,  1997).  

144.   A.  Engering,  T.  B.  Geijtenbeek,  Y.   van  Kooyk,   Immune  escape   through  C-­‐type   lectins  on  dendritic  cells.  Trends  in  immunology  23,  480  (Oct,  2002).  

145.   T.   B.   Geijtenbeek   et   al.,   DC-­‐SIGN,   a   dendritic   cell-­‐specific   HIV-­‐1-­‐binding   protein   that  enhances  trans-­‐infection  of  T  cells.  Cell  100,  587  (Mar  3,  2000).  

146.   S.  G.  Turville  et  al.,  Diversity  of   receptors  binding  HIV  on  dendritic   cell   subsets.  Nature  immunology  3,  975  (Oct,  2002).  

147.   Q.  Sattentau,  HIV's  gut  feeling.  Nature  immunology  9,  225  (Mar,  2008).  148.   J.   Arthos   et   al.,   HIV-­‐1   envelope   protein   binds   to   and   signals   through   integrin  

alpha4beta7,  the  gut  mucosal  homing  receptor  for  peripheral  T  cells.  Nature  immunology  9,  301  (Mar,  2008).  

149.   A.  Granelli-­‐Piperno  et  al.,   Efficient   interaction  of  HIV-­‐1  with  purified  dendritic   cells   via  multiple  chemokine  coreceptors.  The  Journal  of  experimental  medicine  184,  2433  (Dec  1,  1996).  

150.   S.  Ayehunie  et  al.,  Human  immunodeficiency  virus-­‐1  entry   into  purified  blood  dendritic  cells  through  CC  and  CXC  chemokine  coreceptors.  Blood  90,  1379  (Aug  15,  1997).  

151.   I.  M.  Klagge,  S.  Schneider-­‐Schaulies,  Virus  interactions  with  dendritic  cells.  The  Journal  of  general  virology  80  (  Pt  4),  823  (Apr,  1999).  

152.   V.   Piguet,   R.   M.   Steinman,   The   interaction   of   HIV   with   dendritic   cells:   outcomes   and  pathways.  Trends  in  immunology  28,  503  (Nov,  2007).  

153.   C.   Dong,   A.   M.   Janas,   J.   H.   Wang,   W.   J.   Olson,   L.   Wu,   Characterization   of   human  immunodeficiency   virus   type   1   replication   in   immature   and   mature   dendritic   cells  reveals  dissociable  cis-­‐  and  trans-­‐infection.  Journal  of  virology  81,  11352  (Oct,  2007).  

154.   J.  H.  Wang,  A.  M.   Janas,  W.   J.  Olson,  L.  Wu,  Functionally  distinct   transmission  of  human  immunodeficiency   virus   type   1   mediated   by   immature   and   mature   dendritic   cells.  Journal  of  virology  81,  8933  (Sep,  2007).  

155.   A.  Engering,  S.  J.  Van  Vliet,  T.  B.  Geijtenbeek,  Y.  Van  Kooyk,  Subset  of  DC-­‐SIGN(+)  dendritic  cells  in  human  blood  transmits  HIV-­‐1  to  T  lymphocytes.  Blood  100,  1780  (Sep  1,  2002).

76

Acknowledgements  

64  

156.   B.   Lee   et   al.,   cis   Expression   of   DC-­‐SIGN   allows   for   more   efficient   entry   of   human   and  simian   immunodeficiency   viruses   via   CD4   and   a   coreceptor.   Journal   of   virology   75,  12028  (Dec,  2001).  

157.   D.  S.  Kwon,  G.  Gregorio,  N.  Bitton,  W.  A.  Hendrickson,  D.  R.  Littman,  DC-­‐SIGN-­‐mediated  internalization  of  HIV  is  required  for  trans-­‐enhancement  of  T  cell  infection.  Immunity  16,  135  (Jan,  2002).  

158.   D.   SenGupta   et   al.,   Strong   human   endogenous   retrovirus-­‐specific   T   cell   responses   are  associated  with   control   of  HIV-­‐1   in   chronic   infection.   Journal  of  virology  85,   6977   (Jul,  2011).  

159.   M.  Stremlau  et  al.,  Specific  recognition  and  accelerated  uncoating  of  retroviral  capsids  by  the  TRIM5alpha  restriction  factor.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  103,  5514  (Apr  4,  2006).  

160.   K.   L.   Martin,   M.   Johnson,   R.   T.   D'Aquila,   APOBEC3G   complexes   decrease   human  immunodeficiency  virus  type  1  production.  Journal  of  virology  85,  9314  (Sep,  2011).  

161.   Y.   H.   Zheng   et   al.,   Human   APOBEC3F   is   another   host   factor   that   blocks   human  immunodeficiency  virus  type  1  replication.  Journal  of  virology  78,  6073  (Jun,  2004).  

162.   K.  N.  Bishop  et  al.,  Cytidine  deamination  of  retroviral  DNA  by  diverse  APOBEC  proteins.  Current  biology  :  CB  14,  1392  (Aug  10,  2004).  

163.   M.  T.  Liddament,  W.  L.  Brown,  A.   J.  Schumacher,  R.  S.  Harris,  APOBEC3F  properties  and  hypermutation  preferences   indicate   activity   against  HIV-­‐1   in   vivo.  Current  biology   :  CB  14,  1385  (Aug  10,  2004).  

164.   H.   L.  Wiegand,   B.   P.   Doehle,   H.   P.   Bogerd,   B.   R.   Cullen,   A   second   human   antiretroviral  factor,  APOBEC3F,  is  suppressed  by  the  HIV-­‐1  and  HIV-­‐2  Vif  proteins.  The  EMBO  journal  23,  2451  (Jun  16,  2004).  

165.   D.  Wolf,  S.  P.  Goff,  Host  restriction  factors  blocking  retroviral  replication.  Annual  review  of  genetics  42,  143  (2008).  

166.   J.   Martin-­‐Serrano,   S.   J.   Neil,   Host   factors   involved   in   retroviral   budding   and   release.  Nature  reviews.  Microbiology  9,  519  (Jul,  2011).  

167.   D.  T.  Evans,  R.  Serra-­‐Moreno,  R.  K.  Singh,  J.  C.  Guatelli,  BST-­‐2/tetherin:  a  new  component  of   the   innate   immune   response   to   enveloped   viruses.   Trends   in  microbiology   18,   388  (Sep,  2010).  

168.   E.  S.  Lim,  M.  Emerman,  HIV:  Going  for  the  watchman.  Nature  474,  587  (Jun  30,  2011).  169.   L.   J.   Young   et   al.,   Dendritic   cell   preactivation   impairs   MHC   class   II   presentation   of  

vaccines  and  endogenous  viral  antigens.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  104,  17753  (Nov  6,  2007).  

170.   M.  J.  Bevan,  Cross-­‐priming.  Nature  immunology  7,  363  (Apr,  2006).  171.   M.  L.  Albert,  B.  Sauter,  N.  Bhardwaj,  Dendritic  cells  acquire  antigen  from  apoptotic  cells  

and  induce  class  I-­‐restricted  CTLs.  Nature  392,  86  (Mar  5,  1998).  172.   M.   Larsson,   J.   F.   Fonteneau,   N.   Bhardwaj,   Dendritic   cells   resurrect   antigens   from   dead  

cells.  Trends  in  immunology  22,  141  (Mar,  2001).  173.   W.   R.   Heath   et   al.,   Cross-­‐presentation,   dendritic   cell   subsets,   and   the   generation   of  

immunity  to  cellular  antigens.  Immunological  reviews  199,  9  (Jun,  2004).  174.   A.  Y.  Huang  et  al.,  Role  of  bone  marrow-­‐derived  cells  in  presenting  MHC  class  I-­‐restricted  

tumor  antigens.  Science  264,  961  (May  13,  1994).  175.   M.  J.  Bevan,  Cross-­‐priming  for  a  secondary  cytotoxic  response  to  minor  H  antigens  with  

H-­‐2   congenic   cells   which   do   not   cross-­‐react   in   the   cytotoxic   assay.   The   Journal   of  experimental  medicine  143,  1283  (May  1,  1976).  

176.   F.   Buseyne   et   al.,   MHC-­‐I-­‐restricted   presentation   of   HIV-­‐1   virion   antigens  without   viral  replication.  Nature  medicine  7,  344  (Mar,  2001).  

177.   P.  Guermonprez,  S.  Amigorena,  Pathways  for  antigen  cross  presentation.  Springer  Semin  Immunopathol  26,  257  (Jan,  2005).  

178.   M.  Gromme  et  al.,  Recycling  MHC  class  I  molecules  and  endosomal  peptide  loading.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  96,  10326  (Aug  31,  1999).

77

Acknowledgements  

65  

179.   M.  Larsson  et  al.,  Activation  of  HIV-­‐1   specific  CD4  and  CD8  T   cells  by  human  dendritic  cells:  roles   for  cross-­‐presentation  and  non-­‐infectious  HIV-­‐1  virus.  AIDS  16,  1319  (Jul  5,  2002).  

180.   L.   M.   Wakim,   M.   J.   Bevan,   Cross-­‐dressed   dendritic   cells   drive   memory   CD8+   T-­‐cell  activation  after  viral  infection.  Nature  471,  629  (Mar  31,  2011).  

181.   C.   Stemberger   et   al.,   A   single   naive   CD8+   T   cell   precursor   can   develop   into   diverse  effector  and  memory  subsets.  Immunity  27,  985  (Dec,  2007).  

182.   R.   L.   Sabado   et  al.,   Pathways   utilized   by   dendritic   cells   for   binding,   uptake,   processing  and   presentation   of   antigens   derived   from  HIV-­‐1.  European   journal  of   immunology  37,  1752  (Jul,  2007).  

183.   A.   Moris   et   al.,   DC-­‐SIGN   promotes   exogenous   MHC-­‐I-­‐restricted   HIV-­‐1   antigen  presentation.  Blood  103,  2648  (Apr  1,  2004).  

184.   A.  Ciechanover,  Proteolysis:  from  the  lysosome  to  ubiquitin  and  the  proteasome.  Nature  reviews.  Molecular  cell  biology  6,  79  (Jan,  2005).  

185.   L.  Huang,  J.  M.  Marvin,  N.  Tatsis,  L.  C.  Eisenlohr,  Selective  role  of  ubiquitin  in  MHC  class  I  antigen  presentation.  J  Immunol  186,  1904  (Feb  15,  2011).  

186.   D.  Voges,  P.  Zwickl,  W.  Baumeister,  The  26S  proteasome:  a  molecular  machine  designed  for  controlled  proteolysis.  Annual  review  of  biochemistry  68,  1015  (1999).  

187.   O.  Kerscher,  R.  Felberbaum,  M.  Hochstrasser,  Modification  of  proteins  by  ubiquitin  and  ubiquitin-­‐like  proteins.  Annual  review  of  cell  and  developmental  biology  22,  159  (2006).  

188.   K.  J.  Walters,  A.  M.  Goh,  Q.  Wang,  G.  Wagner,  P.  M.  Howley,  Ubiquitin  family  proteins  and  their   relationship   to   the  proteasome:   a   structural  perspective.  Biochimica  et  biophysica  acta  1695,  73  (Nov  29,  2004).  

189.   R.   L.   Welchman,   C.   Gordon,   R.   J.   Mayer,   Ubiquitin   and   ubiquitin-­‐like   proteins   as  multifunctional  signals.  Nature  reviews.  Molecular  cell  biology  6,  599  (Aug,  2005).  

190.   S.  Elsasser  et  al.,  Proteasome  subunit  Rpn1  binds  ubiquitin-­‐like  protein  domains.  Nature  cell  biology  4,  725  (Sep,  2002).  

191.   J.   Herrmann,   L.   O.   Lerman,   A.   Lerman,  Ubiquitin   and   ubiquitin-­‐like   proteins   in   protein  regulation.  Circulation  research  100,  1276  (May  11,  2007).  

192.   D.  Zhang,  D.  E.  Zhang,  Interferon-­‐stimulated  gene  15  and  the  protein  ISGylation  system.  Journal  of   interferon  &  cytokine  research  :  the  official   journal  of  the  International  Society  for  Interferon  and  Cytokine  Research  31,  119  (Jan,  2011).  

193.   J.  A.  Hamerman  et  al.,  Serpin  2a  is  induced  in  activated  macrophages  and  conjugates  to  a  ubiquitin  homolog.  J  Immunol  168,  2415  (Mar  1,  2002).  

194.   M.   P.   Malakhov   et   al.,   High-­‐throughput   immunoblotting.   Ubiquitiin-­‐like   protein   ISG15  modifies   key   regulators   of   signal   transduction.  The  Journal  of  biological  chemistry  278,  16608  (May  9,  2003).  

195.   M.   Liu,   X.   L.   Li,   B.   A.   Hassel,   Proteasomes   modulate   conjugation   to   the   ubiquitin-­‐like  protein,  ISG15.  The  Journal  of  biological  chemistry  278,  1594  (Jan  17,  2003).  

196.   A.   Okumura,   G.   Lu,   I.   Pitha-­‐Rowe,   P.   M.   Pitha,   Innate   antiviral   response   targets   HIV-­‐1  release   by   the   induction   of   ubiquitin-­‐like   protein   ISG15.   Proceedings   of   the   National  Academy  of  Sciences  of  the  United  States  of  America  103,  1440  (Jan  31,  2006).  

197.   B.  Skaug,  Z.  J.  Chen,  Emerging  role  of  ISG15  in  antiviral  immunity.  Cell  143,  187  (Oct  15,  2010).  

198.   T.  Tanaka,  H.  Kawashima,  E.  T.   Yeh,  T.  Kamitani,  Regulation  of   the  NEDD8   conjugation  system  by  a  splicing  variant,  NUB1L.  The  Journal  of  biological  chemistry  278,  32905  (Aug  29,  2003).  

199.   K.  Tanji,  T.  Tanaka,  T.  Kamitani,   Interaction  of  NUB1  with   the  proteasome  subunit  S5a.  Biochemical  and  biophysical  research  communications  337,  116  (Nov  11,  2005).  

200.   O.  Schwartz,  V.  Marechal,  B.  Friguet,  F.  Arenzana-­‐Seisdedos,  J.  M.  Heard,  Antiviral  activity  of  the  proteasome  on  incoming  human  immunodeficiency  virus  type  1.  Journal  of  virology  72,  3845  (May,  1998).

78

Acknowledgements  

66  

201.   C.  Boutell,   S.   Sadis,  R.  D.  Everett,  Herpes   simplex   virus   type  1   immediate-­‐early  protein  ICP0   and   is   isolated  RING   finger  domain   act   as  ubiquitin  E3   ligases   in   vitro.   Journal  of  virology  76,  841  (Jan,  2002).  

202.   Y.   Yu,   S.   E.  Wang,   G.   S.   Hayward,   The   KSHV   immediate-­‐early   transcription   factor   RTA  encodes   ubiquitin   E3   ligase   activity   that   targets   IRF7   for   proteosome-­‐mediated  degradation.  Immunity  22,  59  (Jan,  2005).  

203.   X.  Yu  et  al.,  Induction  of  APOBEC3G  ubiquitination  and  degradation  by  an  HIV-­‐1  Vif-­‐Cul5-­‐SCF  complex.  Science  302,  1056  (Nov  7,  2003).  

204.   H.   Zhang   et   al.,   The   cytidine   deaminase   CEM15   induces   hypermutation   in   newly  synthesized  HIV-­‐1  DNA.  Nature  424,  94  (Jul  3,  2003).  

205.   S.   Dussart   et   al.,   The   Vif   protein   of   human   immunodeficiency   virus   type   1   is  posttranslationally   modified   by   ubiquitin.   Biochemical   and   biophysical   research  communications  315,  66  (Feb  27,  2004).  

206.   V.   M.   Vogt,   Ubiquitin   in   retrovirus   assembly:   actor   or   bystander?   Proceedings   of   the  National  Academy  of  Sciences  of  the  United  States  of  America  97,  12945  (Nov  21,  2000).  

207.   B.   Guillaume   et   al.,   Two   abundant   proteasome   subtypes   that   uniquely   process   some  antigens   presented   by   HLA   class   I   molecules.   Proceedings   of   the   National   Academy   of  Sciences  of  the  United  States  of  America  107,  18599  (Oct  26,  2010).  

208.   S.  Elsasser,  D.  Chandler-­‐Militello,  B.  Muller,  J.  Hanna,  D.  Finley,  Rad23  and  Rpn10  serve  as  alternative   ubiquitin   receptors   for   the   proteasome.   The   Journal   of   biological   chemistry  279,  26817  (Jun  25,  2004).  

209.   B.  J.  Van  den  Eynde,  S.  Morel,  Differential  processing  of  class-­‐I-­‐restricted  epitopes  by  the  standard   proteasome   and   the   immunoproteasome.   Current   opinion   in   immunology  13,  147  (Apr,  2001).  

210.   P.   M.   Kloetzel,   F.   Ossendorp,   Proteasome   and   peptidase   function   in   MHC-­‐class-­‐I-­‐mediated  antigen  presentation.  Current  opinion  in  immunology  16,  76  (Feb,  2004).  

211.   A.  Macagno  et  al.,  Dendritic   cells  up-­‐regulate   immunoproteasomes  and   the  proteasome  regulator   PA28   during   maturation.   European   journal   of   immunology   29,   4037   (Dec,  1999).  

212.   U.  Seifert  et  al.,  An  essential   role   for   tripeptidyl  peptidase   in   the  generation  of  an  MHC  class  I  epitope.  Nature  immunology  4,  375  (Apr,  2003).  

213.   D.   H.   Margulies,   Antigen-­‐processing   and   presentation   pathways   select   antigenic   HIV  peptides  in  the  fight  against  viral  evolution.  Nature  immunology  10,  566  (Jun,  2009).  

214.   E.  S.  Song,  Y.  Yang,  M.  R.   Jackson,  P.  A.  Peterson,  In  vivo  regulation  of  the  assembly  and  intracellular  transport  of  class  I  major  histocompatibility  complex  molecules.  The  Journal  of  biological  chemistry  269,  7024  (Mar  4,  1994).  

215.   L.   Y.   Hwang,   P.   T.   Lieu,   P.   A.   Peterson,   Y.   Yang,   Functional   regulation   of  immunoproteasomes  and   transporter  associated  with  antigen  processing.   Immunologic  research  24,  245  (2001).  

216.   T.  Ravid,  M.  Hochstrasser,  Diversity  of  degradation  signals   in   the  ubiquitin-­‐proteasome  system.  Nature  reviews.  Molecular  cell  biology  9,  679  (Sep,  2008).  

217.   C.   Muratori   et   al.,   DC   contact   with   HIV-­‐1-­‐infected   cells   leads   to   high   levels   of   Env-­‐mediated   virion   endocytosis   coupled   with   enhanced   HIV-­‐1   Ag   presentation.  European  journal  of  immunology  39,  404  (Feb,  2009).  

218.   A.  Moris  et  al.,  Dendritic  cells  and  HIV-­‐specific  CD4+  T  cells:  HIV  antigen  presentation,  T-­‐cell  activation,  and  viral  transfer.  Blood  108,  1643  (Sep  1,  2006).  

219.   I.  Frank  et  al.,  Infectious  and  whole  inactivated  simian  immunodeficiency  viruses  interact  similarly  with   primate   dendritic   cells   (DCs):   differential   intracellular   fate   of   virions   in  mature  and  immature  DCs.  Journal  of  virology  76,  2936  (Mar,  2002).  

220.   A.  N.  Harman  et  al.,  HIV-­‐1-­‐infected  dendritic  cells  show  2  phases  of  gene  expression  changes,  with  lysosomal  enzyme  activity  decreased  during  the  second  phase.  Blood  114,  85  (Jul  2,  2009).

79

Acknowledgements  

67  

221.   T.   Zavasnik-­‐Bergant,   B.   Turk,   Cysteine   proteases:   destruction   ability   versus  immunomodulation   capacity   in   immune   cells.   Biological   chemistry   388,   1141   (Nov,  2007).  

222.   J.   A.   Villadangos   et   al.,   MHC   class   II   expression   is   regulated   in   dendritic   cells  independently  of  invariant  chain  degradation.  Immunity  14,  739  (Jun,  2001).  

223.   O.  J.  Landsverk,  O.  Bakke,  T.  F.  Gregers,  MHC  II  and  the  endocytic  pathway:  regulation  by  invariant  chain.  Scandinavian  journal  of  immunology  70,  184  (Sep,  2009).  

224.   P.  Borrow,  R.   J.   Shattock,  A.  Vyakarnam,   Innate   immunity  against  HIV:  a  priority   target  for  HIV  prevention  research.  Retrovirology  7,  84  (2010).  

225.   H.   Nakashima,   N.   Yamamoto,   M.   Masuda,   N.   Fujii,   Defensins   inhibit   HIV   replication   in  vitro.  AIDS  7,  1129  (Aug,  1993).  

226.   C.  R.  Wira,  J.  V.  Fahey,  The  innate  immune  system:  gatekeeper  to  the  female  reproductive  tract.  Immunology  111,  13  (Jan,  2004).  

227.   C.  R.  Wira  et  al.,  Sex  hormone  regulation  of  innate  immunity  in  the  female  reproductive  tract:   the   role   of   epithelial   cells   in   balancing   reproductive   potential   with   protection  against   sexually   transmitted   pathogens.   American   journal   of   reproductive   immunology  63,  544  (Jun,  2010).  

228.   S.   M.   Smith   et   al.,   Topical   estrogen   protects   against   SIV   vaginal   transmission   without  evidence  of  systemic  effect.  AIDS  18,  1637  (Aug  20,  2004).  

229.   S.  M.   Smith,  G.   B.   Baskin,   P.  A.  Marx,   Estrogen  protects   against   vaginal   transmission  of  simian  immunodeficiency  virus.  The  Journal  of  infectious  diseases  182,  708  (Sep,  2000).  

230.   E.   M.   Stringer   et   al.,   A   randomized   trial   of   the   intrauterine   contraceptive   device   vs  hormonal  contraception  in  women  who  are  infected  with  the  human  immunodeficiency  virus.  American  journal  of  obstetrics  and  gynecology  197,  144  e1  (Aug,  2007).  

231.   A.  Iwasaki,  Mucosal  dendritic  cells.  Annual  review  of  immunology  25,  381  (2007).  232.   A.   C.   Soloff,   S.   M.   Barratt-­‐Boyes,   Enemy   at   the   gates:   dendritic   cells   and   immunity   to  

mucosal  pathogens.  Cell  research  20,  872  (Aug,  2010).  233.   J.  Hu,  M.  B.  Gardner,  C.   J.  Miller,   Simian   immunodeficiency  virus   rapidly  penetrates   the  

cervicovaginal  mucosa  after  intravaginal  inoculation  and  infects  intraepithelial  dendritic  cells.  Journal  of  virology  74,  6087  (Jul,  2000).  

234.   K.  M.  Fahrbach,  S.  M.  Barry,  M.  R.  Anderson,  T.  J.  Hope,  Enhanced  cellular  responses  and  environmental   sampling  within   inner   foreskin   explants:   implications   for   the   foreskin's  role  in  HIV  transmission.  Mucosal  immunology  3,  410  (Jul,  2010).  

235.   L.   Ballweber   et   al.,   Vaginal   Langerhans   cells   non-­‐productively   transporting   HIV-­‐1  mediate  infection  of  T  cells.  Journal  of  virology,    (Oct  5,  2011).  

236.   D.   M.   Phillips,   X.   Tan,   M.   E.   Perotti,   V.   R.   Zacharopoulos,   Mechanism   of   monocyte-­‐macrophage-­‐mediated   transmission   of   HIV.   AIDS   research   and   human   retroviruses   14  Suppl  1,  S67  (Apr,  1998).  

237.   R.   Shen   et   al.,   GP41-­‐specific   antibody   blocks   cell-­‐free   HIV   type   1   transcytosis   through  human  rectal  mucosa  and  model  colonic  epithelium.  J  Immunol  184,  3648  (Apr  1,  2010).  

238.   F.   Hladik   et   al.,   Initial   events   in   establishing   vaginal   entry   and   infection   by   human  immunodeficiency  virus  type-­‐1.  Immunity  26,  257  (Feb,  2007).  

239.   V.  Tjomsland  et  al.,  Blocking  of  integrins  significantly  inhibits  HIV-­‐1  infection  of  human  cervical  mucosa  immune  cells  and  development  of  founder  populations.  Submitted,    (2011).  

240.   S.   G.   Turville   et   al.,   Immunodeficiency   virus   uptake,   turnover,   and   2-­‐phase   transfer   in  human  dendritic  cells.  Blood  103,  2170  (Mar  15,  2004).  

241.   V.   Piguet,   Q.   Sattentau,   Dangerous   liaisons   at   the   virological   synapse.   The   Journal   of  clinical  investigation  114,  605  (Sep,  2004).  

242.   M.  Sagar  et  al.,  Selection  of  HIV  variants  with  signature  genotypic  characteristics  during  heterosexual  transmission.  The  Journal  of  infectious  diseases  199,  580  (Feb  15,  2009).  

243.   B.  F.  Keele  et  al.,  Identification  and  characterization  of  transmitted  and  early  founder  virus  envelopes  in  primary  HIV-­‐1  infection.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  105,  7552  (May  27,  2008).

80

Acknowledgements  

68  

244.   M.   K.   Norvell,   G.   I.   Benrubi,   R.   J.   Thompson,   Investigation   of  microtrauma   after   sexual  intercourse.  The  Journal  of  reproductive  medicine  29,  269  (Apr,  1984).  

245.   P.   J.   Klasse,  R.   Shattock,   J.   P.  Moore,  Antiretroviral   drug-­‐based  microbicides   to   prevent  HIV-­‐1  sexual  transmission.  Annual  review  of  medicine  59,  455  (2008).  

246.   M.  Pope,  A.  T.  Haase,  Transmission,  acute  HIV-­‐1  infection  and  the  quest  for  strategies  to  prevent  infection.  Nature  medicine  9,  847  (Jul,  2003).  

247.   J.  L.  Rossio  et  al.,   Inactivation  of  human   immunodeficiency  virus   type  1   infectivity  with  preservation   of   conformational   and   functional   integrity   of   virion   surface   proteins.  Journal  of  virology  72,  7992  (Oct,  1998).  

248.   H.   Bouhlal   et   al.,   Opsonization   of   HIV-­‐1   by   semen   complement   enhances   infection   of  human  epithelial  cells.  J  Immunol  169,  3301  (Sep  15,  2002).  

249.   M.   Subklewe   et   al.,   Presentation   of   epstein-­‐barr   virus   latency   antigens   to   CD8(+),  interferon-­‐gamma-­‐secreting,   T   lymphocytes.  European   journal  of   immunology  29,   3995  (Dec,  1999).  

250.   M.   Larsson,   HIV-­‐1   and   the   hijacking   of   dendritic   cells:   a   tug   of   war.   Springer   Semin  Immunopathol  26,  309  (Jan,  2005).  

251.   D.   C.   Douek   et  al.,   HIV   preferentially   infects  HIV-­‐specific   CD4+   T   cells.  Nature  417,   95  (May  2,  2002).  

252.   M.  Gromme,  J.  Neefjes,  Antigen  degradation  or  presentation  by  MHC  class  I  molecules  via  classical  and  non-­‐classical  pathways.  Molecular  immunology  39,  181  (Oct,  2002).  

253.   K.   Miyauchi,   Y.   Kim,   O.   Latinovic,   V.   Morozov,   G.   B.   Melikyan,   HIV   enters   cells   via  endocytosis   and   dynamin-­‐dependent   fusion   with   endosomes.   Cell   137,   433   (May   1,  2009).  

254.   L.  A.  van  Es,  M.  R.  Daha,  Factors  influencing  the  endocytosis  of   immune  complexes.  Adv  Nephrol  Necker  Hosp  13,  341  (1984).  

255.   D.   Wilflingseder   et   al.,   IgG   opsonization   of   HIV   impedes   provirus   formation   in   and  infection  of  dendritic  cells  and  subsequent  long-­‐term  transfer  to  T  cells.  J  Immunol  178,  7840  (Jun  15,  2007).  

256.   M.  Firoz  Mian,  A.  A.  Ashkar,  Induction  of  innate  immune  responses  in  the  female  genital  tract:   friend  or  foe  of  HIV-­‐1  infection?  American  journal  of  reproductive  immunology  65,  344  (Mar,  2011).  

257.   L.  Wu,  Biology  of  HIV  mucosal  transmission.  Current  opinion  in  HIV  and  AIDS  3,  534  (Sep,  2008).  

258.   H.  Bouhlal  et  al.,  Opsonization  of  HIV  with  complement  enhances   infection  of  dendritic  cells   and   viral   transfer   to   CD4   T   cells   in   a   CR3   and   DC-­‐SIGN-­‐dependent   manner.   J  Immunol  178,  1086  (Jan  15,  2007).  

259.   V.  Tjomsland  et  al.,  Complement  opsonization  of  HIV-­‐1  enhances  the  uptake  by  dendritic  cells   and   involves   the   endocytic   lectin   and   integrin   receptor   families.   PLoS   ONE   6,  e23542  (2011).  

260.   Z.   Zhang   et   al.,   Sexual   transmission   and   propagation   of   SIV   and   HIV   in   resting   and  activated  CD4+  T  cells.  Science  286,  1353  (Nov  12,  1999).  

261.   A.   C.   Saphire,   M.   D.   Bobardt,   Z.   Zhang,   G.   David,   P.   A.   Gallay,   Syndecans   serve   as  attachment   receptors   for   human   immunodeficiency   virus   type   1   on   macrophages.  Journal  of  virology  75,  9187  (Oct,  2001).  

     

81