Challenges and approaches to integrating intermittent power: A comparative analysis between roadmaps...

44
Marie Curie Actions – International Fellowships Project n°: 295130 Project Acronym: EC-HVEN Project Full Name: Europe-China High Value Engineering Network (EC-HVEN): Shaping Sustainable Engineering Sectors in Europe and China Marie Curie Actions WP 3: Deliverable 3.1 A comparative study of renewable energy industries in Europe and China Period covered: from 1 st May 2012 to 30 th April 2014 This deliverable is fulfilled by the attached report: ‘Challenges and approaches to integrating intermittent power into national electricity grids: a comparative analysis between roadmaps for Europe and China’ Authors: Elliott More, Michelle Chen Xiao Hong, Simon Ford, David Probert, Rob Phaal The report is a comparison between European and Chinese renewable energy generation, with a particular focus on the challenges of integrating intermittent power into the national electricity grids. A case study approach is taken, directly comparing two roadmaps created to explore this issue, one produced for Europe by the European Commission in 2011, the second in China in 2013 by the TsinghuaBP Clean Energy Research and Education Center in collaboration with the Centre for Technology Management, University of Cambridge. The roadmaps are compared in terms of their context what similar and different challenges the two regions face and the roadmapping process how were the roadmaps created and who was involved.

Transcript of Challenges and approaches to integrating intermittent power: A comparative analysis between roadmaps...

 

Marie Curie Actions – International Fellowships  

Project n°: 295130

Project Acronym: EC-HVEN

Project Full Name: Europe-China High Value Engineering Network (EC-HVEN): Shaping Sustainable Engineering Sectors in Europe and China Marie Curie Actions

WP 3: Deliverable 3.1 A comparative study of renewable energy industries in Europe and China Period covered: from 1st May 2012 to 30th April 2014

 This  deliverable  is  fulfilled  by  the  attached  report:    ‘Challenges  and  approaches  to  integrating  intermittent  power  into  national  electricity  grids:  a  comparative  analysis  between  roadmaps  for  Europe  and  China’    Authors:  Elliott  More,  Michelle  Chen  Xiao  Hong,  Simon  Ford,  David  Probert,  Rob  Phaal      The   report   is   a   comparison   between   European   and   Chinese   renewable   energy   generation,  with  a  particular  focus  on  the  challenges  of  integrating  intermittent  power  into  the  national  electricity  grids.      A   case   study   approach   is   taken,   directly   comparing   two   roadmaps   created   to   explore   this  issue,  one  produced  for  Europe  by  the  European  Commission  in  2011,  the  second  in  China  in  2013  by  the  Tsinghua-­‐BP  Clean  Energy  Research  and  Education  Center   in  collaboration  with  the  Centre  for  Technology  Management,  University  of  Cambridge.      The  roadmaps  are  compared  in  terms  of  their  context  -­‐  what  similar  and  different  challenges  the  two  regions  face  -­‐  and  the  roadmapping  process  -­‐  how  were  the  roadmaps  created  and  who  was  involved.  

Challenges  and  approaches  to  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China  

Elliott More 1 *, Michelle Chen Xiao Hong 2, Simon Ford 1,David Probert 1, Robert Phaal 1

1 : Institute for Manufacturing (IfM), University of Cambridge

2 : Tsinghua School of Public Policy and Management (SPPM)

* : Corresponding author

As fossil fuel becomes ever more scarce, and action is taken to reduce greenhouse gas emissions related to climate change, intermittent power is forming an increasing proportion of national electricity generation in many countries. However this increasing proportion poses significant technical challenges to electricity grids. Thus many nations and regions have conducted foresight exercises to plan the integration of intermittent power into existing electricity networks, developing national level roadmaps.

A foresight exercise recently conducted in China, used a technology roadmapping workshop to determine the challenges and possible solutions to integrating intermittent power in China into the future. The workshop concluded that the outlook for intermittent power in China remains strong despite the challenges.

This report first presents the findings from this recent technology roadmapping workshop. Subsequently a similar roadmap developed in 2011 for the European region is contrasted with the Chinese roadmap. Differences and similarities between the two regions’ approaches are identified and discussed by examining the differing energy and policy contexts.

Acknowledgement: The authors would like to acknowledge the contributions made by the BP-Tsinghua Clean Energy Center for their help in organising and hosting the Chinese roadmap workshop.

Keywords : Intermittent power, renewable energy, energy security, technology roadmapping, foresight, EC HVEN

 

   

3   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Contents  Introduction  ..................................................................................................................  4  

Economic  Context  .........................................................................................................  8  

Energy  and  Electricity  Context  ......................................................................................  9  

Renewable  Electricity  Context  ....................................................................................  14  

Energy  Policy  Context  .................................................................................................  20  

Case  studies  ................................................................................................................  22  

Analysis  and  Discussion  ..............................................................................................  30  

Conclusion  ..................................................................................................................  35  

References  ..................................................................................................................  37  

Appendix  .....................................................................................................................  40  

 

   

4   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Introduction  The  People’s  Republic  of  China  (PRC  or  China)  has  risen  over  the  last  50  years  to  one  the  major  global  economies.  PRC   is  now  the  second   largest  economy  after   the  US,  and   latest   figures   put   growth   at   around   7%   annually   (The   Economist   2014).   This  growth   has   largely   been   the   result   of   the   booming   manufacturing   sector   (China  Greentech  Initiative  2013),  which  led  many  to  label  China  as  the  world’s  factory  (for  example  Zhang  2006).  

The  boom  in  industrial  manufacturing  has  gone  hand  in  hand  with  rising  demand  for  energy.  China  has  largely  turned  to  its  cheap  and  readily  available  sources  of  coal  to  meet   this   demand,   and   as   a   consequence   of   burning   this   high-­‐carbon   fuel,   China  became  the  world’s  largest  emitter  of  greenhouse  gas  emissions  in  2007  (IPCC  2012),  and  is  forecast  to  continue  increasing  emissions  into  the  future  (Friedman  2012).  

The  majority  of  goods  manufactured  in  PRC  are  destined  for  the  developed  countries  in  Europe  and  the  US  (Wiessala  et  al.  2009;  Eloot  et  al.  2013).  This  trade  is  not  new,  indeed  trade  between  Europe  and  China  has  a   long  history.  Trade  existed  between  the  Roman  Empire   and  China  more   than  2,000   years   ago   for   silk   and   gold,   before  stagnating  as  China  became  more  developed  and  reduced   its   imports   (Innes  Miller  1969).   However   after   a   long   decline   in   the   Chinese   economy   relative   to   other  countries,   the   last   decades   have   seen   strong   economic   growth,   and   EU-­‐China  relations  are  now  of  great  importance;  China  is  the  second  biggest  trade  partner  of  the  EU  after   the  US,   is   the   largest  market   for   imports  and   is   the   fourth   largest   for  exports  (as  of  2007)  (Wiessala  et  al.  2009).  

Since   the   formation  of   the   People’s   Republic   of   China   (PRC)   sixty   years   ago,   there  have  been  two  distinct  periods.  Rigid  policies  in  the  first  period  meant  that  exports  and   imports   were   not   linked   to   relative   prices   or   comparative   advantage.   These  policies   were   reversed   after   1978,   when   China   began   a   slow   but   deliberate  integration  into  the  world  economy.  (Wiessala  et  al.  2009)  

EU-­‐China  merchandise  trade  has  risen  sharply  since  the  millennium,  aided  by  China  joining   the  World  Trade  Organisation   in  2001.   In   the  years  1999-­‐2007   imports   into  the   EU   from   China   quadrupled   in   value   to   €230bn   (Wiessala   et   al.   2009).   Exports  from   the   EU   to   China   have   also   risen   sharply,   in   mainly   manufactured   products,  machinery,  transport  equipment,  and  chemicals  (Wiessala  et  al.  2009).    

Trade  agreements  have  also  proven  important  enablers  to  trade.  On  2nd  May  1978,  the  first  EU-­‐China  Trade  Agreement  was  signed,  which  was  the  precursor  to  the  EC-­‐China   Trade   and   Cooperation   Agreement   in   1985   which   is   still   the   main   legal  framework   for   economic   relations.   It   has   since   been   extended   twice,   in   1994   and  2002.  (Wiessala  et  al.  2009)  

The  trade  has  brought  many  economic  benefits  to  both  the  EU  and  China,  however  recently  many   have   voiced   concerns   over   the   imbalance.   The   EU   has   run   a   trade  deficit   with   the   rest   of   the  world   for  many   years;   in   2007   this   amounted   to   over  €186bn,  equivalent  to  15%  of  total  export.  The  lion’s  share  of  this  deficit  is  with  PRC  (just  less  than  €160bn).  (Wiessala  et  al.  2009)  

5   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

The   EU-­‐China   relationship   has   also   been   affected   by   the   EU's   focus   on   several  political  issues.  From  China's  point  of  view,  matters  such  as  human  rights,  the  arms  embargo,  and  failure  to  recognise  China's  market  economy  status  have  stood  in  the  way  of  building  a  meaningful  strategic  partnership  (Yao  2011).  

China's   comparative  advantage  over   the  EU   for  manufacturing  has   largely  been   its  abundant  supply  of  lower  wage  labour,  which  has  drawn  low  value  manufacturing  to  its   shores   (Eloot   et   al.   2013).   In   contrast,   high-­‐value  manufacturing   has   tended   to  remain  in  the  EU  as  a  result  of  the  high-­‐tech  research  and  development  (Technology  Strategy  Board  2012;  Manyika  et  al.  2012).  

Renewable  and  Intermittent  Power  As  a  result  of  the  pressures  on  securing  fuel  supplies  alongside  international  climate  change  pressure,  China  has   invested  heavily   in  renewable  energy  (China  Greentech  Initiative   2013;   International   Energy   Agency   2013a).   Renewables   are   generally  defined  as  energy  sources  that  come  from  resources  which  are  naturally  replenished  on   a   human   timescale,   such   as   sunlight,   wind,   rain,   tides,   waves   and   geothermal  heat  (IPCC  2012).    

Renewable   energy   has   many   benefits   over   fossil   fuel   energy   sources.   The  International  Energy  Agency  (2013c)  summarises  the  benefits  of  renewables  within  a  national   energy   portfolio   as   four   fold.   Energy   security   is   strengthened   through  diversity   of   supply,   and   reducing   energy   imports   that   can   form   a   geopolitical   risk.  Renewables   are   largely   low-­‐carbon   sources   of   energy   which   reduce   local   air  pollution   and   minimise   greenhouse   gas   emissions   contributing   to   global   climate  change.   There   are   economic   benefits   as   investment   in   the   development   and  deployment   of   renewables   can   contribute   significantly   to   sustainable   economic  growth.  Finally,   renewables  play  an   important  part   in   improving  energy  access  and  affordability  to  the  1.3  billion  people  currently  without  access  to  electricity,  and  the  2.6  billion  that  rely  on  burning  biomass  for  energy.  

Despite  the  significant  benefits,  there  are  many  challenges  to  the  development  and  deployment   of   renewable   energy   (see   for   example   Mackay   2008;   Ayres   &   Ayres  2009),  which  explains  the  dominance  of   fossil   fuel  use  for  energy   in  the  developed  countries  where  over  80%  of  energy  comes  from  fossil  fuels  (Mackay  2008).  One  of  the   limitations   of   some   renewable   energy   is   their   intermittency.   Wind   and   solar  energy  in  particular,  whilst  being  to  an  extent  predictable,  cannot  be  relied  upon  to  deliver   energy   when   required   (The   Carbon   Trust   &   DTI   2003).   These   forms   of  renewable  energy  are  therefore  a  sub  group  of  renewable  energy  and  are  defined  as  intermittent  power  sources  (International  Energy  Agency  2011).    

Intermittent   power   sources   present   a   particular   technical   challenge   to   national  electricity  grids,  since  the  variability  in  the  power  generation  necessitates  balancing  and   latency   measures,   such   as   back-­‐up   power   or   storage,   which   all   add   to   the  deployment   cost   of   these   renewable   sources   (The   Carbon   Trust   &   DTI   2003;  International   Energy   Agency   2013b,   p.208).   In   addition,   while   small   amounts   of  intermittent   power   have   little   effect   on   grid   operations,   upgrades   or   even   the  complete   redesign   of   the   grid   infrastructure   can   be   required   as   the   contribution  

6   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

from  intermittent  sources  grows  (The  Carbon  Trust  &  DTI  2003;  International  Energy  Agency   2011;   European   Commission   2011b).   The   speed   at   which   renewables  capacity  is  introduced  is  also  important,  as  this  influences  the  ability  of  the  system  to  adapt   through   the   normal   investment   cycle   (International   Energy   Agency   2013b,  p.209).    

Despite   the   limitations,   the   pressures   outlined   above   have   contributed   to   a  significant  investment  and  contribution  of  intermittent  power  to  national  electricity  grids   around   the   world   (International   Energy   Agency   2013c).   As   the   share   of  intermittent   power   grows   however,   solutions   to   tackle   the   technical   challenges   of  intermittency   on   balancing   and   latency   require   coordination   between   the   major  stakeholders   in   the   energy   industry.   In   devising   technically   feasible   and   economic  solutions,   it   is  necessary  for  energy  suppliers,  major  energy  users  and  regulators  to  come   together   to   coordinate.   One   method   of   achieving   coordinated   solutions   to  complex  problems  such  as  this,  is  through  the  use  of  technology  roadmapping  (Phaal  et  al.  2010).    

Technology  Roadmapping  Technology   roadmapping   is   a   technique   that   arose   as   a   practical   solution   to   the  challenge   of   technology   management   in   firms   (Institute   for   Manufacturing   2010).  There   has   been   significant   academic   research   into   roadmapping   over   the   last   two  decades  since  the  process  began  to  become  common,  first  in  corporate  setting  and  later  at  industry  and  national  level,  see  Phaal  et  al.  (2010)  for  a  definitive  summary  of   the  history  of   the  technique.  Two  elements  are   important   for   roadmapping,   the  process  and  the  structure.    

The   roadmapping   process   is   a   crucial   element   of   the   success   of   a   roadmapping  project.  Whilst  the  final  output  of  the  process  is  a  roadmap,  the  process  is  generally  considered  to  be   just  as   important  as  the  roadmap  (Phaal  et  al.,  2010  p.108).  Thus  there  has  been  a  significant  amount  of  research  into  the  roadmapping  process,  and  is  widely  acknowledged  to  be  made  up  of  three  distinct  elements:  the  preparation,  the  roadmap  development,  and  the  follow-­‐up  (e.g.  see  Garcia  and  Bray,  1997;  Phaal  et  al.,  2010).    

The   roadmap   structure   is   the   second   important   element.   Roadmaps   provide   a  structured   visualization   of   particular   strategic   topics.   They   are   used   to   support  strategic   planning   across   a   broad   spectrum   of   applications.     A   common   roadmap  layout,   or   architecture,   will   contain   two   axes,   as   shown   in   Figure   1.     There   is   a  horizontal,  time-­‐based  axis;  often  encompassing  the  past,  short-­‐,  medium-­‐  and  long-­‐term,   as   well   as   the   vision.   The   vertical   axis   usually   pertains   to   perspectives,   or  dimensions,   relevant   to   the   focal   point   of   the   roadmap;   often   represented   as  horizontal  layers,  forming  a  matrix  across  the  time  dimension.  (Phaal  et  al.  2010)  

7   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

 

Figure  1  –  An  architectural  framework  for  roadmapping  (Phaal  et  al.  2010;  Phaal  &  Muller  2009)  

The   roadmap   allows   the   integration   and   alignment   of   a   number   of   different  perspectives   across   a   broad   time   range.     In   this   way,   the   interaction   between  currently  developing,  or  short-­‐term,  underpinning  science  and  technology  to  support  long-­‐term  market   trends  and  drivers  can  be  explored.  As  a   result  of   this   flexibility,  roadmaps  can  be  applied  at  different   levels  –   international,   industry,  company  and  product-­‐specific   roadmaps  have  been  produced   (Phaal   et   al.   2010;   Phaal  &  Muller  2009).     They   can   also   be   applied   in   a   hierarchy   –   with   industry-­‐level   trends   and  drivers  cascading  down  through  organizational  objectives  into  specific  products  and  technology  features  and  parameters.  

Conclusion  to  Introduction  Meeting  the  energy  challenge  of  a  growing  world  population  within  environmental  and  economic  constraints,  is  considered  one  of  the  most  significant  challenges  facing  modern   society   (International   Energy   Agency   2013c).   Every   country   faces   similar  challenges,   however   individual   solutions   are   required   to   address   the   local   social,  technical,  economic,  environmental,  and  political  challenges.    

This  report  sets  out  to  compare  two  regional  roadmaps  created  with  the  objective  of  planning  out  the  integration  of  renewable  sources  of  energy  into  the  electricity  grid.  The  first  was  conducted  in  PRC,  examining  the  challenge  of  integrating  intermittent  power  specifically  in  the  national  electricity  grid  up  to  the  year  2050.  The  challenge  presented   by   this   rapidly   growing   and  modernising   country   is   contrasted  with   the  second   roadmap  which   looks  more   broadly   at   energy   in   Europe   to   the   same   time  horizon.   The   following   sections   examine   first   the   economic,   energy   and   policy  contexts   in   the   two   regions,   before   comparing   and   contrasting   the   outcomes   and  methodologies  of  the  two  roadmaps.      

8   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Economic  Context  The   economic   context   is   the   first   dimension   used   to   compare   the   PRC   and   the  European  Union  (EU)  region.  For  the  sake  of  clarity,   the  EU  region   is   the  economic  and  political  union  of  28  member  states  that  are  located  primarily  in  Europe,  and  the  union   is  often  referred  to  as  EU281.  The  PRC  statistics  used   in  this  analysis  exclude  Hong  Kong  and  Taiwan.  

The  EU28  is  the  world’s  largest  economic  entity,  with  a  population  of  505  million  and  a   Gross   Domestic   Product2  (GDP)   of   €13   trillion   in   2013   (European   Commission  2014c).   In   comparison,   PRC   is   the   most   populace   country   in   the   world   with   a  population  exceeding  1.3  billion,  and  a  GDP  of  €6.8  trillion  in  2013  (The  World  Bank  2014).    

Despite   the  size  of  PRC’s  economy,   it   is   still   considered  a  developing  country  since  the  GDP  per  capita  stands  at  a  relatively  modest  €5,000  compared  to  over  €25,000  in  EU28.  

While  the  EU28  forms  the  world's  largest  economic  entity,  the  size  of  each  member  state  is  relatively  small.  For  instance  the  largest  member  state,  Germany,  has  a  GDP  only   half   the   size   of   PRC,   and   a   fifth   of   the   United   States   (US).   As   a   result,  many  argue  that  to  compete  globally,  and  in  particular  to  engage  effectively  with  PRC,  the  EU   must   act   as   a   single   economic   entity   (see   for   example   Yao   2011;   McCormick  2008).  

Economic  Forecasts  The   latest   EU   economic   growth   forecast   from   the   European   Commission   forecast  slow  growth  in  the  aftermath  of  the  financial  crisis  of  2008.  GDP  growth  returned  to  positive   in   the   second   quarter   of   2013,   largely   driven   by   domestic   demand  (European  Commission  2014b).  In  comparison,  the  PRC  economy  continues  to  grow  rapidly,  and  is  expected  to  continue  growing  for  many  decades  to  come.  According  to  a  report  by  US  National  Intelligence  Council  (NIC)  entitled  Global  Trends  2030,  the  Chinese  economy  will  overtake  the  US  as  the  world’s  largest  economy  at  some  point  between  2022  and  2030.  The  trio  of  dominant  economies  of  US,  Europe,  and  Japan  will  see  their  share  of  world  trade  fall  to  below  half  in  2030  (US  National  Intelligence  Council  2012).  

   

                                                                                                               1  Some  of  the  data  used  in  this  analysis  refers  to  EU27,  which  refers  to  the  27  member  states  before  Croatia’s  accession  in  2013.  For  the  purposes  of  this  analysis,  the  difference  between  the  two  is  not  considered  significant  and  is  therefore  ignored  where  EU28  data  cannot  reasonably  be  found.    2  GDP  (gross  domestic  product)  is  an  indicator  for  a  nation´s  economic  situation.  It  reflects  the  total  value  of  all  goods  and  services  produced  less  the  value  of  goods  and  services  used  for  intermediate  consumption  in  their  production  (European  Commission  2014a).  

9   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Energy  and  Electricity  Context  The  second  dimension  on  which  to  compare  the  two  regions  is  energy  and  electricity.  Looking  first  at  the  energy  situation  globally,  energy  demand  is  rising  as  a  result  of  surges   in   the   demand   from   China   and   the   rest   of   the   developing   countries  (International   Energy   Agency   2013b).   The   European   Union’s   energy   demand   has  been   relatively   stable   over   the   last   decades   and   is   expected   to   remain   so   in   the  future,  whilst   China’s   demand   is   expected   to   continue   to   increase   into   the   future  (International  Energy  Agency  2013b).  

 

Figure  2  -­‐  World  Energy  Demand  (Mtoe3)  (International  Energy  Agency  2013b)  

The   lion’s   share   of   energy   production   worldwide   is   by   fossil   fuels   (International  Energy  Agency  2013b).  Over  80%  of  energy  production  comes   from  coal   (30%),  oil  (30%)   and   natural   gas   (20%).   Low   carbon   energy   accounts   for   the   remaining   20%,  split  between  nuclear  (6%)  and  renewables  energy  sources  (13%).  

Whilst   the   EU   region   is   not   expected   to   increase   its   demand   for   energy   over   the  coming  decades,   the  EU  only  produces  around  50%  of   its   total  demand,   relying  on  heavily   on   imports   (International   Energy   Agency   2013b).   In   comparison,   PRC  produces   around   90%  of   its   consumption   (EIA   2014)  which  make   it   largely   energy  sufficient,  however  looking  ahead,  as  oil  and  gas  demand  increases  and  its  reserves  are  consumed,  some  forecasts  expect  China  to  be  importing  over  90%  of  its  oil  and  gas  in  2050  (Zhou  et  al.  2011).  

Primary  Energy  Production  Primary  energy  production  (PEP)  is  a  measure  of  the  extraction  of  energy  products  in  a   usable   form   from   natural   sources.   This   includes   both   fossil   fuels   and   renewable  sources.  (European  Commission  2014a)  

EU   PEP   in   2012  was   33  million   TJ,   a   1%   decrease   on   2011   (European   Commission  2014c).  The  biggest  decrease  came  from  petroleum  products  (10%)  which  continue  to  decrease  year  on  year.  Renewable  energies  saw  a  9%  increase.                                                                                                                  3  Millions  Tonnes  of  Oil  Equivalent  (Mtoe)  is  a  unit  of  energy  equal  to  41.868  million  gigajoules.  

10   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

In  comparison,  PRC’s  PEP  was  103  million  TJ  in  2012  (EIA  2014),  meeting  around  90%  of   its   demand.   The   lion’s   share   of   production   came   from   fossil   fuels,   with   coal  accounting  for  75%  (Wenke  &  Yufeng  2013).  

Primary  Energy  Consumption  Primary  energy  consumption  (PEC)  measures  the  total  energy  demand  of  a  country  (European   Commission   2014a).   It   covers   consumption   of   the   energy   sector   itself,  losses   during   transformation   (for   example,   from   oil   or   gas   into   electricity)   and  distribution  of   energy,   and   the   final   consumption  by  end  users.   It   excludes  energy  carriers   used   for   non-­‐energy   purposes   (such   as   petroleum   not   used   not   for  combustion  but  for  producing  plastics).  

Gross  inland  PEC  in  EU  was  70  million  TJ4  in  2012,  a  1%  decrease  on  2011  (European  Commission  2014c).  Petroleum  products  continue  to  be  the  most  important  energy  source,   despite   a   long   term   downward   trend,   with   natural   gas   the   second   most  important  energy  source.  

Energy  consumption  in  PRC  in  comparison  was  110.4  million  TJ  in  2012,  a  rise  of  4%  on  2011  (National  Bureau  of  Statistics  of  China  2014;  The  World  Bank  2014).  Data  for  2011  shows  that  the  majority  of  this  energy  was  generated  from  coal  (nearly  70%),  followed   by   oil   (16%)   and   natural   gas   (4%)  with   the   bulk   of   the   rest   coming   from  burning  biofuels  and  waste  (International  Energy  Agency  2013a).    

Final  Energy  Consumption  Final  energy  consumption  (FEC)  is  the  total  energy  consumed  by  end  users,  such  as  households,  industry  and  agriculture  (European  Commission  2014a).  It  is  the  energy  which   reaches   the   final   consumer's   door   and   excludes   that   which   is   used   by   the  energy  sector  itself.  

China’s  final  energy  consumption  is  dominated  by  the  industry  sector,  in  comparison  to   the   EU  which   only   uses   a   quarter   in   this   sector,   reflecting   the   focus   of   energy  intensive  industry  in  PRC.    

EU28  FEC  was  46  million  TJ   in  2012   (European  Commission  2014c).   This   figure  has  increased  slowly  since  1994,  peaking   in  2006  at  50  million  TJ.  The  financial  crisis   in  2009  saw  consumption  decrease  by  6%.  The  largest  final  users  were  transport(33%),  residential   (27%),   and   industry   (24%).   Looking   ahead,   forecasts   estimate   that   the  sector’s  relative  proportion  of  use  will  remain  stable,  as  shown  in  Figure  3  (European  Commission  2009).  

                                                                                                               4  Terajoule  (TJ)  is  a  unit  of  energy  or  work  equal  to  1012  joules.    1  TJ  =  34.12  tons  of  coal  equivalent.    1  TJ  =  23.88  tons  of  oil  equivalent.  

11   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

 

Figure  3  –  EU  Final  Energy  Demand  by  sector  (European  Commission  2009)  

PRC  FEC  was  68  million  TJ  in  2012  (International  Energy  Agency  2013a).  The  largest  final   users   of   this   energy   were   industry,   which   consumed   half   of   this   energy,  residential   using   a   quarter,   and   transport   at   around   12%.   Looking   ahead   at   the  changing  nature  of  PRC’s  energy  use,  some  forecasts  assume  that  the  relative  share  of  industry  will  decrease,  as  the  service  sector  starts  to  contribute  more  significantly  to  economic  growth  (International  Energy  Agency  2013b;  Zhou  et  al.  2011).    

Electricity  (Power)  Generation  Turning   from   energy   broadly   to   the   sub-­‐set   of   electricity   production 5  more  specifically.   Gross   power   generation   (GPG)   refers   to   the   process   of   producing  electrical   energy.   It   is   the   total   amount   of   electrical   energy   produced   by  transforming  other  forms  of  energy  (European  Commission  2014a).  

At   present,   the  PRC  produces   around  50%  more  electricity   than   the   EU,   4700   and  3000   TWh   respectively.   Looking   ahead,   both   are   expected   to   grow   production,  however  the  PRC  at  a  much  faster  rate.  Increases  in  the  growth  of  renewable  energy  will   see   the   EU’s   production   rise   to   around   4000   TWh   by   2030   (European  Commission  2009),  see  Figure  4.  Whereas  the  growth  in  energy  demand  will  see  the  PRC’s   electricity   generation   rise   to   around   8000   TWh   by   2030,   and  may   continue  rising  to  9000  TWh  by  2050  in  some  estimates  (Zhou  et  al.  2011),  see  Figure  5.    

                                                                                                               5  Electricity  is  typically  measured  in  Watt-­‐hours  (Wh).  For  a  good  explanation  of  energy  units  see  MacKay  (2008).  

12   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

 

Figure  4  –  EU  gross  power  generation  by  source  (TWh)  (European  Commission  2009)  

 Figure  5  -­‐  PRC  Electricity  generation  by  fuel  (Continued  Improvement  Scenario)  (Zhou  et  al.  2011)  

The   source   of   this   electricity   comes   from   a   variety   of   different   fuels,   which   is  markedly   different   between   the   EU   and   PRC.   In   PRC   the   majority   of   electricity   is  generated  from  coal  production  (78%)  and  hydropower  (14%  ).  Smaller  contributions  come  from  nuclear  (2%),  and  natural  gas  (2%)  (EIA  2014).  

In   the   EU,   more   than   one   quarter   of   the   net   electricity   generated   in   2010   was  nuclear  (27.3  %),  while  almost  double  this  share  (54.8  %)  came  from  power  stations  

13   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

using  combustible  fuels  (such  as  natural  gas,  coal  and  oil).  Among  renewable  energy  sources,  the  largest  contributor  was  hydropower  (12.2  %),  followed  by  wind  (4.6  %)  and  solar  power  (0.7  %).  (European  Commission  2014c)  

Electricity  demand  by  sector  Electricity   usage   by   sectors   is   different   between   the   two   regions.   In   the   EU  while  industry  only  accounts  for  30%  of  the  usage,  in  PRC  it  double  this  at  68%.  Forecasts  for   the   EU   do   not   predict   any   significant   shifts   in   sectorial   electricity   demand  (European  Commission  2009),  however   the  changes  occurring  as  PRC  develops  are  likely  to  see  the  proportion  of  demand  from  industry  reduce  as  commercial  demand  increases,  see  Figure  6  (Zhou  et  al.  2011).  

In   the   EU,   the   electricity   usage   is   largely   split   evenly   between   residential   (30%),  industry  (36%)  and  other  services  including  agriculture  (30%).  Only  2.5%  is  consumed  by  the  transport  sector.  (European  Commission  2014c)  

In  PRC,   the  bulk  of  electricity  demand  comes   from   industry   (68%),  with   residential  (15%)   and   commercial   sectors  making   up   the   bulk   of   the   rest   (7%).   Electricity   for  transport  sector  is  minimal  (1%).  (EIA  2014)  

 

Figure  6  -­‐  PRC  electricity  demand  by  sector  forecast  (Zhou  et  al.  2011)  

   

14   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Renewable  Electricity  Context  Globally,   forecasts   expect   there   to   be   significant   growth   in   the   contribution   of  renewable   energy   to   electricity   generation.   The   International   Energy   Agency  forecasts  (2013c)  two-­‐thirds  of  the  increase  in  electricity  generation  from  renewable  sources   will   be   in   developing   countries,   see   Figure   7.   China   is   expected   to   install  nearly  2,000  TWh  of  additional  electricity  generation  by  2035  in  comparison  to  only  900  TWh  in  Europe.  

 

Figure  7  –  Additional  electricity  generation  from  all  renewable  sources  to  2035  in  different  regions  (International  Energy  Agency  2013b)  

Current  renewable  electricity  generation  The  two  regions  generate  similar  amounts  of  electricity   from  renewable  sources  at  present,  however  the  growth  in  installation  capacity  in  PRC  eclipses  that  in  the  EU.    

In  2010,  electricity  generated  from  renewable  energy  sources  in  the  EU  was  just  less  than   700   TWh   (European   Commission   2014c).   This   amounts   to   around   a   fifth  (19.9  %)  of  the  EU’s  electricity  consumption.  In  comparison,  the  electricity  generated  from   renewable   energy   sources   in   PRC   in   2011   was   814   TWh,   around   17%   of  electricity  generation  (International  Energy  Agency  2013b).    

Forecast  renewable  electricity  generation  In   the   EU,   forecasts   expect   generation   from   renewable   sources   to   treble   between  2005  and  2035  (European  Commission  2009),  rising  to  over  1500TWh  (International  Energy  Agency  2013c,  fig.6.2).  The  bulk  of  the  increase  in  RES  power  corresponds  to  the   deployment   of   wind   onshore,   the   rising   investment   in   offshore   wind   and   the  considerable   development   of   solar   photovoltaics   (European   Commission   2009).  Other   forms   of   RES   power   also   emerge,   such   as   concentrated   solar   thermal   and  tidal/wave  energy.  Wind  and  the  other  RES  are  facilitated  by  assumed  expansion  of  grids  and  new  equipment  for  controlling  grid  operation,  which  entail  additional  costs  that  show  up  in  the  electricity  prices  (European  Commission  2009).  

The   growth   in   the   EU   is   however   relatively   slight   in   comparison   to   the   growth   of  renewable  electricity  generation  in  the  PRC.  More  capacity  is  installed  annually  than  

15   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

any  other  country,  with  annual  double-­‐digit  growth  over  the  last  few  years  (e.g.  12%  from  2010  to  2011).  Forecasts  expect  the  generation  of  renewable  electricity  to  rise  from  around  800TWh  in  2011  to  over  2800TWh  in  2035  (International  Energy  Agency  2013c,  fig.6.2).  

Renewable  electricity  generation  by  fuel  The  growing  contribution  of  electricity  from  renewable  sources  is  expected  to  come  largely  from  the  continuing  surge  in  wind,  biomass  and  solar  installations  in  both  EU  and  PRC.    

In   EU,   the   largest   contribution   from   renewable   sources   to   electricity   is   from  hydropower,   amounting   to   nearly   60%.   However   hydropower’s   contribution   has  grown   little   in   the   last   decade   (European   Commission   2014c).   The  majority   of   the  growth  in  electricity  generated  from  renewable  energy  sources  has  come  from  wind  and  biomass.  The  quantity  of  electricity  generated  from  biomass  more  than  trebled  (22%   in   2010),  while   that   from  wind   turbines   increased   almost   seven-­‐fold   (19%   in  2010).   (European   Commission   2014c).   Forecasts   for   the   EU   expect   a   surge   in   the  contribution  from  both  on  short  and  offshore  wind,  and  growing  contributions  from  solar,  biomass,  and  geothermal,  see  Figure  8  (European  Commission  2009).  The  total  contribution   from   renewable   sources   to   EU   electricity   generation   will   be   around  1300   TWh   by   2030   (European   Commission   2009),   and   1500   TWh   by   2035  (International  Energy  Agency  2013b).  

In  PRC,  the  expected  contribution  from  renewable  sources  to  electricity  generation  will  be  around  2000  TWh,   see  Figure  7  above   (International  Energy  Agency  2013b).  The  two  largest  contributions  will  come  from  hydropower  and  wind,  with  700  TWh  expected  from  both  sources  by  2035.  Solar  power  is  expected  to  contribute  250  TWh.    

16   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

 

Figure  8  –  EU  electricity  generation  from  renewable  energy  sources  (TWh)  (European  Commission  2009)  

Intermittent  power  Intermittent   power   is   defined   by   the   International   Energy   Agency   (2013b)   as  electricity  generation  from  (non-­‐dispatchable)  renewables  sources,  such  as  wind  and  solar.  The  energy  is  weather  dependent  and  can  only  be  adjusted  to  demand  within  the   limits   of   the   resource   availability.   The   characteristics   of   such   renewables   have  direct   implications   for   their   integration   into   power   systems   (International   Energy  Agency   2011).   Intermittent   power   is   characterized   by   the   following   properties  (International  Energy  Agency  2013b):  

• Variability  • Resource  Location  • Modularity  • Uncertainty  • Low  operating  costs  • Non-­‐synchronous  generation  

Effective  use  of  intermittent  sources  in  an  electric  power  grid  usually  relies  on  using  the  intermittent  sources  to  displace  fuel  that  would  otherwise  be  consumed  by  non-­‐renewable  power  stations,  or  by  storing  energy  (The  Carbon  Trust  &  DTI  2003).    

The   International   Energy   Agency   (2013c)   calculated   that   in   2011,   China’s   share   of  intermittent   power   was   1.5%,   in   comparison   to   Europe   larger   share   7%   (2013c,  fig.6.2).   The   forecasts   for   2035   expect   PRC’s   share   of   intermittent   power   to   have  grown  to  around  10%,  in  comparison  to  Europe  at  23%  (2013c,  fig.6.2).  

17   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

These   growing   contributions   of   electricity   from   intermittent   sources   comes   as   a  result   of   increasing   installations.   Looking  more   closely   at   the   two  most   important  forms   of   intermittent   power,   wind   and   solar,   forecasts   expect   rapid   growth   in  installed   capacity   in   both   EU   and   PRC   over   the   next   20   years.   The   International  Energy  Agency  (2013b)  expects  the  wind  capacity  in  PRC  will  have  overtaken  EU  by  2020,  and  exceed  it  by  40GW  in  2035,  Figure  9.  The  larger  current  solar  PV  capacity  in  EU  compared   to  PRC  will   continue   to  grow,  but  PRC  will   install   capacity  quicker   to  match  capacity  by  2035  at  over  150GW,  Figure  10.    

 

Figure  9  -­‐ Installed  wind  power  capacity  forecast  (International  Energy  Agency  2013c)  

 

Figure  10  -­‐ Installed  solar  PV  capacity  forecast  (International  Energy  Agency  2013c)  

18   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Forecast  Intermittent  Electricity  Costs  The  price  and  reliability  of  energy  supplies,  electricity  in  particular,  are  key  elements  in  a  country’s  energy  supply  strategy.  Electricity  prices  are  of  particular   importance  for   international   competitiveness,   as   electricity   usually   represents   a   significant  proportion   of   total   energy   costs   for   industrial   and   service-­‐providing   businesses.  (European  Commission  2014c)  

In   contrast   to   the   price   of   some  fossil   fuels,   which   are   usually   traded   on   global  markets  with  relatively  uniform  prices,  there  is  a  wider  range  of  prices  within  the  EU  Member  States  for  electricity  or  natural  gas.  The  price  of  electricity  and  natural  gas  is,  to  some  degree,  influenced  by  the  price  of  primary  fuels  and,  more  recently,  by  the  cost  of  carbon  dioxide  (CO2)  emission  certificates.  (European  Commission  2014c)  

The  International  Energy  Agency  (2013b)  forecasts  the  wholesale  prices  of  electricity  from   intermittent   power   to   be   cheaper   in   PRC   compared   to   EU,   see   Figure   11.   By  2035,   the   wholesale   price   of   both   onshore   wind   and   solar   can   reasonably   be  expected  to  surpass  $100  per  MWh  in  the  EU,  while  in  PRC  the  price  will  be  around  $75.  This  reflects  the  higher  production  costs  in  EU.    

19   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

 Figure  11  -­‐  Renewable  electricity  production  costs  relative  to  wholesale  price  (International  Energy  Agency  2013c)

   

20   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Energy  Policy  Context  The  final  element  of  context  compared  in  this  report  is  current  and  expected  energy  policy  in  the  two  regions.    

EU  Policy  Two  important  aspect  of  policy  relating  to  energy  in  EU  are  worth  considering.  The  series   of   legislative   packages   by   the   European   Commission   to   liberalise   energy  markets   and   create   the   internal   market.   The   second   is   the   20-­‐20-­‐20   target,   an  emissions  policy  that  became  binding  for  all  Member  States  in  2009.    

The  European   Commission   launched   a   legislative   package   to   liberalise   energy  markets  in  September  2007.  These  proposals  were  designed  to:  create  a  competitive  energy   market;   expand   consumer   choice;   promote   fairer   prices;   result   in   cleaner  energy;   and   promote   the   security   of   supply.   In   order   to   reach   these   goals,   the  proposals   sought   to:   separate   production   and   supply   from   transmission   networks;  facilitate   cross-­‐border   collaboration,   investment   and   trade   in   energy;   introduce  more   effective   regulation;   encourage   greater   market   transparency;   and   increase  solidarity  between  EU  Member  States.  (European  Commission  2014c)  

The  20-­‐20-­‐20  targets  were  set  by  EU  leaders  in  March  2007,  when  they  committed  Europe  to  transition  towards  an  energy-­‐efficient,   low  carbon  economy.  These  were  enacted   through   the   climate   and   energy   package   in   2009.  Under   the   ‘climate   and  energy  package’  the  2020  targets  commit  Member  States  to  (European  Commission  2014d):  

§ A   reduction   in   EU  greenhouse   gas   emissions   of   at   least   20  %   below   1990  levels.  

§ At  least  20  %  of  EU  gross  final  energy  consumption  to  come  from  renewable  energy  sources.  

§ At  least  10  %  of  transport  final  energy  consumption  to  come  from  renewable  energy  sources.  

§ A  20  %  reduction  in  primary  energy  use  compared  with  projected  levels,  to  be  achieved  by  improving  energy  efficiency.  

The  climate  and  energy  package  comprises  four  pieces  of  complementary  legislation  which   are   intended   to   deliver   on   the   20-­‐20-­‐20   targets   (European   Commission  2014d):  

• Reform   of   the   EU   Emissions   Trading   System   (EU   ETS)   to   include   the  introduction  of  a  single  EU-­‐wide  cap  on  emission  allowances   in  place  of  the  existing  system  of  national  caps.  The  cap  will  be  cut  each  year  so  that  by  2020  emissions  will  be  21%  below  the  2005  level.  

• National   targets   for   non-­‐EU   ETS   emissions   which   account   for   60%   of   EU’s  total  emissions.  

• Binding   national   renewable   energy   targets   for   each   Member   State   under  the  Renewable   Energy   Directive.   Targets   reflect   Member   States'   different  starting   points   and   potential   for   increasing   the   share   of   renewables  production  in  their  energy  consumption  by  2020.  

21   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

• Carbon   capture   and   storage   directive   for   the   environmentally   safe   use  of  carbon   capture   and   storage  technologies.   The   directive   covers   all   CO2  storage  in  geological  formations  in  the  EU  and  lays  down  requirements  which  apply  to  the  entire  lifetime  of  storage  sites.  

In  the  EU,  the  use  of  nuclear  power  for  electricity  generation  has  received  renewed  attention  amid  concerns  of  an  increasing  dependency  on  imported  primary  energy,  rising   oil   and   gas   prices,   and   commitments   to   reduce   greenhouse   gas   emissions.  These   have   been  balanced   against   long-­‐standing   concerns   about   safety   and  waste  from   nuclear   power   plants,   which   were   highlighted   during   the   immediate   period  following  the  Fukushima  nuclear  disaster  in  March  2011.  While  some  Member  States  have   continued   with   existing   reactors   or   plans   to   construct   new   nuclear   reactors  others  decided  to  review,  and  in  some  cases,  change  policies  for  existing  plants,  as  well  as  cancelling  planned  nuclear  constructions.  (European  Commission  2014c)  

PRC  Policy  The  PRC’s  recent  history  is  characterised  by  rapid  industrialisation  and  urbanisation.  During   this   time   coal  has   served  as   the  primary  energy  and  electricity   fuel   source.  However   as   a   result   of   increasing   local   and   international   environmental   concerns  regarding   this   fuel   source,   the  PRC  has  more   recently   been   looking   to  diversify   its  fuel   sources.   Oil   and   natural   gas   are   increasingly   being   imported,   but   increasing  prices  and  concerns  over  future  availability  have  forced  a  rethink  in  policy.    

The   latest  energy  development  plan,  published  in  January  2013  as  part  of  the  12th  Five-­‐year   Plan,   sets   ambitious   renewable   targets  with  mandatory   2015   targets   for  non-­‐fossil   energy  use,  energy   intensity,   carbon   intensity  and  particulate  emissions.  PRC  has  committed  in  the  last  plan  to  significant  new  electricity  generation  capacity  of  in  six  main  fuels,  see  Figure  12.    

22   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

 

Figure  12  -­‐  Targets  and  completed  installation  (%)  of  installed  electricity  generation  capacity  (GW)  under  the  PRC  12th  Five-­‐Year  Plan  (China  Greentech  Initiative  2013,  p.43)  

Case  studies  The   following   section   presents   two   roadmaps   created   to   address   challenges   of  meeting  future  energy  needs  with  a  focus  on  renewable  energy.  The  first  roadmap  focuses  on  the  challenge  of  integrating  intermittent  power  into  PRC’s  electricity  grid  up,  and  identifies  actions  required  up  to  2050.  The  roadmap  was  created  as  a  result  of  a  workshop  held  at   the  Tsinghua-­‐BP  Clean  Energy  Centre   in  2013   (Ford  &  More  2014).   The   second   roadmap   was   developed   for   the   EU   region   and   looks   more  broadly  at   the  energy  challenges  up  to  2050,   including  the  challenge  of   integrating  intermittent   power   into   electricity   grids.   The   roadmaps   are   summarised   below,  drawing  out   the  main   challenges  and  actions   identified  at   the   regional   level,   given  their  common  global  context.  A  list  of  participants  can  be  found  in  the  Appendix.  

PRC  Roadmap  The   roadmapping   workshop   was   held   at   the   Tsinghua-­‐BP   Clean   Energy   Centre   at  Tsinghua   University   on   21-­‐23   October   2013.   The   focus   of   the   workshop   was   the  challenge   of   integrating   intermittent   power   generation   into   China’s   electricity  network.  The  workshop  made  use  of  technology  roadmapping  techniques  described  in   the   Introduction,   in   order   to   bring   together   a   diverse   set   of   perspectives.   The  workshop  comprised  the  following  elements:  

• The   development   of   a   historical   map   to   identify   how   the   current   state   of  China’s  electricity  network  has  developed.  

• The  generation  of  multiple  scenarios  for  China’s  energy  situation  in  2050.  • The   creation   of   a   technology   roadmap   that   identifies   some   of   the   potential  

actions  necessary  to  realise  one  of  these  scenarios  (the  “desired  vision”).  

23   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

PRC  Roadmapping  Process  While  technology  roadmapping  is  a  primarily  a  forward-­‐focused  approach,  historical  mapping   is   possible,   and   both   were   conducted   based   on   the   Organisation   Scan  technique   developed   at   the   Centre   for   Technology   Management,   University   of  Cambridge.   The   historical   review   was   conducted   first,   with   a   small   group   of   BP  experts  and  Tsinghua  academics,  and  sought  to  answer  two  questions:  

1. What   have   been   significant   milestones   in   the   development   of   China’s  electricity  network?  

2. What   activities   and   events   have   acted   as   enablers   and   barriers   to   the  integration  of  intermittent  power  generation  technologies  to  date?  

As   a   result   of   mapping   this   historical   development,   a   number   of   enablers   and  barriers   were   identified   to   integrating   intermittent   power   into   the   national  electricity  grid.  Strong  enablers  were  seen  to  be  Chinese  renewables  policy,  with  the  increasing  share  of  renewables  in  each  of  the  Five  Year  Plans  giving  a  strong  push  for  the  installation  of  greater  generation  capacity  from  renewables,  along  with  the  way  in  which  international  attention  at  the  Beijing  Olympics  changed  public  perceptions  on  the  acceptability  of  high  levels  of  air  pollution  within  the  city.  

Barriers   to   the   integration  of   intermittent  power  generation   into   the  grid   included  the   difficulties   that   China   has   had   in   meeting   energy   demand,   thus   prompting   a  greater  reliance  of  hydrocarbon-­‐based  power  generation;  the  decision  to  install  coal-­‐based  power  generation,  which   is   less  easy  to  switch  on  and  off   than  gas-­‐powered  stations  and  thus   limits  the  ability  of  the  grid  to  balance  demand  with   intermittent  power  generation;  and  the  geographic  disparity  between  the  location  of  intermittent  energy   sources   and   the   location  of  demand   that   requires   significant   investment   in  grid  infrastructure.  

In  addition   to   these  enablers  and  barriers   there  were  a  number  of   items  on  which  there  were  mixed  views  about  their  role  in  supporting  the  integration  of  intermittent  power  generation.  These  included  Chinese  participation  in  the  WTO;  Chinese  power  sector   reforms;   the   breakup   of   SPCC   and   the   creation   of   State   Grid   and   regional  subsidiaries;  debates  between  power  companies  and  the  grid  over  wind  power;  the  Fukushima   disaster   and   its   impact   on   nuclear   power   programmes;   and   the  effectiveness  of  energy  trading  systems.  

PRC  Roadmap  Scenarios  In   the   second   stage  of   the  workshop,  groups  generated  a  number  of   scenarios   for  the  integration  of  intermittent  power  generation  in  2050.  From  these  scenarios,  one  was   selected   for   use   as   the   desired   vision   for   the   roadmap.   Termed   ‘Utopia’,   this  scenario  presented  a  vision  of  high  global  per  capita  wealth  where  nuclear  fusion  is  available.  The  scenario  was  described  thus:6  

• Characterised  by  high  economic  growth  and  high  energy  demand  

                                                                                                               6  Thanks  go  to  Ian  Jones,  Strategy  Adviser  at  BP  Alternative  Energy,  for  summarising  this  scenario  

24   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

• A   wealthier   nation   demands   secure   energy   supply   and   has   concern   for   the  environment.   The   energy  mix   is   diversified   to   guarantee   supply   and   support  economic  growth  

• Carbon,  NOx  and  SOx  emissions  are  at  their  lowest  levels  • To   diversify   the   power   sector,   ALL   renewable   resources   are   accessed.   This  

leads  to  high  intermittency  issues  that  are  managed  through:    o Fast  responding  generation  o Storage  technologies  o Demand  response  via  smartgrids  

• Gas  and  nuclear  have  a  large  share  of  the  generation  mix  • High   Voltage   Direct   Current   (HVDC)   allows   the   transfer   of   energy   over   long  

distances  and  additional  security  through  international  links  • Markets  are  de-­‐regulated  with  generation,  transmission,  distribution  and  retail  

companies  created  • The  transport  sector  is  diversified  through  biofuels,  CNG  trucks  and  buses  and  

EVs  

PRC  Roadmap  –  Actions  required  The  roadmap   led  to  the   identification  of  thirteen  priority  actions  for   improving  the  integration  of  intermittent  power  generation  into  the  grid.    

1. Establish  a  consistent  Chinese  renewable  energy  policy  in  future  5  year  plans.  This  should  be  an  integrated  approach  to  planning  (of  generation,  transmission  and   consumption),  with   the   ambition   commensurate  with  what   the   grid   can  support  and  what  technologies  are  available  to  aid  integration.  

2. Develop   a   single   aligned   strategy   for   the   integration   of   generation   and  transmission  planning,  with  this  considering  the  type  of  demand  to  be  met  (e.g.  peak  vs  off-­‐peak).  Key  stakeholders  need  to  be   involved   in  policy  and  market  design.  

3. Use  a  carbon   tax   system  to  set  an   incentive   to  deliver  material   reductions   in  carbon  emissions,   and   link   it   to   international   schemes.  Review  pilot   schemes  and   expand   consistently  while   understanding   the   carbon   abatement   options  and  price  trigger  points.  

4. Deregulate   Chinese   energy   markets   using   specific   energy,   capacity   and  flexibility  pricing  mechanisms.  Study  the  experience  of  energy  deregulation  in  Europe   and   develop   models   to   understand   the   impact   of   large   volumes   of  renewable  generation  on  grid  operations.  

5. Create   a   balanced   generation   portfolio   incorporating   single   cycle   turbines   to  provide  necessary  system  flexibility.  China  should  develop  its  own  gas  turbine  technology  because  current  alternatives  are  too  expensive  in  relation  to  coal.  

6. Reform  the  Chinese  shale  gas  market  through  market  liberalisation,  identifying  the   appropriate   levels   for   setting   incentives,   providing   access   to   land,   and  conducting  seismic  studies  to  identify  resource  availability  

7. Deregulate   energy   prices   by   reducing   subsidies.   Control   the   transition   from  state-­‐subsidised   system   to  market-­‐based   systems  with   international   linkages,  learning  from  the  mistakes  made  during  the  European  transition.  

25   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

8. Design   new   cities   to   be   smart   and   low   energy,   using   best   in   class   building  standards  and  urban  planning.  Develop  detailed  regulations  for  new  city  design.  

9. Provide   incentives   for   R&D   and   innovation   in   energy   storage   (i.e.   electricity,  heat  etc.)  devices.  

10. Develop   a   realistic   evaluation   of   the   potential   and   timing   of   battery  contribution   to   storage   so   that   batteries   can   be   deployed   for   smaller   scale  distributed  energy  storage  by  2030.    

11. Increase   the   maturity   of   smart   grid   technologies.   Policies   and   market  instruments  should  be  used  to  incentivise  smart  grid  deployment  and  end-­‐user  demand  response.  

12. Take   steps   towards   a   primary   global   grid   by   increasing   cross-­‐border   trade   in  power.   China   should   increase   the   integration   of   its   own   grid   and   set-­‐up  international  trading  systems.  

13. Continue  international  collaboration  on  nuclear  fusion  so  that  an  international  demonstration  can  be  realised  by  2030.  

   

26   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

EU  Roadmap  

Selection  of  comparison  roadmap  A  number  of  roadmaps  were  identified  that  could  be  used  for  comparison.  A  search  of  energy  roadmaps  for  Europe   led  to  a  dozen  potential   roadmaps.  These   included  roadmap   produced   by   a   variety   of   different   authors,   including   industry   bodies,  consultants,   and   academia.   The   Energy   Roadmap   2050   was   chosen   based   on   the  2050  time  horizon  and  the  methodology  used  to  create  the  roadmap,  which  are  both  discussed  in  further  detail  in  the  Discussion  section.    

Two  key  documents  are  associated  with  the  roadmap.  The  first,  the  ‘Assessment  of  the  Required  Share  for  a  Stable  EU  Electricity  Supply  until  2050’,  was  released  before  the  Energy  Roadmap  in  2011.  It  describes  the  challenges  of  integrating  intermittent  power  into  electricity  grids  (European  Commission  2011b).  The  second  document  is  a   roadmap   released   after   the   Energy   Roadmap   is   the   ‘Roadmap   for  moving   to   a  competitive  low-­‐carbon  economy  in  2050’  (European  Commission  2011a)  which  sets  out  actions  required  to  reduce  EU’s  emissions  by  80%  by  2050.      

The   focus   of   the   Energy   Roadmap   2050   is   the   decarbonisation   of   the   EU’s   energy  system,  which   reflect   the  underlying  commitment  of   the  EU  to   reduce  greenhouse  gas  emissions  to  80-­‐95%  below  1990  levels  by  2050.  The  energy  sector,  as  the  largest  contributor   to   man-­‐made   greenhouse   gas   emissions,   must   be   decarbonised   by  transitioning  to  low-­‐carbon  energy.  The  vision  that  is  created  by  the  roadmap  is  that  a  secure,  competitive  and  decarbonised  energy  system  is  possible  by  2050.    

The   roadmap   does   not   seek   to   “replace   national,   regional,   and   local   efforts   to  modernise   energy   supply,   but   seeks   to   develop   a   long-­‐term  European   technology-­‐neutral   framework   in  which   these   policies  will   be  more   effective.   It   argues   that   a  European  approach  to  the  energy  challenge  will  increase  security  and  solidarity  and  lower  costs  compered  to  parallel  national  schemes  by  providing  a  wider  and  flexible  market  for  new  products  and  services.”  

Energy  Roadmap  2050  Scenarios  Recognising  the  difficulty  of  forecasting  the  long  term  future,  the  roadmap  proposes  five  scenarios  towards  decarbonisation  of  the  energy  system.  These  scenarios  are  of  an   illustrative   nature,   examining   the   impacts,   challenges   and   opportunities   of  modernizing  the  energy  system.    

• High  Energy  Efficiency  • Diversified  Supply  Technologies  • High  Renewable  Energy  Sources  • Delayed  CCS  • Low  Nuclear  

All  the  scenarios  assume  that  action  is  taken  globally  to  tackle  climate  change.    

The   EU’s   energy   system   requires   high   levels   of   investment   even   without   the  requirements  to  decarbonise.    

27   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

In  modernising   the   EU’s   energy   system,   the   European  economy  will   gain   from   the  high  levels  of  investment.  

Decarbonisation   can   be   an   advantage   for   Europe,   securing   its   position   as   an   early  mover  in  the  growing  market  for  energy-­‐related  goods  and  services.    

Energy  Roadmap  2050  -­‐  Structural  Changes  required  Ten  structural  changes  are  identified  for  energy  system  transformation:  

1. Decarbonisation  is  possible,  and  can  be  less  costly  than  current  policies  in  the  long-­‐run.  

2. A   transition   is   required   from   current   high   fuel   and   operational   cots,   to   an  energy  system  based  on  higher  capital  expenditure  and  lower  fuel  costs.  The  cumulative  gird   investment   costs   along   could  be  up   to  €2.2trillion  between  2011  and  2050.    

3. Electricity   must   play   a   greater   role,   contributing   to   the   decarbonisation   of  transport,  heating  and  cooling.  

4. Electricity  prices  rise  until  2030  and  then  decline  5. Expenditure  on  energy  and  energy-­‐related  products  (including  for  transport)  

is   likely   to   rise,   and   become   a   more   important   element   of   household  expenditure.    

6. Significant   energy   savings   are   required,   which   will   require   a   decoupling   of  economic  growth  from  energy  consumption.  

7. The  share  of   renewable  energy  rises  substantially   in  all   scenarios,  alongside  significant  electricity  storage  to  accommodate  intermittent  power.    

8. Carbon  capture  and  storage  (CCS)  will  contribute  significantly.  9. Nuclear   energy,   as   a   key   source   of   low   carbon   electricity   generation,   will  

need  to  provide  a  significant  contribution  in  the  energy  transformation.    10. As  a  result  of  increasing  renewables,  the  power  system  and  heat  generation  

will   become   ever   more   decentralised,   however   will   need   to   maintain   the  flexibility   to   accommodate   existing   centralised   large-­‐scale   nuclear   and   gas  power  plants.    

Energy  Roadmap  2050  –  Actions  required  The  conclusions  of  the  roadmap  are  that  a  concerted  and  coordinated  approach  to  transforming   the   EU   energy   system   will   lead   to   a   growth,   employment,   greater  energy  security  and  lower  fuel  costs.  It  is  inevitable  that  energy  prices  will  continue  to   rise  world-­‐wide,  however   this  can   reversed   in   the  2030s   if   the  energy  system   is  designed  to  encourage  investment  in  energy  efficiency  and  low-­‐carbon  technologies.  However,   the   roadmap   warns   that   vulnerable   customers   and   energy-­‐intensive  industries  may  need  support  during  the  transitional  period.  In  order  to  achieve  this,  ten  conditions  are  outlined:  

1. Implement   EU’s   Energy  2020   strategy,   and   apply   all   existing   legislation   and  the  proposals  in  discussion.    

2. The  energy  system  and  society  must  be  dramatically  more  energy  efficient.  

28   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

3. Attention  should  be  given   to   the  development  of   renewable  energy,  with  a  modernisation  of   the  policy   framework  required  to  accelerate  development  and  market  share.    

4. Higher  public   and  private   investments   in  R&D  and   technological   innovation  are  crucial.  

5. A  fully   integrated  energy  market  by  2014,  which  will   require  regulatory  and  structural  shortcomings  to  be  addresses.    

6. Energy   prices   should   reflect   costs   more   effectively,   notably   the   new  investments  needed  throughout  the  energy  system.    

7. New   energy   infrastructure   and   storage   capabilities   must   be   developed  urgently.  

8. The   safety   and   security   from   new   energy   sources   must   continue   to   be  strengthened.    

9. A   broader   and   more   coordinated   EU   approach   to   international   energy  relations   must   become   the   norm   including   redoubling   work   to   strengthen  international  climate  action.  

10. Member   states   and   investors   need   concrete  milestones,   and   a   2030   policy  framework,  both  of  which  will  reduce  uncertainty  for  investors.  

EU  Stable  Energy  Supply  Report  Following   the   Energy   Roadmap   2050,   the   European   Commission   released   a   report  with   the  objective   to  assess   the  stability  of   the  energy  system  based  on   increasing  intermittent  power  sources,  because  power  system  balancing  will  become  important  to  maintain  a  stable  energy  supply.  (European  Commission  2011b)  

The   major   policy   implication   of   the   analysis   was   that   there   are   increased   costs  associated   with   deployment   of   intermittent   power   in   the   EU.   The   relationship   is  almost  an  exponential  increase  in  costs  as  the  share  of  intermittent  power  increases,  Figure  13,  and  that  the  larger  the  share  of  intermittent  power  required,  the  larger  the  investment  required  in  upgrading  the  grid:  

“If   the   cost   of   integrating   intermittent   generation   was   to   be   limited   to   about   25  billion   EUR   per   year,   no   more   than   about   40%   of   intermittent   generation   can   be  integrated  in  the  European  power  market.”  (European  Commission  2011b,  p.5)  

29   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

 

Figure  13  –  Annual  balancing  cost  for  integrating  increasing  shares  of  intermittent  generation  into  the  interconnected  EU-­‐27  power  system  (European  Commission  2011b)    

30   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Analysis  and  Discussion  Having  presented  a  synthesis  of  the  outputs  of  the  roadmaps  in  the  previous  section,  it   is   now   possible   to   compare   their   similarities   and   differences.   Obviously   both  roadmaps  discuss  intermittent  power,  however  the  challenges  and  actions  identified  arise  from  issues  related  to  the  energy  system  as  a  whole.  This  reflects  the  challenge  of   integrating   intermittent   power,   which   is   a   systematic   challenge   to   align   future  policy,   economics,   and   technical   issues   simultaneously   under   conditions   of  uncertainty  –  a  challenge  which  the  roadmapping  process  has  been  found  to  tackle  effectively  (Phaal  et  al.  2010).    

Whilst   the  objectives   and  methodologies   of   the   two   roadmaps  were  not   identical,  the   similar   time   horizon   and   topic   explored   are   considered   sufficiently   similar   to  warrant  a  comparative  analysis.  The  validity  of  the  comparison  is  explored  further  in  the  limitations  section  of  the  Conclusion.  

This   analysis   and   discussion   is   structured   to   start   with   content   directly   related   to  intermittent   power,   before   progressing   up   the   scale   of   complexity   to   renewables  more  broadly,  and  then  finally  to  the  whole  energy  system.  Following  this  analysis  of  the  roadmap  content,  the  methodologies  employed  to  create  the  two  roadmaps  are  compared.  

Roadmap  Content  Analysis  As  a  result  of  the  variable  nature  of  intermittent  power,  it  is  of  no  surprise  that  both  roadmaps   describe   the   need   for   energy   and   electricity   storage,   new   energy  infrastructure,  and  back-­‐up  generation  supplies.  

• Both  roadmaps  agree  on   the  need  to  accelerate   research  and  development  progress   into  battery   technologies.  The  PRC  roadmap  describes  the  current  slow  technological  progress,  calling  on  the  State  Grid  to  ramp  up  early  stage  demonstrations,   and   to   encourage   research   and   development   (R&D)   into  non-­‐electricity   storage   technology   such   as   heat.   The   EU   roadmap   is   less  explicit,   calling   more   generally   for   urgent   development   into   battery  technology.    

• Only   the   PRC   roadmap   mentions   back-­‐up   power   explicitly,   making  recommendations   for   back-­‐up   fast   response   gas   turbines   to   match  intermittent   power   generation,   given   the   current   lack   of   turbines   installed,  and  going  on  to  suggest  PRC  should  develop  its  own  gas  turbine  technology  since  current  alternatives  are  relatively  more  expensive  than  coal.  

Policy   regarding   renewable   energy   is   considered  by  both   roadmaps,   however  with  clearly  different  foci.    

• The  EU  roadmap   is  worded   in  an  effort   to  sway  opinion  and  make  the  case  for  an  increase  in  renewable  energy,  for  example  by  laying  out  the  benefits  of  decarbonisation.   The   roadmap   calls   for   the   need   to   modernise   policy   to  accelerate  the  development  and  market  share  of  renewables.    

• The  PRC   roadmap   in   comparison   assumes   a   continuation  of   the   large   scale  investment  in  building  renewable  capacity,  built  on  the  success  of  the  current  

31   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

renewable   energy   policy   in   the   12th   Five-­‐year   Plan,   but   argues   for   a   more  integrated   approach   to   planning   of   generation,   transmission   and  consumption.  A  key  barrier  to  integrated  planning  in  the  PRC  lies  in  the  lack  of   coordination   between   generation   and   transmission.   The   result   is  misaligned  strategy  as  has  happened  in  the  EU  and  US  history.    

Energy  efficiency   improvements  are  discussed   in  both   roadmaps.   The  EU   roadmap  calls  for  a  dramatic  improvement  in  the  energy  system,  while  the  PRC  roadmap  calls  for   new   low   energy   cities   to   replace   the   cheap   urban   investment   currently   being  built  with  little  thought  for  the  future.    

The  importance  of  fuel  diversity  is  prominent  in  both  roadmaps  as  a  way  to  improve  security   of   supply.   Renewables   are   mentioned   in   both   roadmaps   as   a   means   to  reduce  dependence  on  energy  imports.  Two  of  the  fossil  fuels  that  are  emphasised  more  strongly  in  the  actions  in  both  roadmaps  are  shale  gas  and  nuclear.  

• Domestic  shale  gas  supplies  present  a  relatively  recent  fuel  source.  The  PRC  roadmap  mentions  this  explicitly,  calling  for  market  liberalisation  in  order  to  open   up   access   for   seismic   testing   to   identify   resource   availability.   The   EU  roadmap   concedes   that   shale   gas  will   have   a   part   to   play   as   domestic   gas  supplies  diminish.    

• While  nuclear  forms  a  core  part  of  the  energy  mix  in  both  roadmaps,  nuclear  fusion   is   mentioned   explicitly   in   the   PRC   roadmap.   PRC’s   continuing  participation   in   ITER   project   is   expected   to   give   way   to   international  demonstrations  of  the  technology  by  2030.    

• Safety   fears   arising   from   the   Fukushima   nuclear   disaster   influence   both  roadmaps.  The  EU  roadmap  makes  explicit   reference  to  the  need  to  ensure  the  safety  and  security  from  new  energy  sources.  

Both  roadmaps  call  for  electricity  to  play  a  larger  part  in  the  energy  mix  in  order  to  enable   more   intermittent   power   generation   and   to   reduce   local   pollution   and  national  carbon  emissions.  Electricity   is  seen  to  have  the  potential   to  replace  fossil  fuels   for   transport   (electric  vehicles),  heating  and  cooling.  Of  particular  note   is   the  emphasis  in  both  roadmaps  on  international  energy  transfers.  

• The   EU   roadmap   calls   not   only   for   a   fully   integrated   energy  market   across  Europe,   but   also   to   align   national   policies   to   ensure   mutually   supportive  cross-­‐border  transmission.  The  PRC  roadmap  describes  a  primary  global  grid  facilitating   cross-­‐border   trade   in   power,   and   the   need   for   a   High   Voltage  Direct  Current  (HVDC)  grid  to  transfer  power  over  large  distances.    

Climate   change   and   the   need   to   cut   greenhouse   gas   (GHG)   emissions   features   in  both   roadmaps,   mentioning   the   need   for   coordinated   global   action   and   carbon  taxation.    

• Methods   to   reduce  GHG  emissions   from   the   energy   sector   feature   in   both  roadmaps,  although  while  this  lies  at  the  crux  of  the  EU  roadmap,  it  could  be  argued   that   the  PRC   roadmap   is   less   focused  on   this   issue.   The  PRC  utopia  scenario   describes   how   the   concern   for   the   environment  will   increase   in   a  

32   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

wealthier   nation,   and   that   the   PRC   carbon   tax   system   should   link   to   other  international  schemes.    

• The  EU  roadmap  calls  for  a  broader  and  more  coordinated  approach  among  EU  member  stakes  alongside  further  action  at  the  international  level.    

• The  crucial  role  of  carbon  or  emissions  taxation  is  evident  in  both  roadmaps.  The   PRC   roadmap   makes   the   recommendation   to   review   carbon   taxation  pilot   schemes   and   expand   these   consistently   in   order   to   set   the   right  incentives   to   deliver   material   reductions   in   carbon   emissions.   The   EU  roadmap   sees   the   European   Trading   Scheme   (ETS)   as   a   central   pillar   of  European  climate  policy  designed  to  provide  an  incentive  for  deployment  of  efficient,  low  carbon  technologies  across  Europe.  

A   notable   difference   between   the   two   roadmaps   is   the   discussion   on   the   energy  market,   reflecting   the   heavily   regulated   and   subsidised   nature   of   PRC   energy.   The  PRC  roadmap  calls  for  energy  price  deregulation  and  a  removal  of  subsidies,  learning  lessons   from   the   same   transition   that   occurred   in   Europe.   A   more   subtle  recommendation   in   the   EU   roadmap   calls   for   energy   prices   to   reflect   costs   more  effectively,  most  notably  the  investments  needed  throughout  the  energy  system.  

Another  crucial  difference  between  the  two  countries   is  reflected  in  the  roadmaps’  approach  to  economic  growth.  While  the  PRC  roadmap  takes  high  economic  growth  as   a   continuing   assumption   that   drives   energy   demand,   the   EU   roadmap   aims   to  decouple   economic   growth   from   energy   consumption.   Further   the   EU   views  investment   in   decarbonising   as   a   potential   source   of   economic   growth,   aiming   to  capitalise  on  the  growing  market  for  decarbonisation  technologies.  

Roadmap  Process  Analysis  Whilst   both   documents   are   identified   as   roadmaps,   there   are   in   fact   a   variety   of  different  types  of  roadmap  (Phaal  et  al.  2001,  p.5).  Up  until  this  point  the  roadmaps  have   been   considered   as   similar   types   of   roadmaps,   however   the   roadmaps  were  created  using  different  methodologies,  and  thus  a  discussion  is  appropriate  on  how  this  difference  impacts  the  analysis.  

The  PRC   roadmap  was   conducted  using   the  principles  of   technology   roadmapping,  the  process  described   in   the   Introduction   section  and  developed  at   the  Centre   for  Technology  Management,  University  of  Cambridge.  

In  both  cases,  the  roadmaps  were  created  by  a  group  of  experts  expressly  selected  based   on   their   individual   expertise   and   experience,   and   as   a   group   to   include  representatives  from  a  wide  variety  of  stakeholders.  In  the  case  of  the  EU  roadmap,  the  majority  of   the  participants   came   from  academia,   but  were   complemented  by  experts   from   think   tanks   and   non-­‐governmental   groups.   The   PRC   roadmap  on   the  other   hand   drew   from   a   wider   selection   of   stakeholders,   including   academic,  industry,   and   policy   makers.   Following   the   EU   roadmap,   there   was   a   public  consultation  (European  Commission  2011d),  which  did  not  occur   in  the  case  of  the  PRC  roadmap.    

33   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Roadmapping   literature  would  suggest  that   including  diversity   in  the  participants   is  crucial  to  not  only  ensure  all  relevant  issues  are  considered,  but  also  as  an  effective  method  for  participants  to  share  ideas  and  develop  buy-­‐in  to  the  roadmap’s  actions  and   conclusions   (Kerr   et   al.   2012;   de   Laat   &  McKibbin   2003;   Garcia   &   Bray   1997;  Industry  Canada  2002).   Indeed,  many  suggest  that  the  roadmapping  process   is   just  as   important   as   the   eventual   roadmap   by   creating   social   connections   between  important  industry  stakeholders  (for  example  Phaal  et  al.  2010,  p.108).    

The   roadmapping   process   must   be   customised   to   local   conditions.   Both  organisational   and   cultural   differences   must   be   considered   in   the   design   of   the  process,  and   in   the  case  of   the  PRC,  additional  considerations  were   required  given  the  language  barrier.  The  workshop  was  largely  conducted  in  English,  and  as  a  result  some  participants  were  not  able  to  communicate  in  their  native  language.  However  a   trusted   translator   was   able   to   act   as   a   go-­‐between   to   ensure   all   participants  understood  each  other.  

Roadmap  Quality  Analysis  Determining  the  quality  of  a  roadmap  is  difficult,  given  the  quantity  of  factors  at  play  and  the  subjective  nature  of  assessment,  however  some  guidance  is  available.  Londo  et   al.   (2013)   synthesised   existing   literature   on   roadmapping   best   practice   to   six  qualitative  elements.  Their  conclusions  were  based  on  an  analysis  of   industry   level  roadmaps   related   to   climate   change   mitigation   and   adaptation   technologies,   and  thus  appropriate   in   this   instance.  The  quality  of   the  two  roadmaps  based  on  these  qualitative  elements  is  assessed  below,  and  summarised  in  Table  1.  

Table  1  -­‐  Roadmap  quality  analysis  based  on  six  qualitative  criteria  (Londo  et  al.  2013)  

  PRC  Roadmap   EU  Roadmap  Process  description   Yes   Partial  (within  accompanying  

documents)  Stakeholders  specified   Yes   Yes  (within  accompanying  

documents)  Quantifiable  targets   Partial   No  Actions  assigned   No   No  Visual  representation   Yes   No  Plan  for  update   No   No    

The   PRC   roadmap   document   clearly   lays   out   the   methodology   used   in   detail.   In  contrast,  while  the  EU  roadmap  does  describe  in  broad  terms  how  often  the  working  group  met  and  what  was  discussed,  it  fails  to  mention  explicitly  how  the  participants  arrived  at  the  conclusions.  

The   stakeholders   are   specified   clearly   in   both   roadmaps,   in   the   appendices   of   the  PRC  roadmap,  and  in  an  accompanying  document  to  the  EU  roadmap.    

Both   roadmaps   lacked   detailed   quantifiable   targets.   The   PRC   roadmap   hints   at  targets,   for   example   describing   the   necessity   to   achieve   “widespread   HVDC  connections   with   other   countries”,   but   failing   to   put   a   quantifiable   figure   to   this  

34   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

proposal.  The  EU  roadmap  includes  similar  ambiguous  wording,  such  as  “the  safety  and   security   from  new  energy   sources  must   continue   to  be   strengthened”,  without  defining  how  or  by  when.  

In   order   to   maintain   the   momentum   built   during   the   roadmapping   process,   it   is  important  to  assign  actions  to  specific  people  or  groups,  however  neither  roadmap  documents  appear  to  assign  actions  in  such  a  way.  The  PRC  roadmap  actions  include  statements   such   as   “review   pilot   schemes   and   expand   consistency”,   but   do   not  include  who  should  take  on  this  responsibility.  One  of  the  actions  in  the  EU  roadmap  is  to  create  concrete  milestones,  which  have  been  created  in  subsequent  documents  (such  as  European  Commission  2011a).  

A  visual  representation  using  the  three  layers  along  the  vertical  axis  and  time  along  the  horizontal  axis   is  a   fundamental  aspect  of   the  roadmapping  process  developed  by  Phaal  et  al.  (2010).  The  PRC  roadmap  was  based  on  this  method  whereas  the  EU  roadmap  was   not,   therefore   it   is   no   great   surprise   that   the   EU   roadmap  does   not  include  this  specific  type  of  visual,  however  the  fact  that  there  is  no  visualisation  at  all  is  notable.    

Phaal  et  al.  (2010)  describe  how  the  roadmap  should  be  updated  regularly.  Given  the  speed  of  change  within  the  world,  the  roadmap  will  become  obsolete  quickly  unless  it   is   updated   regularly,   and   thus   should   be   seen   as   a   live   document.   Neither  roadmaps  discuss  a  plan  for  an  update.    

 

   

35   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Conclusion  Having  presented  a  synthesis  of  first  the  energy  and  policy  contexts  within  the  two  regions,  and  subsequently  the  outputs,  similarities  and  differences  between  the  two  roadmaps,  it  is  now  possible  to  conclude  this  report  with  an  attempt  to  explain  the  differences  and  similarities  based  on  the  different  contexts   in  which  they  emerged.  The   conclusions   discuss   four   elements:   roadmap   content   within   the   different  contexts,   the   roadmapping   processes,   the   quality   of   the   roadmaps,   and   the  limitations  of  the  study.    

Three   key   conclusions   emerge   from   an   analysis   of   the   context   and   roadmap  outcomes:  

• Despite  the  size  of  the  PRC  economy,  it  is  a  developing  country  based  on  its  low  per   capita   income,  and   thus  exempt   from   the   requirements   for   carbon  emission   reductions   under   international   climate   negotiations.   This   fact   is  reflected   in   the   roadmap’s   focus,   and   whereas   the   EU   roadmap   is   built  around  the  need  to  decarbonise  the  energy  system,  the  PRC  roadmap  takes  a  more   balanced   view   towards   the   continuing   use   of   fossil   fuel   alongside   a  steadily  growing  renewable  and  intermittent  power  generation  capacity.  

• The   different   proportions   of   the   economy   using   energy   and   generating  economic   growth   between   the   two   regions   contributes   to   the   different  opinions   on   the   link   between   energy   use   and   economic   growth.   The   PRC  roadmap  assumes  that  continued  economic  growth  is   linked  with  increasing  energy   use   based   on   its   reliance   on   industry   as   the   driving   force   behind  economic   growth,   while   the   EU   has   the   potential   to   decouple   economic  growth  from  energy  use  with  a  larger  service  sector.  

• Improving   energy   efficiency   is   a   clear   vision   within   both   the   roadmaps,  reflecting   the   fact   that   both   regions   are   importers   of   energy   (PRC   set   to  become   a   large   importer   of   oil   and   gas)   and   are   looking   to   reduce   their  reliance   on   fluctuating   but   generally   increasing   energy   prices   on   the  world  markets.  

• Forecasts  put  the  expected  share  of  intermittent  power  within  the  EU  grid  at  nearly  a  quarter  by  2035  compared  to  only  10%  in  PRC.  This  is  significant  as  the  technical  reports  on   integrating   intermittent  power   into  grids  warn  that  as  contribution  increases,  there  is  an  almost  exponential  growth  in  the  capital  investment   required   to   upgrade   the   grid.   This   greater   expense   to   the   EU  triggered  the  subsequent  publishing  of  a  report  by  the  European  Commission  (2011b)  into  the  expected  costs.  

Whilst   the   two   roadmaps   were   created   using   different   methodologies,   and   the  description  of  the  EU  roadmap  process  is  limited  in  the  roadmap  document,  this  fact  does  enable  some   interesting  comparisons  between  the  methodologies  used  to  be  drawn.   The   following   recommendation   arises   in   the   context   of   recommendations  given  for  best  practice  roadmapping  described  in  the  Introduction.    

• Participants  in  the  EU  roadmap  were  drawn  largely  from  academia  and  think  tanks,   with   only   limited   industry   or   government   involvement.   The   PRC  

36   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

roadmap   in   comparison   had   participants   from   industry,   academia   and  government,  which  can  be  expected  to  improve  the  quality  of  the  discussion  and   the   recommendations.   The   EU   roadmap   did   however   include   post-­‐roadmap  public  consultation  which  was  not  the  case  in  the  PRC  roadmap.    

Neither   roadmap   fully   met   the   best   practice   qualitative   recommendations,   and  therefore  should  the  roadmaps  be  repeated,  they  would  benefit  from  the  following  considerations:  

• Both   roadmaps   need   more   quantifiable   targets,   and   actions   should   be  assigned  to  specific  individuals  or  organisations.    

• Effective  roadmaps  are  part  of  an  on-­‐going  process,  and  thus  plans  to  repeat  the  roadmapping  process  should  be  included.  

• The   EU   roadmap   would   benefit   from   structuring   the   actions   in   a   multi-­‐layered  roadmap  visual  to  aid  communication  and  understanding.  

Limitations   of   the   study   must   also   be   considered   to   judge   the   validity   of   the  conclusions   and   to   suggest   further   work.   This   report   and   analysis   has   taken   the  approach  of  using   roadmaps  as   a  perspective  on   the   renewable  energy   challenges  between   two   different   regions.   However   this   is   just   one   possible   perspective,  analysis  by  other  means,  such  as  literature  review  and  expert  interviews  could  have  revealed   different   conclusions.   Thus   the   conclusions   from   this   analysis   would   be  strengthened   by   checking   for   consistency   with   other   roadmaps   created   on   this  subject,  and  also  other  related  documents.  

The  difference   in  methodologies   is   the  most  obvious   limitation  of   the  comparison,  although   this   contrast   also  provides   the  opportunity   to   improve  both   roadmaps   in  the   future.  Both   roadmaps  would  potentially  benefit   from  studying   the  other,   and  from  the  recommendations  laid  out  in  this  report.    

In  conclusion,  despite  the  differences  in  methodology  and  local  context,  both  the  EU  and  PRC  have  found  have  found  roadmapping  to  be  a  useful  and  engaging  activity  in  addressing   the   challenges   of   integrating   renewable   and   intermittent   power  generation  into  electricity  grids.  The  roadmaps  for  a  basis  from  which  the  renewable  energy  industries  in  both  Europe  and  China  may  further  develop.    

   

37   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

References  

Ayres,  R.  &  Ayres,  E.,  2009.  Crossing  the  Energy  Divide:  Moving  from  Fossil  Fuel  Dependence  to  a  Clean-­‐Energy  Future  1st  ed.,  Prentice  Hall.  

China  Greentech  Initiative,  2013.  The  China  Greentech  Report  2013:  China  at  a  Crossroads,  Beijing.  

EIA,  2014.  U.S.  Energy  Information  Administration.  Countries  Statistics.  Available  at:  http://www.eia.gov/countries/index.cfm  [Accessed  April  23,  2014].  

Eloot,  K.,  Huang,  A.  &  Lehnich,  M.,  2013.  A  new  era  for  manufacturing  in  China.  McKinsey  Quarterly,  (June),  pp.1–18.  

European  Commission,  2011a.  A  Roadmap  for  moving  to  a  competitive  low  carbon  economy  in  2050,  Brussels.  

European  Commission,  2011b.  Assessment  of  the  Required  Share  for  a  Stable  EU  Electricity  Supply  until  2050,  Brussels.  

European  Commission,  2014a.  Energy  Statistics  Glossary.  Eurostat.  Available  at:  http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary.  

European  Commission,  2009.  EU  energy  trends  to  2030,  Brussels.  

European  Commission,  2014b.  European  Economic  Forecast:  Winter  2014,  Brussels.  

European  Commission,  2014c.  Eurostat  Statistical  Data.  Available  at:  http://epp.eurostat.ec.europa.eu  [Accessed  April  22,  2014].  

European  Commission,  2011c.  Final  Report  of  the  Advisory  Group  on  the  Energy  Roadmap  2050,  Brussels.  

European  Commission,  2011d.  Results  of  the  public  consultation  on  the  Energy  Roadmap  2050,  Brussels.  

European  Commission,  2014d.  The  2020  climate  and  energy  package.  Available  at:  http://ec.europa.eu/clima/policies/package/index_en.htm  [Accessed  April  24,  2014].  

Ford,  S.  &  More,  E.,  2014.  China’s  Energy  Future:  Report  on  the  China  Power  Pathways  Technology  Roadmapping  Event,  Cambridge.  

Friedman,  L.,  2012.  China  Greenhouse  Gas  Emissions  Set  to  Rise  Well  Past  U.S.  Scientific  American.  

38   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Garcia,  M.L.  &  Bray,  O.H.,  1997.  Fundamentals  of  Technology  Roadmapping,  Albuquerque,  NM.  

Industry  Canada,  2002.  Synthesis  of  Six  Technology  Roadmap  Evaluations,  

Innes  Miller,  J.,  1969.  Spice  Trade  of  the  Roman  Empire  29  B.  C.  to  A.D.  641,  Oxford:  Oxford  University  Press.  

Institute  for  Manufacturing,  2010.  Technology  roadmapping:  facilitating  collaborative  strategy  development,  Cambridge.  

International  Energy  Agency,  2011.  Harnessing  Variable  Renewables:  A  Guide  to  the  Balancing  Challenge,  Paris.  

International  Energy  Agency,  2013a.  Key  World  Energy  Statistics,  Paris.  

International  Energy  Agency,  2013b.  World  Energy  Outlook  2013,  Paris.  

International  Energy  Agency,  2013c.  World  Energy  Outlook:  Renewable  Energy  Outlook,  Paris.  

IPCC,  2012.  Renewable  Energy  Sources  and  Climate  Change  Mitigation  O.  Edenhofer,  R.  P.  Madruga,  &  Y.  Sokona,  eds.,  Cambridge:  Cambridge  University  Press.  

Kerr,  C.,  Phaal,  R.  &  Probert,  D.,  2012.  Addressing  the  Cognitive  and  Social  Influence  Inhibitors  During  the  Ideation  Stages  of  Technology  Roadmapping  Workshops.  International  Journal  of  Innovation  and  Technology  Management,  09(06),  p.1250046.  

De  Laat,  B.  &  McKibbin,  S.,  2003.  The  effectiveness  of  technology  road  mapping  -­‐  building  a  strategic  vision,  Technopolis.  

Londo,  M.  et  al.,  2013.  Background  paper  on  Technology  Roadmaps,  Technology  Executive  Committee  of  the  United  Nations  Framework  Convention  on  Climate  Change.  

Mackay,  D.J.C.,  2008.  Sustainable  Energy  –  without  the  hot  air,  Cambridge:  UIT  Cambridge.  

Manyika,  J.  et  al.,  2012.  Manufacturing  the  future:  The  next  era  of  global  growth  and  innovation,  McKinsey  Global  Institute.  

McCormick,  J.,  2008.  European  Union:  politics  and  policies  4th  ed.,  Boulder,  Colorado:  Westview.  

39   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

National  Bureau  of  Statistics  of  China,  2014.  National  Bureau  of  Statistics  of  the  People’s  Republic  of  China.  Available  at:  http://data.stats.gov.cn/  [Accessed  April  18,  2014].  

Phaal,  R.,  Farrukh,  C.  &  Probert,  D.,  2010.  Roadmapping  for  Strategy  and  Innovation:  Aligning  Technology  and  Markets  in  a  Dynamic  World,  Cambridge:  Institute  for  Manufacturing,  University  of  Cambridge.  

Phaal,  R.,  Farrukh,  C.  &  Probert,  D.,  2001.  Technology  Roadmapping:  linking  technology  resources  to  business  objectives,  Cambridge.  

Phaal,  R.  &  Muller,  G.,  2009.  An  architectural  framework  for  roadmapping:  Towards  visual  strategy.  Technological  Forecasting  and  Social  Change,  76(1),  pp.39–49.  

Technology  Strategy  Board,  2012.  A  landscape  for  the  future  of  high  value  manufacturing  in  the  UK,  London.  

The  Carbon  Trust  &  DTI,  2003.  Renewables  Network  Impact  Study:  Intermittency  Literature  Survey  &  Roadmap,  

The  Economist,  2014.  China’s  economy:  In  three  parts.  The  Economist.  

The  World  Bank,  2014.  The  World  Bank  Data.  Available  at:  http://data.worldbank.org/  [Accessed  April  22,  2014].  

US  National  Intelligence  Council,  2012.  Global  Trends  2030:  Alternative  Worlds,  

Wenke,  H.  &  Yufeng,  Y.,  2013.  China  Energy  outlook,  Washington  DC.  

Wiessala,  G.,  Wilson,  J.F.  &  Taneja,  P.,  2009.  The  European  Union  and  China:  Interests  and  Dilemmas,  Rodopi.  

Yao,  S.,  2011.  The  EU-­‐China  Economic  Relationship.  ECRAN.  Available  at:  http://www.euecran.eu/economics  [Accessed  April  17,  2014].  

Zhang,  K.H.,  2006.  China  as  the  World  Factory,  Taylor  &  Francis.  

Zhou,  N.  et  al.,  2011.  China’s  Energy  and  Carbon  Emissions  Outlook  to  2050,  Berkeley,  California.  

40   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Appendix  

Note  on  EU  Forecasts  considered  Two   documents   were   used   in   this   study   for   the   forecasts   of   EU   statistics:   the  European   Commission   (2009)   EU   energy   trends   to   2030,   and   International   Energy  Agency  (2013b).  In  both  these  forecasts,  a  number  of  different  scenarios  are  projects.  For  the  sake  of  simplicity  in  this  analysis,  the  conservative  or  middle  estimates  have  been  used,  which  typically  reflect  a  business  as  usual  scenario  in  which  policies  are  implemented   as   announced,   including   national   pledges   to   reduce   greenhouse-­‐gas  emissions.  Therefore  the  Baseline  Scenario  and  the  New  Policies  Scenario  are  used,  and  are  described  in  more  detail  below.    

EU  energy  trends  to  2030  (European  Commission  2009)  

The  European  Commission  report  titled  EU  energy  trends  to  2030  presents  forecasts  developed   used   the   PRIMES   model 7 .   The   PRIMES   model   simulates   a   market  equilibrium   solution   for   energy   supply   and   demand   in   Europe   based   on   current  trends  and  policies  as  implemented  by  Member  States  by  April  2009,  the  date  of  the  report.   The   2009   scenario   takes   account   of   the   2008   financial   downturn   and  associated  drops  in  energy  intensive  industries.  It  also  considers  legislation  adopted  including  the  Climate  and  Energy  Package  adopted  in  December  2007.    

Two   scenarios   are   used   in   the   trends.   The   2009   Baseline   determines   the  development  of  the  EU  energy  system  under  current  trends  and  policies.  Economic  decisions  are  driven  by  market  forces  and  technology  progress  in  the  framework  of  actual  national  and  EU  policies  implemented  by  April  2009.  The  ETS  and  a  number  of  energy   efficiency  measures   are   included.   The  Reference   scenario   is   based   on   the  same   assumptions,   but   in   addition   is   assumes   that   national   targets   under   the  Renewables  directive  2009/28/EC  and  the  GHG  Effort  sharing  decision  2009/406/EC  are  achieved  in  2020.    

The   energy   trends   under   the   2009   Baseline   assumptions   lead   to   significant  decreasing  emissions  and  energy   intensity  gains,   trends  which  deliver  considerable  ancillary   benefits   in   terms   of   security   of   supply   and   non   climate   related  environmental   pressures.   However,   the   results   fall   short   of   the   agreed   binding  targets   on   greenhouse   gases.   The   Reference   scenario   would   be   expected   to   be  better  in  terms  of  meeting  GHG  emissions  targets,  however  given  the  more  realistic  nature  of  the  2009  Baseline  scenario,  it  has  been  used  for  forecasts  in  this  analysis.    

World  Energy  Outlook  2013  (International  Energy  Agency  2013b)  

The   second   set   of   forecasts   come   from   the   International   Energy   Agency,   with  projections  of  energy   trends   through   to  2035.  The  World  Energy  Outlook   is  widely  

                                                                                                               7  The  scenarios  derived  from  the  PRIMES  model  developed  by  a  consortium  led  by  the  National  Technical  University  of  Athens  (E3MLab).  For  more  information  refer  to  the  report  which  details  the  methodology  and  assumptions  made  in  the  model.  

41   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

recognised   as   the  most   authoritative   source   of   strategic   analysis   of   global   energy  markets8.    

Three  scenarios  are  presented,  New  Policies,  Current  Policies,  and  450  Scenario.  

The  Current  Policies  scenario  assumes  no  changes  in  policies  from  the  mid-­‐point  of  2013,  and  serves  as  a  reference  scenario.  

The  New   Policies   scenario   takes   account   of   broad   policy   commitments   and   plans  that   have   been   announced   by   countries,   including   national   pledges   to   reduce  greenhouse-­‐gas  emissions  and  plans  to  phase  out  fossil-­‐energy  subsidies,  even  if  the  measures  to  implement  these  commitments  have  yet  to  be  identified  or  announced.  

The  450  Scenario  in  comparison  sets  out  an  energy  pathway  consistent  with  the  goal  of   limiting   the   global   increase   in   temperature   to   2°C   by   limiting   concentration   of  greenhouse  gases  in  the  atmosphere  to  around  450  parts  per  million  of  CO2.  

   

                                                                                                               8  For  example  see  recommendations  listed  at  www.worldenergyoutlook.org/opinionleadersonweo  

42   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

EU  Roadmap  working  group  The  following  is  a  description  of  the  activities  which  led  to  the  EU  Energy  Roadmap  2050.    

“The  Group  met  on  three  occasions  in  Brussels.    

The  first  meeting  comprised  a  presentation  from  Philip  Low  on  the  background  to  the  Roadmap,   and   proceeded   to   a   round   table   discussion   of   the   objectives   of   the  Roadmap  and  the  issues  to  be  considered.    

The  second  meeting  comprised  a  presentation  from  Professor  P.  Capros  NTUA  on  the  PRIMES  model,  followed  by  a  presentation  on  the  Commission’s  scenarios.  Members  of  the  Group  discussed  these  presentations  and  set  out  the  issues  for  consideration  in  the  Group’s  report.    

In  advance  of  the  third  meeting,  the  Chairman  prepared  an  initial  outline  draft  of  the  report.    

The  Commissioner  for  Energy  introduced  the  third  meeting.  The  Chairman  presented  his  first  outline  draft  report  and  the  draft  recommendations.  Members  of  the  Group  discussed  the  recommendations.    

Following   the   third   meeting,   the   Chairman   revised   the   draft   report,   and  communicated  with  members  of  the  Group  on  detailed  drafting  points.    

At   the   end   of   September   2011   the   Group   agreed   this   final   report.”   (European  Commission  2011c)  

The  14  member  team  that  developed  the  roadmap  are  listed  in  Table  2.  A  web-­‐based  search   reveals   their   background   and   current   position,   and   they   have   also   been  assigned   a   specialty   based   on   their   expertise.   Nine   could   be   considered   ‘energy’  specialists,  while  three  are  economists,  one  is  focused  on  smart  grids,  and  the  final  one  is  a  specialist  in  environmental  protection.    

Table  2  -­‐  Membership  of  the  EU  Roadmap  Working  Group  

Participant   Position   Speciality  Dieter  Helm  (chair)      

Professor  (Oxford)   Economist  

Claude  Mandil  (deputy  chair)      

Industry  Former  Executive  Director  of  IEA  

Energy  Security  

Jorge  Vasconcelos      

Industry  &  Professor  (Lisbon)  Chairman  of  New  Energy  Solutions  

Renewable  Energy  

David  MacKay      

Professor  (Cambridge)  &  Policy  (CSA  to  DECC)  

Sustainable  Energy  

Fatih  Birol      

Chief  Economist  at  IEA   Economist  

Arne  Mogren      

Think  Tank  Head  of  European  Climate  Foundation  

Energy  

43   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

Power  Programme  Frederic  Hauge      

NGO  Head  of  Bellona  Foundation  

Environmental  Protection  

Brigitte  Bach      

Think  Tank  (Austrian  Institute  of  Technology)  Head  of  Energy  Department  

Energy  

Coby  van  der  Linde      

Think  Tank  &  Professor  (Leiden)  Director  of    Clingendael  International  Energy  Programme  

Energy  

Eugeniusz  Toczylowski      

Professor  (Warsaw)    

Economist  

Ignacio  J.  Pérez-­‐Arriaga      

Professor  (MIT)   Smart  Grids  

Wolfgang  Kröger      

Professor  (Zurich)   Energy  

Giacomo  Luciani      

Professor  (Princeton)   Energy  

Felix  Matthes   NGO    Institute  for  Applied  Ecology  

Energy  &  Climate  Change  

 

   

44   Challenges  and  approaches  of  integrating  intermittent  power  A  comparative  analysis  between  roadmaps  for  Europe  and  China    

Elliott  More  et  al.     April  2014  

PRC  Roadmap  participants    

Table  3  –  Participants  of  the  PRC  workshop  (Ford  &  More  2014)  

Name   Organisation   Workshop  role  

Rosie  Albinson   BP   External  expert  

Angelo  Amorelli   BP   External  expert  

Simon  Ford   CTM,  University  of  Cambridge   Facilitator  

Anna-­‐Marie  Greenaway   BP   External  expert  

Huang  Bin   Huaneng  Group   Chinese  expert  

Ian  Jones   BP   External  expert  

Li  Bing   National  Development  and  Investment  Corporation  

Chinese  expert  

Li  Zheng   Department  of  Thermal  Engineering,  Tsinghua  University  

Chinese  expert  

Liu  Pei   Department  of  Thermal  Engineering,  Tsinghua  University  

Facilitator  

Lu  Zongxiang   Department  of  Electrical  Engineering,  Tsinghua  University  

Chinese  expert  

Elliott  More   CTM,  University  of  Cambridge   Facilitator  

Qi  Cui   EDF   External  expert  

Sun  He   NDRC   Chinese  expert  

Jose-­‐Carlos  Valle  Marcos   EDF   External  expert  

Wang  Zhe   Department  of  Thermal  Engineering,  Tsinghua  University  

Chinese  expert  

Aaron  Weiner   BP   External  expert  

Xin  Yaozhong   State  Grid   Chinese  expert  

Yang  Jiandao   Shanghai  Electrical  Group   Chinese  expert  

Zhou  Yuan   School  of  Public  Management,  Tsinghua  University  

Chinese  expert