CBSE NCERT Solutions for Class 12 Maths Chapter 10

44
Class-XII-Maths Vector Algebra 1 Practice more on Vector Algebra www.embibe.com CBSE NCERT Solutions for Class 12 Maths Chapter 10 Back of Chapter Questions Exercise: 10.1 1. Represent graphically a displacement of 40 km, 30 o east of north. [2 Marks] Solution: [1 Mark] Here, vector represents the displacement of 40 km, 30 o East of North. [1 Mark] 2. Classify the following measures as scalars and vectors. [1 Mark each] (i) 10 kg (ii) 2 metres north-west (iii) 40 o (iv) 40 watt (v) 10 –19 coulomb (vi) 20 m s 2 ⁄

Transcript of CBSE NCERT Solutions for Class 12 Maths Chapter 10

Class-XII-Maths Vector Algebra

1 Practice more on Vector Algebra www.embibe.com

CBSE NCERT Solutions for Class 12 Maths Chapter 10

Back of Chapter Questions

Exercise: 10.1

1. Represent graphically a displacement of 40 km, 30o east of north. [2 Marks]

Solution:

[1 Mark]

Here, vector 𝑂𝑃⃗⃗⃗⃗ βƒ— represents the displacement of 40 km, 30o East of North. [1 Mark]

2. Classify the following measures as scalars and vectors. [1 Mark each]

(i) 10 kg

(ii) 2 metres north-west

(iii) 40o

(iv) 40 watt

(v) 10–19 coulomb

(vi) 20 m s2⁄

Class-XII-Maths Vector Algebra

2 Practice more on Vector Algebra www.embibe.com

Solution:

(i) 10 kg is a scalar quantity because it involves only magnitude. [1 Mark]

(ii) 2 meters north-west is a vector quantity as it involves both magnitude and direction.

[1 Mark]

(iii) 40o is a scalar quantity as it involves only magnitude. [1 Mark]

(iv) 40 watts is a scalar quantity as it involves only magnitude. [1 Mark]

(v) 10–19 coulomb is a scalar quantity as it involves only magnitude. [1 Mark]

(vi) 20 m s2⁄ is a vector quantity as it involves magnitude as well as direction. [1 Mark]

3. Classify the following as scalar and vector quantities. [1 Mark each]

(i) time period

(ii) distance

(iii) force

(iv) velocity

(v) work done

Solution:

(i) Time period is a scalar quantity as it involves only magnitude. [1 Mark]

(ii) Distance is a scalar quantity as it involves only magnitude. [1 Mark]

(iii) Force is a vector quantity as it involves both magnitude and direction. [1 Mark]

(iv) Velocity is a vector quantity as it involves both magnitude as well as direction. [1 Mark]

(v) Work done is a scalar quantity as it involves only magnitude. [1 Mark]

4. In Figure, identify the following vectors. [1 Mark each]

Class-XII-Maths Vector Algebra

3 Practice more on Vector Algebra www.embibe.com

(i) Coinitial

(ii) Equal

(iii) Collinear but not equal

Solution:

(i) Vectors π‘Ž and 𝑑 are coinitial because they have the same initial point. [1 Mark]

(ii) Vectors οΏ½βƒ—οΏ½ are 𝑑 equal because they have the same magnitude and direction. [1 Mark]

(iii) Vectors π‘Ž and οΏ½βƒ—οΏ½ are collinear but not equal. This is because although they are parallel, their directions are not the same. [1 Mark]

5. Answer the following as true or false. [1 Mark each]

(i) π‘Ž and βˆ’π‘Ž are collinear.

(ii) Two collinear vectors are always equal in magnitude.

(iii) Two vectors having same magnitude are collinear.

(iv) Two collinear vectors having the same magnitude are equal.

Solution:

(i) True. Two vectors are collinear if they are parallel to line the same line.

Vectors π‘Ž and βˆ’π‘Ž are parallel to the same line οΏ½βƒ—βƒ—οΏ½ . [1 Mark]

Class-XII-Maths Vector Algebra

4 Practice more on Vector Algebra www.embibe.com

So, π‘Ž and βˆ’π‘Ž are collinear.

(ii) False.

Collinear vectors are those vectors that are parallel to the same line.

Here, π‘Ž and οΏ½βƒ—οΏ½ are parallel to οΏ½βƒ—βƒ—οΏ½

Hence, collinear.

But, π‘Ž and οΏ½βƒ—οΏ½ are not equal in magnitude. [1 Mark]

(iii) False. Two or more vectors are collinear if they are parallel to the same line.

π‘Žβ†’

and 𝑏→

are equal in magnitude but not parallel to the same line

Hence, π‘Žβ†’

and 𝑏→

are not collinear. [1 Mark]

(iv) False

Two or more vectors are equal if they have the same magnitude and same direction Collinear vectors may have the same magnitude but are not equal.

Hence false. [1 Mark]

Class-XII-Maths Vector Algebra

5 Practice more on Vector Algebra www.embibe.com

Exercise: 10.2

1. Compute the magnitude of the following vectors: [4 Marks]

π‘Ž = 𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½; οΏ½βƒ—οΏ½ = 2𝑖̂ βˆ’ 7𝑗̂ βˆ’ 3οΏ½Μ‚οΏ½; 𝑐 =1

√3𝑖̂ +

1

√3𝑗̂ βˆ’

1

√3οΏ½Μ‚οΏ½

Solution:

Given vectors are π‘Ž = 𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½; οΏ½βƒ—οΏ½ = 2𝑖̂ βˆ’ 7𝑗̂ βˆ’ 3οΏ½Μ‚οΏ½; 𝑐 =1

√3𝑖̂ +

1

√3𝑗̂ βˆ’

1

√3οΏ½Μ‚οΏ½ [1 Mark]

Magnitude of π‘Ž is |π‘Ž | = √(1)2 + (1)2 + (1)2 = √3

Hence, |π‘Ž | = √3 [1 Mark]

Magnitude of οΏ½βƒ—οΏ½ is |οΏ½βƒ—οΏ½ | = √(2)2 + (βˆ’7)2 + (βˆ’3)2

= √4 + 49 + 9

= √62

Hence, |οΏ½βƒ—οΏ½ | = √62 [1 Mark]

Magnitude of 𝑐 is |𝑐 | = √(1

√3)2+ (

1

√3)2+ (βˆ’

1

√3)2

= √1

3+

1

3+

1

3= 1

Hence, |𝑐 | = 1 [1 Mark]

2. Write two different vectors having same magnitude. [2 Marks]

Solution:

Let π‘Ž = (βˆ’π‘–Μ‚ βˆ’ 2𝑗̂ + 3οΏ½Μ‚οΏ½) and οΏ½βƒ—οΏ½ = (2𝑖̂ + 𝑗̂ βˆ’ 3οΏ½Μ‚οΏ½)

Now, magnitude of π‘Ž is |π‘Ž | = √(βˆ’1)2 + (βˆ’2)2 + 32 = √1 + 4 + 9 = √14 [1 Mark]

|οΏ½βƒ—οΏ½ | = √22 + 12 + (βˆ’3)2 = √4 + 1 + 9 = √14 [1 Mark]

Hence, π‘Ž and οΏ½βƒ—οΏ½ are two different vectors having the same magnitude.

Class-XII-Maths Vector Algebra

6 Practice more on Vector Algebra www.embibe.com

3. Write two different vectors having same direction. [2 Marks]

Solution:

Let π‘Ž = (𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½) and οΏ½βƒ—οΏ½ = (2𝑖̂ + 2𝑗̂ + 2οΏ½Μ‚οΏ½).

The direction cosines of π‘Ž are given by,

𝑙 =1

√12+12+12=

1

√3, π‘š =

1

√12+12+12=

1

√3, and 𝑛 =

1

√12+12+12=

1

√3 [1 Mark]

The direction cosines of οΏ½βƒ—οΏ½ are given by,

𝑙 =2

√22+22+22=

2

2√3=

1

√3, π‘š =

2

√22+22+22=

2

2√3=

1

√3,

And 𝑛 =2

√22+22+22=

2

2√3=

1

√3 [1 Mark]

The direction cosines of π‘Ž and οΏ½βƒ—οΏ½ are the same. Hence, the two vectors have the same direction.

4. Find the values of π‘₯ and 𝑦 so that the vectors 2𝑖̂ + 3𝑗̂ and π‘₯𝑖̂ + οΏ½Μ‚οΏ½ are equal [1 Mark]

Solution:

The two vectors 2𝑖̂ + 3𝑗̂ and π‘₯𝑖̂ + οΏ½Μ‚οΏ½ will be equal if their corresponding components are equal.

Hence, the required values of π‘₯ and 𝑦 are 2 and 3 respectively. [1 Mark]

5. Find the scalar and vector components of the vector with initial point (2,1) and terminal point

(– 5,7). [1 Mark]

Solution:

Let the given points be 𝑃(2, 1) and 𝑄(– 5, 7)

The vector with the initial point 𝑃(2, 1) and terminal point 𝑄(– 5, 7) can be given by,

PQβƒ—βƒ—βƒ—βƒ— βƒ— = (βˆ’5 βˆ’ 2)𝑖̂ + (7 βˆ’ 1)𝑗̂ [𝟏

𝟐 Mark]

β‡’ PQβƒ—βƒ—βƒ—βƒ— βƒ— = βˆ’7𝑖̂ + 6𝑗̂

Hence, the required scalar components are – 7 and 6 while the vector components are βˆ’7𝑖 Μ‚and

6𝑗̂. [𝟏

𝟐 Mark]

Class-XII-Maths Vector Algebra

7 Practice more on Vector Algebra www.embibe.com

6. Find the sum of the vectors π‘Ž = 𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = βˆ’2οΏ½Μ‚οΏ½ + 4𝑗̂ + 5οΏ½Μ‚οΏ½ and

𝑐 = 𝑖̂ βˆ’ 6𝑗̂ βˆ’ 7οΏ½Μ‚οΏ½ [1 Mark]

Solution:

The given vectors are π‘Ž = 𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = βˆ’2𝑖̂ + 4𝑗̂ + 5οΏ½Μ‚οΏ½ and 𝑐 = 𝑖̂ βˆ’ 6𝑗̂ βˆ’ 7οΏ½Μ‚οΏ½

∴ π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 = (1 βˆ’ 2 + 1)𝑖̂ + (βˆ’2 + 4 βˆ’ 6)𝑗̂ + (1 + 5 βˆ’ 7)οΏ½Μ‚οΏ½ [𝟏

𝟐 Mark]

= 0 β‹… 𝑖̂ βˆ’ 4𝑗̂ βˆ’ 1 β‹… οΏ½Μ‚οΏ½

= βˆ’4𝑗̂ βˆ’ οΏ½Μ‚οΏ½ [𝟏

𝟐 Mark]

7. Find the unit vector in the direction of the vector π‘Ž = 𝑖̂ + 𝑗̂ + 2οΏ½Μ‚οΏ½. [1 Mark]

Solution:

The unit vector οΏ½Μ‚οΏ½ in the direction of vector π‘Ž = 𝑖̂ + 𝑗̂ + 2οΏ½Μ‚οΏ½.

|π‘Ž | = √12 + 12 + 22 = √1 + 1 + 4 = √6 [𝟏

𝟐 Mark]

∴ οΏ½Μ‚οΏ½ =οΏ½βƒ—οΏ½

|οΏ½βƒ—οΏ½ |=

οΏ½Μ‚οΏ½+οΏ½Μ‚οΏ½+2οΏ½Μ‚οΏ½

√6=

1

√6𝑖̂ +

1

√6𝑗̂ +

2

√6οΏ½Μ‚οΏ½ [

𝟏

𝟐 Mark]

8. Find the unit vector in the direction of vector,𝑃𝑄⃗⃗⃗⃗ βƒ—, where 𝑃 and 𝑄 are the points (1, 2, 3) and (4, 5, 6), respectively. [2 Marks]

Solution:

The given points are 𝑃(1, 2, 3) and 𝑄(4, 5, 6).

∴ PQβƒ—βƒ—βƒ—βƒ— βƒ— = (4 βˆ’ 1)𝑖̂ + (5 βˆ’ 2)𝑗̂ + (6 βˆ’ 3)οΏ½Μ‚οΏ½ = 3𝑖̂ + 3𝑗̂ + 3οΏ½Μ‚οΏ½

|PQβƒ—βƒ—βƒ—βƒ— βƒ—| = √32 + 32 + 32 = √9 + 9 + 9 = √27 = 3√3 [1 Mark]

Hence, the unit vector in the direction of 𝑃𝑄⃗⃗⃗⃗ βƒ— is

PQ⃗⃗⃗⃗⃗⃗

|PQ⃗⃗⃗⃗⃗⃗ |=

3οΏ½Μ‚οΏ½+3οΏ½Μ‚οΏ½+3οΏ½Μ‚οΏ½

3√3=

1

√3𝑖̂ +

1

√3𝑗̂ +

1

√3οΏ½Μ‚οΏ½ [1 Mark]

Class-XII-Maths Vector Algebra

8 Practice more on Vector Algebra www.embibe.com

9. For given vectors, π‘Ž = 2𝑖̂ βˆ’ 𝑗̂ + 2οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = βˆ’π‘–Μ‚ + 𝑗̂ βˆ’ οΏ½Μ‚οΏ½find the unit vector in the direction of the

vector π‘Ž + οΏ½βƒ—οΏ½ [2 Marks]

Solution:

The given vectors are π‘Ž = 2𝑖̂ βˆ’ 𝑗̂ + 2οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = βˆ’π‘–Μ‚ + 𝑗̂ βˆ’ οΏ½Μ‚οΏ½.

π‘Ž = 2𝑖̂ βˆ’ 𝑗̂ + 2οΏ½Μ‚οΏ½

οΏ½βƒ—οΏ½ = βˆ’π‘–Μ‚ + 𝑗̂ βˆ’ οΏ½Μ‚οΏ½

∴ π‘Ž + οΏ½βƒ—οΏ½ = (2 βˆ’ 1)𝑖̂ + (βˆ’1 + 1)𝑗̂ + (2 βˆ’ 1)οΏ½Μ‚οΏ½ = 1𝑖̂ + 0𝑗̂ + 1οΏ½Μ‚οΏ½ = 𝑖̂ + οΏ½Μ‚οΏ½ [1 Mark]

|π‘Ž + οΏ½βƒ—οΏ½ | = √12 + 12 = √2

Hence, the unit vector in the direction of (π‘Ž + οΏ½βƒ—οΏ½ ) is

(οΏ½βƒ—οΏ½ +οΏ½βƒ—οΏ½ )

|οΏ½βƒ—οΏ½ +οΏ½βƒ—οΏ½ |=

οΏ½Μ‚οΏ½+οΏ½Μ‚οΏ½

√2=

1

2𝑖̂ +

1

√2οΏ½Μ‚οΏ½ [1 Mark]

10. Find a vector in the direction of vector 5𝑗̂ βˆ’ 𝑗̂ + 2οΏ½Μ‚οΏ½ which has magnitude 8 units.[2 Marks]

Solution:

Let π‘Ž = 5𝑗̂ βˆ’ 𝑗̂ + 2οΏ½Μ‚οΏ½

∴ |π‘Ž | = √52 + (βˆ’1)2 + 22 = √25 + 1 + 4 = √30

∴ οΏ½Μ‚οΏ½ =οΏ½βƒ—οΏ½

|οΏ½βƒ—οΏ½ |=

5οΏ½Μ‚οΏ½βˆ’οΏ½Μ‚οΏ½+2οΏ½Μ‚οΏ½

√30 [1 Mark]

Hence, the unit vector in the direction of vector 5𝑗̂ βˆ’ 𝑗̂ + 2οΏ½Μ‚οΏ½ which has magnitude 8 units is given by,

8οΏ½Μ‚οΏ½ = 8 (5οΏ½Μ‚οΏ½ βˆ’ 𝑗̂ + 2οΏ½Μ‚οΏ½

√30) =

40

√30𝑖̂ βˆ’

8

√30𝑗̂ +

16

√30οΏ½Μ‚οΏ½

= 8(5𝑖 βˆ’ 𝑗 + 2οΏ½βƒ—οΏ½

√30)

=40

√30𝑖 βˆ’

8

√30𝑗 +

16

√30οΏ½βƒ—οΏ½ [1 Mark]

Class-XII-Maths Vector Algebra

9 Practice more on Vector Algebra www.embibe.com

11. Show that the vectors 2𝑖̂ βˆ’ 3𝑗̂ + 4οΏ½Μ‚οΏ½ and βˆ’4οΏ½Μ‚οΏ½ + 6𝑗̂ βˆ’ 8οΏ½Μ‚οΏ½ are collinear. [2 Marks]

Solution:

Let π‘Ž = 2𝑖̂ βˆ’ 3𝑗̂ + 4οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = βˆ’4𝑖̂ + 6𝑗̂ βˆ’ 8οΏ½Μ‚οΏ½.

It is observed that οΏ½βƒ—οΏ½ = βˆ’4𝑖̂ + 6𝑗̂ βˆ’ 8οΏ½Μ‚οΏ½ = βˆ’2(2𝑖̂ βˆ’ 3𝑗̂ + 4οΏ½Μ‚οΏ½) = βˆ’2π‘Ž [1 Mark]

∴ οΏ½βƒ—οΏ½ = πœ†π‘Ž

Where,

πœ† = βˆ’2

Hence, the given vectors are collinear. [1 Mark]

12. Find the direction cosines of the vector 𝑖̂ + 2𝑗̂ + 3οΏ½Μ‚οΏ½ [1 Mark]

Solution:

Let π‘Ž = 𝑖̂ + 2𝑗̂ + 3οΏ½Μ‚οΏ½

∴ |π‘Ž | = √12 + 22 + 32 = √1 + 4 + 9 = √14 [𝟏

𝟐 Mark]

Hence, the direction cosines of π‘Ž are (1

√14,

2

√14,

3

√14). [

𝟏

𝟐 Mark]

13. Find the direction cosines of the vector joining the points 𝐴(1,2, – 3) and 𝐡(– 1, – 2,1) directed

from 𝐴 to 𝐡. [1 Mark]

Solution:

The given points are 𝐴(1,2, – 3) and 𝐡(– 1, – 2,1).

∴ ABβƒ—βƒ—βƒ—βƒ— βƒ— = (βˆ’1 βˆ’ 1)𝑖̂ + (βˆ’2 βˆ’ 2)𝑗̂ + {1 βˆ’ (βˆ’3)}οΏ½Μ‚οΏ½

β‡’ ABβƒ—βƒ—βƒ—βƒ— βƒ— = βˆ’2𝑖̂ βˆ’ 4𝑗̂ + 4οΏ½Μ‚οΏ½ [𝟏

𝟐 Mark]

∴ |ABβƒ—βƒ—βƒ—βƒ— βƒ—| = √(βˆ’2)2 + (βˆ’4)2 + 42 = √4 + 16 + 16 = √36 = 6

Class-XII-Maths Vector Algebra

10 Practice more on Vector Algebra www.embibe.com

Hence, the direction cosines of 𝐴𝐡⃗⃗⃗⃗ βƒ— are (βˆ’2

6, βˆ’

4

6,4

6) = (βˆ’

1

3, βˆ’

2

3,2

3). [

𝟏

𝟐 Mark]

14. Show that the vector 𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½ is equally inclined to the axes 𝑂𝑋,π‘‚π‘Œ, and 𝑂𝑍.[1 Mark]

Solution:

Let π‘Ž = 𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½

Then,

|π‘Ž | = √12 + 12 + 12 = √3

Therefore, the direction cosines of π‘Ž are (1

√3,

1

√3,

1

√3). [

𝟏

𝟐 Mark]

Now, let 𝛼, 𝛽, and 𝛾 be the angles formed by π‘Ž with the positive directions of π‘₯, 𝑦, and 𝑧 axes.

Then, we have

cos𝛼 =1

√3, cos𝛽 =

1

√3, cos𝛾 =

1

√3

Hence, the given vector is equally inclined to axes 𝑂𝑋,π‘‚π‘Œ, and 𝑂𝑍. [𝟏

𝟐 Mark]

15. Find the position vector of a point 𝑅 which divides the line joining two points 𝑃 and 𝑄 whose

position vectors are 𝑖̂ + 2𝑗̂ βˆ’ οΏ½Μ‚οΏ½ and βˆ’π‘–Μ‚ + 𝑗̂ + οΏ½Μ‚οΏ½ respectively, in the ration 2: 1

(i) internally

(ii) externally

Solution:

The position vector of point 𝑅 dividing the line segment joining two points 𝑃 and 𝑄 in the ratio m:n is given by:

(i) Internally: π‘šοΏ½βƒ—οΏ½ +𝑛�⃗�

π‘š+𝑛 [1 Mark]

(ii) Externally: π‘šοΏ½βƒ—οΏ½ βˆ’π‘›οΏ½βƒ—οΏ½

π‘šβˆ’π‘› [1 Mark]

Position vectors of 𝑃 and 𝑄 are given as:

Class-XII-Maths Vector Algebra

11 Practice more on Vector Algebra www.embibe.com

OPβƒ—βƒ—βƒ—βƒ— βƒ— = 𝑖̂ + 2𝑗̂ βˆ’ οΏ½Μ‚οΏ½ and OQβƒ—βƒ—βƒ—βƒ— βƒ— = βˆ’π‘–Μ‚ + 𝑗̂ + οΏ½Μ‚οΏ½

(i) The position vector of point 𝑅 which divides the line joining two points 𝑃 and 𝑄 internally in the ratio 2: 1 is given by,

ORβƒ—βƒ—βƒ—βƒ— βƒ— =2(βˆ’π‘–Μ‚ + 𝑗̂ + οΏ½Μ‚οΏ½) + 1(𝑖̂ + 2𝑗̂ βˆ’ οΏ½Μ‚οΏ½)

2 + 1=

(βˆ’2𝑖̂ + 2𝑗̂ + 2οΏ½Μ‚οΏ½) + (𝑖̂ + 2𝑗̂ βˆ’ οΏ½Μ‚οΏ½)

3

=βˆ’οΏ½Μ‚οΏ½+4οΏ½Μ‚οΏ½+οΏ½Μ‚οΏ½

3= βˆ’

1

3𝑖̂ +

4

3𝑗̂ +

1

3οΏ½Μ‚οΏ½ [1 Mark]

(ii) The position vector of point 𝑅 which divides the line joining two points 𝑃 and 𝑄 externally in the ratio 2: 1 is given by,

ORβƒ—βƒ—βƒ—βƒ— βƒ— =2(βˆ’π‘–Μ‚ + 𝑗̂ + οΏ½Μ‚οΏ½) βˆ’ 1(𝑖̂ + 2𝑗̂ βˆ’ οΏ½Μ‚οΏ½)

2 βˆ’ 1= (βˆ’2𝑖̂ + 2𝑗̂ + 2οΏ½Μ‚οΏ½) βˆ’ (𝑖̂ + 2𝑗̂ βˆ’ οΏ½Μ‚οΏ½)

= βˆ’3𝑖̂ + 3οΏ½Μ‚οΏ½ [1 Mark]

16. Find the position vector of the mid-point of the vector joining the points 𝑃(2, 3, 4) and

𝑄(4, 1, – 2). [1 Mark]

Solution:

The position vector of mid-point 𝑅 of the vector joining points 𝑃(2, 3, 4) and 𝑄(4, 1, – 2) is given

by,

ORβƒ—βƒ—βƒ—βƒ— βƒ— =(2οΏ½Μ‚οΏ½+3οΏ½Μ‚οΏ½+4οΏ½Μ‚οΏ½)+(4οΏ½Μ‚οΏ½+οΏ½Μ‚οΏ½βˆ’2οΏ½Μ‚οΏ½)

2=

(2+4)οΏ½Μ‚οΏ½+(3+1)οΏ½Μ‚οΏ½+(4βˆ’2)οΏ½Μ‚οΏ½

2 [

𝟏

𝟐 Mark]

=6οΏ½Μ‚οΏ½+4οΏ½Μ‚οΏ½+2οΏ½Μ‚οΏ½

2= 3𝑖̂ + 2𝑗̂ + οΏ½Μ‚οΏ½ [

𝟏

𝟐 Mark]

17. Show that the points 𝐴, 𝐡 and 𝐢 with position vectors,

π‘Ž = 3𝑖̂ βˆ’ 4𝑗̂ βˆ’ 4οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = 2𝑖̂ βˆ’ 𝑗̂ + οΏ½Μ‚οΏ½ and 𝑐 = 𝑖̂ βˆ’ 3𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½ respectively form the vertices of a right-angled triangle. [2 Marks]

Solution:

Position vectors of points 𝐴, 𝐡 and 𝐢 are respectively given as:

π‘Ž = 3𝑖̂ βˆ’ 4𝑗̂ βˆ’ 4οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = 2𝑖̂ βˆ’ 𝑗̂ + οΏ½Μ‚οΏ½ and 𝑐 = 𝑖̂ βˆ’ 3𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½

Class-XII-Maths Vector Algebra

12 Practice more on Vector Algebra www.embibe.com

∴ ABβƒ—βƒ—βƒ—βƒ— βƒ— = οΏ½βƒ—οΏ½ βˆ’ π‘Ž = (2 βˆ’ 3)𝑖̂ + (βˆ’1 + 4)𝑗̂ + (1 + 4)οΏ½Μ‚οΏ½ = βˆ’π‘–Μ‚ + 3𝑗̂ + 5οΏ½Μ‚οΏ½

BCβƒ—βƒ—βƒ—βƒ— βƒ— = 𝑐 βˆ’ οΏ½βƒ—οΏ½ = (1 βˆ’ 2)𝑖̂ + (βˆ’3 + 1)𝑗̂ + (βˆ’5 βˆ’ 1)οΏ½Μ‚οΏ½ = βˆ’π‘–Μ‚ βˆ’ 2𝑗̂ βˆ’ 6οΏ½Μ‚οΏ½

CAβƒ—βƒ—βƒ—βƒ— βƒ— = π‘Ž βˆ’ 𝑐 = (3 βˆ’ 1)𝑖̂ + (βˆ’4 + 3)𝑗̂ + (βˆ’4 + 5)οΏ½Μ‚οΏ½ = 2𝑖̂ βˆ’ 𝑗̂ + οΏ½Μ‚οΏ½

∴ |𝐴𝐡⃗⃗⃗⃗ βƒ—|2= (βˆ’1)2 + 32 + 52 = 1 + 9 + 25 = 35 [1 Mark]

|𝐡𝐢⃗⃗⃗⃗ βƒ—|2

= (βˆ’1)2 + (βˆ’2)2 + (βˆ’6)2 = 1 + 4 + 36 = 41

|𝐢𝐴⃗⃗⃗⃗ βƒ—|2= 22 + (βˆ’1)2 + 12 = 4 + 1 + 1 = 6

∴ |𝐴𝐡⃗⃗⃗⃗ βƒ—|2+ |𝐢𝐴⃗⃗⃗⃗ βƒ—|

2= 36 + 6 = 41 = |𝐡𝐢⃗⃗⃗⃗ βƒ—|

2

Hence, 𝐴𝐡𝐢 is a right-angled triangle. [1 Mark]

18. In triangle 𝐴𝐡𝐢 which of the following is not true: [4 Marks]

A. AB⃗⃗⃗⃗ ⃗ + BC⃗⃗⃗⃗ ⃗ + CA⃗⃗⃗⃗ ⃗ = 0⃗

B. ABβƒ—βƒ—βƒ—βƒ— βƒ— + BCβƒ—βƒ—βƒ—βƒ— βƒ— βˆ’ ACβƒ—βƒ—βƒ—βƒ— βƒ— = 0βƒ—

C. ABβƒ—βƒ—βƒ—βƒ— βƒ— + BCβƒ—βƒ—βƒ—βƒ— βƒ— βˆ’ CAβƒ—βƒ—βƒ—βƒ— βƒ— = 0βƒ—

D. ABβƒ—βƒ—βƒ—βƒ— βƒ— βˆ’ CBβƒ—βƒ—βƒ—βƒ— βƒ— + CAβƒ—βƒ—βƒ—βƒ— βƒ— = 0βƒ—

Solution:

On applying the triangle law of addition in the given triangle, we have:

AB⃗⃗⃗⃗ ⃗ + BC⃗⃗⃗⃗ ⃗ = AC⃗⃗⃗⃗ ⃗ . . . (1)

β‡’ ABβƒ—βƒ—βƒ—βƒ— βƒ— + BCβƒ—βƒ—βƒ—βƒ— βƒ— = βˆ’CAβƒ—βƒ—βƒ—βƒ— βƒ—

⇒ AB⃗⃗⃗⃗ ⃗ + BC⃗⃗⃗⃗ ⃗ + CA⃗⃗⃗⃗ ⃗ = 0⃗ . . . (2)

Class-XII-Maths Vector Algebra

13 Practice more on Vector Algebra www.embibe.com

∴ The equation given in alternative A is true. [1 Mark]

AB⃗⃗⃗⃗ ⃗ + BC⃗⃗⃗⃗ ⃗ = AC⃗⃗⃗⃗ ⃗

β‡’ ABβƒ—βƒ—βƒ—βƒ— βƒ— + BCβƒ—βƒ—βƒ—βƒ— βƒ— βˆ’ ACβƒ—βƒ—βƒ—βƒ— βƒ— = 0βƒ—

∴ The equation given in alternative B is true. [1 Mark]

From equation (2), we have:

ABβƒ—βƒ—βƒ—βƒ— βƒ— βˆ’ CBβƒ—βƒ—βƒ—βƒ— βƒ— + CAβƒ—βƒ—βƒ—βƒ— βƒ— = 0βƒ—

∴ The equation given in alternative D is true. [1 Mark]

Now, consider the equation given in alternative C:

ABβƒ—βƒ—βƒ—βƒ— βƒ— + BCβƒ—βƒ—βƒ—βƒ— βƒ— βˆ’ CAβƒ—βƒ—βƒ—βƒ— βƒ— = 0βƒ—

⇒ AB⃗⃗⃗⃗ ⃗ + BC⃗⃗⃗⃗ ⃗ = CA⃗⃗⃗⃗ ⃗ . . . (3)

From equations (1) and (3), we have:

AC⃗⃗⃗⃗ ⃗ = CA⃗⃗⃗⃗ ⃗

β‡’ ACβƒ—βƒ—βƒ—βƒ— βƒ— = βˆ’ACβƒ—βƒ—βƒ—βƒ— βƒ—

⇒ AC⃗⃗⃗⃗ ⃗ + AC⃗⃗⃗⃗ ⃗ = 0⃗

⇒ 2AC⃗⃗⃗⃗ ⃗ = 0⃗

⇒ AC⃗⃗⃗⃗ ⃗ = 0⃗ , which is not true.

Hence, the equation given in alternative C is incorrect. [1 Mark]

The correct Answer is C.

19. If π‘Ž and οΏ½βƒ—οΏ½ are two collinear vectors, then which of the following are incorrect:[4 Marks]

A. οΏ½βƒ—οΏ½ = πœ†π‘Ž , for some scalar πœ†

B. π‘Ž = Β±οΏ½βƒ—οΏ½

C. the respective components of π‘Ž and οΏ½βƒ—οΏ½ are proportional

D. both the vectors π‘Ž and οΏ½βƒ—οΏ½ have same direction, but different magnitudes

Solution:

If π‘Ž and οΏ½βƒ—οΏ½ are two collinear vectors, then they are parallel.

Class-XII-Maths Vector Algebra

14 Practice more on Vector Algebra www.embibe.com

Therefore, we have:

οΏ½βƒ—οΏ½ = πœ†π‘Ž (For some scalar πœ†) [1 Mark]

If πœ† = Β±1, then π‘Ž = Β±οΏ½βƒ—οΏ½

If π‘Ž = π‘Ž1𝑖̂ + π‘Ž2𝑗̂ + π‘Ž3οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 𝑏1𝑖̂ + 𝑏2𝑗̂ + 𝑏3οΏ½Μ‚οΏ½, then

οΏ½βƒ—οΏ½ = πœ†π‘Ž

β‡’ 𝑏1οΏ½Μ‚οΏ½ + 𝑏2𝑗̂ + 𝑏3οΏ½Μ‚οΏ½ = πœ†(π‘Ž1𝑖̂ + π‘Ž2𝑗̂ + π‘Ž3οΏ½Μ‚οΏ½)

β‡’ 𝑏1οΏ½Μ‚οΏ½ + 𝑏2𝑗̂ + 𝑏3οΏ½Μ‚οΏ½ = (πœ†π‘Ž1)𝑖̂ + (πœ†π‘Ž2)𝑗̂ + (πœ†π‘Ž3)οΏ½Μ‚οΏ½

β‡’ 𝑏1 = πœ†π‘Ž1, 𝑏2 = πœ†π‘Ž2, 𝑏3 = πœ†π‘Ž3

⇒𝑏1

π‘Ž1=

𝑏2

π‘Ž2=

𝑏3

π‘Ž3= πœ† [1 Mark]

Thus, the respective components of π‘Ž and οΏ½βƒ—οΏ½ are proportional.

However, vectors π‘Ž and οΏ½βƒ—οΏ½ can have different directions.

Hence, the statement given in D is incorrect.

The correct Answer is D. [2 Marks]

Exercise: 10.3

1. Find the angle between two vectors π‘Ž and οΏ½βƒ—οΏ½ and with magnitudes √3 and 2, respectively having

π‘Ž βˆ™ οΏ½βƒ—οΏ½ = √6. [2 Marks]

Solution:

It is given that,

|π‘Ž | = √3, |οΏ½βƒ—οΏ½ | = 2 and π‘Ž β‹… οΏ½βƒ—οΏ½ = √6

π‘Ž β‹… οΏ½βƒ—οΏ½ = |π‘Ž ||οΏ½βƒ—οΏ½ |cosπœƒ

Now, we know that

∴ √6 = √3 Γ— 2 Γ— cosπœƒ [1 Mark]

β‡’ cosπœƒ =√6

√3 Γ— 2

β‡’ cosπœƒ =1

√2

Class-XII-Maths Vector Algebra

15 Practice more on Vector Algebra www.embibe.com

β‡’ πœƒ =πœ‹

4

Hence, the angle between the given vectors π‘Ž and οΏ½βƒ—οΏ½ is πœ‹

4 [1 Mark]

2. Find the angle between the vectors 𝑖̂ βˆ’ 2𝑗̂ + 3οΏ½Μ‚οΏ½ and 3𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½ [2 Marks]

Solution:

The given vectors are π‘Ž = 𝑖̂ βˆ’ 2𝑗̂ + 3οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 3𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½

|π‘Ž | = √12 + (βˆ’2)2 + 32 = √1 + 4 + 9 = √14

|οΏ½βƒ—οΏ½ | = √32 + (βˆ’2)2 + 12 = √9 + 4 + 1 = √14

Now, π‘Ž β‹… οΏ½βƒ—οΏ½ = (𝑖̂ βˆ’ 2𝑗̂ + 3οΏ½Μ‚οΏ½)(3𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½)

= 1.3 + (βˆ’2)(βˆ’2) + 3.1

= 10 [1 Mark]

Also, we know that π‘Ž β‹… οΏ½βƒ—οΏ½ = |π‘Ž ||οΏ½βƒ—οΏ½ |cosπœƒ

∴ 10 = √14√14cosπœƒ

β‡’ cosπœƒ =10

14

β‡’ πœƒ = cosβˆ’1 (5

7) [1 Mark]

3. Find the projection of the vector 𝑖̂ βˆ’ 𝑗̂ on the vector 𝑖̂ + 𝑗̂. [1 Mark]

Solution:

Let π‘Ž = 𝑖̂ βˆ’ 𝑗̂ and οΏ½βƒ—οΏ½ = 𝑖̂ + 𝑗.Μ‚ [𝟏

𝟐 Mark]

Now, projection of vector π‘Ž on οΏ½βƒ—οΏ½ is given by,

1

|οΏ½βƒ—οΏ½ |(π‘Ž β‹… οΏ½βƒ—οΏ½ ) =

1

√1+1{1.1 + (βˆ’1)(1)} =

1

√2(1 βˆ’ 1) = 0 [

𝟏

𝟐 Mark]

Class-XII-Maths Vector Algebra

16 Practice more on Vector Algebra www.embibe.com

Hence, the projection of vector π‘Ž on οΏ½βƒ—οΏ½ is 0.

4. Find the projection of the vector 𝑖̂ + 3𝑗̂ + 7οΏ½Μ‚οΏ½ on the vector 7𝑖̂ βˆ’ 𝑗̂ + 8οΏ½Μ‚οΏ½. [1 Mark]

Solution:

Let π‘Ž = 𝑖̂ + 3𝑗̂ + 7οΏ½Μ‚οΏ½ and οΏ½Μ‚οΏ½ = 7𝑖̂ βˆ’ 𝑗̂ + 8οΏ½Μ‚οΏ½.

Now, projection of vector π‘Ž on οΏ½βƒ—οΏ½ is given by,

1

|οΏ½βƒ—οΏ½ |(π‘Ž β‹… οΏ½βƒ—οΏ½ ) =

1

√72+(βˆ’1)2+82{1(7) + 3(βˆ’1) + 7(8)} =

7βˆ’3+56

√49+1+64=

60

√114 [1 Mark]

5. Show that each of the given three vectors is a unit vector:

1

7(2𝑖̂ + 3𝑗̂ + 6οΏ½Μ‚οΏ½),

1

7(3𝑖̂ βˆ’ 6𝑗̂ + 2οΏ½Μ‚οΏ½),

1

7(6𝑖̂ + 2𝑗̂ βˆ’ 3οΏ½Μ‚οΏ½)

Also, show that they are mutually perpendicular to each other. [2 Marks]

Solution:

Let π‘Ž =1

7(2𝑖̂ + 3𝑗̂ + 6οΏ½Μ‚οΏ½) =

2

7𝑖̂ +

3

7𝑗̂ +

6

7οΏ½Μ‚οΏ½,

οΏ½βƒ—οΏ½ =1

7(3𝑖̂ βˆ’ 6𝑗̂ + 2οΏ½Μ‚οΏ½) =

3

7𝑖̂ βˆ’

6

7𝑗̂ +

2

7οΏ½Μ‚οΏ½

𝑐 =1

7(6𝑖̂ + 2𝑗̂ βˆ’ 3οΏ½Μ‚οΏ½) =

6

7𝑖̂ +

2

7𝑗̂ βˆ’

3

7οΏ½Μ‚οΏ½

|π‘Ž | = √(2

7)2

+ (3

7)2

+ (6

7)2

= √4

49+

9

49+

36

49= 1

|οΏ½βƒ—οΏ½ | = √(3

7)2

+ (βˆ’6

7)2

+ (2

7)2

= √9

49+

36

49+

4

49= 1

|𝑐 | = √(6

7)2+ (

2

7)2+ (βˆ’

3

7)2= √

36

49+

4

49+

9

49= 1 [1 Mark]

Thus, each of the given three vectors is a unit vector.

Class-XII-Maths Vector Algebra

17 Practice more on Vector Algebra www.embibe.com

π‘Ž β‹… οΏ½βƒ—οΏ½ =2

7Γ—

3

7+

3

7Γ— (

βˆ’6

7) +

6

7Γ—

2

7=

6

49βˆ’

18

49+

12

49= 0

οΏ½βƒ—οΏ½ β‹… 𝑐 =3

7Γ—

6

7+ (

βˆ’6

7) Γ—

2

7+

2

7Γ— (

βˆ’3

7) =

18

49βˆ’

12

49βˆ’

6

49= 0

𝑐 β‹… π‘Ž =6

7Γ—

2

7+

2

7Γ—

3

7+ (

βˆ’3

7) Γ—

6

7=

12

49+

6

49βˆ’

18

49= 0

Hence, the given three vectors are mutually perpendicular to each other. [1 Mark]

6. Find

|π‘Ž | and |οΏ½βƒ—οΏ½ |, if (π‘Ž + οΏ½βƒ—οΏ½ ) βˆ™ (π‘Ž βˆ’ οΏ½βƒ—οΏ½ ) = 8 and |π‘Ž | = 8|οΏ½βƒ—οΏ½ |. [2 Marks]

Solution:

(π‘Ž β‹… οΏ½βƒ—οΏ½ ) β‹… (π‘Ž βˆ’ οΏ½βƒ—οΏ½ ) = 8

β‡’ π‘Ž β‹… π‘Ž βˆ’ π‘Ž β‹… οΏ½βƒ—οΏ½ + οΏ½βƒ—οΏ½ β‹… π‘Ž βˆ’ οΏ½βƒ—οΏ½ β‹… οΏ½βƒ—οΏ½ = 8

β‡’ |π‘Ž |2 βˆ’ |οΏ½βƒ—οΏ½ |2= 8

β‡’ (8|οΏ½βƒ—οΏ½ |)2βˆ’ |οΏ½βƒ—οΏ½ |

2= 8 [|π‘Ž | = 8|οΏ½βƒ—οΏ½ |]

β‡’ 64|οΏ½βƒ—οΏ½ |2βˆ’ |οΏ½βƒ—οΏ½ |

2= 8

β‡’ 63|οΏ½βƒ—οΏ½ |2= 8

β‡’ |οΏ½βƒ—οΏ½ |2=

8

63

β‡’ |οΏ½βƒ—οΏ½ | = √8

63 [Magnitude of a vector is non-negative]

β‡’ |οΏ½βƒ—οΏ½ | =2√2

3√7 [1 Mark]

|π‘Ž | = 8|οΏ½βƒ—οΏ½ | =8Γ—2√2

3√7=

16√2

3√7 [1 Mark]

7. Evaluate the product (3π‘Ž βˆ’ 5οΏ½βƒ—οΏ½ ) β‹… (2π‘Ž + 7οΏ½βƒ—οΏ½ ). [1 Mark]

Class-XII-Maths Vector Algebra

18 Practice more on Vector Algebra www.embibe.com

Solution:

(3π‘Ž βˆ’ 5οΏ½βƒ—οΏ½ ) β‹… (2π‘Ž + 7οΏ½βƒ—οΏ½ )

= 3π‘Ž β‹… 2π‘Ž + 3π‘Ž β‹… 7οΏ½βƒ—οΏ½ βˆ’ 5οΏ½βƒ—οΏ½ β‹… 2π‘Ž βˆ’ 5οΏ½βƒ—οΏ½ β‹… 7οΏ½βƒ—οΏ½ [𝟏

𝟐 Mark]

= 6π‘Ž β‹… π‘Ž + 21π‘Ž β‹… οΏ½βƒ—οΏ½ βˆ’ 10π‘Ž β‹… οΏ½βƒ—οΏ½ βˆ’ 35οΏ½βƒ—οΏ½ β‹… οΏ½βƒ—οΏ½

= 6|π‘Ž |2 + 11π‘Ž β‹… οΏ½βƒ—οΏ½ βˆ’ 35|οΏ½βƒ—οΏ½ |2 [

𝟏

𝟐 Mark]

8. Find the magnitude of two vectors π‘Ž and οΏ½βƒ—οΏ½ , having the same magnitude and such that the angle

between them is 60o and their scalar product is 1

2. [1 Mark]

Solution:

Let πœƒ be the angle between the vectors π‘Ž and οΏ½βƒ—οΏ½ .

It is given that |π‘Ž | = |οΏ½βƒ—οΏ½ |, π‘Ž β‹… οΏ½βƒ—οΏ½ =1

2, and πœƒ = 60Β° . . . (1)

We know that π‘Ž β‹… οΏ½βƒ—οΏ½ = |π‘Ž ||οΏ½βƒ—οΏ½ |cosπœƒ

∴1

2= |π‘Ž ||π‘Ž |cos60Β° [Using (1)] [

𝟏

𝟐 Mark]

β‡’1

2= |π‘Ž |2 Γ—

1

2

β‡’ |π‘Ž |2 = 1

β‡’ |π‘Ž | = |οΏ½βƒ—οΏ½ | = 1 [𝟏

𝟐 Mark]

9. Find

|π‘₯ | if for a unit vector π‘Ž , (π‘₯ βˆ’ π‘Ž ) β‹… (π‘₯ + π‘Ž ) = 12. [1 Mark]

Solution:

(π‘₯ βˆ’ π‘Ž ) β‹… (π‘₯ + π‘Ž ) = 12

β‡’ π‘₯ β‹… π‘₯ + π‘₯ β‹… π‘Ž βˆ’ π‘Ž β‹… π‘₯ βˆ’ οΏ½Μ…οΏ½ β‹… π‘Ž = 12 [𝟏

𝟐 Mark]

Class-XII-Maths Vector Algebra

19 Practice more on Vector Algebra www.embibe.com

β‡’ |π‘₯ |2 βˆ’ |π‘Ž |2 = 12

β‡’ |π‘₯ |2 βˆ’ 1 = 12 [|π‘Ž | = 1 as π‘Ž is a unit vector]

β‡’ |π‘₯ |2 = 13

∴ |π‘₯ | = √13 [𝟏

𝟐 Mark]

10. If π‘Ž = 2𝑖̂ + 2𝑗̂ + 3οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = βˆ’π‘–Μ‚ + 2𝑗̂ + οΏ½Μ‚οΏ½ and 𝑐 = 3𝑖̂ + 𝑗̂ are such that π‘Ž + πœ†οΏ½βƒ—οΏ½ is perpendicular to 𝑐 , then find the value of πœ†. [2 Marks]

Solution:

The given vectors are π‘Ž = 2𝑖̂ + 2𝑗̂ + 3οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = βˆ’π‘–Μ‚ + 2𝑗̂ + οΏ½Μ‚οΏ½ and 𝑐 = 3𝑖̂ + 𝑗̂.

Now,

π‘Ž + πœ†οΏ½βƒ—οΏ½ = (2𝑖̂ + 2𝑗̂ + 3οΏ½Μ‚οΏ½) + πœ†(βˆ’π‘–Μ‚ + 2𝑗̂ + οΏ½Μ‚οΏ½) = (2 βˆ’ πœ†)𝑖̂ + (2 + 2πœ†)𝑗̂ + (3 + πœ†)οΏ½Μ‚οΏ½

If (π‘Ž + πœ†οΏ½βƒ—οΏ½ ) is perpendicular to 𝑐 , then

(π‘Ž + πœ†οΏ½βƒ—οΏ½ ) β‹… 𝑐 = 0 [1 Mark]

β‡’ [(2 βˆ’ πœ†)οΏ½Μ‚οΏ½ + (2 + 2πœ†)𝑗̂ + (3 + πœ†)οΏ½Μ‚οΏ½] β‹… (3𝑖̂ + 𝑗̂) = 0

β‡’ (2 βˆ’ πœ†)3 + (2 + 2πœ†)1 + (3 + πœ†)0 = 0

β‡’ 6 βˆ’ 3πœ† + 2 + 2πœ† = 0

β‡’ βˆ’πœ† + 8 = 0

β‡’ πœ† = 8

Hence, the required value of πœ† is 8. [1 Mark]

11. Show that:

|π‘Ž |οΏ½βƒ—οΏ½ + |οΏ½βƒ—οΏ½ |οΏ½Μ…οΏ½ is perpendicular to |π‘Ž |οΏ½βƒ—οΏ½ βˆ’ |οΏ½βƒ—οΏ½ |οΏ½Μ…οΏ½,

for any two nonzero vectors π‘Ž and οΏ½βƒ—οΏ½ [1 Mark]

Solution:

Class-XII-Maths Vector Algebra

20 Practice more on Vector Algebra www.embibe.com

(|π‘Ž |οΏ½βƒ—οΏ½ + |οΏ½βƒ—οΏ½ |π‘Ž ) β‹… (|π‘Ž |οΏ½βƒ—οΏ½ βˆ’ |οΏ½βƒ—οΏ½ |π‘Ž )

= |π‘Ž |2οΏ½βƒ—οΏ½ β‹… οΏ½βƒ—οΏ½ βˆ’ |π‘Ž ||οΏ½βƒ—οΏ½ |οΏ½βƒ—οΏ½ β‹… π‘Ž + |οΏ½βƒ—οΏ½ ||π‘Ž |π‘Ž β‹… οΏ½βƒ—οΏ½ βˆ’ |οΏ½βƒ—οΏ½ |2π‘Ž β‹… π‘Ž [

𝟏

𝟐 Mark]

= |π‘Ž |2|οΏ½βƒ—οΏ½ |2βˆ’ |οΏ½βƒ—οΏ½ |

2|π‘Ž |2

= 0

Hence, |π‘Ž |οΏ½βƒ—οΏ½ + |οΏ½βƒ—οΏ½ |οΏ½Μ…οΏ½ and |π‘Ž |οΏ½βƒ—οΏ½ βˆ’ |οΏ½βƒ—οΏ½ |aβƒ— are perpendicular to each other. [𝟏

𝟐 Mark]

12. If, π‘Ž βˆ™ π‘Ž = 0 and π‘Ž βˆ™ οΏ½βƒ—οΏ½ = 0, then what can be concluded about the vector οΏ½βƒ—οΏ½ ? [1 Mark]

Solution:

It is given that π‘Ž βˆ™ π‘Ž = 0 and π‘Ž βˆ™ οΏ½βƒ—οΏ½ = 0.

Now,

π‘Ž β‹… π‘Ž = 0 β‡’ |π‘Ž |2 = 0 β‡’ |π‘Ž | = 0 [𝟏

𝟐 Mark]

∴ π‘Ž is a zero vector.

Hence, vector οΏ½βƒ—οΏ½ satisfying π‘Ž βˆ™ οΏ½βƒ—οΏ½ = 0 can be any vector. [𝟏

𝟐 Mark]

13. If π‘Ž , οΏ½βƒ—οΏ½ , 𝑐 are unit vectors such thatπ‘Ž + οΏ½βƒ—οΏ½ + 𝑐 = 0,

find the value ofπ‘Ž β‹… οΏ½βƒ—οΏ½ + οΏ½βƒ—οΏ½ β‹… 𝑐 + 𝑐 β‹… π‘Ž [1 Mark]

Solution:

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 |2

= (π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ) β‹… (π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ) = |π‘Ž |2 + |οΏ½βƒ—οΏ½ |2+ |𝑐 |2 + 2(π‘Ž β‹… οΏ½βƒ—οΏ½ + οΏ½βƒ—οΏ½ β‹… 𝑐 + 𝑐 β‹… π‘Ž )

β‡’ 0 = 1 + 1 + 1 + 2(π‘Ž β‹… οΏ½βƒ—οΏ½ + οΏ½βƒ—οΏ½ β‹… 𝑐 + 𝑐 β‹… π‘Ž ) [𝟏

𝟐 Mark]

β‡’ (π‘Ž β‹… οΏ½βƒ—οΏ½ + οΏ½βƒ—οΏ½ β‹… 𝑐 + 𝑐 β‹… π‘Ž ) =βˆ’3

2 [

𝟏

𝟐 Mark]

Class-XII-Maths Vector Algebra

21 Practice more on Vector Algebra www.embibe.com

14. If either vector π‘Ž = 0βƒ— or οΏ½βƒ—οΏ½ = 0βƒ— , then π‘Ž β‹… οΏ½βƒ—οΏ½ = 0. But the converse need not be true. Justify your Answer with an example. [2 Marks]

Solution:

Consider π‘Ž = 2𝑖̂ + 4𝑗̂ + 3οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 3𝑖̂ + 3𝑗̂ βˆ’ 6οΏ½Μ‚οΏ½.

Then,

π‘Ž β‹… οΏ½βƒ—οΏ½ = 2.3 + 4.3 + 3(βˆ’6) = 6 + 12 βˆ’ 18 = 0 .[1 Mark]

We now observe that:

|π‘Ž | = √22 + 42 + 32 = √29

∴ π‘Ž β‰  0βƒ—

|οΏ½βƒ—οΏ½ | = √32 + 32 + (βˆ’6)2 = √54

∴ οΏ½βƒ—οΏ½ β‰  0βƒ—

Hence, the converse of the given statement need not be true. [1 Mark]

15. If the vertices 𝐴, 𝐡, 𝐢 of a triangle 𝐴𝐡𝐢 are (1,2,3), (– 1,0,0), (0,1,2), respectively, then find

∠𝐴𝐡𝐢. [∠𝐴𝐡𝐢 is the angle between the vectors 𝐡𝐴⃗⃗⃗⃗ βƒ— and 𝐡𝐢⃗⃗⃗⃗ βƒ—] [2 Marks]

Solution:

The vertices of Δ𝐴𝐡𝐢 are given as 𝐴(1,2,3), 𝐡(– 1,0,0), and 𝐢(0,1,2).

Also, it is given that ∠𝐴𝐡𝐢 is the angle between the vectors 𝐡𝐴⃗⃗⃗⃗ βƒ— and 𝐡𝐢⃗⃗⃗⃗ βƒ—.

BAβƒ—βƒ—βƒ—βƒ— βƒ— = {1 βˆ’ (βˆ’1)}οΏ½Μ‚οΏ½ + (2 βˆ’ 0)𝑗̂ + (3 βˆ’ 0)οΏ½Μ‚οΏ½ = 2𝑖̂ + 2𝑗̂ + 3οΏ½Μ‚οΏ½

BCβƒ—βƒ—βƒ—βƒ— βƒ— = {0 βˆ’ (βˆ’1)}𝑖̂ + (1 βˆ’ 0)𝑗̂ + (2 βˆ’ 0)οΏ½Μ‚οΏ½ = 𝑖̂ + 𝑗̂ + 2οΏ½Μ‚οΏ½

∴ BAβƒ—βƒ—βƒ—βƒ— βƒ— β‹… BCβƒ—βƒ—βƒ—βƒ— βƒ— = (2𝑖̂ + 2𝑗̂ + 3οΏ½Μ‚οΏ½) β‹… (𝑖̂ + 𝑗̂ + 2οΏ½Μ‚οΏ½)

= 2 Γ— 1 + 2 Γ— 1 + 3 Γ— 2 = 2 + 2 + 6 = 10 [1 Mark]

|BAβƒ—βƒ—βƒ—βƒ— βƒ—| = √22 + 22 + 32 = √4 + 4 + 9 = √17

|BCβƒ—βƒ—βƒ—βƒ— βƒ—| = √1 + 1 + 22 = √6

Now, it is known that:

Class-XII-Maths Vector Algebra

22 Practice more on Vector Algebra www.embibe.com

BAβƒ—βƒ—βƒ—βƒ— βƒ— β‹… BCβƒ—βƒ—βƒ—βƒ— βƒ— = |BAβƒ—βƒ—βƒ—βƒ— βƒ—||BCβƒ—βƒ—βƒ—βƒ— βƒ—|cos(∠ABC)

∴ 10 = √17 Γ— √6cos(∠ABC)

β‡’ cos(∠ABC) =10

√17 Γ— √6

β‡’ ∠ABC = cosβˆ’1 (10

√102) [1 Mark]

16. Show that the points 𝐴(1,2,7), 𝐡(2,6,3) and 𝐢(3,10, – 1) are collinear. [2 Marks]

Solution:

The given points are 𝐴(1,2,7), 𝐡(2,6,3) and 𝐢(3,10, – 1).

∴ ABβƒ—βƒ—βƒ—βƒ— βƒ— = (2 βˆ’ 1)𝑖̂ + (6 βˆ’ 2)𝑗̂ + (3 βˆ’ 7)οΏ½Μ‚οΏ½ = 𝑖̂ + 4𝑗̂ βˆ’ 4οΏ½Μ‚οΏ½

BCβƒ—βƒ—βƒ—βƒ— βƒ— = (3 βˆ’ 2)𝑖̂ + (10 βˆ’ 6)𝑗̂ + (βˆ’1 βˆ’ 3)οΏ½Μ‚οΏ½ = 𝑖̂ + 4𝑗̂ βˆ’ 4οΏ½Μ‚οΏ½

ACβƒ—βƒ—βƒ—βƒ— βƒ— = (3 βˆ’ 1)𝑖̂ + (10 βˆ’ 2)𝑗̂ + (βˆ’1 βˆ’ 7)οΏ½Μ‚οΏ½ = 2𝑖̂ + 8𝑗̂ βˆ’ 8οΏ½Μ‚οΏ½ [1 Mark]

|ABβƒ—βƒ—βƒ—βƒ— βƒ—| = √12 + 42 + (βˆ’4)2 = √1 + 16 + 16 = √33

|BCβƒ—βƒ—βƒ—βƒ— βƒ—| = √12 + 42 + (βˆ’4)2 = √1 + 16 + 16 = √33

|ACβƒ—βƒ—βƒ—βƒ— βƒ—| = √22 + 82 + 82 = √4 + 64 + 64 = √132 = 2√33

∴ |ACβƒ—βƒ—βƒ—βƒ— βƒ—| = |ABβƒ—βƒ—βƒ—βƒ— βƒ—| + |BCβƒ—βƒ—βƒ—βƒ— βƒ—|

Hence, the given points 𝐴, 𝐡, and 𝐢 are collinear. [1 Mark]

17. Show that the vectors 2𝑖̂ βˆ’ 𝑗̂ + οΏ½Μ‚οΏ½, 𝑖̂ βˆ’ 3𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½ and 3𝑖̂ βˆ’ 4𝑗̂ βˆ’ 4οΏ½Μ‚οΏ½ form the vertices of a right angled triangle. [2 Marks]

Solution:

Let vectors 2𝑖̂ βˆ’ 𝑗̂ + οΏ½Μ‚οΏ½, 𝑖̂ βˆ’ 3𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½ and 3𝑖̂ βˆ’ 4𝑗̂ βˆ’ 4οΏ½Μ‚οΏ½ be position vectors of points 𝐴, 𝐡, and 𝐢 respectively.

i.e., OAβƒ—βƒ—βƒ—βƒ— βƒ— = 2𝑖̂ βˆ’ 𝑗̂ + οΏ½Μ‚οΏ½, OBβƒ—βƒ—βƒ—βƒ— βƒ— = 𝑖̂ βˆ’ 3𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½ and OCβƒ—βƒ—βƒ—βƒ— βƒ— = 3𝑖̂ βˆ’ 4𝑗̂ βˆ’ 4οΏ½Μ‚οΏ½

Class-XII-Maths Vector Algebra

23 Practice more on Vector Algebra www.embibe.com

Now, vectors ABβƒ—βƒ—βƒ—βƒ— βƒ—, BCβƒ—βƒ—βƒ—βƒ— βƒ— and ACβƒ—βƒ—βƒ—βƒ— βƒ— represent the sides of Δ𝐴𝐡𝐢.

i.e., OAβƒ—βƒ—βƒ—βƒ— βƒ— = 2𝑖̂ βˆ’ 𝑗̂ + οΏ½Μ‚οΏ½, OBβƒ—βƒ—βƒ—βƒ— βƒ— = 𝑖̂ βˆ’ 3𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½ and OCβƒ—βƒ—βƒ—βƒ— βƒ— = 3𝑖̂ βˆ’ 4𝑗̂ βˆ’ 4οΏ½Μ‚οΏ½.

∴ ABβƒ—βƒ—βƒ—βƒ— βƒ— = (1 βˆ’ 2)𝑖̂ + (βˆ’3 + 1)𝑗̂ + (βˆ’5 βˆ’ 1)οΏ½Μ‚οΏ½ = βˆ’π‘–Μ‚ βˆ’ 2𝑗̂ βˆ’ 6οΏ½Μ‚οΏ½

BCβƒ—βƒ—βƒ—βƒ— βƒ— = (3 βˆ’ 1)𝑖̂ + (βˆ’4 + 3)𝑗̂ + (βˆ’4 + 5)οΏ½Μ‚οΏ½ = 2𝑖̂ βˆ’ 𝑗̂ + οΏ½Μ‚οΏ½

ACβƒ—βƒ—βƒ—βƒ— βƒ— = (2 βˆ’ 3)𝑖̂ + (βˆ’1 + 4)𝑗̂ + (1 + 4)οΏ½Μ‚οΏ½ = βˆ’π‘–Μ‚ + 3𝑗̂ + 5οΏ½Μ‚οΏ½ [1 Mark]

|ABβƒ—βƒ—βƒ—βƒ— βƒ—| = √(βˆ’1)2 + (βˆ’2)2 + (βˆ’6)2 = √1 + 4 + 36 = √41

|BCβƒ—βƒ—βƒ—βƒ— βƒ—| = √22 + (βˆ’1)2 + I2 = √4 + 1 + 1 = √6

|ACβƒ—βƒ—βƒ—βƒ— βƒ—| = √(βˆ’1)2 + 32 + 52 = √1 + 9 + 25 = √35

∴ |BCβƒ—βƒ—βƒ—βƒ— βƒ—|2+ |ACβƒ—βƒ—βƒ—βƒ— βƒ—|

2= 6 + 35 = 41 = |AB⃗⃗⃗⃗ ⃗|

2

Hence, Δ𝐴𝐡𝐢 is a right-angled triangle. [1 Mark]

18. If π‘Ž is a nonzero vector of magnitude β€˜π‘Žβ€™ and πœ† a nonzero scalar, then πœ†π‘Ž is unit vector

If [1 Mark]

(A) πœ† = 1

(B) πœ† =–1

(C) π‘Ž = |πœ†|

(D) π‘Ž =1

|πœ†|

Solution:

Vector πœ†π‘Ž is a unit vector if |πœ†π‘Ž | = 1.

Now,

|πœ†π‘Ž | = 1

β‡’ |πœ†||π‘Ž | = 1 [𝟏

𝟐 Mark]

β‡’ |π‘Ž | =1

|πœ†| [πœ† β‰  0]

β‡’ π‘Ž =1

|πœ†| [|π‘Ž | = π‘Ž]

Hence, vector πœ†π‘Ž is a unit vector if π‘Ž =1

|πœ†|

Class-XII-Maths Vector Algebra

24 Practice more on Vector Algebra www.embibe.com

The correct Answer is D. [𝟏

𝟐 Mark]

Exercise: 10.4

1. Find

|π‘Ž Γ— οΏ½βƒ—οΏ½ |, if π‘Ž = 𝑖̂ βˆ’ 7𝑗̂ + 7οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 3𝑖̂ βˆ’ 2𝑗̂ + 2οΏ½Μ‚οΏ½ [1 Mark]

Solution:

We have, π‘Ž = 𝑖̂ βˆ’ 7𝑗̂ + 7οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 3𝑖̂ βˆ’ 2𝑗̂ + 2οΏ½Μ‚οΏ½

π‘Ž Γ— οΏ½βƒ—οΏ½ = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½1 βˆ’7 73 βˆ’2 2

|

= 𝑖(Μ‚βˆ’14 + 14) βˆ’ 𝑗̂(2 βˆ’ 21) + οΏ½Μ‚οΏ½(βˆ’2 + 21) = 19𝑗̂ + 19οΏ½Μ‚οΏ½ [𝟏

𝟐 Mark]

∴ |π‘Ž Γ— οΏ½βƒ—οΏ½ | = √(19)2 + (19)2 = √2 Γ— (19)2 = 19√2 [𝟏

𝟐 Mark]

2. Find a unit vector perpendicular to each of the vector π‘Ž + οΏ½βƒ—οΏ½ and π‘Ž βˆ’ οΏ½βƒ—οΏ½ , where

π‘Ž = 3𝑖̂ + 2𝑗̂ + 2οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 𝑖̂ + 2𝑗̂ βˆ’ 2οΏ½Μ‚οΏ½ [2 Marks]

Solution:

We have,

π‘Ž = 3𝑖̂ + 2𝑗̂ + 2οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 𝑖̂ + 2𝑗̂ βˆ’ 2οΏ½Μ‚οΏ½

∴ π‘Ž + οΏ½βƒ—οΏ½ = 4𝑖̂ + 4𝑗̂, π‘Ž βˆ’ οΏ½βƒ—οΏ½ = 2𝑖̂ + 4οΏ½Μ‚οΏ½

(π‘Ž + οΏ½βƒ—οΏ½ ) Γ— (π‘Ž βˆ’ οΏ½βƒ—οΏ½ ) = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½4 4 02 0 4

| = 𝑖(Μ‚16) βˆ’ 𝑗̂(16) + οΏ½Μ‚οΏ½(βˆ’8) = 16𝑖̂ βˆ’ 16𝑗̂ βˆ’ 8οΏ½Μ‚οΏ½

∴ |(π‘Ž + οΏ½βƒ—οΏ½ ) Γ— (π‘Ž βˆ’ οΏ½βƒ—οΏ½ )| = √162 + (βˆ’16)2 + (βˆ’8)2

= √22 Γ— 82 + 22 Γ— 82 + 82

= 8√22 + 22 + 1 = 8√9 = 8 Γ— 3 = 24 [1 Mark]

Class-XII-Maths Vector Algebra

25 Practice more on Vector Algebra www.embibe.com

Hence, the unit vector perpendicular to each of the vectors π‘Ž + οΏ½βƒ—οΏ½ and π‘Ž βˆ’ οΏ½βƒ—οΏ½ , is given by the relation,

= Β±(π‘Ž + οΏ½βƒ—οΏ½ ) Γ— (π‘Ž βˆ’ οΏ½βƒ—οΏ½ )

|(π‘Ž + οΏ½βƒ—οΏ½ ) Γ— (π‘Ž βˆ’ οΏ½βƒ—οΏ½ )|= Β±

16𝑖̂ βˆ’ 16𝑗̂ βˆ’ 8οΏ½Μ‚οΏ½

24

= Β±2οΏ½Μ‚οΏ½βˆ’2οΏ½Μ‚οΏ½βˆ’οΏ½Μ‚οΏ½

3= Β±

2

3𝑖̂ βˆ“

2

3𝑗̂ βˆ“

1

3οΏ½Μ‚οΏ½ [1 Mark]

3. If a unit vector π‘Ž makes an πœ‹

3 with 𝑖,

πœ‹

4 angle with 𝑗̂ and an acute angle πœƒ with οΏ½Μ‚οΏ½, then find πœƒ and

hence, the compounds of π‘Ž . [4 Marks]

Solution:

Let unit vector π‘Ž have (π‘Ž1, π‘Ž2, π‘Ž3) components.

π‘Ž = π‘Ž1𝑖̂ + π‘Ž2𝑗̂ + π‘Ž3οΏ½Μ‚οΏ½

Since π‘Ž is a unit vector,|π‘Ž | = 1.

Also, it is given that π‘Ž makes angles πœ‹

3 with 𝑖,

πœ‹

4 with 𝑗̂ and an acute angle πœƒ with οΏ½Μ‚οΏ½. Then, we

have:

cosπœ‹

3=

π‘Ž1

|π‘Ž |

β‡’1

2= π‘Ž1 [|π‘Ž | = 1] [

𝟏

𝟐 Mark]

cosπœ‹

4=

π‘Ž2

|π‘Ž |

β‡’1

√2= π‘Ž2 [|π‘Ž | = 1] [

𝟏

𝟐 Mark]

Also, cosπœƒ =π‘Ž3

|οΏ½βƒ—οΏ½ |.

β‡’ π‘Ž3 = cosπœƒ [𝟏

𝟐 Mark]

Now,

|π‘Ž| = 1

β‡’ βˆšπ‘Ž12 + π‘Ž2

2 + π‘Ž32 = 1 [

𝟏

𝟐 Mark]

β‡’ (1

2)2

+ (1

√2)2

+ cos2πœƒ = 1

Class-XII-Maths Vector Algebra

26 Practice more on Vector Algebra www.embibe.com

β‡’1

4+

1

2+ cos2πœƒ = 1

β‡’3

4+ cos2πœƒ = 1

β‡’ cos2πœƒ = 1 βˆ’3

4=

1

4

β‡’ cosπœƒ =1

2β‡’ πœƒ =

πœ‹

3

∴ π‘Ž3 = cosπœ‹

3=

1

2

Hence, πœƒ =πœ‹

3 and the components of π‘Ž are (

1

2,

1

√2,1

2). [2 Marks]

4. Show that

(π‘Ž βˆ’ οΏ½βƒ—οΏ½ ) Γ— (π‘Ž + οΏ½βƒ—οΏ½ ) = 2(π‘Ž Γ— οΏ½βƒ—οΏ½ ) [1 Mark]

Solution:

(π‘Ž βˆ’ οΏ½βƒ—οΏ½ ) Γ— (π‘Ž + οΏ½βƒ—οΏ½ )

= (π‘Ž βˆ’ οΏ½βƒ—οΏ½ ) Γ— π‘Ž + (π‘Ž βˆ’ οΏ½βƒ—οΏ½ ) Γ— οΏ½βƒ—οΏ½ [By distributive of vector product over addition] [𝟏

𝟐 Mark]

= π‘Ž Γ— π‘Ž βˆ’ οΏ½βƒ—οΏ½ Γ— π‘Ž + π‘Ž Γ— οΏ½βƒ—οΏ½ βˆ’ οΏ½βƒ—οΏ½ Γ— οΏ½βƒ—οΏ½ [Again, by distributivity of vector product over addition]

= 0βƒ— + π‘Ž Γ— οΏ½βƒ—οΏ½ + π‘Ž Γ— οΏ½βƒ—οΏ½ βˆ’ 0βƒ—

= 2π‘Ž Γ— οΏ½βƒ—οΏ½ [𝟏

𝟐 Mark]

5. Find πœ† and πœ‡ if (2𝑖̂ + 6𝑗̂ + 27οΏ½Μ‚οΏ½) Γ— (𝑖̂ + πœ†π‘—Μ‚ + πœ‡οΏ½Μ‚οΏ½) = 0βƒ— . [2 Marks]

Solution:

(2𝑖̂ + 6𝑗̂ + 27οΏ½Μ‚οΏ½) Γ— (𝑖̂ + πœ†π‘—Μ‚ + πœ‡οΏ½Μ‚οΏ½) = 0βƒ—

Class-XII-Maths Vector Algebra

27 Practice more on Vector Algebra www.embibe.com

β‡’ |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½2 6 271 πœ† πœ‡

| = 0𝑖̂ + 0𝑗̂ + 0οΏ½Μ‚οΏ½

β‡’ 𝑖(Μ‚6πœ‡ βˆ’ 27πœ†) βˆ’ 𝑗̂(2πœ‡ βˆ’ 27) + οΏ½Μ‚οΏ½(2πœ† βˆ’ 6) = 0𝑖̂ + 0𝑗̂ + 0οΏ½Μ‚οΏ½ [1 Mark]

On comparing the corresponding components, we have:

6πœ‡ βˆ’ 27πœ† = 0

2πœ‡ βˆ’ 27 = 0

2πœ† βˆ’ 6 = 0

Now,

2πœ† βˆ’ 6 = 0 β‡’ πœ† = 3

2πœ‡ βˆ’ 27 = 0 β‡’ πœ‡ =27

2

Hence πœ† = 3 and πœ‡ =27

2. [1 Mark]

6. Given that π‘Ž βˆ™ οΏ½βƒ—οΏ½ = 0 and π‘Ž Γ— οΏ½βƒ—οΏ½ = 0βƒ— .

What can you conclude about the vectors π‘Ž and οΏ½βƒ—οΏ½ ? [1 Mark]

Solution:

π‘Ž βˆ™ οΏ½βƒ—οΏ½ = 0

Then,

(i) Either |π‘Ž | = 0 or |οΏ½βƒ—οΏ½ | = 0, or π‘Ž βŠ₯ οΏ½βƒ—οΏ½ (in case π‘Ž and οΏ½βƒ—οΏ½ are non-zero)

(ii) Either |π‘Ž | = 0 or |οΏ½βƒ—οΏ½ | = 0, or π‘Ž βˆ₯ οΏ½βƒ—οΏ½ (in case π‘Ž and οΏ½βƒ—οΏ½ are non-zero) [𝟏

𝟐 Mark]

But, π‘Ž and οΏ½βƒ—οΏ½ cannot be perpendicular and parallel simultaneously.

Hence, |π‘Ž | = 0 or |οΏ½βƒ—οΏ½ | = 0 [𝟏

𝟐 Mark]

7. Let the vectors π‘Ž , οΏ½βƒ—οΏ½ , 𝑐 given as π‘Ž1𝑖̂ + π‘Ž2𝑗̂ + π‘Ž3οΏ½Μ‚οΏ½, 𝑏1𝑖̂ + 𝑏2𝑗̂ + 𝑏3οΏ½Μ‚οΏ½, 𝑐1𝑖̂ + 𝑐2𝑗̂ + 𝑐3οΏ½Μ‚οΏ½

Class-XII-Maths Vector Algebra

28 Practice more on Vector Algebra www.embibe.com

Then show that = π‘Ž Γ— (οΏ½βƒ—οΏ½ + 𝑐 ) = π‘Ž Γ— οΏ½βƒ—οΏ½ + π‘Ž Γ— 𝑐 [4 Marks]

Solution:

We have,

π‘Ž = π‘Ž1𝑖̂ + π‘Ž2𝑗̂ + π‘Ž3οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = 𝑏1οΏ½Μ‚οΏ½ + 𝑏2𝑗̂ + 𝑏3οΏ½Μ‚οΏ½, 𝑐 = 𝑐1𝑖̂ + 𝑐2𝑗̂ + 𝑐3οΏ½Μ‚οΏ½

(οΏ½βƒ—οΏ½ + 𝑐 ) = (𝑏1 + 𝑐1)𝑖̂ + (𝑏2 + 𝑐2)𝑗̂ + (𝑏3 + 𝑐3)οΏ½Μ‚οΏ½

Now, π‘Ž Γ— (οΏ½βƒ—οΏ½ + 𝑐 ) |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½π‘Ž1 π‘Ž2 π‘Ž3

𝑏1 + 𝑐1 𝑏2 + 𝑐2 𝑏3 + 𝑐3

|

= 𝑖[Μ‚π‘Ž2(𝑏3 + 𝑐3) βˆ’ π‘Ž3(𝑏2 + 𝑐2)] βˆ’ 𝑗̂[π‘Ž1(𝑏3 + 𝑐3) βˆ’ π‘Ž3(𝑏1 + 𝑐1)]

+ οΏ½Μ‚οΏ½[π‘Ž1(𝑏2 + 𝑐2) βˆ’ π‘Ž2(𝑏1 + 𝑐1)]

= 𝑖[Μ‚π‘Ž2𝑏3 + π‘Ž2𝑐3 βˆ’ π‘Ž3𝑏2 βˆ’ π‘Ž3𝑐2] + 𝑗̂[βˆ’π‘Ž1𝑏3 βˆ’ π‘Ž3𝑐3 + π‘Ž3𝑏1 + π‘Ž3𝑐1] + οΏ½Μ‚οΏ½[π‘Ž1𝑏2 + π‘Ž1𝑐2 βˆ’ π‘Ž2𝑏1 βˆ’π‘Ž2𝑐1] . . . (1) [1 Mark]

π‘Ž Γ— οΏ½βƒ—οΏ½ = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½π‘Ž1 π‘Ž2 π‘Ž3

𝑏1 𝑏2 𝑏3

|

= 𝑖[Μ‚π‘Ž2𝑏3 βˆ’ π‘Ž3𝑏2] + 𝑗̂[𝑏1π‘Ž3 βˆ’ π‘Ž1𝑏3] + οΏ½Μ‚οΏ½[π‘Ž1𝑏2 βˆ’ π‘Ž2𝑏1] . . . (2) [1 Mark]

π‘Ž Γ— 𝑐 = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½π‘Ž1 π‘Ž2 π‘Ž3

𝑐1 𝑐2 𝑐3

|

= 𝑖[Μ‚π‘Ž2𝑐3 βˆ’ π‘Ž3𝑐2] + 𝑗̂[π‘Ž3𝑐1 βˆ’ π‘Ž1𝑐3] + οΏ½Μ‚οΏ½[π‘Ž1𝑐2 βˆ’ π‘Ž2𝑐1] . . . (3) [1 Mark]

On adding (2) and (3), we get:

(π‘Ž Γ— οΏ½βƒ—οΏ½ ) + (π‘Ž Γ— 𝑐 )

= 𝑖[Μ‚π‘Ž2𝑏3 + π‘Ž2𝑐3 βˆ’ π‘Ž3𝑏2 βˆ’ π‘Ž3𝑐2] + 𝑗̂[𝑏1π‘Ž3 + π‘Ž3𝑐1 βˆ’ π‘Ž1𝑏3 βˆ’ π‘Ž1𝑐3]

+ οΏ½Μ‚οΏ½[π‘Ž1𝑏2 + π‘Ž1𝑐2 βˆ’ π‘Ž2𝑏1 βˆ’ π‘Ž2𝑐1] . . . (4)

Now, from (1) and (4), we have:

π‘Ž Γ— (οΏ½βƒ—οΏ½ + 𝑐 ) = π‘Ž Γ— οΏ½βƒ—οΏ½ + π‘Ž Γ— 𝑐

Hence, the given result is proved. [1 Mark]

8. If either π‘Ž = 0βƒ— or οΏ½βƒ—οΏ½ = 0βƒ— , then π‘Ž Γ— οΏ½βƒ—οΏ½ = 0βƒ— .

Class-XII-Maths Vector Algebra

29 Practice more on Vector Algebra www.embibe.com

Is the converse true? Justify your Answer with an example. [2 Marks]

Solution:

Take any parallel non-zero vectors so that π‘Ž Γ— οΏ½βƒ—οΏ½ = 0βƒ— .

Let π‘Ž = 2𝑖̂ + 3𝑗̂ + 4οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = 4𝑖̂ + 6𝑗̂ + 8οΏ½Μ‚οΏ½

Then,

π‘Ž Γ— οΏ½βƒ—οΏ½ = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½2 3 44 6 8

| = 𝑖(Μ‚24 βˆ’ 24) βˆ’ 𝑗̂(16 βˆ’ 16) + οΏ½Μ‚οΏ½(12 βˆ’ 12) = 0𝑖̂ + 0𝑗̂ + 0οΏ½Μ‚οΏ½ = 0βƒ—

It can now be observed that:

|π‘Ž | = √22 + 32 + 42 = √29 [1 Mark]

∴ π‘Ž β‰  0βƒ—

|οΏ½βƒ—οΏ½ | = √42 + 62 + 82 = √116

∴ οΏ½βƒ—οΏ½ β‰  0βƒ—

Hence, the converse of the given statement need not be true. [1 Mark]

9. Find the area of the triangle with vertices 𝐴(1,1,2), 𝐡(2,3,5) and 𝐢(1,5,5). [2 Marks]

Solution:

The vertices of triangle 𝐴𝐡𝐢 are given as 𝐴(1,1,2), 𝐡(2,3,5) and 𝐢(1,5,5).

The adjacent sides 𝐴𝐡⃗⃗⃗⃗ βƒ— and 𝐡𝐢⃗⃗⃗⃗ βƒ— of Δ𝐴𝐡𝐢 are given as:

ABβƒ—βƒ—βƒ—βƒ— βƒ— = (2 βˆ’ 1)𝑖̂ + (3 βˆ’ 1)𝑗̂ + (5 βˆ’ 2)οΏ½Μ‚οΏ½ = 𝑖̂ + 2𝑗̂ + 3οΏ½Μ‚οΏ½

BCβƒ—βƒ—βƒ—βƒ— βƒ— = (1 βˆ’ 2)𝑖̂ + (5 βˆ’ 3)𝑗̂ + (5 βˆ’ 5)οΏ½Μ‚οΏ½ = βˆ’π‘–Μ‚ + 2𝑗̂ [1 Mark]

Area of Ξ”ABC =1

2|AB⃗⃗⃗⃗ ⃗ × BC⃗⃗⃗⃗ ⃗|

ABβƒ—βƒ—βƒ—βƒ— βƒ— Γ— BCβƒ—βƒ—βƒ—βƒ— βƒ— = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½1 2 3βˆ’1 2 0

| = 𝑖̂(βˆ’6) βˆ’ 𝑗̂(3) + οΏ½Μ‚οΏ½(2 + 2) = βˆ’6𝑖̂ βˆ’ 3𝑗̂ + 4οΏ½Μ‚οΏ½

∴ |𝐴𝐡⃗⃗⃗⃗ βƒ— Γ— 𝐡𝐢⃗⃗⃗⃗ βƒ—| = √(βˆ’6)2 + (βˆ’3)2 + 42 = √36 + 9 + 16 = √61 [1 Mark]

Hence, the area of Δ𝐴𝐡𝐢 is √61

2 square units.

Class-XII-Maths Vector Algebra

30 Practice more on Vector Algebra www.embibe.com

10. Find the area of the parallelogram whose adjacent sides are determined by the vector π‘Ž = 𝑖̂ βˆ’

𝑗̂ + 3οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 2𝑖̂ βˆ’ 7𝑗̂ + οΏ½Μ‚οΏ½. [2 Marks]

Solution:

The area of the parallelogram whose adjacent sides are π‘Ž and οΏ½βƒ—οΏ½ is |π‘Ž Γ— οΏ½βƒ—οΏ½ |.

Adjacent sides are given as:

π‘Ž = 𝑖̂ βˆ’ 𝑗̂ + 3οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 2𝑖̂ βˆ’ 7𝑗̂ + οΏ½Μ‚οΏ½

∴ π‘Ž Γ— οΏ½βƒ—οΏ½ = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½1 βˆ’1 32 βˆ’7 1

| = 𝑖̂(βˆ’1 + 21) βˆ’ 𝑗̂(1 βˆ’ 6) + οΏ½Μ‚οΏ½(βˆ’7 + 2) = 20𝑖̂ + 5𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½[1 Mark]

|π‘Ž Γ— οΏ½βƒ—οΏ½ | = √202 + 52 + 52 = √400 + 25 + 25 = 15√2

Hence, the area of the given parallelogram is 15√2 square units. [1 Mark]

11. Let the vectors π‘Ž and οΏ½βƒ—οΏ½ be such that |π‘Ž | = 3 and |οΏ½βƒ—οΏ½ | =√2

3, then π‘Ž Γ— οΏ½βƒ—οΏ½ is a unit vector, if the

angle between π‘Ž and οΏ½βƒ—οΏ½ is [2 Marks]

(A) πœ‹

6

(B) πœ‹

4

(C) πœ‹

3

(D) πœ‹

2

Solution:

It is given that |π‘Ž | = 3 and |οΏ½βƒ—οΏ½ | =√2

3

We know that π‘Ž Γ— οΏ½βƒ—οΏ½ = |π‘Ž ||οΏ½βƒ—οΏ½ |sinπœƒοΏ½Μ‚οΏ½, where is a unit vector perpendicular to both π‘Ž and οΏ½βƒ—οΏ½ and πœƒ

is the angle between π‘Ž and οΏ½βƒ—οΏ½ .

Now, π‘Ž Γ— οΏ½βƒ—οΏ½ is a unit vector if |π‘Ž Γ— οΏ½βƒ—οΏ½ | = 1

|π‘Ž Γ— οΏ½βƒ—οΏ½ | = 1

β‡’ ||π‘Ž ||οΏ½βƒ—οΏ½ |π‘ π‘–π‘›πœƒοΏ½Μ‚οΏ½| = 1

Class-XII-Maths Vector Algebra

31 Practice more on Vector Algebra www.embibe.com

β‡’ | ||π‘Ž ||οΏ½βƒ—οΏ½ |π‘ π‘–π‘›πœƒ| = 1

β‡’ 3 Γ—βˆš2

3Γ— sinπœƒ = 1 [1 Mark]

β‡’ sinπœƒ =1

√2

β‡’ πœƒ =πœ‹

4

Hence, π‘Ž Γ— οΏ½βƒ—οΏ½ is a unit vector if the angle between π‘Ž and οΏ½βƒ—οΏ½ is πœ‹

4.

The correct Answer is B. [1 Mark]

12. Area of a rectangle having vertices 𝐴, 𝐡, 𝐢, and 𝐷 with position vectors βˆ’π‘–Μ‚ +1

2𝑗̂ + 4οΏ½Μ‚οΏ½, 𝑖̂ +

1

2𝑗̂ +

4οΏ½Μ‚οΏ½, 𝑖̂ βˆ’1

2𝑗̂ + 4οΏ½Μ‚οΏ½ and βˆ’π‘–Μ‚ βˆ’

1

2𝑗̂ + 4οΏ½Μ‚οΏ½ respectively is [2 Marks]

(A) 1

2

(B) 1

(C) 2

(D) 4

Solution:

The position vectors of vertices 𝐴, 𝐡, 𝐢, and 𝐷 of rectangle 𝐴𝐡𝐢𝐷 are given as:

OAβƒ—βƒ—βƒ—βƒ— βƒ— = βˆ’π‘–Μ‚ +1

2𝑗̂ + 4οΏ½Μ‚οΏ½, OBβƒ—βƒ—βƒ—βƒ— βƒ— = 𝑖̂ +

1

2𝑗̂ + 4οΏ½Μ‚οΏ½, OCβƒ—βƒ—βƒ—βƒ— βƒ— = 𝑖̂ βˆ’

1

2𝑗̂ + 4οΏ½Μ‚οΏ½, ODβƒ—βƒ— βƒ—βƒ— βƒ— = βˆ’π‘–Μ‚ βˆ’

1

2𝑗̂ + 4οΏ½Μ‚οΏ½

The adjacent sides 𝐴𝐡⃗⃗⃗⃗ βƒ— and 𝐡𝐢⃗⃗⃗⃗ βƒ— of the given rectangle are given as:

ABβƒ—βƒ—βƒ—βƒ— βƒ— = (1 + 1)𝑖̂ + (1

2βˆ’

1

2) 𝑗̂ + (4 βˆ’ 4)οΏ½Μ‚οΏ½ = 2𝑖̂

BCβƒ—βƒ—βƒ—βƒ— βƒ— = (1 βˆ’ 1)𝑖̂ + (βˆ’1

2βˆ’

1

2) 𝑗̂ + (4 βˆ’ 4)οΏ½Μ‚οΏ½ = βˆ’π‘—Μ‚ [1 Mark]

∴ 𝐴𝐡⃗⃗⃗⃗ βƒ— Γ— 𝐡𝐢⃗⃗⃗⃗ βƒ— = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½2 0 00 βˆ’1 0

| = οΏ½Μ‚οΏ½(βˆ’2) = βˆ’2οΏ½Μ‚οΏ½

|ABβƒ—βƒ—βƒ—βƒ— βƒ— Γ— ACβƒ—βƒ—βƒ—βƒ— βƒ—| = √(βˆ’2)2 = 2

Now, it is known that the area of a parallelogram whose adjacent sides are π‘Ž and οΏ½βƒ—οΏ½ is |π‘Ž Γ— οΏ½βƒ—οΏ½ |.

Class-XII-Maths Vector Algebra

32 Practice more on Vector Algebra www.embibe.com

Hence, the area of the given rectangle is |AB⃗⃗⃗⃗ ⃗ × BC⃗⃗⃗⃗ ⃗| = 2 square units.

The correct Answer is C. [1 Mark]

Miscellaneous exercise

1. Write down a unit vector in π‘‹π‘Œ-plane, making an angle of 30o with the positive direction of π‘₯-axis. [1 Mark]

Solution:

If π‘Ÿ is a unit vector in the π‘‹π‘Œ-plane, then π‘Ÿ = cos πœƒπ‘—Μ‚ + sin πœƒπ‘—Μ‚.

Here, πœƒ is the angle made by the unit vector with the positive direction of the π‘₯-axis.

Therefore, for πœƒ = 30o: [𝟏

𝟐 Mark]

π‘Ÿ = cos30Β°οΏ½Μ‚οΏ½ + sin30°𝑗̂ =√3

2𝑖̂ +

1

2𝑗̂

Hence, the required unit vector is =√3

2𝑖̂ +

1

2𝑗 Μ‚ [

𝟏

𝟐 Mark]

2. Find the scalar components and magnitude of the vector joining the points

P(π‘₯1, 𝑦1, 𝑧1).and Q(π‘₯2, 𝑦2, 𝑧2). [2 Marks]

Solution:

The vector joining the points P(π‘₯1, 𝑦1, 𝑧1).and Q(π‘₯2, 𝑦2, 𝑧2)

𝑃𝑄⃗⃗⃗⃗ βƒ— =Position vector of 𝑄 βˆ’Position vector of 𝑃.

= (π‘₯2 βˆ’ π‘₯1)𝑖̂ + (𝑦2 βˆ’ 𝑦1)𝑗̂ + (𝑧2 βˆ’ 𝑧1)οΏ½Μ‚οΏ½ [1 Mark]

|PQβƒ—βƒ—βƒ—βƒ— βƒ—| = √(π‘₯2 βˆ’ π‘₯1)2 + (𝑦2 βˆ’ 𝑦1)

2 + (𝑧2 βˆ’ 𝑧1)2

Hence, the scalar components and the magnitude of the vector joining the given points are

respectively {(π‘₯2 βˆ’ π‘₯1), (𝑦2 βˆ’ 𝑦1), (𝑧2 βˆ’ 𝑧1)} and √(π‘₯2 βˆ’ π‘₯1)2 + (𝑦2 βˆ’ 𝑦1)

2 + (𝑧2 βˆ’ 𝑧1)2

[1 Mark]

Class-XII-Maths Vector Algebra

33 Practice more on Vector Algebra www.embibe.com

3. A girl walks 4 km towards west, then she walks 3 km in a direction 30o east of north and stops. Determine the girl’s displacement from her initial point of departure. [2 Marks]

Solution:

Let 𝑂 and 𝐡 be the initial and final positions of the girl respectively.

Then, the girl’s position can be shown as:

Now, we have:

OAβƒ—βƒ—βƒ—βƒ— βƒ— = βˆ’4𝑖 Μ‚

ABβƒ—βƒ—βƒ—βƒ— βƒ— = 𝑖|Μ‚ABβƒ—βƒ—βƒ—βƒ— βƒ—|cos60Β° + 𝑗̂|ABβƒ—βƒ—βƒ—βƒ— βƒ—|sin60Β°

= 𝑖3Μ‚ Γ—1

2+ 𝑗̂3 Γ—

√3

2

=3

2𝑖̂ +

3√3

2𝑗̂ [1 Mark]

By the triangle law of vector addition, we have:

OB⃗⃗⃗⃗ ⃗ = OA⃗⃗⃗⃗ ⃗ + AB⃗⃗⃗⃗ ⃗

= (βˆ’4𝑖)Μ‚ + (3

2𝑖̂ +

3√3

2𝑗̂)

= (βˆ’4 +3

2) 𝑖̂ +

3√3

2𝑗̂

= (βˆ’8 + 3

2) 𝑖̂ +

3√3

2𝑗̂

=βˆ’5

2𝑖̂ +

3√3

2𝑗̂

Hence, the girl’s displacement from her initial point of departure is

=βˆ’5

2𝑖̂ +

3√3

2𝑗̂. [1 Mark]

Class-XII-Maths Vector Algebra

34 Practice more on Vector Algebra www.embibe.com

4. If π‘Ž = οΏ½βƒ—οΏ½ + 𝑐 , then is it true that |π‘Ž | = |οΏ½βƒ—οΏ½ | + |𝑐 |? Justify your Answer. [2 Marks]

Solution:

In Ξ”ABC, let CBβƒ—βƒ—βƒ—βƒ— βƒ— = π‘Ž , CAβƒ—βƒ—βƒ—βƒ— βƒ— = οΏ½βƒ—οΏ½ and ABβƒ—βƒ—βƒ—βƒ— βƒ— = 𝑐 (as shown in the following figure)

Now, by the triangle law of vector addition, we have π‘Ž = οΏ½βƒ—οΏ½ + 𝑐 . [1 Mark]

It is clearly known that |π‘Ž |, |οΏ½βƒ—οΏ½ | and |𝑐 | represent the sides of Δ𝐴𝐡𝐢.

Also, it is known that the sum of the lengths of any two sides of a triangle is greater than the third side.

∴ |π‘Ž | < |οΏ½βƒ—οΏ½ | + |𝑐 |

Hence, it is not true that |π‘Ž | = |οΏ½βƒ—οΏ½ | + |𝑐 |. [1 Mark]

5. Find the value of π‘₯ for which π‘₯(𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½) is a unit vector. [1 Mark]

Solution:

π‘₯(𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½) is a unit vector if |π‘₯(𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½)| = 1.

Now,

|π‘₯(𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½)| = 1

β‡’ √π‘₯2 + π‘₯2 + π‘₯2 = 1

β‡’ √3π‘₯2 = 1

β‡’ √3π‘₯ = 1 [𝟏

𝟐 Mark]

β‡’ π‘₯ = Β±1

√3

Hence, the required value of π‘₯ is Β±1

√3. [

𝟏

𝟐 Mark]

Class-XII-Maths Vector Algebra

35 Practice more on Vector Algebra www.embibe.com

6. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors π‘Ž = 2𝑖̂ + 3𝑗̂ βˆ’ οΏ½Μ‚οΏ½

and οΏ½βƒ—οΏ½ = 𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½. [2 Marks]

Solution:

We have,

π‘Ž = 2𝑖̂ + 3𝑗̂ βˆ’ οΏ½Μ‚οΏ½ and οΏ½βƒ—οΏ½ = 𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½

Let 𝑐 be the resultant of π‘Ž and οΏ½βƒ—οΏ½ .

Then,

𝑐 = π‘Ž + οΏ½βƒ—οΏ½ = (2 + 1)𝑖̂ + (3 βˆ’ 2)𝑗̂ + (βˆ’1 + 1)οΏ½Μ‚οΏ½ = 3𝑖̂ + 𝑗̂ [1 Mark]

∴ |𝑐 | = √32 + 12 = √9 + 1 = √10

∴ οΏ½Μ‚οΏ½ =𝑐

|𝑐 |=

(3𝑖̂ + 𝑗̂)

√10

Hence, the vector of magnitude 5 units and parallel to the resultant of vectors π‘Ž and οΏ½βƒ—οΏ½ is

Β±5 β‹… οΏ½Μ‚οΏ½ = Β±5 β‹…1

√10(3𝑖̂ + 𝑗̂) = Β±

3√10𝑖

2Β±

√10

2𝑗̂ [1 Mark]

7. If π‘Ž = 𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = 2𝑖̂ βˆ’ 𝑗̂ + 3οΏ½Μ‚οΏ½ and 𝑐 = 𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½, find a unit vector parallel to the vector

2π‘Ž βˆ’ οΏ½βƒ—οΏ½ + 3𝑐 . [2 Marks]

Solution:

We have,

π‘Ž = 𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = 2𝑖̂ βˆ’ 𝑗̂ + 3οΏ½Μ‚οΏ½ and 𝑐 = 𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½

2π‘Ž βˆ’ οΏ½βƒ—οΏ½ + 3𝑐 = 2(𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½) βˆ’ (2𝑖̂ βˆ’ 𝑗̂ + 3οΏ½Μ‚οΏ½) + 3(𝑖̂ βˆ’ 2𝑗̂ + οΏ½Μ‚οΏ½)

= 2𝑖̂ + 2𝑗̂ + 2οΏ½Μ‚οΏ½ βˆ’ 2𝑖̂ + 𝑗̂ βˆ’ 3οΏ½Μ‚οΏ½ + 3𝑖̂ βˆ’ 6𝑗̂ + 3οΏ½Μ‚οΏ½

= 3𝑖̂ βˆ’ 3𝑗̂ + 2οΏ½Μ‚οΏ½ [1 Mark]

|2π‘Ž βˆ’ οΏ½βƒ—οΏ½ + 3𝑐 | = √32 + (βˆ’3)2 + 22 = √9 + 9 + 4 = √22

Hence, the unit vector along 2π‘Ž βˆ’ οΏ½βƒ—οΏ½ + 3𝑐 is

Class-XII-Maths Vector Algebra

36 Practice more on Vector Algebra www.embibe.com

2οΏ½βƒ—οΏ½ βˆ’οΏ½βƒ—οΏ½ +3𝑐

|2οΏ½βƒ—οΏ½ βˆ’οΏ½βƒ—οΏ½ +3𝑐 |=

3οΏ½Μ‚οΏ½βˆ’3οΏ½Μ‚οΏ½+2οΏ½Μ‚οΏ½

√22=

3

√22𝑖̂ βˆ’

3

√22𝑗̂ +

2

√22οΏ½Μ‚οΏ½ [1 Mark]

8. Show that the points 𝐴(1, – 2, – 8), 𝐡(5,0, – 2) and 𝐢(11,3,7) are collinear, and find the ratio in

which 𝐡 divides 𝐴𝐢. [4 Marks]

Solution:

The given points are 𝐴(1, – 2, – 8), 𝐡(5,0, – 2) and 𝐢(11,3,7).

∴ ABβƒ—βƒ—βƒ—βƒ— βƒ— = (5 βˆ’ 1)𝑖̂ + (0 + 2)𝑗̂ + (βˆ’2 + 8)οΏ½Μ‚οΏ½ = 4𝑖̂ + 2𝑗̂ + 6οΏ½Μ‚οΏ½

BCβƒ—βƒ—βƒ—βƒ— βƒ— = (11 βˆ’ 5)𝑖̂ + (3 βˆ’ 0)𝑗̂ + (7 + 2)οΏ½Μ‚οΏ½ = 6𝑖̂ + 3𝑗̂ + 9οΏ½Μ‚οΏ½

ACβƒ—βƒ—βƒ—βƒ— βƒ— = (11 βˆ’ 1)𝑖̂ + (3 + 2)𝑗̂ + (7 + 8)οΏ½Μ‚οΏ½ = 10𝑖̂ + 5𝑗̂ + 15οΏ½Μ‚οΏ½ [1 Mark]

|ABβƒ—βƒ—βƒ—βƒ— βƒ—| = √42 + 22 + 62 = √16 + 4 + 36 = √56 = 2√14

|BCβƒ—βƒ—βƒ—βƒ— βƒ—| = √62 + 32 + 92 = √36 + 9 + 81 = √126 = 3√14

|ACβƒ—βƒ—βƒ—βƒ— βƒ—| = √102 + 52 + 152 = √100 + 25 + 225 = √350 = 5√14

∴ |ACβƒ—βƒ—βƒ—βƒ— βƒ—| = |ABβƒ—βƒ—βƒ—βƒ— βƒ—| + |BCβƒ—βƒ—βƒ—βƒ— βƒ—| [1 Mark]

Thus, the given points 𝐴, 𝐡 and 𝐢 are collinear.

Now, let point 𝐡 divide 𝐴𝐢 in the ratio πœ†: 1. Then, we have:

OBβƒ—βƒ—βƒ—βƒ— βƒ— =πœ†OCβƒ—βƒ—βƒ—βƒ— βƒ— + OAβƒ—βƒ—βƒ—βƒ— βƒ—

(πœ† + 1)

β‡’ 5𝑖̂ βˆ’ 2οΏ½Μ‚οΏ½ =πœ†(11𝑖̂ + 3𝑗̂ + 7οΏ½Μ‚οΏ½) + (𝑖̂ βˆ’ 2𝑗̂ βˆ’ 8οΏ½Μ‚οΏ½)

πœ† + 1

β‡’ (πœ† + 1)(5𝑖̂ βˆ’ 2οΏ½Μ‚οΏ½) = 11πœ†π‘–Μ‚ + 3πœ†π‘—Μ‚ + 7πœ†οΏ½Μ‚οΏ½ + 𝑖̂ βˆ’ 2𝑗̂ βˆ’ 8οΏ½Μ‚οΏ½

β‡’ 5(πœ† + 1)𝑖̂ βˆ’ 2(πœ† + 1)οΏ½Μ‚οΏ½ = (11πœ† + 1)𝑖̂ + (3πœ† βˆ’ 2)𝑗̂ + (7πœ† βˆ’ 8)οΏ½Μ‚οΏ½ [1 Mark]

On equating the corresponding components, we get:

5(πœ† + 1) = 11πœ† + 1

β‡’ 5πœ† + 5 = 11πœ† + 1

β‡’ 6πœ† = 4

β‡’ πœ† =4

6=

2

3

Class-XII-Maths Vector Algebra

37 Practice more on Vector Algebra www.embibe.com

Hence, point 𝐡 divides 𝐴𝐢 in the ratio 2: 3. [1 Mark]

9. Find the position vector of a point 𝑅 which divides the line joining two points 𝑃 and 𝑄 whose

position vectors are (2π‘Ž + οΏ½βƒ—οΏ½ ) and (π‘Ž βˆ’ 3οΏ½βƒ—οΏ½ ) externally in the ratio 1: 2. Also, show that 𝑃 is the

mid point of the line segment 𝑅𝑄. [2 Marks]

Solution:

It is given that OPβƒ—βƒ—βƒ—βƒ— βƒ— = 2π‘Ž + οΏ½βƒ—οΏ½ , OQβƒ—βƒ— βƒ—βƒ— βƒ— = π‘Ž βˆ’ 3οΏ½βƒ—οΏ½ .

It is given that point 𝑅 divides a line segment joining two points 𝑃 and 𝑄 externally in the ratio 1: 2. Then, on using the section formula, we get:

ORβƒ—βƒ—βƒ—βƒ— βƒ— =2(2οΏ½βƒ—οΏ½ +οΏ½βƒ—οΏ½ )βˆ’(οΏ½βƒ—οΏ½ βˆ’3οΏ½βƒ—οΏ½ )

2βˆ’1=

4οΏ½βƒ—οΏ½ +2οΏ½βƒ—οΏ½ βˆ’οΏ½βƒ—οΏ½ +3οΏ½βƒ—οΏ½

1= 3π‘Ž + 5οΏ½βƒ—οΏ½ [1 Mark]

Therefore, the position vector of point 𝑅 is 3π‘Ž + 5οΏ½βƒ—οΏ½

Position vector of the mid-point of RQ =OQ⃗⃗⃗⃗⃗⃗ +OR⃗⃗⃗⃗⃗⃗

2

=(π‘Ž βˆ’ 3οΏ½βƒ—οΏ½ ) + (3π‘Ž + 5οΏ½βƒ—οΏ½ )

2

= 2π‘Ž + οΏ½βƒ—οΏ½

= OP⃗⃗⃗⃗ ⃗

Hence, 𝑃 is the mid-point of the line segment 𝑅𝑄. [1 Mark]

10. The two adjacent sides of a parallelogram are 2𝑖̂ βˆ’ 4𝑗̂ + 5οΏ½Μ‚οΏ½ and 𝑖̂ βˆ’ 2𝑗̂ βˆ’ 3οΏ½Μ‚οΏ½.

Find the unit vector parallel to its diagonal. Also, find its area. [2 Marks]

Solution:

Adjacent sides of a parallelogram are given as: 2𝑖̂ βˆ’ 4𝑗̂ + 5οΏ½Μ‚οΏ½ and 𝑖̂ βˆ’ 2𝑗̂ βˆ’ 3οΏ½Μ‚οΏ½

Then, the diagonal of a parallelogram is given by π‘Ž + οΏ½βƒ—οΏ½

π‘Ž + οΏ½βƒ—οΏ½ = (2 + 1)𝑖̂ + (βˆ’4 βˆ’ 2)𝑗̂ + (5 βˆ’ 3)οΏ½Μ‚οΏ½ = 3𝑖̂ βˆ’ 6𝑗̂ + 2οΏ½Μ‚οΏ½

Thus, the unit vector parallel to the diagonal is

Class-XII-Maths Vector Algebra

38 Practice more on Vector Algebra www.embibe.com

οΏ½βƒ—οΏ½ +οΏ½βƒ—οΏ½

|οΏ½βƒ—οΏ½ +οΏ½βƒ—οΏ½ |=

3οΏ½Μ‚οΏ½βˆ’6οΏ½Μ‚οΏ½+2οΏ½Μ‚οΏ½

√32+(βˆ’6)2+22=

3οΏ½Μ‚οΏ½βˆ’6οΏ½Μ‚οΏ½+2οΏ½Μ‚οΏ½

√9+36+4=

3οΏ½Μ‚οΏ½βˆ’6οΏ½Μ‚οΏ½+2οΏ½Μ‚οΏ½

7=

3

7𝑖̂ βˆ’

6

7𝑗̂ +

2

7οΏ½Μ‚οΏ½ [1 Mark]

∴ Area of parallelogram ABCD = |π‘Ž Γ— οΏ½βƒ—οΏ½ |

π‘Ž Γ— οΏ½βƒ—οΏ½ = |𝑖̂ 𝑗̂ οΏ½Μ‚οΏ½2 βˆ’4 51 βˆ’2 βˆ’3

|

= 𝑖(Μ‚12 + 10) βˆ’ 𝑗̂(βˆ’6 βˆ’ 5) + οΏ½Μ‚οΏ½(βˆ’4 + 4)

= 22𝑖̂ + 11𝑗̂

= 11(2𝑖̂ + 𝑗̂)

∴ |π‘Ž Γ— οΏ½βƒ—οΏ½ | = 11√22 + 12 = 11√5

Hence, the area of the parallelogram is 11√5 square units. [1 Mark]

11. Show that the direction cosines of a vector equally inclined to the axes 𝑂𝑋,π‘‚π‘Œ and 𝑂𝑍 are 1

√3,

1

√3,

1

√3. [1 Mark]

Solution:

Let a vector be equally inclined to axes 𝑂𝑋,π‘‚π‘Œ and 𝑂𝑍 at angle 𝛼.

Then, the direction cosines of the vector are π‘π‘œπ‘  𝛼, π‘π‘œπ‘  𝛼 and π‘π‘œπ‘  𝛼.

Now,

cos2𝛼 + cos2𝛼 + cos2𝛼 = 1

β‡’ 3cos2𝛼 = 1

β‡’ cos𝛼 =1

√3 [

𝟏

𝟐 Mark]

Hence, the direction cosines of the vector

which are equally inclined to the axes are 1

√3,

1

√3,

1

√3. [

𝟏

𝟐 Mark]

Class-XII-Maths Vector Algebra

39 Practice more on Vector Algebra www.embibe.com

12. Let π‘Ž = 𝑖̂ + 4𝑗̂ + 2οΏ½Μ‚οΏ½, οΏ½βƒ—οΏ½ = 3𝑖̂ βˆ’ 2𝑗̂ + 7οΏ½Μ‚οΏ½ and 𝑐 = 2𝑖̂ βˆ’ 𝑗̂ + 4οΏ½Μ‚οΏ½. Find a vector π‘Ž which is

perpendicular to both π‘Ž and οΏ½βƒ—οΏ½ , and 𝑐 . 𝑑 = 15. [2 Marks]

Solution:

Let 𝑑 = 𝑑1𝑖̂ + 𝑑2𝑗̂ + 𝑑3οΏ½Μ‚οΏ½.

Since 𝑑 is perpendicular to both π‘Ž and οΏ½βƒ—οΏ½

𝑑 βˆ™ π‘Ž = 0

β‡’ 𝑑1 + 4𝑑2 + 2𝑑3 = 0 . . . (𝑖)

And,

𝑑 β‹… οΏ½βƒ—οΏ½ = 0

β‡’ 3𝑑1 βˆ’ 2𝑑2 + 7𝑑3 = 0 . . . (𝑖𝑖) [1 Mark]

Also, it is given that:

𝑐 β‹… 𝑑 = 15

β‡’ 2𝑑1 βˆ’ 𝑑2 + 4𝑑3 = 15 (𝑖𝑖𝑖)

On solving (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) we get:

𝑑1 =160

3, 𝑑2 = βˆ’

5

3 and 𝑑3 = βˆ’

70

3

∴ 𝑑 =160

3𝑖̂ βˆ’

5

3𝑗̂ βˆ’

70

3οΏ½Μ‚οΏ½ =

1

3(160𝑖̂ βˆ’ 5𝑗̂ βˆ’ 70Μ‚οΏ½Μ‚οΏ½)

Hence, the required vector is 1

3(160𝑖̂ βˆ’ 5𝑗̂ βˆ’ 70οΏ½Μ‚οΏ½). [1 Mark]

13. The scalar product of the vector 𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½ with a unit vector along the sum of vectors 2𝑖̂ + 4𝑗̂ βˆ’

5οΏ½Μ‚οΏ½ and πœ†π‘–Μ‚ + 2𝑗̂ + 3οΏ½Μ‚οΏ½ is equal to one. Find the value of πœ†. [2 Marks]

Solution:

(2𝑖̂ + 4𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½) + (πœ†π‘–Μ‚ + 2𝑗̂ + 3οΏ½Μ‚οΏ½)

= (2 + πœ†)𝑖̂ + 6𝑗̂ βˆ’ 2οΏ½Μ‚οΏ½

Therefore, unit vector along (2𝑖̂ + 4𝑗̂ βˆ’ 5οΏ½Μ‚οΏ½) + (πœ†π‘–Μ‚ + 2𝑗̂ + 3οΏ½Μ‚οΏ½) is given as:

(2+πœ†)οΏ½Μ‚οΏ½+6οΏ½Μ‚οΏ½βˆ’2οΏ½Μ‚οΏ½

√(2+πœ†)2+62+(βˆ’2)2=

(2+πœ†)οΏ½Μ‚οΏ½+6οΏ½Μ‚οΏ½βˆ’2οΏ½Μ‚οΏ½

√4+4πœ†+πœ†2+36+4=

(2+πœ†)οΏ½Μ‚οΏ½+6οΏ½Μ‚οΏ½βˆ’2οΏ½Μ‚οΏ½

βˆšπœ†2+4πœ†+44 [1 Mark]

Class-XII-Maths Vector Algebra

40 Practice more on Vector Algebra www.embibe.com

Scalar product of (𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½) with this unit vector is 1.

β‡’ (𝑖̂ + 𝑗̂ + οΏ½Μ‚οΏ½) β‹…(2 + πœ†)οΏ½Μ‚οΏ½ + 6𝑗̂ βˆ’ 2οΏ½Μ‚οΏ½

βˆšπœ†2 + 4πœ† + 44= 1

β‡’(2 + πœ†) + 6 βˆ’ 2

βˆšπœ†2 + 4πœ† + 44= 1

β‡’ βˆšπœ†2 + 4πœ† + 44 = πœ† + 6

β‡’ πœ†2 + 4πœ† + 44 = (πœ† + 6)2

β‡’ πœ†2 + 4πœ† + 44 = πœ†2 + 12πœ† + 36

β‡’ 8πœ† = 8

β‡’ πœ† = 1

Hence, the value of πœ† is 1. [1 Mark]

14. If π‘Ž , οΏ½βƒ—οΏ½ , 𝑐 are mutually perpendicular vectors of equal magnitudes, show that the vector π‘Ž + οΏ½βƒ—οΏ½ +

𝑐 is equally inclined to π‘Ž , οΏ½βƒ—οΏ½ and 𝑐 . [4 Marks]

Solution:

Since π‘Ž , οΏ½βƒ—οΏ½ and 𝑐 are mutually perpendicular vectors, we have π‘Ž β‹… οΏ½βƒ—οΏ½ = οΏ½βƒ—οΏ½ β‹… 𝑐 = 𝑐 β‹… π‘Ž = 0. It is given

that:|π‘Ž | = |οΏ½βƒ—οΏ½ | = |𝑐 |.

Let vector π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 be inclined to π‘Ž , οΏ½βƒ—οΏ½ and 𝑐 at angles πœƒ1, πœƒ2 and πœƒ3respectively. [𝟏

𝟐 Mark]

Then, we have:

cosπœƒ1 =(π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ) β‹… π‘Ž

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ||π‘Ž |=

π‘Ž β‹… π‘Ž + οΏ½βƒ—οΏ½ β‹… π‘Ž + 𝑐 β‹… π‘Ž

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ||π‘Ž |

=|π‘Ž |2

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ||π‘Ž | [οΏ½βƒ—οΏ½ β‹… π‘Ž = 𝑐 β‹… π‘Ž = 0]

=|οΏ½βƒ—οΏ½ |2

|οΏ½βƒ—οΏ½ +οΏ½βƒ—οΏ½ +𝑐 | [1 Mark]

cosπœƒ2 =(π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ) β‹… οΏ½βƒ—οΏ½

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ||οΏ½βƒ—οΏ½ |=

π‘Ž β‹… οΏ½βƒ—οΏ½ + οΏ½βƒ—οΏ½ β‹… οΏ½βƒ—οΏ½ + 𝑐 β‹… οΏ½βƒ—οΏ½

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 | β‹… |οΏ½βƒ—οΏ½ |

=|οΏ½βƒ—οΏ½ |

2

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 | β‹… |οΏ½βƒ—οΏ½ | [π‘Ž β‹… οΏ½βƒ—οΏ½ = 𝑐 β‹… οΏ½βƒ—οΏ½ = 0]

Class-XII-Maths Vector Algebra

41 Practice more on Vector Algebra www.embibe.com

=|οΏ½βƒ—οΏ½ |

2

|οΏ½βƒ—οΏ½ +οΏ½βƒ—οΏ½ +𝑐 | [1 Mark]

cosπœƒ3 =(π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ) β‹… 𝑐

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ||𝑐 |=

π‘Ž β‹… 𝑐 + οΏ½βƒ—οΏ½ β‹… 𝑐 + 𝑐 β‹… 𝑐

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ||𝑐 |

=|𝑐 |2

|π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ||𝑐 | [π‘Ž β‹… 𝑐 = οΏ½βƒ—οΏ½ β‹… 𝑐 = 0]

=|𝑐 |2

|οΏ½βƒ—οΏ½ +οΏ½βƒ—οΏ½ +𝑐 | [1 Mark]

Now, as |π‘Ž | = |οΏ½βƒ—οΏ½ | = |𝑐 |, cosπœƒ1 = cosπœƒ2 = cosπœƒ3

∴ πœƒ1 = πœƒ2 = πœƒ3

Hence, the vector (π‘Ž + οΏ½βƒ—οΏ½ + 𝑐 ) is equally inclined to π‘Ž , οΏ½βƒ—οΏ½ and 𝑐 . [𝟏

𝟐 Mark]

15. Prove that (π‘Ž + οΏ½βƒ—οΏ½ ) β‹… (π‘Ž + οΏ½βƒ—οΏ½ ) = |π‘Ž |2 + |οΏ½βƒ—οΏ½ |2

,if and only if π‘Ž , οΏ½βƒ—οΏ½ are perpendicular, given π‘Ž β‰  0βƒ— , οΏ½βƒ—οΏ½ β‰ 

0βƒ— . [2 Marks]

Solution:

(π‘Ž + οΏ½βƒ—οΏ½ ) β‹… (π‘Ž + οΏ½βƒ—οΏ½ ) = |π‘Ž |2 + |οΏ½βƒ—οΏ½ |2

⇔ π‘Ž β‹… π‘Ž + π‘Ž β‹… οΏ½βƒ—οΏ½ + οΏ½βƒ—οΏ½ β‹… π‘Ž + οΏ½βƒ—οΏ½ β‹… οΏ½βƒ—οΏ½ = |π‘Ž |2 + |οΏ½βƒ—οΏ½ |2

[Distributivity of scalar products over addition]

⇔ |π‘Ž |2 + 2π‘Ž β‹… οΏ½βƒ—οΏ½ + |οΏ½βƒ—οΏ½ |2

= |π‘Ž |2 + |οΏ½βƒ—οΏ½ |2

[π‘Ž β‹… οΏ½βƒ—οΏ½ = οΏ½βƒ—οΏ½ β‹… π‘Ž (Scalar product is commutative)][1 Mark]

⇔ 2π‘Ž β‹… οΏ½βƒ—οΏ½ = 0

⇔ π‘Ž β‹… οΏ½βƒ—οΏ½ = 0

∴ π‘Ž and οΏ½βƒ—οΏ½ are perpendicular. [π‘Ž β‰  0βƒ— , οΏ½βƒ—οΏ½ β‰  0βƒ— (Given)] [1 Mark]

16. If πœƒ is the angle between two vectors π‘Ž and οΏ½βƒ—οΏ½ , then π‘Ž . οΏ½βƒ—οΏ½ β‰₯ 0 only when [1 Mark]

(A) 0 < πœƒ <πœ‹

2

(B) 0 ≀ πœƒ β‰€πœ‹

2

Class-XII-Maths Vector Algebra

42 Practice more on Vector Algebra www.embibe.com

(C) 0 < πœƒ < πœ‹

(D) 0 ≀ πœƒ ≀ πœ‹

Solution:

Let πœƒ be the angle between two vectors π‘Ž and οΏ½βƒ—οΏ½ .

Then, without loss of generality, π‘Ž and οΏ½βƒ—οΏ½ are non-zero vectors so that. |π‘Ž | and |οΏ½βƒ—οΏ½ | are positive.

It is known that π‘Ž β‹… οΏ½βƒ—οΏ½ = |π‘Ž ||οΏ½βƒ—οΏ½ |cosπœƒ

∴ π‘Ž β‹… οΏ½βƒ—οΏ½ β‰₯ 0

β‡’ |π‘Ž ||οΏ½βƒ—οΏ½ |cosπœƒ β‰₯ 0

β‡’ cosπœƒ β‰₯ 0 [|π‘Ž |and|οΏ½βƒ—οΏ½ |arepositive] [𝟏

𝟐 Mark]

β‡’ 0 ≀ πœƒ β‰€πœ‹

2

Hence, π‘Ž β‹… οΏ½βƒ—οΏ½ β‰₯ 0 when 0 ≀ πœƒ β‰€πœ‹

2.

The correct Answer is B. [𝟏

𝟐 Mark]

17. Let π‘Ž and οΏ½βƒ—οΏ½ be two unit vectors and πœƒ is the angle between them. Then π‘Ž + οΏ½βƒ—οΏ½ is a unit vector if [2 Marks]

(A) πœƒ =πœ‹

4

(B) πœƒ =πœ‹

3

(C) πœƒ =πœ‹

2

(D) πœƒ =2πœ‹

3

Solution:

Let π‘Ž and οΏ½βƒ—οΏ½ be two unit vectors and πœƒ be the angle between them.

Then,|π‘Ž | = |οΏ½βƒ—οΏ½ | = 1.

Now, π‘Ž + οΏ½βƒ—οΏ½ is a unit vector if |π‘Ž + οΏ½βƒ—οΏ½ | = 1.

|π‘Ž + οΏ½βƒ—οΏ½ | = 1

Class-XII-Maths Vector Algebra

43 Practice more on Vector Algebra www.embibe.com

β‡’ (π‘Ž + οΏ½βƒ—οΏ½ )2= 1

β‡’ (π‘Ž + οΏ½βƒ—οΏ½ ) β‹… (π‘Ž + οΏ½βƒ—οΏ½ ) = 1

β‡’ π‘Ž β‹… π‘Ž + π‘Ž οΏ½βƒ—οΏ½ + οΏ½βƒ—οΏ½ β‹… π‘Ž + οΏ½βƒ—οΏ½ οΏ½βƒ—οΏ½ = 1 [𝟏

𝟐 Mark]

β‡’ |π‘Ž |2 + 2π‘Ž β‹… οΏ½βƒ—οΏ½ + |οΏ½βƒ—οΏ½ |2= 1

β‡’ 12 + 2|π‘Ž ||οΏ½βƒ—οΏ½ |cosπœƒ + 12 = 1

β‡’ 1 + 2.1.1cosπœƒ + 1 = 1 [𝟏

𝟐 Mark]

β‡’ cosπœƒ = βˆ’1

2

β‡’ πœƒ =2πœ‹

3 [

𝟏

𝟐 Mark]

Hence, π‘Ž + οΏ½βƒ—οΏ½ is a unit vector if πœƒ =2πœ‹

3

The correct Answer is D. [𝟏

𝟐 Mark]

18. The value of 𝑖̂. (𝑗̂ Γ— οΏ½Μ‚οΏ½) + 𝑗̂. (𝑖̂ Γ— οΏ½Μ‚οΏ½) + οΏ½Μ‚οΏ½. (𝑖̂ Γ— 𝑗̂) is [2 Marks]

(A) 0

(B) – 1

(C) 1

(D) 3

Solution:

𝑖̂. (𝑗̂ Γ— οΏ½Μ‚οΏ½) + 𝑗̂. (𝑖̂ Γ— οΏ½Μ‚οΏ½) + οΏ½Μ‚οΏ½. (𝑖̂ Γ— 𝑗̂)

= 𝑖̂ β‹… 𝑖̂ + 𝑗̂ β‹… (βˆ’π‘—Μ‚) + οΏ½Μ‚οΏ½ β‹… οΏ½Μ‚οΏ½

= 1 βˆ’ 𝑗̂ β‹… 𝑗̂ + 1 [𝟏

𝟐 Mark]

= 1 βˆ’ 1 + 1

= 1 [𝟏

𝟐 Mark]

The correct Answer is C.

Class-XII-Maths Vector Algebra

44 Practice more on Vector Algebra www.embibe.com

19. If πœƒ is the angle between any two vectors π‘Ž and οΏ½βƒ—οΏ½ , then |π‘Ž β‹… οΏ½βƒ—οΏ½ | = |π‘Ž Γ— οΏ½βƒ—οΏ½ |

when πœƒ is equal to [1 Mark]

(A) 0

(B) πœ‹

4

(C) πœ‹

2

(D) πœ‹

Solution:

Let πœƒ be the angle between two vectors π‘Ž and οΏ½βƒ—οΏ½ .

Then, without loss of generality, π‘Ž and οΏ½βƒ—οΏ½ are non-zero vectors, so that |π‘Ž | and |οΏ½βƒ—οΏ½ | are positive.

|π‘Ž β‹… οΏ½βƒ—οΏ½ | = |π‘Ž Γ— οΏ½βƒ—οΏ½ |

β‡’ |π‘Ž ||οΏ½βƒ—οΏ½ |cosπœƒ = |π‘Ž ||οΏ½βƒ—οΏ½ |sinπœƒ

β‡’ cosπœƒ = sinπœƒ [|π‘Ž |and|οΏ½βƒ—οΏ½ |arepositive]

β‡’ tanπœƒ = 1 [𝟏

𝟐 Mark]

β‡’ πœƒ =πœ‹

4

Hence, |π‘Ž β‹… οΏ½βƒ—οΏ½ | = |π‘Ž Γ— οΏ½βƒ—οΏ½ | when πœƒ is equal to πœ‹

4

The correct Answer is B. [𝟏

𝟐 Mark]