BSc Chemistry - NAS College

22
____________________________________________________________________________________________________ Physics PAPER No. 10 : Statistical Mechanics MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications), Equipartition Theorem Virial Theorem and Density of States) Subject Physics Paper No and Title P10 Statistical Physics Module No and Title Module 14Ensemble Theory(classical)-IV(Canonical Ensemble( More Applications), Equipartition Theorem Virial Theorem and Density of States) Module Tag Phy_P10_M14.doc Content Writer Prof. P.K. Ahluwalia Physics Department Himachal Pradesh University Shimla 171 005 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Canonical Ensemble(More Applications): 3.1 A System of Harmonic Oscillators (Classical and Quantum Mechanical Treatment) 3.2 Para-magnetism (Classical and Quantum Mechanical Treatment) 4. Equipartition Theorem 5. Virial Theorem 6. Density of Statesover Energy 7. Summary Appendices A1 Expansion of a logarithmic function and A2 Spreadsheet for plotting Langevin and Brillouin functions

Transcript of BSc Chemistry - NAS College

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

Subject Physics

Paper No and Title P10 Statistical Physics

Module No and Title Module 14Ensemble Theory(classical)-IV(Canonical

Ensemble( More Applications), Equipartition Theorem

Virial Theorem and Density of States)

Module Tag Phy_P10_M14.doc

Content Writer Prof. P.K. Ahluwalia

Physics Department

Himachal Pradesh University

Shimla 171 005

TABLE OF CONTENTS

1. Learning Outcomes

2. Introduction

3. Canonical Ensemble(More Applications):

3.1 A System of Harmonic Oscillators (Classical and Quantum Mechanical

Treatment)

3.2 Para-magnetism (Classical and Quantum Mechanical Treatment)

4. Equipartition Theorem

5. Virial Theorem

6. Density of Statesover Energy

7. Summary

Appendices

A1 Expansion of a logarithmic function and ๐œ๐จ๐ญ๐ก ๐’™

A2 Spreadsheet for plotting Langevin and Brillouin functions

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

1. Learning Outcomes

After studying this module, you shall be able to

Apply the approach of canonical ensemble via partition function to two very important

prototype systems in physics via partition function

o A collection of harmonic oscillators (classical and quantum mechanical

treatment)

o Para-magnetism (classical and quantum mechanical treatment).

Compare the classical and quantum mechanical results obtained in the above two

examples and see under what conditions quantum mechanical results approach classical

results.

To appreciate equipartition theorem and virial theorems as classical canonical ensemble

averages of the quantity ๐‘ฟ๐’‚๐๐‘ฏ

๐๐‘ฟ๐’ƒ, where ๐‘ฟ๐’‚ and ๐‘ฟ๐’ƒ are any two of the phase space co-

ordinates of the system.

To apply equipartition theorem to derive some well-known results for systems such as

monoatomic gas, a diatomic gas, a harmonic oscillator and a crystalline solid.

Derive virial theorem.

Understand the importance of virial in computation of equation of state of a system and

paving way for calculating pressure of the system.

Calculate density of states over energy for a three dimensional system of free particles in

non-relativistic, relativistic and ultra-relativistic regime.

2. Introduction

In this module we carry forward the applications of canonical ensemble two most

important problems of the physics: a collection of harmonic oscillators and classical

model of para-magnetism treated as a system of N magnetic dipoles. Also we shall

encounter two beautiful theorems called virial theorem of Clausius and equipartition

theorem of Boltzmann. These theorems have many applications to arrive at some useful

results in thermodynamics and statistical mechanics.

3. Canonical Ensemble (More Applications)

Now we will look at some more interesting applicationsof canonical ensemble and

simplicity with results can be obtained using partition function approach.

3.1 A System of Harmonic Oscillators

Let us now examine a collection of N independent identical Linear harmonic oscillators

using partition function approach as an application of canonical ensemble which forms a

precursor to the study the statistical mechanics of a collection of photons in black body

radiation and a collection of phonons in theory of lattice vibrations in solids. We treat the

oscillators as first as classical entities and later as quantum mechanical entities to get the

thermodynamics of the system and compare the results for any change in going from

classical system of harmonic oscillators to quantum mechanical system of harmonic

oscillators.

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

The Hamiltonian for a this set of identical linear harmonic oscillators, each having mass

m and frequency ๐Ž is given by

๐‘ฏ = ๐’‘๐’Š๐Ÿ

๐Ÿ๐’Ž+๐Ÿ

๐Ÿ๐’Ž๐Ž๐Ÿ๐’’๐’Š

๐Ÿ

๐‘ต

๐’Š=๐Ÿ

(1)

(a) Classical Approach

Now we are ready to write a one particle partition function for the recalling the

definition in the Module 13.

๐’๐Ÿ =

๐Ÿ

๐’‰ ๐’†โˆ’๐œท๐‘ฏ๐’Š ๐’’๐’Š,๐’‘๐’Š ๐’…๐Ÿ‘๐’’๐’Š๐’…

๐Ÿ‘๐ฉ๐ข

= ๐Ÿ

๐’‰ ๐’†โˆ’

๐œท๐’‘๐’Š๐Ÿ

๐Ÿ๐’Ž๐’…๐Ÿ‘๐’‘๐’Š ๐’†โˆ’๐Ÿ

๐Ÿ๐œท๐’Ž๐Ž๐Ÿ๐’’๐’Š

๐Ÿ

๐’…๐Ÿ‘๐ช๐ข

(2)

๐’๐Ÿ =๐Ÿ

๐’‰ ๐Ÿ๐’Ž๐…

๐œท

๐Ÿ

๐Ÿ

๐Ÿ๐…

๐œท๐’Ž๐Ž๐Ÿ

๐Ÿ

๐Ÿ

=๐Ÿ

๐œทโ„๐Ž

(3)

Here ๐œท =๐Ÿ

๐’Œ๐‘ฉ๐‘ป. The partition function for the collection of independent N linear

harmonic oscillators can be written as

๐’ = ๐’๐Ÿ๐‘ต = ๐œทโ„๐Ž โˆ’๐‘ต (4)

Now all thermodynamic properties can be derived

Helmholtz free energy (F)

๐‘ญ = โˆ’๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง๐’ =๐‘ต๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง๐œทโ„๐Ž = ๐‘ต๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง

โ„๐Ž

๐’Œ๐‘ฉ๐‘ป

(5)

Entropy (S)

๐‘บ = โˆ’

๐๐‘ญ

๐๐‘ป ๐‘ต,๐‘ฝ

= ๐‘ต๐’Œ๐‘ฉ ๐Ÿ โˆ’ ๐ฅ๐งโ„๐Ž

๐’Œ๐‘ฉ๐‘ป

(6)

Internal Energy (E=F+TS)

๐‘ฌ = ๐‘ต๐’Œ๐‘ฉ๐‘ป (7)

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

This result is in accordance with law of equipartition of energy, according to which

each quadratic term in the Hamiltonian for each harmonic oscillator contributes a

term ๐Ÿ

๐Ÿ๐’Œ๐‘ฉ๐‘ป.

Pressure (P)

๐‘ท = โˆ’

๐๐‘ฌ

๐๐‘ฝ ๐‘ต,๐‘ป

= ๐ŸŽ (8)

Chemical Potential (๐)

๐ =

๐๐‘ญ

๐๐‘ต ๐‘ฝ,๐‘ป

= ๐‘ต๐’Œ๐‘ฉ๐‘ป ๐ฅ๐งโ„๐Ž

๐’Œ๐‘ฉ๐‘ป

(9)

Specific heat (๐‘ช๐’‘ = ๐‘ช๐‘ฝ)

๐‘ช๐‘ท = ๐‘ช๐‘ฝ =

๐๐‘ฌ

๐๐‘ป ๐‘ต,๐‘ฝ

= ๐’Œ๐‘ฉ๐‘ป (10)

(b) Quantum mechanical approach

Quantum mechanically, each linear harmonic oscillator is characterized by energy eigen

value given by

๐๐’ = ๐’+

๐Ÿ

๐Ÿ โ„๐Ž ,๐’ = ๐ŸŽ,๐Ÿ,๐Ÿ,๐Ÿ‘โ€ฆโ€ฆโ€ฆโ€ฆ

(11)

Once again single oscillator partition function can be written as

๐’›๐Ÿ = ๐’†โˆ’๐œท๐๐’

โˆž

๐’=๐ŸŽ

= ๐’†โˆ’ ๐Ÿ

๐Ÿ๐œทโ„๐Ž ๐’†โˆ’๐œท๐’โ„๐Ž

โˆž

๐’=๐ŸŽ

=๐’†โˆ’

๐Ÿ

๐Ÿ๐œทโ„๐Ž

๐Ÿ โˆ’ ๐’†โˆ’๐œท๐’โ„๐Ž

= ๐Ÿ ๐ฌ๐ข๐ง๐ก ๐Ÿ

๐Ÿ๐œทโ„๐Ž

โˆ’๐Ÿ

(12)

The partition function for the N Oscillator system is given by

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

๐’ = ๐’๐Ÿ

๐‘ต = ๐Ÿ ๐ฌ๐ข๐ง๐ก ๐Ÿ

๐Ÿ๐œทโ„๐Ž

โˆ’๐‘ต

(13)

Now we can derive all thermodynamic properties

Helmholtz free energy (F)

๐‘ญ = โˆ’๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง๐’ =๐‘ต๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง ๐Ÿ ๐ฌ๐ข๐ง๐ก

๐Ÿ

๐Ÿ๐œทโ„๐Ž

= ๐‘ต ๐Ÿ

๐Ÿโ„๐Ž+ ๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง ๐Ÿ โˆ’ ๐’†

โˆ’๐œทโ„๐Ž

(14)

Entropy (S)

๐‘บ = โˆ’

๐๐‘ญ

๐๐‘ป ๐‘ต,๐‘ฝ

= ๐‘ต๐’Œ๐‘ฉ ๐Ÿ

๐Ÿ๐œทโ„๐Ž๐œ๐จ๐ญ๐ก

๐Ÿ

๐Ÿ๐œทโ„๐Ž

โˆ’ ๐ฅ๐ง ๐Ÿ ๐ฌ๐ข๐ง๐ก ๐Ÿ

๐Ÿ๐œทโ„๐Ž

(15)

Internal Energy (๐‘ฌ = ๐‘ญ+ ๐‘ป๐‘บ)

๐‘ฌ = ๐‘ญ+ ๐‘ป๐‘บ =

๐Ÿ

๐Ÿ๐‘ตโ„๐Ž ๐œ๐จ๐ญ๐ก

๐Ÿ

๐Ÿ๐œทโ„๐Ž = ๐‘ต

๐Ÿ

๐Ÿโ„๐Ž+

โ„๐Ž

๐’†๐œทโ„๐Ž โˆ’ ๐Ÿ

(16)

This result is in not in accordance with law of equipartition of energy, according to

which each quadratic term in the Hamiltonian for each harmonic oscillator

contributes a term ๐Ÿ

๐Ÿ๐’Œ๐‘ฉ๐‘ป.

Pressure (P)

๐‘ท = โˆ’

๐๐‘ฌ

๐๐‘ฝ ๐‘ต,๐‘ป

= ๐ŸŽ (17)

Chemical Potential (๐)

๐ =

๐๐‘ญ

๐๐‘ต ๐‘ฝ,๐‘ป

= ๐Ÿ

๐Ÿโ„๐Ž+ ๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง ๐Ÿ โˆ’ ๐’†

โˆ’๐œทโ„๐Ž (18)

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

Specific heat (๐‘ช๐’‘ = ๐‘ช๐‘ฝ)

๐‘ช๐‘ท = ๐‘ช๐‘ฝ =

๐๐‘ฌ

๐๐‘ป ๐‘ต,๐‘ฝ

= ๐‘ต๐’Œ๐‘ฉ ๐Ÿ

๐Ÿโ„๐Ž๐œท

๐Ÿ

๐œ๐จ๐ฌ๐ž๐œ๐ก๐Ÿ ๐Ÿ

๐Ÿ๐œทโ„๐Ž

= ๐‘ต๐’Œ๐‘ฉ โ„๐Ž๐œท ๐Ÿ

๐’†๐œทโ„๐Ž

๐’†๐œทโ„๐Ž โˆ’ ๐Ÿ ๐Ÿ

(19)

All these results from (5) to (9) approach classical results for ๐’Œ๐‘ฉ๐‘ป โ‰ซ โ„๐Ž

3.1 Paramagnetism

Let us now examine a collection of N independent identical spins sitting at different

points using partition function approach. Each of these spins can be treated as magnetic

dipoles with a magnetic moment ๐. These are distinguishable as they are sitting at

different locations. These form a non-interacting system in the sense that each magnetic

dipole does not experience the field of the other dipoles. These magnetic dipoles can be

orientedin any direction with the application of external magnetic field. Since the spins

are localized they have no kinetic energy. The Hamiltonian of such a system consists,

therefore, of magnetic potential energy in the presence of magnetic field ๐šฎ only which can

be written as

๐‘ฏ = โˆ’ ๐๐’Š

๐‘ต

๐’Š=๐Ÿ

.๐šฎ (20)

Here ๐๐’Š is the magnetic moment of the ith magnetic dipole.

We look at the system both classically and quantum mechanically and try to get some

well-knownresult such as Curie Law for paramagnetic systems.

(i) A classical Treatment

In this case equation (20) can be written explicitly in terms of orientation ๐œฝ๐’Š of each

magnetic dipole as

๐‘ฏ = โˆ’ ๐๐’Š

๐‘ต

๐’Š=๐Ÿ

๐šฎ๐œ๐จ๐ฌ ๐œฝ๐’Š = โˆ’๐‘ต๐๐šฎ ๐œ๐จ๐ฌ๐œฝ

๐œฝ

(21)

Now the single particle partition function can be written, remembering that three

dimensional orientation is decided by ๐œฝ and ๐“

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

So that single dipole partition function can be written as

๐’๐Ÿ = ๐’†(๐œท๐๐šฎ๐œ๐จ๐ฌ๐œฝ)

๐œฝ

= ๐’†(๐œท๐๐šฎ๐œ๐จ๐ฌ๐œฝ) ๐ฌ๐ข๐ง๐œฝ๐’…๐œฝ๐’…๐“๐…

๐ŸŽ

๐Ÿ๐…

๐ŸŽ

(22)

Putting ๐ฑ = ๐œ๐จ๐ฌ ๐œฝ we solve equation (22) to get

๐’๐Ÿ = ๐’†(๐œท๐๐šฎ ๐’™)๐’…๐’™๐’…๐“

+๐Ÿ

โˆ’๐Ÿ

๐Ÿ๐…

๐ŸŽ

= ๐Ÿ’๐…๐ฌ๐ข๐ง๐ก(๐œท๐๐šฎ)

(๐›ƒ๐›๐šฎ)

(23)

So the partition function of the system can be written as

๐’ = ๐’๐Ÿ

๐‘ต = ๐Ÿ’๐…๐ฌ๐ข๐ง๐ก(๐œท๐๐šฎ)

๐›ƒ๐›๐šฎ ๐‘ต

(24)

Now we can calculate the thermodynamic properties using the results derived in module

XIII.

Helmholtz free energy (F)

๐‘ญ = โˆ’๐‘ต๐ค๐๐“ ๐ฅ๐ง ๐Ÿ’๐…

๐ฌ๐ข๐ง๐ก(๐œท๐๐šฎ)

๐›ƒ๐›๐šฎ

(25)

Magnetization ๐‘ด of the system

๐‘ด = โˆ’

๐๐‘ญ

๐๐šฎ ๐‘ป,๐‘ต

= ๐‘ต๐ค๐๐“ ๐››(๐ฅ๐ง ๐ฌ๐ข๐ง๐ก(๐œท๐๐šฎ) โˆ’ ๐ฅ๐ง ๐›ƒ๐›๐šฎ )

๐๐šฎ=

(26)

๐‘ด = ๐‘ต ๐ ๐œ๐จ๐ญ๐ก๐œท๐๐šฎ โˆ’

๐Ÿ

๐›ƒ๐›๐šฎ = ๐‘ต๐๐‘ณ ๐œท๐๐šฎ

(27)

The mean magnetization in the direction of the magnetic field is

๐ =

๐‘ด

๐‘ต= ๐ ๐œ๐จ๐ญ๐ก๐œท๐๐šฎ โˆ’

๐Ÿ

๐›ƒ๐›๐šฎ

(28)

Where ๐‘ณ ๐’™ = ๐œ๐จ๐ญ๐ก ๐’™ โˆ’๐Ÿ

๐ฑ is the Langevin function, here ๐’™ = ๐œท๐๐šฎ is a parameter

giving the ratio of magnetic potential energy (๐๐šฎ) to thermal energy (๐’Œ๐‘ฉ๐‘ป)..

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

Figure 1Langevin Function

There are two limiting cases which provide us interesting results

(i) Low temperature or High magnetic field limit (๐๐‡ โ‰ซ ๐’Œ๐‘ฉ๐‘ป):

In this limit Langevin function saturates to 1, figure 1, i.e all magnetic dipoles

align in the direction of magnetic field and the net magnetization shall be

๐‘ด = ๐‘ต ๐ (29)

(ii) High temperature or Low magnetic field limit (๐๐‡ โ‰ช ๐’Œ๐‘ฉ๐‘ป):

In this limit ๐œ๐จ๐ญ๐ก ๐’™ =๐Ÿ

๐’™+

๐’™

๐Ÿ‘โˆ’

๐’™๐Ÿ‘

๐Ÿ’๐Ÿ“+โ‹ฏ and the Langevin function ๐‘ณ ๐’™ โ‰ˆ ๐’™/๐Ÿ‘

Therefore,

๐‘ด = ๐‘ต

๐๐Ÿ๐‡

๐ค๐๐‘ป

(30)

In this limit susceptibility ๐Œ =๐๐‘ด

๐๐‘ฏ becomes

๐Œ =

๐๐‘ด

๐๐‘ฏ=๐‘ต๐๐Ÿ

๐ค๐๐‘ป=๐‘ช

๐‘ป

(31)

๐‘ฅ

๐ฟ(๐‘ฅ)

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

This is famous Curie Law of para-magnetism which was experimentally

verified to be true for copper-potassium sulphate hexahydrate.

(i) A Quantum Mechanical treatment.

To treat the problem of para-magnetism quantum mechanically, we must note that (i)

magnetic moment of the particle involved of the system depends on its angular

momentum ๐‘ฑ (ii) magnetic moment ๐ and its component in the direction of magnetic field

does not have arbitrary values but are discrete.

If angular momentum of the system is ๐‘ฑ its magnetic moment ๐ is given by

๐ = ๐๐‘ฉ๐’ˆ๐‘ฑ (32)

Where ๐๐‘ฉ =๐’†โ„

๐Ÿ๐’Ž๐’„ is Bohr magneton and ๐’ˆ is Lande factor given by

๐’ˆ =

๐Ÿ‘

๐Ÿ+๐‘บ ๐‘บ+ ๐Ÿ โˆ’ ๐‘ณ ๐‘ณ+ ๐Ÿ

๐Ÿ๐‘ฑ ๐‘ฑ+ ๐Ÿ

(33)

If the particles involved are electrons i.e. ๐‘บ = ๐Ÿ/๐Ÿ with ๐‘ณ = ๐ŸŽ the total angular

momentum ๐‘ฑ =๐Ÿ

๐Ÿ, ๐’ˆ = ๐Ÿ. On the other hand if ๐‘บ = ๐ŸŽ then ๐’ˆ is solely due to ๐‘ณ and

๐’ˆ = ๐Ÿ.

Now if we take magnetic field in the direction ofz-axis the component of ๐ in this

direction ๐๐’› is given by:

๐๐’› = ๐’ˆ๐๐‘ฉ๐’Ž,๐’Ž = โˆ’๐‘ฑ,โˆ’๐‘ฑ+ ๐Ÿ,โ€ฆ , ๐‘ฑ โˆ’ ๐Ÿ, ๐‘ฑ (34)

Now we are in a position to write down the single partition function in the presence of

magnetic field:

๐’๐Ÿ = ๐’†๐’ˆ๐๐‘ฉ๐’Ž๐šฎ๐›ƒ

๐’Ž=+๐‘ฑ

๐’Ž=โˆ’๐‘ฑ

(35)

The sum in equation (17) is a geometrical progression with ๐Ÿ๐‘ฑ+ ๐Ÿ terms with first term

๐’†โˆ’๐’ˆ๐๐‘ฉ๐‰๐šฎ๐›ƒ and common ratio ๐’†๐’ˆ๐๐‘ฉ๐šฎ๐›ƒ, therefore, ๐’๐Ÿ is given by

๐’๐Ÿ =

๐’†โˆ’๐’ˆ๐๐‘ฉ๐‘ฑ๐šฎ๐›ƒ ๐Ÿ โˆ’ ๐’†๐’ˆ๐๐‘ฉ๐šฎ๐›ƒ ๐Ÿ๐‘ฑ+๐Ÿ

๐Ÿ โˆ’ ๐’†๐’ˆ๐๐‘ฉ๐šฎ๐›ƒ

(36)

This can be further simplified to give

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

๐’๐Ÿ = ๐’†

โˆ’๐’ˆ๐๐‘ฉ๐šฎ๐œท ๐‘ฑ+๐Ÿ

๐Ÿ โˆ’ ๐’†

๐’ˆ๐๐‘ฉ๐šฎ๐›ƒ ๐’‹+๐Ÿ

๐Ÿ

๐’†โˆ’๐’ˆ๐๐‘ฉ๐šฎ๐œท

๐Ÿ โˆ’ ๐’†๐’ˆ๐๐‘ฉ๐šฎ๐œท

๐Ÿ =๐ฌ๐ข๐ง๐ก๐’ˆ๐๐‘ฉ๐šฎ๐ฃ๐›ƒ ๐Ÿ +

๐Ÿ

๐Ÿ๐‘ฑ

๐ฌ๐ข๐ง๐ก๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

๐Ÿ๐‘ฑ

(37)

Putting ๐’ˆ๐๐‘ฉ๐šฎ๐ฃ๐›ƒ = ๐’™, equation (36) becomes

๐’๐Ÿ = =๐ฌ๐ข๐ง๐ก๐’™ ๐Ÿ+

๐Ÿ

๐Ÿ๐‘ฑ

๐ฌ๐ข๐ง๐ก๐’™

๐Ÿ๐‘ฑ

(38)

So the total partition function of the system is given by

๐’ = ๐ฌ๐ข๐ง๐ก๐’™ ๐Ÿ+

๐Ÿ

๐Ÿ๐‘ฑ

๐ฌ๐ข๐ง๐ก๐’™

๐Ÿ๐‘ฑ

๐‘ต

(39)

Now we will be in a position to calculate thermodynamic properties of the system.

Helmholtz Free Energy(๐‘ญ):

๐‘ญ = โˆ’๐‘ต๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง ๐ฌ๐ข๐ง๐ก ๐’ˆ๐๐‘ฉ๐šฎ๐‰๐›ƒ ๐Ÿ+

๐Ÿ

๐Ÿ๐‰ โˆ’ ๐ฅ๐ง ๐ฌ๐ข๐ง๐ก

๐’ˆ๐๐‘ฉ๐šฎ๐ฃ๐›ƒ

๐Ÿ๐‰

(40)

Magnetization ๐‘ด: Since ๐‘ด = โˆ’ ๐๐‘ญ

๐๐šฎ ๐‘ป,๐‘ต

๐‘ด = ๐‘ต ๐’ˆ๐๐‘ฉ๐‘ฑ ๐Ÿ +

๐Ÿ

๐Ÿ๐‘ฑ ๐œ๐จ๐ญ๐ก ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท ๐Ÿ+

๐Ÿ

๐Ÿ๐‰

โˆ’ ๐Ÿ

๐Ÿ๐‘ฑ ๐œ๐จ๐ญ๐ก

๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

๐Ÿ๐‘ฑ

(41)

Or

๐‘ด = ๐‘ต๐’ˆ๐๐‘ฉ๐‘ฑ ๐‘ฉ๐‘ฑ ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท (42)

Where ๐‘ฉ๐‘ฑ ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท is a Brillouin function of order ๐‘ฑ, where ๐‘ฑ is the relevant quantum

number. The plot of the Brillouin function is given in Figure 2 below:

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

Figure 2 Brillouin function for sample values of ๐‘ฑ

From Figure 2, it is clear that large values of ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท โ‰ซ ๐Ÿ i.e for strong field and low

temperature, the Brillouin function approaches 1 for all values of ๐‘ฑ, showing state of

magnetic saturation. However, for ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ โ‰ช ๐Ÿ i.e.weak field and high temperature, the

Brillouin function, knowing that ๐œ๐จ๐ญ๐ก ๐’™ โ‰…๐Ÿ

๐’™+

๐’™

๐Ÿ‘ for ๐’™ โ‰ช ๐Ÿ so that Brillouin function can

be written as

๐‘ฉ๐‘ฑ ๐’™ โ‰… ๐Ÿ+

๐Ÿ

๐Ÿ๐‘ฑ

๐Ÿ

๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท ๐Ÿ+๐Ÿ

๐Ÿ๐‰

+ ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท ๐Ÿ+

๐Ÿ

๐Ÿ๐‰

๐Ÿ‘ โˆ’

๐Ÿ

๐Ÿ๐‘ฑ

๐Ÿ

๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

๐Ÿ๐’‹

+ ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

๐Ÿ

๐Ÿ๐‰

๐Ÿ‘

(43)

Or

๐‘ฉ๐‘ฑ ๐’™ โ‰…

๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

๐Ÿ‘ ๐Ÿ+

๐Ÿ

๐Ÿ๐‘ฑ ๐Ÿ

โˆ’ ๐Ÿ

๐Ÿ๐‘ฑ ๐Ÿ

=๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

๐Ÿ‘ ๐Ÿ+

๐Ÿ

๐‘ฑ

(44)

Therefore,

๐‘ด =

๐‘ต ๐’ˆ๐๐‘ฉ ๐Ÿ๐‘ฑ( ๐‘ฑ + ๐Ÿ)

๐Ÿ‘๐’Œ๐‘ฉ๐‘ป๐‡

(45)

Once again we get Curie Law:

๐‘ฉ๐‘ฑ ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

๐Œ =

๐๐‘ด

๐๐‘ฏ =

๐‘ต ๐’ˆ๐๐‘ฉ ๐Ÿ๐‘ฑ( ๐‘ฑ + ๐Ÿ)

๐Ÿ‘๐’Œ๐‘ฉ๐‘ป=๐‘ช

๐‘ป

(46)

Where, now ๐‘ช =๐‘ต ๐’ˆ๐๐‘ฉ

๐Ÿ๐‘ฑ( ๐‘ฑ+๐Ÿ)

๐Ÿ‘๐’Œ๐‘ฉ=

๐‘ต๐๐Ÿ

๐Ÿ‘๐’Œ๐‘ฉwith ๐๐Ÿ = ๐’ˆ๐๐‘ฉ

๐Ÿ๐‘ฑ( ๐‘ฑ + ๐Ÿ), a departure from classical

result.

In the limit ๐‘ฑ โ†’ โˆž, Brillouin function reduces toLangevin function:

๐Ÿ+๐Ÿ

๐Ÿ๐‘ฑ ๐œ๐จ๐ญ๐ก ๐’™ ๐Ÿ+

๐Ÿ

๐Ÿ๐‰ โˆ’

๐Ÿ

๐Ÿ๐‘ฑ ๐œ๐จ๐ญ๐ก

๐’™

๐Ÿ๐‘ฑ โ†’ ๐œ๐จ๐ญ๐ก ๐’™ โˆ’

๐Ÿ

๐Ÿ๐‘ฑ ๐Ÿ๐’‹

๐’™= ๐œ๐จ๐ญ๐ก ๐’™ โˆ’

๐Ÿ

๐’™

This is expected, ๐‘ฑ โ†’ โˆž amounts to saying that there are tremendously large orientations

in which the magnetic dipoles can align, this situation is the same as in the classical case

and should yield the classical result.

4. Equipartition Theorem

Equipartition theorem also known as law of equipartition of energy is a classical theorem.

According to it in classical limiting case every canonical variable (generalized position

and momentum) entering quadratically or harmonically in a Hamiltonian

function(Energy) has a mean thermal energy ๐’Œ๐‘ฉ๐‘ป

๐Ÿ. For example, Hamiltonian function in

three dimensions may be written as

๐‘ฏ =

๐’‘๐Ÿ

๐Ÿ๐’Ž+๐Ÿ

๐Ÿ๐’Ž๐Ž๐Ÿ๐’“๐Ÿ +

๐Ÿ

๐Ÿ

๐‘ณ๐Ÿ

๐‘ฐ+

(๐‘ฌ๐Ÿ + ๐‘ฉ๐Ÿ)

๐Ÿ–๐…

(47)

This Hamiltonian represents energy possessed by a molecule which is respectively made

up of translational kinetic energy, harmonic potential energy, rotational kinetic energy

and electromagnetic energy in an electromagnetic field. Each term is quadratic in one of

the canonical variables. Therefore, according to law of equipartition of energy, in three

dimensions.Thus thermal energy ๐‘ฌ is given by ๐Ÿ‘๐’Œ๐‘ฉ๐‘ป

๐Ÿ+

๐Ÿ‘๐’Œ๐‘ฉ๐‘ป

๐Ÿ+ ๐’Œ๐‘ฉ๐‘ป + ๐Ÿ๐’Œ๐‘ฉ๐‘ป, here we

have three canonical variables for translational motion, three for vibrational motion, two

for rotational motion and two each for electrical energy and magnetic energy. This

theorem can be proved easily using canonical distribution function. In this section we

prove this result with a slightly sophisticated approach.

Proof: Suppose we have a classical system of ๐‘ต particles with ๐Ÿ”๐‘ต generalized

coordinates (๐’’๐’Š,๐’‘๐’Š), where ๐’Š goes from 1 to ๐Ÿ‘๐‘ต, giving a total of ๐Ÿ”๐‘ต coordinates. We are

interested in calculating the mean value of the quantity ๐’™๐’Š๐๐‘ฏ

๐๐’™๐’‹, where ๐’™๐’Šand ๐’™๐’‹ are any of

the ๐Ÿ”๐‘ต coordinates. In canonical ensemble it is given by:

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

๐’™๐’Š๐๐‘ฏ

๐๐’™๐’‹ =

๐’†โˆ’๐œท๐‘ฏ(๐’’,๐’‘) ๐’™๐’Š๐๐‘ฏ

๐๐’™๐’‹ ๐’…๐Ž

๐’†โˆ’๐œท๐‘ฏ(๐’’,๐’‘)๐’…๐Ž

(48)

Where ๐’…๐Ž = ๐’…๐Ÿ‘๐‘ต๐’’ ๐’…๐Ÿ‘๐‘ต๐ฉ. Out of ๐’…๐Ž let us pick up integration over ๐’™๐’‹ in the numerator

and do this integration by parts. First we note that ๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘ ๐’™๐’Š๐๐‘ฏ

๐๐’™๐’‹ = โˆ’

๐Ÿ

๐œท๐’™๐’Š

๐๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘

๐๐’™๐’‹ so

equation (48) can be written as

๐’™๐’Š๐๐‘ฏ

๐๐’™๐’‹ = โˆ’

๐Ÿ

๐œท

๐’™๐’Š ๐๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘

๐๐’™๐’‹ ๐’…๐’™๐’‹๐๐›š๐’“๐’†๐’Ž๐’‚๐’Š๐’๐’ˆ ๐’„๐’โˆ’๐’๐’“๐’…๐’Š๐’๐’‚๐’•๐’†๐’”

๐’†โˆ’๐œท๐‘ฏ(๐’’,๐’‘)๐’…๐Ž

(49)

So integral over ๐’™๐’‹ becomes

๐’™๐’Š

๐๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘

๐๐’™๐’‹ ๐’…๐’™๐’‹ = ๐’™๐’Š ๐’†

โˆ’๐œท๐‘ฏ ๐’’,๐’‘ ๐’™๐’‹๐Ÿ

๐’™๐’‹๐Ÿ โˆ’

๐๐’™๐’Š๐๐’™๐’‹

๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘ ๐’…๐’™๐’‹ (50)

To take limits over the first term we note that there are two possibilities:

(i) If ๐’™๐’‹ are momentum co-ordinates, the kinetic energy tends to infinity at

extremely large values, making Hamiltonian infinite and ๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘ โ†’ ๐ŸŽ.

(ii) If ๐’™๐’‹ happens to be position co-ordinates, the limits mean on the walls of the

container in which system is enclosed, where potential energy is infinite and

once again Hamiltonian becomes infinite leading to ๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘ โ†’ ๐ŸŽ.

Thus we can conclude that first term vanishes. So equation (50) becomes

๐’™๐’Š

๐๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘

๐๐’™๐’‹ ๐’…๐’™๐’‹ = โˆ’

๐๐’™๐’Š๐๐’™๐’‹

๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘ ๐’…๐’™๐’‹

= โˆ’ ๐œน๐’Š๐’‹ ๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘ ๐’…๐’™๐’‹

(51)

Hence equation (49) can be written as

๐’™๐’Š

๐๐‘ฏ

๐๐’™๐’‹ =

๐Ÿ

๐œท

๐œน๐’Š๐’‹ ๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘ ๐’…๐’™๐’‹๐๐›š๐’“๐’†๐’Ž๐’‚๐’Š๐’๐’ˆ ๐’„๐’โˆ’๐’๐’“๐’…๐’Š๐’๐’‚๐’•๐’†๐’”

๐’†โˆ’๐œท๐‘ฏ(๐’’,๐’‘)๐’…๐Ž

=๐œน๐’Š๐’‹

๐œท

๐’†โˆ’๐œท๐‘ฏ ๐’’,๐’‘ ๐๐›š

๐’†โˆ’๐œท๐‘ฏ(๐’’,๐’‘)๐’…๐Ž=๐œน๐’Š๐’‹

๐œท= ๐œน๐’Š๐’‹๐’Œ๐‘ฉ๐‘ป

(52)

This is an extremely general result and is independent of the precise form of the ๐‘ฏ(๐’’,๐’‘).

From equation (52) the following results follow immediately:

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

If ๐’™๐’Š = ๐’™๐’‹ = ๐’‘๐’Š ๐’‘๐’Š๐๐‘ฏ

๐๐’‘๐’‹ = ๐’Œ๐‘ฉ๐‘ป

๐’‘๐’Š๐๐‘ฏ

๐๐’‘๐’‹

๐Ÿ‘๐‘ต

๐’Š=๐Ÿ

= ๐Ÿ‘๐‘ต๐’Œ๐‘ฉ๐‘ป

If ๐’™๐’Š = ๐’™๐’‹ = ๐’’๐’Š ๐’’๐’Š๐๐‘ฏ

๐๐’’ = ๐’Œ๐‘ฉ๐‘ป

๐’’๐’Š๐๐‘ฏ

๐๐’’๐’Š = ๐Ÿ‘๐‘ต๐’Œ๐‘ฉ๐‘ป

What about the statement of the law of equipartion of energy made earlier that every

canonical variable (generalized position and momentum) entering quadratically or

harmonically in a Hamiltonian function(Energy) has a mean thermal energy๐’Œ๐‘ฉ๐‘ป

๐Ÿ

This can be checked easily. Let us take a Hamiltonian which is is a quadratic function of

co-ordinates, by suitable canonical transformation, it can be converted into a form:

๐‘ฏ = ๐‘จ๐’‹๐‘ท๐’‹๐Ÿ

๐’Š

+ ๐‘ฉ๐’‹๐‘ธ๐’‹๐Ÿ

๐’Š

(53)

Where, ๐‘ธ๐’‹and ๐‘ท๐’‹ are canonically conjugate transformed coordinates and ๐‘จ๐’‹ and ๐‘ฉ๐’‹ are

suitable constants.

Then it immediately follows that

๐‘ท๐’‹

๐๐‘ฏ

๐๐’‘๐’‹+ ๐‘ธ๐’‹

๐๐‘ฏ

๐๐’’๐’‹

๐’‹

= ๐Ÿ๐‘ฏ (54)

Therefore, from the table it follows that

๐‘ฏ =

๐Ÿ

๐Ÿ ๐‘ท๐’‹

๐๐‘ฏ

๐๐‘ท๐’‹ + ๐‘ธ๐’‹

๐๐‘ฏ

๐๐‘ธ๐’‹

๐’‹

=๐Ÿ

๐Ÿ ๐Ÿ”๐‘ต๐’Œ๐‘ฉ๐‘ป =

๐Ÿ

๐Ÿ๐’‡๐’Œ๐‘ฉ๐‘ป

(55)

Here 6N are the number of degrees of freedom corresponding to number of non-zero

coefficients in the transformed Hamiltonian (53). One can immediately conclude that

corresponding to each quadratic term in the Hamiltonian there is a contribution of ๐Ÿ

๐Ÿ๐’Œ๐‘ฉ๐‘ป,

proving the statement providing an alternative proof for the equipartition theorem.

Applications of law of equipartition:

Law of equipartition theorem provides a back of the stamp method to calculate in

classical regime (i.e. at sufficiently high temperature and low density) to calculate

internal energy and specific heat. Quantum mechanically a system has discrete energy

levels, however at sufficiently high temperatures, the spacing ๐šซ๐‘ฌ between energy levels

is โ‰ช ๐’Œ๐‘ฉ๐‘ป. One can then treat discrete energy level structure as a continuum and law of

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

equipartition which is valid in classical regime can be applied. In the following we look

at application of equipartition theorem in some well-known systems.

A monoatomic gas: Single atom in a monoatomic gas has only translational kinetic

energy, so that total Hamiltonian of the 1mole monoatomic system can be written as

(๐‘ต๐’Š=๐Ÿ

๐’‘๐’Š๐’™๐Ÿ

๐Ÿ๐’Ž+

๐’‘๐’Š๐’š๐Ÿ

๐Ÿ๐’Ž+

๐’‘๐’Š๐’›๐Ÿ

๐Ÿ๐’Ž), where N is Avagadroโ€™s number, so that there are ๐Ÿ‘๐‘ต quadratic

terms in momentum coordinate in it. According to law of equipartition of energy, the

energy of this ๐‘ต particle monoatomic gas can be written as

๐‘ฌ = ๐Ÿ‘๐‘ต

๐’Œ๐‘ฉ๐‘ป

๐Ÿ=๐Ÿ‘

๐Ÿ๐‘น๐‘ป

(56)

The molar specific heat at constant volume ๐‘ช๐’— =๐Ÿ‘

๐Ÿ๐‘น. Using ๐‘ช๐’‘ โˆ’ ๐‘ช๐’— = ๐‘น, specific heat

at constant pressure is then given by ๐‘ช๐’‘ =๐Ÿ“

๐Ÿ๐‘น. The ratio of the two specific heats

๐œธ =๐‘ช๐’‘

๐‘ช๐’—=

๐Ÿ“

๐Ÿ‘, a well-known result.

A diatomic gas: Each particle of the gas in thios case is made up of a diatomic molecule,

which can be assumed to be a dumb bell shaped rigid rotator, with arotational symmetry

about the line joining the nuclei of the two atoms along Z-axis. So the Hamiltonian of the

diatomic molecule has three translational kinetic energy terms quadratic in three

components of the linear momentum and two terms corresponding to rotational kinetic

energy quadratic in ๐’‘๐’Š๐’™๐Ÿ

๐Ÿ๐’Ž+

๐’‘๐’Š๐’š๐Ÿ

๐Ÿ๐’Ž+

๐’‘๐’Š๐’›๐Ÿ

๐Ÿ๐’Ž +

๐‘ฑ๐’Š๐’™๐Ÿ

๐Ÿ๐‘ฐ+

๐‘ฑ๐’Š๐’š๐Ÿ

๐Ÿ๐‘ฐ ๐‘ต

๐’Š=๐Ÿ where ๐‘ฑ is angular momentum

and ๐‘ฐ moment of inertia. Hamiltonian thus has 5N quadratic terms.According to law of

equipartition of energy the energy of this N diatomic molecule system can be written as

๐‘ฌ =

๐Ÿ“

๐Ÿ๐‘ต๐’Œ๐‘ฉ๐‘ป =

๐Ÿ“

๐Ÿ๐‘น๐‘ป

(57)

Where ๐‘ต is Avagadroโ€™s number.

The molar specific heat at constant volume ๐‘ช๐’— =๐Ÿ“

๐Ÿ๐‘น. Using ๐‘ช๐’‘ โˆ’ ๐‘ช๐’— = ๐‘น, specific heat

at constant pressure is then given by ๐‘ช๐’‘ =๐Ÿ•

๐Ÿ๐‘น. The ratio of the two specific heats

(๐œธ =๐‘ช๐’‘

๐‘ช๐’—=

๐Ÿ•

๐Ÿ“, a well-known result which agree very nicely with experimental results at

room temperature. It must be mentioned here that if we relax the condition of rigid

molecule in this discussion we expect molecule to vibrate as a one dimensional harmonic

oscillator having energy which is partly kinetic and partly kinetic contributing two

additional terms so that each molecule contributes vibrational kinetic energy of ๐Ÿ ร—๐Ÿ

๐Ÿ๐’Œ๐‘ฉ๐‘ป, so that

๐‘ฌ =

๐Ÿ“

๐Ÿ๐‘ต๐’Œ๐‘ฉ๐‘ป+๐‘ต ๐’Œ๐‘ฉ๐‘ป =

๐Ÿ•

๐Ÿ๐‘น๐‘ป

(58)

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

So that ๐‘ช๐‘ฝ =๐Ÿ•

๐Ÿ๐‘น, ๐‘ช๐’‘ =

๐Ÿ—

๐Ÿ๐‘น and ๐œธ =

๐Ÿ—

๐Ÿ•. The observed values do not agree with

experiments indicating that at room temperature diatomic molecule has no vibrational

motion. The vibrations get excited only in the case of high temperature limit.

A crystalline solid:

A simple model of crystalline solid consists of a collection of atoms, with each lattice

having one atom, where it can not move or rotate but can behave as an independent

harmonic oscillator. Each oscillator having 6 quadratic terms three for kinetic energy and

three for potential energy: ๐’‘๐’Š๐’™๐Ÿ

๐Ÿ๐’Ž+

๐’‘๐’Š๐’š๐Ÿ

๐Ÿ๐’Ž+

๐’‘๐’Š๐’›๐Ÿ

๐Ÿ๐’Ž +

๐Ÿ

๐Ÿ๐‘ฒ(๐’’๐’Š๐’™

๐Ÿ + ๐’’๐’Š๐’š๐Ÿ + ๐’’๐’Š๐’›

๐Ÿ ) . So according to

law of equipartition energy, we have energy of one mole of a solid:

๐‘ฌ = ๐Ÿ”๐‘ต

๐Ÿ

๐Ÿ๐’Œ๐‘ฉ๐‘ป = ๐Ÿ‘ ๐‘น๐‘ป

(59)

Thus molar specific heat of a solid at constant volume ๐‘ช๐’— = ๐Ÿ‘๐‘น, well-known Dulong and

Petitโ€™s law. This is found to be the case at high temperature, but is not true at low

temperatures and we need to go beyond classical law of equipartition of energy and

quantum mechanics invoked as was done by Einstein.

5. Virial Theorem:

In classical mechanics the products ๐’‘๐’Š๐๐‘ฏ

๐๐’‘๐’Š= ๐’‘๐’Š ๐’’๐’Š and ๐’’๐’Š

๐๐‘ฏ

๐๐’’๐’Š= โˆ’๐’’๐’Š ๐’‘๐’Š have a special

significance. The second expression which is a product of position coordinate and

generalized force is called virial and when summed over all i its mean value gives virial

theorem of statistical mechanics:

๐“ฅ๐’Š๐’… = ๐’’๐’Š ๐’‘๐’Š

๐Ÿ‘๐‘ต

๐’Š=๐Ÿ = โˆ’ ๐’’๐’Š

๐๐‘ฏ

๐๐’’๐’Š

๐Ÿ‘๐‘ต

๐’Š=๐Ÿ = โˆ’๐Ÿ‘๐‘ต๐’Œ๐‘ฉ๐‘ป

(60)

Virial has a very interesting relationship with the physical quantities of a system and

starting from it equation of state can be derived. Let us take the case of an ideal gas. It is

enclosed in a container and walls provide the only external force to keep the gas

confinedin the form of external pressure ๐‘ท. So here we have a forse โˆ’๐‘ท๐’…๐‘บ on an area

element ๐’…๐‘บ of the wall. The virial of the ideal gas can be calculated as:

๐“ฅ๐’Š๐’… = ๐’’๐’Š ๐’‘๐’Š ๐Ÿ‘๐‘ต

๐’Š=๐Ÿ = ๐’’๐’Š ๐‘ญ๐’Š

๐Ÿ‘๐‘ต

๐’Š=๐Ÿ= โˆ’๐‘ท ๐’“ .๐’…๐’”

๐’”

(61)

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

Where ๐’“ is the position vector corresponding to the surface element with a particle in its

vicinity. Using divergence theorem we have

๐“ฅ๐’Š๐’… = โˆ’๐‘ท ๐› .

๐‘ฝ

๐’“ ๐’…๐‘ฝ = โˆ’๐Ÿ‘๐‘ท๐‘ฝ

(62)

Applying Virial Theorem, we have ideal equation of state:

๐‘ท๐‘ฝ = ๐‘ต๐‘ฒ๐‘ป (63)

Furthermore, Kinetic energy of an ideal gas say ๐‘ฌ๐’Œ =๐Ÿ‘

๐Ÿ๐‘ต๐’Œ๐’ƒ๐‘ป = โˆ’

๐“ฅ๐’Š๐’…

๐Ÿ, therefore,

๐“ฅ๐’Š๐’… = โˆ’๐Ÿ๐‘ฌ๐’Œ (64)

Virial has many interesting applications where it can from the knowledge of two particle

potential be used to calculate the equation of state of the system, which becomes very

useful in calculation of pressure computationally.

6. Density of State over Energy:

We have till this point focused on the number of microstates in a region of phase space

and arrived at a result that for a system with f degrees of freedom, a volume ๐Ÿ๐…โ„ ๐’‡ in

the phase space contains one microstate. However, in many practical situations, e.g. in

condensed matter physics we are interested in finding the number of states which are

available to it in a small energy interval ๐and ๐+ ๐’…๐. This important number can be

obtained if we know relation between energy (๐) and momentum (๐’‘), also called

dispersion relation. These relations for a free particle system for non-relativistic, ultra

relativistic (mass neglected or mass less particles) and relativistic particles are given in

the table below:

Table 1 Dispersion relation for a free particle system

System Dispersion relation

Non-relativistic ๐ =

๐’‘๐Ÿ

๐Ÿ๐’Ž

Relativistic ๐๐Ÿ = ๐’„๐Ÿ๐’‘๐Ÿ +๐’Ž๐Ÿ๐‘ช๐Ÿ’

Ultra relativistic ๐ = ๐’„๐’‘

Let us derive for a three dimensional system, the density of states ๐““(๐), the number of

states of a particle per unit volume per unit energy range about ๐.

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

Let us begin by counting the number of states for a free particle in three dimensions in

small region of phase space ๐’…๐Ÿ‘๐’“ ๐’…๐Ÿ‘๐’‘, then since particle has three degrees of freedom we

have

Number of states in phase space volume๐’…๐Ÿ‘๐’“ ๐’…๐Ÿ‘๐’‘ =

๐’…๐Ÿ‘๐’“๐’…๐Ÿ‘๐’‘

๐Ÿ๐…โ„ ๐Ÿ‘

(65)

.

If the particles have some internal degrees of freedom, let us denote this by ๐’ˆ then the

abover relation becomes

Number of states in phase space volume๐’…๐Ÿ‘๐’“ ๐’…๐Ÿ‘๐’‘ = ๐’ˆ

๐’…๐Ÿ‘๐’“๐’…๐Ÿ‘๐’‘

๐Ÿ๐…โ„ ๐Ÿ‘ (66)

Let us assume that system is homogeneous, then this number is independent of the

position of the phase space volume element. Then we can integrate over the postion

coordinates to obtain

Number of states in momentum space volume๐’…๐Ÿ‘๐’‘ = ๐’ˆ

๐‘ฝ๐’…๐Ÿ‘๐’‘

๐Ÿ๐…โ„ ๐Ÿ‘

(67)

Now if we take system to be isotropic, this number depends only on the magnitude of

momentum ๐’‘ , we can then integrate over angular variables ๐œฝ and ๐“, so that we get

Number of states between ๐’‘ and ๐’‘+ ๐’…๐’‘ = ๐’ˆ

๐Ÿ’๐…๐‘ฝ๐’‘๐Ÿ๐’…๐’‘

๐Ÿ๐…โ„ ๐Ÿ‘

(68)

Now let ๐““(๐) be the number of states of a particle per unit volume per unit energy range

about ๐ then

๐‘ฝ๐““ ๐ ๐’…๐ = ๐’ˆ

๐Ÿ’๐…๐‘ฝ๐’‘๐Ÿ๐’…๐’‘

๐Ÿ๐…โ„ ๐Ÿ‘

(69)

Or

๐““ ๐ = ๐’ˆ

๐Ÿ’๐… ๐’‘๐Ÿ

๐Ÿ๐…โ„ ๐Ÿ‘๐’…๐’‘

๐’…๐

(70)

Now by using dispersion relations given in Table 1, we can get density of states for each

of the cases for a three dimensional system as given in Table 2 below

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

Table 2 Density of states over energy for a three dimensional system

System Dispersion relation ๐’…๐’‘

๐’…๐

๐““ ๐

Non-

relativistic ๐ =๐’‘๐Ÿ

๐Ÿ๐’Ž ๐Ÿ๐’Ž๐Ÿ‘๐ โˆ’

๐Ÿ

๐Ÿ ๐’ˆ

๐Ÿ’๐…๐Ÿ ๐Ÿ๐’Ž

โ„๐Ÿ

๐Ÿ‘

๐Ÿ

๐๐Ÿ

๐Ÿ

Relativistic ๐๐Ÿ = ๐’„๐Ÿ๐’‘๐Ÿ +๐’Ž๐Ÿ๐’„๐Ÿ’ ๐Ÿ๐

๐‘ช ๐๐Ÿ โˆ’๐’Ž๐Ÿ๐’„๐Ÿ’ โˆ’

๐Ÿ

๐Ÿ ๐’ˆ

๐Ÿ๐…๐Ÿ ๐ ๐๐Ÿ โˆ’๐’Ž๐Ÿ๐’„๐Ÿ’

๐Ÿ

๐Ÿ

๐’„โ„ ๐Ÿ‘

Ultra

relativistic ๐ = ๐’„๐’‘ ๐Ÿ

๐’„

๐’ˆ

๐Ÿ๐…๐Ÿ๐๐Ÿ

โ„๐’„ ๐Ÿ‘

Similarly density of states for two dimensional systems, one dimensional systems and

zero dimensional systems can be obtained.

7. Summary

In this module we have learnt

How the properties from the knowledge of patition function of the following

systems their thermodynamic properties can be obtained:

i. A system of harmonic oscillators: ๐‘ฏ = ๐’‘๐’Š๐Ÿ

๐Ÿ๐’Ž+

๐Ÿ

๐Ÿ๐’Ž๐Ž๐Ÿ๐’’๐’Š

๐Ÿ ๐‘ต๐’Š=๐Ÿ

Physical Quantity Classical approach Quantum Approach

Partition function ๐’ = ๐’๐Ÿ๐‘ต = ๐œทโ„๐Ž โˆ’๐‘ต

๐’ = ๐Ÿ ๐ฌ๐ข๐ง๐ก ๐Ÿ

๐Ÿ๐œทโ„๐Ž

โˆ’๐‘ต

Helmholtz free energy ๐‘ญ = ๐‘ต๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง

โ„๐Ž

๐’Œ๐‘ฉ๐‘ป ๐‘ญ = ๐‘ต

๐Ÿ

๐Ÿโ„๐Ž + ๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง ๐Ÿ โˆ’ ๐’†

โˆ’๐œทโ„๐Ž

Entropy ๐‘บ = ๐‘ต๐’Œ๐‘ฉ ๐Ÿ โˆ’ ๐ฅ๐ง

โ„๐Ž

๐’Œ๐‘ฉ๐‘ป ๐‘บ = ๐‘ต๐’Œ๐‘ฉ

๐Ÿ

๐Ÿ๐œทโ„๐Ž๐œ๐จ๐ญ๐ก

๐Ÿ

๐Ÿ๐œทโ„๐Ž

โˆ’ ๐ฅ๐ง ๐Ÿ ๐ฌ๐ข๐ง๐ก ๐Ÿ

๐Ÿ๐œทโ„๐Ž

Internal Energy ๐‘ฌ = ๐‘ต๐’Œ๐‘ฉ๐‘ป ๐‘ฌ =

๐Ÿ

๐Ÿ๐‘ตโ„๐Ž ๐œ๐จ๐ญ๐ก

๐Ÿ

๐Ÿ๐œทโ„๐Ž =

Pressure ๐‘ท = ๐ŸŽ ๐‘ท = ๐ŸŽ

Chemical potential ๐ = ๐‘ต๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง

โ„๐Ž

๐’Œ๐‘ฉ๐‘ป ๐ =

๐Ÿ

๐Ÿโ„๐Ž+ ๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง ๐Ÿ โˆ’ ๐’†

โˆ’๐œทโ„๐Ž

Specific heat ๐‘ช๐‘ท = ๐‘ช๐‘ฝ = ๐’Œ๐‘ฉ๐‘ป ๐‘ช๐‘ท = ๐‘ช๐‘ฝ = ๐‘ต๐’Œ๐‘ฉ โ„๐Ž๐œท

๐Ÿ๐’†๐œทโ„๐Ž

๐’†๐œทโ„๐Ž โˆ’ ๐Ÿ ๐Ÿ

In the classical limit โ„๐Ž

๐’Œ๐‘ฉ๐‘ปโ‰ช ๐Ÿ all quantum mechanical results approach classical results.

ii. Para-magnetism (Classical and Quantum Mechanical Treatment)

The Hamiltonian for a classical system of magnetic dipoles in a magnetic field is given by

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

๐‘ฏ = โˆ’ ๐๐’Š

๐‘ต

๐’Š=๐Ÿ

.๐šฎ = โˆ’ ๐๐’Š

๐‘ต

๐’Š=๐Ÿ

๐šฎ๐œ๐จ๐ฌ ๐œฝ๐’Š = โˆ’๐‘ต๐๐šฎ ๐œ๐จ๐ฌ๐œฝ

๐œฝ

Physical Quantity Classical approach Quantum Approach

Partition function ๐’ = = ๐Ÿ’๐…

๐ฌ๐ข๐ง๐ก(๐œท๐๐šฎ)

๐›ƒ๐›๐šฎ ๐‘ต

๐’ =

๐ฌ๐ข๐ง๐ก๐’™ ๐Ÿ+๐Ÿ

๐Ÿ๐‘ฑ

๐ฌ๐ข๐ง๐ก๐’™

๐Ÿ๐‘ฑ

๐‘ต

๐’˜๐’‰๐’†๐’“๐’† ๐’™ = ๐’ˆ๐๐‘ฉ๐šฎ๐ฃ๐œท

Helmholtz free

energy ๐‘ญ = โˆ’๐‘ต๐ค๐๐“ ๐ฅ๐ง ๐Ÿ’๐…

๐ฌ๐ข๐ง๐ก(๐œท๐๐šฎ)

๐›ƒ๐›๐šฎ ๐‘ญ = โˆ’๐‘ต๐’Œ๐‘ฉ๐‘ป ๐ฅ๐ง ๐ฌ๐ข๐ง๐ก ๐’™ ๐Ÿ +

๐Ÿ

๐Ÿ๐‰

โˆ’ ๐ฅ๐ง ๐ฌ๐ข๐ง๐ก ๐’™

๐Ÿ๐‰

Magnetization ๐‘ด = โˆ’

๐๐‘ญ

๐๐šฎ ๐‘ป,๐‘ต

= ๐‘ต ๐ ๐œ๐จ๐ญ๐ก๐œท๐๐šฎ

โˆ’๐Ÿ

๐›ƒ๐›๐šฎ

= ๐‘ต๐๐‘ณ ๐œท๐๐šฎ

๐‘ด = ๐‘ต ๐’ˆ๐๐‘ฉ๐‘ฑ ๐Ÿ+๐Ÿ

๐Ÿ๐‘ฑ ๐œ๐จ๐ญ๐ก ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท ๐Ÿ +

๐Ÿ

๐Ÿ๐‰

โˆ’ ๐Ÿ

๐Ÿ๐‘ฑ ๐œ๐จ๐ญ๐ก

๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

๐Ÿ๐‘ฑ

= ๐‘ต๐’ˆ๐๐‘ฉ๐‘ฑ ๐‘ฉ๐‘ฑ ๐’ˆ๐๐‘ฉ๐šฎ๐‘ฑ๐œท

Magnetization in

High magnetic field

or low temperature

limit

๐‘ด = ๐‘ต ๐ ๐‘ด = ๐‘ต ๐’ˆ๐๐‘ฉ๐‘ฑ

Magnetization in high

temperature and low

magnetic field limit

๐‘ด = ๐‘ต๐๐Ÿ๐‡

๐ค๐๐‘ป

๐‘ด =๐‘ต ๐’ˆ๐๐‘ฉ

๐Ÿ๐‘ฑ( ๐‘ฑ+ ๐Ÿ)

๐Ÿ‘๐’Œ๐‘ฉ๐‘ป๐‡

Susceptibility (in high

temperature and low

magnetic field limit)

๐Œ =๐๐‘ด

๐๐‘ฏ=๐‘ต๐๐Ÿ

๐ค๐๐‘ป=๐‘ช

๐‘ป,๐‘ช =

๐‘ต๐๐Ÿ

๐ค๐ ๐Œ =

๐‘ต ๐’ˆ๐๐‘ฉ ๐Ÿ๐‘ฑ ๐‘ฑ+ ๐Ÿ

๐Ÿ‘๐’Œ๐‘ฉ๐‘ป=๐‘ช

๐‘ป,

๐‘ช = ๐‘ต ๐’ˆ๐๐‘ฉ

๐Ÿ๐‘ฑ( ๐‘ฑ+ ๐Ÿ)

๐Ÿ‘๐’Œ๐‘ฉ

That law of equipartition theorem states that every canonical variable

(generalized position and momentum) entering quadratically or harmonically in a

Hamiltonian function(Energy) has a mean thermal energy ๐ค๐๐“

๐Ÿ

How to derive law of equipartition of energy in its most general form

๐’™๐’Š๐๐‘ฏ

๐๐’™๐’‹ = ๐œน๐’Š๐’‹๐’Œ๐‘ฉ๐‘ป

Where ๐’™๐’Š and ๐’™๐’‹ are any of the ๐Ÿ”๐‘ต coordinates.

How to apply law of equipartition of energy to get in the classical limit, internal

energy ๐‘ฌ, molar specific heat at constant volume ๐‘ช๐’—, molar specific heat at

constant pressure ๐‘ช๐’‘ and ratio of the specific heat ๐œธ for a monoatomic gas, for a

diatomic gas (with and without vibrations) and a crystalline solid highlighting the

limitations of the approach.

How to calculate virial of an ideal gas,

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

๐“ฅ๐’Š๐’… = ๐’’๐’Š ๐’‘๐’Š ๐Ÿ‘๐‘ต

๐’Š=๐Ÿ = โˆ’ ๐’’๐’Š

๐๐‘ฏ

๐๐’’๐’Š

๐Ÿ‘๐‘ต

๐’Š=๐Ÿ = โˆ’๐Ÿ‘๐‘ต๐’Œ๐‘ฉ๐‘ป

And how it can we used to get equation of state of the ideal gas.

How to calculate density of state over energy of a three dimensional gas of free

particles

That density of state over energy ๐““ ๐ = ๐’ˆ ๐Ÿ’๐… ๐’‘๐Ÿ

๐Ÿ๐…โ„ ๐Ÿ‘๐’…๐’‘

๐’…๐for non-relativistic,

relativistic and ultra relativistic(mass less )gas is given by

System ๐““ ๐ Non-

relativistic ๐’ˆ

๐Ÿ’๐…๐Ÿ ๐Ÿ๐’Ž

โ„๐Ÿ

๐Ÿ‘

๐Ÿ

๐๐Ÿ

๐Ÿ

Relativistic ๐’ˆ

๐Ÿ๐…๐Ÿ ๐ ๐๐Ÿ โˆ’๐’Ž๐Ÿ๐’„๐Ÿ’

๐Ÿ

๐Ÿ

๐’„โ„ ๐Ÿ‘

Ultra

relativistic ๐’ˆ

๐Ÿ๐…๐Ÿ๐๐Ÿ

โ„๐’„ ๐Ÿ‘

Appendices

A1 Expansion of a logarithmic function and ๐œ๐จ๐ญ๐ก ๐’™

๐ฅ๐ง ๐Ÿ+ ๐’™ = ๐’™ โˆ’๐’™๐Ÿ

๐Ÿ+

๐’™๐Ÿ‘

๐Ÿ‘โˆ’๐’™๐Ÿ’

๐Ÿ’+โ‹ฏfor๐’™ โ‰ช ๐Ÿ.

๐œ๐จ๐ญ๐ก ๐’™ =๐Ÿ

๐’™+

๐’™

๐Ÿ‘โˆ’

๐’™๐Ÿ‘

๐Ÿ’๐Ÿ“+โ‹ฏfor x<<1

A2 Spreadsheet for plotting Langevinand Brillouin functions

Bibliography

1. Pathria R.K. and Beale P. D., Statistical Mechanics, 3rd ed. (Elsevier, 2011).

2. Kubo R., โ€œStatistical Mechanics: An Advanced Course with problems and

Solutions,โ€ Amsterdam: North Holland Publishing Company, 1965.

3. Pal P.B., โ€œAn Introductory Course of Statistical Mechanicsโ€, New Delhi: Narosa

Publishing House Pvt. Ltd., 2008.

4. Panat P.V., โ€œThermodynamics and Statistical Mechanics,โ€ New Delhi: Narosa

Publishing House Pvt. Ltd., 2008

____________________________________________________________________________________________________

Physics

PAPER No. 10 : Statistical Mechanics

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications),

Equipartition Theorem Virial Theorem and Density of States)

5. Brush S.G., โ€œStatistical Physics and the Atomic Theory of Matter, from Boyle and

Newton to Landau and Onsagerโ€, New Jersey: Princeton University Press, 1983.