Antonino Marasco - ASTRON

39
DISK-CORONA GAS CYCLE IN SIMULATED MILKY WAY-LIKE GALAXIES Antonino Marasco Kapteyn Astronomical Institute, Groningen, the Netherlands In collaboration with: Victor P . Debattista Filippo Fraternali Thijs van der Hulst James Wadsley Thomas Quinn Rok Roskar Life cycle of gas in galaxies, ASTRON, 2015

Transcript of Antonino Marasco - ASTRON

DISK-CORONA GAS CYCLE IN SIMULATED

MILKY WAY-LIKE GALAXIESAntonino Marasco

Kapteyn Astronomical Institute, Groningen, the Netherlands

In collaboration with:Victor P. Debattista

Filippo FraternaliThijs van der Hulst

James WadsleyThomas Quinn

Rok RoskarLife cycle of gas in galaxies, ASTRON, 2015

GAS ACCRETION ONTO HALOSCold vs hot mode of gas accretion (e.g., Keres+05,09)

GAS ACCRETION ONTO HALOSCold vs hot mode of gas accretion (e.g., Keres+05,09)

MDM halo< 1011.4 MO High redshift

GAS ACCRETION ONTO HALOSCold vs hot mode of gas accretion (e.g., Keres+05,09)

MDM halo< 1011.4 MO High redshift

MDM halo >1011.4 MO Low redshift

Coronae in MW like galaxies: • T ~ Tvir (few 106 K)• Extended hundreds of kph• Low metallicity

see Fukugita & Peebles 2006

GAS ACCRETION ONTO HALOSCold vs hot mode of gas accretion (e.g., Keres+05,09)

MDM halo< 1011.4 MO High redshift

MDM halo >1011.4 MO Low redshift

Coronae in MW like galaxies: • T ~ Tvir (few 106 K)• Extended hundreds of kph• Low metallicity

see Fukugita & Peebles 2006

transition at z ~ 2

the MW corona had fed our Galaxy continuously in the last 10 Gyr!

IS THERE A CORONA AROUND THE MW?

IS THERE A CORONA AROUND THE MW?Putman et al. 2011

IS THERE A CORONA AROUND THE MW?Putman et al. 2011

Spekkens et al. 2014

IS THERE A CORONA AROUND THE MW?Putman et al. 2011

Spekkens et al. 2014

Mastropietro et al. 2009

van Woerden et al 2004

IS THERE A CORONA AROUND THE MW?Putman et al. 2011

Spekkens et al. 2014

Mastropietro et al. 2009

van Woerden et al 2004

See Gurtina Besla’s talk

SIMULATION SETUPCode: GASOLINE (SPH; Wadsley+04)

SIMULATION SETUPCode: GASOLINE (SPH; Wadsley+04)

DM halo • NFW• r200 = 200 kpc• Mvir = 1012 Mo• mDM = 106 Mo

SIMULATION SETUPCode: GASOLINE (SPH; Wadsley+04)

DM halo • NFW• r200 = 200 kpc• Mvir = 1012 Mo• mDM = 106 Mo

Hot gas • 10% of Mtot• No metals• hydro equilibrium• λ = 0.065 • mgas = 1.4x105 Mo

SIMULATION SETUPCode: GASOLINE (SPH; Wadsley+04)

DM halo • NFW• r200 = 200 kpc• Mvir = 1012 Mo• mDM = 106 Mo

Hot gas • 10% of Mtot• No metals• hydro equilibrium• λ = 0.065 • mgas = 1.4x105 Mo

Radiative cooling (Shen+10) • rho,T and Z dependent

SIMULATION SETUPCode: GASOLINE (SPH; Wadsley+04)

DM halo • NFW• r200 = 200 kpc• Mvir = 1012 Mo• mDM = 106 Mo

Hot gas • 10% of Mtot• No metals• hydro equilibrium• λ = 0.065 • mgas = 1.4x105 Mo

Star formation (Stinson+06) • n>0.1 cm-3

• T<15000 K• converging flow• Miller-Scalo IMF

Radiative cooling (Shen+10) • rho,T and Z dependent

SIMULATION SETUPCode: GASOLINE (SPH; Wadsley+04)

DM halo • NFW• r200 = 200 kpc• Mvir = 1012 Mo• mDM = 106 Mo

Hot gas • 10% of Mtot• No metals• hydro equilibrium• λ = 0.065 • mgas = 1.4x105 Mo

Star formation (Stinson+06) • n>0.1 cm-3

• T<15000 K• converging flow• Miller-Scalo IMF

Stellar feedback (Stinson+06) • SN feedback (thermal, blast-wave)• ESN as a free parameter • stellar winds (~25%)

Radiative cooling (Shen+10) • rho,T and Z dependent

FACE-ON MAPSF80 F40 F10 F2.5

FACE-ON MAPSF80 F40 F10 F2.5

5.8x1010 Mo 5.9x1010 Mo 6.1x1010 Mo 6.2x1010 Mo

2.9x109 Mo 2.5x109 Mo 2.4x109 Mo 2.5x109 Mo

MASS DISTRIBUTION AND KINEMATICS

10-1

100

101

102

103

104

105

surfa

ce d

ensi

ty (M

O• pc-2

)

F80

starscold gas

F40

starscold gas

F10

starscold gas

F2.5

starscold gas

Milky Way

discbulge

starscold gas

0

50

100

150

200

250

300

0 5 10 15

rota

tion

velo

city

(km

/s) stars

cold gasDM

measured from HItotal

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15radius [kpc]

starscold gas

DMmeasured from HI

total

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15 20

bulge

disc

Sofue et al.(2009), rescaledstars

cold gasDM

total

MASS DISTRIBUTION AND KINEMATICS

10-1

100

101

102

103

104

105

surfa

ce d

ensi

ty (M

O• pc-2

)

F80

starscold gas

F40

starscold gas

F10

starscold gas

F2.5

starscold gas

Milky Way

discbulge

starscold gas

0

50

100

150

200

250

300

0 5 10 15

rota

tion

velo

city

(km

/s) stars

cold gasDM

measured from HItotal

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15radius [kpc]

starscold gas

DMmeasured from HI

total

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15 20

bulge

disc

Sofue et al.(2009), rescaledstars

cold gasDM

total

STAR FORMATION HISTORY

0

5

10

15

20

0 2 4 6 8 10

SFR

[M☉

/yr]

lookback time [Gyr]

Aumer and Binney 2009

Fraternali and Tomassetti 2012

F80

F40

F10

F2.5

MASS DISTRIBUTION AND KINEMATICS

10-1

100

101

102

103

104

105

surfa

ce d

ensi

ty (M

O• pc-2

)

F80

starscold gas

F40

starscold gas

F10

starscold gas

F2.5

starscold gas

Milky Way

discbulge

starscold gas

0

50

100

150

200

250

300

0 5 10 15

rota

tion

velo

city

(km

/s) stars

cold gasDM

measured from HItotal

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15radius [kpc]

starscold gas

DMmeasured from HI

total

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15 20

bulge

disc

Sofue et al.(2009), rescaledstars

cold gasDM

total

STAR FORMATION HISTORY

0

5

10

15

20

0 2 4 6 8 10

SFR

[M☉

/yr]

lookback time [Gyr]

Aumer and Binney 2009

Fraternali and Tomassetti 2012

F80

F40

F10

F2.5

SFRSIM ~ 4 Mo/yr SFRMW ~ 2-3 Mo-yr

MASS DISTRIBUTION AND KINEMATICS

10-1

100

101

102

103

104

105

surfa

ce d

ensi

ty (M

O• pc-2

)

F80

starscold gas

F40

starscold gas

F10

starscold gas

F2.5

starscold gas

Milky Way

discbulge

starscold gas

0

50

100

150

200

250

300

0 5 10 15

rota

tion

velo

city

(km

/s) stars

cold gasDM

measured from HItotal

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15radius [kpc]

starscold gas

DMmeasured from HI

total

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15 20

bulge

disc

Sofue et al.(2009), rescaledstars

cold gasDM

total

STAR FORMATION HISTORY

0

5

10

15

20

0 2 4 6 8 10

SFR

[M☉

/yr]

lookback time [Gyr]

Aumer and Binney 2009

Fraternali and Tomassetti 2012

F80

F40

F10

F2.5

SFRSIM ~ 4 Mo/yr SFRMW ~ 2-3 Mo-yr

MASS DISTRIBUTION AND KINEMATICS

10-1

100

101

102

103

104

105

surfa

ce d

ensi

ty (M

O• pc-2

)

F80

starscold gas

F40

starscold gas

F10

starscold gas

F2.5

starscold gas

Milky Way

discbulge

starscold gas

0

50

100

150

200

250

300

0 5 10 15

rota

tion

velo

city

(km

/s) stars

cold gasDM

measured from HItotal

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15radius [kpc]

starscold gas

DMmeasured from HI

total

0 5 10 15

starscold gas

DMmeasured from HI

total

0 5 10 15 20

bulge

disc

Sofue et al.(2009), rescaledstars

cold gasDM

total

STAR FORMATION HISTORY

0

5

10

15

20

0 2 4 6 8 10

SFR

[M☉

/yr]

lookback time [Gyr]

Aumer and Binney 2009

Fraternali and Tomassetti 2012

F80

F40

F10

F2.5

SFRSIM ~ 4 Mo/yr SFRMW ~ 2-3 Mo-yr

Accretion rates in good agreement

with cosmological simulations

(e.g. Brook+14)

THE EFFECT OF FEEDBACK

0

100

200

300

400

500

600

0 2 4 6 8 10 12

scal

e-he

ight

[pc]

radius [kpc]

Neutral gas scale-height

F80F40F10

F2.5

The cold gas scale-height increases with feedback

THE EFFECT OF FEEDBACK

F80 F40 F10 F2.5

0

100

200

300

400

500

600

0 2 4 6 8 10 12

scal

e-he

ight

[pc]

radius [kpc]

Neutral gas scale-height

F80F40F10

F2.5

The cold gas scale-height increases with feedback

THE EFFECT OF FEEDBACK

F80 F40 F10 F2.5

0

100

200

300

400

500

600

0 2 4 6 8 10 12

scal

e-he

ight

[pc]

radius [kpc]

Neutral gas scale-height

F80F40F10

F2.5

The cold gas scale-height increases with feedback

(Oosterloo et al. 2007) (Marasco et al. 2015)

EXTRA-PLANAR HI

MHI(>1kpc)/MHI,tot=0.3 MHI(>1kpc)/MHI,tot=0.05 (see Marasco & Fraternali 2011)

(Oosterloo et al. 2007) (Marasco et al. 2015)

EXTRA-PLANAR HI

MHI(>1kpc)/MHI,tot=0.3 MHI(>1kpc)/MHI,tot=0.05 (see Marasco & Fraternali 2011)

(Oosterloo et al. 2007) (Marasco et al. 2015)

EXTRA-PLANAR HI

MHI(>1kpc)/MHI,tot=0.3 MHI(>1kpc)/MHI,tot=0.05 (see Marasco & Fraternali 2011)

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300

vφ[km/s]

F80, velocity distribution at the disc-corona interface

fountaincorona

disc

EXTRA-PLANAR HI: KINEMATICS

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300

vφ[km/s]

F80, velocity distribution at the disc-corona interface

fountaincorona

disc

EXTRA-PLANAR HI: KINEMATICS

Velocity drop caused by hydrodynamical interaction with coronal gas

(see Fraternali & Binney 2008)

CIRCUMGALACTIC MEDIUM

-7-6-5-4-3-2-1 0

4

4.5

5

5.5

6

6.5

7

radial

all gastemperature

-7-6-5-4-3-2-1 0

1 10 100 1000 4

4.5

5

5.5

6

6.5

distance from the centre [kpc]

log(n

[ato

ms/

cm3])

log(t

em

pera

ture

[K])

vertical

CIRCUMGALACTIC MEDIUM

-7-6-5-4-3-2-1 0

4

4.5

5

5.5

6

6.5

7

radial

log(T)<4.3 (cold)4.3<log(T)<5.3 (warm)

5.3<log(T)<5.8 (hot)log(T)>5.8

all gas

-7-6-5-4-3-2-1 0

1 10 100 1000 4

4.5

5

5.5

6

6.5

distance from the centre [kpc]

log(n

[ato

ms/

cm3])

log(t

em

pera

ture

[K])

vertical

CIRCUMGALACTIC MEDIUM

-7-6-5-4-3-2-1 0

4

4.5

5

5.5

6

6.5

7

radial

log(T)<4.3 (cold)4.3<log(T)<5.3 (warm)

5.3<log(T)<5.8 (hot)log(T)>5.8

all gas

-7-6-5-4-3-2-1 0

1 10 100 1000 4

4.5

5

5.5

6

6.5

distance from the centre [kpc]

log(n

[ato

ms/

cm3])

log(t

em

pera

ture

[K])

vertical

SiIII SiIV CIV

SiIII SiIV CIV

OVI

OVI

HI CII SiII MgII

SiIII SiIV CIV

CIRCUMGALACTIC MEDIUM

-7-6-5-4-3-2-1 0

4

4.5

5

5.5

6

6.5

7

radial

log(T)<4.3 (cold)4.3<log(T)<5.3 (warm)

5.3<log(T)<5.8 (hot)log(T)>5.8

all gas

-7-6-5-4-3-2-1 0

1 10 100 1000 4

4.5

5

5.5

6

6.5

distance from the centre [kpc]

log(n

[ato

ms/

cm3])

log(t

em

pera

ture

[K])

vertical

SiIII SiIV CIV

SiIII SiIV CIV

OVI

OVI

HI CII SiII MgII

SiIII SiIV CIV

CIRCUMGALACTIC MEDIUM

-7-6-5-4-3-2-1 0

4

4.5

5

5.5

6

6.5

7

radial

log(T)<4.3 (cold)4.3<log(T)<5.3 (warm)

5.3<log(T)<5.8 (hot)log(T)>5.8

all gas

-7-6-5-4-3-2-1 0

1 10 100 1000 4

4.5

5

5.5

6

6.5

distance from the centre [kpc]

log(n

[ato

ms/

cm3])

log(t

em

pera

ture

[K])

vertical

SiIII SiIV CIV

SiIII SiIV CIV

OVI

OVI

HI CII SiII MgII

SiIII SiIV CIV

??see Tumlinson+13, Werk+13,14

CIRCUMGALACTIC MEDIUM

-7-6-5-4-3-2-1 0

4

4.5

5

5.5

6

6.5

7

radial

log(T)<4.3 (cold)4.3<log(T)<5.3 (warm)

5.3<log(T)<5.8 (hot)log(T)>5.8

all gas

-7-6-5-4-3-2-1 0

1 10 100 1000 4

4.5

5

5.5

6

6.5

distance from the centre [kpc]

log(n

[ato

ms/

cm3])

log(t

em

pera

ture

[K])

vertical

SiIII SiIV CIV

SiIII SiIV CIV

OVI

OVI

HI CII SiII MgII

SiIII SiIV CIV

??see Tumlinson+13, Werk+13,14

✓tentative conclusion:cold-warm absorptions in the halo

trace either late-type cold mode accretion or interaction with satellites

CONCLUSIONS

Property comparison with the MWStar formation rate within a factor of 2

Star formation history ✓Mass distribution ✓ (but not in the centre)

Kinematics ✓ (but not in the centre)Extra-planar gas ✓✓ (if feedback is large)

Hot absorbers in halo ✓Warm absorbers in the halo ✗

Cold absorbers in the halo ✗

A model of pure hot-mode mass assembly predicts the following:

CONCLUSIONS

Property comparison with the MWStar formation rate within a factor of 2

Star formation history ✓Mass distribution ✓ (but not in the centre)

Kinematics ✓ (but not in the centre)Extra-planar gas ✓✓ (if feedback is large)

Hot absorbers in halo ✓Warm absorbers in the halo ✗

Cold absorbers in the halo ✗

A model of pure hot-mode mass assembly predicts the following:

Future plan: larger feedback, interaction with satellites