Accelerated / Honors Physics Review Packet (for studying for ...

6
Motion Graphs: Displacement: Δx = x 2 x 1 Average Speed: s = d t Average Velocity: v = Δx t Average Acceleration: a = Δv t xt graphs: slopes give velocities vt graphs: slopes give accelerations while areas give displacements at graphs: area gives change in velocity Equations of Motion (only to be used of acceleration is constant): v 2 = v 1 + at v 2 2 = v 1 2 + 2aΔx Δx = 1 2 at 2 + v 1 t Δx = 1 2 t (v 1 + v 2 ) x 2 = 1 2 at 2 + v 1 t + x 1 (to be used in “chase” problems) Vectors: v pg = v pw + v wg (P: Plane, G: ground, W: wind) Projectile Motion: Throw ups / Come downs: 1) Draw a picture, choose 2 critical points to work between 2) v top = 0 3) Δt up = Δt down and v throw = v catch (if thrown and caught at same height) Horizontal Projectiles (ex: ball rolls off table): 1) Draw a picture, choose 2 critical points to work between, Set up two columns (x & y) 2) v 1y = 0 , a y = 9.8 3) Δx = v x t (since a x = 0 ) 4) Only “t” can cross between X & Y columns Angled Projectiles: 1) Draw a picture, choose 2 critical points to work between, Set up two columns (x & y) 2) Break up initial velocity vector ( v 1x = v 1 cosθ and v 1y = v 1 sinθ ) 3) v top,y = 0 , a y = 9.8 4) Δt top = Δt land and R = v 1 2 sin(2 θ ) g and h = v 1 2 sin 2 ( θ ) 2g (on level ground) Accelerated / Honors Physics Review Packet (for studying for the Midterm and Final Exams)

Transcript of Accelerated / Honors Physics Review Packet (for studying for ...

Motion  Graphs:    

• Displacement:    

Δx = x2 − x1  

• Average  Speed:  

s =dt  

• Average  Velocity:  

v =Δxt  

• Average  Acceleration:  

a =Δvt  

• x-­‐t  graphs:    slopes  give  velocities  • v-­‐t  graphs:    slopes  give  accelerations  while  areas  give  displacements  • a-­‐t  graphs:  area  gives  change  in  velocity  

   Equations  of  Motion  (only  to  be  used  of  acceleration  is  constant):    

v2 = v1 + at  •

v22 = v1

2 + 2aΔx  •

Δx = 12 at

2 + v1t  •

Δx = 12 t(v1 + v2)  

x2 = 12 at

2 + v1t + x1      (to  be  used  in  “chase”  problems)        Vectors:    

vpg = vpw + vwg          (P:    Plane,          G:    ground,          W:    wind)  

   Projectile  Motion:    

• Throw  ups  /  Come  downs:    1)  Draw  a  picture,  choose  2  critical  points  to  work  between    2)

vtop = 0  3)

Δtup = Δtdown      and    

vthrow = −vcatch    (if  thrown  and  caught  at  same  height)  • Horizontal  Projectiles  (ex:    ball  rolls  off  table):    

1) Draw  a  picture,  choose  2  critical  points  to  work  between,  Set  up  two  columns  (x  &  y)  2)

v1y = 0,    

ay = −9.8  3)

Δx = vxt    (since  

ax = 0)  4) Only  “t”  can  cross  between  X  &  Y  columns  

• Angled  Projectiles:    1) Draw  a  picture,  choose  2  critical  points  to  work  between,  Set  up  two  columns  (x  &  y)  2) Break  up  initial  velocity  vector  (

v1x = v1 cosθ    and    

v1y = v1 sinθ )  3)

vtop,y = 0,    

ay = −9.8  

4)

Δttop = Δtland        and        

R =v12 sin(2θ )g      and      

h =v12 sin2(θ )2g  (on  level  ground)  

 

Accelerated  /  Honors  Physics  Review Packet  (for  studying  for  the  Midterm  and  Final  Exams)  

Newton’s  Laws:    

• 1st  Law:    An  object  in  motion  (or  at  rest)  will  remain  in  motion  (or  at  rest)  unless  acted  upon  by  an  unbalanced,  external  force.  

• 2nd  Law:    F  =  ma  • 3rd  Law:    For  every  action  force  there  is  an  equal  but  opposite  reaction  force.  • W  =  mg  •

Ff = µFN  • g  =  9.8  m/s2  • Lawnmowers  (pushed  downward):  

F cosθ − Ff = ma    and  

FN = mg+ F sinθ  • Wagons  (pulled  upward):  

F cosθ − Ff = ma    and  

FN = mg − F sinθ  • Inclines  (sliding  downward):  

W|| − Ff = ma  and  

FN = mgcosθ  and  

W|| = mgsinθ  • Atwood  machine  (2  masses  hanging  over  a  pulley):    

 

Mg −T = Ma        and      

T −mg = ma        and        

Mg −mg = (M +m)a    

• Box  on  table  pulled  across  by  a  pulley  with  a  mass  hanging  off  the  side  of  the  table:    

T − µMg = Ma        and      

mg −T = ma        and        

mg − µMg = (M +m)a    

• “Constant  Velocity”  implies  that:          1)    a  =  0     2)  FNET  =  0    Work  &  Energy:    

W = F||Δx      (+  work  is  when  F  &  Δx  are  in  the  same  direction)  • Wagons  (pulled  at  an  angle):    

 

Wpuller = (F cosθ )Δx        and        

Wfriction = −FfΔx                and        

Wtotal = F cosθ − Ff( )Δx    

• F-­‐x  graphs:      area  under  the  graph  is  work  (+  area  is  +  work,  -­‐  area  is  –  work)  • Positive  Work  means  energy  was  ADDED  to  the  system  (-­‐  work  à  energy  is  removed)  •

KE = 12mv

2  •

PEg = mgh  • Hookian  Springs:    F  =  kx    (where  k  is  the  spring  stiffness)        and        

PEspring = 12 kx

2  • Conservation  of  Energy:    

W = E2 − E1 = (KE + PEg + PEspring )2 − (KE + PEg + PEspring )1  

• Power:  

P =Wt      and        

P = Fv  

• Block  sliding  down  hill:  

−(µmgcosθ)d = 12mv2

2 − ( 12mv12 +mgd sinθ)  

• Roller  Coaster:  

12mv1

2 +mgh1 = 12mv2

2 +mgh2  • Loading  the  Pendulum:  

W = mg(l − lsinθ)          where      

h = mg(l − lsinθ)    comes  from  the  “pendulum  pennant”    

Impulse  &  Momentum:    

p = mv  

FΔt = mΔv = mv2 −mv1 = Δp = p2 − p1  • F-­‐t  graphs:    area  under  the  curve  equals  impulse  OR  change  in  momentum  • Conservation  of  Momentum:  

 

“bounce”  

m1v1 +m2v2( )i = m1v1 +m2v2( ) f      “stick”    

m1v1 +m2v2( )i = m1 +m2( )v f    

“explosion”    

m1 +m2( )vi = m1v1 +m2v2( ) f    

• Elastic  Collision:    energy  is  conserved  • Inelastic  Collision:    energy  is  lost  (objects  move  separately  afterward)  • Perfectly  Inelastic  Collision:  STICK,  and  energy  is  lost      • Minimum  Separation  (objects  move  at  same  speed  momentarily  at  this  moment):    

m1v1 +m2v2( )i = m1 +m2( )v f          and        

12m1v1i

2 + 12m2v2i

2 = 12 (m1 +m2)v f

2 + 12 kx

2 + Epermant _ deform    Circular  Motion:    

ac =v 2

R    (inward)  

Fc =mv 2

R  

T =2πRv        and        

f =1T  

INS −OUTS = Fc =mv 2

R  

• car  going  around  a  flat  turn:  

Ff = Fc → µmg =mv 2

R→ v = µgR  

• car  going  around  a  banked  turn:  frictionless:      

v = (tanθ )gR          and          

FN =mgcosθ  

  max  speed  (before  slipping  upward):  

v =gR(tanθ + µ)(1− µ tanθ)  

min  speed  (before  slipping  downward):  

v =gR(tanθ − µ)(1+ µ tanθ)

 

• swing  ride  (conical  pendulum):      

T sinθ =mv 2

R          and        

T cosθ = mg  

 

v = (tanθ )gR        and    

T =mgcosθ

       and      

R = lsinθ  

• Vertical  Circles  (ball  on  string):    

T −mg =mv 2

R→ T =

mv 2

R+mg          (bottom,  max  Tension)  

 

mg+T =mv 2

R→ T =

mv 2

R−mg          (top,  min  Tension)  

 

T =mv 2

R          (side)  

v = gR   (min  velocity  needed  at  top  to  complete  circle)  

 • Loop-­‐de-­‐Loops:       For  cars/bikes,  replace  T  in  above  equations  with  FN.  

For  planes,  replace  T  in  above  equation  with  either  FN  or  FL.  • Woop-­‐de-­‐Doos:    

Bottom  of  Dip:  

FN −mg =mv 2

R→ FN = mg+

mv 2

R  

 

Top  of  Hump:  

mg − FN =mv 2

R→ FN = mg − mv

2

R  

 

# of g's =FNW

=FNmg    

 

v = gR      (critical  velocity  before  leaving  ground    

   Planetary  Mechanics:    

ac =v 2

R  ,      

Fc =mv 2

R    ,          

T =2πRv      ,        

f =1T  

Fg =GMmR2

           (

Fg ∝ m ,        

Fg ∝ M ,      

Fg ∝ mM ,        

Fg ∝1R2)  

g =GMR2

  (

g∝ M ,        

g∝ 1R2)  

G = 6.67 ×10−11 N ⋅ m2

kg2  

• Kepler’s  Laws:    

1st:    Planets  orbit  in  elliptical  paths  with  sun  at  Focus  2nd:    planets  sweep  out  equal  areas  in  equal  amounts  of  time  (sling  shot  effect)      

3rd:  

K =R3

T 2  

• altitude  =  h  =  R  –  rplanet  

• satellite  equation(s):  

v =GMR

       and      

ac = g      

Static  Electricity:    

me = 9.11E − 31kg mp =1.67E − 27kgq = ±ne (e =1.602E -19C)

Fe =kqQd2 (k = 8.99E9 N ⋅ m

2

C2 )

E =Feq

(for a uniform electric field)

E =kQd2 (for the non - uniform electric field around a point charge)

PEE = qEd (energy stored in a UNIFORM electric field)

PEE =kqQd

(energy stored in a non - uniform electric field around point charges)

ΔV =ΔPEE

q(Voltage Difference OR Electric Potential Difference)

ΔV = Ed (Electric Potential Difference, or Voltage difference, in a UNIFORM electric field)

 

   Electric  Circuits:    

Q = ne    

e =1.602 ×10−19C    

I =Qt    

R =VI

or V = IR    

 

R = ρLA⎛

⎝ ⎜

⎠ ⎟      (where  ρ is  resistivity)    

R = Ro 1+αΔT( )      (temp  dependence  of  R)  

 

P =Et

or P = IV or P = I2R or P =V 2

R  

 SERIES  CIRCUITS:   current  is  the  same  through  all  resistors  

 

Req = R1 + R2 + .....          and        

I = I1 = I2 = ....          and          

V =V1 +V2 + ....      PARALLEL  CIRCUITS:        voltage  is  the  same  across  each  resistor  

 

1Req

=1R1

+1R2

+ .....          and      

I = I1 + I2 + ....        and      

V =V1 =V2 = ....    

 Kirchoff’s  Rules:  

 1) The  sum  of  the  voltages  around  a  closed  loop  is  zero.  2) The  current  into  a  node  equals  the  current  out  of  a  node.  

 

Magnetism:    

F = qvB⊥    (charged  particle  moving  through  a  B-­‐field)  •

F = B⊥Il    (force  felt  by  a  current-­‐carrying  wire)  •

ΔV = Blv      (voltage  induced  in  a  loop  of  wire  where  one  end  of  the  loop  is  moved  through  a  B-­‐field)    

• Right-­‐Hand-­‐Rules:    

o RHR1  –  Thumb  (v),  Fingers  (B),  Palm  (Force  felt  by  +  charge)  o RHR2  –  Thumb  (I),  Fingers  curl  in  direction  of  B-­‐field  (around  straight  wire)  o RHR3  –  Fingers  (curl  around  coil  in  current  direction),  Thumb  (point  in  direction  of  the  

field  lines  passing  thorough  the  loop)    

• Transformers  

o

Ns

Np

=Vs

Vp

=IpIs  

o Ideal  T-­‐former:    

Pp = Ps      or      

IpVp = IsVs  

o Non-­‐Ideal  T-­‐former:  

e =IsVs

IpVp

× 100%  

 Mirrors/Lenses:    

v = fλ  

1f

=1do

+1di        and      

hiho

= −dido

= M  

n =cv      and      

n1 sinθ1 = n2 sinθ2        and      

θcritical = sin−1 n2n1

⎝ ⎜

⎠ ⎟  

     Waves:    

v = fλ  • Young’s  Double  Slit  Experiment:  

o

λ =xdnL            or            

λ =d sinθn

           because      

xL

= sinθ            

λ  =  wavelength  of  light  used  (m)    x  =  distance  from  central  fringe  (m)    d  =  distance  between  the  slits  (m)      n  =  the  order  of  the  fringe    L=  length  from  the  screen  with  slits  to  the  viewing  screen  (m)  θ  =  angle  between  central  fringe  and  the  fridge  being  measured  

   

o n  =  0  (Central  Fringe),    n  =  1  (1st  order  fringe),  etc,  etc,  etc