TUGAS KELOMPOK FISIKA

42
ENERGY Energi dari suatu benda adalah ukuran dari kesanggupan benda tersebut untuk melakukan suatu usaha. Satuan energi adalah joule. Ditinjau dari perspektif fisika , setiap sistem fisik mengandung (secara alternatif, menyimpan ) sejumlah energi; berapa tepatnya ditentukan dengan mengambil jumlah dari sejumlah persamaan khusus, masing- masing didesain untuk mengukur energi yang disimpan secara khusus. Secara umum, adanya energi diketahui oleh pengamat setiap ada pergantian sifat objek atau sistem . Tidak ada cara seragam untuk memperlihatkan energy. Dalam ilmu fisika energi terbagi dalam berbagai macam/jenis, antara lain : - energi potensial - energi kinetik/kinetis - energi panas - energi air - energi batu bara - energi minyak bumi - energi listrik - energi matahari - energi angin - energi kimia - energi nuklir - energi gas bumi - energi ombak dan gelombang - energi minyak bumi - energi mekanik/mekanis - energi cahaya - energi listrik - dan lain sebagainya

Transcript of TUGAS KELOMPOK FISIKA

Page 1: TUGAS KELOMPOK FISIKA

ENERGY

Energi dari suatu benda adalah ukuran dari kesanggupan benda tersebut untuk melakukan suatu usaha. Satuan energi adalah joule. Ditinjau dari perspektif fisika, setiap sistem fisik mengandung (secara alternatif, menyimpan) sejumlah energi; berapa tepatnya ditentukan dengan mengambil jumlah dari sejumlah persamaan khusus, masing-masing didesain untuk mengukur energi yang disimpan secara khusus. Secara umum, adanya energi diketahui oleh pengamat setiap ada pergantian sifat objek atau sistem. Tidak ada cara seragam untuk memperlihatkan energy.

Dalam ilmu fisika energi terbagi dalam berbagai macam/jenis, antara lain :

- energi potensial- energi kinetik/kinetis- energi panas- energi air- energi batu bara- energi minyak bumi- energi listrik- energi matahari- energi angin- energi kimia- energi nuklir- energi gas bumi- energi ombak dan gelombang- energi minyak bumi- energi mekanik/mekanis- energi cahaya- energi listrik- dan lain sebagainya

Satuan

Satuan SI untuk energi dan kerja adalah joule (J), dinamakan untuk menghormati James Prescott Joule dan percobaannya dalam persamaan mekanik panas. Dalam istilah yang lebih mendasar 1   joule sama dengan 1 newton-meter dan, dalam istilah satuan dasar SI, 1 J sama dengan 1 kg m2 s−2.

Page 2: TUGAS KELOMPOK FISIKA

Transfer energi

Kerja didefinisikan sebagai "batas integral" gaya F sejauh s:

Persamaan di atas mengatakan bahwa kerja (W) sama dengan integral dari dot product gaya ( ) di sebuah benda dan infinitesimal posisi benda ( ).

Jenis energi

Energi kinetik

Energi kinetik adalah bagian energi yang berhubungan dengan gerakan suatu benda.

Persamaan di atas menyatakan bahwa energi kinetik (Ek) sam dengan integral dari dot product "velocity" ( ) sebuah benda dan infinitesimal momentum benda ( ).

B. Energi Kinetik atau KinetisEnergi kinetik adalah energi dari suatu benda yang dimiliki karena pengaruh gerakannya. Benda yang bergerak memiliki energi kinetik.

Rumus atau persamaan energi kinetik :Ek = 1/2.m.v^2

keteranganEp = energi kinetikm = massa dari bendav = kecepatan dari bendav^2 = v pangkat 2

Page 3: TUGAS KELOMPOK FISIKA

Energi potensial

Berlawanan dengan energi kinetik, yang adalah energi dari sebuah sistem dikarenakan gerakannya, atau gerakan internal dari partikelnya, energi potensial dari sebuah sistem adalah energi yang dihubungkan dengan konfigurasi ruang dari komponen-komponennya dan interaksi mereka satu sama lain. Jumlah partikel yang mengeluarkan gaya satu sama lain secara otomatis membentuk sebuah sistem dengan energi potensial. Gaya-gaya tersebut, contohnya, dapat timbul dari interaksi elektrostatik (lihat hukum Coulomb), atau gravitasi.

Energi potensial adalah energi yang dimiliki suatu benda akibat adanya pengaruh tempat atau kedudukan dari benda tersebut. Energi potensial disebut juga dengan energi diam karena benda yang dalam keaadaan diam dapat memiliki energi. Jika benda tersebut bergerak, maka benda itu mengalami perubahan energi potensial menjadi energi gerak. Contoh misalnya seperti buah kelapa yang siap jatuh dari pohonnya, cicak di plafon rumah, dan lain sebagainya.

Rumus atau persamaan energi potential :Ep = m.g.h

keteranganEp = energi potensialm = massa dari bendag = percepatan gravitasih = tinggi benda dari tanah

Energi internal

Energi internal adalah energi kinetik dihubungkan dengan gerakan molekul-molekul, dan energi potensial yang dihubungkan dengan getaran rotasi dan energi listrik dari atom-atom di dalam molekul. Energi internal seperti energi adalah sebuah fungsi keadaan yang dapat dihitung dalam sebuah sistem.

Daya

Daya dalam fisika adalah laju energi yang dihantarkan atau kerja yang dilakukan per satuan waktu. Daya dilambangkan dengan P. Mengikuti definisi ini daya dapat dirumuskan sebagai:

Page 4: TUGAS KELOMPOK FISIKA

di mana

P adalah dayaW adalah kerja, atau energit adalah waktu

Daya rata-rata (sering disebut sebagai "daya" saja bila konteksnya jelas) adalah kerja rata-rata atau energi yang dihantarkan per satuan waktu. Daya sesaat adalah limit daya rata-rata ketika selang waktu Δt mendekati nol.

Bila laju transfer energi atau kerja tetap, rumus di atas dapat disederhanakan menjadi:

,

di mana W, E adalah kerja yang dilakukan, atau energi yang dihantarkan, dalam waktu t (biasanya diukur dalam satuan detik).

Satuan daya dalam SI adalah watt.

Page 5: TUGAS KELOMPOK FISIKA

E=mc²

E = mc2 dalam ilmu fisika adalah sebuah rumus yang dikenal baik dan penting, yang menjelaskan persamaan nilai antara energi (E) dan massa (m), yang disetarakan secara langsung melalui konstanta kuadrat laju cahaya dalam vakum ( c 2 )

,

yang mana:

E = energi (J) m = massa (kg)

c = kecepatan cahaya (m.s-1)

Faktor c 2 bernilai 89.88 PJ/kg = 21.48 Mt TNT per kg = 149.3 pJ/u = 931.5 M eV /u.

Jika energi yang dimaksud dalam persamaan di atas adalah energi diam, maka massa yang terkait adalah juga massa diam atau massa invarian.

Sejarah dan konsekuensinya

Albert Einstein menurunkan formula ini didasarkan atas pengamatannya pada tahun 1905 atas kelakuan obyek yang bergerak dengan laju mendekati laju cahaya. Kesimpulan terkenal yang ditariknya dari pengamatan ini adalah bahwa massa sebuah benda sebenarnya adalah sebuah ukuran dari kandungan energi benda tersebut. Sebaliknya, persamaan yang dimaksud mengisyaratkan bahwa semua energi yang ada dalam sistem tertutup mempengaruhi massa diam dari sistem.

Menurut persamaan ini, jumlah maksimum energi yang "dapat diperoleh" dari suatu obyek untuk melakukan kerja aktif adalah massa obyek dikalikan kuadrat dari laju cahaya.

Rumus ini juga digunakan untuk mengukur besarnya energi yang dihasilkan dalam reaksi nuklir. Perubahan massa isotop sebelum dan sesudah reaksi nuklir diperhitungkan. Dimana jumlah massa yang hilang sesudah reaksi nuklir (Δm) dikalikan dengan kuadrat kecepatan cahaya, hasilnya sama dengan energi yang dilepaskan dalam reaksi nuklir tersebut.

Page 6: TUGAS KELOMPOK FISIKA

TERMODINAMIKA

Sebuah sistem termodinamika

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal.

Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang.

Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.

Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam.

Page 7: TUGAS KELOMPOK FISIKA

Konsep dasar dalam termodinamika

Pengabstrakan dasar atas termodinamika adalah pembagian dunia menjadi sistem dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas yang dapat diuraikan menjadi beberapa parameter.

Sistem termodinamika

Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.

Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:

sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.

sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:

o pembatas adiabatik: tidak memperbolehkan pertukaran panas.

o pembatas rigid: tidak memperbolehkan pertukaran kerja.

sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.

Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem

Page 8: TUGAS KELOMPOK FISIKA

terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.

Keadaan termodinamika

Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).

Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.

Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.

Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.

Hukum-hukum Dasar Termodinamika

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:

Hukum Awal (Zeroth Law) Termodinamika

Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.

Hukum Pertama Termodinamika

Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.

Hukum kedua Termodinamika

Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika

Page 9: TUGAS KELOMPOK FISIKA

terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.

Hukum ketiga Termodinamika

Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.

Page 10: TUGAS KELOMPOK FISIKA

ENERGY TERBAHARUI

Energi angin merupakan Energi terbarui

Energi terbaharui mendapatkan energi dari aliran energi yang berasal dari "proses alam yang berkelanjutan", seperti sinar matahari, angin, air yang mengalir proses biologi, dan geothermal.

Untuk aspek dari penggunaan energi terbaharui di masyarakat modern lihat pengembangan energi terbaharui. Untuk diskusi umum, lihat pengembangan energi masa depan.

Definisi energy terbaharui

Konsep energi terbaharui diperkenalkan pada 1970-an sebagai baigan dari usaha mencoba bergerak melewati pengembangan bahan bakar nuklir dan fosil. Definisi paling umum adalah sumber energi yang dapat dengan cepat diisi kembali oleh alam, proses berkelanjutan. Di bawah definisi ini, bahan bakar nuklir dan fosil tidak termasuk ke dalamnya.

Energi sustainable

Seluruh energi terbaharui secara definisi juga merupakan energi sustainable , yang berarti mereka tersedia dalam waktu jauh ke depan yang membuat perencanaan bila mereka habis tidak diperlukan. Meskipun tenaga nuklir bukan energi diperbaharui, namun pendukung nuklir dapat sustainable dengan penggunaan reaktor breeder menggunakan uranium -238 atau thorium atau keduanya. Di sisi lain banyak penentang nuklir menggunakan istilah energi sustainable sebagai sinonim untuk energi terbaharui , dan oleh karena itu tidak memasukkan nuklir ke dalam energi sustainable.

Page 11: TUGAS KELOMPOK FISIKA

Sumber energi terbaharui modern

Energi geothermal

Artikel utama untuk bagian ini adalah: Energi geothermal

Energi geothermal berasal dari penguraian radioaktif di pusat Bumi, yang membuat Bumi panas dari dalam, dan dari matahari, yang membuat panas permukaan bumi. Dia dapat digunakan dengan tiga cara:

Listrik geothermal pemanasan geothermal, melalui pipa ke dalam Bumi

pemanasan geothermal, melalui sebuah pompa panas.

Energi surya

Panel surya (photovoltaic arrays) di atas yacht kecil di laut dapat mengisi baterai 12 V sampai 9 amperes dalam cahaya matahari penuh dan langsung.

Artikel utama untuk bagian ini adalah: Tenaga surya

Karena kebanyakan energi terbaharui pusatnya adalah "energi surya" istilah ini sedikit membingungkan. Namun yang dimaksud di sini adalah energi yang dikumpulkan langsung dari cahaya matahari. Tenaga surya dapat digunakan untuk:

menghasilkan listrik menggunakan sel surya

Page 12: TUGAS KELOMPOK FISIKA

menghasilkan listrik menggunakan pembangkit tenaga panas surya

menghasilkan listrik menggunakan menara surya

memanaskan gedung, secara langsung

memanaskan gedung, melalui pompa panas

memanaskan makanan, menggunakan oven surya.

Energi angin

Artikel utama untuk bagian ini adalah: Tenaga angin

Karena matahari memanaskan permukaan bumi secara tidak merata, maka terbentuklah angin. Energi kinetik dari angin dapat digunakan untuk menjalankan turbin angin, beberapa mampu memproduksi tenaga 5 MW. Tenaga keluaran adalah fungsi kubus dari kecepatan angin, maka turbin tersebut paling tidak membutuhkan angin dalam kisaran 5,5 m/d (20 km/j), dan dalam praktek sangat sedikit wilayah yang memiliki angin yang bertiup terus menerus. Namun begitu di daerah pesisir atau daerah di ketinggian, tersedia angin yang cukup konstan.

Pada 2005 telah ada ribuan turbin angin yang beroperasi di beberapa bagian dunia, dengan perusahaan "utility" memiliki kapasitas total lebih dari 47.317MW [1]. Kapasitas merupakan output maksimum yang memungkinkan dan tidak menghitung "load factor".

Ladang angin baru dan taman angin lepas pantai telah direncanakan dan dibuat di seluruh dunia. Ini merupakan cara penyediaan listrik yang tumbuh dengan cepat di abad ke-21 dan menyediakan tambahan bagi stasiun pembangkit listrik utama. Kebanyakan turbin yang digunakan menghasilkan listrik sekitar 25% dari waktu (load factor 25%), tetapi beberapa mencapai 35%. Load factor biasanya lebih tinggi pada musim dingin. Ini berarti bahwa turbin 5MW dapat memiliki output rata-rata 1,7MW dalam kasus terbaik.

Tenaga air

Artikel utama untuk bagian ini adalah: Tenaga air

Energi air dapat digunakan dalam bentuk gerak atau perbedaan suhu. Karena air ribuan kali lebih berat dari udara, maka aliran air yang pelan pun dapat menghasilkan sejumlah energi yang besar.

Biomass

Page 13: TUGAS KELOMPOK FISIKA

Artikel utama untuk bagian ini adalah: Bahan bakar bio

Tumbuhan biasanya menggunakan fotosintesis untuk menyimpan tenaga surya, air, dan CO2. Bahan bakar bio adalah bahan bakar yang diperoleh dari biomass - organisme atau produk dari metabolisme mereka, seperti tai dari sapi. Dia merupakan energi terbaharui.

Biasanya bahan bakar bio dibakar untuk melepas energi kimia yang tersimpan di dalamnya. Riset untuk mengubah bahan bakar bio menjadi listrik menggunakan sel bahan bakar adalah bidang penelitian yang sangat aktif.

Biomass dapat digunakan langsung sebagai bahan bakar atau untuk memproduksi bahan bakar bio cair. Biomass yang diproduksi dengan teknik pertanian, seperti biodiesel, ethanol, dan bagasse (seringkali sebuah produk sampingan dari pengkultivasian Tebu) dapat dibakar dalam mesin pembakaran dalam atau pendidih.

Sebuah hambatan adalah seluruh biomass harus melalui beberapa proses berikut: harus dikembangkan, dikumpulkan, dikeringkan, difermentasi dan dibakar. Seluruh langkah ini membutuhkan banyak sumber daya dan infrastruktur.

Page 14: TUGAS KELOMPOK FISIKA

PENYIMPANAN ENERGY

Media penyimpanan energi adalah suatu metode atau alat untuk menyimpan beberapa bentuk energi yang bisa diambil pada suatu waktu tertentu untuk berbagai kepentingan. Alat yang digunakan untuk menyimpan energi terkadang disebut dengan akumulator. Semua bentuk energi yang termasuk ke dalam energi potensial (misal: energi kimia, energi listrik, dan sebagainya) atau energi termal dapat disimpan. Jam putar mekanis menyimpan energi potensial dalam tegangan mekanis. Baterai menyimpan energi kimia yang dapat diubah secara langsung menjadi energi listrik dengan menghubungkan kedua kutubnya dengan peralatan listrik. Bendungan hidroelektrik menyimpan energi dengan reservoir air sebagai energi potensial gravitasi. Makanan juga merupakan media penyimpanan energi, yaitu energi kimia, bahkan es dapat dikatakan sebagai sarana penyimpanan energi termal dan akan dipergunakan ketika kebutuhan akan temperatur dingin dibutuhkan.

Sejarah

Penyimpanan energi adalah proses alami yang usianya setua usia alam semesta ini. Energi muncul pada penciptaan awal alam semesta dan sudah disimpan dalam berbagai media seperti bintang, yang saat ini dapat dimanfaatkan oleh manusia secara langsung (dengan pemanasan surya) ataupun secara tidak langsung (melalui budidaya pertanian). Penyimpanan energi memungkinkan manusia untuk menyeimbangkan kebutuhan dan ketersediaan energi.

Sistem penyimpanan energi secara komersial saat ini dapat dikategorikan ke dalam energi mekanis, listrik, kimia, termal, dan nuklir.

Sebagai suatu kegiatan, penyimpanan energi sudah berlangsung sejak zaman prasejarah, meski tidak begitu jelas dikatakan sebagai aktivitas penyimpanan energi. Contohnya adalah penggunaan balok kayu dan bebatuan besar untuk pertahanan melawan musuh; balok kayu dan bebatuan besar digulingkan dari bukit untuk menyerang musuh yang menginvasi.

Page 15: TUGAS KELOMPOK FISIKA

Aplikasi yang masih ada saat ini dalam hal penyimpanan energi adalah pengendalian saluran air untuk menggerakkan mesin penggiling untuk pemrosesan hasil panen atau menggerakkan mesin. Sistem kompleks reservoir dan bendungan dibangun untuk menyimpan air sebagai sumber energi potensial. Di beberapa area di dunia, dengan menggunakan keuntungan geografis dapat menyimpan sejumlah besar reservoir air ketika tidak dibutuhkan, dan dilepaskan menjadi energi listrik ketika terjadi beban puncak listrik.

Penyimpanan energi menjadi faktor utama dalam pembangunan ekonomi dengan penyebaran energi listrik dan pemurnian bahan bakar kimia seperti bensin, minyak tanah, dan gas alam pada akhir tahun 1800an. Tidak seperti media penyimpanan energi organik seperti kayu atau batu bara, listrik telah digunakan segera setelah dihasilkan pertama kalinya. Listrik seringkali tidak disimpan pada skala besar, namun suatu saat nanti hal itu akan banyak terjadi dengan ditemukannya teknologi penyimpanan energi listrik seperti baterai Lithium ion dan NiMH yang merupakan baterai yang telah dan mampu menyimpan energi listrik dan mensuplainya bagi mobil listrik yang ada saat ini. Penyimpanan energi akan sangat diperlukan mengingat beberapa jenis sumber energi tidak dapat diandalkan selamanya. Angin tidak selamanya bertiup untuk menggerakkan turbin, cahaya matahari tidak bisa dimanfaatkan secara optimal ketika cuaca berawan atau di malam hari. Bahkan pembangkit listrik tenaga air saat ini banyak dihadapkan oleh ancaman kekeringan.

Penyelesaian masalah dalam penyimpanan energi untuk tujuan kelistrikan dimulai dengan ditemukannya baterai pada pertama kalinya. Alat penyimpan energi elektrokimia ini digunakan secara terbatas karena kapasitasnya yang kecil dan biaya dalam pembuatannya yang mahal dibandingkan dengan energi listrik yang dihasilkan oleh pemangkit listrik pada sejumlah energi yang sama. Penyelesaian lainnya dari masalah yang sama adalah dengan ditemukannya kapasitor.

Bahan bakar kimia telah menjadi bentuk yang umum dari penyimpanan energi, baik dalam pembangkit listrik maupun transportasi, meski sebagian sulit untuk diproduksi kembali dari pembentuknya. Bahan bakar kimia yang umum digunakan adalah batu bara, bensin, solar, gas alam, LPG, propana, butana, etanol, biodiesel, dan hidrogen. Bahan bakar ini dengan segera dapat diubah menjadi energi mekanis dan listrik dengan mesin kalor (turbin dengan boiler atau mesin pembakaran dalam). Generator listrik jenis ini digunakan hampir di setiap pembangkit listrik di seluruh dunia.

Page 16: TUGAS KELOMPOK FISIKA

Alat elektrokimia seperti fuel cell dikembangkan pada masa yang sama dengan baterai. Namun dengan berbagai alasan, fuel cell tidak berkembang dengan baik hingga muncul penerbangan luar angkasa berawak di mana sumber listrik non termal dibutuhkan dalam wahana antariksa. Perkembangan fuel cell telah meningkat pada tahun-tahun ini akibat permintaan terhadap sumber energi non hidrokarbon meningkat.

Pada saat ini, bahan bakar hidrokarbon cair menjadi bentuk penggunaan energi yang dominan. Namun, bahan bakar jenis ini akan menghasilkan gas rumah kaca ketika digunakan untuk menggerakkan mesin mobil, truk, kereta, kapal, dan pesawat terbang. Energi non-karbon seperti hidrogen, atau rendah emisi karbon seperti etanol dan biodiesel, berkembang merespon ancaman yang sangat mungkin terjadi akibat emisi gas rumah kaca.

Beberapa teknologi lainnya juga telah diteliti seperti flywheel atau penyimpanan udara terkompresi.

Jaringan penyimpanan energi

Jaringan penyimpanan energi menjadikan penghasil energi mengirim kelebihan energi listrik dari jaringan transmisi listrik menuju lokasi penyimpanan energi yang nantinya akan dikeluarkan ketika kebutuhan listrik membesar. Jaringan penyimpanan energi berperan penting dalam menyeimbangkan suplai dan permintaan energi.

Metode penyimpanan energi

Kimia

1. Hidrogen

2. Biofuel

Biologis

1. Pati

2. Glikogen

Elektrokimia

1. Baterai

2. Baterai aliran (flow battery)

Mekanis

1. Penyimpanan energi udara terkompresi

2. Oksihidrogen

3. Penyimpanan energi flywheel

4. Akumulator hidrolik

5. Penyimpanan energi hidroelektrik

6. Pegas

Termal

1. Penyimpanan es

2. Garam cair

Page 17: TUGAS KELOMPOK FISIKA

3. Fuel cell

Elektrik

1. Kapasitor

2. Superkapasitor

3. Penyimpanan energi magnet

3. Nitrogen cair

4. Penyimpanan energi termal musiman

5. Kolam matahari

6. Batu bata panas

7. Akumulator uap

8. Lokomotif tanpa api

Penghematan energi

Hidrogen

Hidrogen sedang dikembangkan sebagai media penyimpanan energi. Hidrogen bukanlah sumber energi utama, namun metode penyimpanan energi yang portable, karena hidrogen harus dibuat oleh sumber energi lain. Namun, sebagai media penyimpanan energi, mungkin akan signifikan jika dilihat perannya sebagai energi terbarukan.

Hidrogen dapat digunakan pada mesin pembakaran internal konvensional atau pada fuel cell yang mengubah energi kimia secara langsung menjadi energi listrik tanpa pembakaran. Proses produksi hidrogen membutuhkan proses pengubahan gas alam oleh uap, atau dengan cara yang mungkin lebih ekologis, elektrolisis air menjadi hidrogen dan oksigen. Cara yang lama menghasilkan karbon dioksida dalam prosesnya sebagai hasil sampingan.

Kehilangan energi terjadi pada siklus penyimpanan hidrogen dari produksinya untuk pemakaian langsung pada kendaraan, pengembunan atau kompresi, dan konversi kembali menjadi listrik, serta siklus penyimpanan hidrogen untuk pemakaian fuel cell stasioner seperti kombinasi mikro panas dan energi dengan biohidrogen, pengembunan atau kompresi, dan konversi menjadi listrik.

Dengan energi terbarukan yang tidak bisa selalu tersedia seperti energi angin dan matahari, output dari kedua energi itu mungkin dapat menjadi energi listrik untuk melakukan elektrolisis. Apapun kemungkinannya, apakah kemampuan konversi energi matahari dan angin menjadi listrik cukup rendah atau energi yang dibutuhkan untuk mengubah air menjadi hidrogen cukup besar, hidrogen hanya akan menjadi media penyimpanan energi dan digunakan hanya jika dibutuhkan.

Page 18: TUGAS KELOMPOK FISIKA

Ahli nuklir menyatakan bahwa menggunakan energi nuklir untuk menghasilkan hidrogen akan menyelesaikan masalah inefisiensi dalam memproduksi hidrogen. Mereka menggaris bawahi kemungkinan menggunakan pembangkit listrik tenaga nuklir pada kapasitas penuh terus menerus dengan tetap menyalurkan energi listrik ke jaringan transmisi listrik setempat pada beban puncak. Hal ini berarti efisiensi lebih besar juga bagi PLTN tersebut. Reaktor generasi keempat dari PLTN memiliki potensi untuk memisahkan hidrogen dari air dengan cara termokimia menggunakan panas nuklir di siklus iodin-sulfur.

Efisiensi penyiimpanan hidrogen umumnya berkisar 50 hingga 60% secara keseluruhan, yang berarti lebih rendah dibandingkan baterai. Dibutuhkan sekitar 50 kWh untuk memproduksi satu kilogram hidrogen dengan elektrolisis, sehingga biaya listrik untuk memproduksinya adalah hal yang penting untuk dibahas. Jika menggunakan harga standar Rp. 294,00 per kWh, maka akan dibutuhkan biaya sebesar Rp. 14.700,00 per kg hidrogen, namun itu belum termasuk biaya lainnya seperti alat elektrolisis, kompresor atau pengembunan, penyimpanan, dan transportasi yang besarnya tidak dapat diabaikan.

Penyimpanan hidrogen bawah tanah adalah kegiatan penyimpanan hidrogen dalam gua, kubah garam, atau ladang gas alam dan minyak yang telah habis. Sejumlah besar gas hidrogen telah disimpah oleh Imperial Chemical Industries di gua bawah tanah sejak beberapa tahun yang lalu tanpa kesulitan berarti. Penyimpanan sejumlah besar hidrogen di bawah tanah dapat difungsikan sebagai penyimpanan energi masal yang penting untuk aspek keekonomian hidrogen di masa depan.

Biofuel

Berbagai varian biofuel seperti biodiesel, minyak tumbuh-tumbuhan, bahan bakar alkohol, atau biomassa dapat digunakan untuk menggantikan bahan bakar hidrokarbon. Berbagai proses kimia dapat mengubah karbon dan hidrogen di batu bara, gas alam, biomassa dari tumbuhan dan hewan, serta limbah organik menjadi rantai pendek hidrokarbon yang sesuai sebagai pengganti bahan bakar hidrokarbon yang ada saat ini. Contohnya adalah diesel Fischer-Tropsch, metanol, dimetil eter, dan syngas. Dengan harga minyak di atas 35 USD sudah cukup menjanjikan secara ekonomi bagi biofuel untuk diproduksi secara masal (ECN, 1994).

Bahan bakar hidrokarbon sintetik

Page 19: TUGAS KELOMPOK FISIKA

Karbon dioksida di atmosfer, secara eksperimen, telah diubah menjadi bahan bakar hidrokarbon dengan bantuan energi dari sumber lain. Agar berguna secara industri, energi yang digunakan mungkin akan datang dari matahari, dan di masa depan akan muncul teknologi fotosintesis buatan. Alternatif lainnya untuk energi adalah listrik atau panas dari energi surya atau nuklir. Dibandingkan dengan hidrogen, hampir semua bahan bakar hidrokarbon memiliki keuntungan berupa penggunaan yang instan dengan mesin dan infrastruktur yang tersedia saat ini. Menghasilkan hidrokarbon sintetik mengurangi jumlah karbon dioksida di atmosfer hingga bahan bakar tersebut dibakar lagi, sehingga sejumlah karbon dioksida yang sama kembali ke atmosfer.

Penyimpanan mekanis

Energi dapat disimpan dengan cara memompa air hingga ketinggian tertentu dan dilepaskan menjadi energi listrik ketika dibutuhkan.

Udara bertekanan merupakan metode penyimpanan energi murah dengan menggunakan energi listrik yang murah ketika sedang tidak terjadi beban puncak. Udara bertekanan dapat disimpan di dalam reservoir bawah tanah. Udara bertekanan tersebut lalu dilepaskan ketika beban puncak untuk mensuplai energi listrik dan dapat dipanaskan dengan menggunakan panas yang dibuang oleh mesin-mesin atau pembangkit listrik untuk meningkatkan tekanannya.

Energi yang tidak selalu dapat diambil

Banyak energi terbarukan berupa sumber energi yang tidak dapat selalu dimanfaatkan karena suatu keterbatasan (energi matahari, angin, dan sebagainya), namun dapat dimanfaatkan untuk mengisi suplai energi sementara sumber energi lain disimpan untuk digunakan pada jaringan transmisi listrik, atau sumber energi tersebut dipakai untuk mengisi jaringan sistem listrik tersebut ketika diperlukan. Jika kehilangan energi ketika distribusi dan biaya dapat diatur, maka jenis energi ini dapat menjadi andalan.

Energi matahari, meski saat ini tidak dapat digunakan sepanjang hari, namun saat ini telah dirancang satelit energi matahari yang berguna untuk menangkap energi matahari melalui satelit yang melayang luar angkasa dan didstribusikan ke bumi dengan berbagai cara sehingga pemanfaatan energi matahari dapat menjadi lebih panjang dengan jumlah energi yang diambil lebih besar (karena energi matahari di luar angkasa

Page 20: TUGAS KELOMPOK FISIKA

lebih besar dari pada energi matahari yang telah menyentuh permukaan bumi).

Penyimpanan energi termal

Penyimpanan energi termal adalah penyimpanan energi sementara atau pemindahan panas untuk penggunaan di kemudian hari. Penyimpanan energi termal yang umum saat ini adalah penyimpanan es yang berguna untuk memindahkan panas ketika dibutuhkan. Es dibuat di malam hari ketika beban puncak telah lewat. Metode ini direkomendasikan dan dikembangkan oleh US Green Building Council dalam program Leadership in Energy Eficiency and Environmental Design untuk menggugah pengembangan desain bangunan berkemampuan tinggi yang aman bagi lingkungan.

Keuntungan pembuatan es di malam hari diantaranya: listrik setelah melewati beban puncak memiliki biaya lebih rendah sehingga lebih murah, dan energi untuk mendinginkan es di malam yang dingin lebih cepat dan membutuhkan energi yang lebih sedikit, sehingga dapat dihasilkan es dalam jumlah yang lebih banyak. Dapat dikatakan juga bahwa dengan cara ini, banyak energi dari pembangkit listrik dihemat sementara lebih banyak energi dikeluarkan dari penyimpanan untuk beberapa lamanya.

Page 21: TUGAS KELOMPOK FISIKA

PEMANFAATAN BIOGAS SEBAGAI ENERGI ALTERNATIF

Beberapa tahun terakhir ini energi merupakan persoalan yang krusial didunia. Peningkatan permintaan energi yang disebabkan oleh pertumbuhan populasi penduduk dan menipisnya sumber cadangan minyak dunia serta permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap negara untuk segera memproduksi dan menggunakan energi terbaharukan. Selain itu, peningkatan harga minyak dunia hingga mencapai 100 U$ per barel juga menjadi alasan yang serius yang menimpa banyak negara di dunia terutama Indonesia.Lonjakan harga minyak dunia akan memberikan dampak yang besar bagi pembangunan bangsa Indonesia. Konsumsi BBM yang mencapai 1,3 juta/barel tidak seimbang dengan produksinya yang nilainya sekitar 1 juta/barel sehingga terdapat defisit yang harus dipenuhi melalui impor. Menurut data ESDM (2006) cadangan minyak Indonesia hanya tersisa sekitar 9 milliar barel. Apabila terus dikonsumsi tanpa ditemukannya cadangan minyak baru, diperkirakan cadangan minyak ini akan habis dalam dua dekade mendatang.Untuk mengurangi ketergantungan terhadap bahan bakar minyak pemerintah telah menerbitkan Peraturan presiden republik Indonesia nomor 5 tahun 2006 tentang kebijakan energi nasional untuk mengembangkan sumber energi alternatif sebagai pengganti bahan bakar minyak. Kebijakan tersebut menekankan pada sumber daya yang dapat diperbaharui sebagai altenatif pengganti bahan bakar minyakSalah satu sumber energi alternatif adalah biogas. Gas ini berasal dari berbagai macam limbah organik seperti sampah biomassa, kotoran manusia, kotoran hewan dapat dimanfaatkan menjadi energi melalui

Page 22: TUGAS KELOMPOK FISIKA

proses anaerobik digestion. Proses ini merupakan peluang besar untuk menghasilkan energi alternatif sehingga akanmengurangi dampak penggunaan bahan bakar fosil

1.ANAEROBIK DIGESTIONBiogas merupakan sebuah proses produksi gas bio dari material organik dengan bantuan bakteri. Proses degradasi material organik ini tanpa melibatkan oksigen disebut anaerobik digestion Gas yang dihasilkan sebagian besar (lebih 50 % ) berupa metana. material organik yang terkumpul pada digester (reaktor) akan diuraiakan menjadi dua tahap dengan bantuan dua jenis bakteri. Tahap pertama material orgranik akan didegradasi menjadi asam asam lemah dengan bantuan bakteri pembentuk asam. Bakteri ini akan menguraikan sampah pada tingkat hidrolisis dan asidifikasi. Hidrolisis yaitu penguraian senyawa kompleks atau senyawa rantai panjang seperti lemak, protein, karbohidrat menjadi senyawa yang sederhana. Sedangkan asifdifikasi yaitu pembentukan asam dari senyawa sederhana.

Setelah material organik berubah menjadi asam asam, maka tahap kedua dari proses anaerobik digestion adalah pembentukan gas metana dengan bantuan bakteri pembentuk metana seperti methanococus, methanosarcina, methano bacterium.

Perkembangan proses Anaerobik digestion telah berhasil pada banyak aplikasi. Proses ini memiliki kemampuan untuk mengolah sampah / limbah yang keberadaanya melimpah dan tidak bermanfaat menjadi produk yang lebih bernilai. Aplikasi anaerobik digestion telah berhasil pada pengolahan limbah industri, limbah pertanian limbah peternakan dan municipal solid waste (MSW).

2.SEJARAH BIOGASSejarah penemuan proses anaerobik digestion untuk menghasilkan biogas tersebar di benua Eropa. Penemuan ilmuwan Volta terhadap gas yang dikeluarkan di rawa-rawa terjadi pada tahun 1770, beberapa dekade kemudian, Avogadro mengidentifikasikan tentang gas metana. Setelah tahun 1875 dipastikan bahwa biogas merupakan produk dari proses anaerobik digestion. Tahun 1884 Pasteour melakukan penelitian tentang biogas menggunakan kotoran hewan. Era penelitian Pasteour menjadi landasan untuk penelitian biogas hingga saat ini.

3.KOMPOSISI BIOGASBiogas sebagian besar mengandung gs metana (CH4) dan karbon dioksida (CO2), dan beberapa kandungan yang jumlahnya kecil

Page 23: TUGAS KELOMPOK FISIKA

diantaranya hydrogen sulfida (H2S) dan ammonia (NH3) serta hydrogen dan (H2), nitrogen yang kandungannya sangat kecil.

Energi yang terkandung dalam biogas tergantung dari konsentrasi metana (CH4). Semakin tinggi kandungan metana maka semakin besar kandungan energi (nilai kalor) pada biogas, dan sebaliknya semakin kecil kandungan metana semakin kecil nilai kalor. Kualitas biogas dapat ditingkatkan dengan memperlakukan beberapa parameter yaitu : Menghilangkan hidrogen sulphur, kandungan air dan karbon dioksida (CO2). Hidrogen sulphur mengandung racun dan zat yang menyebabkan korosi, bila biogas mengandung senyawa ini maka akan menyebabkan gas yang berbahaya sehingga konsentrasi yang di ijinkan maksimal 5 ppm. Bila gas dibakar maka hidrogen sulphur akan lebih berbahaya karena akan membentuk senyawa baru bersama-sama oksigen, yaitu sulphur dioksida /sulphur trioksida (SO2 / SO3). senyawa ini lebih beracun. Pada saat yang sama akan membentuk Sulphur acid (H2SO3) suatu senyawa yang lebih korosif. Parameter yang kedua adalah menghilangkan kandungan karbon dioksida yang memiliki tujuan untuk meningkatkan kualitas, sehingga gas dapat digunakan untuk bahan bakar kendaraan. Kandungan air dalam biogas akan menurunkan titik penyalaan biogas serta dapat menimbukan korosif

4. REAKTOR BIOGASAda beberapa jenis reactor biogas yang dikembangkan diantaranya adalah reactor jenis kubah tetap (Fixed-dome), reactor terapung (Floating drum), raktor jenis balon, jenis horizontal, jenis lubang tanah, jenis ferrocement. Dari keenam jenis digester biogas yang sering digunakan adalah jenis kubah tetap (Fixed-dome) dan jenis Drum mengambang (Floating drum). Beberapa tahun terakhi ini dikembangkan jenis reactor balon yang banyak digunakan sebagai reactor sedehana dalam skala kecil.

1. Reaktor kubah tetap (Fixed-dome)

Reaktor ini disebut juga reaktor china. Dinamakan demikian karena reaktor ini dibuat pertama kali di chini sekitar tahun 1930 an, kemudian sejak saat itu reaktor ini berkembang dengan berbagai model. Pada reaktor ini memiliki dua bagian yaitu digester sebagai tempat pencerna material biogas dan sebagai rumah bagi bakteri,baik bakteri pembentuk asam ataupun bakteri pembentu gas metana. bagian ini dapat dibuat dengan kedalaman tertentu menggunakan batu, batu bata atau beton. Strukturnya harus kuat karna menahan gas aga tidak terjadi kebocoran. Bagian yang kedua adalah kubah tetap (fixed-dome). Dinamakan kubah

Page 24: TUGAS KELOMPOK FISIKA

tetap karena bentunknya menyerupai kubah dan bagian ini merupakan pengumpul gas yang tidak bergerak (fixed). Gas yang dihasilkan dari material organik pada digester akan mengalir dan disimpan di bagian kubah.

Keuntungan dari reaktor ini adalah biaya konstruksi lebih murah daripada menggunaka reaktor terapung, karena tidak memiliki bagian yang bergerak menggunakan besi yang tentunya harganya relatif lebih mahal dan perawatannya lebih mudah. Sedangkan kerugian dari reaktor ini adalah seringnya terjadi kehilangan gas pada bagian kubah karena konstruksi tetapnya.

2. Reaktor floating drum

Reaktor jenis terapung pertama kali dikembangkan di india pada tahun 1937 sehingga dinamakan dengan reaktor India. Memiliki bagian digester yang sama dengan reaktor kubah, perbedaannya terletak pada bagian penampung gas menggunakan peralatan bergerak menggunakan drum. Drum ini dapat bergerak naik turun yang berfungsi untuk menyimpan gas hasil fermentasi dalam digester. Pergerakan drum mengapung pada cairan dan tergantung dari jumlah gas yang dihasilkan.Keuntungan dari reaktor ini adalah dapat melihat secara langsung volume gas yang tersimpan pada drum karena pergerakannya. Karena tempat penyimpanan yang terapung sehingga tekanan gas konstan. Sedangkan kerugiannya adalah biaya material konstruksi dari drum lebih mahal. faktor korosi pada drum juga menjadi masalah sehingga bagian pengumpul gas pada reaktor ini memiliki umur yang lebih pendek dibandingkan menggunakan tipe kubah tetap.

4.Reaktor balon

Reaktor balon merupakan jenis reaktor yang banyak digunakan pada skala rumah tangga yang menggunakan bahan plastik sehingga lebih efisien dalam penanganan dan perubahan tempat biogas. reaktor ini terdiri dari satu bagian yang berfungsi sebagai digester dan penyimpan gas masing masing bercampur dalam satu ruangan tanpa sekat. Material organik terletak dibagian bawah karena memiliki berat yang lebih besar dibandingkan gas yang akan mengisi pada rongga atas.

Page 25: TUGAS KELOMPOK FISIKA

5. KONSERVASI ENERGIKonversi limbah melalui proses anaerobik digestion dengan menghasilkan biogas memiliki beberapa keuntungan, yaitu :- biogas merupakan energi tanpa menggunakan material yang masih memiliki manfaat termasuk biomassa sehingga biogas tidak merusak keseimbangan karbondioksida yang diakibatkan oleh penggundulan hutan (deforestation) dan perusakan tanah.- Energi biogas dapat berfungsi sebagai energi pengganti bahan bakar fosil sehingga akan menurunkan gas rumah kaca di atmosfer dan emisi lainnya.- Metana merupakan salah satu gas rumah kaca yang keberadaannya duatmosfer akan meningkatkan temperatur, dengan menggunakan biogas sebagai bahan bakar maka akan mengurangi gas metana di udara.- Limbah berupa sampah kotoran hewan dan manusia merupakan material yang tidak bermanfaaat, bahkan bisa menngakibatkan racun yang sangat berbahaya. Aplikasi anaerobik digestion akan meminimalkan efek tersebut dan meningkatkan nilai manfaat dari limbah.- Selain keuntungan energy yang didapat dari proses anaerobik digestion dengan menghasilkan gas bio, produk samping seperti sludge. Meterial ini diperoleh dari sisa proses anaerobik digestion yang berupa padat dan cair. Masing-masing dapat digunakan sebagai pupuk berupa pupuk cair dan pupuk padat.

Page 26: TUGAS KELOMPOK FISIKA

KRISIS ENERGY

Krisis energi adalah kekurangan (atau peningkatan harga) dalam persediaan sumber daya energi ke ekonomi. Krisis ini biasanya menunjuk ke kekurangan minyak bumi, listrik, atau sumber daya alam lainnya. Krisis ini memiliki akibat pada eknomi, dengan banyak resesi disebabkan oleh krisis energi dalam beberapa bentuk. Terutama, kenaikan biaya produksi listrik, yang menyebabkan naiknya biaya produksi. Bagi para konsumen, harga BBM untuk mobil dan kendaraan lainnya meningkat, menyebabkan pengurangan keyakinan dan pengeluaran konsumen..

Dalam sebuah ekonomi pasar harga persediaan energi, seperti minyak, gas atau listrik didorong oleh prinsip persediaan dan permintaan yang dapat menyebabkan perubahan mendadak dalam harga energi ketika persediaan atau permintaan berubah. Namun dalam beberapa kasus energi krisis disebabkan oleh kegagalan pasar untuk menyesuaikan harga-harga dalam menjawab kepada kekurangan energi tersebut. Dalam kasus lainnya, krisis dapat disebabkan oleh berkurangnya pasar bebas. Beberapa ekonomis mengemukakan bahwa krisis energi 1973.

Page 27: TUGAS KELOMPOK FISIKA

TEKNOLOGY ENERGY

Teknologi energi adalah teknologi yang terkait dengan bidang-bidang mulai dari sumber, pembangkitan, penyimpanan, konversi -energi dan pemanfaatannya untuk kebutuhan manusia. Sektor kebutuhan utama yang paling besar dalam jumlah untuk massa mendatang adalah sektor kelistrikan dan sektor transportasi.

Sumber energi dapat digolongkan menjadi dua bagian yaitu energi terbarukan dan energi tak terbarukan. Dalam pembangkitan energi beberapa sistem pembangkitan yang telah digunakan untk memenuhi kebutuhan energi didunia, seperti:

pembangkit listrik tenaga air /PLTA, pembangkit listrik tenaga surya /PLTS,

pembangkit listrik tenaga uap dan gas /PLTU,PLTG,

pembangkit listrik panas bumi /PLTP,

pembangkit listrik tenaga angin/bayu /PLTB,

pembangkit listrik tenaga gelombang laut /PLTGL, dan

pembangkit listrik tenaga nuklir /PLTN

Bidang utama teknologi

Page 28: TUGAS KELOMPOK FISIKA

Ilmu terapan

Kecerdasan buatan · Teknologi keramik · Teknologi komputasi · Elektronika · Teknologi energi · Penyimpanan energi · Rekayasa fisika · Teknologi lingkungan · Teknik material · Mikroteknologi · Nanoteknologi · Teknologi nuklir · Rekayasa optik · Komputer quantum

Olahragadan Rekreasi

Peralatan berkemah · Tempat bermain · Peralatan olahraga

Informasidan Komunikasi

Teknologi informasi · Teknologi komunikasi · Grafis · Teknologi musik · Pengenalan suara · Teknologi visual

IndustriKonstruksi · Teknik finansial · Manufaktur · Mesin · Pertambangan

MiliterBom · Senapan · Amunisi · Teknologi militer dan peralatan · Teknik kelautan · Pesawat tempur · Kapal perang · Peluru kendali · Tank

Rumah tangga

Peralatan rumah tangga · Teknologi rumah tangga · Teknologi pendidikan · Teknologi pangan

Teknik

Teknik material · Teknik finansial · Teknik kelautan · Teknik biomedis · Teknik keselamatan · Teknik kesehatan · Teknik penerbangan · Teknik perkapalan · Teknik pertanian · Teknik arsitektur · Rekayasa biologi · Teknik bioproses · Teknik biomedis · Teknik kimia · Teknik sipil · Teknik komputer · Teknik konstruksi · Teknik listrik · Teknik elektro · Teknik lingkungan · Teknik industri · Teknik mesin · Teknik mekatronika · Teknik metalurgi · Teknik pertambangan · Teknik nuklir · Teknik otomotif · Teknik perminyakan · Teknik perangkat lunak · Teknik struktur · Rekayasa jaringan

Kesehatandan Keselamatan

Teknik biomedis · Bioinformatika · Bioteknologi · Informatika kimiawi · Teknologi perlindungan kebakaran · Farmakologi · Teknik keselamatan · Teknik kesehatan

Page 29: TUGAS KELOMPOK FISIKA

TransportasiAngkasa luar · Teknik penerbangan · Teknik perkapalan · Kendaraan bermotor · Teknologi luar angkasa

DAFTAR PUSTAKA

Singh, R.K and Misra, 2005, Biofels from Biomass, Department of Chemical Engineering National Institue of Technology, Rourkela

Presiden Republik Indonesia, 2006, Peraturan Presiden Republik Indonesia Nomor 5 Tahun 2006 Tentang Kebijakan Energi Nasional, Jakarta

Prihandana, R. dkk, 2007, Meraup Untung dari Jarak Pagar, Jakarta , P.T Agromedia Pustaka

Tim Nasional Pengembangan BBN, 2007, BBN, Bahan Bakar Alternatif dari Tumbuhan Sebagai Pengganti Minyak Bumi

Daugherty E.C, 2001, Biomass Energy Systems Efficiency:Analyzed through a Life Cycle Assessment, Lund Univesity.

Page 30: TUGAS KELOMPOK FISIKA

Instruksi Presiden, Instruksi Preiden No 1 tahun 2006 tertanggal 25 januari 2006 tentang penyediaan dan pemanfaatan bahan bakar nabati (biofuels), sebagai energi alternative, Jakarta.

Direktorat Jenderal Listrik dan Pemanfaatan Energi, 2004, Potensi energi terbaharukan di Indonesia, Jakarta