titrasi konduktometri

13
Titrasi konduktometri merupakan salah satu dari sekian banyak macam-macam titrasi. Didalam titrasi konduktometri ini tidak terlalu berbeda jauh dari titrasi-titrasi yang lainya, yang membedakan biasanya hanya terdapat bagaimana cara untuk mengetahui titik ekivalen dari larutan itu. Kalau kita menggunakan titrasi volumetri yang biasa kita praktikan sebelumnya titik ekivalen diketahui ketika terjadi perubahan warna, zat itu akan mengalami peruban warna bila zat itu dalam keadaan setimbang. Untuk mempermudah kita untuk melihat zat itu sudah mencapai ekivalen maka digunakan indikator. Tetapi banyak sekali para praktikan yang merasa kesulitan untuk menentukan dengan tepat titik ekivalen dengan menggunkan titrasi volumetri ini. Titrasi konduktometri ini lebih mudah jika dibandingkan dengan titrasi lainya, walaupun ada kelemahan tetapi juga ada kelebihanya. Titik ekivalen dapat kita ketahui dari daya hantar dari larutan yang kita ukur, jika daya hantar sudah konstan berarti titrasi sudah mencapai ekivalen. Titrasi ini juga tidak perlu menggunakan indikator, untuk lebih jelasnya akan dijelaskan dalam bab selanjutnya . Konduktometri merupakan prosedur titrasi, sedangkan konduktansi bukanlah prosedur titrasi . Metode konduktansi dapat digunakan untuk mengikuti reaksi titrasi jika perbedaan antara konduktansi cukup besar sebelum dan sesudah penambahan reagen. Tetapan sel harus diketahui. Berarti selama pengukuran yang berturut-turut jarak elektroda harus tetap. Hantaran sebanding dengan konsentrasi larutan pada temperatur tetap, tetapi pengenceran akan menyebabkan hantarannya tidak berfungsi secara linear lagi dengan konsentrasi Konduktivitas suatu larutan elektrolit, pada setiap temperatur hanya bergantung pada ion2 yang ada, dan konsentrasi ion2 tersebut. Ini sebagian besar disebabkan oleh berkurangnya efek2 antar ionik untuk elektrolit2 kuat dan oleh kenaikan derajat disosiasi untuk elektrolit-elektrolit lemah (Bassett, J. dkk., 1994).

description

CI

Transcript of titrasi konduktometri

Page 1: titrasi konduktometri

Titrasi konduktometri merupakan salah satu dari sekian banyak macam-macam titrasi. Didalam titrasi konduktometri ini tidak terlalu berbeda jauh dari titrasi-titrasi yang lainya, yang membedakan biasanya hanya terdapat bagaimana cara untuk mengetahui titik ekivalen dari larutan itu. Kalau kita menggunakan titrasi volumetri yang biasa kita praktikan sebelumnya titik ekivalen diketahui ketika terjadi perubahan warna, zat itu akan mengalami peruban warna bila zat itu dalam keadaan setimbang. Untuk mempermudah kita untuk melihat zat itu sudah mencapai ekivalen maka digunakan indikator. Tetapi banyak sekali para praktikan yang merasa kesulitan untuk menentukan dengan tepat titik ekivalen dengan menggunkan titrasi volumetri ini. Titrasi konduktometri ini lebih mudah jika dibandingkan dengan titrasi lainya, walaupun ada kelemahan tetapi juga ada kelebihanya. Titik ekivalen dapat kita ketahui dari daya hantar dari larutan yang kita ukur, jika daya hantar sudah konstan berarti titrasi sudah mencapai ekivalen. Titrasi ini juga tidak perlu menggunakan indikator, untuk lebih jelasnya akan dijelaskan dalam bab selanjutnya.

Konduktometri merupakan prosedur titrasi, sedangkan konduktansi bukanlah prosedur titrasi. Metode konduktansi dapat digunakan untuk mengikuti reaksi titrasi jika perbedaan antara konduktansi cukup besar sebelum dan sesudah penambahan reagen. Tetapan sel harus diketahui. Berarti selama pengukuran yang berturut-turut jarak elektroda harus tetap. Hantaran sebanding dengan konsentrasi larutan pada temperatur tetap, tetapi pengenceran akan menyebabkan hantarannya tidak berfungsi secara linear lagi dengan konsentrasi 

Konduktivitas suatu larutan elektrolit, pada setiap temperatur hanya bergantung pada ion2 yang ada, dan konsentrasi ion2 tersebut. Ini sebagian besar disebabkan oleh berkurangnya efek2 antar ionik untuk elektrolit2 kuat dan oleh kenaikan derajat disosiasi untuk elektrolit-elektrolit lemah (Bassett, J. dkk., 1994).

Untuk mengukur konduktivitas suatu larutan, larutan ditaruh dalam sebuah sel, yang tetapan selnya telah ditetapkan dengan kalibrasi dengan suatu larutan yang konduktivitasnya diketahui dengan tepat, misal, suatu larutan kalium klorida standar. Sel ditaruh dalam satu lengan dari rangkaian jembatan Wheatstone dan resistansnya diukur (Bassett, J. dkk., 1994).

Bila konsentrasi dinyatakan dalam normalitas, maka harus dikalikan faktor 1000. nilai d/a=S  merupakan faktor geometri selnya dan nilainya konstan untuk suatu sel tertentu sehingga disebut tetapan sel (Khopkar, 2003). Metode konduktometri memiliki aplikasi yang jauh lebih terbatas ketimbang prosedur-prosedur visual, potensiometri ataupun amperometri (Bassett, J. dkk., 1994).

Hipotesis1.      Karena titrasi konduktometri lebih efisien dan lebeh efeketif dalam pengguanaan zat,

selain itu juga, kita tidak perlu menggunakan indikator untuk mengethaui titik ekivalen dari titrasi.

2.      Karena titik ekivalen dapat diketahui dari daya hantar larutan yang terukur pada konduktometer, yaitu dengan konstannya nilai daya hantar.

3.      Karena didalam titrasi konduktometer ini yang berperan penting yaitu konsentrasi dari suatu larutan.

Page 2: titrasi konduktometri

Konduktometri merupakan salah satu cara elektroanalisa, yang mengukur konduktivitas larutan dengan elektroda khusus. Konduktivitas berbanding terbalik terbalik tahanan listrik dalam larutan, yaitu semakin besar tahanan listrik, semakin kecil konduktivitas.

Konduktivitas mempunyai siemens per cm. konduktivitas larutan kimia lazimnya berkisar antara 0,1-2000 mili siemens per cm (ms/cm). kalau dua elektroda direndam dalam larutan yang mengandung ion-ion, maka akan mengalir arus listrik antara kedua elektroda tersebut, apabila terdapat beda tegangan listrik antara kedua elektroda tersebut.

Arus mengalir dari katoda yang bermuatan negative ke anoda yang bermuatan positif. Sebagai pebawa arus adalah ion-ion dalam larutan. Selisih potensial antara kedua elektroda tersebut tidak boleh terlalu besar agar tidak terjadi elektrolisa.

Besarnya arus yang mengalir ditentukan oleh parameter-parameter sebagai berikut :? Beda tegangan antara kedua elektroda.? Konsentrasi ion-ion.? Sifat ion seperti besarnya muatan, derajat disosiasi, besarnya ion, kompleksasi dengan molekul lain

dan sebagainya.? Suhu larutan.? Luas permukaan masing-masing elektroda.? Jarak antara katoda dan anoda.

Semakin besar arus makin besar pula konduktivitas K. Luas permukaan elektroda dan jarak antara katoda dan anoda merupakan parameter yang tetap, karena parameter-parameter tersebut bergantung pada rancangan elektroda. Oleh karena itu setiap elektroda mempunyai factor tersendiri yang dimasukkan dalam perhitungan konduktivitas ( cell constant K/cm ).

Pada permukaan elektroda dapat terjadi tegangan lebih ( over voltage ) yang tidak sebanding lagi dengan arus dan konsentrasi ion. Untuk mencegah tegangan lebih tersebut perbukaan elektroda dilapis dengan lapisan platinum yang halus dan aktif. Pelapisan elektroda dengan platinum disebut “platinizing”.

Parameter harus dipertahankan tetap sama selama pengukuran konduktivitas adalah suhu larutan. Sebaiknya digunakan wadah titrasi yang dindingnya berlapis dua, sehingga dalam dinding tersebut dapat dialirkan air pada suhu tertentu dari thermostat.

Perubahan konduktivitas terhadap suhu berbeda-beda untuk setiap senyawa. Setiap senyawa mempunyai koefisien suhu. Hubungan antara konduktivitas K pada suhu 20 oC dengan konduktivitas K pada suhu noC dapat dilihat pada persamaan sebagai berikut :

Untuk menghitung koefisien suhu digunakan rumus :Koefisien suhu bergantung pula pada konsentrasi zat. Koefisien suhu dapat ditentukan

sendiri dengan mengukur konduktivitas pada suhu 20 oC dan pada suhu yang lain ( misalnya 30 °C ).

Konduktometer metrohm mengukur konduktivitas dengan arus AC ( alternative current ) untuk mencegah terjadinya polarisasi lektrida. Oleh karena itu frekuensi dari arus tersebut perlu diatur sesuai dengan konduktivitas sampel. Terdapat dua pilihan frekuensi sebagai berikut :

Page 3: titrasi konduktometri

? Tombol FREQ tidak ditekan : Frekuensi 2000 Hertz ( 2 kHz ). Frekuensi tinggi dipakai untuk cuplikan yang mempunyai konduktivitas yang tinggi ( lebih dari 100 μS/cm ), selain itu untuk titrasi konduktometri.

? Tombol FREQ ditekan : Frekuensi 300 Hertz ( 300 Hz ) untuk konduktivitas dibawah 1 mS/cm.Jenis elektroda konduktometri ( measurung cell ) harus dipilih sesuai dengan konduktivitas

dari cuplikan. Elekttroda yang mempunyai tetapan rendah sesuai untuk pengukuran konduktivitas yang rendah, sebaliknya elektroda dengan tetapan tinggi sesuai untuk konduktivitas yang tinggi.

Suhu dikompensasikan secara otomatis dengan sensor Pt-100 atau oleh operatornya dengan menekan tombol TEMP, lalu mengatur suhu cuplikan, serta koefisien suhu cuplikan. Daerah pengukuran (measuring range) diatur oleh alat secara otomatis, kecuali bila tombol RANGE ditekan.

Apabila kita ingin membaca harga yang konduktivitas secara teliti, tetapi harga konduktivitas sering berubah, sehingga keluar dari daerah yang telah diatur, maka kita menaikkan harga konduktivitas tersebut hingga berada dipertengahan daerah pengukuran.

Titrasi KonduktometriTitrasi konduktometri dapat dilakukan untuk menentukan kadar ion, dengan syarat ion

tersebut terlibat dalam reaksi kimia sehingga terjadi penggantian satu jenis ion dengan yang lain yang berarti terjadi perubahan konduktivitas. Misalnya titrasi HCl dengan NaOH berdasarkan persamaan sebagai berikut :

H+  +  Cl-  +  OH-  +  Na+             H2O  +  Cl-  +  Na+

Sebelum ditambah NaOH, didalam larutan terdapat ion H+ dan Cl- yang masing-masing mempunyai harga konduktivitas molar ( 25 °C ) sebesar 349,8 cm2/mol dan 76,3 cm2/mol. Pada penambahan NaOH, terjadi reaksi antara H+dengan OH- membentuk H2O, sehingga jumlah H+ didalam larutan berkurang sedangkan jumlah NaOH bertambah. Na+ mempunyai harga konduktivitas molar 50,1 S cm-1/mol yang jauh lebih kecil dari H+ sehingga harga konduktivitas total dari larutan turun. Pada titik akhir titrasi, H+ dalam larutan telah bereaksi seluruhnya dengan OH-, sehingga penambahan NaOH lebih lanjut akan menaikkan harga konduktivitas total larutan, karena terdapat OH- dengan konduktivitas molar 198,3 S cm-1/mol.

Titik akhir dapat ditentukan dalam grafik titrasi sebagai berikut :Titrasi konduktometri sangat sesuai untuk asam atau basa lemah, karena penggunaan

potensiograph / titroprocessor dengan elektroda kaca menghasilkan titik akhir yang kurang jelas. Namun titrasi konduktometri tidak dapat dilakukan dalam cuplikan yang mengandung konsentrasi ion lain yang tinggi, karena titik akhir menjadi kurang tajam. Titrasi konduktometri sangat berguna untuk melakukan titrasi pengendapan. Keuntungan titrasi konduktometri adalah grafik titrasi seluruhnya digunakan untuk menentukan titik akhir sedangkan pada kurva titrasi potensiometri titik akhir ditentukan dari bentuk grafik dekat titik akhir saja. Kepekaan cara konduktometri jauh lebih baik. Titrasi konduktometri masih memberi titik akhir yang jelas untuk asam atau basa lemah dalam konsentrasi encer, sedangkan dengan potensiometri titik akhir tidak jelas lagi.

Page 4: titrasi konduktometri

Pemeliharaan ElektrodaElektroda yang kering sebelum dipakai direndam sebentar dalam etanol lalu dibilas dengan

air. Sehabis dipakai elektroda dibilas lagi dengan air lalu disimpan lagi dalam air. Elektroda yang akan disimpan untuk jangka waktu yang panjang harus dikeringkan lalu disimpan kering. Sekali-sekali elektroda perlu dilapis ulang dengan platinum (platinizing) sesuai dingin procedure dalam manual.

Secara berkala dan sehabis setiap kali platinizing elektroda perlu dikalibrasi ulang dengan larutan kalibrasi  yang telah disediakan oleh metrohm, lasimnya dengan larutan kalibrasi KCl. Tetapan elektroda distel pada 1,0 x 1 di konduktometer, lalu koefisien suhu 2,0 untuk KCl 1 mol/liter. Tetapan elektroda dihitung dengan rumus :

Hal-hal berikut harus selalu diingat-ingat ketika melakukan titrasi :1.    Penyesuaian pH. Untuk banyak titrasi EDTA, pH larutan sangatt menentukan sekali; seringkali

harus dicapai  batas-batas dari 1 satuan pH dan sering batas-batas dari 0,5 satuan pH harus dicapai, agar suatu titrasi yang sukses dapat dilakukan. Untuk mencapai batas-batas kontrol yang begitu sempit, perlu digunakan sebuah pH-meter sewaktu menyesuaikan nilai pH larutan, dan bahkan untuk kasus di mana batas  pH adalah sedemikian sehingga kertas uji pH boleh digunakan untuk mengontrol penyesuain pH, hanyalah kertas dari jenis dengan jangkau yang sempit boleh digunakan.

2.    Pemekatan ion logam yang akan dititrasi.Kebanyakan titrasi berhasil dengan baik dengan 0,25 mmol ion logam yang bersangkutan dalam volume 50-150 cm3 larutan. Jika konsentrasi ion logam itu terlalu tinggi; maka titik akhir mungkin akan sangat sulit untuk dibedakan, dan jika kita mengalami kesulitan dengan titik akhir, maka sebaiknya mulailah lagi dengan satu porsi larutan uji yang lebih sedikit, dan encerkan ini sampai 100-150 cm3 sebelum menambahkan medium pembufer dan indikator, lalu diulangi titrasi itu.

3.    Banyaknya indicator. Penambahan indicator yang terlalu banyak merupakan kesalahan yang harus kita hindarkan. Dalam banyak kasus, warna yang ditimbulakan oleh indicator sanagt sekali bertambah kuat selama jalannya titrasi, dan labih jauh, banayak indicator memperlihatkan dikroisme, yaitu terjadi suatu perubahan warna peralihan pada satu dua tetes sebelum tiik akhir yang sebenarnya.

4.    Pencapaian titik-akhir. Dalam banyak titrasi EDTA, perubahan warna disekitar titik akhir, mungkin lambat. Dalam banyak hal-hal demikian, sebaiknya titran ditambahkan dengan hati-hati sambil larutan terus menerus diaduk; dianjurkan untuk memakai pengaduk magnetic. Sering, titik akhir yang lebih tajam dapat dicapai jika larutan diapnaskan samapi sekitar kira-kira 40OC. Titrasi dengan CDTA selalu lebih lambat dalam daerah titik akhir divbanding dengan titrasi EDTA padanan.

5.    Deteksi perubahan warna. Dengan semua indicator ion logam yang digunakan pada titrasi kompleksometri, deteksi titik akhir dan titrasi bergantung pada pengenalan suatu perubahan warna yang tertentu; bagi banyak pengamat, ini dapat merupakan tugas yang sulit, dsan bagi

Page 5: titrasi konduktometri

yang menderita buta warna, bolehlah dikata mustahil. Kesulitan-kesulitan ini dapat diatasi dengan menggantikan mata dengan suatu fotosel yang jauh lebih peka, dan meniadakan unsurt manusiawi. Untuk melakukan operasi yang dituntut, perlu tersedia sebuah kolorimeter atau spektrofotometer dalam mana kompartemen kuvetnya adaalh cukup besar untuk memuat bejana titrasi (labu Erlenmeyer atau piala berbentuk tinggi) Spektrofotometer Unicam SP 500 merupakan contoh dari instrumen yang sesuai untuk tujuan ini, dan sejumlah fototitrator tersedia secara komersial.

6.    Metode lain untuk mendeeksi titik akhir. Disamping deteksi secara visualdan secara spektrofotometri dari titik akhir dalam titrasi EDTA denagn bantuan indicator ion logam, metode berikut ini juga tersedia untuk deteksi titik akhir.a.    Titrasi potensiometer dengan memakai sebuah electrode merkuriumb.    Titrasi potensiometer dengan memakai sebuah electrode ion selektif yang berespons terhadap ion yang sedang dititrasi.c.    Titrasi potensiometri dengan memekai sebuah system electrode platinum mengkilat kalomel jenuh, ini dapat dipakai bila reaksi melibatkan dua keadaan oksidasi berlainan (dari) suatu logam tertentud.    Dengan titarasi titrasi konduktometrie.    Dengan titrasi amperometrif.     Dengan titrasi entalpimetri

Aplikasi Titrasi KonduktometriDasar Analisis Tablet Aspirin dengan Metode Titrasi KonduktometriMenurut hukum Ohm I = E/R; di mana: I = arus dalam ampere, E = tegangan dalam volt,

R = tahanan dalam ohm. Hukum di atas berlaku bila difusi dan reaksi elektroda tidak terjadi. Konduktansi sendiri didefinisikan sebagai kebalikan dari tahanan sehingga I = EL. Satuan dari hantaran (konduktansi) adalah mho. Hantaran L suatu larutan berbanding lurus pada luas permukaan elektroda a, konsentrasi ion persatuan volume larutan Ci, pada hantaran ekivalen ionik S1, tetapi berbanding terbalik dengan jarak elektroda d, sehingga:

L = a/d  x S Ci S1Tanda S menyatakan bahwa sumbangan berbagai ion terhadap konduktansi bersifat aditif.

Karena a, dan d dalam satuan cm, maka konsentrasi C tentunya dalam ml. Bila konsentrasi dinyatakan dalam normalitas, maka harus dikalikan faktor 1000. nilai d/a = S merupakan faktor geometri selnya dan nilainya konstan untuk suatu sel tertentu sehingga disebut tetapan sel. Untuk mengukur konduktivitas suatu larutan, larutan ditaruh dalam sebuah sel, yang tetapan selnya telah ditetapkan dengan kalibrasi dengan suatu larutan yang konduktivitasnya diketahui dengan tepat, misal, suatu larutan kalium klorida standar. Sel ditaruh dalam satu lengan dari rangkaian jembatan Wheatstone dan resistansnya diukur. Pengaliran arus melalui larutan suatu elektrolit

Page 6: titrasi konduktometri

dapat menghasilkan perubahan-perubahan dalam komposisi larutan di dekat sekali dengan lektrode-elektrode, begitulah potensial-potensial dapat timbul pada elektrode-elektrode, dengan akibat terbawanya sesatan-sesatan serius dalam pengukuran-pengukuran konduktivitas, kecuali kalau efek-efek polarisasi demikian dapat dikurangi sampai proporsi yang terabaikan.

Konduktivitas suatu larutan elektrolit, pada setiap temperatur hanya bergantung pada ion-ion yang ada, dan konsentrasi ion-ion tersebut. Bila larutan suatu elektrolit diencerkan, konduktivitas akan turun karena lebih sedikit ion berada per cm3 larutan untuk membawa arus. Jika semua larutan itu ditaruh antara dua elektrode yang terpisah 1 cm satu sama lain dan cukup besar untuk mencakup seluruh larutan, konduktans akan naik selagi larutan diencerkan. Ini sebagian besar disebabkan oleh berkurangnya efek-efek antar-ionik untuk elektrolit-elektrolit kuat dan oleh kenaikan derajat disosiasi untuk elektrolit-elektrolit lemah.

Penambahan suatu elektrolit kepada suatu larutan elektrolit lain pada kondisi-kondisi yang tak menghasilkan perubahan volume yang berarti akan mempengaruhi konduktans (hantaran) larutan, tergantung apakah ada tidaknya terjadi reaksi-reaksi ionik. Jika tak terjadi reaksi ionik, seperti pada penambahan satu garam sederhana kepada garam sederhana lain (misal, kalium klorida kepada natrium nitrat), konduktans hanya akan naik semata-mata. Jika terjadi reaksi ionik, konduktans dapat naik atau turn; begitulah pada penambahan suatu basa kepada suatu asam kuat, hantaran turun disebabkan oleh penggantian ion hidrogen yang konduktivitasnya tinggi oleh kation lain yang konduktivitasnya lebih rendah. Ini adalah prinsip yang mendasari titrasi-titrasi konduktometri yaitu, substitusi ion-ion dengan suatu konduktivitas oleh ion-ion dengan konduktivitas yang lain.

Biasanya konduktometri merupakan prosedur titrasi, sedangkan konduktansi bukanlah prosedur titrasi. Metode konduktansi dapat digunakan untuk mengikuti reaksi titrasi jika perbedaan antara konduktansi cukup besar sebelum dan sesudah penambahan reagen. Tetapan sel harus diketahui. Berarti selama pengukuran yang berturut-turut jarak elektroda harus tetap. Hantaran sebanding dengan konsentrasi larutan pada temperatur tetap, tetapi pengenceran akan menyebabkan hantarannya tidak berfungsi secara linear lagi dengan konsentrasi. Hendaknya diperhatikan pentingnya pengendalian temperatur dalam pengukuran-pengukuran konduktans. Sementara penggunaan termostat tidaklah sangat penting dalam titrasi konduktometri, kekonstanan dalam temperatur dituntut, tetapi biasanya kita hanya perlu menaruh sel konduktivitas itu dalam bejana besar penuh air pada temperatur laboratorium. Penambahan relatif (dari) konduktivitas larutan selama reaksi dan pada penambahan reagensia dengan berlebih, sangat menentukan ketepatan titrasi; pada kondisi optimum kira-kira 0,5 persen. Elektrolit asing dalam jumlah besar, yang tak ambil bagian dalam reaksi, tak boleh ada, karena zat-zat ini mempunyai efek yang besar sekali pada ketepatan. Akibatnya, metode konduktometri memiliki aplikasi yang jauh lebih terbatas ketimbang prosedur-prosedur visual, potensiometri ataupun amperometri.

Asam salisilat adalah golongan khusus dari asam hidroksi. Penggunaan utama dari asam salisilat adalah dalam pembuatan aspirin. Reaksi dengan anhidrida asetat mengubah gugus hidroksil fenolik dari asam salisilat menjadi ester asetil, yaitu aspirin :

Page 7: titrasi konduktometri

Kelebihan titrasi konduktometera.        titrasi tidak menggunakan indikator, karena pada titik keivalen sudah dapat  ditentukan dengan  daya hantar dari larutan tersebut.b.       Dapat digunkan untuk titrasi yang berwarnac.        Dapat digunakan untuk titrasi yang dapat menimbulkan pengendapatand.       Lebih praktise.        Lebih cepat atau waktu yang diperlukan lebih sedikitf.        Untuk persen kesalahanya lebih kecil jika dibandingkan dengan titrasi volumetri

kekurangan titrasi konduktometera.       Hanya dapat diterapkan pada larutan elektrolit sajab.      Sangat dipengaruhi temperaturc.       Dapat ditunjukka dengan tidak langsungd.      Peralatan cukup mahale.       Jika tidak hati – hati maka akan cepat rusakf.       Tidak bisa digunakan pada larutan yang sangat asam atau basa karena akan meleleh.

Page 8: titrasi konduktometri

 TITRASI KONDUKTOMETRI1. Hukum yang mendasari percobaan:

Hukum Ohm menyatakan bahwa arus yang mengalir pada suatu penghantar berbanding lurus dengan gaya gerak listrik dan berbanding terbalik dengan resistansi  dari penghantar. 

2. Kurva pada titrasi konduktometri

- Kurva titrasi konduktometri asam kuat dan basa kuat

- Kurva titrasi konduktometri asam kuat dan basa lemah

- Kurva titrasi konduktometri asam lemah dan basa kuat