Polymer Handbook-Brandrup

download Polymer Handbook-Brandrup

of 13

Transcript of Polymer Handbook-Brandrup

  • 8/16/2019 Polymer Handbook-Brandrup

    1/13

    Physical Constants of Various Polyamides:

    Poly[imino(I -oxohexamethylene)],(Polyamide 6)

    Poly(iminoadipoyl-iminohexamethylene),

    (Polyamide 66)

    Poly(iminohexamethylene-iminosebacoyl),

    (Polyamide 610)Poly[imino(I -oxododecamethylene)],

    (Polyamide 2 ”

    Rakesh H. MehtaE.I. DuPont de Nemours Co., DuPont Nylon, Chattanooga, Tennessee, USA

    Property Polyamide 6 Polyamide 66 Polyamide 610 Polyamide 12 Ref.

    A b r a s i o n   See Wear Resistance   1 3

    Absorption)

    Water, moldings 20-90°C   saturationEthanol, moldings 20°C  saturationButanol, moldings 20°C  saturation

    Glycol, moldings 2o”C,   saturationMethanol, moldings 2o”C,   saturation

    Propanol, moldings 20°C  saturation

    Adhes ive Bond Streng th , tensile (MPa)  = (N/mm’)

    PA-aluminiumPA-steelPA-copper 

    Birefringence, (A .)

    n IInl

    9.5f

      0.5 8.5 It  0.5 3.3 *   0.3   1.6ztO.29-17 9-12 8-13 95-9 4-8 8-12   -

    6-13 2-10 2- 4   -

    12-16 9-14   1 6  8S

    9-13 9-12   1 0   -

    1.580 1.582

    1.530 1.519

    687 076

    393939

    5 1

    5 155

      This table includes data compiled by R. Pfltiger   for the third edition of Polymer Handbook.

    v / 1 2 1

  • 8/16/2019 Polymer Handbook-Brandrup

    2/13

    v / 1 2 2 PHYSICAL CONSTANTS OF VARIOUS POLYAMIDES

    Br i t t leness Temperature, ASTM D746 (“C) 57-5

    PA-6 PA-66   PA-610 PA-12

    DAM   SO RH DAM   SO RH DAM   50 RH DAM   5O RH

      - 8 0   65 [M, = 18000]  90   62  

    100   8 5 [M”= 340001  

    Bu l k Modu lus B(N/mm

    *)

    4400 3300 2300 4000(Crystalline rods, dry)

    C h e m i c a l R e s i s t a n c e o f N y l o n s a t 2 3 ” C  

    Acetic acid (10%)   3O 3

    Acetaldehyde (40%) 2 2

    Acetone (100%)   1 1

    Butanol (100%)   1   I

    Carbon tetrachloride (100%)   1   1

    Diesel oil (100%)   1 

    Ethanol (96%)   1 1

    Formic acid (3%)   :d 3(10%) 4

    Gasoline unleaded (100%)   1 1

    Heptane (100%)   1 1

    Hydrogen peroxide (2%) 4 4Dichloromethane (100%) 2 2

    Perchloroethylene (100%)   1 1

    Phenol (75%) 3 3

    Potassium hydroxide (10%)   1 1

    Sulfuric acid (10%) 4 4

    Toluene (100%)   1 1

    Transformer oil   (100%)   1 1

    ’  Considerable absorption and/or attack; limited product life.

    ’  Limited resistance, absorption causing dimensional changes and slight reduction in properties.

     

    Resistant, little or no absorption.’ Material is soluble or   decomposes in short time.

    57,5

    2b

    1 ’

    1

    1

    2

    1

    1

    1

     

    1

    1

    23

    2

    3

    1

    2

    1

    1

    Coeff icient of Fr ict ion (dry)

    (a) Average depth of roughness  R in (pm)   *0 . 1 0.35

    0.5 0.33

    1 . 0 0.32

    2.0 0.32

    4.0 0.36

    6.0 0.43

    (b) Average surface pressure in (MPa)   =   (N/mm’)

     

    Optimal 

    1.5-3pm

    0.02 0.40

    0.05 0.36

    0 . 1 0.35

    0.15 0.38

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    1 . 0 0.43

    1 . 2

    5.0 0.48

    1 5 . 0 0.48

    R,  ~0.3  urn Stick-slip-motion

    ‘Average surface pressure 0.1 MPa;   surface temperature

  • 8/16/2019 Polymer Handbook-Brandrup

    3/13

  • 8/16/2019 Polymer Handbook-Brandrup

    4/13

  • 8/16/2019 Polymer Handbook-Brandrup

    5/13

  • 8/16/2019 Polymer Handbook-Brandrup

    6/13

  • 8/16/2019 Polymer Handbook-Brandrup

    7/13

  • 8/16/2019 Polymer Handbook-Brandrup

    8/13

  • 8/16/2019 Polymer Handbook-Brandrup

    9/13

    Shear Strength, ASTM D732 (MPa)

    Physical Constants of Various Polyamides  V /129

    57-59

    DAM

    PA-6 PA-66   PA-610 PA-12

    SO RH DAM   5O RH DAM   5O RH DAM   5O RH

    9  

    6 6 5 7 5 8    3 4   

    Shrinkage See Mold Shrinkage

     P a r am e t e r (J/cm 3,   ‘I2

    Amorphous, 25°C 27.8 27.8

    So/vents See table “Solvents-Nonsolvents” in this Handbook So ni c Vel oc ity , 20°C (m /s)  1400-2300 (fibers)(26)   2770 (mouldings) (40)

    26   5 1

    Specif icHeat

      (J/g-K) 1.7 1.7 1.7 1.26   57,59

    Effect of temperature (“C)

    04080

    120

    160200220

    240260

    280

    1.38 1.30 1.381.67 1.55 1.761.97 1.97 2.13

    2.30 2.30 2.22

    2.68 2.68 2.47- 2.72 2.89- 2.76 8.16- 3.35 3.10  11.51 2.64  3.14 2.68

    58,59

     

    Specif ic Volume, at varying pressures (MPa)   and temperatures (cm3/g)At 25°C

    A t m 0.87550 0.865

    100 0.860

    200 0.850At 100°C

    A t m 0.895

    50 0.885

    1 0 0 0.875

    200 0.860At 200°C

    A t m 0.945

    50 0.925

    100 0.910

    200 0.890At 300°C

    A t m 1.055

    50 1.020100 0.995

    200 0.960

    6 1

    0.880 1.005 0.9850.875 0.985 0.9750.865 0.970 0.960

    0.855 0.950 0.945

    0.905 1.045 1.0200.890 1.020 1 oOO

    0.880 1.000 0.9850.865 0.970 0.960

    0.950 1.125 1.1300.935 1.085 1.0950.920 1.060 1.070

    0.895 1.020 1.030

    1.050

    1.0200.9950.955

    1.2101.150

    1.1101.060

    1.210

    1.1501.110

    1.070

    Surface Tension, critical @N/m)23°C 40-47; 43

    Melt, 265°C 36

    Taber Abrasion, D1044 (mg loss/1OOO   cycles); CS-17 wheel, 1OOOg   load

    40; 44

    36 37

    3 1   38,5 1

    2 5 22

    7 [M,  = 18000]4 [M”   = 340001

    5- 657.59

    -

    Temperature Index/Thermal Endu rance Prof i le : Typica l Values (“C) 

    Not stabilized

    5000h   8 520000 h 70

    Heat stabilized

    5000 13020000 120

    57,59

    85  

    70  

    130120

     

    100

    References page V- 132

  • 8/16/2019 Polymer Handbook-Brandrup

    10/13

  • 8/16/2019 Polymer Handbook-Brandrup

    11/13

  • 8/16/2019 Polymer Handbook-Brandrup

    12/13

  • 8/16/2019 Polymer Handbook-Brandrup

    13/13

    R e f e r e n c e s   v/133

    46. H. W. Starkweather, G. E. Moore, J. E. Hansen, Th. M.

    Roder, R. E. Brooks, J. Polym. Sci., 21, 189 (1956).

    47. H. W.  Starkweather, R. E. Moynihan, J. Polym. Sci., 22,363

    (1956).

    48. H. W. Starkweather, J. Appl. Polym. Sci., 2(5),

     129 (1959).

    49. H. W.  Starkweather, J. F. Whitney, D. R. Johnson, J. Polym.

    Sci. A, 1, 715 (1963).

    50. H. Tautz, L. Strobel, Koll.   Z., Z. f. Polym., 202 (1)  S.33

    (1965).

    51. Van Krevelen, D. W., P  J. Hoftyzer: “Properties of Poly-

    mers-Correlation with Chemical Structure”, (2nd ed.)Elsevier Publ. Comp., Amsterdam 1976.

    52. J. H. Wakelin, A. Sutherland, L. R. Beck, J. Polym. Sci., 42

    (139),  278 (1960).

    53. L. G. Wallner, Makromol. Chem., 79, 279 (1948).

    54. R. C. Wilhoit, M. Dole, J. Phys. Chem., 57, 14 (1953).

    55. R. W.   Warfield, E. G. Kayser, B. Hartmann, Makromol.

    Chem., 184, 1927 (1983).

    56. A. Zosel, Colloid Polym. Sci., 263, 541 (1985).

    57. Trade Literature

    (a) “Design Handbook for DuPont Engineering Plastics”,

    DuPont, 1997, Module II, 232409E(b) “Ultramide  PA, Product Line, Properties, Processing”,

    BASF Plastics,B568e,

      (9110) 9.91.

    (c) “Ultramida   T PA, Product Line, Properties, Proces-sing”, BASF Plastics, B605e,  8.90.

    (d) “Ultramid’~  PA, Range Chart”, BASF Plastics, F568/le,

    5.90.(e) “Product Sheet Nylon Resin 6,10”,   Monsanto Co.

    (f)   “Rilsan@,   Design Guide to a Versatile Engineering

    Plastic”, Atochem Polymers, Inc.,4/84.

    (g) “Engineering Thermoplastics, Versamids”   Huls Amer-ica, Inc.

    (h) “A Guide to Properties and Uses of Nylon 12”,  HulsAmerica, Inc., Datasheets.

    (i) “Product Selection Chart, Grilamid@,  Nylon 12”,   EMS

    Industries, GG5-805.(i) “Caprot?  Nylon Homopolymers for Molding and Extru-

    sion”,   Allied Signal, ERG-02-6/9 1.

    (k)“Vydyne@

     Nylon”, Monsanto Company, 1994,MPP-5-

    210.

    (1) “Technical Information, Rilsana”,   Elf Atochem, North

    America, Inc.,Technical Polymers, 1998.

    58. R. M. Bonner, M. I. Kohan, E. M. Lacey,  P. N. Richardson,T. M. Roder, L. T. Sherwood, in: M. I. Kohan (Ed.), “Nylon

    Plastics”, Wiley, New York, 1973, p. 327.

    59. J. C. L. Williams, S. J. Watson, P. Boydell,  in: M. I. Kohan,

    (Ed.), “Nylon Plastics Handbook”, Hanser/Gardner Publi-

    cations, Cincinnati, OH, USA, 1995, p. 291.

    60. D. M. Bigg,  D. J. Walsh and Roder, T. M., in: M. I. Kohan(Ed.), “Nylon Plastics Handbook”, Hanser/Gardner Publi-cations, Inc., Cincinnati, OH, USA, 1995, p. 151.

    61. A. Dharia and S. J. Grossman, Antec   1987, 590.

    62. D. P. Garner and P. D. Pasulo, Polym. Mater. Sci. Eng., 57,

    467 (1987).

    63. S. W. Shalaby, P. Moy, in “Engineering Materials Hand-

     book”, ASTM International: Metals Park, OH, Vol. 2, 1988, p. 447.

    64. J. A. Brydson, “Plastics Materials”,Butterworth-Heine-

    mann Ltd., Oxford, Great Britain, 1989.

    65. J. Zimmerman, in “Encyclopedia of Polymer Science

    and Engineering”, Vol. 2, IInd   Ed., Wiley, New York,1988.

    66. “Recognized Component Directory”, Underwriters Labora-

    tories, Northbrook, IL, 1993: Vol. 2, p. 1786.

    67. M. I. Kohan, in: “Ullmann’s Encyclopedia of Industrial

    Chemistry,” Vol. A2, VCH: Weinheim, 1992, p.   195.

    68. E. S. Ong, Y. Kim, H. L. Williams, J. Appl. Polym. Sci., 31,

    367 (1986).

    69. E. Roderdink, J. M. M. Wamier, Polymer, 26, 1582

    (1985).

    70. H. M. Laun, Rheol.Acta.,

      18, 478 (1979).

    71. M. Eystatiev, in: 0. Olabisi (Ed.), “Handbook of Thermo-

     plastics”, Marcel Dekker, New York, 1997.72. J. J. Burke, T. A. Orafino, J. Polym. Sci., 7, 1 (1969).

    73. A. Mattiussi, G. B. Gechele, R. Francesconi, J. Polym. Sci.,

    7, 411 (1969).

    74. Z. Tuzar, M. Bohdanecky, R. Puffr, J. Sebenda, Eur. Polym.

    J., 11, 851 (1975).

    75. P.  W.   Morgan, S. L. Kwolek, J. Polym. Sci. A, 1, 1147

    (1963).