Pembuatan Beton High-Strength Berbasis Mikrosilika dari ... · PDF fileJurnal Ilmu Pengetahuan...

download Pembuatan Beton High-Strength Berbasis Mikrosilika dari ... · PDF fileJurnal Ilmu Pengetahuan dan Teknologi TELAAH Volume 29, Mei 2011

If you can't read please download the document

Transcript of Pembuatan Beton High-Strength Berbasis Mikrosilika dari ... · PDF fileJurnal Ilmu Pengetahuan...

  • Jurnal Ilmu Pengetahuan dan Teknologi TELAAH Volume 29, Mei 2011

    15

    Pembuatan Beton High-Strength Berbasis Mikrosilika dari Abu Vulkanik Gunung Merapi

    CANDRA KURNIAWAN, PERDAMEAN SEBAYANG, DAN MULJADI

    Pusat Penelitian Fisika LIPI, Komplek PUSPIPTEK Tangerang, Indonesia Email : [email protected]

    ANTON KUSWOYO

    Departemen Fisika-FMIPA, Universitas Lambung Mangkurat, Banjarbaru, Indonesia

    INTISARI : Telah dilakukan penelitian berupa pembuatan beton high-strength berbasis mikrosilika dari abu vulkanik Gunung Merapi. Ada dua treatmen yang dilakukan, yaitu: beton-semen dan beton-polimer. Bahan baku pembuatan beton berupa semen portland, resin epoxy (cair), abu vulkanik, agregat halus dan agregat kasar. Sampel beton dicetak dengan menggunakan pipa paralon dengan diameter dalam 2,75 cm dengan panjang cetakan adalah dua kali diameternya. Beton-semen dibuat dengan kandungan 40% pasta (semen-air), aggregate 60% dan nilai FAS 0,6. Ada tiga komposisi beton,: beton normal (beton A), beton abu vulkanik 100 mesh (beton B), dan beton abu vulkanik mikro size (beton C). Beton polimer (resin epoxy) dibuat menggunakan abu vulkanik mikro size dengan perbandingan resin terhadap kompositnya 1 : 5 (beton D) dan 1 : 3 (beton E). Parameter pengujian sampel meliputi uji densitas, porositas dan mekanik (kuat tekan). Hasil karakteristik beton menunjukkan bahwa beton dengan kualitas terbaik dihasilkan oleh Beton E (rasio resin-komposit 1 : 3) dengan karakteristik densitas = 2,09 gr/cm3, porositas = 1,58 %, dan kuat tekan sebesar 850,50 kgf/cm2. Tampak bahwa penambahan abu vulkanik sebagai campuran pada beton baik yang berukuran 100 mesh maupun mikro size dapat menghasilkan beton mutu tinggi yang ringan dengan kepadatan tinggi. KATA KUNCI : beton high-strength, resin epoxy, abu vulkanik, mikrosilika, semen portland ABSTRACT : Has done research on the topic of making high-strength concrete based mikrosilika from volcanic ash of Mount Merapi. There are two treatments created, cement-concrete and polymer-concrete. The raw materials use for making this concrete is portland cement, epoxy resin (liquid), volcanic ash, fine aggregate and coarse aggregate. Concrete samples were formed using paralon pipe with a diameter of 2.75 cm and mold length is twice the diameter. Cement-concrete containing 40% pastes (cement-water) and FAS value of 0.6, has three kinds of composition: normal concrete (concrete A), volcanic ash concrete 100 mesh (concrete B),and volcanic ash concrete microstructure (concrete C). Polymer concrete (epoxy)created using micro volcanic ash with resin-concrete ratio of 1 : 5 composite (concrete D) and 1 : 3 (concrete E). Test parameters used for sample are measurement for density, porosity and mechanical (compressive strength). The results showed that the concrete characteristics of concrete with the highest quality produced by Concrete E (ratio of composite resin-1: 3) with the characteristic density gr/cm3 = 2.09, porosity = 1.58%, and compressive strength of 850.50 kgf/cm2 . It shows that the addition of volcanic ash as concrete mix in both the size of micro and 100 mesh can produce lightweight high-strength concrete with high density. KEYWORDS : high strength concrete, epoxy resin, volcanic ash, microsilica, portland cement 1 PENDAHULUAN

    Indonesia merupakan negara kepulauan yang dikelilingi oleh rangkaian pegunungan berapi paling aktif di dunia. Pada akhir tahun 2010 yang lalu diperlihatkan peristiwa meletusnya gunung Merapi di Magelang, Jawa Tengah. Dalam letusan tersebut Merapi juga mengeluarkan material abu vulkanik dan awan panas. Awan panas yang terdiri atas material abu vulkanik dan gas ini memiliki temperatur 200 700 0C yang disebut Wedhus Gembel karena bentuknya saat meluncur turbulen mirip dengan bulu Kambing/Domba dengan laju luncur mencapai 200 km/jam dan jarak tempuh bisa mencapai 15 km dari puncak Merapi.

    Beton sebagai material komposit memiliki banyak keunggulan dibandingkan dengan bahan konstruksi lainnya. Di antaranya adalah sifatnya yang mudah dibentuk sesuai dengan konstruksi yang dibutuhkan, memiliki kekuatan yang tinggi untuk memikul beban berat dan biaya perawatannya tergolong ekonomis. Penambahan material tertentu ke dalam struktur beton secara umum dimaksudkan untuk memperoleh kualitas beton yang lebih baik, sehingga dapat dipelajari struktur dan karakteristik yang dihasilkan.

  • Jurnal Ilmu Pengetahuan dan Teknologi TELAAH Volume 29, Mei 2011

    16

    Tabel 1. Karakteristik Abu Vulkanik Merapi

    Abu Vulkanik sebagai material alami yang dikeluarkan dari Merapi selain dapat menutupi lahan dan mengakibatkan rusaknya sebagian besar tanaman sekitarnya, namun juga memiliki kemungkinan pemanfaatan lain yang lebih menguntungkan. Secara umum komposisi abu vulkanik terdiri atas Silika dan Kuarsa. Komposisi yang dominan pada abu vulkanik Merapi seperti yang ditunjukkan pada Tb.1 adalah silika, alumina, besi, dan kalsium [1], sehingga merupakan material yang dapat digunakan sebagai bahan campuran atau dimanfaatkan sebagai material subtitusi semen jika ditambahkan kapur (CaCO3).

    Ukuran (Size) partikel campuran sebagai komponen beton mempengaruhi sifat fisikanya adalah densitas, porositas dan kuat tekan. Hal ini dapat dipahami karena semakin kecil ukuran partikel campuran maka celah-celah udara (rongga) yang ada pada beton akan semakin sedikit sehingga pengecilan ukuran partikel campuran akan meningkatkan densitas dan mengecilkan nilai porositas pada beton, sehingga secara teori jika beton memiliki kepadatan yang lebih tinggi maka kuat tekannya juga akan meningkat. Kandungan Silika (SiO2) yang terdapat dalam abu vulkanik yang dihaluskan ukurannya menjadi berorde mikrometer (m) disebut mikrosilika. Penggunaan mikrosilika dalam pembuatan beton sebagai material tambahan diharapkan dapat mampu meningkatkan kualitas beton menjadi beton mutu tinggi (high strength). Suatu beton bisa disebut sebagai beton mutu tinggi (high strength) jika memiliki kuat tekan minimal sekitar 490,3 kgf/cm2 [2].

    Pada penelitian ini dibuat beberapa jenis beton dengan menggunakan bahan campuran dari abu vulkanik gunung Merapi. Beton-semen adalah beton yang menggunakan perekat semen dengan variasi ukuran partikel campuran abu gunung Merapi menggunakan ayakan 100 mesh dan ukuran mikro. Beton polimer (epoxy) menggunakan variasi komposisi resin : komposit sebesar 1 : 3 dan 1 : 5. Dari hasil pembuatan beton ini kemudian akan diuji sifat-sifat fisiknya seperti densitas, porositas dan kuat tekannya. 2. METODOLOGI

    Bahan baku yang digunakan dalam penelitian ini adalah semen portland, agregat kasar (kerikil kecil), agregat halus (Pasir), abu vulkanik Merapi, aquades, dan resin epoxy (cair) sebagai bahan polimer. Eksperimen dilakukan dengan membuat dua jenis beton: beton-semen (semen portland + agregat + air) dan beton polimer (resin epoxy cair + agregat).

    Adapun tahapan preparasi mulai dari pencucian abu vulkanik Merapi dari unsur pengotor dengan menggunakan air bersih. Abu yang telah bersih kemudian dikeringkan dalam oven selama 8 jam pada suhu 100oC, kemudian disaring hingga lolos ayakan 100 mesh sehingga diperoleh abu vulkanik dengan diameter maksimal 0,15 mm. Ada dua perlakuan terhadap abu vulkanik. Pertama abu vulkanik yang diayak pada ayakan 100 mesh, dan yang kedua abu vulkanik dibuat dalam ukuran mikro. Pembuatan abu vulkanik dalam skala mikrometer dilakukan dengan menggunakan alat Planetary Ball Mill (PBM) dengan cara sampel digerus dalam PBM selama 30 jam, kemudian dianalisis ukuran partikelnya menggunakan Particle Size Analizer (PSA) sehingga didapatkan abu vulkanik dengan ukuran submikron (

  • Jurnal Ilmu Pengetahuan dan Teknologi TELAAH Volume 29, Mei 2011

    17

    kemudahan dalam pembuatan sampel beton-semen. Beton polimer dibuat dengan menggunakan resin epoxy (cair), agregat (kasar + halus), dan abu vulkanik mikro dengan variasi komposisi resin-komposit. Sebagai variabel kontrol dibuat beton-semen normal (tanpa tambahan abu vulkanik). Jenis beton uji yang dibuat adalah sebagai berikut : a. Beton A : pasta semen + (agregat halus + agregat kasar) b. Beton B : pasta semen + [abu vulkanik 100 mesh + (agregat halus + kasar)] c. Beton C : pasta semen + [abu vulkanik mikro + (agregat halus + kasar)] d. Beton D : resin epoxy + [abu vulkanik mikro + (agregat halus + kasar)] dengan perbandingan 1:5. e. Beton E : resin epoxy + [abu vulkanik mikro + (agregat halus + kasar)] dengan perbandingan 1:3.

    Dalam setiap beton sampel yang menggunakan abu vulkanik perbandingan antara abu vulkanik dan agregat adalah 1 : 1 dan sampel A E dibuat masing-masing 5 sampel. Sampel beton dibuat dalam bentuk silinder dengan diameter rata-rata 2,75 cm menggunakan cetakan yang dibuat dari pipa paralon. Panjang pipa adalah dua kali diameternya.

    Pada pembuatan beton semen, beton yang sudah jadi dikeringkan dengan menggunakan autoclave selama 2 jam pada suhu 1210C. Pengeringan dengan autoclave bertujuan untuk mempercepat proses penuaan umur beton. Selanjutnya beton dimasukkan dalam oven 1000C selama 24 jam untuk menghilangkan kadar airnya. Sedangkan untuk jenis beton polimer, beton yang telah dimasukkan ke dalam cetakan kemudian dikeringkan selama 1 hari pada suhu ruangan. Tahap akhir ialah pengujian sifat fisik beton (densitas dan porositas) dan uji mekanik (kuat tekan) dengan menggunakan alat Universal Testing Machine (UTM). Diagram alir pembuatan beton uji ditunjukkan pada Gb. 1

    Tahapan pengujian yang dilakukan antara lain adalah pengukuran massa jenis (densitas) sampel beton. Pengukuran densitas beton ini menggunakan prinsip Archimedes untu