METABOLISME LEMAK

download METABOLISME LEMAK

of 22

description

ilmu biomedik dasar

Transcript of METABOLISME LEMAK

Pengertian, Fungsi, dan Metabolisme Lemak Posted by abdul hadi Sunday, 14 July 2013 17 comments

Pengertian Lemak, Fungsi Lemak, Struktur Kimia Lemak, Pembagian lemak, Sumber Lemak, dan Proses metabolisme lemak dalam tubuh manusia. Itulah yang akan saya bagikan pada postingan kali ini.Semoga bermanfaat bagi sobat sobat semua.Langsung aja ya (softilmu.blogspot.com)

A.PENGERTIAN LEMAK

Lemak (Lipid) adalah zat organik hidrofobik yang bersifat sukar larut dalam air.Namun lemak dapat larut dalam pelarut organik seperti kloroform,eter dan benzen.

B.STRUKTUR KIMIA LEMAK

Unsur penyusun lemak antara lain adalah Karbon(C),Hidrogenn(H),Oksigen(O) dan kadang-kadang Fosforus(P) serta Nitrogen(N).

Molekul lemak terdiri dari empat bagian,yaitu satu molekul gliserol dan tiga molekul asam lemak.Asam lemak terdiri dari rantai Hidrokarbon(CH) dan gugus Karboksil(-COOH).Molekul gliserol memiliki tiga gugus Hidroksil(-OH) dan tiap gugus hidroksil berinteraksi dengan gugus karboksil asam lemak.

Lemak

C.PEMBAGIAN LEMAK

Berdasarkan komposisi kimianya lemak terbagi atas tiga,yaitu:

1.Lemak Sederhana

Lemak sederhana tersusun oleh trigliserida, yang terdiri dari satu gliserol dan tiga asam lemak.Contoh senyawa lemak sederhana adalah lilin(wax) malam atau plastisin(lemak sederhana yang padat pada suhu kamar),dan minyak(lemak sederhana yang cair pada suhu kamar).

2.Lemak Campuran

Lemak Campuran merupakan gabungan antara lemak dengan senyawa bukan lemak.Contoh lemak campuran adalah lipoprotein(gabungan antara lipid dan dengan protein),Fosfolipid(gabungan antara lipid dan fosfat),serta fosfatidilkolin(yang merupakan gabungan antara lipid,fosfat dan kolin).

3.Lemak Asli(Derivat Lemak)

Deriwat lemak merupakan senyawa yang dihasilkan dari proses hidrolisis lipid.misalnya kolesterol dan asam lemak.Berdasarkan ikatan kimianya asam lemak dibedakan menjadi 2,yaitu: Asam lemak Jenuh,bersifat non-esensial karena dapat disintesis oleh tubuh dan pada umumnya berwujud padat pada suhu kamar.Asam lemak jenuh berasal dari lemak hewani,misalnya mentega. Asam lemak tidak jenuh, bersifat esensial karena tidak dapat disintesis oleh tubuh dan umunya berwujud cair pada suhu kamar.Asam Lema tidak jenuh berasal dari lemak nabati,misalnyya minyak goreng.

.SUMBER LEMAK

Berdasarkan asalnya,sumber lemak dapat dibedakan menjadi 2,yaitu Lemak yang berasal daari tumbuhan(disebut lemak Nabati).Beberapa bahan yang mengandung lemak nabati adalah kelapa,kemiri,zaitun,kacang tanah,mentega,kedelai,dll. Lemak yang berasal dari hewan(disebut lemak hewani).Beberapa bahan yang mengandung lemak hewani adalah daging,keju,susu,ikan segar,telur,dll.

E.FUNGSI LEMAK

Banyaknya lemak yang dibutuhkan oleh tubuh manusia umumnya berbeda-beda tetapi umumnya berkisar antara 0,5-1gram lemak per 1kg berat badan per hari.Orang yang tinggal di daerah bersuhu dingin dan orang yang bekerja berat membutuhkan lemak lebih banyak.Di dalam tubuh kita,lemak memppunyai beberapa fungsi penting,diantaranya adalah: Sebagai pelindung tubuh dari suhu rendah Sebagai pelarut vitamin A,D,E dan K Sebagai pelindung alat-alat tubuh vital(antara lain jantung dan lambung),yaitu sebagai bantalan lemak Sebagai penghasil energi tertingggi Penahan rasa lapar,karena adanya lemak akan memperlambat pencernaan.Bila pencernaan terlalu cepat maka akan cepat pula timbulnya rasa lapar. Sebagai salah satu bahan penyusun membran sel sebagai salah satu bahan penyusun hormon dan vitamin(khususnya untuk sterol) Sebagai salah satu bahan penyusun empedu,asam kholat (di dalam hati),dan hormon seks(khususnya untuk kolesterol.Pembawa zat-zat makan esensial

F.PROSES PENCERNAAN LEMAK DALAM TUBUH

Pencernaan lemak tidak terjadi di mulut dan lambung karena di tempat tersebut tidak terdapat enzim lipase yang dapat menghidrolisis atau memecah lemak.Pencernaan lemak terjadi di dalam usus,karena usus mengandung lipase.

Lemak keluar daari lambung masuk ke dalam usus sehingga merangsang hormon kolesistokinin.Hormon kolesistokinin menyebabkan kantung empedu berkontraksi sehingga mengeluarkan cairan empedu ke dalam duodenum(usus dua belaas jari).Empedu mengandung garam empedu yang memegang peranan penting dalam mengemulsikan lemak.Emulsi Lemak merupakan pemecahan lemak yang berukuran besar menjadai butiran lemak yang berukuran lebih kecil.ukuran lemak yang lebih kecil (trigliserida) yang teremulsi akan memudahkan hidrolisis lemak oleh lipase yang dihasilkan dari penkreas.Lipase pankreas akan menghidrolisis lemak teremulsi menjadi campuran asam lemak dan monoligserida (gliserida tunggal).Pengeluaran cairan penkreas dirancang oleh hormon sekretin yang berperan dalam meningkatkan jumlah elektrolit (senyawa penghantar listrik) dan cairan pankreas,serta pankreoenzim yang berperan untuk merangsang pengeluaran enzim-enzim dalam cairan pankreas.

Absorpsi hasil pencernaan lemak sebagian besar (70%) terjadi di usus halus.Pada waktu asam lemak dan monogliserida di absorpsi melalui sel-sel mukosa pada dinding usus,keduanya di ubah kembali menjadi lemak (trigliserida dengan bentuk partikel-partikel kecil(jaringan lemak.Saar dibutuhkam,timbunan lemak tersenit akan diangkut menuju hati.

Hubungan metabolisme protein,karbohidrat dan lemak Presentation Transcript 1. Katabolisme lemak Katabolisme lemak dimulai dengan pemecahan lemak menjadi gliserol dan asam lemak. Gliserol yang merupakan senyawa dengan 3 atom C dapat dirubah menjadi gliseral dehid 3-fosfat. Selanjutnya gliseral dehid 3-fosfat mengikuti jalur glikolisis sehingga terbentuk piruvat. Sedangkan asam lemak dapat dipecah menjadi molekul-molekul dengan 2 atom C. Molekul dengan 2 atom C ini kemudian diubah menjadi asetil koenzim A . Sehingga jika sewaktu-waktu tak tersedia sumber energi dari karbohidrat barulah asam lemak dioksidasi. Proses oksidasi asam lemak dinamakan oksidasi beta dan menghasilkan asetil KoA. Selanjutnya sebagaimana asetil KoA dari hasil metabolisme karbohidrat dan protein, asetil KoA dari jalur inipun akan masuk ke dalam siklus asam sitrat sehingga dihasilkan energi 2. Katabolisme karbohidrat Katabolisme Karbohidrat adalah pemecahan molekul karbohidrat menjadi unit-unit yang lebih kecil. Katabolisme karbihodrat meliputi proses pemecahan polisakarida menjadi monosakarida dan pemakaian glukosa (monosakarida) dalam proses respirasi untuk mengghasilkan energi dalam bentuk ATP (Adenosine Tripospat). ATP inilah yang digunakan oleh seluruh makhluk hidup untuk melakukan aktivitas kehidupan.ATP ini berasal dari beberapa proses diantaranya glikolisis,siklus krebs,sistem transpor elektron. 3. a. Pada proses iniPenggunaan ATP menjadikan glukosa berikatan dengan tosfat anorganik menjadi glukosa-6-fosfat. Dengan katalisator enzim heksokinase. b. Glukosa-6-fosfat mengalami perubahan strukiur menjadi fruktosa-6fosfat. yang dikatalisis oleh fosfoglukose isomerase. c. Penggunaan ATP kembali menambah fosfat anorganik menjadi fruktosa-1,6difosfat dengan katalisator fosfofruktokinase. Fruktosa-1,6-difosfat dipecah menjadi 2 molekul fosfogliseraldehid ( PGAL ). dengan katalisator enzim isomerase. d. Setiap PGAL memberi 2 elektron dan 1 atom hidrogen kepada NAD untuk membentuk NADH. e. Masing-masing PGAL kembali berikatan dengan fosfat anorganik membentuk 1,3difosfogliserat dengan bantuan gliseraldehida 3-fosfat dehidrogenase. f. Fosfat anorganik pada 1,3-difosfogliserat ditransfer ke ADP untuk membentuk ATP, dan 1,3-difosfogliserat menjadi 3-fosfogliserat. Sebagai katalisator adalah fosfogliserokinase. g. Kemudian 3-fosfogliserat memindahkan gugus fosfat ke karbonkedua membentuk 2-fosfogliserat,dengan katalisator fosfogliseromutase, lalu diikuti pelepasan H2 menyebabkan 2-fosfogliserat berubah menjadi 3-fosfoenol piruvat ( PEP ). dengan katalisator enolase. h. Setiap PEP mentranster fosfat anorganiknya kepada ADP untukmenghasilkan ATP, sehingga PEP berubah menjadi asam piruvat. 4. h. Asam piruvat hasil glikolisis kemudian mengalami dekarboksilasi oksidatif sehinngga mengubah asam piruvat menjadi asetil koa i. Asetil dilepaskan dari Asetil-CoA lalu bergabung dengan oksaloasetat sehingga terbentuk sitrat dengan penambahan air. Proses pembentukan sitrat ini dikatalisasi oleh enzim citrate synthase. j. Sitrat kemudian diubah menjadi isositrat dengan bantuan enzim acotinase. k. Kemudian isositrat akan diubah menjadi alfa-ketoglutarat dengan melepaskan satu molekul CO2 dan satu atom H. Atom H yang dilepaskan akan ditangkap oleh NAD+ untuk membentuk NADH. Proses tersebut dikatalisasi oleh enzim isocitrate dehydrogenase. l. -ketoglutarat kemudian diubah menjadi suksinil-CoA dengan melepaskan satu molekul CO2 dan satu atom H serta menempelkan satu molekul CoA. Atom H akan ditangkap oleh NAD+ untuk membentuk NADH. Enzim yang berperan adalah alpha-ketoglutarate dehydrogenase. m. Suksinil-CoA lalu diubah menjadi suksinat oleh enzim Succinyl-CoA synthetase. Pada proses ini molekul CoA akan dilepaskan, selain itu terdapat satu atom P yang ikut dalam reaksi dan kemudian akan ditangkap oleh ADP untuk membentuk ATP. n. Langkah selanjutnya adalah perubahan suksinat menjadi Fumarat oleh enzim succinate dehydrogenase. Dua atom H akan dilepaskan dan ditangkap oleh FAD+ untuk membentuk FADH2. o. Fumarat lalu diubah menjadi malat oleh fumarase dengan penambahan air. p. Malat kemudian akan diubah kembali menjadi oksaloasetat oleh enzim 5. q. Elektron dari H+ dari NADH dan FADH2 dibawa dari substrat ke substrat lain secara berantai.Setiap kali dipindahkan energi yang terlepas digunakan untuk mengikatkan fosfat anorganik ke molekul ADP sehingga terbentuk ATP 6. Katabolisme protein Asam-asam amino tidak dapat disimpan oleh tubuh. Jika jumlah asam amino berlebihan atau terjadi kekurangan sumber energi lain (karbohidrat dan protein), tubuh akan menggunakan asam amino sebagai sumber energi. Tidak seperti karbohidrat dan lipid, asam amino memerlukan pelepasan gugus amina. Gugus amin ini kemudian dibuang karena bersifat toksik bagi tubuh. Terdapat 2 tahap pelepasan gugus amin dari asam amino, yaitu: 1. Transaminasi : Enzim aminotransferase memindahkan amin kepada ketoglutarat menghasilkan glutamat atau kepada oksaloasetat menghasilkan aspartat 2. Deaminasi oksidatif : Pelepasan amin dari glutamat menghasilkan ion ammonium Gugus-gugus amin dilepaskan menjadi ion amonium (NH4+) yang selanjutnya masuk ke dalam siklus urea di hati. Dalam siklus ini dihasilkan urea yang selanjutnya dibuang melalui ginjal berupa urin. 7. Proses yang terjadi di dalam siklus urea terdiri atas beberapa tahap yaitu: 1. Dengan peran enzim karbamoil fosfat sintase I, ion amonium bereaksi dengan CO2 menghasilkan karbamoil fosfat. Dalam raksi ini diperlukan energi dari ATP 2. Dengan peran enzim ornitin transkarbamoilase, karbamoil fosfat bereaksi dengan L-ornitin menghasilkan L-sitrulin dan gugus fosfat dilepaskan. 3. Dengan peran enzim argininosuksinat sintase, L-sitrulin bereaksi dengan L-aspartat menghasilkan L-argininosuksinat. Reaksi ini membutuhkan energi dari ATP 4. Dengan peran enzim argininosuksinat liase, L-argininosuksinat dipecah menjadi fumarat dan L-arginin 5. Dengan peran enzim arginase, penambahan H2O terhadap Larginin akan menghasilkan L-ornitin dan urea. 8. Keterkaitan metabolisme protein,karbohidrat, dan protein Jadi keterkaitan Karbohidrat, protein dan Lemak /Lipid yaitu mereka akan di metabolisme yang hasil akhirnya menjadi asetyl Co-A, dimana asetyl Co-A merupakan substrat untuk siklus krebs. Kemudian dari siklus krebs dihasilkan CO2

KATABOLISME KARBOHIDRAT, PROTEIN, LEMAK DAN HUBUNGANNYA Oleh Bio duarebu 12 Juni 2012 Bagikan : Pengertian KatabolismeKatabolisme merupakan reaksi pemecahan atau penguraian senyawa kompleks (organik) menjadi sederhana (anorganik) yang menghasilkan energi. Untuk dapat digunakan oleh sel, energi yang dihasilkan harus diubah menjadi ATP (Adenosin Tri Phospat). ATP merupakan gugus adenin yang berikatan dengan tiga gugus fosfat. Pelepasan gugus fosfat menghasilkan energi yang digunakan langsung oleh sel, yang digunakan untuk melangsungkan reaksi-reaksi kimia, pertumbuhan, transportasi, gerak, reproduksi, dan lain-lain. Contoh katabolisme adalah respirasi sel, yaitu proses penguraian bahan makanan yang bertujuan menghasilkan energi. Sebagai bahan baku respirasi adalah karbohidrat, asam lemak, dan asam amino dan sebagai hasilnya adalah CO2(karbon dioksida, air dan energi). Respirasi dilakukan oleh semua sel hidup, sel hewan maupun sel tumbuhan. Katabolisme Karbohidrat Struktur karbohidrat Karbohidrat merupakan sumber energi uatama dan sumber serat utama. Karbohidrat mempunyai tiga unsur, yaitu karbon, hydrogen dan oksigen. Jenis-jenis karbohidrat sangat beragam. Karbohidrat dibedakan satu dengan yang lain berdasarkan susunan atom-aromnya, panjang pendeknya rantai serta jenis ikatan. Dari kompleksitas strukturnya karbohidrat dibedakan menjadi karbohidarat sederhana (monosakarida dan disakarida)dan karbohidrat dengan struktur yang kompleks (polisakarida). Selain kelompok tersebut juga masih ada oligosakarida yang memiliki monosakarida lebih pendek dari polisakarida, contohnya adalah satkiosa, rafinosa, fruktooligosakarida, dan galaktooligosakarida

Fungsi dari Karbohidrat 1. Simpanan energi, bahan bakar dan senyawa antara metabolism2. Bagian dari kerangka structural dari pembentuk RNA dan DNA3. Merupakan elemen structural dari dinding sel tanaman maupun bakteri.4. Identitas sel, berikatan dengan protein atau lipid dan berfungsi dalam proses pengenalan antar sel .

Proses Katabolisme Karbohidrat Pada Proses katabolisme karbohidrat, sering disebut dengan glikolosis yaitu proses degradasi. Proses degradasi 1 molekul glukosa (C6) menjadi 2 molekul piruvat (C3) yang terjadi dalam serangkaian reaksi enzimatis menghasilkan energi bebas dalam bentuk ATP dan NADH Proses glikolisis terdiri dari 10 langkah reaksi yang terbagimenjadi 2 Fase, yaitu:- 5 langkah pertama yang disebut fasepreparatory- 5 langkah terakhir yang disebut fasepayoffFase I memerlukan 2 ATP dan Fase II menghasilkan 4 ATP dan 2 NADP, sehingga total degradasi Glukosa menjadi 2 molekul piruvat menghasilkan 2 molekul ATP dan 2 molekul NADP.Pada tahap pertama, molekul D-Glukosa diaktifkan bagi reaksi berikutnya dengan fosforilasi pada posisi 6, menghasilkanglukosa-6-fosfatdengan memanfaatkan ATP Reaksi ini bersifat tidak dapat balik.Enzim heksokinasemerupakan katalis dalam reaksi tersebut dibantu olehion Mg2+ sebagai kofaktor.Reaksi berikutnya ialah isomerasi,yaitu pengubahan glukosa-6-fosfat, yang merupakan suatu aldosa, menjadi fruktosa-6-fosfat, yang merupakan suatu ketosa, denganenzim fosfoglukoisomerasedan dibantu oleh ion Mg2+.Tahap selanjutnya adalah fruktosa-6-fosfat diubah menjadifruktosa-1,6-difosfat oleh enzim fosoffruktokinase dibantu oleh ion Mg2+ sebagai kofaktor. Dalam reaksi ini,gugus fosfat dipindahkan dari ATP ke fruktosa-6-fosfat pada posisi 1.Reaksi tahap keempat dalam rangkaian reaksi glikolisis adalah penguraian molekul fruktosa-1,6-difosfat membentukdua molekul triosa fosfat, yaitudihidroksi aseton fosfatdanD-gliseraldehid-3-fosfatolehenzim aldolase fruktosadifosfatatau enzim aldolase.Hanya satudi antara dua triosa fosfat yang dibentuk oleh aldolase, yaitugliseraldehid-3-fosfat, yang dapat langsung diuraikan pada tahap reaksi glikolisis berikutnya. Tetapi, dihidroksi aseton fosfat dapat dengan cepat dan dalam reaksi dapat balik, berubah menjadi gliseraldehid-3-fosfat oleh enzim isomerase triosa fosfat.Tahap selanjutnya adalah reaksi oksidasi gliseraldehid-3fosfat menjadiasam 1,3 difosfogliserat. Dalam reaksi ini digunakankoenzim NAD+,sedangkan gugus fosfat diperoleh dari asam fosfat. Enzim yang mengkatalisis dalam tahap ini adalah dehidrogenase gliseraldehida fosfat. Pada tahap ini,enzim kinase fosfogliseratmengubah asam 1,3-difosfogliserat menjadi asam3-fosfogliserat. Dalam reaksi initerbentuk satu molekul ATP dari ADPdan memerlukan ion Mg2+ sebagai kofaktor. Pada tahap ini, terjadi pengubahan asam 3-fosfoliserat menjadi asam2-fosfogliserat. Reaksi ini melibatkan pergeseran dapat balik gugus fosfat dari posisi 3 ke posisi 2. Reaksi ini dikatalisis oleh enzim fosfogliseril mutase dengan ion Mg2+ sebagai kofaktor.Reaksi berikutnya adalah reaksi pembentukan asamfosfoenol piruvatdari asam 2-fosfogliserat dengan katalisis enzim enolase dan ion Mg2+ sebagai kofaktor. Reaksi pembentukan asam fosfoenol piruvat ini ialah reaksi dehidrasi.Tahap terakhir pada glikolisis ialah reaksi pemindahan gugus fosfat berenergi tinggi dari fosfoenolpiruvat ke ADP yang dikatalisis oleh enzim piruvat kinase sehingga terbentuk molekul ATP dan molekul asam piruvat.

Katabolisme Lemak Struktur LemakBerdasarkan struktur dan fungsi bermacam-macam lemak menjadi salah satu dasar pengklasifiksian lemak. Asam-asam lemak : Merupakan suatu rantai hidrokarbon yang mengandung satu gugus metal pada salah satu ujungnya dan salah satu gugus asam atau karboksil. Secara umum formula kimia suatu asam lemak adalah CH3(CH2)nCOOH, dan biasanya kelipatan dua. Rantai pendek : rantai hidrokarbonnya terdiri dari jumlah atom karbon genap 4-6 atom. Rantai sedang : 8-12 atom Rantai panjang : 14-26 atom.Dan asam lemak-asam lemak ini merupakn asam lemak jenuhSedangkan untuk asam lemak tidak jenuh, adalah yang mempunayi ikatan rangkap atau lebih misalnya palmitoleat, linolenat, arakhidat, dan lain sebagainya. CH3(CH2)7CH=CH(CH2)7COOH (oleat). Turunan-turunan asam lemak : merupakan suatu komponen yang terbentuk dari satu atau lebih asam lemak yang mengandung alcohol dan disebut ester. Terdapat dua golongan ester yaitu gliserol ester dan cholesterol ester.1. Gliserol ester : terbentuk melalui metabolism karbohidrat yang mengandung tiga atom karbon, yang salah satu ataom karon bersatu dengan salah satu gugus alcohol. Reaksi kondensasi antara gugus karboksil dengan gugus alcohol dari gliserol akan membentuk gliserida, tergantung dari jumlah asam lemak dari gugus alkohol yang membentuk raeksi kondensasi. (monogliserida, digliserida, trigliserida)2. Kolesterol ester : terbentuk melelui reaksi kondensasi, sterol, kolesterol, dan sam lemak terikat dengan gugus alcohol.3. Glikolipid : komponen ini mempunayi sifat serperti lipid, terdiri dari satu atu lebih komponen gula, dan biasanya glukosa dan galaktosa.4. Sterol : merupakan golongan lemak yang larut dalam alcohol, Mislanya kolesterol sterol. Berbeda dengan struktur lainnya sterol mempunyai nucleus dengan empat buah cincin yang saling berhubunga, tiga diantaranya mengandung 6 atom karbon, sedang yang keempat mengandung 5 atom karbon.Fungsi Lemak1. Sebagai penyusunstruktur membran selDalam hal ini lipid berperan sebagai barier untuk sel dan mengatur aliran material-material.2. Sebagaicadangan energiLipid disimpan sebagai jaringan adiposa3. Sebagaihormondanvitamin, hormon mengatur komunikasi antar sel, sedangkan vitamin membantu regulasi proses-proses biologis Proses Katabolisme Lemak Lemak merupakan salah satu sumber energy bagi tubuh, bahkan kandungan energinya paling tinggi diantara sumber energy yang lain, yaitu sebesar 9kkal/gram. Energi hasil pemecahan lemak dimulai saat lemak berada didalam kebutuhan energi. Pemecahan lemak dimulai saat lemak berada didalam system pencernaan makanan. Lemak akan dipecah menjadi asam lemak dan gliserol. Dari kedua senyawa tersebut, asam lemak sebagian mengandung sebagian besar energi, yaitu sekitar 95%, sedangkan gliserol hanya mengandung 5% dari besar energi lemak. Untuk dapat menghasilkan energi , asam lemak akan mengalami oksidasi yang terjadi didalm mitokondria, sedangkan gliserol dirombak secara glikolisis. Gliserol dalam glikolisis akan diubah kembali menjadi dihidroksi aseton fosfat. Oksidasi asam lemak juga melalui lintasan akhir yang dilalui karbohidrat, yaitu siklus krebs.Setelah berada didalam mitokondria, asam lemak akan mengalami oksidasi untuk menghasilkan energi. Oksidasi asam lemak terjadi dalam dua tahap, yaitu oksidasi asam lemak yang menghasilkan residu asetil KoA dan oksidasi asetil KoA menjadi karbon dioksida melalui siklus krebs.Katabolisme Protein Struktur ProteinDilihat dari tingkat organisasi struktur, protein dapat diklasifikasikan ke dalam empat kelas dengan urutan kerumitan yang berkurang. Kelas-kelas itu adalah :1. Struktur primer: Ini adalah hanya urutan asam amino di dalam rantai protein. Struktur primer protein dilakukan oleh ikatan-ikatan (peptida) yang kovalen.2. Struktur sekunder: Hal ini merujuk ke banyaknya struktur helix-aa atau lembaran berlipatan-B setempat yang berhubungan dengan struktur protein secara keseluruhan. Struktur sekunder protein diselenggarakan oleh ikatan-ikatan hidrogen antara oksigen karbonil dan nitrogen amida dari rantai polipeptida.3. Struktur tersier: Hal ini menunjuk ke cara rantai protein ke dalam protein berbentuk bulat dilekukkan dan dilipat untuk membentuk struktur tiga-dimensional secara menyeluruh dari molekul protein. Struktur tersier diselenggarakan oleh interaksi antara gugus-fufus R dalam asam amino.4. Struktur kuartener. Banyak protein ada sebagai oligomer, atau molekul-molekul besar terbentuk dari pengumpulan khas dari subsatuan yang identik atau berlainan yang dikenal dengan protomer. Fungsi Protein1. Membentuk jaringan/ bagian tubuh lain 2. Pertumbuhan (bayi, anak, pubertas)3. Pemeliharaan (dewasa)4. Membentuk sel darah5. Membentuk hormon, enzim, antibody,dll6. Memberi tenaga (protein sparing efek)7. Pengaturan (enzim, hormone)

Proses Katabolisme Protein Asam-asam amino tidak dapat disimpan oleh tubuh. Jika jumlah asam amino berlebihan atau terjadi kekurangan sumber energi lain (karbohidrat dan protein), tubuh akan menggunakan asam amino sebagai sumber energi. Tidak seperti karbohidrat dan lipid, asam amino memerlukan pelepasan gugus amina. Gugus amin ini kemudian dibuang karena bersifat toksik bagi tubuh.Terdapat 2 tahap pelepasan gugus amin dari asam amino, yaitu:1. Transaminasi : Enzim aminotransferase memindahkan amin kepada ketoglutarat menghasilkan glutamat atau kepada oksaloasetat menghasilkan aspartat2. Deaminasi oksidatif : Pelepasan amin dari glutamat menghasilkan ion ammonium Gugus-gugus amin dilepaskan menjadi ion amonium (NH4+) yang selanjutnya masuk ke dalam siklus urea di hati. Dalam siklus ini dihasilkan urea yang selanjutnya dibuang melalui ginjal berupa urin.Proses yang terjadi di dalam siklus urea digambarkan terdiri atas beberapa tahap yaitu:1. Dengan peran enzim karbamoil fosfat sintase I, ion amonium bereaksi dengan CO2 menghasilkan karbamoil fosfat. Dalam raksi ini diperlukan energi dari ATP2. Dengan peran enzim ornitin transkarbamoilase, karbamoil fosfat bereaksi dengan L-ornitin menghasilkan L-sitrulin dan gugus fosfat dilepaskan.3. Dengan peran enzim argininosuksinat sintase, L-sitrulin bereaksi dengan L-aspartat menghasilkan L-argininosuksinat. Reaksi ini membutuhkan energi dari ATP4. Dengan peran enzim argininosuksinat liase, L-argininosuksinat dipecah menjadi fumarat dan L-arginin5. Dengan peran enzim arginase, penambahan H2O terhadap L-arginin akan menghasilkan L-ornitin dan urea.

Hubungan Antara Katabolisme Antara Karbohidrat, Lemak, & ProteinAnda sudah mengetahui bahwa di dalam sel reaksi metabolisme tidak terpisah satu sama lain yaitu membentuk suatu jejaring yang saling berkaitan. Di dalam tubuh manusia terjadi metabolisme karbohidrat, protein, dan lemak. Bagaimana keterkaitan ketiganya? Pada bagan terlihat karbohidrat, protein, dan lemak bertemu pada jalur siklus Krebs dengan masukan asetil koenzim A. Tahukah Anda bahwa Asetil Ko-A sebagai bahan baku dalam siklus Krebs untuk menghasilkan energi yang berasal dari katabolisme karbohidrat, protein, maupun lemak. Titik temu dari berbagai jalur metabolisme ini berguna untuk saling menggantikan bahan bakar di dalam sel, Hasil katabolisme karbohidrat, protein, dan lemak juga bermanfaat untuk menghasilkan senyawa- senyawa lain yaitu dapat membentuk ATP, hormon, komponen hemoglobin ataupun komponen sel lainnya.Lemak (asam heksanoat) lebih banyak mengandung hidrogen terikat dan merupakan senyawa karbon yang paling banyak tereduksi, sedangkan karbohidrat (glukosa) dan protein (asam glutamat) banyak mengandung oksigen dan lebih sedikit hidrogen terikat adalah senyawa yang lebih teroksidasi. Senyawa karbon yang tereduksi lebih banyak menyimpan energi dan apabila ada pembakaran sempurna akan membebaskan energi lebih banyak karena adanya pembebasan elektron yang lebih banyak. Jumlah elektron yang dibebaskan menunjukkan jumlah energi yang dihasilkan. Perlu Anda ketahui pada jalur katabolisme yang berbeda glukosa dan asam glutamat dapat menghasilkan jumlah ATP yang sama yaitu 36 ATP. Sedangkan katabolisme asam heksanoat dengan jumlah karbon yang sama dengan glukosa (6 karbon) menghasilkan 44 ATP, sehingga jumlah energi yang dihasilkan pada lemak lebih besar dibandingkan dengan yang dihasilkan pada karbohidrat dan protein. Sedangkan jumlah energi yang dihasilkan protein setara dengan jumlah yang dihasilkan karbohidrat dalam berat yang sama.

Dari penjelasan itu dapat disimpulkan jika kita makan dengan mengkonsumsi makanan yang mengandung lemak akan lebih memberikan rasa kenyang jika dibandingkan dengan protein dan karbohidrat. Karena rasa kenyang tersebut disebabkan oleh kemampuan metabolisme lemak untuk menghasilkan energi yang lebih besar.

Kata kunci untuk menuju artikel KATABOLISME KARBOHIDRAT, PROTEIN, LEMAK DAN HUBUNGANNYA ini:karbohidrat. katabolisme karbohidrat, struktur karbohidrat, proses katabolisme karbohidrat, katabolisme, proses metabolisme protein, lemak adalah, proses katabolisme, katabolisme protein

DAFTRA PUSTAKA Campbell, dkk. 2003. Biologi jilid 1. Jakarta:ErlanggaElisa. tanpa tahun. Metabolisme Protein. http:// ugm.ac. id / files / chimera 73 / .../ Metabolisme %20protein.doc. diakses pada tanggal 30 Mei 2012 pukul 16.04Lehninger. 200. Dasar-dasar biokimia jilid 2. Jakarta: Erlangga

Sifat dan Ciri ciriKarena struktur molekulnya yang kaya akan rantai unsur karbon(-CH2-CH2-CH2-)maka lemak mempunyai sifat hydrophob. Ini menjadi alasan yang menjelaskan sulitnya lemak untuk larut di dalam air. Lemak dapat larut hanya di larutan yang apolar atau organik seperti: eter, Chloroform, atau benzolFungsiSecara umum dapat dikatakan bahwa lemak memenuhi fungsi dasar bagi manusia, yaitu: [1]1. Menjadi cadangan energi dalam bentuk sel lemak. 1 gram lemak menghasilkan 39.06 kjoule atau 9,3 kcal.2. Lemak mempunyai fungsi selular dan komponen struktural pada membran sel yang berkaitan dengan karbohidrat dan protein demi menjalankan aliran air, ion dan molekul lain, keluar dan masuk ke dalam sel.3. Menopang fungsi senyawa organik sebagai penghantar sinyal, seperti pada prostaglandin dan steroid hormon dan kelenjar empedu.4. Menjadi suspensi bagi vitamin A, D, E dan K yang berguna untuk proses biologis5. Berfungsi sebagai penahan goncangan demi melindungi organ vital dan melindungi tubuh dari suhu luar yang kurang bersahabat.Lemak juga merupakan sarana sirkulasi energi di dalam tubuh dan komponen utama yang membentuk membran semua jenis sel.MembranSel eukariotik disekat-sekat menjadi organel ikatan-membran yang melaksanakan fungsi biologis yang berbeda-beda. Gliserofosfolipid adalah komponen struktural utama dari membran biologis, misalnya membran plasma selular dan membran organel intraselular; di dalam sel-sel hewani membran plasma secara fisik memisahkan komponen intraselular dari lingkungan ekstraselular. Gliserofosfolipid adalah molekul amfipatik (mengandung wilayah hidrofobik dan hidrofilik) yang mengandung inti gliserol yang terkait dengan dua "ekor" turunan asam lemak oleh ikatan-ikatan ester dan ke satu gugus "kepala" oleh suatu ikatan ester fosfat. Sementara gliserofosfolipid adalah komponen utama membran biologis, komponen lipid non-gliserida lainnya seperti sfingomielin dan sterol (terutama kolesterol di dalam membran sel hewani) juga ditemukan di dalam membran biologis.[2] Di dalam tumbuhan dan alga, galaktosildiasilgliserol,[3] dan sulfokinovosildiasilgliserol,[4] yang kekurangan gugus fosfat, adalah komponen penting dari membran kloroplas dan organel yang berhubungan dan merupakan lipid yang paling melimpah di dalam jaringan fotosintesis, termasuk tumbuhan tinggi, alga, dan bakteri tertentu.Dwilapis telah ditemukan untuk memamerkan tingkat-tingkat tinggi dari keterbiasan ganda yang dapat digunakan untuk memeriksa derajat keterurutan (atau kekacauan) di dalam dwilapis menggunakan teknik seperti interferometri polarisasi ganda.

Organisasi-mandiri fosfolipid: liposom bulat, misel, dan dwilapis lipid.Cadangan energiTriasilgliserol, tersimpan di dalam jaringan adiposa, adalah bentuk utama dari cadangan energi di tubuh hewan. Adiposit, atau sel lemak, dirancang untuk sintesis dan pemecahan sinambung dari triasilgliserol, dengan pemecahan terutama dikendalikan oleh aktivasi enzim yang peka-hormon, lipase.[5] Oksidasi lengkap asam lemak memberikan materi yang tinggi kalori, kira-kira 9kkal/g, dibandingkan dengan 4kkal/g untuk pemecahan karbohidrat dan protein. Burung pehijrah yang harus terbang pada jarak jauh tanpa makan menggunakan cadangan energi triasilgliserol untuk membahanbakari perjalanan mereka.[6]PensinyalanDi beberapa tahun terakhir, bukti telah mengemuka menunjukkan bahwa pensinyalan lipid adalah bagian penting dari pensinyalan sel.[7] Pensinyalan lipid dapat muncul melalui aktivasi reseptor protein G berpasangan atau reseptor nuklir, dan anggota-anggota beberapa kategori lipid yang berbeda telah dikenali sebagai molekul-molekul pensinyalan dan sistem kurir kedua.[8] Semua ini meliputi sfingosina-1-fosfat, sfingolipid yang diturunkan dari seramida yaitu molekul kurir potensial yang terlibat di dalam pengaturan pergerakan kalsium,[9] pertumbuhan sel, dan apoptosis;[10] diasilgliserol (DAG) dan fosfatidilinositol fosfat (PIPs), yang terlibat di dalam aktivasi protein kinase C yang dimediasi kalsium;[11] prostaglandin, yang merupakan satu jenis asam lemak yang diturunkan dari eikosanoid yang terlibat di dalam radang and kekebalan;[12] hormon steroid seperti estrogen, testosteron, dan kortisol, yang memodulasi fungsi reproduksi, metabolisme, dan tekanan darah; dan oksisterol seperti 25-hidroksi-kolesterol yakni agonis reseptor X hati.[13]Fungsi lainnyaVitamin-vitamin yang "larut di dalam lemak" (A, D, E, dan K1) yang merupakan lipid berbasis isoprena gizi esensial yang tersimpan di dalam jaringan lemak dan hati, dengan rentang fungsi yang berbeda-beda. Asil-karnitina terlibat di dalam pengangkutan dan metabolisme asam lemak di dalam dan di luar mitokondria, di mana mereka mengalami oksidasi beta.[14] Poliprenol dan turunan terfosforilasi juga memainkan peran pengangkutan yang penting, di dalam kasus ini pengangkutan oligosakarida melalui membran. Fungsi gula fosfat poliprenol dan gula difosfat poliprenol di dalam reaksi glikosilasi ekstra-sitoplasmik, di dalam biosintesis polisakarida ekstraselular (misalnya, polimerisasi peptidoglikan di dalam bakteri), dan di dalam protein eukariotik N-glikosilasi.[15][16] Kardiolipin adalah sub-kelas gliserofosfolipid yang mengandung empat rantai asil dan tiga gugus gliserol yang tersedia melimpah khususnya pada membran mitokondria bagian dalam.[17] Mereka diyakini mengaktivasi enzim-enzim yang terlibat dengan fosforilasi oksidatif.[18]MetabolismeLemak yang menjadi makanan bagi manusia dan hewan lain adalah trigliserida, sterol, dan fosfolipid membran yang ada pada hewan dan tumbuhan. Proses metabolisme lipid menyintesis dan mengurangi cadangan lipid dan menghasilkan karakteristik lipid fungsional dan struktural pada jaringan individu.BiosintesisKarena irama laju asupan karbohidrat yang cukup tinggi bagi makhluk hidup dan puri mirip hanoman, maka asupan tersebut harus segera diolah oleh tubuh, menjadi energi maupun disimpan sebagai glikogen. Asupan yang baik terjadi pada saat energi yang terkandung dalam karbohidrat setara dengan energi yang diperlukan oleh tubuh, dan sangat sulit untuk menggapai keseimbangan ini. Ketika asupan karbohidrat menjadi berlebih, maka kelebihan itu akan diubah menjadi lemak. Metabolisme yang terjadi dimulai dari: Asupan karbohidrat, antara lain berupa sakarida, fruktosa, galaktosa pada saluran pencernaan diserap masuk ke dalam sirkulasi darah menjadi glukosa/gula darah. Konsentrasi glukosa pada plasma darah diatur oleh tiga hormon, yaitu glukagon, insulin dan adrenalin. Insulin akan menaikkan laju sirkulasi glukosa ke seluruh jaringan tubuh. Pada jaringan adiposa, adiposit akan mengubah glukosa menjadi glukosa 6-fosfat dan gliserol fosfat, masing-masing dengan bantuan satu molekul ATP. Jaringan adiposit ini yang sering dikonsumsi kita sebagai lemak. Glukosa 6-fosfat kemudian dikonversi oleh hati dan jaringan otot menjadi glikogen. Proses ini dikenal sebagai glikogenesis, dalam kewenangan insulin. Pada saat rasio glukosa dalam plasma darah turun, hormon glukagon dan adrenalin akan dikeluarkan untuk memulai proses glikogenolisis yang mengubah kembali glikogen menjadi glukosa. Ketika tubuh memerlukan energi, glukosa akan dikonversi melalui proses glikolisis untuk menjadi asam piruvat dan adenosin trifosfat. Asam piruvat kemudian dikonversi menjadi asetil-KoA, kemudian menjadi asam sitrat dan masuk ke dalam siklus asam sitrat. Pada saat otot berkontraksi, asam piruvat tidak dikonversi menjadi asetil-KoA, melainkan menjadi asam laktat. Setelah otot beristirahat, proses glukoneogenesis akan berlangsung guna mengkonversi asam laktat kembali menjadi asam piruvat.Sementara itu: lemak yang terkandung di dalam bahan makanan juga dicerna dengan asam empedu menjadi misel. Misel akan diproses oleh enzim lipase yang disekresi pankreas menjadi asam lemak, gliserol, kemudian masuk melewati celah membran intestin. Setelah melewati dinding usus, asam lemak dan gliserol ditangkap oleh kilomikron dan disimpan di dalam vesikel. Pada vesikel ini terjadi reaksi esterifikasi dan konversi menjadi lipoprotein. Kelebihan lemak darah, akan disimpan di dalam jaringan adiposa, sementara yang lain akan terkonversi menjadi trigliserida, HDL dan LDL. Lemak darah adalah sebuah istilah ambiguitas yang merujuk pada trigliserida sebagai lemak hasil proses pencernaan, sama seperti penggunaan istilah gula darah walaupun: trigliserida terjadi karena proses ester di dalam vesikel kilomikron lemak yang dihasilkan oleh proses pencernaan adalah berbagai macam asam lemak dan gliserol. Ketika tubuh memerlukan energi, baik trigliserida, HDL dan LDL akan diurai dalam sitoplasma melalui proses dehidrogenasi kembali menjadi gliserol dan asam lemak. Reaksi yang terjadi mirip seperti reaksi redoks atau reaksi BrnstedLowry; asam + basa --> garam + air; dan kebalikannya garam + air --> asam + basa Proses ini terjadi di dalam hati dan disebut lipolisis. Sejumlah hormon yang antagonis dengan insulin disekresi pada proses ini menuju ke dalam hati, antara lain: Glukagon, sekresi dari kelenjar pankreas ACTH, GH, sekresi dari kelenjar hipofisis Adrenalin, sekresi dari kelenjar adrenal TH, sekresi dari kelenjar tiroid Lemak di dalam darah yang berlebih akan disimpan di dalam jaringan adiposa. Lebih lanjut gliserol dikonversi menjadi dihidroksiaketon, kemudian menjadi dihidroksiaketon fosfat dan masuk ke dalam proses glikolisis. Sedangkan asam lemak akan dikonversi di dalam mitokondria dengan proses oksidasi, dengan bantuan asetil-KoA menjadi adenosin trifosfat, karbondioksida dan air.Kejadian ini melibatkan sintesis asam lemak dari asetil-KoA dan esterifikasi asam lemak pada saat pembuatan triasilgliserol, suatu proses yang disebut lipogenesis atau sintesis asam lemak.[19] Asam lemak dibuat oleh sintasa asam lemak yang mempolimerisasi dan kemudian mereduksi satuan-satuan asetil-KoA. Rantai asil pada asam lemak diperluas oleh suatu daur reaksi yang menambahkan gugus asetil, mereduksinya menjadi alkohol, mendehidrasinya menjadi gugus alkena dan kemudian mereduksinya kembali menjadi gugus alkana. Enzim-enzim biosintesis asam lemak dibagi ke dalam dua gugus, di dalam hewan dan fungi, semua reaksi sintasa asam lemak ini ditangani oleh protein tunggal multifungsi,[20] sedangkan di dalam tumbuhan, plastid dan bakteri memisahkan kinerja enzim tiap-tiap langkah di dalam lintasannya.[21][22] Asam lemak dapat diubah menjadi triasilgliserol yang terbungkus di dalam lipoprotein dan disekresi dari hati.Sintesis asam lemak tak jenuh melibatkan reaksi desaturasa, di mana ikatan ganda diintroduksi ke dalam rantai asil lemak. Misalnya, pada manusia, desaturasi asam stearat oleh stearoil-KoA desaturasa-1 menghasilkan asam oleat. Asam lemak tak jenuh ganda-dua (asam linoleat) juga asam lemak tak jenuh ganda-tiga (asam linolenat) tidak dapat disintesis di dalam jaringan mamalia, dan oleh karena itu asam lemak esensial dan harus diperoleh dari makanan.[23]Sintesis triasilgliserol terjadi di dalam retikulum endoplasma oleh lintasan metabolisme di mana gugus asil di dalam asil lemak-KoA dipindahkan ke gugus hidroksil dari gliserol-3-fosfat dan diasilgliserol.[24]Terpena dan terpenoid, termasuk karotenoid, dibuat oleh perakitan dan modifikasi satuan-satuan isoprena yang disumbangkan dari prekursor reaktif isopentenil pirofosfat dan dimetilalil pirofosfat.[25] Prekursor ini dapat dibuat dengan cara yang berbeda-beda. Pada hewan dan archaea, lintasan mevalonat menghasilkan senyawa ini dari asetil-KoA,[26] sedangkan pada tumbuhan dan bakteri lintasan non-mevalonat menggunakan piruvat dan gliseraldehida 3-fosfat sebagai substratnya.[25][27] Satu reaksi penting yang menggunakan donor isoprena aktif ini adalah biosintesis steroid. Di sini, satuan-satuan isoprena digabungkan untuk membuat skualena dan kemudian dilipat dan dibentuk menjadi sehimpunan cincin untuk membuat lanosterol.[28] Lanosterol kemudian dapat diubah menjadi steroid, seperti kolesterol dan ergosterol.[28][29]DegradasiOksidasi beta adalah proses metabolisme di mana asam lemak dipecah di dalam mitokondria dan/atau di dalam peroksisoma untuk menghasilkan asetil-KoA. Sebagian besar, asam lemak dioksidasi oleh suatu mekanisme yang sama, tetapi tidak serupa dengan, kebalikan proses sintesis asam lemak. Yaitu, pecahan berkarbon dua dihilangkan berturut-turut dari ujung karboksil dari asam itu setelah langkah-langkah dehidrogenasi, hidrasi, dan oksidasi untuk membentuk asam keto-beta, yang dipecah dengan tiolisis. Asetil-KoA kemudian diubah menjadi Adenosina trifosfat, CO2, dan H2O menggunakan daur asam sitrat dan rantai pengangkutan elektron. Energi yang diperoleh dari oksidasi sempurna asam lemak palmitat adalah 106 ATP.[30] Asam lemak rantai-ganjil dan tak jenuh memerlukan langkah enzimatik tambahan untuk degradasi.Gizi dan kesehatanSebagian besar lipid yang ditemukan di dalam makanan adalah berbentuk triasilgliserol, kolesterol dan fosfolipid. Kadar rendah lemak makanan adalah penting untuk memfasilitasi penyerapan vitamin-vitamin yang larut di dalam lemak (A, D, E, dan K) dan karotenoid.[31] Manusia dan mamalia lainnya memerlukan makanan untuk memenuhi kebutuhan asam lemak esensial tertentu, misalnya asam linoleat (asam lemak omega-6) dan asam alfa-linolenat (sejenis asam lemak omega-3) karena mereka tidak dapat disintesis dari prekursor sederhana di dalam makanan.[32] Kedua-dua asam lemak ini memiliki 18 karbon per molekulnya, lemak majemuk tak jenuh berbeda di dalam jumlah dan kedudukan ikatan gandanya. Sebagian besar minyak nabati adalah kaya akan asam linoleat (safflower, bunga matahari, dan jagung). Asam alfa-linolenat ditemukan di dalam daun hijau tumbuhan, dan di beberapa biji-bijian, kacang-kacangan, dan leguma (khususnya flax, brassica napus, walnut, dan kedelai).[33] Minyak ikan kaya akan asam lemak omega-3 berantai panjang asam eikosapentaenoat dan asam dokosaheksaenoat.[34] Banyak pengkajian telah menunjukkan manfaat kesehatan yang baik yang berhubungan dengan asupan asam lemak omega-3 pada perkembangan bayi, kanker, penyakit kardiovaskular (gangguan jantung), dan berbagai penyakit kejiwaan, seperti depresi, kelainan hiperaktif/kurang memperhatikan, dan demensia.[35][36] Sebaliknya, kini dinyatakan bahwa asupan lemak trans, yaitu yang ada pada minyak nabati yang dihidrogenasi sebagian, adalah faktor risiko bagi penyakit jantung.[37][38][39]Beberapa pengkajian menunjukkan bahwa total asupan lemak yang dikonsumsi berhubungan dengan menaiknya risiko kegemukan[40][41] and diabetes.[42][43] akan Tetapi, pengkajian lain yang cukup banyak, termasuk Women's Health Initiative Dietary Modification Trial (Percobaan Modifikasi Makanan Inisiatif Kesehatan Perempuan), sebuah pengkajian selama delapan tahun terhadap 49.000 perempuan, Nurses' Health Study (Pengkajian Kesehatan Perawat dan Health Professionals Follow-up Study (Pengkajian Tindak-lanjut Profesional Kesehatan), mengungkapkan ketiadaan hubungan itu.[44][45][46] Kedua-dua pengkajian ini tidak menunjukkan adanya hubungan antara dari persentase kalori dari lemak dan risiko kanker, penyakit jantung, atau kelebihan bobot badan. Nutrition Source, sebuah situs web yang dipelihara oleh Departemen Gizi di Sekolah Kesehatan Masyarakat Harvard, mengikhtisarkan bukti-bukti terkini pada dampak lemak makanan: "Sebagian besar rincian penelitian yang dilakukan di Harvard ini menunjukkan bahwa jumlah keseluruhan lemak di dalam makanan tidak berhubungan dengan bobot badan atau penyakit tertentu."[47]Referensi1. ^ (Inggris)"Lipids introduction". Elmhurst College, Charles E. Ophardt. Diakses 2010-02-22.2. ^ Stryer et al., pp. 3293313. ^ Heinz E.(1996). Plant glycolipids: structure, isolation and analysis. in Advances in Lipid Methodology - 3, pp. 211332 (ed. W.W. Christie, Oily Press, Dundee)4. ^ Kesalahan pengutipan: Tag tidak sah; tidak ditemukan teks untuk ref bernama pmid175994635. ^ Brasaemle DL (December 2007). "Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis". J. Lipid Res. 48 (12): 254759. doi:10.1194/jlr.R700014-JLR200. PMID17878492.6. ^ Stryer et al., p. 619.7. ^ Wang X. (2004). "Lipid signaling". Current Opinions in Plant Biology 7 (3): 32936. doi:10.1016/j.pbi.2004.03.012. PMID15134755.8. ^ Eyster KM. (2007). "The membrane and lipids as integral participants in signal transduction". Advances in Physiology Education 31: 516. doi:10.1152/advan.00088.2006. PMID17327576.9. ^ Hinkovska-Galcheva V, VanWay SM, Shanley TP, Kunkel RG. (2008). "The role of sphingosine-1-phosphate and ceramide-1-phosphate in calcium homeostasis". Current Opinion in Investigational Drugs 9 (11): 1192205. PMID18951299.10. ^ Saddoughi SA, Song P, Ogretmen B. (2008). "Roles of bioactive sphingolipids in cancer biology and therapeutics". Subcellular Biochemistry 49: 41340. doi:10.1007/978-1-4020-8831-5_16. PMC2636716. PMID18751921.11. ^ Klein C, Malviya AN. (2008). "Mechanism of nuclear calcium signaling by inositol 1,4,5-trisphosphate produced in the nucleus, nuclear located protein kinase C and cyclic AMP-dependent protein kinase". Frontiers in Bioscience 13: 120626. doi:10.2741/2756. PMID17981624.12. ^ Boyce JA. (2008). "Eicosanoids in asthma, allergic inflammation, and host defense". Current Molecular Medicine 8 (5): 33549. doi:10.2174/156652408785160989. PMID18691060.13. ^ Betowski J. (2008). "Liver X receptors (LXR) as therapeutic targets in dyslipidemia". Cardiovascular Therapy 26 (4): 297316. doi:10.1111/j.1755-5922.2008.00062.x. PMID19035881.14. ^ Indiveri C, Tonazzi A, Palmieri F (October 1991). "Characterization of the unidirectional transport of carnitine catalyzed by the reconstituted carnitine carrier from rat liver mitochondria". Biochim. Biophys. Acta 1069 (1): 1106. doi:10.1016/0005-2736(91)90110-T. PMID1932043.15. ^ Parodi AJ, Leloir LF (April 1979). "The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell". Biochim. Biophys. Acta 559 (1): 137. doi:10.1016/0304-4157(79)90006-6. PMID375981.16. ^ Helenius A, Aebi M. (2001). "Intracellular functions of N-linked glycans". Science 291: 236469. doi:10.1126/science.291.5512.2364. PMID11269317.17. ^ Gohil VM, Greenberg ML. (2009). "Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand". Journal of Cell Biology 184 (4): 46972. doi:10.1083/jcb.200901127. PMID19237595.18. ^ Hoch FL. (1992). "Cardiolipins and biomembrane function". Biochimica et Biophysica Acta 1113 (1): 71133. PMID10206472.19. ^ Stryer et al., p. 634.20. ^ Chirala S, Wakil S. (2004). "Structure and function of animal fatty acid synthase". Lipids 39 (11): 104553. doi:10.1007/s11745-004-1329-9. PMID15726818.21. ^ White S, Zheng J, Zhang Y. (2005). "The structural biology of type II fatty acid biosynthesis". Annual Review of Biochemistry 74: 791831.