Mekanika Fluida Dan Hidrolika

16
MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA SKS : 3 Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011

Transcript of Mekanika Fluida Dan Hidrolika

Page 1: Mekanika Fluida Dan Hidrolika

MODUL KULIAH : MEKANIKA FLUIDA DAN

HIROLIKA

SKS : 3

Oleh :

Acep Hidayat,ST,MT.

Jurusan Teknik Perencanaan

Fakultas Teknik Perencanaan dan Desain

Universitas Mercu Buana Jakarta

2011

Page 2: Mekanika Fluida Dan Hidrolika

MODUL 12

• HUKUM KONTINUITAS • HUKUM KEKEKALAN ENERGI ALIRAN

• HUKUM BERNOULI

Page 3: Mekanika Fluida Dan Hidrolika

DAFTAR ISI

Pengantar 4

Tujuan Instruksional Umum 4

Tujuan Instruksional Khusus 4

I. Hukum Kontinuitas 5

II. Persamaan Kontinuitas 6

I. Hukum kekekalan energi 9

II. Hukum Bernoulli 10

Page 4: Mekanika Fluida Dan Hidrolika

HUKUM KONTINUITAS,HUKUM KEKEKALAN ENERGI ALIRAN dan HUKUM BERNOULI

1. Pengantar.

Persamaan kontinuitas atau kekekalan massa: hasil kali penampang (A) dan kecepatan fluida

(v) sepanjang pembuluh garis arus selalu bersifat konstan .

Asas Bernualli: Perubahan tekanan dalam fluida mengalir dipengaruhi oleh perubahan

kecepatan alirannya dan ketinggian tempat melalui persamaan

2. Tujuan Instruksional Umum Setelah menyelesaikan modul ini mahasiswa mampu untuk memahami :

a. Prinsip persamaan Kontinuitas yang terjadi pada suatu penampang aliran

b. Prinsip asas Bernouli fluida yang mengalir pada suatu penampang.

3. Tujuan Instruksional Khusus Setelah mahasiswa menyelesaikan modul ini diharapkan Mahasiswa mampu menjelaskan

a. Pers.kontinuitas dan asas Bernouli pada fluida secara umum dalam suatu aliran

b. Pengertian persamaan kontinuitas dan asas Bernouli aliran.

c.. Merumuskan persamaan kontinuitas dan Asas Bernouli.

Page 5: Mekanika Fluida Dan Hidrolika

HUKUM KONTINUITAS I. Definisi Fluida

Fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena

kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul dalam

fluida jauh lebih kecil dari ikatan molekul dalam zat padat, akibatnya fluida mempunyai

hambatan yang relatif kecil pada perubahan bentuk karena gesekan. Zat padat

mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar

diberikan pada zat padat tersebut, zat padat tidak mudah berubah bentuk maupun volumenya,

sedangkan zat cair dan gas, zat cair tidak mempertahankan bentuk yang tetap, zat cair

mengikuti bentuk wadahnya dan volumenya dapat diubah hanya jika diberikan padanya gaya

yang sangat besar dan gas tidak mempunyai bentuk dan maupun volume yang tetap,gas akan

berkembang mengisi seluruh wadah. Karena fase cair dan gas tidak mempertahankan suatu

bentuk yang tetap, keduanya mempunyai kemampuan untuk mengalir. Dengan demikian

kedua – duanya sering secara kolektif disebut sebagai fluida.

Macam-macam Aliran Fluida - Aliran steady ( tunak ) : aliran yang sangat teratur , garis alirnya lurus , paralel , dan

mempunyai kecepatan yang sama pada setiap penampang lintang

- Aliran Viscous ( kental ) : aliran fluida yang mempunyai kekentalan. Kecepatan fluida

tidak sama pada setiap penampang lintang

- Aliran turbulen : aliran fluida yang tidak teratur.

BILANGAN REYNOLDS

Kombinasi 4 faktor yang menentukan jenis aliran fluida:

D = diameter pipa

NR = 0 - 2000 : aliran laminer

> 3000 : aliran turbulen

= 2000 – 3000 : aliran transisi

ηρ D V NR =

Page 6: Mekanika Fluida Dan Hidrolika

II. Persamaan Kontinuitas Persamaan kontinuitas berlaku untuk :

a. Untuk semua fluida (gas atau cairan).

b. Untuk semua jenis aliran (laminer atau turbulen).

c. Untuk semua keadaan (steady dan unsteady)

d. Dengan atau tanpa adanya reaksi kimia di dalam aliran tersebut

Aliran fluida pada sebuah pipa yang mempunyai diameter berbeda, seperti tampak pada

gambar di bawah.

Gambar ini menujukan aliran fluida dari kiri ke kanan (fluida mengalir dari pipa yang

diameternya besar menuju diameter yang kecil). Garis putus-putus merupakan garis arus.

Keterangan gambar : A1 = luas penampang bagian pipa yang berdiameter besar, A2 = luas

penampang bagian pipa yang berdiameter kecil, v1 = laju aliran fluida pada bagian pipa yang

berdiameter besar, v2 = laju aliran fluida pada bagian pipa yang berdiameter kecil, L = jarak

tempuh fluida.

Pada aliran tunak, kecepatan aliran partikel fluida di suatu titik sama dengan kecepatan aliran

partikel fluida lain yang melewati titik itu. Aliran fluida juga tidak saling berpotongan (garis

arusnya sejajar). Karenanya massa fluida yang masuk ke salah satu ujung pipa harus sama

dengan massa fluida yang keluar di ujung lainnya. Jika fluida memiliki massa tertentu masuk

pada pipa yang diameternya besar, maka fluida tersebut akan keluar pada pipa yang

diameternya kecil dengan massa yang tetap. Kita tinjau bagian pipa yang diameternya besar

dan bagian pipa yang diameternya kecil.

Selama selang waktu tertentu, sejumlah fluida mengalir melalui bagian pipa yang diameternya

besar (A1) sejauh L1 (L1 = v1t). Volume fluida yang mengalir adalah V1 = A1L1 = A1v1t. Nah,

Selama selang waktu yang sama, sejumlah fluida yang lain mengalir melalui bagian pipa yang

diameternya kecil (A2) sejauh L2 (L2 = v2t). Volume fluida yang mengalir adalah V2 = A2L2 =

A2v2t. (sambil lihat gambar di atas).

Page 7: Mekanika Fluida Dan Hidrolika

2.1 Persamaan Kontinuitas untuk Fluida Tak-termampatkan (incompressible) Pertama-tama tinjau kasus untuk Fluida Tak-termampatkan. Pada fluida tak-termampatkan

(incompressible), kerapatan alias massa jenis fluida tersebut selalu sama di setiap titik yang

dilaluinya.

Massa fluida yang mengalir dalam pipa yang memiliki luas penampang A1 (diameter pipa yang

besar) selama selang waktu tertentu adalah :

Demikian juga, massa fluida yang mengalir dalam pipa yang memiliki luas penampang A2

(diameter pipa yang kecil) selama selang waktu tertentu adalah :

Mengingat bahwa dalam aliran tunak, massa fluida yang masuk sama dengan massa fluida

yang keluar, maka :

Catatan : massa jenis fluida dan selang waktu sama sehingga dilenyapkan.

Jadi, pada fluida tak-termampatkan, berlaku persamaan kontinuitas :

A1v1 = A2v2 — Persamaan 1

Di mana A1 = luas penampang 1, A2 = luas penampang 2, v1 = laju aliran fluida pada

penampang 1, v2 = laju aliran fluida pada penampang 2. Av adalah laju aliran volume V/t alias

debit (sudah gurumuda jelaskan di atas)

2.2. Persamaan Kontinuitas untuk Fluida Termampatkan (compressible) Untuk kasus fluida yang termampatkan alias compressible, massa jenis fluida tidak selalu

sama. Dengan kata lain, massa jenis fluida berubah ketika dimampatkan. Kalau pada fluida

Tak-termampatkan massa jenis fluida tersebut kita lenyapkan dari persamaan, maka pada

kasus ini massa jenis fluida tetap disertakan. Dengan berpedoman pada persamaan yang

telah diturunkan sebelumnya, mari kita turunkan persamaan untuk fluida termampatkan.

Mengingat bahwa dalam aliran tunak, massa fluida yang masuk sama dengan massa fluida

yang keluar, maka :

Page 8: Mekanika Fluida Dan Hidrolika

Ini adalah persamaan untuk kasus fluida termampatkan. Bedanya hanya terletak pada massa

jenis fluida. Apabila fluida termampatkan, maka massa jenisnya berubah. Sebaliknya, apabila

fluida tak termampatkan, massa jenisnya selalu sama sehingga bisa kita lenyapkan. Untuk

lebih memahami hubungan antara massa jenis dan fluida termampatkan/tak-termampatkan

Contoh soal : Sebuah pipa luas penampangnya 4 cm2 dan 6 cm 2 dialiri air. Pada penampang yang kecil laju aliran adalah 12 m/s . berapa laju aliran pada penampang yang besar ? Penyelesaian : Diketahui :

A1 = 4 cm2

A2 = 6 cm2

v1 = 12 m/s Ditanya : v2 = ..................? Jawaban : A1 x v1 = A2 x v2 v2 = A1 x v1 / A2

= 4 .12

6 = 8 m/s

Page 9: Mekanika Fluida Dan Hidrolika

HUKUM KEKEKALAN ENERGI ALIRAN DAN HUKUM BERNOULI

I. Hukum kekekalan energi (lihat sistem tergambar).

Apabila tidak ada energi yang masuk ke dalam sistem

ataupun yang keluar dari sistem, maka

jumlah energi pada tampang 1 akan sama dengan jumlah energi pada tampang 2.

Perlu dipahami bahwa beberapa energi pada saat masuk di tampang 1 akan dikonversi ke

panas karena adanya gesekan fluida antara tampang 1 dan tampang 2.Andaikata kita

menambahkan (misalnya menambahkan tekanan dengan pompa) atau mengurangi (misalnya

mendinginkan sistem) energi antara tampang 1 dan tampang 2, maka hal tersebut harus

diperhitungkan.

Dengan pernyataan kekekalan energi antara tampang 1 dan 2, dituliskan Dengan pernyataan

kekekalan energi antara tampang 1 dan 2, dituliskan:

he1 + hp1 + hv1 + hadded – hremoved = he2 + hp2 + hv2 + hloss atau

he1 + V1² / 2g + p1/ 2g + hadded – hloss - hremoved = he2 + V2² / 2g + p2/ 2g

Untuk suatu waktu interval dt pada suatu panjang acuan L . Dengan p1 adalah tekanan yang

bekerja pada muka aliran 1

Energi kinetik :

Page 10: Mekanika Fluida Dan Hidrolika

Energi potensial di titik ketinggian z

Total energi per unit berat di titik 1

Total energi per unit berat di titik 2

Jika tidak ada energi yang dimasukkan dan energi masuk= energi keluar dan fluida

incompressible

Diperoleh pesamaan Bernoulli

Catatan: tidak ada friksi dalam aliran

II. Hukum Bernoulli

Hukum Bernoulli menyatakan bahwa jumlah dari tekanan (P), energi kinetik per satuan

volum dan energi potensial per satuan volum memiliki nilai yang sama pada setiap titik

sepanjang suatu garis lurus. Rumusan secara matematis adalah sebagai berikut :

V2 F2 =P2.A2 A2 V1 V2.t2 F1 = P1 . A1 A1 bidang acuan h2

h1 v1 . t

Page 11: Mekanika Fluida Dan Hidrolika

1

1

Wtotal = Ek + ΔEp

1 1 2

P1A1v1 t – P2A2v2 t = ( 2

mv12 - mv2 ) + ( mgh2 – mgh1) 2

P1A1v1 t – P2A2v2 t =

m (v12 - v2

2) + mg(h2 – h1) 2

Karena A1v1 t = P2A2v2 = V (Volume)

Dan V = m /ρ

Maka :

1 m m P1 – P2

ρ ρ

= m (v12 - v2

2) + mg(h2 – h1) 2

P1 – P2 = ρ (v1²- v2² ) + ρ g ( h2 - h1 )

Atau

Keterangan : P1 = tekanan pada penampang 1 (Pa) P2 = tekanan pada enampang 2 Pa) v1 = kecepatan fluida pada penampang 1(m/s) v2 = kecepatan fluida pada penampang 2(m/s) h1 = tinggi pipa pada penampang 1 (m) h2 = tinggi pipa pada penampang 2 (m) ρ = massa jenis (Kg/m3)

2.1. Penerapan Hukum Bernoulli a. Pada Pipa mendatar Gambar di samping melukiskan fluida mengalir melalui pipa mendatar yang

memiliki penampang A1 pada ketinggian h1 dan penampang A2 pada ketinggian h2.

P1 + ρv1² + ρ g h1= P2 + ρv2² + ρ g h2

P + ρv² + ρ g h = konstan

Page 12: Mekanika Fluida Dan Hidrolika

1

Menurut persamaan Bernoulli :

Karena mendatar h1 = h2 Maka:

P1 + ρv1² = P2 + ρv2²

Karena A1 > A2 Maka P1 > P2

Hal ini memperlihatkan bahwa tempat-tempat yang menyempit fluida memiliki kecepatan

besar, tekanannya mengecil. Sebaliknya, ditempat-tempat yang luas fluida memiliki kecepatan

kecil, tekanannya besar

2.1.2. Teori Torricelli Perhatikan gambar di samping. Sebuah bejana yang berukuran besar diisi zat

air. Pada dinding bejana terdapat lubang kebocoran kecil yang berjarak h dari permukaan

zat cair. Zat cair mengalir pada lubang dengan kecepatan v. Tekanan di titik a pada

lubang sama dengan tekanan di titik b pada permukaan zat cair yaitu sama dengan

tekanan udara luar B. karena lubang kebocoran kecil, permukaan zat cair dalam

bejana turun perlahan-lahan, sehingga v2 dianggap nol.

B

b

h

h2 a B

h1 x Gambar Zat cair dalam sebuah

bejana

Persamaan Bernoulli :

P1 + ρv1² + ρ g h1= P2 + ρv2² + ρ g h2

Page 13: Mekanika Fluida Dan Hidrolika

P1 + ρv1² + ρ g h1= P2 + ρv2² + ρ g h2

B + ρv1² + ρ g h1= B + + ρ g h2

v1²= 2g ( h2 – h1 )

karena v1 = v, maka:

Keterangan :

v = 2 g h v = kecepatan zat cair keluar lubang ( m/s)

h = jarak permukaan zat cair terhadap lubang ( m )

g = percepatan gravitasi ( m/s² )

waktu yang diperlukan zat cair keluar lubang hingga menyentuh lantai ditentukan

dengan konsep benda jatuh bebas

h1 = gt²

maka :

t = g2 h1

keterangan :

t = waktu zat cair dari lubang sampai ke lantai (s) h1 = tinggi lubang dari lantai (m)

g = percepatan gravitasi ( m/s2)

jarak mendatar tempat jatuhnya zat cair di lantai terhadap dinding bejana adalah

Keterangan x = v t x = jarak jatuhnya zat cair di lantai terhadap dinding (m)

v = kecepatan zat cair keluar dari lubang (m) t = waktu zat cair dari lubang sampai ke lantai (s)

Page 14: Mekanika Fluida Dan Hidrolika

debit zat cair yang keluar dari permukaan :

Keterangan :

Q= debit (m3/s)

A = luas penampang lubang (m2) h = jarak permukaan zat cair terhadap lubang (m)

2.1.3. Venturimeter venturimeter adalah alat yang digunakan untuk mengukur kecepatan aliran zat cair

dalam pipa.

1. Venturimeter Dengan Manometer Venturimeter yang dilengkapi dengan manometer dan diisi dengan zat cair yang

memeiliki massa jenis ρ’, maka kecepatan pada penampang 1 adalah :

Gambar Venturimeter dengan Manometer

V1 = A2

Keterangan : v1 = kecepatan aliran penampang pipa lebar (m/s)

A1 = Luas penampang pipa besar (m2) A2 = Luas penampang pipa kecil (m2)

ρ’ = massa jenis fluida dalam manometer (Kg/m3)

ρ = massa jenis fluida (Kg/m3)

g = percepatan gravitasi (m/s2)

Q = A.V

Q = A.

A1

V1 A2

h

Page 15: Mekanika Fluida Dan Hidrolika

Kecepatan pada penampang 2 adalah

V2 = V1

2. Venturimeter Tanpa Manometer Tabung atau pipa dapat dimanfaatkan untuk menentukan kelajuan fluida

didalam sebuah pipa dan juga dimanfaatkan dalam kaburator.

Berdasarkan Hukum Bernoulli :

P1 + ρv1² + ρ g h1= P2 + ρv2² + ρ g h2

Hukum utama Hidrostatika P1 – P2 = ρ g h

Persamaan kontinuitas A1 v1 = A2 v2

Dari persamaan di atas akan diperoleh :

P1 – P2 = ρ V1² ( - 1 )

V1 = A2

Keterangan

v1 = kecepatan aliran penampang pipa lebar (m/s)

A1 = Luas penampang pipa besar (m2)

A2 = Luas penampang pipa kecil (m2)

h = selisih tinggi permukaan fluida pada pipa pengukur beda tekanan ( m )

g = percepatan gravitasi (m/s2)

Page 16: Mekanika Fluida Dan Hidrolika

2.1.4. Tabung Pitot

Tabung pitot digunakan untuk mengukur kecepatan aliran gas (gambar di sampaing).

Dengan menggunakan persamaan Bernoulli akan diperoleh kecepatan aliran gas dalam

tabung adalah :

V1 =

Keterangan : Gbr Tabung Pitot v = kecepatan aliran gas dalam tabung (m/s)

ρ’ = massa jenis zat cair dalam manometer (Kg/m3)

ρ = massa jenis gas (Kg/m3)

g = percepatan gravitasi (m/s2) h = selisih tinggi permukaan zat cair dalam manometer ( m )

Referensi :

1. Linsley , Kohler, Paulhus, HYDROLOGY FOR ENGINEERS

2. Mahmod Yevjevich volume 1, UNSTEADY FLOW IN OPEN CHANNEL

Aliran gas

h