LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

download LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

of 53

Transcript of LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    1/53

    UNCERTAINTY ANALYSIS IN

    MEASUREMENT(Review of Stat ist ical Aspects in Engineering Measurement)

    Prof. Dr. Ir. Harinaldi, M.EngDepartment of Mechanical Engineering

    Faculty of Engineering, University of Indonesia

    App l ied Flow Measurement and Visual izat ion Lecture Module

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    2/53

    PART 1

    Introduction

    and Under lying Concepts

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    3/53

    Uncertainty Analysis What it is

    There is no such thing as a perfect

    measurements. All measurements of a variablecontain inaccuracies.

    The analysis of the uncertainties in

    experimental measurements and results is a

    powerful tool, particularly when it is used inthe planning and design of experiments

    Although it may be possible to decrease an

    uncertainty by improved experimental method

    or the careful use of statistical technique to

    reduce the uncertainty, it can never be

    eliminated

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    4/53

    Issues of Analysis

    Systematic and Random Uncertainties

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    5/53

    Issues of Analysis

    Systematic Uncertainties

    Offset uncertainty

    Clearly there is a problem here:

    the boiling point of water should be very close to 100.0o

    C while the melting point should be very close to 0.0o

    C There is an offset uncertainty with the temperature

    measuring system of about 7.5 oC

    Possible causes are inherent to measurement device

    (such as low battery, malfunctioning digital meter,

    incorrect type of thermocouple, etc)

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    6/53

    Issues of Analysis

    Systematic Uncertainties

    Gain uncertainty

    (mb - mc) versus mc

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    1.60

    0.00 20.00 40.00 60.00 80.00 100.00 120.00

    mc (g)

    mb-m

    c

    (g)

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    7/53

    Issues of Analysis

    Random Uncertainties

    Random uncertainties produce scatter in observedvalues.

    The cause :

    o limitation in the scale of the instrument

    resolution uncertainty due to rounding up of

    measured valueo reading uncertainty

    o random uncertainty due to environmental factor

    (electrical interference, vibration, power supply

    fluctuation, Brownian motion of air molecule,background radiation, noise, etc)

    Use statistical technique to get an estimate of the

    probable uncertainty and to allow us to calculate the

    effect of combining uncertainties

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    8/53

    Issues of Analysis

    True Value, Accuracy and Precision

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    9/53

    Statistical Basics on Uncertainty

    Data

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    10/53

    Statistical Basics on Uncertainty

    Sample and Population

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    11/53

    Statistical Basics on Uncertainty

    Frequency Distribution

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    12/53

    Statistical Basics on Uncertainty

    Histogram and Probability Distribution

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    13/53

    Statistical Basics on Uncertainty

    Mean and Standard Deviation

    Sample Population

    Mean

    Standard

    Deviation

    Variance = (Standard Deviation)2

    Variance

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    14/53

    Statistical Basics on Uncertainty

    Standard Error (of the Mean)

    If standard deviation of population (x)of is known :

    In a sampling with nrepeated measurement (sampling

    size = n), the standard error is determined as:

    StandardError =

    If standard deviation of population of is unknown, thenit is estimated from standard deviation of sample (sx)

    for infinite population

    For finite population

    with size of N

    Standard

    Error = or

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    15/53

    Statistical Basics on Uncertainty

    Gaussian (Normal) Distribution Function

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    16/53

    Statistical Basics on Uncertainty

    Probability of Gaussian Distribution

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    17/53

    Statistical Basics on Uncertainty

    Standard Gaussian Distribution

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    18/53

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    19/53

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    20/53

    PART 2

    Determining Measurement

    Uncertainty

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    21/53

    Data Handling Rejection of Outliers

    Rejection of outliers is more acceptable in areas of

    practice where the underlying model of the process

    being measured and the usual distribution of

    measurement error are confidently known

    You want some way to identify what observations in

    your data set need closer study. It's not appropriate to

    simply throw away or delete an observation; you must

    keep it around to look at later. The picture is as follows.

    Filtering Process (Selection and Rejection of Data)

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    22/53

    Data Handling Rejection of Outliers

    Filtering Process (Selection and Rejection of Data)A sensitive subject and one that can bring out

    strong feeling amongst experimenters:o One argue : All data are equal no

    circumstances in which the rejection of

    data can be justified

    o Another argue : there as those that know

    that a set of data is spurious and reject it

    without a second thought

    Expert judgment confidence levelStatistical test :

    o Chauvenets criterion P = 11/(2n)

    o Peirces criterion

    o - riterion = 2, 3,

    http://localhost/var/www/apps/conversion/tmp/scratch_3/chauvenetscriterion.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_3/chauvenetscriterion.pdf
  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    23/53

    Data Handling Rejection of Outliers

    Chauvenets criterion

    Wide acceptance method which defines an acceptable

    scatter around the mean value from a given sample of

    n readings from the same parent population

    All points should be retained that fall within a band

    around the mean value that corresponds to a

    probability of 11/(2n)

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    24/53

    Data Handling Rejection of Outliers

    Chauvenets criterion

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    25/53

    Dealing with Uncertainty

    Quoting the Uncertainty

    After making repeated measurement of aquantity, there are four important steps to take in

    quoting the value of the quantity:

    1. Calculate the mean of the measured values2. Calculate the uncertainty in the quantity,

    making clear the method used. Round the

    uncertainty to one significant figure (or two if

    the first figure is a 1)3. Quote the mean and uncertainty to the

    appropriate number of figures

    4. State the units of the quantity

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    26/53

    Dealing with Uncertainty

    Uncertainty statement

    Absolute uncertainty

    o With unit of the quantity

    )of(unit XUX x

    Fractional uncertaintyo no unit

    X

    UXyuncertaintfractional

    Percentage uncertainty

    o no unit

    %100yuncertaintpercentage

    X

    UX

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    27/53

    Determining Uncertainty Single

    Measurement

    If only one measurement is made, the uncertainty

    is generally determined from the instrument

    resolution of reading scale (resolution

    uncertainty)

    Uncertainty = half of the smallest resolution of reading

    Example :

    A length of a stick is measured with a rule with resolutionof reading scale 1 mm. The reading is 361 mm, then the

    length should be quoted as:

    L = (361.0 0.5) (mm)

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    28/53

    Determining Uncertainty Repeated

    Measurement of Single Quantity

    Simple Method - 1

    n

    XX minmax

    tmeasuremenofnumber

    rangemeaninyuncertaint

    Example:

    )/(8.341mean smc

    (m/s)75.3385.345range cR

    (m/s)875.08/7yuncertaint cU

    (m/s)100.0093.418

    (m/s)9.08.341

    2

    c

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    29/53

    Determining Uncertainty Repeated

    Measurement of Single Quantity

    Simple Method - 2

    Example:

    )/(8.341mean smc

    4.11

    8.3417.342...8.3414.3428.3415.341deviationTotal

    cci

    425.18/4.11deviationMeanyUncertaint

    (m/s)100.0143.418

    (m/s)4.18.341

    2

    c

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    30/53

    Determining Uncertainty Repeated

    Measurement of Single Quantity

    Statistical Approach to variability in data

    meantheoferrortandardmeaninyuncertaint s

    n

    sxx xxxx kUU limitsconfidence

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    31/53

    Determining Uncertainty Repeated

    Measurement of Single Quantity

    (s)006.050

    043.0mean,theoferrorStandard

    (s)043.0deviation,Standard

    (s)604.0Mean,

    t

    ts

    t

    With 95 % level of confidence : (s)012.02 ttU

    Then : (s)012.0604.0 t

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    32/53

    Combining Uncertainty Uncertainty

    Propagation

    An experiment may require the determination of several

    quantities which are later to be inserted into an equation.

    The uncertainties in the measured quantities combine to

    give an uncertainty of the calculated value

    The combination of these uncertainties is sometimes called

    the propagation of uncertainty or error propagation

    V

    m

    measured quantity

    with uncertainty

    measured quantity

    with uncertainty

    calculated quantity

    with propagation ofuncertainty

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    33/53

    Combining Uncertainty Simple Method

    Most straightforward method and requires only simple

    arithmetic.

    Each quantity in the formula is modified by an amount equalto the uncertainty in the quantity to produce the largest

    value and the smallest value

    Example :

    In an electrical experiment, the current through a resistor wasfound to be (2.5 0.1) mA and the voltage across the resistor

    (5.5 0.3) V. Determine the resistance of the resistor Rand the

    uncertainty UR !

    1020.2A102.5

    V5.5 33-I

    V

    R

    1042.2A102.4

    V8.5 33-max

    R

    1000.2A102.6

    V2.5 33-min

    R

    10210.02

    3minmax RR

    102.02.2 3R

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    34/53

    Combining Uncertainty Partial

    Differentiation

    Based on differentiation of

    function of several variables

    b

    b

    Va

    a

    VV

    baVV

    ),(

    baV Ub

    VU

    a

    VU

    bbVa

    aVV

    Uncertainty propagation:

    Properties:

    baVbaV

    baVbaV

    b

    b

    a

    a

    V

    VabV

    b

    b

    a

    a

    V

    VbaV

    /

    Sum:

    Difference:

    Product:

    Quotient:

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    35/53

    Combining Uncertainty Partial

    Differentiation

    Example :

    The temperature of (3.0 0.2) x 10-1kg of water is raised by (5.50.5) oC by heating element placed in the water. Calculate the

    amount of heat transferred to the water to cause this

    temperature rise !

    J1088.4

    )(0.5)(0.3)(4186)(0.02)(4186)(5.5

    and

    J6907)5.5)()(4186(0.3

    mcUUcU

    mcQcmQ

    UQ

    Um

    QU

    mcQ

    mQ

    mQ

    The value of c = 4186 J kg-1oC-1

    is assumed to be constant(neglecting its uncertainty)

    J101.19.6 3Q

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    36/53

    Combining Uncertainty Statistical

    Approach

    2

    2

    2

    2

    2

    2

    2

    2

    2

    ),(

    baV

    baV

    b

    V

    a

    V

    b

    V

    a

    V

    baVV

    Taking uncertainty of the mean to relate to standard error of

    the mean and partial differential principle

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    37/53

    Uncertainty in Linear Fitting of X Y Data

    Least Square Method in Linear Fitting

    22ii

    iiii

    xxn

    yxyxnm

    22

    2

    ii

    iiiii

    xxn

    yxxyxc

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    38/53

    Uncertainty in Linear Fitting of X Y Data

    In reality for each value of x, the corresponding y

    has some uncertainty

    contribute to the uncertainty of m and c

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    39/53

    Uncertainty in Linear Fitting of X Y Data

    Uncertainty of m

    22

    ii

    m

    xxn

    n

    Uncertainty of c

    22

    2

    ii

    i

    m

    xxn

    x

    where

    2

    2

    1

    cmxy

    n ii

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    40/53

    PART 3

    More on Measurement Uncertainty

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    41/53

    General Uncertainty Analysis

    Consider a general case in which an experimental result, r, is

    a function of Jmeasured variable Xi

    JXXXrr ,...,, 21

    Then, the uncertainty in the result is given by :

    2

    1

    2

    2

    2

    2

    2

    2

    2

    2

    1

    2 ...21 i

    J

    i i

    X

    J

    XXr UX

    rU

    X

    rU

    X

    rU

    X

    rU

    J

    iX

    i

    i

    XUX

    r

    ivariablemeasuredin theyuncertaint

    tcoefficienysensitivitabsolute

    Note : all absolute uncertainties (UX) should be expressed with

    the same level of confidence

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    42/53

    General Uncertainty Analysis

    Nondimensionalized forms:

    222

    2

    2

    2

    2

    2

    1

    2

    1

    12

    2

    ...21

    j

    X

    j

    jXXr

    X

    U

    Xr

    r

    X

    X

    U

    Xr

    rX

    X

    U

    Xr

    rX

    rU j

    Note :factorionmagnificatyuncertaint

    i

    i

    i UMFX

    r

    r

    X

    oncontributipercentageyuncertaint12

    22

    UPC

    rU

    X

    U

    X

    r

    r

    X

    r

    i

    X

    j

    i i

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    43/53

    General Uncertainty Analysis

    Example:

    A pressurized air tank is nominally at ambient temperature (25 oC).

    Using ideal gas law, how accurately can the density be determinedif the temperature is measured with an uncertainty of 2 oC and the

    tank pressure is measured with a relative uncertainty of 1%?

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    44/53

    General Uncertainty Analysis

    Uncertainty analysis:

    222

    2222

    2

    2

    22

    22222

    zeroisthatassuming

    1

    1

    1

    ,,

    T

    U

    p

    UU

    UT

    U

    R

    U

    p

    UU

    RT

    p

    RT

    pT

    T

    T

    RT

    p

    TR

    pR

    R

    R

    RT

    p

    p

    p

    T

    U

    T

    T

    R

    U

    R

    R

    p

    U

    p

    pU

    TRpRTp

    Tp

    RTRp

    TRp

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    45/53

    General Uncertainty Analysis

    Uncertainty analysis:

    %2.1012.0)298/2(01.0

    01.0

    298

    2

    2982732522

    22

    2

    UU

    pU

    T

    U

    KTKCU

    p

    T

    o

    T

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    46/53

    Detailed Uncertainty Analysis

    X1

    B1,P1

    X2

    B2,P2

    Xj

    Bj,Pj

    1 2 j.

    .

    r=r(X1,X2, , Xj)

    r

    Br,Pr

    Elemental error sources

    Individual measurement system

    Measurement of individual

    variables

    Equation of result

    Experimental result

    B = b ias (systemat ic uncerta inty)

    P = precis ion (random) u ncerta inty

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    47/53

    Detailed Uncertainty Analysis

    The uncertainty in the result is:

    222

    rrr PBU

    Systematic (bias) uncertainty:

    1

    1 11

    222 2J

    i

    J

    ik

    ikki

    J

    i

    iir BBB

    J

    i

    iir PP

    1

    222

    Precision (random) uncertainty:

    Correlated systematic

    uncertainty

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    48/53

    Systematic Uncertainty

    Systematic error can be determined and eliminated by

    calibration on ly to a certain degree(A certain bias will

    remain in the output of the instrument that is calibrated) In the design phase of an experiment, estimate of systematic

    uncertainty may be based on manufacturers specifications,

    analytical estimates and previous experience

    As the experiment progress, the estimate can be updated by

    considering the sources of elemental error:o Calibration error: some bias always remains as a result

    of calibration since no standard is perfect and no

    calibration process is perfect

    o Data acquisition error: there are potential biases due to

    environmental and installation effects on the transduceras well as the biases in the system that acquires,

    conditions and stores the output of the transducer

    o Data reduction errors: biases arise due to replacing data

    with a curve fit, computational resolution and so on

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    49/53

    Random Uncertainty Analysis

    Random uncertainty can be determined with various ways

    depending on particular experiment:

    o Previous experience of others using the same/similartype of apparatus/instrument

    o Previous measurement results using the same

    apparatus/instrument

    o Make repeated measurement

    When making repeated measurement, care should be takento the time frame that required to make the measurement:

    o Data sets should be acquired over a time period that is

    large relative to the time scale of the factors that have a

    significant influence on the data and that contribute to

    the random errorso Be careful of using a data acquisition system

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    50/53

    Random Uncertainty Analysis

    t

    Time, t

    Y

    Failure to determine random

    uncertainty due to inappropriate

    data acquisition

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    51/53

    Some Detail Approach/Guidelines

    Abernethy approach (1970-1980):

    o Adapted in SAE, ISA, JANNAF, NRC, USAF, NATO

    estimateconfidence99%for

    estimateconfidence95%for2/1

    22

    rrADD

    rrRSS

    tSBU

    tSBU

    Coleman and Steele approach (1989 renewed 1998):

    o Adapted in AIAA, AGARD, ANSI/ASME222

    rrr PBU

    1

    1 11

    222 2J

    i

    J

    ik

    kiikki

    J

    i

    iir BBBB

    1

    1 11

    222 2J

    i

    J

    ik

    kiSikki

    J

    i

    iir PPPP

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    52/53

    Some Detail Approach/Guidelines

    ISO Guide approach (1993):

    o Adapted by BIPM, IEC, IFCC, IUPAC, IUPAP, IOLM

    oUsing a standard uncertaintyo Instead of categorizing uncertainty as systematic and

    random, the standard uncertaintyvalues are divided

    into type A standard uncertainty and type B standard

    uncertainty

    o Type A uncertainties are those evaluated by thestatistical analysis of series of observations

    o Type B uncertainties are those evaluated by means

    other than the statistical analysis of series of

    observations

    NIST Approach (1994):o Use expanded uncertainty Uto report of all NIST

    measurement other than those for which Uchas

    traditionally been employed

    o The value of k= 2 should be used. The values of kother

    than 2 are only to be used for specific application

  • 8/11/2019 LM01-Aspek Statistik Pengukuran-Analisis Ketidakpastian

    53/53

    References

    [1] Montgomery, D.C., & Runger, G.C, Appl ied Statistics and Probabil i ty for Engineers 3rd

    Ed., John Wiley and Sons, Inc., New York, (2003)

    [2] Harinaldi, Prinsip-pr insip Statistik Untuk Tekni k dan Sains, Erlangga, (2005)

    [3] Kirkup, L, Experimental Method: An I ntroduction to the Analysis and Presentation of

    Data, John Wiley and Sons, Australia, Ltd., Queensland, (1994)

    [4] Coleman, H.W and Steele, W.G., Exper imentation and Uncertainty Analysis for Engineer

    2ndEd., John Wiley and Sons, Inc., New York, (1999)

    [5] Doebelin, E.O, Engineer ing Experimentation, Plann ing Execution, Reporting, McGraw-

    Hill Book Co., New York, (1995)