of 43 /43
RANGKAIAN MAGNETIK  A ma Den u ya  Jurusan Teknik Konversi Energi Politeknik Negeri Bandung Bandung – Sept ember 2009

Embed Size (px)

### Transcript of Kuliah Rangkaian Magnet 270809 11

8/3/2019 Kuliah Rangkaian Magnet 270809 11

RANGKAIAN MAGNETIK

A ma Den u ya

Jurusan Teknik Konversi Energi

Politeknik Negeri BandungBandung – September 2009

8/3/2019 Kuliah Rangkaian Magnet 270809 11

History Electricity

8/3/2019 Kuliah Rangkaian Magnet 270809 11

To be able to convert Energy,

we nee a oup ng e

8/3/2019 Kuliah Rangkaian Magnet 270809 11

MAGNETIC CIRCUITS

• Magnetic Fields

• Magnetic Circuits

• Magnetic Materials

• Inductance and Mutualnductance and MutualInductance

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Circuit

1. Understand magnetic fields and their interactions with moving

.

1. Use the right-hand rule to determine the direction of the magneticfield around a current-carrying wire or coil.

.

to magnetic fields.

4. Calculate the voltage induced in a coil by a changing magnetic fluxor in a conductor cuttin throu h a ma netic field.

5. Use Lenz’s law to determine the polarities of induced voltages.

6. Apply magnetic-circuit concepts to determine the magnetic fields in

practical devices.7. Determine the inductance and mutual inductance of coils given their

physical parameters.

8. Understand hysteresis, saturation, core loss, and eddy currents in

cores compose o magne cma er a s suc as ron.

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Fields

Konsep Induktansi

dS.BΨ = ∫

d

atauIL,I

λ

λλ =

=

dI=

8/3/2019 Kuliah Rangkaian Magnet 270809 11

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Fields

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Illustrations of the ri ht-hand rule

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Concentric magnetic flux around a

curren -carry ng con uc or.

8/3/2019 Kuliah Rangkaian Magnet 270809 11

-

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Example of Ampére’s Law

Find the magnetic field along a circular path around an infinitely longConductor carrying ‘I’ ampere of current.

900

B,H

Since both→

dl

Hand are perpendicular to radius ‘r’ at any point ‘A’

on the circular path, the angle θ is zero between them at all points. Also since all

the points on the circular path are equidistant from the current carrying

conductor is constant at all points on the circle→

Ir 2HdlHdl.H =π==→→→→→

∫ ∫  or

r 2

IH

π=

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Field Intensity andagnetic Field Intensity and

Ampère’s Law

7−=

’µ µ  =

=⋅ id lH

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Field Around a Longagnetic Field Around a Long

Straight Wire

I

H  B µ == r π

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Flux Density in a Toroidal Core

NI

B

µ

=

8/3/2019 Kuliah Rangkaian Magnet 270809 11

AB d ⋅=φ  φ λ  N = A

Faraday’s law of magnetic induction:

d λ

dt =

8/3/2019 Kuliah Rangkaian Magnet 270809 11

close together where the field is strong and.

-

magnet and enter the south-seeking end.

When placed in a magnetic field, a compass

.

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Circuit

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Circuits

F =NI= Magneto Motive Force or MMF = # of turns * Current passing through it

F = NI = Hl (why!)

NI=µlor   NI

A=

µlor

or

)A/(µ=Φl

ℜ=Φor

ℜ = Reluctance of magnetic path

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Circuits (1)

w

I

N

d

l= mean length

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Circuits (2)

F =NI= Magneto Motive Force or MMF = # of turns * Current passing

through it

F = NI = Hl (why!)

NIB

=

µ

lor   NI

A

=

µ

Φlor

or

)A/(

NI

µ=Φl

ℜ=Φ

NIor

ℜ = Reluctance of magnetic path

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Equivalent Circuits

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Analogy between Electric circuit

an agne c rcu

8/3/2019 Kuliah Rangkaian Magnet 270809 11

The magnetic circuit for the toriodal coil

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Analogy between Electric circuit

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Analogy between Electric circuit

Φ

F =MMF is analogous to Electromotive force (EMF) =E

Φ = Flux is analogous to I = Current

= Reluctance is analo ous to R = Resistance

P = Permeanceℜ

=1

= Analogous to conductanceR

1G =

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Analogy between 'magnetic circuits'

and electrical circuits

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Analogy between Electric circuit

and Magnetic Circuit

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Equivalent circuits for the electrical

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetization Curve

8/3/2019 Kuliah Rangkaian Magnet 270809 11

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Basic magnetic circuit

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Simple Magnetic Circuit

8/3/2019 Kuliah Rangkaian Magnet 270809 11

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Circuit with Air Gap

8/3/2019 Kuliah Rangkaian Magnet 270809 11

8/3/2019 Kuliah Rangkaian Magnet 270809 11

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Fringing

We approximately account for fringing byaddin the len th of the a to the de th and

width in computing effective gap area.

8/3/2019 Kuliah Rangkaian Magnet 270809 11

• Ratio of iron vs. stack areas

• Lamination thickness 0.35 ...

0.65 mm <-> stacking factor . ... . .

• Amorphous steel

– 80% iron, 20% boron

– cheap (less than silicon steel),

– low losses (1/5’th of best

– hard to punch

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Composite Magnetic Circuit with

r-gap

Magnetic Circuit

8/3/2019 Kuliah Rangkaian Magnet 270809 11

Magnetic Circuit

8/3/2019 Kuliah Rangkaian Magnet 270809 11