Kuliah 3 - Perencanaan Transportasi

download Kuliah 3 - Perencanaan Transportasi

of 22

Transcript of Kuliah 3 - Perencanaan Transportasi

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    1/22

    PERENCANAAN TRANSPORTASI

    Lecture 3 : Trip Distribution

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    2/22

    Trip Distribution

    • Trip generation: Trip productions & attractions in eachTraffic Analysis Zone (TAZ). (how many trips start ineach TAZ and how many trips end in each TAZ)

    • Trip distribution links productions to attractions foreach TAZ pair (models convert Ps and As into trip tablesrepresenting movements between TAZs)

    • Trip distribution models account for land-use &transportation system/spatial separation of TAZs

    • Different models used for trip distribution (noregressions)

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    3/22

    Trip Distribution Function

    HBW Trip Generation HBW Trip

    Distribution

    (balanced)

    PHBW: 300

     AHBW

    :700

    PHBW: 500

     AHBW

    : 250PHBW: 550

     AHBW: 400

    PHBW: 300

     AHBW:700

    PHBW: 500

     AHBW: 250

    PHBW: 550

     AHBW: 400

    100

    300

    150

    200200400

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    4/22

    Behavioral Foundations?

    • Assumptions about group trip-makingbehavior

     – Number of productions

     – Number of attractions

     – Distance traveled and other travel costs

    • Trip making is…

     – Directly related to production – Directly related to attraction

     – Inversely related to travel cost impedance

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    5/22

    The Gravity Model (GM)

    • Derives its name and basic premise from

    Newton’s Law of Gravity

    • Newton’s Gravitational Law states that “……“the force of attraction between two bodies is

    directly proportional to the mass of the two

    bodies and inversely proportional to the

    square of the distance between the twobodies”

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    6/22

    The Gravity Model (GM)

    • Gravity model used in transportation planning

    predicts that relative number of trips made

    between two TAZs is a direct function of the

    Ps & As in the two TAZs and inversely related

    to the separation of the two TAZs

    • TAZs with greater numbers of Ps and As

    exchange more trips; TAZs that are fartherfrom each other exchange fewer trips

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    7/22

    Mathematical representation

    T ij  = number of trips from zone i to zone j

    Pi  = trip production in TAZ i

     A j  = trip attraction in TAZ j

     f ij  = Friction between TAZs i & j (rep. spatial separation between 2 TAZs)

    k ij  = Optional socioeconomic or trip distribution adjustment factor for

    interchange between the two TAZs

     

     

     

     

    m

    n

    ijij j

    ijij j

    iij

    k  f   A

    k  f   A P T 

    1

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    8/22

    What does it mean?

    • GM states that the trips produced in TAZ i  –> Pi

    • Will be distributed to each other TAZ j  –> T ij

    • According to the relative attractiveness of each TAZ  j  –>

    •  A j  / ∑A j  

    • And the relative accessibility of each TAZ j  –> f ij / ∑f ij  

    • And the relative socioeconomics of each TAZ j  –> k ij / ∑k ij  

    • And that’s it!

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    9/22

    Mathematical Expressions :

    Gravity Models• First and simplest form (1955)

    T ij  =   Pi P j    d ij 2 

    T is number of trips between two zones i and j

    P is population

    d is distance

     is proportionality factorUsed to explain shopping trips

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    10/22

    Generalizations of the First Gravity

    ModelT ij  =   Oi D j    d ij 

    O is productions

    D is attractionsn is exponent that must be calibrated

    T ij  =   Oi D j f(cij  )

    f(cij) is generalized function of travel costs

    It is called friction factor, deterrence function, orimpedance – captures disincentive to travel

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    11/22

    Gravity Model

    • Distance is replaced by impedance, i.e., thedifficulty in traveling between two zones

    • Fn of travel time, travel distance, cost

    • Generalized cost function:C ij  = a1 t ij + a2 F ij  + a3 Pij  

    Cij = Cost of traveling between i and jtij= Travel times (in-vehicle, out-of-vehicle)

    Fij= Out-of-pocket costsPij= Terminal or parking costsai = Parameters

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    12/22

    “Deterrence” Functions

    • Exponential

    f(c ij  ) =

    exp(-c*c ij  )

     

    • Power

    f(c ij  ) = c ij - b

    • Combined

    f(c ij  ) =

    c ij - b exp(-c*c ij  ) 0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1 2 3 4 5 6 7 8 9 10

       D  e   t  e  r  a  n  c  e

    Cost

    0.1

    2

    0.5 & 0.1

    Exponential

    Combined

    Power

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    13/22

    Trip Distribution: Process

     A. GIVEN: Impedance matrix (Auto/Transit travel times)

    To

    From 1 2 3 4 5

     __________________________________

    1  5.00 7.60 13.98 16.57 18.052  9.42 5.00 9.98 12.56 14.05

    3  17.64 15.15 5.00 11.55 14.25

    4  21.68 15.86 13.94 5.00 13.16

    5  22.18 17.50 18.21 13.16 5.00

     ___________________________________B. and EITHER an impedance function

    f(C ij  ) = a C ij -b . e (-c(cij)) where a > 0 and c >= 0

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    14/22

    Process

    Calibration of gravity model—NCHRP 365, 1995

    Trip purpose a b c

     ___________________________________________________

    HBW 28507 0.020 0.123HBO 139173 1.285 0.094

    NHB 219113 1.332 0.010

     ___________________________________________________

    For example: f(C ij  ) = 28507 * C ij  (-0.020) * e (-0.123 (cij))

    OR a friction factor lookup table

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    15/22

    ProcessC. Obtain “accessibility” for the region

    To

    From 1 2 3 4 5

     ____________________________________________________

    1 14923.85 10743.81 4845.38 3513.04 2920.64

    2 8553.85 14923.85 ...

    3 …

    4

    5 ____________________________________________________

    D. AND use predicted P & A (from trip generation)

    = 28507 * 5 (-0.020) * exp (-0.123 (5))

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    16/22

    Process

    D.AND use predicted P & A (from trip generation)

    Zone AVINC AVHHS AVCAR Pi    Aj

     ____________________________________________________1 22.9 1.9 0.7 7331 58119

    2 36.4 1.7 0.8 24666 15455

    3 42.6 34451 7848

    4 14933 7259

    5 30284 22984 ____________________________________________________

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    17/22

    Process

    E. OUTPUT trip table (flows) from the gravity model (origin-

    constrained)

    To

    From 1 2 3 4 5 Pi ____________________________________________________

    1 5462 1046 239 161 423 7331

    2 13009 6034 1638 1098 2888 24666

    3 ... 34451

    4 149335 30284

     ____________________________________________________

     Aj   58119 15455 7848 7259 22984 111665

    = 7331 [(58119*14923)/ (58119*14923)+(15455*10743.81)+…)]

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    18/22

    Process

    E. OUTPUT trip table (flows) from the gravity model

    To

    From 1 2 3 4 5 Pi

     ____________________________________________________1 6107.66 732.60 366.74 73.96 50.04 7331

    2 16211.14 4712.48 2797.77 563.54 381.07 24666

    3 ... 34451

    4 14933

    5 30284 ____________________________________________________

     Aj   58119 15455 7848 7259 22984 111665

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    19/22

    Origin-Constrained Example

    T iJ = Oi D J f(ciJ )   Σ  J D J  f(ciJ )  O3 = 602. Cij and D j are given.

    cij  2-3 4-5 6-7 8-10 11-15 16-20 21-25 26-30 31-40 

    f(cij) 87 45 29 18 10 6 4 3 2 

    T32 = 602 * 15399  26473 = 350Zone Attraction c3j  f(c3j) D j f(c3j)  T3j 

    Fr To D j  (Min) 

    3 1 1080 20 6 6480 147 

    3 2 531 7 29 15399 350 

    3 3 76 5 45 3420 78 

    3 4 47 10 18 846 19 

    3 5 82 25 4 328 8 

    SUM 26473 602 

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    20/22

    Two Contemporary Models

    T ij  = Pi [A j  f(cij  )]  [Σ  j  A j   f(cij  )] 

    T ij  = Ai [P j  f(cij  )]   [Σ i  Pi   f(cij  )]

    First is origin-constrained: total number of trips predicted

    to originate in zone i equals productions Oi. 

    Second is destination-constrained: total number of tripspredicted to end in zone j equals attractions D j.

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    21/22

    Two Contemporary Models

    T ij  = Oi D j  f(cij  ) k ij    Σ  j  D j   f(cij  ) k ij

    T ij  = Oi D j  f(cij  ) k ij    Σ i  Oi   f(cij  ) k ij  

    kij is adjustment factor – “k factor” – that helps with

    model calibration. K factors may be set to 1.

  • 8/19/2019 Kuliah 3 - Perencanaan Transportasi

    22/22

    Homework