Fungsi

46
BAB III FUNGS I

Transcript of Fungsi

Page 1: Fungsi

BAB IIIFUNGSI

Page 2: Fungsi

Fungsi didefinisikan sebagai aturan yang menetapkan bahwa setiap satu anggota himpunan D berpasangan dengan tepat satu anggota himpunan K (lihat Gambar 3.1)

Definisi

D K

(a)

D K

(b)

Gambar 3.1

Page 3: Fungsi

Anggota-anggota himpunan D yang mempunyai tepat satu pasangan pada himpunan K disebut daerah definisi atau daerah asal (domain).

Anggota-anggota pada himpunan K yang merupakan pasangan anggota-anggota himpunan D disebut daerah nilai (range).

Sedangkan semua anggota himpunan K baik yang merupakan pasangan dari anggota himpunan D maupun yang bukan disebut kodomain.

Jadi fungsi sama seperti sebuah proses yang menghasilkan tepat satu keluaran untuk setiap masukan tertentu.

Kesimpulan

Page 4: Fungsi

D K

Gambar 3.2

Jika terdapat suatu hubungan yang tidak memenuhi definisi Seperti tersebut diatas maka hubungan tersebut bukan suatu fungsi tetapi disebut relasi (lihat Gambar 3.2). Sedangkan relasi dapat dimisalkan seperti sebuah proses yang menghasilkan dua keluaran untuk setiap masukan tertentu.

Page 5: Fungsi

Contoh 3.1 a) y = 2x + 3 b) y = x 2 c) y = sin x d) x 2 + y 2 =r 2

Secara garis besar fungsi dapat dikelompokkan menjadi dua bagian utama, yaitu fungsi ri l dan fungsi kompleks. Pembahasan mengenai fungsi pada materi kuliah ini hanya mencakup fungsi ri l saja.3.2. Jenis-jenis fungsi

3.2.1 Menurut jumlah peubah bebas3.2.1.1 Fungsi peubah bebas tunggalFungsi peubah bebas tunggal adalah fungsi yang hanya mempunyai satu peubah bebas.

Page 6: Fungsi

Contoh 3.2 a) w = xy b) u = sin (x+y) c) v = cos xy d) t = xy+ z

3.2.1.2 Fungsi peubah bebas banyakFungsi peubah bebas banyak adalah fungsi yang mempunyai lebih dari satu peubah bebas.

Page 7: Fungsi

3.2.2 Menurut cara penyajiannya3.2.2.1 Fungsi eksplisitFungsi eksplisit adalah fungsi dimana peubah bebasnya ditulis atau disajikan pada ruas tersendiri; terpisah dari peubah tak bebasnya.Contoh 3.3a)y = x – 5b) y =√x 2–1 c) y = sin x d) y = (x-1)2 Secara umum fungsi ekplisit ditulis dalam bentuk y = f(x)

Page 8: Fungsi

Secara umum fungsi implisit ditulis dalam bentuk F(x,y) = 0

3.2.2.2 Fungsi implisitFungsi implisit adalah fungsi dimana peubah bebas dan tak bebasnya ditulis pada ruas yang sama.Contoh 3.4 a) x + y = 0 b) x 2 + y 2 = r 2

Page 9: Fungsi

Contoh 3.53.2.2.3 Fungsi parameterBentuk umum dari fungsi parameter adalah:x = f(t) ; y = g(t) ; t adalah parameter.

Jika kita tinjau dari operasi yang dilakukan terhadap peubah bebasnya, maka fungsi ri l dapat dibagi seperti yang ditunjukkan pada Gambar 3.3 berikut.

x = t 2 – 1y = t + 2

Page 10: Fungsi

FungsiAljabar TransendenRasional IrrasionalBulat PecahLogaritmaEksponen TrigonometriTrigonometriInvers Hiperbolik

HiperbolikInvers

FUNGSI RIL

Page 11: Fungsi

3.2.3 Fungsi aljabarFungsi aljabar adalah fungsi yang mengandung sejumlah operasi aljabar yaitu operasi penjumlahan, pengurangan, perkalian, pembagian dan operasi pangkar rasional. Fungsi aljabar dapat dibagi menjadi fungsi rasional dan irrasional. Selanjutnya fungsi rasional dapat dibagi menjadi fungsi bulat dan fungsi pecah.3.2.3.1 Fungsi rasionalFungsi rasional adalah fungsi yang mempunyai bentuk P(x)/Q(x) dengan R(x) dan Q(x) adalah polinomial-polinomial dan Q(x) ≠ 0. Selanjutnya jika Q(x) ≠ konstan maka fungsi rasional disebut juga fungsi pecah. Sedangkan jika Q(x) = konstan maka fungsi rasional disebut fungsi bulat.

Page 12: Fungsi

Fungsi bulat adalah suatu fungsi rasional dengan Q(x) = konstan. Sehingga fungsi bulat dapat disebut fungsi polinomial karena bentuknya sama seperti bentuk polinomial. A. Fungsi bulatSuatu fungsi yang mempunyai bentuk f(x) = a n x n + a n-1 x n-1 + a n-2 x n-2 + … + a 1x + a 0 (3.1) disebut fungsi polinomial derajad n. Koeffisien-koeffisien a n, a n-1, a n-2,…, , a 1, a 0 adalah bilangan-bilangan ril , sedangkan masing-masing sukunya disebut monomial. Pangkat n pada fungsi polionomial adalah bilangan bulat tak negatif .

Page 13: Fungsi

Fungsi polinomial dapat dikelompokkan menurut jumlah suku dan menurut derajat nya. Berikut diberikan beberapa contoh fungsi-fungsi polinomial.

PolinomialBerdasarkanJumlah suku Derajadx 2 – x – 6 Trinomial 2 (fungsi

kuadrat)

Page 14: Fungsi

Fungsi polinomial dapat dikelompokkan menurut jumlah suku dan menurut derajat nya. Berikut diberikan beberapa contoh fungsi-fungsi polinomial.

PolinomialBerdasarkanJumlah suku Derajadx 2 – x – 6 Trinomial 2 (fungsi

kuadrat)x 3+ 2x 2 - x + 5

Polinomial 3 (fungsi kubik)

Page 15: Fungsi

Fungsi polinomial dapat dikelompokkan menurut jumlah suku dan menurut derajat nya. Berikut diberikan beberapa contoh fungsi-fungsi polinomial.

PolinomialBerdasarkanJumlah suku Derajadx 2 – x – 6 Trinomial 2 (fungsi

kuadrat)x 3+ 2x 2 - x + 5

Polinomial 3 (fungsi kubik)x 5 Monomial 5

Page 16: Fungsi

Fungsi polinomial dapat dikelompokkan menurut jumlah suku dan menurut derajat nya. Berikut diberikan beberapa contoh fungsi-fungsi polinomial.

PolinomialBerdasarkanJumlah suku Derajadx 2 – x – 6 Trinomial 2 (fungsi

kuadrat)x 3+ 2x 2 - x + 5

Polinomial 3 (fungsi kubik)x 5 Monomial 5–5 Monomial 0 (fungsi konstan)

Page 17: Fungsi

Fungsi polinomial dapat dikelompokkan menurut jumlah suku dan menurut derajat nya. Berikut diberikan beberapa contoh fungsi-fungsi polinomial.

PolinomialBerdasarkanJumlah suku Derajadx 2 – x – 6 Trinomial 2 (fungsi

kuadrat)x 3+ 2x 2 - x + 5

Polinomial 3 (fungsi kubik)x 5 Monomial 5–5 Monomial 0 (fungsi konstan)

x + 2 Binomial 1 (fungsi linier)

Page 18: Fungsi

Fungsi polinomial dapat dikelompokkan menurut jumlah suku dan menurut derajat nya. Berikut diberikan beberapa contoh fungsi-fungsi polinomial.

PolinomialBerdasarkanJumlah suku Derajadx 2 – x – 6 Trinomial 2 (fungsi

kuadrat)x 3+ 2x 2 - x + 5

Polinomial 3 (fungsi kubik)x 5 Monomial 5–5 Monomial 0 (fungsi konstan)

x + 2 Binomial 1 (fungsi linier)x 6 –4x 3 – 7x + 5

Polinomial 6

Page 19: Fungsi

Untuk melakukan operasi penjumlahan dan pengurangan dari fungsi polinomial langkah-langkah yang harus kita lakukan adalah mengelompokkan suku-suku yang mempunyai faktor/faktor-faktor peubah yang sama. a. Penjumlahan dan pengurangan fungsi polinomial

Sebagai contoh suku-suku 3xy dan -2xy adalah dua faktor yang sama sehingga pada kedua suku tersebut dapat dilakukan operasi penjumlahan dan/atau pengurangan. Contoh lain dapat dilihat pada tabel berikut : Jenis suku Keteranganax 3 dan bx 3 Mempunyai faktor peubah yang samaax 2 dan

bx2yMempunyai faktor peubah yang tidak sama

a dan b Sebetulnya mempunyai faktor peubah yang sama, karena masing-masing suku dapat ditulis dalam bentuk : ax 0+ bx 0

Page 20: Fungsi

Tentukan jumlah dan selisih dari fungsi-fungsi ,Penyelesaian

Contoh 3.6–2x 2+ 5x + 7xy dan –3x 3 – 4x 2 + x – 3x 2 y + 3xy – 2

Penjumlahan(–2x 2+ 5x + 7xy ) + (–3x 3 – 4x 2 + x – 3x 2 y + 3xy – 2) =–2x 2+ 5x + 7xy – 3x 3 – 4x 2 + x – 3x2 y + 3xy – 2 =– 3x 3 –2x 2 – 4x 2– 3x 2 y + 5x + x + 7xy +3xy – 2 =– 3x3 –6x 2 + 6x – 3x 2 y + 10xy – 2

Page 21: Fungsi

Pengurangan(–2x2+ 5x + 7xy ) – (–3x 3 – 4x2 + x – 3x 2 y + 3xy – 2) =–2x2+ 5x + 7xy + 3x 3 + 4x 2 – x + 3x 2 y – 3xy + 2 =3x 3 –2x 2 + 4x 2 + 3x 2 y + 5x – x + 7xy – 3xy + 2 =3x3 +2x 2 + 4x + 3x 2 y + 4xy + 2b. Perkalian monomialUntuk melakukan operasi perkalian fungsi monomial berikut diberikan beberapa hukum yang berlaku yaitu :Hukum I : a m . a n = a m+n ( 3.2 )

Page 22: Fungsi

Selesaikan perkalian : 5 2.53 ; x a .xb ; xy 2 .x3yPenyelesaian : 52.53 = 5 2+3 = 5 5 = 3125x a.xb = x a+bxy2 .x3y = x.x 3.y2 .y = x 4 .y 3 Contoh 3.7

Hukum II : [a m]n= a mn ( 3.3 )Contoh 3.8 Selesaikan : [4 2]3 dan [x 3] 4 Penyelesaian :[42 ] 3 = 4 6 =4096[x 3 ] 4 = x 12

Page 23: Fungsi

Hukum III : [a mbn] k= a mk.bnk ( 3.4 )Selesaikan : [{7}{5 2}]3 dan [x 3y 2]2 Penyelesaian :[{7}{5 2}] 3 = 7 3 5 6 = 5359375[x 3y 2] 2 = x 6 y4

Contoh 3.9

Contoh 3.10Selesaikan perkalian : 2x(x 2 -5x+6)Penyelesaian : 2x(x2 -5x+6) = 2x 3 -10x 2 +12x

c. Perkalian fungsi polinomialProses perkalian dua fungsi polinomial dapat dilakukandengan mengalikan masing-masing monomialnya denganbantuan hukum distributif .

Page 24: Fungsi

Selesaikan perkalian : (3x+2)(x 2 -3x+2)Penyelesaian (3x+2)(x 2 –3x+2) = 3x 3 – 9x 2 +6x+2x 2 – 6x+4=3x 3 –7x 2 +4Contoh 3.11

Dua buah polinomial disebut binomial-binomial konjugat jika salah satu dari binomial tersebut merupakan penjumlahan, sedangkan yang lainnya merupakan pengurangan dari dua buah monomial. Sebagai contoh (ax m+by n) dan (ax m–by n) adalah binomial-binomial konjugat d. Perkalian istimewa polinomial

(ax m+by n)(ax m – by n) = (ax m)2 – (by) 2 (3.5)Selesaikan perkalian (5x 2+6) (5x 2-6)Penyelesaian :(5x 2+6) (5x 2–6) = (5x 2)2 –(6) 2 = 25x 4 –36Contoh 3.12

Page 25: Fungsi

Memfaktorkan polinomial berarti menulis polinomial menjadi bentuk perkalian antara dua polinomial atau lebih. Langkah-langkah yang harus dilakukan adalah sebagai berikut,Tentukan faktor yang sama dari masing-masing monomial dan selanjutnya keluarkan dari kelompoknya. e. Pemfaktoran polinomial

Sebagai contoh dapat dilihat pada tabel berikut.

PolinomialLangkah I

(tentukan faktoryang sama)

Langkah II(keluarkan

faktoryang sama)

ax 2+ay 2 a a(x 2+y 2)

Page 26: Fungsi

Memfaktorkan polinomial berarti menulis polinomial menjadi bentuk perkalian antara dua polinomial atau lebih. Langkah-langkah yang harus dilakukan adalah sebagai berikut,Tentukan faktor yang sama dari masing-masing monomial dan selanjutnya keluarkan dari kelompoknya. e. Pemfaktoran polinomial

Sebagai contoh dapat dilihat pada tabel berikut.

PolinomialLangkah I

(tentukan faktoryang sama)

Langkah II(keluarkan

faktoryang sama)

ax 2+ay 2 a a(x 2+y 2)3x 3+2x+x x x(3x2+2x+1)

Page 27: Fungsi

Memfaktorkan polinomial berarti menulis polinomial menjadi bentuk perkalian antara dua polinomial atau lebih. Langkah-langkah yang harus dilakukan adalah sebagai berikut,Tentukan faktor yang sama dari masing-masing monomial dan selanjutnya keluarkan dari kelompoknya. e. Pemfaktoran polinomial

Sebagai contoh dapat dilihat pada tabel berikut.

PolinomialLangkah I

(tentukan faktoryang sama)

Langkah II(keluarkan

faktoryang sama)

ax 2+ay 2 a a(x 2+y 2)3x 3+2x+x x x(3x2+2x+1)3a 2b+5ab-4b2

b b(3a 2+5a-4b)

Page 28: Fungsi

f . Pembagian polinomialPembagian dua buah monomial dapat dilakukan dengan mengikuti hukum-hukum berikut ini .Hukum IV x mx n= x m x 1–n =x m – n (3.6)

Hukum V xy x mym= (3.7) Hukum VI ( Pangkat nol) a 0=1 ; a / 0 (3.8)

Hukum VII 1a m= a –m (3.9)

Page 29: Fungsi

Contoh 3.13Penyelesaian x 3y2 –4Sederhanakan fungsi

x 3y 2 –4 = x –12 y –8 y 8 x 12 =Pada contoh terdahulu telah dijelaskan bahwa fungsi polinomial yang mempunyai derajad nol disebut fungsi konstan dan dapat ditulis dalam bentuk y = f(x) = a 0 atau y = konstan ( 3.10 )

g. Fungsi konstan

Grafik fungsi konstan dapat dilihat pada Gambar 3.4 berikut.

Page 30: Fungsi

y = a 0 ; a 0 > 0

y = a 0 ; a 0 < 0 O x

y

Gambar 3.4Grafik fungsi konstan

Page 31: Fungsi

Fungsi linier adalah fungsi polinomial yang derajad satu. Fungsi l inier disebut juga persamaan garis dan ditulis dalam bentuk :h. Fungsi l inier

y = a 1 x + a 0 atau y = mx + n (3.11)Pers. 3.11 adalah pers. garis yang memotong sumbu x pada saat y = 0 dan memotong sumbu y pada saat x = 0.Perhatikan pers. 3.11. Jika x = 0 maka y = n dan jika y = 0maka x = - n/m. Jadi dapat disimpulkan bahwa pers. 3.11menunjukkan sebuah garis yang melalui titik-titik (0,n) dan (-n/m,0). Biasanya persamaan 3.11 disebut pers. “Perpotongan-Kemiringan sebuah Garis (Slope-InterceptEquation of a Line)”.

Page 32: Fungsi

Grafik persamaan 3.11 ditunjukkan pada Gambar 3.5 berikut

O yx

(–n/m , 0) (0 , n)

Gambar 3.5Grafik fungsi linier

Page 33: Fungsi

Jika persamaan garis pada pers. 3.11 melalui titik (x 1,y1) maka :y 1 = mx 1 + n → n = y 1 – mx 1 ( 3.12 )Dengan mensubstitusi harga n pada pers. 3.12 ke pers. 3.11 didapat :y – y 1 = m(x – x 1) atau y = m(x – x 1) + y 1 ( 3.13 )Biasanya persamaan 3.13 disebut persamaan “Kemiringan-Titik sebuah Garis (Point-Slope Equation of a Line)”. Grafik persamaan 3.13 ditunjukkan pada Gambar 3.6.

Page 34: Fungsi

O yx (x , y)

Gambar 3.6Grafik Persamaan 3.13

(x 1 , y 1)

Page 35: Fungsi

Jika persamaan garis 3.11 melalui titik (x 2,y2), maka :y – y 2 = m(x – x 2) atau y = m(x – x 2) + y 2 (3.14)Jika persmaan 3.15 dikurang persamaan 3.13 maka didapat,y1– y 2 x 1– x 2 y2– y 1 x 2– x 1 y 1 – y 2 = m (x 1 – x 2) atau = (3.15)

Dengan memasukkan harga m pada pers. 3.15 ke pers. 3.13 didapat :y 2– y 1 x 2– x1 y – y 1 = (x– x 1) atau y 2– y1 x 2– x 1 y = (x – x 1) + y 1 (3.16)Persamaan 3.16 adalah persamaan garis yang melalui titik (x 1,y 1) dan (x 2,y2) dan disebut persamaan “Dua titik dari suatu garis (two point equation of a line)” seperti yang ditunjukkan pada Gambar 3.7.

Page 36: Fungsi

O yx

Gambar 3.7Grafik Persamaan 3.16

(x 1 , y 1) (x 2 , y 2)

Page 37: Fungsi

Dari uraian diatas padat disimpulkan bahwa :• Jika kemiringan dan titik potong suatu garis dengan sumbu x atau sumbu y diketahui maka gunakan adalah persamaan 3.11.• Jika kemiringan suatu garis diketahui dan garis tersebut melalui titik tertentu, misal (x 1,y 1), maka gunakan pers. 3.13.• Jika suatu garis melalui titik-titik (x 1,y1) dan (x 2,y2) maka gunakan persaman 3.16.

Kesimpulan :

Page 38: Fungsi

Bentuk umum persamaan garis : y = mx + n Buat tabel sebagai berikut :Cara menggambar garisJika n ≠ 0

x y0 n-n/m 0Jika n = 0x y0 0 a m.a a adalah sembarang bilangan ril

Page 39: Fungsi

Contoh 3.14 Sebuah garis mempunyai kemiringan (koeffisien arah) -1/3 dan memotong sumbu x pada x = 1. Tentukan persamaan garis tersebut!Penyelesaian : (gunakan persamaan 3.11)Persamaan garis y = mx + n Karena m = -1/3, maka persamaan garis menjadi : y = -1/3 x + n Titik potong dengan sumbu x pada x = 1, maka y = 0. Dengan mensubstitusikan harga x dan y ke persamaan 2.11 maka didapat n=1/3. Dengan demikian persamaan garis menjadi: y = -1/3 x+1/3 Cara menggambarkan garis lihat petunjuk. x y0 1/31 0

Page 40: Fungsi

Jadi titik-titik koordinat garis tersebut adalah (0,1/3) dan (1,0)

O xy

Gambar 3.8

(0,1/3) (1,0)

Page 41: Fungsi

Contoh 3.15 Sebuah garis mempunyai kemiringan (koeffisien arah) 2 dan memotong sumbu y pada y = 3/2. Tentukan persamaan garis tsb!Penyelesaian : (gunakan persamaan 3.11)Persamaan garis y = mx + n Karena m = 2, maka persamaan garis menjadi : y = 2x + n Titik potong dengan sumbu y pada y = 3/2, maka x = 0. Dengan mensubstitusikan harga x dan y ke persamaan 3.11, didapat n=1. Dengan demikian persamaan garis menjadi: y = 2x+3/2 Cara menggambarkan garis lihat petunjuk. x y0 3/2-3/4 0

Page 42: Fungsi

Jadi titik-titik koordinat garis tsb adalah (0,3/2) dan (-3/4,0).

O xy

Gambar 3.9

(0,3/2) (1,0)

Page 43: Fungsi

Contoh 3.16 Sebuah garis mempunyai kemiringan (koeffisien arah) – 1 dan melalui titik (–2,3). Tentukan persamaan garis tersebut!Penyelesaian (gunakan persamaan 3.13)y = m(x – x 1) + y 1 → m = -1 ; x 1 = –2 ; y 1 = 3 Persamaan garis yang dimaksud adalah :y = -1(x+2)+3= -x + 1 x y0 11 0

Page 44: Fungsi

Jadi titik-titik koordinat garis tersebut adalah (0,1) dan (1,0)

O xy

Gambar 3.10

(0,1) (1,0)

Page 45: Fungsi

Contoh 3.17 Sebuah garis melalui (-3,4) dan (5,2).Tentukan persamaan garis tsb.!Penyelesaian (gunakan persamaan 3.16): y2– y 1 x2– x 1 y = (x – x 1) + y 1 = 2– 4 5 +3(x + 3) + 4 1 4(x + 3) + 4 = – 1 4 (x –13) = –

Page 46: Fungsi

O xy

Gambar 3.11(0,13/4) (13,0)