fisika-statistik.ppt

download fisika-statistik.ppt

of 90

Transcript of fisika-statistik.ppt

  • 7/27/2019 fisika-statistik.ppt

    1/90

    CURICULUM VITAE

    A. DATA DIRI

    01. N a m a : Dr. H. Muris, M.Si

    02. Tempat/Tanggal Lahir : Tinggas, 1965

    03. Jenis Kelamin : Laki-laki

    04. Fakultas/Jurusan : FMIPA/Fisika

    05. Pangkat/Golongan/NIP : Lektor Kepala/IV/a/13192582006. Bidang Keahlian : Fisika Material

    07. Alamat Rumah : BTN Minasa Upa G20/14 Makassar.

    90224.

    Telp. (0411) 886307

    HP. 081342403676

    08. Alamat Kantor : Jurusan Fisika FMIPA UNM

    Kampus Parangtambung Makassar

    Tlp/Fax. (0411)840622, HP. 081342403676

    09. e-mail : [email protected]

    10. Riwayat Pendidikan Tinggi :

    Jenis Pendidikan Tempat Tahun lulus Spesialisasi

    Sarjana (S1)

    Pra Magister (Pra S2)

    Magister (S2)

    Doktor (S3)

    IKIP Ujung Pandang

    ITB Bandung

    ITB Bandung

    Universit de la MditerraneMarseille, Prancis

    1989

    1992

    1994

    2001

    Pendidikan Fisika

    Fisika

    Fisika Material

    Fisika Material

    B. Riwayat Pekerjaan

    1.Dosen Tetap Jurusan Fisika FMIPA Universitas Negeri Makassar, 1990 - sekarang.

    2.Ketua Program Studi Fisika FMIPA Universitas Negeri Makassar, 2003 - 2004.

    3.Pembantu Dekan Bidang Akademik FMIPA Universitas Negeri Makassar, 2004 - sekarang.

    4.Dosen Program Pascasarjana UNM Makassar, 2006 - sekarang

  • 7/27/2019 fisika-statistik.ppt

    2/90

    Fisika Statistik

    Rujukan Utama :

    Introdution to Statistical Physics for Students

    by

    Pointon

    Longman, England

    Rujukan Tambahan :

    Buku Buku Fisika Zat Padat, Fisika Kuantum dan Fisika

    Modern yang relevan

  • 7/27/2019 fisika-statistik.ppt

    3/90

    Pokok Bahasan

    1. Pengantar

    2. Statistik Maxwell Boltzmann

    3. Aplikasi Statistik Maxwell Boltzmann

    4. Statistik Bose Einstein

    5. Statistik Fermi Dirac

    6. Temperatur dan Entropy

    7. Aplikasi Statistik Termodinamika

    8. Ensemble Kanonik

    9. Grand Ensemble Kanonik

  • 7/27/2019 fisika-statistik.ppt

    4/90

    Pokok Bahasan

    1. Pengantar

    2. Statistik Maxwell Boltzmann

    3. Aplikasi Statistik Maxwell Boltzmann

    4. Statistik Bose Einstein

    5. Statistik Fermi Dirac

    6. Temperatur dan Entropy

    7. Aplikasi Statistik Termodinamika

    8. Ensemble Kanonik

    9. Grand Ensemble Kanonik

  • 7/27/2019 fisika-statistik.ppt

    5/90

    Sistim Termodinamika, Parameter Makroskopik

    Sistim terbuka dimana dimungkinkan

    terjadi pertukanan energi dan materidengan lingkungan.

    Sistim tertutup terjadi pertukaran

    energi maupun materi dengan

    lingkungannya

    Isolated systemstidak

    memungkinkan terjadinya pertukaran

    energi maupu materi dengan

    lingkungannya

    Paramater internal dan external : temperatur, volume, tekanan, energi,

    medan magnet, dll. (nilai rata-rata, fluktuasi diabaikan).

  • 7/27/2019 fisika-statistik.ppt

    6/90

    Pengertian Dasar Statistik

    Mean : Rata-rata

    Mode : yang paling mungkin

    Median : Titik tengah

    Varians : Ragam, Lebar Distribusi

  • 7/27/2019 fisika-statistik.ppt

    7/90

    Pengertian Dasar Statistik

    Misalkan suatu variabel yang diselidiki : 3,4,4,3,5,3,4

    47

    28

    7

    5363443

    X

    7

    7654321 xxxxxxxX

    N

    xX i

    i

  • 7/27/2019 fisika-statistik.ppt

    8/90

    Pengertian Dasar Statistik

    Rata-rata dengan fungsi probabilitasxi f f(xi) xi f(xi)

    3 3 3/7 9/7

    4 3 3/7 12/7

    5 1 1/7 5/7

    7 1 28/7 = 4

    Ternyata diperoleh hasil rata-rata yang sama yakni 4

  • 7/27/2019 fisika-statistik.ppt

    9/90

    Pengertian Dasar Statistik

    Hasil ini diperoleh dari pengembangan bentuk

    i

    ii

    i

    i

    i

    ii

    xxfxf

    xxf

    X ).()(

    )..(

    1)( ixf

    Jika fungsinya kontinyu maka :

    dxxfxX )(.

    Bagaimana anda mengartikan parameter statistik berikut ?

    kontinyu

    diskrit

  • 7/27/2019 fisika-statistik.ppt

    10/90

    Pengertian Dasar Statistik

  • 7/27/2019 fisika-statistik.ppt

    11/90

    Fungsi Gaussian

    Fungsi seperti akan banyak dijumpai dalam pembahasan statistikpartikel

  • 7/27/2019 fisika-statistik.ppt

    12/90

    Ruang Euclid dan Ruang Fase

    Ruang Euclid

    dxdydzdV

    z

    xy

    dy

    dxdz

    dV

  • 7/27/2019 fisika-statistik.ppt

    13/90

    Ruang Euclid dan Ruang Fase

    zyx dpdpdxdydzdpd

    mppp zyx

    2

    222

    znyNxNNNN

    ziyixiiii

    zyxN

    dpdpdpdzdydx

    dpdpdpdzdydx

    dpdpdpdzdydxd

    ........

    ........

    1111116

    N

    i

    ziyixiiii dpdpdpdzdydx1

    N

    i

    id1

    Ruang fase Ruang momentum

  • 7/27/2019 fisika-statistik.ppt

    14/90

    Rata Rata Sifat Assembly

    Misalkan dalam assembly terdapat sejumlah N molekul dengan

    energi total E dan berada dalam volume V.

    p(N) menyatakan koordinat momentum

    x(N) menyatakan koordinat posisi

    p(N)

    x(N)

  • 7/27/2019 fisika-statistik.ppt

    15/90

    Rata Rata Sifat Assembly

    Jika X adalah perilaku yang ingin dicari rata-ratanya dalam ruang

    fase tersebut

    N

    NdNpNxPNpNxXX

    6

    6)(),()(),(

    Normalisasi terhadap ruang

    N

    N

    N

    N

    dNpNxP

    dNpNxPNpNxXX

    6

    6

    6

    6

    )(),(

    )(),()(),(

  • 7/27/2019 fisika-statistik.ppt

    16/90

    Rata Rata Sifat Assembly

    Jika X merupakan fungsi yang diskrit, maka perata-rataan fungsi X

    dapat dinyatakan dengan :

    i

    i

    iii

    p

    XpX

    Normalisasi probabilitas menghasilkan

    1i

    ip

    i

    iiXpX

  • 7/27/2019 fisika-statistik.ppt

    17/90

    Assembli Klasik dan Kuantum

    b. Kuantum : Terdapat dua tipe

    Tipe I (fermion) :

    - Tak terbedakan antara satu dengan lainnya (indistinguishable)

    - Energi disktrit

    - Memenuhi prinsip larangan Pauli

    Misalnya : elektron dalam zat padat

    a. Klasik

    - Terbedakan antara satu dengan lainnya (distinguishable)

    - Energi kontinu

    - Tak memenuhi prinsip larangan Pauli

  • 7/27/2019 fisika-statistik.ppt

    18/90

    Assembli Klasik dan Kuantum

    b. Kuantum : Terdapat dua tipe

    Tipe II (boson) :

    - Tak terbedakan antara satu dengan lainnya (indistinguishable)- Energi disktrit

    - Tidak memenuhi prinsip larangan Pauli

    Misalnya : foton atau partikel alpha

  • 7/27/2019 fisika-statistik.ppt

    19/90

    Statistik Maxwell Boltzmann

    Distribusi Energi

    Misalkan dalam sistim yang ditinjau terdapat N sistim :

    Sistem 1 dengan energi 1

    Sistem 2 dengan energi 2.

    Sistem i dengan energi

    i

    .

    Sistem N dengan energi N

  • 7/27/2019 fisika-statistik.ppt

    20/90

    Statistik Maxwell Boltzmann

    Distribusi Energi

    Misalkan dalam sistim yang ditinjau terdapat N sistim :

    Sistem 1 dengan energi 1

    Sistem 2 dengan energi 2.

    Sistem i dengan energi

    i

    .

    Sistem N dengan energi N

  • 7/27/2019 fisika-statistik.ppt

    21/90

    Statistik Maxwell Boltzmann

    Prinsip Kekekalan

  • 7/27/2019 fisika-statistik.ppt

    22/90

    Statistik Maxwell Boltzmann

    Jumlah pilihan jika memilih sejumlah N1 di antara N partikel

    Jika g1 menyatakan bobot, maka jumlah pilihan yang ada adalah :

  • 7/27/2019 fisika-statistik.ppt

    23/90

    Statistik Maxwell Boltzmann

    Perluas lagi dengan mengambil sejumlah N2 dari N-N1

    Perluas lagi dengan mengambil sampai n kali

  • 7/27/2019 fisika-statistik.ppt

    24/90

    Statistik Maxwell Boltzmann

    Secara umum dapat ditulis :

  • 7/27/2019 fisika-statistik.ppt

    25/90

    Contoh Pemakaian

    Empat partikel dengan notasi a,b,c dan d didistribusi pada dua pita energi 2 pada pita 1 dan 2

    pada sistim 2. Bobot masing-masing adalah 3 dan 4.

    Jadi : N1 = N2 = 2 g1 = 3 , g2 = 4

    8644.3!.2!2

    !4 22 W

    22

    21

    21

    .!!.

    ! ggNN

    NW

  • 7/27/2019 fisika-statistik.ppt

    26/90

    Contoh Pemakaian

    a b a b c,a

    c d c d d b

    Ini hanyalah 3 contoh gambar dari 864 kemungkinan yang ada.

    Sekarang adalah giliran anda untuk melengkapinya.

  • 7/27/2019 fisika-statistik.ppt

    27/90

    Statistik Maxwell Boltzmann

    Peluang terbesar diperoleh dengan mengambil dw/dn = 0

    Rumus Stirling

  • 7/27/2019 fisika-statistik.ppt

    28/90

    Distribusi Maxwell Boltzmann

    de

    kT

    Ndn kT 2/1/

    2/3

    2)(

    0

    TkB

    exp

    0

    g() Cg

    =

    0

    P()

  • 7/27/2019 fisika-statistik.ppt

    29/90

    Aplikasi Statistik Maxwell Boltzmann

    2D

    kx

    ky Untuk partikel kuantum dalam kotak 2D (e.g., electron pd FET):

    22

    yx

    y

    y

    y

    x

    xx kkk

    L

    nk

    L

    nk

    2

    222 2

    4

    1

    444

    1

    mG

    kkG

    areak

    LL

    kkN

    yx

    k

    # states within of

    a circle of radius kxL

    3D

    ky

    kx

    kz

    2/3

    222

    3

    2

    332

    6

    1

    66

    3/4

    8

    1

    mG

    kkG

    volumek

    LLL

    kkN

    zyx

    - Tak

    bergantung pd

    2/12/3

    22

    3 2412

    msg D

    2

    2

    2

    12

    msg D

    g()

    3D

    2D

    1D

    Thus, for 3D electrons

    (2s+1=2):

    2/12/3

    22

    3 2

    2

    1

    mg

    D

  • 7/27/2019 fisika-statistik.ppt

    30/90

    Distribusi Kecepatan Maxwell

    vx

    vy

    vz

    dvv

    dvvv

    24

    volume""

    v

    10

    dvvf

    2/3

    2

    Tk

    mC

    B

    dvvTk

    mv

    Tk

    mfvvf

    BB

    22

    2/3

    42

    exp2

    Nampak bahwa persamaan ini merupakan perkalianantara faktor Boltzmann dengan sebuah tetapan.

    Tetapan tersebut dapat diperoleh dari normalisasi

    dvTkmv

    vTk

    m

    NdvvNPvdN BB

    2exp42

    22

    2/3

    dTk

    NdNPdNB

    exp

    dvTk

    mv

    Tk

    mNdvvNPvdN

    BB

    xx

    2exp

    2

    22/1

    Distr ib usi energi, N the total # of particles

    speed distr ibut ion (dist r ibus i kecepatan)

    Distrb usi k ecepatan dalam arah x, vx

    P(vx)

    vx

    v

    P(v)

  • 7/27/2019 fisika-statistik.ppt

    31/90

    Tk

    mvv

    Tk

    mvP

    BB 2exp4

    2

    22

    2/3

    Lihat bahwa distribusi ini tidak simetrik, sehingga

    perlu dicari perata-rataan sebagai berikut

    Karakteristik Nilai Kecepatan

    0

    23

    0

    8

    2exp4

    2 m

    Tkdv

    Tk

    mvv

    Tk

    mdvvPvv B

    BB

    Harga kec.maksim um :

    m

    Tkv

    dv

    vdP B

    vv

    20 max

    max

    Kelaju an rata-rata :

    P(v)

    maxv rmsvv

    22.113.113/82max rmsvvv

    v

    The roo t-mean-sq uare speedis proportional to

    the square root of the average energy:

    m

    Tk

    m

    EvvmE Brmsrms

    32

    2

    1 2

  • 7/27/2019 fisika-statistik.ppt

    32/90

    Soal (Maxwell distr.)

    Consider a mixture of Hydrogen and Helium at T=300 K. Find the speed at which

    the Maxwell distributions for these gases have the same value.

    Tk

    vmv

    Tk

    m

    Tk

    vmv

    Tk

    m

    BBBB 2exp4

    22exp4

    2

    2

    22

    2/3

    2

    2

    12

    2/3

    1

    Tk

    vmm

    Tk

    vmm

    BB 2ln2

    3

    2ln2

    3 222

    2

    11

    km/s6.1

    107.12

    2ln3001038.13ln3

    2

    ln

    2

    327

    23

    21

    2

    1

    21

    2

    2

    1

    mm

    m

    mTk

    vmm

    Tk

    v

    m

    mB

    B

    Tk

    mvv

    Tk

    mmTvP

    BB 2exp4

    2,,

    22

    2/3

  • 7/27/2019 fisika-statistik.ppt

    33/90

    Soal (Maxwell distr.)

    Find the temperature at which the number of molecules in an ideal Boltzmann gas

    with the values of speed within the range v - v+dv is a maximum.

    022

    exp22

    exp222

    32

    222/3

    2

    2

    2/1

    Tk

    mv

    Tk

    mv

    Tk

    m

    Tk

    mv

    Tk

    m

    Tk

    m

    BBBBBB

    0,

    T

    TvPmaximum:

    BB k

    mvT

    Tk

    mv

    30

    22

    322

    Tk

    mvv

    Tk

    mmTvP

    BB 2exp4

    2,,

    22

    2/3

    Find the temperature Tat which the rms speed of Hydrogen molecules exceeds their

    most probable speed by 400 m/s.

    Answer: 380K

    At home:

    o

  • 7/27/2019 fisika-statistik.ppt

    34/90

    Pelebaran Garis Spektrum Doppler

    Bagian ini adalah salah satu contoh penerapan distribusi laju dari

    statistik Maxwell Boltzmann, yakni pelebaran spektrum akibat efekDoppler.

    Misalkan molekul gas melakukan radiasi dengan panjang

    gelombang dalam arah x dengan kecepatan vx menuju kepada

    seorang pengamat. Pengamat akan menerima radiasi denganpanjang gelombang.

    o

    o

  • 7/27/2019 fisika-statistik.ppt

    35/90

    Pelebaran Garis Spektrum Doppler

    Karena efek Doppler, maka panjang gelombang yang diamati

    pengamat adalah :

    c

    vxo 1

    o

    ocv

    dc

    dvo

    x

    o

  • 7/27/2019 fisika-statistik.ppt

    36/90

    Pelebaran Garis Spektrum Doppler

    dvTk

    mvv

    Tk

    mNdvvNfvdN

    BB

    2exp4

    2

    22

    2/3

    Dari distribusi Maxwell Boltzamann

    Ubah sebagai fungsi panjang gelombang

    d

    c

    Tk

    mc

    Tk

    mdf

    oo

    o

    BB

    2

    222/3

    2exp

    2

    o

  • 7/27/2019 fisika-statistik.ppt

    37/90

    Pelebaran Garis Spektrum Doppler

    d

    Tk

    mcIdCfdI

    o

    o

    B

    o

    2

    22

    2exp)(

    )(I

    Intensitas radiasi :

    o

    )( oI Dengan mengukur intensitas

    radiasi maka dapat ditentukan

    temperatur gas emisi

    o

    dmep KTex /2 2/

  • 7/27/2019 fisika-statistik.ppt

    38/90

    Prinsip Ekipartisi Energi

    m

    pxx

    2

    2

    Jika energi sistem dinyatakan dalam bentuk kuadrat posisi dan momentum maka tiap

    bentuk kuadrat tersebut akan memberikan energi rata-rata kT

    Contoh molekul gas dengan massa m, energinya dapat dinyatakan dengan

    Maka energi rata-ratanya adalah :

    dTe kTe /

    dTe

    demp

    kTe

    KTe

    x

    /

    /2 2/

  • 7/27/2019 fisika-statistik.ppt

    39/90

    Prinsip Ekipartisi Energi

    mkT

    px

    2

    2

    m

    px

    2

    2

    Nyatakan energi sebagai dan

    xxxy

    p

    m

    xx

    x

    x

    zy

    x

    x

    dpmkTpdpdxdydzdpkT

    dpmkTpm

    pdpdxdydzdpkT

    m

    p

    x

    x )2/exp(/)(exp

    )2/exp(2

    /)2

    (exp

    2

    2

    222

    2

    Misalkan = u2

    maka

    due

    duuekT

    u

    u

    x2

    2 2

  • 7/27/2019 fisika-statistik.ppt

    40/90

    Prinsip Ekipartisi Energi

    Hasilnya memberikan :

    dueduue uu22

    212

    Maka : kTx

    2

    1

    Karena ada satu bentuk kuadrat maka memberikan energi rata-rata kT

    Contoh 2 : Osilator harmonik dengan dua jenis energi

    22

    2

    1

    2x

    m

    pxx

    umkT

    px 2

    2

  • 7/27/2019 fisika-statistik.ppt

    41/90

    Prinsip Ekipartisi Energi

    Maka :

    de

    dexmx

    p

    kTe

    kTe

    x /

    /2

    2

    12/

    2

    xx

    xx

    x

    x

    dxdpkTxm

    p

    dxdpkTxm

    pxp

    2

    2

    22

    22

    2

    1

    2exp

    /2

    1

    2exp

    2

    1

    Ubah ke koordinat polar :

    ,sin2

    22

    2

    rm

    px 222

    cos2

    1rx

    dpxdx

    rdrdmdpdp yx21

    )/(2

  • 7/27/2019 fisika-statistik.ppt

    42/90

    Prinsip Ekipartisi Energi

    Maka :

    kT

    rdred

    drred

    x

    kTr

    x

    kTr

    2

    0 0

    /

    2

    0 0

    3/

    2

    2

    Karena terdiri dari dua bentuk kuadrat maka energinya adalah

    2x kT = kT

    Untuk osilator harmonik 3D maka :

    kT

    kTkTkTkTm

    p

    m

    p

    m

    p xyx

    2

    3

    2

    3

    2

    1

    2

    1

    2

    1

    222

    222

  • 7/27/2019 fisika-statistik.ppt

    43/90

    Prinsip Ekipartisi Energi

    Energi rata-rata untuk osilator harmonik 3 D.

    kT

    kT

    zm

    py

    m

    px

    m

    p xyx

    3

    21.6

    2

    1

    22

    1

    22

    1

    2

    2

    3

    2

    2

    2

    2

    2

    1

    2

    Jadi dalam hal ini ada 6 derajat kebebasan ( f = 6) dimana tiap

    derajat kebebasan memberikan kontribusi energi sebesar kT

  • 7/27/2019 fisika-statistik.ppt

    44/90

    Prinsip Ekipartisi Energi

    Jika terdapat NA (bil. Avogadro) molekul gas dan berlaku sebagai

    osilator harmonik 3D, maka, terdapat 6 derajat kebebasan,maka :

    RTkTNE A 3

    2

    16

    Panas jenis per gram atom zat padat :

    K/gr.atomkal/94,53o

    RT

    E

    v

  • 7/27/2019 fisika-statistik.ppt

    45/90

    Panas jenis gas

    Jika terdapat NA (bil. Avogadro) molekul gas dan berlaku sebagai

    osilator harmonik 3D, maka, terdapat 6 derajat kebebasan,maka :

    RTkTNE A 3

    2

    16

    Panas jenis per gram atom zat padat :

    K/gr.atomkal/94,53o

    RT

    E

    v

  • 7/27/2019 fisika-statistik.ppt

    46/90

    STATISTIK BOSE-EINSTEIN

    !1 sss ngg

    !!1

    !1

    ss

    ssss

    ng

    nggw

    !!1

    !1

    ss

    ss

    ng

    ng

    s

    sww

    s ss

    ss

    ng

    ng

    !!1

    !1

  • 7/27/2019 fisika-statistik.ppt

    47/90

    STATISTIK BOSE-EINSTEIN

    s

    sww

    s ss

    ss

    ng

    ng

    !!1

    !1

  • 7/27/2019 fisika-statistik.ppt

    48/90

    STATISTIK BOSE-EINSTEIN

    0log

    ss

    s

    s

    dnxn

    w

    0log

    ss

    xn

    w

    s

    ssssssss

    s

    s

    nnggngng

    ww

    log1log11log1

    loglog

  • 7/27/2019 fisika-statistik.ppt

    49/90

    STATISTIK BOSE-EINSTEIN

    ssss

    nngn

    wlog1log

    log

    s

    ss

    s

    n

    ng

    n

    wlog

    log

    0log

    s

    s

    ss xn

    ng

    1 sx

    s

    s en

    g

  • 7/27/2019 fisika-statistik.ppt

    50/90

    STATISTIK BOSE-EINSTEIN

    1

    sx

    s

    se

    gn

    1/1 kTs

    sse

    A

    g

    n

    !!!

    sss

    ssngn

    gw

  • 7/27/2019 fisika-statistik.ppt

    51/90

    STATISTIK BOSE-EINSTEIN

    1

    sx

    s

    se

    gn

    1/1 kTs

    sse

    A

    g

    n

    !!!

    sss

    ss

    ngn

    gw

  • 7/27/2019 fisika-statistik.ppt

    52/90

    STATISTIK BOSE-EINSTEIN

  • 7/27/2019 fisika-statistik.ppt

    53/90

    STATISTIK FERMI-DIRAC

    s

    swW

    !!!

    sss

    s

    sngn

    g

    w

    s sss

    s

    ngn

    gW

    !!

    !Jumlah untuk semua kemungkinan susunan

    yang berbeda

    Jumlah untuk semua kemungkinan susunanyang berbeda untuk satu tingkatan energi

  • 7/27/2019 fisika-statistik.ppt

    54/90

    STATISTIK FERMI-DIRAC

    s

    ssssssss

    s sss

    s

    ngngnngg

    ngn

    gW

    logloglog

    !!

    !loglog

    s

    s

    s

    dnn

    Ws

    0log

    0log

    s

    sn

    W

    Gunakan rumus Stirling

  • 7/27/2019 fisika-statistik.ppt

    55/90

    STATISTIK FERMI-DIRAC

    s

    ss

    s n

    ng

    n

    W

    loglog

    0log ss

    ss

    nng

    1 se

    ng

    s

    s

  • 7/27/2019 fisika-statistik.ppt

    56/90

    STATISTIK FERMI-DIRAC

    T=0

    ~ kBT

    = (with respect to)

    1

    1

    kTFef

    dgfdn

    11

    1,0

    efF

    011

    ,0 efF

  • 7/27/2019 fisika-statistik.ppt

    57/90

    STATISTIK FERMI-DIRAC

    1

    se

    gn ss

    11

    kTFef

    Distribusi jumlah partikel partikel

    Melalui normalisasi gs = 1 diperolehfungsi distribusi. Maka f(e) merupakan

    probabilitas sebagai fungsi energi

    Sebagai fungsi probabilitas maka harga fungsi ini maksimum 1dan minimum 0

    R di i B d Hit

  • 7/27/2019 fisika-statistik.ppt

    58/90

    Radiasi Benda Hitam

    Two types of bosons:

    (a) Composite particles which contain an even

    number of fermions. These number of these

    particles is conserved if the energy does not

    exceed the dissociation energy (~ MeV in the

    case of the nucleus).

    (b) particles associated with a field, of which the

    most important example is the photon. These

    particles are not conserved: if the total

    energy of the field changes, particles appear

    and disappear. Well see that the chemical

    potential of such particles is zero in

    equilibrium, regardless of density.

    Radiation in Eq ilibri m ith Matter

  • 7/27/2019 fisika-statistik.ppt

    59/90

    Radiation in Equilibrium with Matter

    Typically, radiation emitted by a hot body, or from a laser is not in equilibrium: energy

    is flowing outwards and must be replenished from some source. The first step towards

    understanding of radiation being in equilibrium with matter was made by Kirchhoff,

    who considered a cavi ty f i l led with radiat ion, the walls can be regarded as a heat

    bath for radiation.

    The walls emit and absorb e.-m. waves. In equilibrium, the walls and radiation must

    have the same temperature T. The energy of radiation is spread over a range of

    frequencies, and we define uS(,T)d as the energy density (per unit volume) of theradiation with frequencies between and +d. uS(,T) is the spectral energy density.The internal energy of the photon gas:

    dTuTu S

    0

    ,

    In equilibrium, uS(,T) is the same everywhere in the cavity, and is a function offrequency and temperature only. If the cavity volume increases at T=const, the

    internal energy U=u(T)Valso increases. The essential difference between the

    photon gas and the ideal gas of molecules: for an ideal gas, an isothermal expansionwould conserve the gas energy, whereas for the photon gas, it is the energy densi ty

    which is unchanged, the number of photons is not conserved, but proportional to

    volume in an isothermal change.

    A real surface absorbs only a fraction of the radiation falling on it. The absorptivity is a function of and T; a surface for which () =1 for all frequencies is called ablack body.

    Photons Apa Itu ?

  • 7/27/2019 fisika-statistik.ppt

    60/90

    Photons Apa Itu ?

    The electromagnetic field has an infinite number of modes (standing

    waves) in the cavity. Any radiation field is a superposition of plane

    waves of different frequencies. The characteristic feature of the

    radiation is that a mode m ay be exc i ted on ly in un i ts of the quantumof energyh f(similar to a harmonic oscillators) :

    hnii 2/1

    This fact leads to the concept ofpho tons as qu anta of the electrom agnet ic f ield. The

    state of the el.-mag. field is specified by the numbernfor each of the modes, or, in other

    words, by enumerating the number of photons with each frequency.

    According to the quantum theory of radiation, photons are massless

    bosons of sp in1 (in units ). They move with the speed of light :

    ch

    c

    Ep

    cpE

    hE

    ph

    ph

    phph

    ph

    The linearity of Maxwell equations implies that the photons do no t

    interact with each other. (Non-linear optical phenomena are

    observed when a large-intensity radiation interacts with matter).

    T

    The mechanism of establishing equilibrium in a photon gas is absorp t ion and emiss ion

    of photons by matter.

    Presence of a small amount of matter is essential for establishing equilibrium in the

    photon gas. Well treat a system of photons as an ideal photo n gas, and, in particular,

    well apply the BE statistics to this system.

    Potensial Kimia Foton = 0

  • 7/27/2019 fisika-statistik.ppt

    61/90

    Potensial Kimia Foton 0The mechanism of establishing equilibrium in a photon gas is absorpt ion

    and emiss ionof photons by matter. The textbook suggests that Ncan be

    found from the equilibrium condition:

    0phThus, in equilibrium, the chemicalpotent ia lfor a photon gas is zero:

    0

    ,

    VTN

    F

    On the other hand,ph

    VTNF

    ,

    However, we cannot use the usual expression for the chemical potential, because one

    cannot increase N(i.e., add photons to the system) at constant volume and at the same

    time keep the temperature constant:

    VTN

    F

    ,

    - does not exist for the photon gas

    Instead, we can use NG PVFG V

    VTF

    V

    FP

    T

    ,

    - by increasing the volume at T=const, we proportionally scale F

    0 VV

    F

    FGThus,- the Gibbs free energy of an

    equilibrium photon gas is 0 ! 0 N

    Gph

    For = 0, the BE distribution reduces to the Plancks distribution:

    1exp

    1

    1exp

    1,

    Tk

    h

    Tk

    Tfn

    BB

    phph

    Plancks distribution provides the averagenumber of photons in a single mode of

    frequency =/h.

    h

    hn

  • 7/27/2019 fisika-statistik.ppt

    62/90

    Rapat Keadaan Foton

    ky

    kx

    kz

    2

    3

    2

    33

    66

    3/4

    8

    1

    kkG

    volumek

    LLL

    kkN

    zyx

    extra factor of 2:

    two polarizations

    322

    3

    32

    3

    26

    cg

    cGkccp

    d

    dGg Dph

    32

    32

    2

    33 8

    cc

    hh

    d

    dgg Dph

    D

    ph

    3

    23 8

    cg

    D

    ph

    1exp

    Tk

    hhn

    B

    In the classical (high temperature) limit: TkB

    The average energy in the mode:

    In order to calculate the average number of photons per small energy interval d, theaverage energy of photons per small energy interval d, etc., as well as the totalaverage number of photons in a photon gas and its total energy, we need to know the

    densi ty of states for photo nsas a function of photon energy.

    Spektrum Radiasi Benda Hitam

  • 7/27/2019 fisika-statistik.ppt

    63/90

    Spektrum Radiasi Benda Hitam

    Radiasi s pektrum

    benda h i tam

    1exp

    8,

    3

    3

    Tk

    hcTu

    B

    Rata-rata jumlah foton per satuan volume denga frekwensi dan +d:

    u(,T)- the energy density per unit photonenergy for a photon gas in equilibrium with

    a blackbody at temperature T.

    dTudfgS

    ,

    - Rapat Spektrum (hukum Radiasi Planck)

    1exp

    8

    ,

    3

    3

    hc

    h

    fghTus

    hThud

    dTuTudTudTu ,,,,,

    uadalahfungsi energi:

  • 7/27/2019 fisika-statistik.ppt

    64/90

    Pendekatan Klasik (f keci l, besar), Hkm Rayleigh-Jeans

    This equation predicts the so-called

    ul t rav io let catastrop he an infinite

    amount of energy being radiated at

    high frequencies or short

    wavelengths.

    Hukum Rayleigh-Jeans

    Pd frekwensi rendah dan temp. tinggi hhh 1exp1

    Tkchc

    hTu Bs 3

    23

    3

    8

    1exp

    8,

    - purely classical result (no h), can be

    obtained directly from equipartition

  • 7/27/2019 fisika-statistik.ppt

    65/90

    Hukum Rayleigh-Jeans

    4

    1

    In the limit of large :

    4large

    8,

    TkTu B

    1exp

    18

    1exp

    8,,,

    52

    3

    32

    Tk

    hc

    hchc

    Tk

    hc

    ch

    hcTu

    hc

    d

    ddTudTu

    BB

    u sebagai fungsi dari panjang gelombang

    frekwensi tinggi Hukum Pergeseran Wiens

  • 7/27/2019 fisika-statistik.ppt

    66/90

    frekwensi tinggi , Hukum Pergeseran Wien s

    Wien

    Maksimum u() berfeser ke frekwensi tinggi ketika temperatur naik.

    0

    113

    1exp

    2

    32

    3

    x

    x

    x

    B

    B

    B

    eex

    exconst

    Tk

    hTk

    h

    Tk

    hd

    dconstddu

    8.233 xex x

    Hukum

    Pergeseran

    Wien

    Numerous applications

    (e.g., non-contact radiation thermometry)

    - the mostlikely frequency of a photon in a

    blackbody radiation with temperature Tu

    (,

    T)

    8.2max Tkh

    B

    h

    TkB8.2max

    Nobel 1911

    At high frequencies: hhh exp1exp1

    hc

    hTus exp

    8, 3

    3

    - Ditemukan secara eksperimen oleh Wien

  • 7/27/2019 fisika-statistik.ppt

    67/90

    max max

    1exp

    18

    1exp

    8,,,

    52

    3

    32

    Tk

    hc

    hchc

    Tk

    hc

    ch

    hcTu

    hc

    d

    ddTudTu

    BB

    8.2max Tk

    h

    B

    - does this mean that

    8.2max

    Tk

    hc

    B?

    max maxWrong!

    0

    1/1exp

    /1exp

    1/1exp

    5

    1/1exp

    125

    2

    65

    xx

    xx

    xxconst

    xxdx

    dconst

    df

    du

    xxx /1exp1/1exp5 Tk

    hc

    B

    5max

    night vision devices

    T =300 K max10 m

    Tu , Tu ,

    Radiasi Sinar Matahari

  • 7/27/2019 fisika-statistik.ppt

    68/90

    Radiasi Sinar Matahari

    Temperatur permukaan- 5800K

    As a funct ion o f energy, the spectrum of sunlight peaks at a photon energy of

    m5.05

    max Tk

    hc

    B

    eVTkhu B 4.18.2maxmax (umax) 0.88 m, near infrared

    Spectral sensitivity of the eye:

    - close to the energy gap in Si, 1.2 eV,which has been so far the best material

    for photovoltaic devices (solar cells)

    Hukum Radiasi Stefan Boltzmann

  • 7/27/2019 fisika-statistik.ppt

    69/90

    Hukum Radiasi Stefan-Boltzmann

    Jumlah total foton persatuan volume :

    Energi total foton per satuan volume : (apat

    energi gas foton)

    3

    45

    0 15

    8

    1exp hc

    Tkd

    g

    V

    UTu B

    Hukum Stefan-

    Boltzmann23

    45

    15

    2

    ch

    kB

    Tetapan Stefan-Boltzmann 4

    4T

    cTu

    4.2818

    1exp

    8 33

    0

    23

    30

    2

    30

    Thc

    k

    e

    dxx

    h

    Tk

    cd

    Tk

    hcdgnV

    N

    n

    B

    x

    B

    B

    - increases as T3

    Energi rata-rata per foton :

    TkTkTkhc

    hcTk

    N

    TuBB

    B

    B 7.24.2154.2815

    84

    33

    345

    (just slightly less than the most

    probable energy)

    D di k l h B d Hit

  • 7/27/2019 fisika-statistik.ppt

    70/90

    Daya yang dipancarkan oleh Benda Hitam

    For the uni-directional motion, the flux of energy per unit area

    c 1senergy densi tyu

    1m2

    T424sphereabyemittedpowertotal TR

    uc

    Integration over all angles provides a factor of :

    uc4

    1areaunitbyemittedpower

    Thus, the power emitted by a unit-area

    surface at temperature Tin all directions: 44

    4

    4

    c

    4

    cpower TT

    cTu

    The total power emitted

    by a sphere of radius R:

    (the hole size must be >> the wavelength)

    B b C t h 44

    TT

  • 7/27/2019 fisika-statistik.ppt

    71/90

    Beberapa Contoh

    The value of the Stefan-Boltzmann constant:

    4Tc

    Tu

    248 /1076.5 mKW

    Consider a human body at 310K. The power emitted by the body: 24 /500 mWT

    While the emissivity of skin is considerably less than 1, it emits sufficient infrared

    radiation to be easily detectable by modern techniques (night vision).

    Radiat ive transfer:

    Dewar

    Liquid nitrogen is stored in a vacuum or Dewar flask, a container surrounded by a thin

    evacuated jacket. While the thermal conductivity of gas at very low pressure is small, energycan still be transferred by radiation. Both surfaces, cold and warm, radiate at a rate:

    24 /1 mWTrJ irad

    The net ingoing flux:

    rJTrJJrTrJ ba 44 11

    Let the total ingoing flux be J, and the total outgoing flux be J:

    i=afor the outer (hot) wall, i=bfor the inner (cold) wall,

    r the coefficient of reflection, (1-r) the coefficient of emission

    441

    1ba TT

    r

    rJJ

    Ifr=0.98 (walls are covered with silver mirror), the net flux is reduced to

    1% of the value it would have if the surfaces were black bodies (r=0).

    Efek Rumah Kaca

  • 7/27/2019 fisika-statistik.ppt

    72/90

    Transmittance of the Earth atmosphere

    Absorpt ion:

    Emiss ion:42

    4outPower EE TR

    the flux of the solar radiation energyreceived by the Earth ~ 1370 W/m2

    2

    42inower

    orbit

    SunSunE

    R

    RTRP

    Sun

    orbit

    SunE T

    R

    RT

    4/12

    4

    =1 TEarth = 280K

    Rorbit= 1.51011 m

    RSun= 7108 m

    However, in reality =0.7 TEarth = 256KTo maintain a comfortable temperature on the Earth, we need the Greenhouse Effect !

    The complicated issue ofgloba l worm ing: adding CO2 (and othergreenhouse gases)

    to the atmosphere tends in itself to raise the earths average temperature, but also may

    increase cloudiness, which lowers it. One thing is clear: since climate is largely

    determined by the heat balance in the atmosphere, anything that changes the

    atmospheric absorption is bound to have climatic consequences.

    Pengurangan Massa Matahari

  • 7/27/2019 fisika-statistik.ppt

    73/90

    The spectrum of the Sun radiation is close to the black body spectrum with the

    maximum at a wavelength = 0.5 m. Find the mass loss for the Sun in one second.

    How long it takes for the Sun to loose 1% of its mass due to radiation? Radius of the

    Sun: 7108 m, mass - 2 1030 kg.

    max = 0.5 m

    KKk

    hcT

    Tk

    hc

    BB

    740,5105.01038.15

    103106.6

    55 623

    834

    max

    max

    This result is consistent with the flux of the solar radiation energy received by the Earth

    (1370 W/m2) being multiplied by the area of a sphere with radius 1.51011 m (Sun-Earth

    distance).

    42

    8

    23

    45

    Km

    W107.5

    15

    2 ch

    kB 424sphereabyemittedpower TRP

    W108.3,740K5Km

    W107.5m1074

    8.24 26

    4

    42

    828

    4

    max

    2

    B

    Sunk

    hcRP

    kg/s102.4

    m103

    W108.3 928

    26

    2

    c

    P

    dt

    dmthe mass loss per one second

    1% of Suns mass will be lost inyr101.5s107.4

    kg/s102.4

    kg102

    /

    01.0 11189

    28

    dtdm

    Mt

    Fungsi Distribusi untuk gas Fermi Ideal

  • 7/27/2019 fisika-statistik.ppt

    74/90

    The probability of the i-state with energy ito be occupiedby niparticles (the total energy of this state nii) :

    Tk

    nn

    ZnP

    B

    iiiii

    exp

    1,

    If the particles are fermions, ncan only be 0 or1:

    TkZ

    B

    i

    exp1

    The grand partition function for all particles in the ithsingle-

    particle state (the sum is taken over all possible values ofni) :

    in B

    ii

    i Tk

    n

    Z

    exp

    1exp

    1

    Tk

    n

    B

    - the Ferm i-Dirac

    distr ibut ion

    At T =0, all the states with < have the average #of particles 1 (i.e., they are occupied with 100%

    probability), all the states with > have the average# of particles 0 (i.e., they are unoccupied). With

    increasing T, the step-like function is smeared over

    the energy range ~ kBT.

    The mean number of particles in this state:

    TkTk

    Tk

    PPnPnn

    BB

    B

    niii

    i

    exp1

    1

    exp1

    exp

    1100

    T=0

    ~ kBT

    = (with respect to)

    Fungsi Distribusi Gas Bose Ideal

  • 7/27/2019 fisika-statistik.ppt

    75/90

    The grand partition function for all particles in the

    ithsingle-particle state:

    (the sum is taken over the possible values ofni)

    in B

    iii

    Tk

    nZ

    exp

    If the particles are bosons,ncan any integer 0:

    ....3exp2expexp1

    TkTkTkZ

    BBB

    i

    Tk

    TkTkTkZ

    B

    BBB

    i

    exp1

    1....expexpexp1

    32

    The mean

    number of

    particles in this

    state:

    x

    Z

    Z

    xn

    xZZ

    Tk

    n

    n

    TkxPPPnPnn

    ii

    i

    n

    i

    n

    B

    i

    i

    Bn

    iii

    1exp

    1exp

    ...221100

    1

    1

    11

    11

    1

    xx

    x

    x

    x

    iee

    e

    exe

    x

    Z

    Zn

    1exp

    1

    Tk

    n

    B

    i

    Dis tr ibus i Bos eEinstein

    The mean number of particles in a given state for the BEG can exceed unity, it diverges as

    , and is nonexistent for > .

    P b bilit F i Di t ib i R t K d

  • 7/27/2019 fisika-statistik.ppt

    76/90

    Probabilitas, Fungsi Distribusi, Rapat Keadaan .

    The macrostate of such system is completely defined if

    we know the mean occupancy for all energy levels,

    which is often called thedis t r ibu t ion funct ion

    :

    EnEf

    While f(E)is often less than unity (much less in the case of an ideal gas), it is not a

    probability. (e.g., it can exceed unity in a Bose gas).

    nEfi

    1s

    EP

    x

    U(x)

    The probabi l i tythat the system is in state swith energy Eand Nparticles

    1exp1

    Tk

    nT

    ZP

    B

    iii

    where n=N/V the density of particles

    If we can neglect the

    spectrum discreteness: dfgn

    0

    where g() is thedensi ty o f states

    Kaitan Termodinamika, Potensial Kimia

  • 7/27/2019 fisika-statistik.ppt

    77/90

    cannot be negative for any

    Tkn

    B

    B

    exp

    for an ideal gas is negat ive: when you add a

    particle to a system and want to keep Sfixed, youtypically have to removesome energy from the

    system.

    VTVSVU N

    F

    N

    U

    N

    STTn

    ,,,

    ,

    BoltzmannGas

    0ln

    n

    nTk QBBoltzmann

    Consider the grand p otent ial ZTkB ln which is a generalization ofF=-kBT lnZ

    NdPdVSdTd

    - the appearance of as a variable, while computationally very convenient for the grand

    canonical ensemble, is not natural. Thermodynamic properties of systems are

    eventually measured with a given density of particles. However, in the grand canonical

    ensemble, quantities like pressure orNare given as functions of the natural variables

    T,Vand . Thus, we need to use to eliminate in terms ofTand

    n=N/V. NVT ,/

    MB < 0: - the occupancy

    Potensial Kimia untuk Gas Fermi

  • 7/27/2019 fisika-statistik.ppt

    78/90

    1exp

    1

    Tk

    fn

    B

    FF

    d

    Tk

    nT

    gdfgn

    B

    00 1

    ,exp

    Fermi

    Gas

    When the average number of fermions in a system (their density) is known, this equation

    can be considered as an implicit integral equation for (T,n). It also shows that determines the mean number of particles in the system just as Tdetermines the mean

    energy. However, solving the eq. is a non-trivial task.

    The limit T0: adding one fermion to the system at T=0 increases its energy Uby EF. In

    this situation F = U-TS = U(Sis also0: all the fermions are packed into the lowest-energy

    states), so that the chemical potential, which is the change in Fproduced by the addition

    of one particle, is EF: FET 0

    depending on nand T, forfe rmionsmay be either

    pos i t iveornegat ive.

    ....12

    1

    22

    F

    B

    F E

    Tk

    E

    kBT/EF1

    1 /EF

    The change of sign of (n,T) indicates the crossover from thedegenerate Fermi system (low T, high n) to the Boltzmann statistics.

    The condition kBT > nQ:

    2/3

    3

    4

    Tk

    E

    n

    n

    B

    F

    Q

    The crossover occurs at n~nQ When n

  • 7/27/2019 fisika-statistik.ppt

    79/90

    Bose

    Gas

    1exp

    1

    Tk

    n

    B

    BE

    The occupancy cannot be negative for any , thus, forbosons, 0 (varies from 0 to ). Also, as T0, 0

    0,1

    0,0

    10/0exp

    100

    TBETBE

    nn

    d

    Tk

    gdfgn

    B

    00

    1exp

    T

    For bosons, the chemical potential is a non-trivial function of the density and temperature

    (for details, see the lecture on BE condensation).

    Pendekatan Klasik

  • 7/27/2019 fisika-statistik.ppt

    80/90

    The Fermi-Dirac and Bose-Einstein distributions must reduce to the Maxwell-

    Boltzmann distribution in the classical l imi t, for all i. Hence,

    TkTkTkTkN

    Z

    N

    ZTk

    TkZ

    NsNPn

    BBBB

    B

    B

    i

    expexpexpexplnexp 11

    1

    1in

    1exp

    TkB

    Tk

    Tk

    nB

    B

    i

    exp

    exp

    1and

    the Maxwell-Bol tzmann

    distr ibut ion

    The same result, of course, we would get if we start from the equation for the

    average nkin Boltzmann statistics:

    =

    Comparison of the MB, FD, and BE

    distributions plotted for the same

    value of . Note that the MBdistribution makes no sense when the

    average # of particle in a given state

    becomes comparable to 1 (violation of

    the dilute limit).

    Pendekatan Klasik (cont.)

  • 7/27/2019 fisika-statistik.ppt

    81/90

    2/3

    2

    2

    h

    Tmknn BQ

    In terms of the density, the classical limitcorresponds to n>TCwhere TCis the so-called degeneracytemperatureof the gas, which corresponds to the condition n~ nQ. More accurately:

    3/22

    6.22

    n

    mk

    hT

    B

    C

    For the FD gas, TC

    ~ EF/k

    Bwhere E

    Fis the Fermi energy (Lect. 24) , for the BE gas

    TCis the temperature of BE condensation (Lect. 26).

    Cri t ical densi ty for boson s:

    0

    2/12/3

    22

    2/1

    2/3

    22

    01exp

    2

    4

    122

    4

    12

    1expdx

    x

    xTmksmsgd

    gn B

    3.1

    1exp0

    2/1

    dxx

    xSince 0, the maximum p ossib le value ofnis obtained when = 0, and

    QB

    cr nTmks

    n 6.22

    4

    123.1

    2/3

    22

    where nQis the quantum concentration,

    which varies as T3/2

    Pendekatan Ketiga Distribusi

  • 7/27/2019 fisika-statistik.ppt

    82/90

    CBTk

    U

    CT

    T1 2 3

    1

    2

    3

    3/22

    6.22

    n

    mk

    hT

    B

    C

    BNk

    S

    CT

    T

    1 2 3

    1

    2

    3

    Fermi-Dirac

    Maxwell-Boltzmann

    Bose-Einstein

    zero-point

    energy,

    Pauli

    principle

  • 7/27/2019 fisika-statistik.ppt

    83/90

    Comparison between Distributions

    T/TC

    CV/NkB

    1

    1.5

    2

    0

    Fermi-DiracMaxwell-Boltzmann

    Bose-Einstein

    Comparison between Distributions

  • 7/27/2019 fisika-statistik.ppt

    84/90

    Maxwell

    Boltzmann

    Fermi

    Dirac

    Bose

    Einstein

    distinguishable

    Z=(Z1)N/N!

    nK

  • 7/27/2019 fisika-statistik.ppt

    85/90

    Paramagnetism

    Fungsi Partisi

    Aplikasi Statistik Termodinamika

  • 7/27/2019 fisika-statistik.ppt

    86/90

    Momen magnet rata-rata

    Fungsi Partisi

    Aplikasi Statistik Termodinamika

  • 7/27/2019 fisika-statistik.ppt

    87/90

    Kapasitas panas magnetik

    Aplikasi Statistik Termodinamika

  • 7/27/2019 fisika-statistik.ppt

    88/90

    Untuk temperatur rendah

    Aplikasi Statistik Termodinamika

  • 7/27/2019 fisika-statistik.ppt

    89/90

    Jika dideferensial terhadap B

    Aplikasi Statistik Termodinamika

  • 7/27/2019 fisika-statistik.ppt

    90/90