fermentasi

11
Katabolisme (Respirasi) Kata Kunci: Katabolisme , Respirasi Ditulis oleh Ameilia Siregar pada 11-10-2010 Katabolisme adalah reaksi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana dengan bantuan enzim. Penguraian suatu senyawa dapat menghasilkan energi. Energi kimia yang terdapat dalam senyawa tidak dapat digunakan secara langsung oleh sel. Energi akan diubah terlebih dahulu menjadi adenosin trifosfat (ATP) yang dapat digunakan oleh sel sebagai sumber energi terpakai. Energi itu digunakan untuk melangsungkan reaksi- reaksi kimia, pertumbuhan, transportasi, reproduksi, dan merespons rangsangan. Contoh katabolisme adalah proses pernafasan sel atau respirasi. Respirasi adalah proses penguraian bahan makanan yang menghasilkan energi. Respirasi dilakukan oleh semua sel penyusun makhluk hidup, baik sel-sel tumbuhan, bakteri, protista, cendawan, maupun sel hewan dan manusia. Respirasi dilakukan baik siang maupun malam. Ditinjau dari bentuknya respirasi terbagi dua macam, yaitu respirasi eksternal (luar) dan internal (dalam). Respirasi eksternal meliputi proses pengambilan oksigen dan pengeluaran karbondioksida dan uap air antara makhluk hidup dengan lingkungannya, misalnya pada tumbuhan, hewan, dan manusia. Respirasi internal disebut juga pernafasan seluler karena pernafasan ini terjadi di dalam sel, yaitu di dalam sitoplasma dan mitokondria. Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dan respirasi anaerobik (tidak membutuhkan oksigen). makhluk hidup, baik sel- sel tumbuhan, bakteri, protista, cendawan, maupun sel hewan dan manusia. Respirasi dilakukan baik siang maupun malam. Ditinjau dari bentuknya respirasi terbagi dua macam, yaitu respirasi eksternal (luar) dan internal (dalam). Respirasi eksternal meliputi proses pengambilan oksigen dan pengeluaran karbondioksida dan uap air antara makhluk hidup dengan lingkungannya, misalnya pada tumbuhan, hewan, dan manusia.

Transcript of fermentasi

Page 1: fermentasi

Katabolisme (Respirasi)Kata Kunci: Katabolisme, RespirasiDitulis oleh Ameilia Siregar pada 11-10-2010

Katabolisme adalah reaksi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana dengan bantuan enzim. Penguraian suatu senyawa dapat menghasilkan energi. Energi kimia yang terdapat dalam senyawa tidak dapat digunakan secara langsung oleh sel. Energi akan diubah terlebih dahulu menjadi adenosin trifosfat (ATP) yang dapat digunakan oleh sel sebagai sumber energi terpakai. Energi itu digunakan untuk melangsungkan reaksi-reaksi kimia, pertumbuhan, transportasi, reproduksi, dan merespons rangsangan.

Contoh katabolisme adalah proses pernafasan sel atau respirasi. Respirasi adalah proses penguraian bahan makanan yang menghasilkan energi. Respirasi dilakukan oleh semua sel penyusun makhluk hidup, baik sel-sel tumbuhan, bakteri, protista, cendawan, maupun sel hewan dan manusia. Respirasi dilakukan baik siang maupun malam. Ditinjau dari bentuknya respirasi terbagi dua macam, yaitu respirasi eksternal (luar) dan internal (dalam). Respirasi eksternal meliputi proses pengambilan oksigen dan pengeluaran karbondioksida dan uap air antara makhluk hidup dengan lingkungannya, misalnya pada tumbuhan, hewan, dan manusia. Respirasi internal disebut juga pernafasan seluler karena pernafasan ini terjadi di dalam sel, yaitu di dalam sitoplasma dan mitokondria.

Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dan respirasi anaerobik (tidak membutuhkan  oksigen). makhluk hidup, baik sel-sel tumbuhan, bakteri, protista, cendawan, maupun sel hewan dan manusia. Respirasi dilakukan baik siang maupun malam. Ditinjau dari bentuknya respirasi terbagi dua macam, yaitu respirasi eksternal (luar) dan internal (dalam). Respirasi eksternal meliputi proses pengambilan oksigen dan pengeluaran karbondioksida dan uap air antara makhluk hidup dengan lingkungannya, misalnya pada tumbuhan, hewan, dan manusia. Respirasi internal disebut juga pernafasan seluler karena pernafasan ini terjadi di dalam sel, yaitu di dalam sitoplasma dan mitokondria.

Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dan respirasi anaerobik (tidak membutuhkan oksigen).

3.1.1. Respirasi AerobRespirasi aerob merupakan serangkaian reaksi enzimatis yang mengubah glukosa secara sempurna menjadi CO2, H2O, dan menghasilkan energi sebesar 38 ATP. Pada pernapasan ini, pembebasan energi menggunakan oksigen bebas dari udara. Pada tumbuhan, oksigen yang dibutuhkan diperoleh dari udara melalui mulut daun dan lentisel. Zat organik terutama karbohidrat dipecahkan. Dalam respirasi aerob, glukosa dioksidasi oleh oksigen, dan reaksi kimianya dapat digambarkan sebagai berikut:

Page 2: fermentasi

mthriC6H12O6 + 6 H2O + 6 O2 —-> 6 CO2 + 12 H2O + 675 kal

klorofil

Dalam kenyataan, reaksi yang terjadi tidak sesederhana itu. Banyak tahapan reaksi yang terjadi dari awal hingga terbentuknya energi. Reaksi-reaksi itu dapat dibedakan menjadi tiga tahapan, yaitu: glikolisis, siklus Krebs, dan transpor elektron

3.1.1.1. GlikolisisGlikolisis adalah serangkaian reaksi enzimatis yang memecah glukosa (terdiri dari 6 atom C) menjadi asam piruvat (terdiri dari 3 atom C). Reaksi ini melepaskan energi untuk menghasilkan ATP dan NADH2. Glikolisis terjadi di sitoplasma dan tidak memerlukan oksigen. Reaksinya adalah sebagai berikut:

C6H12O6 —-> 2 asam piruvat + 2 ATP + 2 NADH + 2H+

Asam piruvat yang dihasilkan akan memasuki mitokondria untuk melakukan siklus Krebs. Namun sebelum memasuki siklus Krebs, asam piruvat (3C) ini diubah terlebih dahulu menjadi asetil koA (2C) di dalam matriks mitokondria melalui proses dekarboksilasi oksidatif. Senyawa selain glukosa, misalnya fruktosa, manosa, galaktosa, dan lemak dapat pula mengalami metabolisme melalui jalur glikolisis dengan bantuan enzim-enzim tertentu.

3.1.1.2. Siklus KrebsSiklus Krebs merupakan serangkaian reaksi metabolisme yang mengubah asetil koA yang direaksikan dengan asam oksaloasetat (4C) menjadi asam sitrat (6C). Selanjutnya asam oksaloasetat memasuki daur menjadi berbagai macam zat yang akhirnya akan membentuk oksaloasetat lagi.

Pada siklus Krebs dihasilkan energi dalam bentuk ATP dan molekul pembawa hidrogen, yaitu : NADH dan FADH2. Hidrogen yang terdapat dalam NADH dan FADH2 tersebut akan dibawa ke sistem transpor elektron. Seluruh tahapan reaksi dalam siklus Krebs terjadi di dalam mitokondria. Dalam siklus ini, asetil koA dioksidasi secara sempurna menjadi CO2

3.1.1.3. Transpor ElektronTranspor elektron adalah serangkaian reaksi pemindahan elektron melalui proses reaksi redoks (reduksi-oksidasi). Hidrogen yang terdapat pada molekul NADH serta FADH2 ditranspor dalam serangkaian reaksi redoks yang melibatkan enzim, sitokrom, quinon, pirodoksin, dan flavoprotein. Pada akhir transport elektron, oksigen akan mengoksidasi elektron dan ion H menghasilkan air (H20). Transport elektron terjadi pada membran dalam mitokondria.

3.1.2. Respirasi anaerobPernahkah kalian membuat atau melihat cara membuat tape ? Tape dibuat dari singkong yang dikukus lalu ditaburi dengan ragi. Jika setelah diberi ragi singkong tersebut dibiarkan dalam udara terbuka maka kalian tidak mendapatkan tape yang diinginkan, mengapa demikian ?Pembuatan tape merupakan salah satu contoh proses fermentasi yang menghasilkan alkohol. Fermentasi alkohol merupakan proses respirasi anaerob, yang tidak memerlukan oksigen. Oleh

Page 3: fermentasi

karena itu jika membuat tape, singkong yang telah ditaburi dengan ragi tersebut disimpan dalam ruang tertutup yang tidak atau sedikit mengandung udara. Misalnya setelah singkong beragi tersebut ditaruh dalam panci, kemudian panci tersebut dibungkus rapat dengan kain agar kondisinya menjadi anaerob.

Respirasi anaerob merupakan serangkaian reaksi enzimatis yang memecah glukosa secara tidak sempurna karena kekurangan oksigen. Pada manusia, respirasi anaerob menghasilkan asam laktat sehingga menyebabkan rasa lelah, sedangkan pada tumbuhan, ragi, reaksi ini menghasilkan CO2 dan alkohol. Respirasi anaerob hanya menghasilkan sedikit energi, yaitu 2 ATP.

Respirasi anaerob, disebut fermentasi atau peragian. Pada umumnya respirasi ini terjadi pada tumbuhan, fungi dan bakteri. Proses fermentasi sering disebut sesuai dengan hasil akhir yang terbentuk. Misalnya: fermentasi alkohol bila hasil akhir fermentasiberupa alkohol. Menurut hasil samping yang terbentuk, maka fermentasi dibedakan atas:

a. fermentasi alkohol pada ragi (khamir) dan bakteri anaerobik.b. fermentasi asam laktat pada umumnya di sel otot.c. fermentasi asam sitrat pada bakteri heterotrof.

Bahan baku respirasi anaerobik pada peragian adalah glukosa, disamping itu juga terdapat fruktosa, galaktosa, dan manosa. Hasil akhirnya adalah alkohol, karbon dioksida, dan energi. Alkohol bersifat racun bagi sel-sel ragi. Sel-sel ragi hanya tahan terhadap alkohol pada kadar 9-18%. Lebih tinggi dari kadar tersebut, proses alkoholisasi (pembuatan alkohol) terhenti. Hal tersebut merupakan suatu kendala pada industri pembuatan alkohol.

Oleh karena glukosa tidak terurai lengkap menjadi air dan karbon dioksida, maka energi yang dihasilkan lebih kecil dibandingk an respirasi aerobik. Pada respirasi aerobik dihasilkan 675kal, sedangkan pada respirasi anaerobik hanya dihasilkan 21 kal. seperti reaksi dibawah ini:

C6H12O6 —–> 2 C2H5OH + 2 CO2 + 21 kal

Dari persamaan reaksi tersebut terlihat bahwa oksigen tidak diperlukan. Bahkan, bakteri anaerobik seperti Clostridium tetani (penyebab tetanus) tidak dapat hidup jika berhubungan dengan udara bebas. Infeksi tetanus dapat terjadi jika luka dalam atau tertutup sehingga memberi kemungkinan bakteri Clostridium tersebut tumbuh subur karena dalam lingkungan anaerob.

http://www.chem-is-try.org/materi_kimia/biologi-pertanian/metabolisme-sel/katabolisme-respirasi/

Page 4: fermentasi

Pengantar AlkoholKata Kunci: alkohol, alkohol primer, alkohol sekunder, alkohol tersier, etanol, gaya van der Waals, gugus fungsi, ikatan hidrogen, sifat fisik alkoholDitulis oleh Jim Clark pada 28-10-2007

Halaman ini menjelaskan apa yang dimaksud dengan alkohol, dan apa perbedaan antara alkohol primer, sekunder dan tersier. Disini juga dibahas dengan sedikit mendetail tentang sifat-sifat fisik sederhana dari alkohol seperti kelarutan dan titik didih. Penjelasan rinci tentang reaksi-reaksi kimia alkohol akan dibahas di halaman-halaman lain.

Pengertian Alkohol

Contoh-contoh

Alkohol adalah senyawa-senyawa dimana satu atau lebih atom hidrogen dalam sebuah alkana digantikan oleh sebuah gugus -OH. Pada pembahasan kali ini, kita hanya akan melihat senyawa-senyawa yang mengandung satu gugus -OH.

Sebagai contoh:

Jenis-jenis alkohol

Alkohol dapat dibagi kedalam beberapa kelompok tergantung pada bagaimana posisi gugus -OH dalam rantai atom-atom karbonnya. Masing-masing kelompok alkohol ini juga memiliki beberapa perbedaan kimiawi.

Alkohol Primer

Pada alkohol primer(1°), atom karbon yang membawa gugus -OH hanya terikat pada satu gugus alkil.

Beberapa contoh alkohol primer antara lain:

Page 5: fermentasi

Perhatikan bahwa tidak jadi masalah seberapa kompleks gugus alkil yang terikat. Pada masing-masing contoh di atas, hanya ada satu ikatan antara gugus CH2 yang mengikat gugus -OH dengan sebuah gugus alkil.

Ada pengecualian untuk metanol, CH3OH, dimana metanol ini dianggap sebagai sebuah alkohol primer meskipun tidak ada gugus alkil yang terikat pada atom karbon yang membawa gugus -OH.

Alkohol sekunder

Pada alkohol sekunder (2°), atom karbon yang mengikat gugus -OH berikatan langsung dengan dua gugus alkil, kedua gugus alkil ini bisa sama atau berbeda.

Contoh:

Alkohol tersier

Pada alkohol tersier (3°), atom karbon yang mengikat gugus -OH berikatan langsung dengan tiga gugus alkil, yang bisa merupakan kombinasi dari alkil yang sama atau berbeda.

Contoh:

Sifat-sifat fisik alkohol

Titik Didih

Grafik berikut ini menunjukan titik didih dari beberapa alkohol primer sederhana yang memiliki sampai 4 atom karbon.

Yakni:

Page 6: fermentasi

Alkohol-alkohol primer ini dibandingkan dengan alkana yang setara (metana sampai butana) yang memiliki jumlah atom karbon yang sama.

Dari grafik di atas dapat diamati bahwa:

Titik didih sebuah alkohol selalu jauh lebih tinggi dibanding alkana yang memiliki jumlah atom karbon sama.

Titik didih alkohol meningkat seiring dengan meningkatnya jumlah atom karbon.

Pola-pola titik didih mencerminkan pola-pola gaya tarik antar-molekul.

Ikatan hidrogen

Ikatan hidrogen terjadi antara molekul-molekul dimana sebuah atom hidrogen terikat pada salah satu dari unsur yang sangat elektronegatif – fluorin, oksigen atau nitrogen.

Untuk alkohol, terdapat ikatan hidrogen antara atom-atom hidrogen yang sedikit bermuatan positif dengan pasangan elektron bebas pada oksigen dalam molekul-molekul lain.

Atom-atom hidrogen sedikit bermuatan positif karena elektron-elektron ikatan tertarik menjauh dari hidrogen menuju ke atom-atom oksigen yang sangat elektronegatif.

Pada alkana, satu-satunya gaya antar-molekul yang ada adalah gaya dispersi van der Waals. Ikatan-ikatan hidrogen jauh lebih kuat dibanding gaya-gaya tersebut sehingga dibutuhkan lebih banyak energi untuk memisahkan molekul-molekul alkohol dibanding untuk memisahkan molekul-molekul alkana.

Inilah sebab utama mengapa titik didih alkohol lebih tinggi dari alkana.

Pengaruh gaya van der Waals

Pengaruh terhadap titik didih alkohol:

Page 7: fermentasi

Ikatan hidrogen bukan satu-satunya gaya antar-molekul dalam alkohol. Dalam alkohol ditemukan juga gaya-gaya dispersi van der Waals dan interaksi dipol-dipol.

Ikatan hidrogen dan interaksi dipol-dipol hampir sama untuk semua alkohol, tapi gaya dispersi akan meningkat apabila alkohol menjadi lebih besar.

Gaya-gaya tarik ini menjadi lebih kuat jika molekul lebih panjang dan memiliki lebih banyak elektron. Ini meningkatkan besarnya dipol-dipol temporer yang terbentuk.

Inilah yang menjadi penyebab mengapa titik didih meningkat apabila jumlah atom karbon dalam rantai meningkat. Diperlukan lebih banyak energi untuk menghilangkan gaya-gaya dispersi, sehingga titik didih meningkat.

Pengaruh terhadap perbandingan antara alkana dan alkohol:

Bahkan jika tidak ada ikatan hidrogen atau interaksi dipol-dipol, titik didih alkohol tetap lebih tinggi dibanding alkana sebanding yang memiliki jumlah atom karbon sama.

Etanol memiliki molekul yang lebih panjang, dan oksigen yang terdapat dalam molekulnya memberikan 8 elektron tambahan. Struktur yang lebih panjang dan adanya atom oksigen akan meningkatkan besarnya gaya dispersi van der Waals, demikian juga titik didihnya.

Jika kita hendak membuat perbandingan yang cermat untuk mengamati efek ikatan hidrogen terhadap titik didih, maka akan lebih baik jika kita membandingkan etanol dengan propana bukan dengan etana. Propana memiliki panjang molekul yang kurang lebih sama dengan etanol, dan jumlah elektronnya tepat sama.

Kelarutan alkohol dalam air

Alkohol-alkohol yang kecil larut sempurna dalam air. Bagaimanapun perbandingan volume yang kita buat, campurannya akan tetap menjadi satu larutan.

Akan tetapi, kelarutan berkurang seiring dengan bertambahnya panjang rantai hidrokarbon dalam alkohol. Apabila atom karbonnya mencapai empat atau lebih, penurunan kelarutannya sangat jelas terlihat, dan campuran kemungkinan tidak menyatu.

Kelarutan alkohol-alkohol kecil di dalam air

Perhatikan etanol sebagai sebuah alkohol kecil sederhana. Pada etanol murni dan air murni yang akan dicampur, gaya tarik antar-molekul utama yang ada adalah ikatan hidrogen.

Untuk bisa mencampur kedua larutan ini, ikatan hidrogen antara molekul-molekul air dan ikatan hidrogen antara molekul-molekul etanol harus diputus. Pemutusan ikatan hidrogen ini memerlukan energi.

Page 8: fermentasi

Akan tetapi, jika molekul-molekul telah bercampur, ikatan-ikatan hidrogen yang baru akan terbentuk antara molekul air dengan molekul etanol.

Energi yang dilepaskan pada saat ikatan-ikatan hidrogen yang baru ini terbentuk kurang lebih dapat mengimbangi energi yang diperlukan untuk memutus ikatan-ikatan sebelumnya.

Disamping itu, gangguan dalam sistem mengalami peningkatan, yakni entropi meningkat. Ini merupakan faktor lain yang menentukan apakah penyatuan larutan akan terjadi atau tidak.

Kelarutan yang lebih rendah dari molekul-molekul yang lebih besar

Bayangkan apa yang akan terjadi jika ada, katakanlah, 5 atom karbon dalam masing-masing molekul alkohol.

Rantai-rantai hidrokarbon menekan diantara molekul-molekul air sehingga memutus ikatan-ikatan hidrogen antara molekul-molekul air tersebut.

Ujung -OH dari molekul alkohol bisa membentuk ikatan-ikatan hidrogen baru dengan molekul-molekul air, tetapi "ekor-ekor" hidrogen tidak membentuk ikatan-ikatan hidrogen.

Ini berarti bahwa cukup banyak ikatan hidrogen awal yang putus tidak diganti oleh ikatan hidrogen yang baru.

Yang menggantikan ikatan-ikatan hidrogen awal tersebut adalah gaya-gaya dispersi van der Waals antara air dan "ekor-ekor" hidrokarbon. Gaya-gaya tarik ini jauh lebih lemah. Itu berarti bahwa energi yang terbentuk kembali tidak cukup untuk mengimbangi ikatan-ikatan hidrogen yang telah terputus. Walaupun terjadi peningkatan entropi, proses pelarutan tetap kecil kemungkinannya untuk berlangsung.

Apabila panjang alkohol meningkat, maka situasi ini semakin buruk, dan kelarutan akan semakin berkurang.

http://www.chem-is-try.org/materi_kimia/sifat_senyawa_organik/alkohol1/pengantar_alkohol/