buku 1

24
Jurusan Matematika FMIPA IPB 1 1 Turunan Laju perubahan biaya produksi terhadap komoditas, Laju kecepatan aliran darah ter- hadap bertambahnya jarak dari dinding pembuluh darah, Laju penyebaran penyakit ter- hadap kepadatan populasi; semua laju perubahan ini merupakan kasus khusus dari konsep turunan. Konsep utama dari Kalkulus Diferensial adalah turunan, yang merupakan perkemban- gan dari kecepatan dan kemiringan garis singgung yang telah dibahas di buku sebelumnya. Berikut ini akan dibahas denisi turunan. frame 1 Denisi Denisi 1 Turunan fungsi f adalah fungsi lain f 0 yang nilainya pada sebarang bilangan c adalah f 0 (c) = lim h!0 f (c + h) f (c) h asalkan limitnya ada. frame 2 Catatan Misalkan h = x c; maka f (c + h)= f (x) dan h ! 0 x ! c sehingga denisi f 0 (c) dapat ditulis f 0 (c) = lim x!::: f (x) ::: ::: asalkan limitnya ada. frame 3 1. Karena c sebarang bilangan maka denisi di atas dapat juga ditulis f 0 (x) = lim h!0 f (x + h) f (x) h atau f 0 (x) = lim p!x f (p) ::: p ::: 2. Notasi lain untuk fungsi turunan pertama adalah y 0 ;D x y;D x f (x) ; df (x) dx atau dy dx 3. Jika limitnya ada, dikatakan f terdiferensialkan (terturunkan) di c dan jika limitnya tidak ada, dikatakan f tak terdiferensialkan di c:

description

Kalkulus

Transcript of buku 1

Page 1: buku 1

Jurusan Matematika FMIPA IPB 1

1 Turunan

Laju perubahan biaya produksi terhadap komoditas, Laju kecepatan aliran darah ter-hadap bertambahnya jarak dari dinding pembuluh darah, Laju penyebaran penyakit ter-hadap kepadatan populasi; semua laju perubahan ini merupakan kasus khusus dari konsepturunan.Konsep utama dari Kalkulus Diferensial adalah turunan, yang merupakan perkemban-

gan dari kecepatan dan kemiringan garis singgung yang telah dibahas di buku sebelumnya.Berikut ini akan dibahas de�nisi turunan.

frame 1 De�nisi

De�nisi 1 Turunan fungsi f adalah fungsi lain f 0 yang nilainya pada sebarang bilanganc adalah

f 0 (c) = limh!0

f (c+ h)� f (c)h

asalkan limitnya ada.

frame 2 Catatan

Misalkan h = x � c; maka f (c+ h) = f (x) dan h ! 0 � x ! c sehingga de�nisi f 0 (c)dapat ditulis

f 0 (c) = limx!:::

f (x)� : : :: : :

asalkan limitnya ada.

frame 3

1. Karena c sebarang bilangan maka de�nisi di atas dapat juga ditulis

f 0 (x) = limh!0

f (x+ h)� f (x)h

atau

f 0 (x) = limp!x

f (p)� : : :p� : : :

2. Notasi lain untuk fungsi turunan pertama adalah

y0; Dxy;Dxf (x) ;df (x)

dxatau

dy

dx

3. Jika limitnya ada, dikatakan f terdiferensialkan (terturunkan) di c dan jika limitnyatidak ada, dikatakan f tak terdiferensialkan di c:

Page 2: buku 1

Jurusan Matematika FMIPA IPB 2

frame 4 Lengkapi

1. Fungsi f dengan f (x) = 1� 5x, turunan f di x = 1 adalah

f 0 (1) = limh!0

: : :� f (1)h

= : : :

= : : :

= : : :

2. Fungsi f dengan f (x) =px� 2; turunan f di x = 2

f 0 (2) = limx!2

f (x)� : : :x� : : :

= limx!2

: : :

: : := : : : tidak ada

Jadi f tak terdiferensialkan di x = 2

3. Fungsi f dengan f (x) = jxj+ 1, turunan f di x = 0

f 0 (0) = limh!0

f (0 + h)� f (0)h

= limh!0

j0 + hj+ 1� 1h

= limh!0

jhjh

Karenajhjh=

�1 ;h > 0�1 ;h < 0

maka limh!0+

jhjh= : : : dan lim

h!0�jhjh= : : : . Jadi

limh!0

jhjh= : : : tidak ada, artinya f 0 (0) tidak ada.

4. Fungsi f dengan f (x) = 2x; fungsi turunan pertama dari f

f 0 (x) = limp!x

: : :� f (x)p� : : :

= limp!x

: : :

p� : : :

= limp!x

2 (x� p)px

� 1

p� : : := lim

p!x: : :

= : : :

Page 3: buku 1

Jurusan Matematika FMIPA IPB 3

frame 5 Teorema (Hubungan antara turunan dan kekontinuan di suatu titik)

Teorema 2 Misalkan fungsi f terde�nisi pada selang buka I yang memuat c. Jika f 0 (c)ada, maka : : :

CatatanKontrapositif teorema di atas juga berlaku :Jika f tidak kontinu di c, maka : : :

frame 6 Lengkapi

1. Fungsi f dengan f (x) =�x2 ;x � 11� x ;x < 1

Akan diperiksa apakah f 0 (1) ada.

limx!1+

f (x) = limx!1+

: : : = : : :

limx!1�

f (x) = limx!1�

: : : = : : :

)Jadi lim

x!1f (x) = : : :

Akibatnya f tidak kontinu di c. Berdasarkan kontrapositif Teorema frame 5, dis-impulan f 0 (1) : : :

2. Fungsi f dengan f (x) =�apx+ 3 ; 0 < x < 1

x2 � bx ;x � 1 Agar f 0 (1) ada, maka konstanta

a dan b ditentukan dengan cara berikut.

Agar f 0 (1) ada, fungsi f harus kontinu di x = 1: Jadi haruslah berlaku

limx!1�

f (x) = limx!1+

f (x) = f (1)

limx!1�

: : : = limx!1+

: : : = : : :

: : : = : : : = : : : (1)

Agar f 0 (1) ada

limx!1�

f (x)� f (1)x� 1 = lim

x!1+f (x)� f (1)

x� 1limx!1�

: : : = limx!1+

: : :

Dari (1)

limx!1�

: : : = limx!1+

: : :

: : : = : : : (2)

Dari (1) dan (2) didapata = : : : dan a = : : :b = : : : b = : : :

Page 4: buku 1

Jurusan Matematika FMIPA IPB 4

frame 7 Latihan

1. Diketahui fungsi f dengan f (x) = ax +m; a dan m konstanta. Dengan menggu-nakan de�nisi turunan, tentukan f 0 (0) :

2. Diketahui fungsi f dengan f (x) = jxj (x+ 1) : Periksa apakah f 0 (0) ada?

3. Dengan menggunakan de�nisi turunan, tentukan turunan pertama fungsi-fungsi fberikut

(a) f (x) = x2 + 2x

(b) f (x) =1p5� x

(c) f (x) =3

x+ 2

frame 8 Teorema (Aturan Pencarian Turunan)

1.d

dx(k) = : : : ; k suatu konstanta

2.d

dx(xn) = : : : ; n bilangan asli

3. Misalkan f dan g mempunyai turunan pada selang I dan k suatu konstanta, makafungsi kf; f+g; f�g dan fg juga mempunyai turunan pada selang I yang ditentukanoleh aturan

(a) (kf)0 (x) = kf 0 (x)

(b) (f + g)0 (x) = f 0 (x) + g0 (x)

(c) (f � g)0 (x) = f 0 (x)� g0 (x)(d) (fg)0 (x) = f 0 (x) g (x) + f (x) g0 (x)

4. Jika f dan g mempunyai turunan pada selang I dan g (x) 6= 0 pada selang I, makafungsi f

gjuga mempunyai turunan pada selang I yang ditentukan oleh aturan�

f

g

�0(x) =

f 0 (x) g (x)� : : :: : :

5.d

dx(sinx) = : : :

d

dx(cosx) = : : :

Catatan

Teorema pada frame 8, dapat dibuktikan berlaku juga untuk n bilangan bulat dandapat dibuktikan juga berlaku untuk n bilangan rasional

Page 5: buku 1

Jurusan Matematika FMIPA IPB 5

frame 9 Lengkapi

1. Turunan pertama fungsi f dengan f (x) =x2 + 1

3xadalah sebagai berikut

Misal u = x2 + 1 ! u0 = : : :v = 3x ! v0 = : : :

f 0 (x) =u0v � uv0v2

= : : :

2.d

dr(�r3) = �

d

dr(r3) = : : :

3.d

dy

�y +

1

y

�=d

dy(y) +

d

dy(y�1) = : : :

4.d

dx(x2 sin x) = : : :+ : : : ;misal u = x2 ! u0 = 2x

v = sinx ! v0 = cos x

frame 10. Latihan

Tentukan f 0 (x) ; jika

1. f (x) = x2 � 3 cos x

2. f (x) =2x+ 1

x sin x

3. f (x) = (cosx)2

4. Misalkan f (2) = �1; f 0 (2) = 3; g (2) = 4 dan g0 (2) = �5: Carilah

(a) (fg)0 (2)

(b)�f

g

�0(2)

(c)�g

f

�0(2)

5. Misalkan f (3) = 4 dan f 0 (3) = �2: Carilah

(a)d

dx

�x2

f (x)

�����x=3

(b)d

dx(px+ 2f (x))

����x=3

Page 6: buku 1

Jurusan Matematika FMIPA IPB 6

frame 11 Turunan Fungsi Komposisi

Teorema 3 (Aturan Rantai)Misalkan f dan g dua fungsi sehingga fungsi komposisi f � g terde�nisi pada Df�g. Jikafungsi g mempunyai turunan di x dan f mempunyai turunan di g (x) maka fungsi f � gmempunyai turunan di x yang aturannya ditentukan oleh

(f � g)0 (x) = f 0 (g (x)) : : :

Fungsi f dengan f (x) = sin (x2) dapat dipandang sebagai fungsi komposisi f = g � hdengan g (x) = : : : ; h (x) = : : : ; dan g0 (x) = : : : ; h0 (x) = : : : : Sehingga

f 0 (x) = (g � h)0 (x)= g0 (h (x)) : : :

= : : : � : : :

Fungsi p dengan p (x) = sin2 (x) dapat dipandang sebagai fungsi komposisi p = q � rdengan q (x) = : : : ; r (x) = : : : dan q0 (x) = : : : ; r0 (x) = : : : : Sehingga

p0 (x) = (q � r)0 (x)= q0 (r (x)) : : :

= : : :

frame 12

Aturan rantai dapat ditulis dalam notasi Leibniz yang lebih singkat. Misalkan

y = (f � g) (x) = f (g (x))

y = f (u) ! dy

duada

u = g (x) ! du

dxada

makady

dx=dy

du

du

dxAturan rantai dalam notasi Leibniz dapat diperluas untuk lebih dari 2 fungsi. Misalkan

y = f (u) ; u = g (v) ; v = h (x) ;dy

du;du

dvdan

dv

dxada, maka

dy

dx= : : :

frame 13

Fungsi f dengan f (x) = (5� 3x2)7 : Misalkan y = f (u) = u7; u = g (x) = (5� 3x2) dandy

du= : : : ;

du

dx= : : : maka diperoleh

dy

dx=

dy

du: : :

= : : :

Page 7: buku 1

Jurusan Matematika FMIPA IPB 7

Fungsi f dengan f (x) = sin3 (x2 + 1) : Misalkan y = u3; u = sin v; dan v = x2 + 1;

sehinggady

dy= : : : ;

du

dv= : : : dan

dv

dx= : : : ; maka diperoleh

dy

dx=

dy

du

du

dv: : :

= : : :

frame 14 Latihan

1. Tulis fungsi komposisi dalam bentuk y = f (g (x)) : Tentukan fungsi f dan g,kemudian tentukan y0 = f 0 (g (x)) g0 (x)

(a) y = (x2 + 4x)5

(b) y = 3p1 + x3

(c) y = cos (px)

(d) y =pcosx

(e) y = sin (1 + x2)

2. Gunakan notasi Leibniz untuk menentukandy

dxdari

(a) y =px2 + sinx

(b) y =�1�2xx2

�5(c) y = sin2 (cos (kx))

3. Jika diketahui fungsi f; g dan h dengan f 0 (x) =1

x2 + 1; g (x) = f (sinx) dan h (x) =

f

�x

x3 + 1

�; maka tentukan g0 (x) dan h0 (x)

4. Tentukan

(a)d

dx(f (x3))

(b)d

dx(f 3 (x))

(c)d

dx(f 3 (x3))

Page 8: buku 1

Jurusan Matematika FMIPA IPB 8

frame 15 Turunan Ordo Tinggi

Fungsi turunan kedua adalah turunan dari fungsi turunan pertama, fungsi turunan ketigaadalah turunan dari fungsi turunan kedua, dan seterusnya, ditulis dalam notasi Leibniz

d2y

dx2=

d

dx

�dy

dx

�d3y

dx3=

d

dx(: : :)

Secara umum fungsi turunan ke-n, ditulis

dny

dxn=d

dx

�dn�1y

dxn�1

�Notasi lain fungsi turunan ke-n :

f (n) (x) ; y(n); Dnxy

frame 16 Lengkapi

1. Fungsi f dengan f (x) = x5+2x3+1; mempunyai fungsi turunan pertama, turunankedua dan turunan ketiga sebagai berikut

f 0 (x) = 5x4 + : : :

f 00 (x) = : : :

f 000 (x) = : : :

2. Fungsi f dengan f (x) =1

ax+ b;x 6= � b

a

f (x) = (ax+ b)�1

f 0 (x) = �1 (ax+ b)�2 : : :f 00 (x) = (�1) (�2) (ax+ b)�3 : : :f 000 (x) = : : :

3. Fungsi f dengan f (x) = sin (x2)

f 0 (x) = cos�x2�| {z } (: : :)|{z}

u v

; u0 = : : :v0 = : : :

f 00 (x) = u0v + uv0

= : : :

Page 9: buku 1

Jurusan Matematika FMIPA IPB 9

frame 17 Latihan

1. Tentukand3y

dx3dari

(a) y = 7x3 � 5x2 + x

(b) y =1

x(c) y = cos (ax) ; a konstanta

2. Tentukan

(a)d4

dx4[cos (3x)] di x = 1

3�

(b)d3

dx3

�1

1� 2x

�di x = 1

3. Tentukan fungsi polinom berordo 2 yang memenuhi f (1) = 5; f 0 (1) = 3; danf 00 (1) = �4

frame 18 Turunan Fungsi Implisit

Pembahasan sebelumnya membicarakan turunan fungsi eksplisit, ditulis y = f (x) : Fungsiimplisit ditulis

f (x; y) = c; c konstanta

Menentukandy

dxfungsi implisit

d

dx(f (x; y)) =

d

dx(c)

Kemudian nyatakandy

dxdalam x dan y

Lengkapi

1. Turunan pertamady

dxdari fungsi implisit xy2 = 1 adalah

d

dx

�xy2�=

d

dx(1)

1y2 + x2ydy

dx= : : :

dy

dx(2xy) = : : :

jadidy

dx= : : :

Page 10: buku 1

Jurusan Matematika FMIPA IPB 10

2. Nilai dydxdari sin (y) = x dititik

�12; �6

�adalah

d

dx(sin (y)) =

d

dx(x)

: : : = 1dy

dx= : : :

Jadi dydx

��( 12 ;

�6 )= : : :

3. Jika diketahui sin (xy2) + 2y = x3, maka dydxadalah

d

dx

�sin�xy2�+ 2y

�=

d

dx

�x3�

cos�xy2�(: : :) + 2

dy

dx= : : :

dy

dx(: : :) = : : :

jadidy

dx= : : :

frame 19 Latihan

1. Tentukandy

dxdari

(a) x2 + y2 = 100

(b) sin (xy2 + y) = x

2. Tentukandy

dxdi titik yang diberikan

(a) x3y + y3x = 10; (1; 2)

(b) sin (xy) = y;��2; 1�

(c)p3 + tan (xy)� 2 = 0;

��12; 3�

frame 20 Laju yang Berkaitan

Beberapa langkah berikut dapat membantu menyelesaikan masalah laju yang berkaitan

1. Rumuskan permasalahan yang diberikan

2. Identi�kasi besaran yang berubah-ubah terhadap t, dan besaran yang tetap

3. Bentuk model matematik yang menghubungkan semua peubah.

Page 11: buku 1

Jurusan Matematika FMIPA IPB 11

4. Turunkan persamaan pada langkah (3) terhadap t secara implisit

SelesaikanJari-jari tumpahan minyak yang berbentuk lingkaran membesar dengan laju tetap 2 kmper hari. Pada laju berapakah daerah tumpahan itu membesar 3 hari setelah tumpahanitu terjadi.

Langkah-langkah penyelesaian

1. Misalkan Lmenyetakan luas daerah tumpahan minyak dan r jari-jari daerah tumpa-han minyak.

2. Diketahuidr

dt= 2 dan ditanyakan

dL

dtsaat t = 3

3. Persamaan matematik L = �r2;L = L (t) dan r = r (t)

4. L = �r2dLdt

= �2r drdt

karena drdt= 2; maka

= �2 (: : :) (2) r = : : : saat t = 3= : : : km2 per hari

Seseorang bermain layang-layang. Diketahui tinggi layang-layang 90 dm di atas tangananak itu. Angin meniup layang-layang pada arah mendatar dengan laju 5 dm/detik,seberapa cepat anak tersebut mengulur benang pada saat panjang benang 150 dm.

1. Diagram permasalahan

Misalkan z panjang benang, x jarak mendatar anak ke layang-layang

2. Diketahui dxdt= 5 dm/detik, dan ditanyakan dz

dtsaat z = 150 dm

3. Persamaan matematik : x2 = 902 + x2

4. ddt(z2) = d

dt(902 + x2)

2z dzdt

= : : :2 (90) dz

dt= : : :

jadi dzdt

= : : :

Page 12: buku 1

Jurusan Matematika FMIPA IPB 12

frame 21 Latihan

1. Dari sebuah pipa mengalir pasir dengan laju 16 dm/detik. Jika pasir membentuktumpukan berupa kerucut dengan tinggi selalu 1

4garis tengah alas. Seberapa cepat

tingginya bertambah saat tinggi pasir 4 dm.

2. Sebuah pesawat udara mengudara pada sudut 15� terhadap arah mendatar. Seber-apa cepat ketinggiannya bertambah jika lajunya adalah 400 mil/jam

3. Tinggi sebuat segitiga bertambah pada laju 1 cm/menit sedangkan luas segitigabertambah pada laju 2 cm2=menit: Pada laju berapakah alas segitiga berubahpada waktu tinggi 10 cm dan luas 100cm2:

4. Diketahui kurva y = xp5� x: Carilah persamaan garis singgung pada kurva y di

titik (1; 2) dan (4; 4) :

5. Partikel bergerak sepanjang garis mendatar sehingga koordinatnya pada waktu tadalah x =

pb2 + c2t2; t � 0 dengan b dan c konstanta positif.

(a) Carilah fungsi kecepatan

(b) Carilah fungsi percepatan

6. Volume kerucut lingkaran tegak adalah V =�r2h

3dengan r jari-jari alas dan h

tinggi kerucut.

(a) Cari laju perubahan volume terhadap tinggi jika r konstanta

(b) Cari laju perubahan volume terhadap jari-jari jika h konstan.

Page 13: buku 1

Jurusan Matematika FMIPA IPB 13

2 Penerapan Diferensial

frame 1 Kemonotonan fungsi

De�nisi 4 Misalkan fungsi f terde�nisi pada selang I.

1. Fungsi f dikatakan naik pada I jika untuk setiap pasang x1; x2 2 I

x1 < x2 =) : : : < : : :

2. Fungsi f dikatakan turun pada I jika untuk setiap pasang x1; x2 2 I

x1 < x2 =) : : :

Teorema 5 Misalkan f adalah fungsi yang kontinu pada selang tertutup [a; b] dan fmempunyai turunan pada selang buka (a; b)

1. Jika f 0 (x) > 0 untuk setiap x 2 (a; b) ; maka : : :

2. Jika f 0 (x) < 0 untuk setiap x 2 (a; b) ; maka : : :

frame 2 Lengkapi

Fungsi f dengan f (x) = x2 + x+ 1

f 0 (x) = 2x+ 1; x 2 Rf 0 (x) > 0 , 2x+ 1 > 0 , x > �1

2

f 0 (x) < 0 , 2x+ 1 < 0 , x < �12

Jadi fungsi f naik pada selang [�12;1) dan fungsi f turun pada selang (�1;�1

2]

frame 3 Kecekungan Fungsi

De�nisi 6 Misalkan fungsi f mempunyai turunan pada selang buka I.

1. Jika f 0 naik pada I, maka f dikatakan cekung ke atas pada I:

2. Jika f 0 turun pada I, maka : : :

Teorema 7 Misalkan fungsi f mempunyai turunan kedua pada selang buka I.

1. Jika f 00 (x) > 0 untuk setiap x 2 I, maka : : :

2. Jika f 00 (x) < 0 untuk setiap x 2 I, maka : : :

Page 14: buku 1

Jurusan Matematika FMIPA IPB 14

frame 4

1. Fungsi f dengan f (x) = x3 + 1; x 2 R

f (x) = x3 + 1

f 0 (x) = 3x2

f 00 (x) = 6x

Karena f 00 (x) > 0 pada : : :, maka f cekung ke atas pada : : :

Karena f 00 (x) < 0 pada : : :, maka f cekung ke bawah pada : : :

Dititik (0; 1) fungsi kontinu dan terjadi perubahan kecekungan, sehingga titik (0; 1)dinamakan titik balik fungsi f:

2. Fungsi f dengan f (x) = x1=3 + 2

f 0 (x) = : : :

f 00 (x) = : : :

f 00 (x) > 0 pada : : :, sehingga f cekung : : :

f 00 (x) < 0 pada : : :, sehingga f cekung : : :

Titik balik : : :

3. Fungsi f dengan f (x) = x4

f 0 (x) = : : :

f 00 (x) = : : :

f 00 (x) selalu positif pada R sehingga f selalu cekung ke atas. Karena tidak pernahterjadi perubahan kecekungan maka f . . .

frame 5 Latihan

Tentukan daerah asal, selang fungsi naik, selang fungsi turun, selang kecekungan dan titikbalik.

1. f (x) = 3x2 � 3x+ 1

2. f (x) = x3 � 6x2 + 9x+ 1

3. f (x) = 4� 12x� 3x2

4. f (x) =4

x� 1

5. f (x) = x+1

x

Page 15: buku 1

Jurusan Matematika FMIPA IPB 15

frame 6 Ekstrim Fungsi

Ekstrim Global

De�nisi 8 Misalkan fungsi f terde�nisi pada selang I yang memuat c:

1. f (c) dikatakan nilai maksimum global fungsi f pada I jika : : :

2. f (c) dikatakan nilai minimum global fungsi f pada I jika : : :

Titik kritis

De�nisi 9 Misalkan fungsi f terde�nisi pada selang tertutup I yang memuat c: Titik cdisebut titik kritis fungsi f jika

1. f 0 (c) = 0; c disebut titik : : :

2. f 0 (c) tidak ada; c disebut titik : : :

3. c titik ujung selang tertutup I:

Teorema 10 Misalkan f terde�nisi pada I yang memuat c. Jika f (c) nilai ekstrimglobal maka : : :

Dari teorema di atas, nilai ekstrim global terjadi di titik-titik kritis. Jadi prosedurmenentukan nilai ekstrim global adalah

1. Tentukan semua titik kritis.

2. Hitung nilai fungsi f pada setiap titik kritis.

Nilai fungsi terbesar disebut : : :

Nilai fungsi terkecil disebut : : :

frame 7

1. Fungsi f dengan f (x) = x3 � 3x2 + 1 pada [�1; 4] : Nilai ekstrim global fungsi fdapat ditentukan dengan langkah-langkah

* Menentukan semua titik kritisTitik ujung selang x = �1

x = 4

Titik stasioner f 0 (x) = 0 () 3x2 � 6x = 03x (x� 2) = 0x = 0 atau x = 2

Page 16: buku 1

Jurusan Matematika FMIPA IPB 16

*

Titik kritis f (x) Keterangan�1 �30 12 �3 terkecil4 17 terbesar

Jadi f (�1) dan f (2) nilai minimum global fungsi f dan nilai maksimum globaladalah : : :

2. Fungsi f dengan f (x) = x3 � 3x+ 1 pada [0; 3]Titik kritis : x = 0

x = 3f 0 (x) = 0 () 3x2 � 3 = 0

3 (x2 � 1) = 0x = 1 2 [0; 3]x = �1 =2 [0; 3]

Jadi x = 1 titik stasioner danx = �1 bukan titik stasioner.

Titik kritis f (x)0 11 �13 19

Jadi f (3) : : : dan f (1) : : :

frame 8 Ekstrim Lokal

Baca de�nisi nilai ekstrim lokal, teorema uji turunan pertama untuk ekstrim lokal danteorema uji turunan kedua untuk ekstrim lokal secara cermat di buku kalkulus karanganJ. Stewart. Setelah membaca de�nisi dan teorema maka dapat dirangkum prosedurmenentukan ekstrim lokal fungsi f sebagai berikut

1. Tentukan f 0 (x)

2. Tentukan titik kritis f:

3. Lakukan uji turunan pertama ataukan uji turunan kedua.

1. Fungsi f dengan f (x) = x3 � 6x2 + 9x+ 1: Menentukan ekstrim lokal fungsi f

f 0 (x) = 3x2 � 12x+ 9f 0 (x) = 0() : : :

Tanda f 0 (x)

Page 17: buku 1

Jurusan Matematika FMIPA IPB 17

f naik pada : : : dan : : :

f turun pada : : :

Berdasarkan uji turunan pertama, fungsi f mencapai maksimum lokal di : : : danminimum lokal di : : : dengan nilai f (1) = : : : dan f (3) = : : :

2. Fungsi f dengan f (x) = 2x3 + 3x2 � 12x+ 7:Ekstrim lokal fungsi f :

f 0 (x) = : : :

f 0 (x) = 0, x = : : :x = : : :

f 00 (x) = : : :

f 00 (�2) = : : : < 0

f 00 (1) = : : : > 0

Berdasarkan uji turunan kedua, maka f (�2) nilai : : : dan f (1) nilai : : :

frame 9 Latihan

1. Tentukan nilai ekstrim global dan jenisnya untuk fungsi-fungsi yang diberikan

(a) f (x) = 3x2 � 10x+ 7 pada [�3; 3](b) f (x) = 1� x2=3 pada [�1; 8]

(c) f (x) =x

x2 + 2pada [�4; 1]

2. Tentukan nilai ekstrim lokal dan jenisnya

(a) f (x) = x3 � 2x2 + 1(b) f (x) = 2� 12x+ 2x3

(c) f (x) = x1=2 (x� 2)1=3

3. Diketahui fungsi f dengan f (x) = ax3 + bx2 + cx + d: Tentukan konstanta a; b; cdan d agar fungsi f memiliki ekstrim lokal di titik (0; 3) dan memiliki titik balik di(1;�1)

4. Diketahui fungsi f kontinu pada R dan gra�k fungsi turunan pertamanya (f 0) se-bagai berikut

Page 18: buku 1

Jurusan Matematika FMIPA IPB 18

Tentukan

(a) Titik kritis

(b) selang fungsi f naik dan selang fungsi f turun

(c) selang kecekunga fungsi f

(d) titik balik

(e) nilai ekstrim lokal fungsi f:

frame 10 Limit Tak hingga.

Teorema 11 1. limx!1

1

xn= : : : ;n 2 Z+

2. limx!�1

1

xn= : : : ;n 2 Z+

limx!�1x1�x = limx!�1

11x�1

= : : :

limx!1x3+1

(2x�1)(x+1)(3�x) = limx!11+ 1

x3

(2x�1)(x+1)(3�x)= : : :

frame 11 Asimtot

De�nisi 12 1. Garis x = c dkatakan asimtot tegak dari gra�k fungsi f jika salah satudari pernyataan berikut berlaku

(a) limx!c+

f (x) = +1

(b) limx!c+

f (x) = : : :

(c) limx!c�

f (x) = +1

(d) limx!c�

f (x) = : : :

2. Garis y = k dikatakan asimtot datar dari gra�k fungsi f jika berlaku

limx!+1

f (x) = : : : atau limx!�1

f (x) = : : :

3. Garis y = ax+ b dikatakan asimtot miring dari gra�k fungsi f jika berlaku

limx!+1

[f (x)� (ax+ b)] = 0 atau : : :

Page 19: buku 1

Jurusan Matematika FMIPA IPB 19

frame 12

1. Fungsi f dengan f (x) =x

1� x memiliki

� Asimtot : : : yaitu y = : : : karena

limx!1+

x

1� x = : : :

� Asimtot : : : yaitu y = � � � karena

limx!1

x

1� x = : : :

2. Fungsi f dengan f (x) =x2 + 1

xmemiliki

� Asimtot : : : yaitu y = : : : karena

limx!0+

x2 + 1

x= : : :

� Asimtot : : : yaitu y = � � � karena

limx!1

�x2 + 1

x� x

�= lim

x!1

�x+

1

x� x

�= : : :

frame 13 Menggambar Gra�k

Berikut ini adalah langkah-langkah untuk menggambar gra�k suatu fungsi, yaitu

Tentukan

1. daerah asal fungsi

2. selang fungsi naik dan selang fungsi turun

3. ekstrim lokal dan jenisnya

4. selang fungsi cekung ke atas dan selang fungsi cekung ke bawah

5. titik belok

6. jika ada, tentukan asimtot-asimtotnya

7. beberapa titik lain pada gra�k sebagai pembantu, jika diperlukan

Untuk menggambar gra�k fungsi f dengan f (x) = x +1

x;x 6= 0 diperlukan beberapa

tahapan

Page 20: buku 1

Jurusan Matematika FMIPA IPB 20

1. Daerah asal fungsi f : : :

2. Turunan pertama fungsi f

f 0 (x) = 1� 1

x2=(x� 1) (: : :)

x2;x 6= 0

Tanda f 0 (x) ditunjukkan pada gambar berikut

Jadi f naik pada : : : dan f turun pada : : :

3. Perhatikan gambar garis bilangan pada tahap 2, berdasarkan uji turunan pertamamaka nilai maksimum lokal fungsi f : : : dan nilai minimum lokal fungsi f adalah : : :

4. Turunan kedua fungsi f

f 00 (x) =2

x3;x 6= 0

Tanda f 00 (x) ditunjukkan oleh garis bilangan pada gambar berikut

Jadi f cekung ke bawah pada : : : dan f cekung ke atas pada : : :

5. Gra�k fungsi f tidak mempunyai titik balik.

6. Asimtot tegak adalah garis x = 0 karena limx!0

x+1

x= �1:

Asimtot miring adalah garis y = x karena limx!1

�x+

1

x� : : :

�= : : :

7. Gambar gra�k fungsi f

Page 21: buku 1

Jurusan Matematika FMIPA IPB 21

frame 14 Latihan

1. Berdasarkan frame 10, hitung limit berikut

(a) limx!1

1

x+ 2

(b) limx!�1

2x2 + 1

1� 2x� x2

(c) limx!1

x2

1 + 2x

2. Tentukan (jika ada) semua asimtot gra�k fungsi f

(a) f (x) =1� 2xpx2 + 1

(b) f (x) =2x2 � x+ 1x� 1

(c) f (x) =x+ 1

x2 � 4

3. Berdasarkan frame 13, gambar gra�k fungsi f

(a) f (x) =x� 2x2 � 1

(b) f (x) =x2 + x� 4x2 � 4

(c) f (x) =x2 + x+ 1

x

frame 15 Optimasi (Masalah Maksimum-Minimum)

Berikut ini adalah prosedur yang dapat membantu menyelesaikan masalah makasimum-minimum, yaitu

1. Lambangkan dengan huruf semua faktor yang terdapat dalam permasalahan.

2. Tentukan faktor yang akan dimaksimumkan atau diminimumkan.

3. Rumuskan semua faktor ke dalam suatu persamaan matematika.

4. Nyatakan faktor yang akan dimaksimumkan atau diminimumkan sebagai fungsi darisatu peubah saja.

5. Lakukan pengujian nilai ekstrim terhadap fungsi yang diperoleh pada langkah 4 diatas.

Page 22: buku 1

Jurusan Matematika FMIPA IPB 22

� Seseorang akan membuat sebuah akuarium dengan persediaan kaca yang terbatas.kaca yang tersedia memiliki panjang 24 dm dan lebar 9 dm. Bagian dasar, dind-ing kiri dan kanan, dinding depan dan belakang akuarium semuanya terbuat darikaca. Bagian atas dibiarkan terbuka. Berapakah ukuran panjang, lebar dan tinggiakuarium agar volume akuarium agar volume akuarium maksimum.

Untuk menyelesaikan masalah di atas, diperlukan langkah-langkah berikut

Jika x adalah panjang sisi kaca yang harus dipotong, maka panjang akuarium adalah(24� 2x) ; lebarnya adalah (9� 2x) dan tingginya x, seperti diperlihatkan gambarberikut

Agar volume tidak nol atau negatif maka batas nilai x yang memenuhi syarat adalah�0; 9

2

�: Volume akuarium V diberikan oleh persamaan

V = : : : ;x 2�0;9

2

�Turunan pertama dari V terhadap x adalah

dv

dx= : : :

Titik kritis : x = : : :

Turunan kedua dari V adalahd2V

dx2= : : :

Berdasarkan uji turunan kedua

d2V

dx2

����x=:::

= : : :

Jadi volume mencapai maksimum saat x = : : :. Jadi ukuran akuarium yang mem-berikan volume maksimum dicapai jika

panjang = : : : dm

lebar = : : : dm

tinggi = : : : dm

Page 23: buku 1

Jurusan Matematika FMIPA IPB 23

� Besarnya biaya bahan bakar untuk menjalankan sebuah lokomotif sebanding dengankuadrat kecepatannya. Besarnya biaya bahan bakar pada kecepatan 40 km per jamadalah Rp 25:000;� per jam. Diketahui juga bahwa besarnya biaya operasi per jamperjalanan ialah Rp 100.000,-. Tentukan pada kecepatan berapa lokomotif tersebutharus dijalankan agar biaya total setiap kilometer menjadi semurah mungkin.

Misalkan kecepatan lokomotif x km per jam dan biaya bahan bakar per jam Rrupiah. Jadi diperoleh

R = kx2; k konstanta positif

Untuk x = 40 km per jam, maka R = 25:000 rupiah sehingga

k =25000

(40)2=125

8

JadiR =

125

8x2 rupiah per jam

Biaya total per km-nya =biaya bahan bakar + biaya operasional

kecepatan

B (x) =R + 100000

x=125

8x+

100000

x

Akan ditentukan x, sehingga B (x) minimum. Fungsi turunan pertama dan keduadari B (x) adalah

B0 (x) = : : : ;x > 0

B00 (x) = : : : ;x < 0

Titik kritis : : : :

Berdasarkan uji turunan kedua, maka disimpulkan kecepatan x = : : :, agar biayatotal minimum.

frame 16 Latihan

1. Tentukan minimum dari x2y3 jika x+ y = 1

2. Tentukan dua bilangan tak negatif yang jumlahnya 100 dan hasil kalinya minimum.

3. Seseorang merencanakan membuat tabung silinder terbuka bagian atas dengan ba-han lembaran logam tipis yang berjari-jari r dan tinggi h. Misalkan dikehendakivolume silinder adalah 1 liter. Tentukan ukuran tabung agar bahan yang digunakansesedikit mungkin.

4. Kawat sepanjang 16 m dipotong menjadi dua, satu potong dibuat bujur sangkar danpotongan lainnya dibuat lingkaran. Dimana kawat harus dipotong agar jumlah luasbujur sangkar dan luas lingkaran minimum.

Page 24: buku 1

Jurusan Matematika FMIPA IPB 24

frame 17 Teorema Nilai Rata-rata (TNR)

Misalkan f kontinu pada selang tertutup [a; b] dan f mempunyai turunan pada selangbuka (a; b) : Maka dijamin ada c 2 (a; b) sehingga : : :

frame 18

Fungsi f dengan f (x) = x3 � x2 � x + 1 pada [�2; 1] : Tunjukkan syarat cukup TNRdipenuhi! Jika dipenuhi, tentukan c 2 (�2; 1) sehingga

f 0 (c) =f (1)� f (�2)

1� 2

f kontinu di [�2; 1] karena : : :

f 0 (x) = : : : ;8x 2 R (1)

artinya f mempunyai turunan pada (�2; 1)Menurut TNR, terdapat c 2 (�2; 1) sehingga

f 0 (c) = : : : (2)

Dari (1) dan (2) diperolehc = : : :

frame 19 Latihan

1. Periksa apakah syarat TNR terpenuhi pada selang tertutup [a; b] yang diberikan.Jika terpenuhi, tentukan c sehingga

f 0 (c) =f (b)� f (a)

b� a

(a) f (x) = 13x3 pada [�3; 3]

(b) f (x) =x+ 1

x� 1 pada�32; 5�

(c) f (x) = x+1

xpada

��1; 1

2

�(d) f (x) =

p1� x2 pada [0; 1]

2. Gunakan TNR untuk membuktikan bahwa jsin x� sin yj � jx� yj