23 Sigma Tropic Seminario Org III

download 23 Sigma Tropic Seminario Org III

of 19

Transcript of 23 Sigma Tropic Seminario Org III

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    1/19

    2,3-Sigmatropic Rearrangements in Organic Synthesis

    October 25, 2006

    Matt Haley

    Crimmins Group

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    2/19

    Sigmatropic Rearrangements-concerted pericyclic reactions traditionally thought to be governed by orbital symmetry

    -a group attached by a sigma bond migrates to the terminus of an adjacent pi-electron system

    2,3-sigmatropic rearrangements:

    -can be defined as a thermal isomerization that proceeds through a six-electron, five-membered

    cyclic transition state

    -thermally allowed sigmatropic process according to the Woodward-Hoffman Rule*

    XY

    XY Y

    X

    5-membered cyclic transition state

    2,3-sigmatropic rearrangements discussed:

    -2,3-Wittig rearrangements

    -Mislow-Evans rearrangement

    -Additional 2,3 rearrangements

    *Chem. Rev. 1986, 86, 885-902

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    3/19

    2,3-Wittig Rearrangement(anionic)

    O O O

    O

    G

    Me

    G = C CH

    C Me

    n-BuLi

    THF, -85 CGHO

    Me

    99% ee99% ee

    O

    G

    G = Ph

    C CH

    C TMS

    n-BuLi

    THF, -85 CGHO

    Me

    95~98% ee100% ee100% ee

    Me

    Chem. Rev. 1986, 86, 885-902

    erythro

    threo

    A general trend is observed that E-alkenes

    show threo selection and Z-alkenes show

    Erythro selection. Exceptions include

    Substrates where G = CO2H and Ph

    -regiospecific carbon-carbon bond formation and allylic transposition of oxygen function

    -generation of specific olefin geometries

    -stereoselective creation of vicinal chiral centers

    -transfer of chirality

    -competition is seen with 1,2-shift, dependent on substrate structure and rxn

    temperatureDiastereoselection Study

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    4/19

    O

    G

    Me

    O

    G

    Me

    GHO

    Me

    GHO

    Me

    O

    H

    H

    GMe

    H

    O

    H

    G

    HMe

    H

    O

    H

    G

    HH

    Me

    O

    H

    H

    GH

    Me

    threoerythro

    Diastereoselectivity:Proposed Transition States

    Chem. Rev. 1986, 86, 885-902

    Nakai and Mikami Marshall, Houk, and Wu

    J. Org. Chem.1990, 55, 1421-1423

    endo exo

    Transition structure based onMP2/6-31+G computations:

    sterics place substituents

    preferentially in the exo position-acceptors like carbonyls

    and electropositive groups

    like silyl ethers prefer endo

    position

    Cation plays large role

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    5/19

    Piers, et al. Organic Letters,2000, 2, 1407-1410

    Me

    OH

    H

    Me

    Me KH, Bu3SnCH2I

    Me

    O

    H

    Me

    Me

    SnBu3

    -diterpenoid from the cyathane family

    -characterized by Ayer and Taube in 1972

    -anti-fungal and promotes synthesis of nerve growth factor

    M e

    HO

    1. Me 2NNH 22. CSA (equil.)

    71% (2 s teps)

    Me

    HN

    N

    1 . K D A ,

    2. AcOH, NaOAc, H 2O

    69% (2 steps)

    M e3Ge

    Me

    HO

    Me 3GeI

    1 . Na O M e , 6 6 %2. LDA, MeI, 85%

    3 . N IS ,9 0 %4. BuLi, 86%

    Me

    OH

    H Me

    CHO

    O

    Me

    HO

    Me

    H

    Sarcodonin G

    Me

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    6/19

    Piers, et al. Organic Letters,2000, 2, 1407-1410

    Me

    O

    H

    Me

    Me BuLi

    88% (2 steps)

    H

    Me

    O

    H

    Me

    Me

    Me

    O

    H

    Me

    Me

    Me

    H

    Me

    Mequench

    HOH H

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    7/19

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    8/19

    Mislow-Evans(neutral)

    Acc. Chem. Res.1974, 7, 147-155

    SO

    SO O

    S

    R RR

    R3P:

    O

    -it is proposed that the rearrangement proceeds exclusively through a concerted mechanism

    -equilibrium lies largely to the left, sulfonate not detectable by NMR

    -increased heating can result in 1,3-shift of sulfoxide:

    S Ph

    O

    !

    Ph S

    O

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    9/19

    J. Org. Chem.1989, 54, 2779-2780

    There is a very high E-olefin selectivity when there issubstitution to the sulfoxide (substitution at R1)

    R1 X

    H

    R3R2

    SOR4

    R1

    R2

    X

    H

    OsR4

    R3

    R1 > R2

    R1 OSR4

    X

    R3

    R2

    Olefin Geometry

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    10/19

    Synthesis of the Imine Ring System of Pinnatoxins

    OO

    OH

    Me

    N

    Me

    OHO M e

    H

    R

    Me

    Pinnatoxins: A: R = CO2H C: R =

    B: R =CO2

    -

    NH3+

    CO2-

    NH3+

    -pinnatoxins structurally elucidated by Uemura et al. in 1995

    -structurally unique cyclic imine, stable to aqueous acids

    Organic Letters, 2005, 7, 1629-1631

    O

    OPMBO

    OAc

    N

    Me

    Me

    O O

    O

    PivO

    PMBO

    SO

    O

    O

    O

    PMBO

    PivO Me

    Me

    OH

    cascade Claisen-Mislow-Evans

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    11/19

    Construction of Cascade Reaction Precursor

    Organic Letters, 2005, 7, 1629-1631

    from ascorbic acid

    O

    HO

    OHO

    1. LAH, 98%

    2. NaH, PivCl3. I2, Ph3P, ImH, 74% (2 steps) PivO

    IA

    O

    O

    O

    TIP S O

    MgBr1. , 9 3 %

    2. OsO4, N a I O43. TP AP, N MO, 68% (2 s teps)

    O O

    OOTIPS

    O

    1. LDA; Et2Zn ;A , DMPU

    2. PhNTf2, KHMDS

    80% (2 steps )O O

    OOTIPS

    TfO

    PivO

    1. P MBOCH2C H 2C H 2ZnX, Pd0

    , 7 5 %

    2. TBAF, 91%

    3. Swern

    4. (S)-methyl p-tolyl sulfoxide, LDA

    5. TMSCl, KHMDS

    6. LDA, 65% (4 steps)

    O O

    OOTIPS

    TfO

    Piv O

    O O

    O

    Piv O

    PMBO

    SO

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    12/19

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    13/19

    O

    Me

    HO H

    O

    O

    O

    H

    OMe

    H

    Me

    MeH

    M e

    M eH

    TBDPSO

    O

    HO

    Me

    H

    Me

    MeH

    M e

    M eH

    Ph3

    PO

    H

    OH

    O TMS

    O

    OTBS

    TIPSO

    H

    Me

    H

    +

    (+)-Milbemycin D

    -milbemycins first reported in 1975 by Mishima

    -among the most potent antiparasitic and insecticidal agents known

    -notable synthetic challenges include spiroketal moiety and hexahydrobenzofuran

    Crimmins et al. J. Am. Chem. Soc.1996, 118, 7513-7528

    Additional 2,3-Sigmatropic RearrangementsSynthesis of (+)-Milbemycin D

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    14/19

    O

    1. P h3P=CHCO2Et, 98%2. LAH

    3. TB SCl, 95% (2 steps)

    TBSO

    H C C C H O1 . , 9 8 %2 . LA H , 9 8 %

    M e

    OTBS

    Me

    O TBSOH OH

    +

    1. SAE

    2. Swern3. MeMgCl

    4. Swern

    73% (4 steps)Me

    O TBS

    M e

    OTBSO O

    +O O

    1.5 : 1

    M e

    OTBSO

    O

    LD A , T M S C l

    M e

    OTBSOTMS

    TMSO

    mC P B A

    60% (2 steps)

    M e

    OTBSO

    TMSO

    HO PhSeCl, 7 8%O

    OR

    H

    OH

    H

    M e

    SePh

    OTBS

    Preparation of 2,3-Rearrangement Precursor

    Crimmins et al. J. Am. Chem. Soc.1996, 118, 7513-7528

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    15/19

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    16/19

    O

    MeMe

    H

    O

    Bakkenolide A

    Additional 2,3-Sigmatropic Rearrangements ContdSynthesis of Bakkenolide A

    -Approximately 50 bakkanes isolated from plants to date

    -they are sesquiterpenoids possessing a cis-hydrindane skeleton

    with two quat. centers

    -biological activities include selective cytotoxicity, antifeedant effectsand inhibition of platelet aggregation

    Organic Letters, 2004, 6, 3345

    J. Am. Chem. Soc.1977, 99, 5453

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    17/19

    Me

    Me

    O

    CHSnC 4H9

    Cl

    KotBu84%

    Me

    O

    CHSnC4H 9

    Me

    KOH

    78%

    M e

    O

    M eM e

    O

    M e

    +

    OsO4, NaIO4

    46 %

    only syn pdt

    taken on

    M e

    O

    OM e

    Me

    O

    O

    Me 1. K O t Bu , 6 3 %

    2. H 2/ Pd - C , 9 3 %O

    H

    Me

    M e

    L i

    H

    Me

    M e

    HO60%

    PB r3

    H

    Me

    M eBr

    Synthesis of Bakkenolide A

    H

    MeMe

    Br S

    O

    O

    HN HN C

    S

    SCH3

    NaH

    75% (2 steps) H

    Me

    Me

    SSCH3

    NNHTs

    J. Am. Chem. Soc.1977, 99, 5453

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    18/19

    H

    Me

    Me

    SSCH 3

    NNHTs

    H

    Me

    Me

    SSCH3

    N

    TsN

    H

    Me

    Me

    S

    N

    T sN

    SCH 3H

    Me

    Me

    S

    N

    Ts N

    SCH 3 H

    Me

    Me

    SCH3

    S

    NaH

    62%

    2,3-Sigmatropic RearrangementSynthesis of Bakkenolinde A

    H

    MeMe

    SCH 3

    S

    HgO, HgCl2, H 2O

    H

    MeMe

    SCH 3

    O

    H2SeO3 O

    MeMe

    H

    O

  • 8/3/2019 23 Sigma Tropic Seminario Org III

    19/19

    Additional Interesting 2,3 Rearrangements

    SeAr*

    Ar=

    Fe

    NMe2

    Me

    N

    OMe

    Ts

    mCPBA or

    Ti(OiPr)2, DIPT Me O H

    Ph SeR

    NHTs

    *

    R = OH , tBuOCl, then TsNHLi 90% ee

    Angew. Chem. Int. Ed.2000, 39, 3740

    NN2

    O

    ( )m

    ( )n Cu(acac)2

    C6H6, refluxN

    H

    O( )m

    ( )n

    NO

    N2

    Cu(acac)2

    C6H6, refluxN

    O

    H

    J. Chem. Soc., Perkin Trans. 1.2001, 3325