XI-Mathematics SOLUTION - Faizan Ahmed

Post on 16-Mar-2023

1 views 0 download

Transcript of XI-Mathematics SOLUTION - Faizan Ahmed

BOARD OF INTERMEDIATE EDUCATION, KARACHI

INTERMEDIATE EXAMINATION, 2018 (ANNUAL) (Science pre-Engineering and Science General Groups)

XI-Mathematics

SOLUTION

FROM THE DESK OF: FAIZAN AHMED

Code: MT-09 Time: 20 Minutes

SECTION β€˜A’ (MCQs-Multiple Choice Questions) (20 Marks)

Q1. Choose the correct answer for each from the given options.

i. If 1,x-1, 3 are in A.P., then π‘₯ =:

a. 0 b. 1 c. 2 d. 3 ii. The H.M.between 3 and 6 is:

a. 1

4 b.

9

2 c. Β± 18 d. 4

iii. If π‘Žβˆ’π‘

π‘βˆ’π‘=

π‘Ž

𝑏, then a,b,c are in:

a. A.P. b. 𝐺. 𝑃 . c. H.P. d. A.G.P iv. The number of permutations of the letters of the word COMMITTEE

a. 9

2,2,2 b.

62,2,2

c. 9

2,2,1 d.

2,2,29

v. The middle term in the expansion of 2π‘₯ βˆ’1

π‘₯2 20

is:

a. Ninth term b. tenth term c. 𝑒𝑙𝑒𝑣𝑒𝑛𝑑𝑕 π‘‘π‘’π‘Ÿπ‘š d. twelvth term

vi. If 𝑛 = 0, then 𝑛+1 !

𝑛 !=:

a. 0 b. 1 c. n d. ∞ vii. 𝑠𝑖𝑛600π‘π‘œπ‘ 300 βˆ’ π‘π‘œπ‘ 600𝑠𝑖𝑛300 =:

a. 1

2 b. βˆ’

3

2 c.

3

2 d. βˆ’

1

2

viii. If arc length s is equal to the radius r , then the central angle πœƒ is:

a. 0 radian b. 1

2 radian c. 2 radian d. 1 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

ix. In a triangle ABC, if 𝛾 = 900, then the law of cosine reduces to:

a. π‘Ž2 = 𝑏2 + 𝑐2 b. 𝑏2 = π‘Ž2 βˆ’ 𝑐2 c. 𝑐2 = π‘Ž2 + 𝑏2 d. 𝑐2 = π‘Ž2 βˆ’ 𝑏2

x. In an escribed triangle ABC, βˆ†

π‘Ÿ3=:

a. s b. (𝑠 βˆ’ π‘Ž) c. (𝑠 βˆ’ 𝑏) d. (𝑠 βˆ’ 𝑐)

xi. If π‘Ÿπ‘π‘œπ‘ πœƒ = 4 and π‘Ÿπ‘ π‘–π‘›πœƒ = 3, then π‘Ÿ =:

a. 3 b. 5 c. 6 d. 2 xii. 10.5 0 =:

a. πœ‹

18radians b.

7πœ‹

120 radians c.

10.5

πœ‹ radians d. 5πœ‹ radians

xiii. If 𝐴 = {2,3} and 𝐡 = {3,4}, then 𝐴 βˆ’ 𝐡 ∩ 𝐡 =:

a. βˆ… b. {βˆ…} c. {2} d. {3}

xiv. π΄π‘ˆπ΄β€² β€² =:

a. 𝐴 b. 𝐴′ c. βˆ… d. π‘ˆ

xv. The imaginary part of 𝑖 3 + 5𝑖2 is:

a. βˆ’2𝑖 b. 3𝑖 c. βˆ’2 d. βˆ’5 xvi. If 𝑧 is a complex number, then 𝑧𝑧 =:

a. 𝑧2 b. 𝑧 2 c. |𝑧| d. 𝑧 2

xvii. The product of the roots of the equation 𝑦2 + 1 = 7𝑦 βˆ’ 7

a. 4 b. 8 c. 7 d. 1 xviii. If πœ” is a complex cube root of unity, then 2 βˆ’ πœ” βˆ’ πœ”2 2 =:

a. βˆ’1 b. 1 c. 3 d. 9 xix. If A,B,C are non-singular matrices, then 𝐢𝐡𝐴 βˆ’1

a. π΄βˆ’1π΅βˆ’1πΆβˆ’1 b. πΆβˆ’1π΅βˆ’1π΄βˆ’1 c. 𝐴𝐡𝐢 βˆ’1 d. ABC xx. 𝐴 π΄βˆ’1 =:

a. π΄π΄βˆ’1 b. 𝐴 𝐼3 c. π‘Žπ‘‘π‘—π΄ d. 𝐴2

SECTION B

COMPLEX NUMBER, ALGEBRA, MATRICES

Q.2(i) QUESTION: Solve the complex equation for x and y: π‘₯ + 2𝑦𝑖 2 = π‘₯𝑖. SOLUTION: (π‘₯ + 2𝑦𝑖)2 = π‘₯𝑖

(π‘₯)2 + 2 π‘₯ 2𝑦𝑖 + (2𝑦𝑖)2 = π‘₯𝑖

π‘₯2 + 4π‘₯𝑦𝑖 + 4𝑦2𝑖2 = π‘₯𝑖

π‘₯2 + 4π‘₯𝑦𝑖 + 4𝑦2(βˆ’1) = π‘₯𝑖 ∡ 𝑖 = βˆ’1 β‡’ 𝑖2 = βˆ’1

π‘₯2 + 4π‘₯𝑦𝑖 βˆ’ 4𝑦2 = π‘₯𝑖

π‘₯2 βˆ’ 4𝑦2 + 4π‘₯𝑦𝑖 = 0 + π‘₯𝑖

By comparing

4π‘₯𝑦 = π‘₯ β‡’ 4𝑦 = 1

𝑦 =1

4

Now, π‘₯2 βˆ’ 4𝑦2 = 0

π‘₯2 βˆ’ 4 1

4

2

= 0

π‘₯2 βˆ’1

4= 0

π‘₯2 =1

4

π‘₯ = Β±1

2

𝑆. 𝑆 = Β±1

2,

1

4 OR 𝑆. 𝑆 =

1

2,

1

4 , βˆ’

1

2,

1

4

OR Q.2(i)

QUESTION: Solve the complex equation for x and y: π‘₯ 1 + 2𝑖 + 𝑦 3 + 5𝑖 = βˆ’3𝑖 SOLUTION: π‘₯ 1 + 2𝑖 + 𝑦 3 + 5𝑖 = βˆ’3𝑖 π‘₯ + 2π‘₯𝑖 + 3𝑦 + 5𝑦𝑖 = βˆ’3𝑖 π‘₯ + 3𝑦 + 5𝑦𝑖 + 2π‘₯𝑖 = βˆ’3𝑖 π‘₯ + 3𝑦 + 𝑖 5𝑦 + 2π‘₯ = 0 βˆ’ 3𝑖 By Comparing π‘₯ + 3𝑦 = 0 π‘₯ = βˆ’3𝑦 ---- 1 And 5𝑦 + 2π‘₯ = βˆ’3 5𝑦 + 2(βˆ’3𝑦) = βˆ’3 5𝑦 βˆ’ 6𝑦 = βˆ’3 βˆ’π‘¦ = βˆ’3

𝑦 = 3

1 β‡’ π‘₯ = βˆ’3𝑦 π‘₯ = βˆ’3 3 = βˆ’9 𝑆. 𝑆 = βˆ’9,3

2(ii) QUESTION:

Solve: π‘₯ +1

π‘₯

2

= 4 π‘₯ βˆ’1

π‘₯

SOLUTION:

π‘₯ +1

π‘₯

2

= 4 π‘₯ βˆ’1

π‘₯

π‘₯ 2 + 2 π‘₯ 1

π‘₯ +

1

π‘₯

2

= 4 π‘₯ βˆ’1

π‘₯

π‘₯2 + 2 +1

π‘₯2= 4 π‘₯ βˆ’

1

π‘₯

π‘₯2 βˆ’ 2 +1

π‘₯2+ 4 = 4 π‘₯ βˆ’

1

π‘₯

π‘₯ βˆ’1

π‘₯

2

+ 4 = 4 π‘₯ βˆ’1

π‘₯ ----(1)

Let 𝑦 = π‘₯ βˆ’1

π‘₯

1 β‡’ 𝑦2 + 4 = 4𝑦 𝑦2 βˆ’ 4𝑦 + 4 = 0 𝑦 βˆ’ 2 2 = 0 𝑦 βˆ’ 2 = 0

𝑦 = 2

But π‘₯ βˆ’1

π‘₯= 𝑦

π‘₯ βˆ’1

π‘₯= 2

π‘₯2 βˆ’ 1

π‘₯= 2

π‘₯2 βˆ’ 1 = 2π‘₯ π‘₯2 βˆ’ 2π‘₯ βˆ’ 1 = 0

π‘₯ =βˆ’π‘Β± 𝑏2βˆ’4π‘Žπ‘

2π‘Ž

π‘₯ =βˆ’(βˆ’2)Β± (βˆ’2)2βˆ’4 1 (βˆ’1)

2(1)

π‘₯ =2Β± 4+4

2=

2Β± 8

2=

2Β± 4Γ—2

2=

2Β±2 2

2=

2 1Β± 2

2

π‘₯ = 1 Β± 2

𝑆. 𝑆 = 1 Β± 2

2(iii) QUESTION: For what values of β€˜m’ will the equation have equal roots? π‘š + 1 π‘₯2 + 2 π‘š + 3 π‘₯ + 2π‘š + 3 = 0 SOLUTION: π‘š + 1 π‘₯2 + 2 π‘š + 3 π‘₯ + 2π‘š + 3 = 0 ----(1)

𝐴 = π‘š + 1, 𝐡 = 2 π‘š + 3 , 𝐢 = 2π‘š + 3

As roots of (1) are equal

i.e. 𝐡2 βˆ’ 4𝐴𝐢 = 0

2 π‘š + 3 2 βˆ’ 4 π‘š + 1 2π‘š + 3 = 0

4 π‘š2 + 6π‘š + 9 βˆ’ 4 2π‘š2 + 3π‘š + 2π‘š + 3 = 0

Γ· 𝑖𝑛𝑔 𝑏𝑦 4, 𝑀𝑒 𝑔𝑒𝑑

π‘š2 + 6π‘š + 9 βˆ’ 2π‘š2 + 5π‘š + 3 = 0

π‘š2 + 6π‘š + 9 βˆ’ 2π‘š2 βˆ’ 5π‘š βˆ’ 3 = 0

βˆ’π‘š2 + π‘š + 6 = 0 ⟹ π‘š2 βˆ’ π‘š βˆ’ 6 = 0

π‘š2 βˆ’ 3π‘š + 2π‘š βˆ’ 6 = 0

π‘š π‘š βˆ’ 3 + 2 π‘š βˆ’ 3 = 0 π‘š βˆ’ 3 π‘š + 2 = 0

πΈπ‘–π‘‘π‘•π‘’π‘Ÿ: π‘š βˆ’ 3 = 0 β‡’ π‘š = 3

π‘‚π‘Ÿ: π‘š + 2 = 0 β‡’ π‘š = βˆ’2

2(iv) QUESTION:

If 𝑨 = π’”π’Šπ’πœ½ βˆ’π’„π’π’”πœ½π’„π’π’”πœ½ π’”π’Šπ’πœ½

and 𝑩 = π’”π’Šπ’πœ½ π’„π’π’”πœ½

βˆ’π’„π’π’”πœ½ π’”π’Šπ’πœ½ then prove that 𝑨𝑩 = 𝑩𝑨 = π‘°πŸ

SOLUTION:

𝐴 = π‘ π‘–π‘›πœƒ βˆ’π‘π‘œπ‘ πœƒπ‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒ

and 𝐡 = π‘ π‘–π‘›πœƒ π‘π‘œπ‘ πœƒ

βˆ’π‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒ

??𝐴𝐡 = 𝐡𝐴 = 𝐼2

AB = π‘ π‘–π‘›πœƒ βˆ’π‘π‘œπ‘ πœƒπ‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒ

π‘ π‘–π‘›πœƒ π‘π‘œπ‘ πœƒ

βˆ’π‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒ

= 𝑠𝑖𝑛2πœƒ + π‘π‘œπ‘ 2πœƒ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ βˆ’ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ βˆ’ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ π‘π‘œπ‘ 2πœƒ + 𝑠𝑖𝑛2πœƒ

= 1 00 1

= 𝐼2

BA= π‘ π‘–π‘›πœƒ π‘π‘œπ‘ πœƒ

βˆ’π‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒ

π‘ π‘–π‘›πœƒ βˆ’π‘π‘œπ‘ πœƒπ‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒ

= 𝑠𝑖𝑛2πœƒ + π‘π‘œπ‘ 2πœƒ βˆ’π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒβˆ’π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ π‘π‘œπ‘ 2πœƒ + 𝑠𝑖𝑛2πœƒ

= 1 00 1

= 𝐼2

𝐴𝐡 = 𝐡𝐴 = 𝐼2

2(v) QUESTION: Using the properties of determinants, evaluate the determinant:

1 π‘₯ 𝑦𝑧1 𝑦 𝑧π‘₯1 𝑧 π‘₯𝑦

=

1 1 1π‘₯ 𝑦 𝑧

π‘₯2 𝑦2 𝑧2

SOLUTION:

??

1 π‘₯ 𝑦𝑧1 𝑦 𝑧π‘₯1 𝑧 π‘₯𝑦

=

1 1 1π‘₯ 𝑦 𝑧

π‘₯2 𝑦2 𝑧2

L.H.S=

1 π‘₯ 𝑦𝑧1 𝑦 𝑧π‘₯1 𝑧 π‘₯𝑦

Γ— 𝑖𝑛𝑔 𝑅1 𝑏𝑦 π‘₯, 𝑅2 𝑏𝑦 𝑦 π‘Žπ‘›π‘‘ 𝑅3 𝑏𝑦 𝑧

=1

π‘₯𝑦𝑧

π‘₯ π‘₯2 π‘₯𝑦𝑧

𝑦 𝑦2 π‘₯𝑦𝑧

𝑧 𝑧2 π‘₯𝑦𝑧

Taking common π‘₯𝑦𝑧 from 𝐢3

=π‘₯𝑦𝑧

π‘₯𝑦𝑧 π‘₯ π‘₯2 1𝑦 𝑦2 1

𝑧 𝑧2 1

= π‘₯ π‘₯2 1𝑦 𝑦2 1

𝑧 𝑧2 1

Taking transpose

=

π‘₯ 𝑦 𝑧

π‘₯2 𝑦2 𝑧2

1 1 1

Interchanging 𝑅2 and 𝑅3

= (βˆ’1)

π‘₯ 𝑦 𝑧1 1 1π‘₯2 𝑦2 𝑧2

Interchanging 𝑅1 and 𝑅2

= (βˆ’1)(βˆ’1)

1 1 1π‘₯ 𝑦 𝑧

π‘₯2 𝑦2 𝑧2

=

1 1 1π‘₯ 𝑦 𝑧

π‘₯2 𝑦2 𝑧2 = 𝑅. 𝐻. 𝑆

SECTION B

GROUPS, SEQUENCES & SERIES, COUNTING PROBLEMS

Q.3(i) QUESTION: Let 𝐺 = {1, πœ”, πœ”2}, where πœ” is a complex cube root of unity. Show that 𝐺, . is an abelian group, where β€˜.’ Is an ordinary multiplication. Note: For a group:

a) Associative law holds b) There exist an identity element w.r.t multiplication c) Every element has an inverse in G

For Abelian: multiplication is Commutative SOLUTION: 𝐺 = {1, πœ”, πœ”2}

a) Associative law holds 1 Γ— πœ” Γ— πœ”2 = 1 Γ— πœ” Γ— πœ”2 1 Γ— πœ”3 = πœ” Γ— πœ”2 πœ”3 = πœ”3

1 = 1 ∈ 𝐺 b) 1 is the identity element with respect to multiplication

As, 1 Γ— 1 = 1 ∈ 𝐺 1 Γ— πœ” = πœ” ∈ 𝐺 1 Γ— πœ”2 = πœ”2 ∈ 𝐺

c) Each element has an inverse in G Inverse of 1 is 1∈ 𝐺 Inverse of πœ” is πœ”2 ∈ 𝐺 Inverse of πœ”2 is πœ” ∈ 𝐺

𝐺, . is a group For Abelian:

1 Γ— πœ” = πœ” Γ— 1 = πœ” ∈ 𝐺 1 Γ— πœ”2 = πœ”2 Γ— 1 = πœ”2 ∈ 𝐺

πœ” Γ— πœ”2 = πœ”2 Γ— πœ” = πœ”3 = 1 ∈ 𝐺 β€˜.’ Is multiplication 𝐺, . is a Abelian group

Q.3(ii) QUESTION: If three books are picked at random from a shelf containing 3 novels, 4 book of poems and a dictionary. What is the probability that: (i) dictionary is selected (ii) one novel and 2 book of poems are selected SOLUTION: Total novels = 3 Total book of poems = 4 Total dictionary = 1 Total books = 3 + 4 + 1 = 8 Three books are selected at random 𝑂 𝑆 = 𝐢3.

8

(i) dictionary is selected Let A be the event that a dictionary is selected

𝑃 𝐴 =𝑂 𝐴

𝑂 𝑆

=𝐢2.

7 𝐢1.1

𝐢3.8

=21

56

=3

8

(ii) one novel and 2 book of poems are selected Let B be the event that one novel and 2 book of poems are selected

𝑃 𝐡 =𝑂 𝐡

𝑂 𝑆

=𝐢1.

3 𝐢2.4

𝐢3.8

=3 Γ— 6

56

=9

28

OR Q.3(ii)

QUESTION: In how many ways can a party of 5 students and 2 teachers be formed out of 15 students and 5 teachers. SOLUTION: Total students = 15 Total teachers = 5 A party of 5 students and 2 teachers be formed π‘‡π‘œπ‘‘π‘Žπ‘™ π‘€π‘Žπ‘¦π‘  = 𝐢5.

15 𝐢2.5

= 3003 Γ— 10 = 30030

Q.3(iii) QUESTION: Prove by the principle of Mathematical Induction. 1

1.2+

1

2.3+

1

3.4+. . . +

1

𝑛(𝑛+1)=

𝑛

𝑛+1, βˆ€π‘› ∊ β„•

SOLUTION: PROOF I:

Verifying p(n) for 𝑛 = 1 1

1.2=

1

1+1

1

2=

1

2 Verified

𝑃 𝑛 𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’ π‘“π‘œπ‘Ÿ 𝑛 = 1

PROOF II:

Assuming that p(𝑛) is true for 𝑛 = π‘˜

So we have, 1

1.2+

1

2.3+

1

3.4+. . . +

1

π‘˜(π‘˜+1)=

π‘˜

π‘˜+1 ----(1)

Kth term =1

π‘˜(π‘˜ + 1)

k + 1 th term =1

(π‘˜ + 1)(π‘˜ + 2)

Adding 1

(π‘˜+1)(π‘˜+2) both sides in (1)

1

1.2+

1

2.3+

1

3.4+. . . +

1

π‘˜ π‘˜+1 +

1

π‘˜+1 π‘˜+2 =

π‘˜

π‘˜+1 +

1

π‘˜+1 π‘˜+2

=π‘˜ π‘˜+2 +1

π‘˜+1 π‘˜+2

=π‘˜2+2π‘˜+1

π‘˜+1 π‘˜+2

= π‘˜+1 2

π‘˜+1 π‘˜+2

=π‘˜+1

π‘˜+1+1

π‘Šπ‘•π‘–π‘π‘• 𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’ π‘“π‘œπ‘Ÿ 𝑛 = π‘˜ + 1

𝐻𝑒𝑛𝑐𝑒, 𝑃 𝑛 𝑖𝑠 π‘‘π‘’π‘Ÿπ‘’ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘›π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  𝑛.

OR Q.3(iii)

QUESTION: Find the sum of the following series: 212 + 222 + 232 + . . . + 502 SOLUTION: 212 + 222 + 232 + . . . + 502

= 502 βˆ’ 212

∡ 𝑛2 =𝑛 𝑛 + 1 (2𝑛 + 1)

6

=50 50 + 1 (2 Γ— 50 + 1)

6βˆ’

21 21 + 1 (2 Γ— 21 + 1)

6

=50 51 (101)

6βˆ’

21 22 (41)

6

= 42925 βˆ’ 3157 = 39768

Q.3(iv) QUESTION: Find the sum of an A.P., of nineteen terms whose middle term in 10. SOLUTION: Number of terms =n=19

𝑀𝑖𝑑𝑑𝑙𝑒 π‘‘π‘’π‘Ÿπ‘š =𝑛+1

2𝑑𝑕 π‘‘π‘’π‘Ÿπ‘š

𝑀. 𝑇 =20

2= 10𝑑𝑕 π‘‘π‘’π‘Ÿπ‘š

In an A.P. nth term = Tn=a+(n-1)d 𝑇10 = π‘Ž + 10 βˆ’ 1 𝑑 10 = π‘Ž + 9𝑑 π‘Ž + 9𝑑 = 10 ---(1) In an A.P.

Sum of n terms = 𝑆𝑛 =𝑛

2{2π‘Ž + 𝑛 βˆ’ 1 𝑑}

Sum of 19 terms = 𝑆19 =19

2{2π‘Ž + 19 βˆ’ 1 𝑑}

𝑆19 =19

2{2π‘Ž + 18𝑑}

𝑆19 =19

2Γ— 2 π‘Ž + 9𝑑

𝑆19 = 19 10

𝑆19 = 190 [π‘ˆπ‘ π‘–π‘›π‘” (1)]

Q.3(v) QUESTION:

Find the value of n so that π‘Žπ‘›+1+𝑏𝑛+1

π‘Žπ‘› +𝑏𝑛 may become the H.M. between a and b.

SOLUTION:

H.M. between a and b is 2π‘Žπ‘

π‘Ž+𝑏

According to the question: π‘Žπ‘›+1 + 𝑏𝑛+1

π‘Žπ‘› + 𝑏𝑛=

2π‘Žπ‘

π‘Ž + 𝑏

π‘Ž + 𝑏 π‘Žπ‘›+1 + 𝑏𝑛+1 = 2π‘Žπ‘ π‘Žπ‘› + 𝑏𝑛 π‘Žπ‘›+2 + π‘Žπ‘π‘›+1 + π‘Žπ‘›+1𝑏 + 𝑏𝑛+2 = 2π‘Žπ‘›+1𝑏 + 2π‘Žπ‘π‘›+1 π‘Žπ‘›+2 + π‘Žπ‘π‘›+1 βˆ’ 2π‘Žπ‘π‘›+1 + π‘Žπ‘›+1𝑏 βˆ’ 2π‘Žπ‘›+1𝑏 + 𝑏𝑛+2 = 0 π‘Žπ‘›+2 βˆ’ π‘Žπ‘π‘›+1 βˆ’ π‘Žπ‘›+1𝑏 + 𝑏𝑛+2 = 0 π‘Žπ‘Žπ‘›+1 βˆ’ π‘Žπ‘›+1𝑏 βˆ’ π‘Žπ‘ + 𝑏𝑏𝑛+1 = 0 π‘Žπ‘›+1 π‘Ž βˆ’ 𝑏 —𝑏𝑛+1 π‘Ž βˆ’ 𝑏 = 0 π‘Ž βˆ’ 𝑏 π‘Žπ‘›+1 βˆ’ 𝑏𝑛+1 = 0 π‘Žπ‘›+1 βˆ’ 𝑏𝑛+1 = 0 π‘Žπ‘›+1 = 𝑏𝑛+1 π‘Žπ‘›+1

𝑏𝑛+1= 1

π‘Ž

𝑏 𝑛+1

= π‘Ž

𝑏

0

By comparing 𝑛 + 1 = 0

𝑛 = βˆ’1

OR Q.3(v)

QUESTION: Find the first term of a G.P., whose second term is 3 and sum to infinity is 12. SOLUTION: In a G.P.: 𝑇𝑛 = π‘Žπ‘Ÿπ‘›βˆ’1 𝑇2 = π‘Žπ‘Ÿ2βˆ’1 = 3 π‘Žπ‘Ÿ = 3 --- 1

𝑆 =π‘Ž

1 βˆ’ π‘Ÿ = 12

π‘Ž

1 βˆ’ π‘Ÿ = 12

Γ— 𝑖𝑛𝑔 𝑏𝑦 π‘Ÿ, π‘π‘œπ‘‘π‘• 𝑠𝑖𝑑𝑒𝑠 π‘Žπ‘Ÿ

1 βˆ’ π‘Ÿ = 12π‘Ÿ

3

1 βˆ’ π‘Ÿ = 12π‘Ÿ [𝑒𝑠𝑖𝑛𝑔 (1)]

1

1 βˆ’ π‘Ÿ = 4π‘Ÿ

1 = 4π‘Ÿ 1 βˆ’ π‘Ÿ 1 = 4π‘Ÿ βˆ’ 4π‘Ÿ2 4π‘Ÿ2 βˆ’ 4π‘Ÿ + 1 = 0 2π‘Ÿ βˆ’ 1 2 = 0 2π‘Ÿ βˆ’ 1 = 0

π‘Ÿ =1

2

1 ⟹ π‘Žπ‘Ÿ = 3

π‘Ž 1

2 = 3

π‘Ž = 6

SECTION B

TRIGONOMETRY

Q.4(i) QUESTION: A belt 24.75 meters long passes around a 3.5 cm diameter pulley. As the belt makes 3 complete revolutions in a minute, how many radians does the wheel turn in two second? SOLUTION: Length of belt = 24.75π‘š

Diameter of the wheel of Pulley = 3.5π‘π‘š

∡ π‘Ÿ =π·π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ

2

π‘Ÿ =3.5

2π‘π‘š = 1.75π‘π‘š

π‘Ÿ =1.75

100= 0.0175π‘š

As the belt makes three complete revolutions in a minute

𝑠 = π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘π‘œπ‘£π‘’π‘Ÿπ‘’π‘‘ 𝑏𝑦 𝑑𝑕𝑒 𝑏𝑒𝑙𝑑 𝑖𝑛 π‘Ž π‘šπ‘–π‘›π‘’π‘‘π‘’ = 3(24.75)

= 74.25π‘š

𝑠 = π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘π‘œπ‘£π‘’π‘Ÿπ‘’π‘‘ 𝑏𝑦 𝑑𝑕𝑒 𝑏𝑒𝑙𝑑 𝑖𝑛 π‘Ž π‘ π‘’π‘π‘œπ‘›π‘‘ =74.25

60

𝑠 = 1.2375π‘š

∡ 𝑠 = π‘Ÿπœƒ

πœƒ =𝑠

π‘Ÿ=

1.2375

0.0175= 70.714

For 2 seconds πœƒ = 70.714 Γ— 2

πœƒ = 141.428π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

π‘ π‘’π‘π‘œπ‘›π‘‘

Q.4(ii) QUESTION: Find the period of π‘‘π‘Žπ‘›π‘₯. SOLUTION: 𝐿𝑒𝑑 𝑓 π‘₯ = π‘‘π‘Žπ‘›π‘₯ 𝑓 π‘₯ + 𝑝 = π‘‘π‘Žπ‘›(π‘₯ + 𝑝)

=π‘‘π‘Žπ‘›π‘₯ + π‘‘π‘Žπ‘›π‘

1 βˆ’ π‘‘π‘Žπ‘›π‘₯π‘‘π‘Žπ‘›π‘

Replacing p with πœ‹, we get

𝑓 π‘₯ + πœ‹ =π‘‘π‘Žπ‘›π‘₯ + π‘‘π‘Žπ‘›πœ‹

1 βˆ’ π‘‘π‘Žπ‘›π‘₯π‘‘π‘Žπ‘›πœ‹

= π‘‘π‘Žπ‘›π‘₯ + 0

1 βˆ’ π‘‘π‘Žπ‘›π‘₯(0)

= π‘‘π‘Žπ‘›π‘₯

1 βˆ’ 0

= π‘‘π‘Žπ‘›π‘₯ 𝑓 π‘₯ + πœ‹ = 𝑓(π‘₯)

𝐻𝑒𝑛𝑐𝑒, 𝑓 π‘₯ 𝑖𝑠 𝑑𝑕𝑒 π‘π‘’π‘Ÿπ‘–π‘œπ‘‘π‘–π‘ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ πœ‹.

Q.4(iii) QUESTION: If a=b=c then prove that r: R : r1 = 1 : 2 : 3, where r, R, r1 have their usual meanings. SOLUTION: ? ? r: R ∢ r1 = 1 ∢ 2 ∢ 3

π‘Ÿ =βˆ†

𝑠, 𝑅 =

π‘Žπ‘π‘

4βˆ†, π‘Ÿ1 =

βˆ†

𝑠 βˆ’ π‘Ž

Given a=b=c

βˆ†= 𝑆 𝑆 βˆ’ π‘Ž 𝑆 βˆ’ 𝑏 𝑆 βˆ’ 𝑐 ----(1)

Where, 𝑆 =π‘Ž+𝑏+𝑐

2

Here, 𝑆 =π‘Ž+π‘Ž+π‘Ž

2=

3π‘Ž

2

𝑆 βˆ’ π‘Ž = 𝑆 βˆ’ 𝑏 = 𝑆 βˆ’ 𝑐 =3π‘Ž

2βˆ’

π‘Ž

1=

π‘Ž

2

𝑆 βˆ’ π‘Ž =π‘Ž

2, 𝑆 βˆ’ 𝑏 =

π‘Ž

2, 𝑆 βˆ’ 𝑐 =

π‘Ž

2

1 β‡’ βˆ†= 3π‘Ž

2Γ—

π‘Ž

2Γ—

π‘Ž

2Γ—

π‘Ž

2

βˆ†= 3π‘Ž4

16

βˆ†= 3 π‘Ž2

4

Now, π‘Ÿ =βˆ†

𝑠=

3 π‘Ž2

4

3π‘Ž

2

= 3 π‘Ž2

4Γ—

2

3π‘Ž=

3π‘Ž

2Γ—3 =

3π‘Ž

6

𝑅 =π‘Žπ‘π‘

4βˆ†=

π‘Ž. π‘Ž. π‘Ž

4 Γ— 3 π‘Ž2

4

=π‘Ž

3=

π‘Ž

3Γ—

3

3=

3π‘Ž

3

π‘Ÿ1 =βˆ†

𝑠 βˆ’ π‘Ž=

3 π‘Ž2

4

π‘Ž2

= 3 π‘Ž2

4Γ—

2

π‘Ž=

3π‘Ž

2

Now, π‘Ÿ: 𝑅: π‘Ÿ1 = 3π‘Ž

6∢

3π‘Ž

3 ∢

3π‘Ž

2

𝑋𝑖𝑛𝑔 𝑅. 𝐻. 𝑆 𝑏𝑦 6

3π‘Ž, 𝑀𝑒 𝑔𝑒𝑑

π‘Ÿ: 𝑅: π‘Ÿ1 = 3π‘Ž

6 Γ—

6

3π‘Ž:

3π‘Ž

3Γ—

6

3π‘Ž ∢

3π‘Ž

2Γ—

6

3π‘Ž

π‘Ÿ: 𝑅: π‘Ÿ1 = 1 ∢ 2 ∢ 3

Q5(iv) QUESTION: π‘‘π‘Žπ‘›2πœƒπ‘π‘œπ‘‘πœƒ = 3 SOLUTION: π‘‘π‘Žπ‘›2πœƒπ‘π‘œπ‘‘πœƒ = 3

2π‘‘π‘Žπ‘›πœƒ

1 βˆ’ tan2 πœƒΓ—

1

π‘‘π‘Žπ‘›πœƒ= 3

2

1 βˆ’ tan2 πœƒ= 3

2 = 3 1 βˆ’ tan2 πœƒ 2 = 3 βˆ’ 3 tan2 πœƒ 3 tan2 πœƒ = 3 βˆ’ 2 3 tan2 πœƒ = 1

tan2 πœƒ =1

3

π‘‘π‘Žπ‘›πœƒ = Β±1

3

Either:

π‘‘π‘Žπ‘›πœƒ =1

3

Or:

π‘‘π‘Žπ‘›πœƒ = βˆ’1

3

πœƒ = tanβˆ’1 1

3

πœƒ =πœ‹

6

πœƒ = tanβˆ’1 βˆ’1

3

πœƒ = βˆ’πœ‹

6

𝐺. 𝑆 = 2π‘›πœ‹ +πœ‹

6 βˆͺ 2π‘›πœ‹ βˆ’

πœ‹

6

𝑛 ∈ β„€

Q.4(v) QUESTION: Prove that: π‘‡π‘Žπ‘›βˆ’1 1

5+ π‘‡π‘Žπ‘›βˆ’1 1

4= π‘‡π‘Žπ‘›βˆ’1 9

19

SOLUTION:

? ? π‘‡π‘Žπ‘›βˆ’11

5+ π‘‡π‘Žπ‘›βˆ’1

1

4= π‘‡π‘Žπ‘›βˆ’1

9

19

𝐿𝑒𝑑 𝑦 = π‘‡π‘Žπ‘›βˆ’1 1

5+ π‘‡π‘Žπ‘›βˆ’1 1

4= 𝐴 + 𝐡 ------(1)

Where, 𝐴 = π‘‡π‘Žπ‘›βˆ’1 1

5 and 𝐡 = π‘‡π‘Žπ‘›βˆ’1 1

4

So, π‘‡π‘Žπ‘›π΄ =1

5 and π‘‡π‘Žπ‘›π΅ =

1

4

1 β‡’ 𝑦 = 𝐴 + 𝐡 Taking Tan of both sides π‘‡π‘Žπ‘›π‘¦ = π‘‡π‘Žπ‘›(𝐴 + 𝐡)

π‘‡π‘Žπ‘›π‘¦ =π‘‡π‘Žπ‘›π΄ + π‘‡π‘Žπ‘›π΅

1 βˆ’ π‘‡π‘Žπ‘›π΄ π‘‡π‘Žπ‘›π΅

π‘‡π‘Žπ‘›π‘¦ =

15

+14

1 βˆ’15

Γ—14

=

4 + 520

1 βˆ’1

20 =

9201920

π‘‡π‘Žπ‘›π‘¦ =9

19

𝑦 = π‘‡π‘Žπ‘›βˆ’19

19

π‘‡π‘Žπ‘›βˆ’1 1

5+ π‘‡π‘Žπ‘›βˆ’1 1

4= π‘‡π‘Žπ‘›βˆ’1 9

19 πΉπ‘Ÿπ‘œπ‘š 1

OR Q.4(v)

QUESTION:

Prove that: π‘†π‘–π‘›βˆ’1𝐴 + π‘†π‘–π‘›βˆ’1𝐡 = sinβˆ’1 𝐴 1 βˆ’ 𝐡2 + 𝐡 1 βˆ’ 𝐴2

SOLUTION: 𝐿𝑒𝑑 𝑑 = π‘†π‘–π‘›βˆ’1𝐴 + π‘†π‘–π‘›βˆ’1𝐡 = π‘₯ + 𝑦 ------(1) Where, π‘₯ = π‘†π‘–π‘›βˆ’1𝐴 and 𝑦 = π‘†π‘–π‘›βˆ’1𝐡

So, 𝑆𝑖𝑛π‘₯ = 𝐴 𝑆𝑖𝑛2π‘₯ + cos2 π‘₯ = 1 𝐴2 + cos2 π‘₯ = 1 cos2 π‘₯ = 1 βˆ’ 𝐴2

πΆπ‘œπ‘ π‘₯ = 1 βˆ’ 𝐴2

and 𝑠𝑖𝑛𝑦 = 𝐡

𝑆𝑖𝑛2𝑦 + cos2 𝑦 = 1 𝐡2 + cos2 𝑦 = 1 cos2 𝑦 = 1 βˆ’ 𝐡2

πΆπ‘œπ‘ π‘¦ = 1 βˆ’ 𝐡2

1 β‡’ 𝑑 = π‘₯ + 𝑦 Taking Sin of both sides 𝑠𝑖𝑛𝑑 = sin(π‘₯ + 𝑦) 𝑠𝑖𝑛𝑑 = sinxcosy + cosxsiny

𝑠𝑖𝑛𝑑 = A 1 βˆ’ 𝐡2 + B 1 βˆ’ 𝐴2

𝑑 = sinβˆ’1 𝐴 1 βˆ’ 𝐡2 + 𝐡 1 βˆ’ 𝐴2 Proved.

SECTION C Q.5(a) QUESTION:

SOLUTION: Let five shares in A.P. are: π‘Ž βˆ’ 4𝑑, π‘Ž βˆ’ 2𝑑, π‘Ž, π‘Ž + 2𝑑, π‘Ž + 4𝑑 A/c to the Ist condition: π‘Ž βˆ’ 4𝑑 + π‘Ž βˆ’ 2𝑑 + π‘Ž + π‘Ž + 2𝑑 + π‘Ž + 4𝑑 = 600 5π‘Ž = 600

π‘Ž = 120 A/c to the 2nd condition:

π‘Ž βˆ’ 4𝑑 + π‘Ž βˆ’ 2𝑑 =1

7 π‘Ž + π‘Ž + 2𝑑 + π‘Ž + 4𝑑

2π‘Ž βˆ’ 6𝑑 =1

7 3π‘Ž + 6𝑑

14π‘Ž βˆ’ 42𝑑 = 3π‘Ž + 6𝑑 14π‘Ž βˆ’ 3π‘Ž = 42𝑑 + 6𝑑 11π‘Ž = 48𝑑 β‡’ 48𝑑 = 11π‘Ž

𝑑 =11 Γ— 120

48=

55

2

Five shares are when a=120 and d=55

2:

π‘Ž βˆ’ 4𝑑, π‘Ž βˆ’ 2𝑑, π‘Ž, π‘Ž + 2𝑑, π‘Ž + 4𝑑

120 βˆ’ 4 55

2 , 120 βˆ’ 2

55

2 , 120, 120 + 2

55

2 , 120 + 4

55

2

10, 65, 120, 175, 230

OR Q.5(a)

QUESTION: Note: BIEK has made mistake here, by 35th term, it is impossible question. It is 34th term.

π‘Ύπ’“π’π’π’ˆ π‘Έπ’–π’†π’”π’•π’Šπ’π’: 𝐼𝑛 π‘Žπ‘› 𝐻. 𝑃. , 𝑑𝑕𝑒 10𝑑𝑕 π‘‘π‘’π‘Ÿπ‘š 𝑖𝑠 35, 35𝑑𝑕 π‘‘π‘’π‘Ÿπ‘š 𝑖𝑠 25.𝐼𝑓 𝑑𝑕𝑒 π‘™π‘Žπ‘ π‘‘ π‘‘π‘’π‘Ÿπ‘š 𝑖𝑠 2, 𝑓𝑖𝑛𝑑 𝑑𝑕𝑒 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘’π‘Ÿπ‘šπ‘ .

SOLUTION: In an H.P:

pth term = 10th term = π‘₯ = 35, 𝑝 = 10

qth term = 35th term = 𝑦 = 25, π‘ž = 35

rth term = last term = 𝑧 = 2, π‘Ÿ == 𝑛 =?

We have,

1

π‘₯

1

𝑦

1

𝑧

𝑝 π‘ž π‘Ÿ1 1 1

= 0

1

35

1

25

1

210 35 𝑛1 1 1

= 0

Γ—ing 𝑅1 by 350, we get

10 14 17510 35 𝑛1 1 1

= 0 Γ— 350

Expanding by 𝐢3, we get

175 10 351 1

βˆ’ 𝑛 10 141 1

+ 1 10 1410 35

= 0

175 10 βˆ’ 35 βˆ’ 𝑛 10 βˆ’ 14 + 250 βˆ’ 140 = 0 175 βˆ’25 βˆ’ 𝑛 βˆ’4 + 350 βˆ’ 140 = 0 βˆ’4375 + 4𝑛 + 210 = 0 4𝑛 βˆ’ 4165 = 0 4𝑛 = 4165

𝑧 =4165

4 Not a positive integer

Hence, wrong Question

Q.5(b) QUESTION:

Prove law of Cosine: a2 =b

2 + c

2 – 2bccos𝛼

PROOF

Law of Cosine: c2 =a

2 + b

2 – 2abcos𝜸

Proof: We place a βˆ†ABC in x-, y- coordinate system such that C(0,0) is at the origin and B(a,0) on

positive x-axis as shown in the figure.

As, cos 1800 βˆ’ 𝛾 =π‘π‘Žπ‘ π‘’

π‘π‘’π‘Ÿ=

𝐢𝐿

𝐴𝐢

cos 1800 π‘π‘œπ‘ π›Ύ + sin 1800 𝑠𝑖𝑛𝛾 =𝐢𝐿

𝑏

βˆ’1 π‘π‘œπ‘ π›Ύ + (0)𝑠𝑖𝑛𝛾 =𝐢𝐿

𝑏

π‘π‘œπ‘ π›Ύ =𝐢𝐿

𝑏

𝐢𝐿 = βˆ’π‘π‘π‘œπ‘ π›Ύ

As, sin 1800 βˆ’ 𝛾 =π‘π‘’π‘Ÿ

π‘π‘’π‘Ÿ=

𝐴𝐿

𝐴𝐢

sin 1800 π‘π‘œπ‘ π›Ύ βˆ’ cos 1800 𝑠𝑖𝑛𝛾 =𝐢𝐿

𝑏

0 π‘π‘œπ‘ π›Ύ βˆ’ (βˆ’1)𝑠𝑖𝑛𝛾 =𝐢𝐿

𝑏

𝑠𝑖𝑛𝛾 =𝐢𝐿

𝑏

𝐢𝐿 = 𝑏𝑠𝑖𝑛𝛾

So, coordinates of A are (b.cos𝛾, b.sin𝛾)

We have distance formula as:

d = (π‘₯2 βˆ’ π‘₯1)2 + (𝑦2 βˆ’ 𝑦1)2

Here 𝐴𝐡 = c = (π‘π‘π‘œπ‘ π›Ύ βˆ’ π‘Ž)2 + (𝑏𝑠𝑖𝑛𝛾 βˆ’ 0)2

c = 𝑏2π‘π‘œπ‘ 2𝛾 βˆ’ 2π‘Žπ‘π‘π‘œπ‘ π›Ύ + π‘Ž2 + 𝑏2𝑠𝑖𝑛2𝛾

c = 𝑏2π‘π‘œπ‘ 2𝛾 + 𝑏2𝑠𝑖𝑛2𝛾 βˆ’ 2π‘Žπ‘π‘π‘œπ‘ π›Ύ + π‘Ž2

c = 𝑏2(π‘π‘œπ‘ 2𝛾 + 𝑠𝑖𝑛2𝛾) βˆ’ 2π‘Žπ‘π‘π‘œπ‘ π›Ύ + π‘Ž2

c = 𝑏2(1) βˆ’ 2π‘Žπ‘π‘π‘œπ‘ π›Ύ + π‘Ž2 Squaring both sides

c2 = 𝑏2 βˆ’ 2π‘Žπ‘π‘π‘œπ‘ π›Ύ + π‘Ž2

And hence, c2 = a

2 + b

2 – 2abcos𝛾

Similarly: a

2 = b

2 + c

2 – 2bccos𝛼

b2 = a

2 + c

2 – 2accos𝛽

OR Q.5(b)

QUESTION: Prove fundamental law: cos(𝛼 βˆ’ 𝛽) = cos𝛼. cos𝛽 + sin𝛼. sin𝛽 PROOF:

Fundamental Law: Consider a unit circle with centre at O(0,0) as shown in figure.

Let P(cos𝛽, sin𝛽) and Q(cos𝛼, sin𝛼) be any two points in unit circle.

We have distance formula as:

d = (π‘₯2 βˆ’ π‘₯1)2 + (𝑦2 βˆ’ 𝑦1)2

Here 𝑃𝑄 = (π‘π‘œπ‘ π›Ό βˆ’ π‘π‘œπ‘ π›½)2 + (𝑠𝑖𝑛𝛼 βˆ’ 𝑠𝑖𝑛𝛽)2 ------------------(1)

Now rotate the axes so that the positive direction of X-axis passes through the point P. Then with respect to this coordinate system, the coordinates of P and Q become (1,0) and (cos(𝛼 βˆ’ 𝛽), sin(𝛼 βˆ’ 𝛽)) respectively.

So, 𝑃𝑄 = [ cos 𝛼 βˆ’ 𝛽 βˆ’ 1]2 + [ sin 𝛼 βˆ’ 𝛽 βˆ’ 0 ]2 ------------------(2)

Comparing (1) and (2), we get

(π‘π‘œπ‘ π›Ό βˆ’ π‘π‘œπ‘ π›½)2 + (𝑠𝑖𝑛𝛼 βˆ’ 𝑠𝑖𝑛𝛽)2 = [ cos 𝛼 βˆ’ 𝛽 βˆ’ 1]2 + [ sin 𝛼 βˆ’ 𝛽 βˆ’ 0 ]2

or (π‘π‘œπ‘ π›Ό βˆ’ π‘π‘œπ‘ π›½)2 + (𝑠𝑖𝑛𝛼 βˆ’ 𝑠𝑖𝑛𝛽)2 = [ cos 𝛼 βˆ’ 𝛽 βˆ’ 1]2 + [ sin 𝛼 βˆ’ 𝛽 βˆ’ 0 ]2

or cos2𝛼 – 2cos𝛼.cos𝛽 + cos2𝛽 + sin2𝛼 – 2sin𝛼.sin𝛽 + sin2𝛽 = cos2(𝛼 βˆ’ 𝛽) – 2cos(𝛼 βˆ’ 𝛽) + 1 + sin2(𝛼 βˆ’ 𝛽)

or sin2𝛼 + cos2𝛼 – 2cos𝛼.cos𝛽 – 2sin𝛼.sin𝛽 + sin2𝛽 + cos2𝛽 = sin2(𝛼 βˆ’ 𝛽)+ cos2(𝛼 βˆ’ 𝛽) + 1 – 2cos(𝛼 βˆ’ 𝛽)

or 1 – 2cos𝛼.cos𝛽 – 2sin𝛼.sin𝛽 + 1 = 1 + 1 – 2cos(𝛼 βˆ’ 𝛽)

or – 2cos𝛼.cos𝛽 – 2sin𝛼.sin𝛽 = – 2cos(𝛼 βˆ’ 𝛽) Dividing by -2, we get or cos𝛼.cos𝛽 + sin𝛼.sin𝛽 = cos(𝛼 βˆ’ 𝛽)

Hence, cos(𝛼 βˆ’ 𝛽) = cos𝛼.cos𝛽 + sin𝛼.sin𝛽

Q.6(a) QUESTION:

Show that: 2 = 1 +1

22 +1.3

2!.24 +1.3.5

3!.26 + . . .

SOLUTION:

2 = 1 +1

22 +1.3

2!.24 +1.3.5

3!.26 + . . .

Comparing R.H.S with R.H.S of

1 + π‘₯ 𝑛 = 1 + 𝑛π‘₯ +𝑛 𝑛 βˆ’ 1

2!π‘₯2 + . . .

𝑛π‘₯ =1

22=

1

4 ‐ ‐ ‐ (1)

Squaring both sides

𝑛2π‘₯2 =1

16 ‐ ‐ ‐ (2)

𝑛 𝑛 βˆ’ 1

2!π‘₯2 =

1.3

2!. 24

𝑛 𝑛 βˆ’ 1 π‘₯2 =3.2!

2! .16

𝑛 𝑛 βˆ’ 1 π‘₯2 =3

16

Γ· 𝑖𝑛𝑔 𝑏𝑦 2 , 𝑀𝑒 𝑔𝑒𝑑 𝑛 𝑛 βˆ’ 1 π‘₯2

𝑛2π‘₯2=

3

16Γ·

1

16

𝑛 βˆ’ 1

𝑛=

3

16Γ— 16

𝑛 βˆ’ 1

𝑛= 3 ⟹ 𝑛 βˆ’ 1 = 3𝑛

βˆ’1 = 3𝑛 βˆ’ 𝑛 2𝑛 = βˆ’1

𝑛 = βˆ’1

2

1 ⟹ 𝑛π‘₯ =1

4

βˆ’1

2π‘₯ =

1

4

π‘₯ = βˆ’1

2

Now,

𝑅. 𝐻. 𝑆 = 1 βˆ’1

2

βˆ’12

= 1

2 βˆ’

12

= 2 12

= 2 = 𝐿. 𝐻. 𝑆

Q.6(b) QUESTION: Solve the following system of equations by Cramer’s Rule:

π‘₯ + 𝑦 + 𝑧 = 𝑑, π‘₯ + 1 + 𝑑 𝑦 + 𝑧 = 2𝑑, π‘₯ + 𝑦 + (1 + 𝑑)𝑧 = 0 SOLUTION:

π‘₯ + 𝑦 + 𝑧 = 𝑑 π‘₯ + 1 + 𝑑 𝑦 + 𝑧 = 2𝑑 π‘₯ + 𝑦 + 1 + 𝑑 𝑧 = 0 𝑑 β‰  0 The determinant of the coefficient is

𝐴 = 1 1 11 1 + 𝑑 11 1 1 + 𝑑

Expanding by 𝑅1

= 1 1 + 𝑑 1

1 1 + 𝑑 βˆ’ 1

1 11 1 + 𝑑

+ 1 1 1 + 𝑑1 1

= 1 + 𝑑 2 βˆ’ 1 βˆ’ 1 + 𝑑 βˆ’ 1 + 1 βˆ’ (1 + 𝑑) = 1 + 2𝑑 + 𝑑2 βˆ’ 1 βˆ’ 𝑑 βˆ’ 𝑑 𝐴 = 𝑑2 β‰  0, Non-singular

𝐴π‘₯ = 𝑑 1 1

2𝑑 1 + 𝑑 10 1 1 + 𝑑

Expanding by 𝐢1

= 𝑑 1 + 𝑑 1

1 1 + 𝑑 βˆ’ 2𝑑

1 11 1 + 𝑑

+ 0

= 𝑑 1 + 𝑑 2 βˆ’ 1 βˆ’ 2𝑑 1 + 𝑑 βˆ’ 1 + 0 = 𝑑 1 + 2𝑑 + 𝑑2 βˆ’ 1 βˆ’ 2𝑑(𝑑) = 𝑑 2𝑑 + 𝑑2 βˆ’ 2𝑑2 = 2𝑑2 + 𝑑3 βˆ’ 2𝑑2

𝐴π‘₯ = 𝑑3

𝐴𝑦 = 1 𝑑 11 2𝑑 11 0 1 + 𝑑

Expanding by 𝑅3

= 1 𝑑 1

2𝑑 1 βˆ’ 0 + (1 + 𝑑)

1 𝑑1 2𝑑

= 𝑑 βˆ’ 2𝑑 + 1 + 𝑑 2𝑑 βˆ’ 𝑑 = βˆ’π‘‘ + 1 + 𝑑 𝑑 = βˆ’π‘‘ + 𝑑 + 𝑑2

𝐴𝑦 = 𝑑2

𝐴 = 1 1 𝑑1 1 + 𝑑 2𝑑1 1 0

Expanding by 𝑅3

= 1 1 𝑑

1 + 𝑑 2𝑑 βˆ’ 1

1 𝑑1 2𝑑

+ 0

= 2𝑑 βˆ’ 𝑑(1 + 𝑑) βˆ’ 2𝑑 βˆ’ 𝑑 = 2𝑑 βˆ’ 𝑑 βˆ’ 𝑑2 βˆ’ 𝑑

𝐴𝑧 = βˆ’π‘‘2

By Cramer’s rule

π‘₯ =|𝐴π‘₯ |

𝐴 =

𝑑3

𝑑2= 𝑑

𝑦 ==|𝐴𝑦 |

|𝐴|=

𝑑2

𝑑2= 1

𝑧 ==|𝐴𝑧 |

|𝐴|=

βˆ’π‘‘2

𝑑2= βˆ’1

The solution is: π‘₯ = 𝑑, 𝑦 = 1, 𝑧 = βˆ’1

Q.7(a) QUESTION: Find the remaining trigonometric functions using radian function if π‘ π‘–π‘›πœƒ = 0.6 and π‘‘π‘Žπ‘›πœƒ is negative. SOLUTION: As, π‘ π‘–π‘›πœƒ is positive and π‘‘π‘Žπ‘›πœƒ is negative so 𝜌(πœƒ) is in second quadrant

In a unit circle

π‘₯2 + 𝑦2 = 1 ----(1)

Where π‘₯ = π‘π‘œπ‘ πœƒ and 𝑦 = π‘ π‘–π‘›πœƒ

Given, sinπœƒ = 𝑦 = 0.6

𝑦 = 0.6 ---(2)

(1) β‡’ π‘₯2 + 0.6 2 = 1

π‘₯2 + 0.36 = 1

π‘₯2 = 1 βˆ’ 0.36

π‘₯2 = 0.64

π‘₯ = Β±0.8

As 𝜌(πœƒ) is in second quadrant

π‘₯ = βˆ’0.8

π‘ π‘–π‘›πœƒ = 𝑦 = 0.6

π‘π‘œπ‘ π‘’π‘πœƒ =1

𝑦=

1

0.6=

π‘π‘œπ‘ πœƒ = π‘₯ = βˆ’0.8

π‘ π‘’π‘πœƒ =1

π‘₯=

βˆ’1

0.8=

π‘‘π‘Žπ‘›πœƒ =𝑦

π‘₯=

0.6

βˆ’0.8=

π‘π‘œπ‘‘πœƒ =π‘₯

𝑦=

Q.7(a) QUESTION: Prove any two of the following:

(i) 1βˆ’π‘ π‘–π‘›πœƒ

1βˆ’π‘ π‘–π‘›πœƒ= π‘ π‘’π‘πœƒ βˆ’ π‘‘π‘Žπ‘›πœƒ

(ii) 𝑠𝑖𝑛2πœƒ

π‘ π‘–π‘›πœƒβˆ’

π‘π‘œπ‘ 2πœƒ

π‘π‘œπ‘ πœƒ= π‘ π‘’π‘πœƒ

(iii) 𝑠𝑖𝑛7πœƒβˆ’π‘ π‘–π‘›5πœƒ

π‘π‘œπ‘ 7πœƒ+π‘π‘œπ‘ 5πœƒ= π‘‘π‘Žπ‘›πœƒ OR π‘‘π‘Žπ‘›

πœƒ

2 =

π‘ π‘–π‘›πœƒ

1+π‘π‘œπ‘ πœƒ

SOLUTION:

(i) 1βˆ’π‘ π‘–π‘›πœƒ

1+π‘ π‘–π‘›πœƒ= π‘ π‘’π‘πœƒ βˆ’ π‘‘π‘Žπ‘›πœƒ

𝐿. 𝐻. 𝑆 = 1βˆ’π‘ π‘–π‘›πœƒ

1+π‘ π‘–π‘›πœƒ

Γ— 𝑖𝑛𝑔 π‘Žπ‘›π‘‘ Γ· 𝑖𝑛𝑔 𝑏𝑦 1 βˆ’ π‘ π‘–π‘›πœƒ , 𝑀𝑒 𝑔𝑒𝑑

= 1βˆ’π‘ π‘–π‘›πœƒ

1+π‘ π‘–π‘›πœƒΓ—

1βˆ’π‘ π‘–π‘›πœƒ

1βˆ’π‘ π‘–π‘›πœƒ

= 1βˆ’π‘ π‘–π‘›πœƒ 2

1 2βˆ’ π‘ π‘–π‘›πœƒ 2

= 1βˆ’π‘ π‘–π‘›πœƒ 2

1βˆ’sin 2 πœƒ

= 1βˆ’π‘ π‘–π‘›πœƒ 2

cos 2 πœƒ

=1βˆ’π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ=

1

π‘π‘œπ‘ πœƒβˆ’

π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ= π‘ π‘’π‘πœƒ βˆ’ π‘‘π‘Žπ‘›πœƒ = 𝑅. 𝐻. 𝑆

(ii) 𝑠𝑖𝑛2

π‘ π‘–π‘›βˆ’

π‘π‘œπ‘ 2

π‘π‘œπ‘  = 𝑠𝑒𝑐

𝐿. 𝐻. 𝑆 = 𝑠𝑖𝑛2πœƒ

π‘ π‘–π‘›πœƒβˆ’

π‘π‘œπ‘ 2πœƒ

π‘π‘œπ‘ πœƒ

=𝑠𝑖𝑛2πœƒπ‘π‘œπ‘ πœƒ βˆ’π‘π‘œπ‘ 2πœƒπ‘ π‘–π‘›πœƒ

π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ

=𝑠𝑖𝑛(2πœƒ βˆ’ πœƒ)

π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ

=π‘ π‘–π‘›πœƒ

π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ

=1

π‘π‘œπ‘ πœƒ

= π‘ π‘’π‘πœƒ = 𝑅. 𝐻. 𝑆

(iii) 𝑠𝑖𝑛7ΞΈ –sin 5ΞΈ

π‘π‘œπ‘ 7ΞΈ +cos 5ΞΈ= π‘‘π‘Žπ‘›ΞΈ

𝐿. 𝐻. 𝑆 =𝑠𝑖𝑛7πœƒ βˆ’ 𝑠𝑖𝑛5πœƒ

π‘π‘œπ‘ 7πœƒ + π‘π‘œπ‘ 5πœƒ

= 2 cos

7πœƒ + 5πœƒ2 sin

7πœƒ βˆ’ 5πœƒ2

2 cos7πœƒ + 5πœƒ

2cos

7πœƒ βˆ’ 5πœƒ2

∡ π‘ π‘–π‘›π‘ˆ βˆ’ 𝑠𝑖𝑛𝑉 = 2 cos

π‘ˆ + 𝑉

2𝑠𝑖𝑛

π‘ˆ βˆ’ 𝑉

2

π‘π‘œπ‘ π‘ˆ + π‘π‘œπ‘ π‘‰ = 2 cosπ‘ˆ + 𝑉

2π‘π‘œπ‘ 

π‘ˆ βˆ’ 𝑉

2

= cos

12πœƒ2 sin

2πœƒ2

cos12πœƒ

2 cos2πœƒ2

= cos 6πœƒπ‘ π‘–π‘›πœƒ

cos 6πœƒπ‘π‘œπ‘ πœƒ

=π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ

= π‘‘π‘Žπ‘›πœƒ = 𝑅. 𝐻. 𝑆 OR

(iii) π‘‘π‘Žπ‘›πœƒ

2 =

π‘ π‘–π‘›πœƒ

1+π‘π‘œπ‘ πœƒ

𝑅. 𝐻. 𝑆 =sin πœƒ

1 + π‘π‘œπ‘ πœƒ

=2𝑠𝑖𝑛

πœƒ

2π‘π‘œπ‘ 

πœƒ

2

1+ π‘π‘œπ‘  2πœƒ

2 – π‘π‘œπ‘ 2πœƒ

2

∡ sin πœƒ = 2π‘ π‘–π‘›πœƒ

2π‘π‘œπ‘ 

πœƒ

2 & π‘π‘œπ‘ πœƒ = π‘π‘œπ‘ 2 πœƒ

2 – π‘π‘œπ‘ 2 πœƒ

2

=2𝑠𝑖𝑛

πœƒ

2π‘π‘œπ‘ 

πœƒ

2

1βˆ’π‘π‘œπ‘  2πœƒ

2 + 𝑠𝑖𝑛2πœƒ

2

=2𝑠𝑖𝑛

πœƒ

2π‘π‘œπ‘ 

πœƒ

2

𝑠𝑖𝑛2πœƒ

2 + 𝑠𝑖𝑛2πœƒ

2

=2𝑠𝑖𝑛

πœƒ

2π‘π‘œπ‘ 

πœƒ

2

2𝑠𝑖𝑛2πœƒ

2

=π‘π‘œπ‘ 

πœƒ

2

π‘ π‘–π‘›πœƒ

2

= π‘‘π‘Žπ‘›πœƒ

2= 𝐿. 𝐻. 𝑆

Q.7(C) QUESTION: Solve: π‘₯2 + 𝑦2 = 34, π‘₯𝑦 + 15 = 0 SOLUTION:

π‘₯2 + 𝑦2 = 34

π‘₯𝑦 + 15 = 0

π‘₯𝑦 = βˆ’15

𝑦 = βˆ’15

π‘₯ ----(1)

2 ⟹ π‘₯2 + βˆ’15

π‘₯

2

= 34 π‘ˆπ‘ π‘–π‘›π‘” (1)

π‘₯2 +225

π‘₯2 = 34

Γ— 𝑖𝑛𝑔 𝑏𝑦 π‘₯2 , 𝑀𝑒 𝑔𝑒𝑑

π‘₯4 + 225 = 34π‘₯2

π‘₯4 βˆ’ 34π‘₯2 + 225 = 0

π‘₯4 βˆ’ 25π‘₯2 βˆ’ 9π‘₯2 + 225 = 0

π‘₯2 π‘₯2 βˆ’ 25 βˆ’ 9 π‘₯2 βˆ’ 25 = 0

π‘₯2 βˆ’ 25 π‘₯2 βˆ’ 9 = 0

Either: π‘₯2 βˆ’ 25 = 0

π‘₯2 = 25 ⟹ π‘₯ = Β±5

Either: π‘₯2 βˆ’ 9 = 0

π‘₯2 = 9 ⟹ π‘₯ = Β±3

(1) ⟹ 𝑦 = βˆ’15

π‘₯

π‘₯ = 5

𝑦 = βˆ’15

5

𝑦 = βˆ’3, π‘₯ = 5

π‘₯ = βˆ’5

𝑦 = βˆ’15

βˆ’5

𝑦 = 3, π‘₯ = βˆ’5

π‘₯ = 3

𝑦 = βˆ’15

3

𝑦 = βˆ’5, π‘₯ = 3

π‘₯ = βˆ’3

𝑦 = βˆ’15

βˆ’3

𝑦 = 5, π‘₯ = βˆ’3

𝑆. 𝑆 = 5, βˆ’3 , βˆ’5,3 , 3, βˆ’5 , (βˆ’3,5)