Siklus Bahan Bakar Nuklir

Post on 17-Nov-2014

128 views 3 download

description

Reaktor Nuklir

Transcript of Siklus Bahan Bakar Nuklir

Physics Study ProgramFaculty of Mathematics and Natural SciencesInstitut Teknologi Bandung

FI-4241Topik Khusus Fisika Reaktor

Siklus Bahan Bakar NuklirAbdul Waris, Ph.D

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Siklus Bahan Bakar Nuklir Siklus bahan bakar nuklir (nuclear fuel cycle)

mencakup produksi, penggunaan, dan pembuangan bahan-bahan nuklir

Dalam banyak tahapan dari siklus bahan bakar, proses dan teknologi untuk menghasilkan bahan fisi untuk tujuan sipil dan militer secara esensi adalah sama

Oleh karena ada beberapa tahap dalam siklus bahan bakar dimana bahan nuklir dapat dialihkan dari maksud damai ke pembuatan senjata nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Siklus Bahan Bakar NuklirKomponen SBBN: Uranium Mining and

Milling Conversion to UF6

Enrichment Fuel Fabrication Power Reactors Waste repository Reproccesing &

Recycling

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Siklus Bahan Bakar Nuklir

Natural Uranium & Thorium

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Siklus Bahan Bakar Nuklir …Siklus bahan bakar nuklir bisa dibagi menjadi dua

bagian: Front-end fuel cycle Back-end fuel cycle Front-end fuel cycle mencakup proses-proses

mulai dari mining hingga fuel loading ke dalam reaktor. Siklus ini bisa dipandang sudah sangat establish

Back-end fuel cycle mencakup seluruh proses setelah bahan bakar sisa (spent fuel) dikeluarkan dari reaktor. Siklus ini merupakan tantangan tersendiri bagi para nuclear scientists & engineers

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Siklus bahan bakar nuklir

Pilihan untuk back-end fuel cycle secara umum dibagi 2 jenis.

Once-through fuel cycle (OTC) Recycling fuel cycle

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

“Once-Through” Fuel Cycle

Mill Conversion EnrichmentFuel

Fabrication

Reactor

Mine

Spent Fuel StorageDisposal

Uranium

Plutonium

Rad Waste

Spent Fuel Storage

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Reprocessing Fuel Cycle

Mill Conversion EnrichmentFuel

Fabrication

ReactorReprocessing

Mine

Spent Fuel StorageDisposal

Uranium

Plutonium

Rad Waste

(MOX)

Reprocessing

Spent Fuel Storage

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Nuclear Fuel Cycle with Reprocessing

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Multiple recycling of Pu with Minor Actinides (MA) in Liquid Metal-cooled Fast Reactor (LMFR) with ‘Closed

Fuel Cycle’ (presented by JNC, CEA & IAEA)

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Siklus bahan bakar nuklir bisa menjadi sangat kompleks

Material nuklir memiliki potensi untuk digunakan dalam keperluan sipil maupun militer.

Siklus bahan bakar dapat melibatkan sejumlah negara.

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Pengalihan Penggunaan ke Senjata Nuklir

Mill Conversion EnrichmentFuel

Fabrication

ReactorReprocessing

Weapons Fabrication

Mine

Spent Fuel StorageDisposal

Uranium

Plutonium

Rad WasteSpent Fuel

Storage

Reprocessing

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Siklus Produksi Senjata NuklirSiklus Produksi Senjata Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

LLW 1,000 drums26 MT U0.95 MT FP0.27 MT Ac

0.24 MT Pu

TRU/LLW

< 0.26 MT U0.95 MT FP0.27 MT Ac

~ 1 MT URa, ThMill tailings U7%

Th-230 100%, Ra 98%Airborne Rn

0.2% U3O8= 181 MT U

167 MT

26 MT

100,000MT ore

165 MT(0.3%U-235)

~ 0.5 MT U

27.5 MT

27.3 MT

~0.2 MT U

1 GWe, LWR, 1 yearReprocessing schemeThermal efficiency 0.325Capacity factor 0.8

Siklus BBN & Pembentukan Limbah Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

High-Level WasteSite Volume (103 m3) Activity (MCi)

Hanford 233.5 339.9

Savannah River

126.5 502.2

INEEL 11.2 49.3

West Valley 2.2 24.1

Total 373.4 915.5

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

HLW Generation

• For 1 GWe•year– Spent fuel: ~ 30 MT– FPs + Actinides: ~ 1 MT– HLLW: 15 ~ 30 m3

– Borosilicate glass: ~ 3 m3

– 150-liter canister:~ 30

• For 30 ~ 40 reactors: ~ 1,000 canisters/year

• For ~ 40 years: 40,000 canisters/repository

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Radioactivity of HLW

• Fission Products– Sr-90, Cs-135, I-129,

Tc-99, ...

• Actinides + U– Am-243, Am-241, Np-

237, Pu-239, Pu-240, Pu-242, Cm-245, Cm-244, ...

• Activated materials– H-3, C-14, Zr-95, Ni-

63, Fe-55, Co-60, ...

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Reprocessing of Spent Nuclear Fuel

Step 1: Decladding and Chopping

Step 2: Dissolution into HNO3

Step 3: Extraction of U and Puby Tri Butyl Phosphate(TBP)

Step 4: Pu Recovery from TBPto Aqueous phase

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Geological Underground Repository

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Yucca Mountain

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Engineered Barrier System

• Waste solid– To limit leaching of radionuclides to groundwater

• Metal canister, overpack– To prevent waste forms contacting groundwater– In oxygen-depleted environment, some metal canister generates hydrogen by

corrosion, and keeps the environment reducing.– By corrosion, metal canister swells, and groundwater movement through EBS

becomes more difficult.

• Buffer material– To make sure that water movement is negligibly slow in this domain.– To settle and maintain the position of the waste form– To retard radionuclides released from waste forms– To fill gaps between the waste form and the surrounding host rock and to seal

cracks in the host rock (self-sealing capability)– To control temperature increases in EBS caused by the decay heat of radionuclides– To maintain a proper pH and redox potential in pore water of the buffer material

(chemical buffering)– To buffer the stress due to the deformation of surrounding host rock as well as the

accumulation of corrosion products of metal canister (stress buffering effects)

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Risk of terrorism(new challenge to industry)

9/11 jetpassed nearIndian Point

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Referensi

R. G. Cochran and N. Tsoulfanidis, “The Nuclear Fuel Cycle: Analysis and Management”, ANS, 1999

W. Marshall, “Nuclear Power Technology Vol. 2 Fuel Cycle”, Clarendon Press Oxford, 1983

P.D. Wilson, “The Nuclear Fuel Cycle: From Ore to Waste”, Oxford, 2001

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Siklus Bahan Bakar Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Uranium & Plutonium Recycling

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S