Download - Challenge for Ultimate Thermal Efficiency of Internal ...

Transcript

Challenge for Ultimate Thermal Efficiency of Internal Combustion Engine by Low Temperature

Combustion Technology

Norimasa Iida Keio University

内燃机与燃料协同颠覆性创新国际工程科技论坛The International Summit on Breakout Technologies

of Engine and Fuel (ISEF2018)Aug 20th‐23rd 2018

天津香格里拉酒店, Tianjin

The “Innovative Combustion Technology” program  a national project is established  under the Cabinet Office , Government of Japan as a part of the “Cross‐ministerial Strategic Innovation Promotion Program (SIP) .””The Gasoline Combustion Team" is one of teams of the "Innovative Combustion Technology" program. This presentation is to introduce the  research and development activities of the "Gasoline SI Combustion Team." 

1

What is SIP?

The “Cross‐ministerial Strategic Innovation Promotion Program (SIP)”  is a national project under the Council for Science, Technology and Innovation to promote the advancement of science, technology and innovation in Japan.

2

25

30

35

40

45

50

55

1990 2000 2010 2020

Thermal Efficien

cy(%

Year

Purpose of SIP “Innovative Combustion Technology”

Transition of thermal efficiency of gasoline engines

HV

Thermal efficiency target : 50%

Innovative combustion technology

Mass-produced engine: max.~41%

To cope with social issues such as a climate change and energy security, the enhancement of the engine thermal efficiency is required.

3

SIP - Innovative Combustion Technology -

・Development of “Super-lean burn”technologies

Leader : Keio Univ. Prof. Iida

Gasoline Combustion Team

・Development of innovative controlsystems and CAE tools

Leader : Tokyo Univ. Prof. Kaneko

Controls Team

・ Development of high speedcombustion with low noise andcooling losses technologies

Leader : Kyoto Univ. Prof. Ishiyama

Diesel Combustion Team

・Development of exhaust energyutilization and mechanicalfriction reduction technologies

Leader : Waseda Univ. Prof. Daisho

Loss Reduction Team

¥10 billions ($100 millions) /5 years (2014-2018)

4

University of TokyoShigehiko Kaneko

Diesel Combustion/Control SubcommitteeCAE/PM Subcommittee

Controls Team

Cluster of Universities

Kyoto UniversityTakuji Ishiyama

Diesel Combustion/Control Subcommittee

Diesel Combustion Team

Cluster of Universities

Keio UniversityNorimasa Iida

Gasoline Combustion Subcommittee

Gasoline Combustion Team

Cluster of Universities

Waseda UniversityYasuhiro Daisho

Exhaust Energy Utilization SubcommitteeFriction Loss Reduction Subcommittee

Loss Reduction Team

Cluster of Universities

PartnershipAgreement

JST Funding(Management) Agency

Cabinet Office PD(Masanori Sugiyama)

PromotingCommittee

ProgramCouncil

Project Management

The Research Association ofAutomotive Internal Combustion Engines

Combustion Research Committee

DieselCombustion/Control

Subcommittee

FrictionLoss ReductionSubcommittee

Exhaust EnergyUtilization

Subcommittee

GasolineCombustion

Subcommittee

CAE/PMSubcommittee

Chair: Masanori Sugiyama (PD)Members: Shigeo Furuno (Sub-PD), Ministry of Economy, Trade and Industry, Ministry of Education, Culture, Sports, Science and Technology, JST, Experts from industry and academia

Chair: Masanori Sugiyama (PD)Members: Shigeo Furuno (Sub-PD), Experts from industry and academia

Advice to PD for planning

4 teams from approx. 80 universities

5

Research and Development ofSuper-Lean Burn for

High Efficiency Gasoline EngineGasoline Combustion Team

Graduate School of Science and TechnologyKeio University

Project ProfessorNorimasa Iida

Research and Development are conducted to realize the super-lean burn technology. Specifically,1) Ignition system enabled under super-lean and high intensity flow conditions, 2) Acceleration of the flame propagation by optimizing the tumble flow, 3) Cooling loss reduction based on the analysis of a wall heat transfer mechanism, 4) R&D for the creation of a knock control concept by an approach through

chemical kinetics.

10

Gasoline Combustion Team

"Gasoline Combustion Team" is comprised of Keio University as a Leader university and 29universities as a Cluster university. Upon agreement with the Japan Science and TechnologyAgency (JST), we have been conducting the research on the "Super‐Lean Burn for GasolineEngines" with a support of the Research Association of Automotive Internal CombustionEngines (AICE) under the strong industry, academia and government collaboration..

Team leader:Prof. Norimasa Iida(Keio Univ.)

7

Positioning and Necessity of Universities to Achieve Goals as a Entire Team

8

Thermalefficiency 50%

Basic model of flame kernel growth

1) Univ. Tokyo

Realization of super-lean burn at high intensity flowand high turbulence field

Investigation of ignition mechanism→ High performance ignition device

Non-FlowField

Fast FlowField

Laminar burning velocity measurement

6) Kyushu Univ.7) OsqkaPU5) Yamaguchi Univ.

Investigation of flame structure in fast flow fieldModeling of combustion

6) Kyushu Univ.

Setting common fuels & surrogate fuels 21) Hiroshima Univ.

(6)Kyushu Univ.

Investigation of flame propagation mechanism→ Realization of flame propa-gation acceleration method

DNS utilization(Investigation of ignition/flame propagation/cooling loss mechanism)

4) Tokyo Tech.8) Tokushima Univ.

Establishment of foundation for heat flux measurement : Sensor (thin film, wireless, metal substrates) 12) TCU 13) Univ.Tokyo 14) Meiji Univ.

Cooling loss reduction

Investigation of boundary layer→ VG structure

Modeling of coolingloss in fast flow field

10) Tokyo Tech.

Analysis of cooling losson the boundary layer

L) Keio Univ. 11) TUAT

11) TUAT

Knock suppression

Measurement of reaction time & Investigation of reaction mechanism

17) Tohoku Univ.18) Ibaraki Univ. (9)Sophia Univ.

Construction of detailed & simplified elementary reaction model21) Hiroshima Univ. 22) Osaka IT 23) Univ. Fukui

Knock analysis and modeling by simulation

20) Hokkaido Univ.

Loss Reduction Team:Friction loss reduction, Exhaustheat recovery, Turbocharger efficiency improvement

Investigation of auto-ignition/pressure vibration mechanisms→ Realization of knock suppression

Control Team : Construction of model “HINOCA”

Combustion fluctuation analysis

9) Chiba Univ.

Flow analysis of engine

Investigation of discharge/ ignition mechanisms in fast flow field

2) Nihon Univ.1) Univ. Tokyo

Dielectric plasma

Modeling of wall function26) Osaka P U

Investigation of knock(pressure vibration)mechanism

16) Nihon Univ.

Discharge & ignition model in fast flow field

3) Okayama Univ.

8) Tokushima Univ.

6) Kyushu Univ. 25) AIST

27) Kyushu Univ.28) Nagoya I Tech29) Keio Univ.

SIP, “Innovative Combustion Technology”

9

SIP Common gasoline

fabrication storages・SIP gasoline (regular) 4.8kL・SIP gasoline (premium) 14.0kL

5 years cooperation with other researchers

SIP surrogate fuels

Three-component surrogate fuel

Capable of emulating the basic combustion properties of gasoline on the market

Five-component surrogate fuel

Ten-component surrogate fuel

iso-octane

toluene

n-heptane

Diisobutylene(olefin)Regular

HighOctane

methylcyclohexane

(naphthene)

Iso-pentanen-pentane2methy2buteneETBE

trimethylbenzene(heavy)

(light)

By Prof. Miyoshi, Hiroshima Univ.

SIP Common Fuels Compositions and properties are disclosed on this website

DeliveryCluster Universities

10

Single cylinder,Optical accessible

4 cylinders

Ultra high speed RCM

Shock tubeMicro flow reactor Constant volume

Rapid compression expansions Machine

Engine combustion analysis

Single cycle combustion analysis

Virtual engines(Zero D simulation)

Basic combustion analysis

Applied Research

Basic Research

・By introducing the common fuels from Basic research to Applied research in 5 years, enabling the comparison the results of data between cluster universities.

SIP Common Gasoline

. 10 compnt. Surrogate

5 compnt. Surrogate

. Surrogate3 compnt. Surrogate

・SIP common fuels and3,5,10 components surrogate fuels are developed

・Modeling and Diagnostics of combustion phenomena

SIP Common Fuels Common gasoline and Surrogate

YearEngi

ne T

herm

al E

ffici

ency

(%)

Background and Position of R&D Plan

・High expansion ratio・Cooled EGR(Exhaust Gas Recirculation)

・Low friction

Thermal efficiency of hybrid vehicle(HV) engines: approx. 39%(at the beginning of SIP)

This project drives the research for the following objectives for output with super-lean burn as a core technology① Creation of technologies for elements to achieve 50% thermal efficiency② Modeling from the analysis of innovative combustion technologies

Innovative technology is indispensable

Realization of 50% Thermal Efficiency→ Innovative combustion

technology is indispensable.

Current main technologies

Transition of Thermal Efficiency of Gasoline Engines

Goal of SIP

SIP ProjectSIP Project

HV engines

11

Realize of Low Temperature Combustion by SLB

Super-Lean burn

Super-Lean burn Ordinary combustion(Stoichiometric combustion)

Increase of Specific heat ratio

100

80

60

40

20

0

Hea

t bal

ance

(%)

Exhaust loss

Unburned fuel loss

Ordinary

Cooling loss

Friction loss

Thermal efficiency

Super-Lean

Reduction of cooling loss

Operating condition targets for super-lean burn;・Super-Lean ( =2.0)・High turbulent flow ( u = 20~50 m/s, u’ = 5 m/s )・High EGR (EGR rate = 20 %)

12

Newton’s cooling equation・

2,600K 2,000K -25%

50%

tumble flow 

High energy Ignition

Flam

etic

knes

s[m

m]

Flam

ete

mpe

ratu

reT f

[K]

= 0.5

0.7

0.91.0

0.8

0.6

CH4/AirTu = 897.3 KP = 2.44 MPa= TDC

0.7

0.9 1.00.8

= 0.5

0.6

CH4/AirTu = 897.3 KP = 2.44 MPa= TDC

Laminar burning velocity SL Flame Temperature Tf

Flame Thickness

• Burning Velocity → decrease with Φ decreasing• Flame Thickness → increase with Φ decreasing

Influence of equivalence ratio on laminar flame 13

Super-Lean Burn (Super-Lean/High Intensity Flow/High EGR Combustion)

Example of visualization for ignition and combustionunder High Intensity tumbling flow

・Completely different combustion phenomena from conventional combustion.

・Under conditions of super-lean (λ=2.0),high intensity flow (u=20~50m/s, u’=5m/s) andhigh EGR ratio (EGR rate= 20%), Possibility of turbulent combustion mode called “Broken Reaction Zone

Super-lean burn (λ = 1.89)150mJ (100mA single discharge)

Conventional combustion (λ = 1.0)

In ExtIn Ext

14

Gasoline Combustion Team

We investigated the thermal efficiency of a test engine designed for the super‐lean burn operation as a project of the SIP “Gasoline combustion team.” 

In order to advance to the superlean burn condition,

・Arc Discharge energy・Tumbling flow intensity

were improved and those effectson the thermal efficiency wereexamined.

Objectives

15

Goal・Tasks and Solution Methods

Goal Concept Assignments Solutions

Attainm

ent of 50% therm

al efficiency

Realization of super-lean burn

No ignition

Engine knock

Heat loss on combustion chamber wall

UnburnableExtinguished

Creation of technologies from

science by the w

isdom of industry-academ

ia

Strong ignition system(Optimal ignition method)

Ignition at flow rate> 20m/s

High efficiency tumble portImprovement of combustion

chamber shape(High intensity turbulence flow

utilization)Flame propagation acceleration with

turbulence intensity > 5m/s

Temperature controlin combustion chamber

Approach based onreaction theory(Understanding

of elementary reaction)Knock suppression at ≥15

Improvement of surface shapein combustion chamber

Low temperature combustion(Investigation of heat

exchange phenomena)Cooling loss 50% reduction

16

Research Site (Shared Facility)Keio University SIP Engine Laboratory at Ono Sokki Technical Center

Single-cylindermetal engine

Single-cylinder optical engine

PIV laser system

OH-LIF laser system

Controlroom

Single-cylinder optical engine

PIV laser system

Single-cylindermetal engine

OH‐LIF laser system

Controlroom

17

Test Facility Single-cylinder metal engine

Engine specifications Bore(mm) 75

Stroke(mm) 112.5

Stroke Bore Ratio 1.5

Compression Ratio 13

Fuel Injection System MPI, DI

Intake Valve Open(deg. BTDC) -28~7

Intake Valve Close(deg. ABDC) 88~58

Exhaust Valve Open(deg. BBDC) 34~69

Exhaust Valve Close(deg. ATDC) -10~-45

Boosted System Electric Supercharger

SIP common high-octane gasolineLHV (MJ/kg) 42.28

RON 99.8

Stoichiometric A/F ratio 14.22

Fuel specifications

Intake port

Exhaust port

Shape of intake and exhaust ports

21

Test Facility High energy ignition system

・Ignition coil : 60 mJ / 1coil Normal use : 1 coil High energy use : 2 × 5 = 10 coils

22

Test Facility Port adapter for High tumble intensity

Port adapter

Normal intake port High tumble intake port

23

-60

-40

-20

0

Ignitio

n t

imin

ig

[deg

ATDC]

10

20

30

40

0-1

0%

com

bust

ion

dura

tion [

CA

]

0

5

10

15

20

Impro

vem

ent

rate

of

indic

ate

d

ther

mal

effici

ency

[%]

10

20

30

40

0.8 1 1.2 1.4 1.6 1.8 2 2.210-9

0% c

om

bust

ion

dura

tion [

CA

]

Air Excess Ratio, λ [-]

0

5

10

15

IMEP C

OV [

%]

0.00

0.05

0.10

CO [

%]

0

500

1000

1500

2000

0.8 1 1.2 1.4 1.6 1.8 2 2.2

NOx [

ppm

]

Air Excess Ratio, λ [-]

2000rpm, IMEP=600kPa

◇ ignition coil 1, w/o port adapter

Results Effects of high energy ignition and tumble port adapter

24

-60

-40

-20

0

Ignitio

n t

imin

ig

[deg

ATDC]

10

20

30

40

0-1

0%

com

bust

ion

dura

tion [

CA

]

0

5

10

15

20

Impro

vem

ent

rate

of

indic

ate

d

ther

mal

effici

ency

[%]

10

20

30

40

0.8 1 1.2 1.4 1.6 1.8 2 2.210-9

0% c

om

bust

ion

dura

tion [

CA

]

Air Excess Ratio, λ [-]

0

5

10

15

IMEP C

OV [

%]

0.00

0.05

0.10

CO [

%]

0

500

1000

1500

2000

0.8 1 1.2 1.4 1.6 1.8 2 2.2

NOx [

ppm

]

Air Excess Ratio, λ [-]

▲ ignition coil 10, w/o port adapter◇ ignition coil 1, w/o port adapter

2000rpm, IMEP=600kPa

Results Effects of high energy ignition and tumble port adapter

25

-60

-40

-20

0

Ignitio

n t

imin

ig

[deg

ATDC]

10

20

30

40

0-1

0%

com

bust

ion

dura

tion [

CA

]

0

5

10

15

20

Impro

vem

ent

rate

of

indic

ate

d

ther

mal

effici

ency

[%]

10

20

30

40

0.8 1 1.2 1.4 1.6 1.8 2 2.210-9

0% c

om

bust

ion

dura

tion [

CA

]

Air Excess Ratio, λ [-]

0

5

10

15

IMEP C

OV [

%]

0.00

0.05

0.10

CO [

%]

0

500

1000

1500

2000

0.8 1 1.2 1.4 1.6 1.8 2 2.2

NOx [

ppm

]

Air Excess Ratio, λ [-]

2000rpm, IMEP=600kPa

◇ ignition coil 1, w/o port adapter

Results Effects of high energy ignition and tumble port adapter

-60

-40

-20

0

Ignitio

n t

imin

ig

[deg

ATDC]

10

20

30

40

0-1

0%

com

bust

ion

dura

tion [

CA

]

0

5

10

15

20

Impro

vem

ent

rate

of

indic

ate

d

ther

mal

effici

ency

[%]

10

20

30

40

0.8 1 1.2 1.4 1.6 1.8 2 2.210-9

0% c

om

bust

ion

dura

tion [

CA

]

Air Excess Ratio, λ [-]

0

5

10

15

IMEP C

OV [

%]

0.00

0.05

0.10

CO [

%]

0

500

1000

1500

2000

0.8 1 1.2 1.4 1.6 1.8 2 2.2

NOx [

ppm

]

Air Excess Ratio, λ [-]

▲ ignition coil 10, w/o port adapter◇ ignition coil 1, w/o port adapter

2000rpm, IMEP=600kPa

-60

-40

-20

0

Ignitio

n t

imin

ig

[deg

ATDC]

10

20

30

40

0-1

0%

com

bust

ion

dura

tion [

CA

]

0

5

10

15

20

Impro

vem

ent

rate

of

indic

ate

d

ther

mal

effici

ency

[%]

10

20

30

40

0.8 1 1.2 1.4 1.6 1.8 2 2.210-9

0% c

om

bust

ion

dura

tion [

CA

]

Air Excess Ratio, λ [-]

0

5

10

15

IMEP C

OV [

%]

0.00

0.05

0.10

CO [

%]

0

500

1000

1500

2000

0.8 1 1.2 1.4 1.6 1.8 2 2.2

NOx [

ppm

]

Air Excess Ratio, λ [-]

● ignition coil 10, w/ port adapter▲ ignition coil 10, w/o port adapter ◇ ignition coil 1, w/o port adapter

2000rpm, IMEP=600kPa

26

Results IMEP COV, THC at Super Lean Burn

0

0.5

1

1.5

2

Air

exce

ssra

tio

λ[-

]

1000

1500

2000

2500

THC [

ppm

]

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1 1.2

IMEP C

OV [

%]

Indicated Mean Effective Pressure [MPa]

2000 rpmHigh energy ignition

w/ port adapterBoosted w/ electric Supercharger

● Stoichiometric ○ Leanλ~1.9

Near super-lean burn

IMEP COV < 4 %

27

Potential of Super Lean Burn (Keio University)

λ=1.93

Highest performance class ofmass production engine

SIP single cylinder engineS/B = 1.5ε = 13Engine speed = 2000rpmBoosted w/ electric Supercharger

λ=1.6~1.93

46.0%achieved

2015 year

Final goal

35

40

45

50

0.2 0.4 0.6 0.8 1.0 1.2Indicated Mean Effective Pressure [MPa]

30

25

20

Indi

cate

d Th

erm

al E

ffici

ency

[%]

45.0%

Evaluation results from the single cylinder engine

29

Experimental result in 2016 48.5%

When boosting with turbocharger in place ofe-supercharger

Test Facility Single-cylinder optical engine and PIV system

PIV specifications Laser

Camera

Laser sheet thickness

Interrogation size

Laser interval ∆t

Meas. frequency

Seeding Particles

Vector map

30

Results PIV images

Original images Background-subtracted images

w/o port adapter, 2000 rpm, Motoring, WOT, IVC:58 deg. ABDC

31

Results Measured mean velocity distribution

90

80

70

60

50

40

30

20

10

0m/s

2000 rpm, Motoring test, WOT, IVC:58 deg. ABDC

w/o port adapter w/ port adapter

32

Results Estimated tumble ratio

0 90 180 270 3600.0

0.5

1.0

1.5

2.0

2.5

3.0

Tum

ble r

atio

TR

[-]

Crank angle [deg ATDC]

w/o port adapter

w/ port adapter

),(

2),(

),,(

),,(),,(

zx

zx

zx

zxzxTR

r

Ur

r

U

Tumble flow was enhanced by the port adapter.

33

0 90 180 270 3600

10

20

30

40

50

60

Mean

velo

city

[m/s]

Crank angle [deg ATDC]

Results Mean velocity and velocity fluctuation at spark plug

w/o port adapter w/ port adapter

0 90 180 270 360

0

100

200

300

400

500

600

700

800

TKE [m

2/s2

]

Crank angle[deg ATDC]

Squ

are o

f ve

locity

fluctu

atio

n [

m2/s2

]

w/o port adapter w/ port adapter

Mean velocity and velocity fluctuation around the spark plug were increased by the port adapter.

34

Integrated Heat Release (Φ=1.0〜0.5) IMEP600kPa 35

Strong ignition(10 coils)+Strong Tumble flow up to 30m/s λ=2.0Strong ignition(10 coils)+Tumble flow λ=1.9Standard ignition(Single coil) λ=1.6 University Leader: Keio University

-10123456

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Stre

amer

Len

gth ∆

x[m

m]

Time after Start of Discharge [ms]

⊿ /⊿ 15.6m/s MotoringNe=2000rpmΘigt=-40deg.ATDCWide open throttle

MotoringNe=2000rpmΘigt=-40deg.ATDCWide open throttle

05

10152025

Gas

flow

vel

ocity

at

the

spar

k ga

p fr

om P

IV [m

/s]

Crank Angle θ  [deg.ATDC] ‐40              ‐34  ‐28

∆t=0.333ms

streamer length ⊿x

16.6m/sPIVmeasurement

Elongation of discharge channels accompanied by tumble flows generate37

Super Lean Burn λ=2.3〜2.4 A/F32〜33 38

Averaged flow ratesu(t)=20m/s

〜10m/s

Discharge currentsI(t)=100mA

〜300mA

-50deg

-45 -40-35

-30

-25deg CA

Strong electric discharge ignition energy and the elongation of discharge channels accompanied by tumble flows generate a plurality of flame kernels,

In the case of =1.0, flame propagation starts just after the spark discharge, and the heat release occurs.CA10 takes at -5deg. ATDC.

In the case of = 2.0, when the spark discharge occurs at -40deg.ATDC, propagation of flame kernels may be freezing (partly extinguish?) by stretching effects.The number of kernels increases dispersedly in the chamber.At around -10deg. ATDC, Ka becomes 10 and flame propagation starts.CA10 takes at -5deg. ATDC.

Crank angle histories of Ka of Stoichio metric and super lean combustion on the turbulent combustion diagram by N. Peters 39

Ka = 10

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

Intake Compression(negative)

Compression(positive)

Expansion Exhaust Total

Am

ount

of H

eat F

lux

q[M

J/m

2 ]

Motoring testNe=2000rpmWOT

Effect of tumble flow intensity on the heat flux is small during the expansion stroke 40

Keio UniversityTokyo city University

w/ Tumble adapterw/o Tumble adapter

Heat flow from gas to the wall increases by increasing tumble flow intensity→ Because of wall cooling effects, it can be used for knock improvement.

Heat flux measurement under motoring condition

Heat flow from the chamber wall to gas duringthe first half of the compression stroke

40

・No increase of heat loss during the expansion stroke

Heat flux measurement under firing condition 1/2

41

Intake Compression

Expansion Exhaust

λ=1.0 (φ=1.0)

λ=1.4 (φ=0.7)

Crank Angle θ [deg. ATDC]

λ=1.0 (φ=1.0)

λ=1.4 (φ=0.7)

In-cylinder pressure

Temperature Swing @Surface

In-cylinder gas temperature(mass averaged)

Heat Flux

Temperature Swing @4mm depth

38

Heat flux measurement under firing condition 2/2

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Intake Compression(negative)

Compression(positive)

Expansion Exhaust Total

Am

ount

of H

eat F

lux

q[M

J/m

2 ]

FiringNe=2000rpmIMEP=400kPa, MBT w/ tumble adapterTwater:350.2K (80deg.C)

λ=1.0 (φ=1.0)

λ=1.4 (φ=0.7)

λ=1.25 (φ=0.8)

42

39

Prospects of super lean burn combustion engine Improvement of cycle-to-cycle variation of indicated

thermal efficiency as a function of air excess ratio

43

1 1.5 2 2.50

10

20

30

40

50

60

Excess-Air Ratio [-]

2,000rpmIMEP=800kPa10coilswith Adapterε=15

ηind = 47.7%Interval 0.0ms

ηind = 50.1%Interval 0.2ms

050

100150200250300

‐35 ‐30 ‐25 ‐20 ‐15 ‐10 ‐5

Discharge Cu

rren

t  I d [m

A]

Crank Angle θ [deg ATDC]

050

100150200250300

‐35 ‐30 ‐25 ‐20 ‐15 ‐10 ‐5

Crank Angle θ [deg ATDC]

Discharge Cu

rren

tI d [m

A]

リーダ大学(00) 慶應大学飯田

Indi

cate

d Th

erm

al E

ffici

ency

ηin

d[%

]

SIP, “Innovative Combustion Technology”

Summary 41

Strong electric discharge ignition energy and the elongation of discharge channels accompanied by tumble flows generate a plurality of flame kernels, and Ka sharply falls by attenuation of the turbulence intensity at top dead center. 

The super lean‐burn technology is considered as the combustion technology, which enables multipoint ignition and high speed combustion for gasoline SI engines.

Thank you for your attention

This project is supported by Council for Science, Technology and Innovation (CSTI), Cross‐ministerial Strategic Innovation Promotion Program (SIP) ‐“Innovative Combustion Technology” (Funding agency: JST).

47

Acknowledgment

Co-Author

28 clusters of SIP Gasoline Combustion Team

AICE Gasoline Combustion Committee

Collaborations

Prof. Takeshi Yokomori, Keio University

48

for more information

http://sip.st.keio.ac.jp/

45

You can down‐load> Gasoline surrogate detailed kinetic model revision 1.0 (SIP‐Gd1.02)

and reduced reaction mechanism revision 1.0 (SIP‐Gr1.0)> SIP common gasoline surrogate compositions and properties

Surrogate: S3H, S5R, S5H, S10R, S10H,SIP common gasoline; High Octane and Regular

Thank you for your attention

49