Download - Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

Transcript
  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    1/144

    STRUKTUR DAN FUNGSI BIOMOLEKUL

    KOMPLEKS / SUPRAMOLEKUL:

    MEMBRAN, KROMOSOM, RIBOSOM

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    2/144

    Supramolecular chemistry

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    3/144

    Supramolecular chemistry

    "Supramolecular chemistry  is the chemistry of the intermolecular

    bond, covering the structures and functions of the entities formedby the association of two or more chemical species"

    J.-M- Lehn

    "Supramolecular chemistry is defined as chemistry "beyond themolecule", as chemistry of tailor-shaped inter-molecular

    interaction. In 'supramolecules' information is stored in the form of

    structural peculiarities. Moreover, not only the combined action of

    molecules is called supramolecular , but also the combined action

    of characteristic parts of one and the same molecule.

    F. Vögtle

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    4/144

    Supramolecular chemistry – in nature

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    5/144

    Supramolecular chemistry – in nature

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    6/144

    Supramolecular chemistry – in nature

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    7/144

    Supramolecular chemistry – in nature

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    8/144

    The organic compounds from which most

    cellular materials are constructed 

    • Amino Acids

    • Nucleotides

    • Carbohydrates

    • Lipids

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    9/144

    Structural hierarchy in the molecular

    organization of cells 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    10/144

    MEMBRANES

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    11/144

    11

    Membrane Structure

    The fluid mosaic model of membrane structure

    contends that membranes consist of:

    -phospholipids arranged in a bilayer

    -globular proteins inserted in the lipid bilayer

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    12/144

    12

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    13/144

    13

    Membrane Structure

    Cellular membranes have 4 components:

    1. phospholipid bilayer

    2. transmembrane proteins3. interior protein network

    4. cell surface markers

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    14/144

    14

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    15/144

    15

    Membrane Structure

    Membrane structure is visible using an electron

    microscope.

    Transmission electron microscopes (TEM) can

    show the 2 layers of a membrane.

    Freeze-fracturing techniques separate the layers

    and reveal membrane proteins.

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    16/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    17/144

    17

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    18/144

    18

    Phospholipids

    Phospholipid structure consists of

    -glycerol  – a 3-carbon polyalcohol acting as abackbone for the phospholipid

    -2 fatty acids attached to the glycerol

    -phosphate group attached to the glycerol

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    19/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    20/144

    20

    Phospholipids

    The partially hydrophilic, partially

    hydrophobic phospholipid spontaneously

    forms a bilayer:-fatty acids are on the inside

    -phosphate groups are on both surfaces

    of the bilayer

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    21/144

    21

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    22/144

    22

    Phospholipids

    Phospholipid bilayers are fluid.

    -hydrogen bonding of water holds the 2 layerstogether

    -individual phospholipids and unanchoredproteins can move through the membrane

    -saturated fatty acids make the membrane

    less fluid than unsaturated fatty acids-warm temperatures make the membranemore fluid than cold temperatures

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    23/144

    23

    Phospholipids

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    24/144

    24

    Membrane Proteins

    Membrane proteins have various functions:

    1. transporters

    2. enzymes3. cell surface receptors

    4. cell surface identity markers

    5. cell-to-cell adhesion proteins6. attachments to the cytoskeleton

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    25/144

    25

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    26/144

    26

    Membrane Proteins

    Peripheral membrane proteins 

    -anchored to a phospholipid in one layer of

    the membrane

    -possess nonpolar regions that are inserted in

    the lipid bilayer

    -are free to move throughout one layer of the

    bilayer 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    27/144

    27

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    28/144

    28

    Membrane Proteins

    Integral membrane proteins 

    -span the lipid bilayer (transmembrane

    proteins)

    -nonpolar regions of the protein are

    embedded in the interior of the bilayer

    -polar regions of the protein protrude from

    both sides of the bilayer 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    29/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    30/144

    30

    Membrane Proteins

    Integral proteins possess at least one

    transmembrane domain 

    -region of the protein containing hydrophobic

    amino acids

    -spans the lipid bilayer

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    31/144

    31

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    32/144

    32

    Membrane Proteins

    Extensive nonpolar regions within a

    transmembrane protein can create a pore

    through the membrane.

    -b sheets in the protein secondary structure

    form a cylinder called a -barrel 

    -b-barrel interior is polar and allows water and

    small polar molecules to pass through the

    membrane

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    33/144

    33

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    34/144

    34

    Passive Transport

    Passive transport is movement of molecules

    through the membrane in which

    -no energy is required

    -molecules move in response to a

    concentration gradient 

    Diffusion is movement of molecules from high

    concentration to low concentration 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    35/144

    35

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    36/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    37/144

    37

    Passive Transport

    Channel proteins include:

    -ion channels allow the passage of ions

    (charged atoms or molecules) which are

    associated with water

    -gated channels are opened or closed in

    response to a stimulus

    -the stimulus may be chemical or electrical

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    38/144

    38

    Passive Transport

    Carrier proteins bind to the molecule that theytransport across the membrane.

    Facilitated diffusion is movement of a moleculefrom high to low concentration with the helpof a carrier protein.

    -is specific

    -is passive

    -saturates when all carriers are occupied 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    39/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    40/144

    40

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    41/144

    41

    Passive Transport

    When 2 solutions have different osmotic

    concentrations

    -the hypertonic solution has a higher solute

    concentration

    -the hypotonic solution has a lower solute

    concentration

    Osmosis moves water through aquaporins 

    toward the hypertonic solution.

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    42/144

    42

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    43/144

    43

    Passive Transport

    Organisms can maintain osmotic balance indifferent ways.

    1. Some cells use extrusion in which water is

    ejected through contractile vacuoles.2. Isosmotic regulation involves keeping cellsisotonic with their environment.

    3. Plant cells use turgor pressure to push thecell membrane against the cell wall and keepthe cell rigid.

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    44/144

    44

    Active Transport

    Active transport 

    -requires energy – ATP is used directly orindirectly to fuel active transport

    -moves substances from low to high

    concentration

    -requires the use of carrier proteins 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    45/144

    45

    Active Transport

    Carrier proteins used in active transport include:

    -uniporters  – move one molecule at a time

    -symporters  – move two molecules in thesame direction

    -antiporters  – move two molecules inopposite directions

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    46/144

    46

    Active Transport

    Sodium-potassium (Na+-K+) pump 

    -an active transport mechanism

    -uses an antiporter to move 3 Na+ out of the

    cell and 2 K+ into the cell-ATP energy is used to change theconformation of the carrier protein

    -the affinity of the carrier protein for eitherNa+ or K+ changes so the ions can be carriedacross the membrane 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    47/144

    47

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    48/144

    48

    Active Transport

    Coupled transport 

    -uses the energy released when a molecule

    moves by diffusion to supply energy to active

    transport of a different molecule

    -a symporter is used

    -glucose-Na+ symporter captures the energy

    from Na+ diffusion to move glucose against a

    concentration gradient 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    49/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    50/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    51/144

    51

    Bulk Transport

    Endocytosis occurs when the plasma membraneenvelops food particles and liquids.

    1. phagocytosis  – the cell takes in particulate

    matter2. pinocytosis  – the cell takes in only fluid

    3. receptor-mediated endocytosis  – specific

    molecules are taken in after they bind to areceptor 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    52/144

    52

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    53/144

    53

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    54/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    55/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    56/144

    56

    Modification of Cell Surfaces

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    57/144

     

    Cell Surfaces in Animals

    •Junctions Between Cells are points of contact between cells that allow

    them to behave in a coordinated manner.•Anchoring junctions mechanically attach adjacent cells.•In adhesion junctions, internal cytoplasmic plaques, firmly attachedto cytoskeleton within each cell are joined by intercellular filaments;

    they hold cells together where tissues stretch (e.g., in heart, stomach,

    bladder).

    •In desmosomes, a single point of attachment between adjacent cellsconnects the cytoskeletons of adjacent cells.

    •In tight junctions, plasma membrane proteins attach in zipper-likefastenings; they hold cells together so tightly that the tissues are

    barriers (e.g., epithelial lining of stomach, kidney tubules, blood-brain

    barrier).

    •A gap junction allows cells to communicate; formed when two

    identical plasma membrane channels join.•They provide strength to the cells involved and allow themovement of small molecules and ions from the cytoplasm of

    one cell to the cytoplasm of the other cell.

    •Gap junctions permit flow of ions for heart muscle and smoothmuscle cells to contract.

    Modification of Cell Surfaces

    Cell-Surface Modifications:

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    58/144

    Junctions

    E t ll l M t i

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    59/144

    •The extracellular matrix is a meshwork of polysaccharides and proteins produced byanimal cells.

    •Collagen gives the matrix strength and elastin gives it resilience.•Fibronectins and laminins bind to membrane receptors and permitcommunication between matrix and cytoplasm; these proteins also form

    “highways” that direct the migration of cells during development. •Proteoglycans are glycoproteins that provide a packing gel that joins thevarious proteins in matrix and most likely regulate signaling proteins that bind to

    receptors in the plasma protein.

    Extracellular Matrix 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    60/144

    CHROMOSOMES

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    61/144

    Chromosomes:

    •Chromosome structure

    •Chromatin structure

    •Chromosome variations

    •“The new cytogenetics”

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    62/144

    Prokaryotic chromosomes

    •Circular double helix

    •Complexed with protein in astructure termed the nucleoid

    •Attached to plasmamembrane

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    63/144

    Eukaryotic Chromosomes

    • Located in the nucleus

    • Each chromosome consists of a single molecule ofDNA and its associated proteins

    The DNA and protein complex found in eukaryoticchromosomes is called chromatin

    1/3 DNA and 2/3 protein

    •Complex interactions between proteins and nucleicacids in the chromosomes regulate gene and

    chromosomal function

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    64/144

    d h h

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    65/144

    • Pulsed-field gel electrophoresis - separation of

    chromosomes

    • Analysis of the complete nucleotide sequence

    of many genomes now

    • In situ hybridization (below)

    Some evidence that chromosomes contain a

    single DNA molecule

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    66/144

    Ideogram

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    67/144

    From Miller & Therman (2001) Human

    Chromosomes, Springer

    Ideogram

    •Diagramatic representation

    of a karyotype

    •Individual chromsomes arerecognized by

    -arm lengths

    p, short

    q, long

    -centromere position

    metacentric

    sub-metacentricacrocentric

    telocentric

    -staining (banding) patterns

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    68/144

    Ch b di

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    69/144

    • Q (quinicrine) & G (Giemsa) banding

    preferentially stain AT rich regions

    • R (reverse banding) preferentially stains GC-rich

    regions

    •C-banding (denaturation & staining)preferentially stains constitutive

    heterochromatin, found in the centromere

    regions and distal Yq

    Chromsome banding

    C-banded karyotype of XY cell

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    70/144

    C banded karyotype of XY cell

    From Miller & Therman (2001) Human

    Chromosomes, Springer

    C tit ti h t h ti

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    71/144

    • Tandem, highly repeated short sequences of

    DNA

     –  Non-coding and non-expressing

     – Buoyant density discrete from the bulk of the

    genome (satellite DNA )

    • C-banding

    • Late replicating

    • Maintains a highly compacted organization

    • Never transcribed

    Constitutive heterochromatin

    Facultative heterochromatin

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    72/144

    Facultative heterochromatin

    • All types of sequences

    • C-banding negative

    • Late replicating

    • Condensed conformation

    • Not transcribed

    • Includes genes silenced in specific cell typesand/or at specific times in development

    • e.g. inactivated X chromosomes

    Euchromatin

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    73/144

    • Actively expressed sequences

    • More open conformation

    Euchromatin

    Fluorescence in situ a | The basic elements of fluorescence in situhybridization are a DNA probe and a targetb | B f h b idi ti th DNA b

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    74/144

    hybridization (FISH) sequence. b | Before hybridization, the DNA probeis labelled by various means such as NICKTRANSLATION, RANDOM-PRIMED LABELLING

    and PCR. Two labelling strategies are commonly

    used — indirect labelling (left panel) and direct

    labelling (right panel). For indirect labelling,

    probes are labelled with modified nucleotides that

    contain a HAPTEN, whereas direct labelling uses

    the incorporation of nucleotides that have been

    directly modified to contain a fluorophore. c | The

    labelled probe and the target DNA are denatured

    to yield ssDNA. d | They are then combined,which allows the annealing of complementary

    DNA sequences. e | If the probe has been labelled

    indirectly, an extra step is required for

    visualization of the non-fluorescent hapten that

    uses an enzymatic or immunological detection

    system. Whereas FISH is faster with directly

    labelled probes, indirect labelling offers the

    advantage of signal amplification by using several

    layers of antibodies, and might therefore produce

    a signal that is brighter compared with

    background levels. Finally, the signals are

    evaluated by fluorescence microscopy (not

    shown). [From Speicher & Carter (2005) NatureRev Genet 6:782

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    75/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    76/144

    Chromosome-specific paints for FISH

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    77/144

    p p

    Fluorescence in situ hybridization (FISH) – h h i i

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    78/144

    metaphase chromosome painting

    Chromosome maintenanceO i i f li ti

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    79/144

    •Origins of replication•Telomeres

    •Centromeres

    Origins of replication

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    80/144

    Origins of replication

    •Multiple origins-every 100 kb on average in humans

    •Heterochromatin is late replicating•Replication times correspond to banding patterns•Each band replicated independently

    From Miller & Therman (2001) Human Chromosomes, Springer

    Telomeres

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    81/144

    •End structures of linear chromosomes•Serve to replicate chromosome ends•Serve to stabilize chromosome ends (i.e. prevent non-homologous end joining, NHEJ)

    •G-rich tandem repeats- TTAGG, insects

    - TTAGGG, vertebrates- TTTAGGG, plants

    •Length is under genetic and developmental control- e.g. 2-5 kb in Arabidopsis, 60-160 kb in Tobacco, 15 kb in

    humans•Sequence and proteins conserved across taxa, mammals toplants

    Telomeres

    FISH with a telomere-specific probe

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    82/144

    FISH with a telomere specific probe

    Telomeres & telomerase in the replication of linear

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    83/144

    p

    chromosome ends

    Telomerase

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    84/144

    Telomerase

    •Reverse transcriptase & RNA primer

    •Repeating cycles of parental strand extension- build template for lagging strand replication- build up the number of telomeres

    •Abundant in mammalian embryos, stem cells and cancer cells•Absent in mammalian somatic cells

    - telomeres shorten with each cell division

    - cells cease division and begin senescence

    •Abundant in rapidly dividing and germ-line cells of plants•Absent in vegetative tissues of plants

    Centromeres

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    85/144

    •Primary constriction

    •Kinetochore - spindle fiber attachment•Region of sister chromatid cohesion•Constitutive heterochromatin•Repeat sequences - CENs - 5 to 170 bp

     –e.g. human alphoid satellite repeat

     –No universal centromere repeat, but the same repeat can befound in more than one centromere of a species or between

    species

     –Centromere repeats can change rapidly in evolution via

    mutation, new elements, recruitment of other genomic repeats•Specific associated proteins

     – e.g. Centromere-specific histone HE (CenH3)

    Centromeres

    A model of centromere structure

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    86/144

    Chromatin

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    87/144

    Chromatin

    structure

    From Miller & Therman

    (2001) Human

    Chromosomes, Springer

    Compacts DNA ~ 10,000X

    Chromatin structure – 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    88/144

    11 nm fiber 

    •Nucleosomes-147 bp DNA wound on histone core

    - Histones H3, H4, H2A, H2B (2 each)

    •Internucleosomal spacer-~ 60 bp linker DNA

    30 nm fiber

    • Histone H1 (linker) binds and compactsnucleosomes

    • Exact structure is controversial

    - Solenoid = single helix coiling of 11 nmfiber

    - Zig-zag stacking of nucleosomes then

    coiling = double helix of 11 nm fiber

    From Woodcock (2006) Curr Opin Struct Biol 16:213

    Chromatin structure – 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    89/144

    300 nm fiber 

    •Loops of 30 nm fibers•Attached to protein scaffold•Attachment points correspond toboundary elements, isolating

    regions of differential geneexpression

    Metaphase chromatin

    •Coiling of the 300 nm fiber

    Chromatin structure – histone modifications

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    90/144

    Post-translational modifications on histone proteins

    • Establish global chromatin structure-heterochromatin vs euchromatin• Regulate DNA-based functions

    - Transcription

    - Replication, recombination & repair• Complex interactions

    - Not really a simple “histone code” - “The truth is likely to be that any given modification

    has the potential to activate or repress under differentconditions.”

    [From Kouzarides (2007) Cell 128:693]

    Chromatin structure – histone modifications

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    91/144

    Post-translational modifications on histone proteins alter chromatin

    structure and, consequently, chromatin function 

    Table 1. Different Classes of Modifications Identified on Histones 

    Chromatin Modifications  Residues Modified  Functions Regulated 

     Acetylation K-acTranscription, Repair, Replication,

    Condensation

    Methylation (lysines) K-me1 K-me2 K-me3 Transcription, Repair

    Methylation (arginines) R-me1 R-me2a R-me2s Transcription

    Phosphorylation S-ph T-ph Transcription, Repair, Condensation

    Ubiquitylation K-ub Transcription, Repair

    Sumoylation K-su Transcription

     ADP ribosylation E-ar Transcription

    Deimination R > Cit  Transcription

    Proline Isomerization P-cis > P-trans  Transcription

    Overview of different classes of modification identified on histones. The functions that have been associated with

    each modification are shown. Each modification is discussed in detail in the text under the heading of the function it

    regulates. [From Kouzarides (2007) Cell 128:693]

    Chromatin structure – histone modifications

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    92/144

    Post-translational modifications on histone proteins alter chromatin

    structure and, consequently, chromatin function 

    Figure 1. Recruitment of Proteins to Histones (A) Domains used for the recognition of methylated

    lysines, acetylated lysines, or phosphorylated serines. (B) Proteins found that associate preferentially

    with modified versions of histone H3 and histone H4. [From Kouzarides (2007) Cell 128:693]

    Chromatin structure – histone modifications

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    93/144

    Post-translational modifications on histone proteins

    “The truth is likely to be that any given modification has

    the potential to activate or repress under differentconditions.”

    • Histone acetylation

    - generally associated with activation of transcription

    • Histone de-acetylation- generally associated with repression of transcription

    - Histone de-acetylase targeted to methylated CpG

    islands

    [Kouzarides (2007) Cell 128:693]

    Chromatin structure – histone modifications

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    94/144

    Post-translational modifications on histone proteins

    “The truth is likely to be that any given modification has

    the potential to activate or repress under differentconditions.”

    • Lysine methyation associated with activation of

    transcription: H3K4, H3K36, H3K79

    • Lysine methyation associated with repression oftranscription: H3K9, H3K27, H4K20

    [Kouzarides (2007) Cell 128:693]

    Chromatin structure – functional consequences ofhistone modifications

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    95/144

    histone modifications Figure 3. Functional Consequences ofHistone Modifications (A) Gene-

    expression changes are brought about by

    the recruitment of the NURF complex,which contains a component BRTF

    recognizing H3K4me and a component-

    remodeling chromatin. (B) The Crb2

    protein of fission yeast is recruited to

    DNA-repair foci during a DNA-repair

    response. Crb2 is partly tethered there byassociation with methylated H4 and

    phosphorylated H2A. (C) The HBO1

    acetyltransferase is an ING5-associated

    factor and is therefore tethered to sites of

    replication via methylated H3K4. HBO1

    also binds to the MCM proteins found atreplication sites. Evidence exists that

    HBO1 augments the formation of the

    preinitiation complex and is required for

    DNA replication. [From Kouzarides

    (2007) Cell 128:693]

    Nuclear architecture – Chromosome territories

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    96/144

    aAll the chromosome territories that make up the human genome can be visualized simultaneously in intact interphase

    nuclei, each in a different colour. a | A red, green and blue image of the 24 labelled chromosomes (1 –

    22, X and Y) wasproduced from deconvoluted mid-plane nuclear sections from a three-dimensional stack by superposition of the 7 colour

    channels. b | As in 24-colour KARYOTYPING, each chromosome can be identified by using a combination labelling

    scheme in which each chromosome is labelled with a different set of fluorochromes. In this way, each chromosome

    territory can be automatically classified using appropriate software, which assigns the corresponding chromosome

    number to a territory. If a stack of these images is collected throughout the nucleus, a simultaneous three-dimensional

    reconstruction of all chromosome territories is possible. Some of the dark regions represent unstained nucleoli. For further

    details see Ref. 90. | [From Speicher & Carter (2005) Nature Rev Genet 6:782]

    Nuclear architecture – Chromosome territories

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    97/144

    •Nonrandom chromosome positioning

    •Gene rich chromosomes toward center•Gene poor chromosomes toward periphery•Centromeres are not the determining factor•Chromosomes with adjacent positions more likelyto interact cytolologically

    Nuclear architecture – consequences of chromosometerritories

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    98/144

    territories

    Figure 3. Functional Consequences of Global Chromatin Organization (A and B) Spatial clustering of

    genes on distinct chromosomes facilitates their expression by (A) association with shared transcription

    and processing sites or (B) physical interactions with regulatory elements on separate chromosomes.

    (C) The physical proximity of chromosomes contributes to the probability of chromosomal

    translocations. [From Misteli (2007) Cell 128:787]

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    99/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    100/144

    Model of functional nuclear architectureFigure 3 Structural features that support the chromosome territory interchromatin compartment (CT IC) model are

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    101/144

    Figure 3. Structural features that support the chromosome-territory –interchromatin-compartment (CT –IC) model are

    shown. These features are drawn roughly to scale on an optical section taken from the nucleus of a living HeLa cell.

     Although experimental evidence is available to support these features, the overall model of functional nuclear

    architecture is speculative (see text). a | CTs have complex folded surfaces. Inset: topological model of gene

    regulation23. A giant chromatin loop with several active genes (red) expands from the CT surface into the IC space.b | CTs contain separate arm domains for the short (p) and long chromosome arms (q), and a centromeric domain

    (asterisks). Inset: topological model of gene regulation78, 79. Top, actively transcribed genes (white) are located on

    a chromatin loop that is remote from centromeric heterochromatin. Bottom, recruitment of the same genes (black) to

    the centromeric heterochromatin leads to their silencing. c | CTs have variable chromatin density (dark brown, high

    density; light yellow, low density). Loose chromatin expands into the IC, whereas the most dense chromatin is

    remote from the IC. d | CT showing early-replicating chromatin domains (green) and mid-to-late-replicating

    chromatin domains (red). Each domain comprises 1 Mb. Gene-poor chromatin (red), is preferentially located at the

    nuclear periphery and in close contact with the nuclear lamina (yellow), as well as with infoldings of the lamina and

    around the nucleolus (nu). Gene-rich chromatin (green) is located between the gene-poor compartments. e |

    Higher-order chromatin structures built up from a hierarchy of chromatin fibres88. Inset: this topological view of

    gene regulation27, 68 indicates that active genes (white dots) are at the surface of convoluted chromatin fibres.

    Silenced genes (black dots) may be located towards the interior of the chromatin structure. f | The CT –IC model

    predicts that the IC (green) contains complexes (orange dots) and larger non-chromatin domains (aggregations oforange dots) for transcription, splicing, DNA replication and repair. g | CT with 1-Mb chromatin domains (red) and IC

    (green) expanding between these domains. Inset: the topological relationships between the IC, and active and

    inactive genes72. The finest branches of the IC end between 100-kb chromatin domains. Top: active genes (white

    dots) are located at the surface of these domains, whereas silenced genes (black dots) are located in the interior.

    Bottom: alternatively, closed 100-kb chromatin domains with silenced genes are transformed into an open

    configuration before transcriptional activation. [From Cremer & Cremer (2001) Nature Rev Genet 2:292]

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    102/144

    RIBOSOME

    Just a quick overview of what we’re

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    103/144

    going to cover… 

    • What ribosome is and what its subunits are

    • The purpose of ribosome

    • The process of protein synthesis, including:

     – DNA to mRNA (transcription)

     – mRNA to protein (translation)

    • Initiation

    • Elongation• End of translation

    Just a quick overview of what we’re

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    104/144

    going to cover… 

    • Structures of the two ribosome subunits – The larger subunit

     – The smaller subunit

     – RNA’s relation to their structure 

    What is ribosome?

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    105/144

    What is ribosome?

    • Ribosome - protein

    synthesizer consisting of

    two subunits

    • Larger one, “50S”, isupper picture. Smaller is

    “30S” 

    (They look the same size

    here because of spacerestrictions.)

    50S and 30S???

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    106/144

    50S and 30S???

    • Related to their respective sizes. Numbersactually measures of how quickly each subunit

    sinks to the bottom of a container of liquid

    when spun in a centrifuge• One subunit smaller than other, but both are

    larger than average protein

    A couple more nifty pictures…

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    107/144

    A couple more nifty pictures… 

    • 50S (left) and 30S. This time you can see them from

    different angles, through different style of picture

    So what’s the purpose of ribosome?

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    108/144

    So what s the purpose of ribosome? 

    • Ribosome basically a protein factory. Subunitseach have role in making of proteins

    • To understand exactly what each subunit

    does, it’s necessary to walk through proteinsynthesis step by step

    Protein synthesis

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    109/144

    Protein synthesis

    • Process starts from DNA

    through “transcription” 

    • “Translation” is whereribosome comes in.

    Translation occurs when

    protein formed from code

    on mRNA

    Ribosome carries out thetranslation of the

    nucleotide triplets

    Protein synthesis

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    110/144

    Protein synthesis

    • Chart - visual image of

    transcription and

    translation in protein

    synthesizing

    • DNA and RNA have

    nucleotides that

    determine kind of protein

    3 nucleotides = 1 aminoacid of a protein

    Ribosome and RNA

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    111/144

    Ribosome and RNA

    • mRNA with code for proteins located at 30Ssubunit

    • tRNAs responsible for carrying amino acids to

    mRNA. Each tRNA has own nucleotide tripletwhich binds to matching triplet on mRNA, ex.,

    tRNA with code AAA (triple adenine) would

    match up with mRNA that has code UUU(triple uracil)

    Initiation:

    Th fi h f l i

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    112/144

    The first phase of translation

    • Translation begins when

    mRNA attaches to the 30S

    • tRNA comes and binds to

    mRNA where nucleotide

    code matches

    • This triggers 50S binding

    to 30S. 50S is where all

    tRNAs will bind. Now wemove on to elongation

    Elongation:

    Th d h

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    113/144

    The second phase

    • Two binding sites on 50S:

    A site and P site, which

    aid in continuing

    translation

    • First tRNA connected at A

    site. Now moves to P site

    as another tRNA

    approaches

    • Second tRNA binds to A

    site

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    114/144

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    115/144

    End of translation

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    116/144

    • Ribosome was moving

    along nucleotide triplets

    one by one

    • Ribosome reaches “stopcodon,” peptide chainfinished. Last tRNA leaves

    ribosome, leaving behind

    completed peptide chain

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    117/144

    1st step: Initiation

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    118/144

    1st step: Initiation

    T. Terry, U. Conn

    2nd step: Elongation

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    119/144

    2nd step: Elongation

    T. Terry, U. Conn

    Last step: Termination

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    120/144

    Last step: Termination

    T. Terry, U. Conn

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    121/144

    Early Evaluation of the Shape of theRibosome by EM

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    122/144

    Ribosome by EM

    • First EM images in 1950s 

    • Molecules in different orientationscombined to create models

    • Proteins localized by bindingantibodies

    • Most early and later structuralwork on prokaryotic ribosomes

    Comparative Sequence Analysis

    Used to Predict Most of the

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    123/144

    Base Pairs

    H. Noller lab web page

    • First secondary structure predicted in 1980(Woese, Noller, and colleagues)

    • Method first applied to tRNA (1970)and 5S rRNA (1975)

    • 16S rRNA can be divided into subdomains.Much of secondary structure is local

    • ~60% of nucleotides are base-paired

    ~1500 nt

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    124/144

    H. Noller lab web page

    ~3000 nt

    Identification of Secondary Structures BySequence Analysis

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    125/144

    Corbino et al, Genome Biology  2005,

    6:R70

    • Sequence analysis can predict secondary structureby finding base-pairing potential

    • When multiple related sequences are available,covariation provides additional evidence for pairing

    • This figure happens to show a riboswitch (more nextTuesday on that), but the same methods were used

    to deduce secondary structures of the rRNAs.

    Comparative Sequence Analysis

    Used to Predict Most of the

    B P i

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    126/144

    Base Pairs

    Gutell et al , Curr. Opin. Struct. Biol. (2002)

    12, 301-310.

    • Some tertiary interactionsshow covariation and can

    therefore be predicted

    •Tetraloop-receptor interactions

    • Many tertiary contactsmediated by A nucleotides

    • 97% of predicted base pairs werepresent in crystal structures

    • 75% of base pairs in crystalstructures were predicted. Others

    were not detectable because they

    do not vary between sequences.

    Crystal Structure of tRNA

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    127/144

    Fig. 19.26

    • First molecular details of higher-order RNA structure, demonstrated tertiary contacts

    • Two groups (A. Rich and A. Klug) published structures in 1974. First author onKlug’s work was Jon Robertus (UT Biochemistry). 

    High-resolution

    Structure of a 16S RNP

    D i

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    128/144

    Domain

    Agalarov et al , Science (2000) 288, 107-112

    • First atomic resolution view ofribosomal subdomain

    • Suggests hierarchical assemblyof RNA-protein structure

    70S Ribosome of Thermus

    thermophilus 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    129/144

    Fig. 19.1

    • Noller and colleagues, 5.5 Å, 2001 

    • Structure includes 30S, 50S, associatedproteins, and three tRNA molecules

    bound in A, P, and E sites

    • Showed that core and interface are

    dominated by RNA, not protein

    • 16S rRNA, cyan 

    30S proteins, blue23S rRNA, gray,

    5S rRNA, dark blue

    50S proteins, purple

    Ribosome ‘ripped apart’to expose tRNAs

    Codon-anticodon Base Pairing

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    130/144

    Codon anticodon Base Pairing

    Fig. 19.2

    • Bend in mRNA between A and P sites allows adjacent tRNAs to bind to

    consecutive codons in proper orientations for peptidyl transfer

    • Stereo image: Try to see the image in 3D by looking at your book 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    131/144

    Ribosome Schematic Based on

    Structural Information

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    132/144

    Fig. 19.4

    Structural Information

    • Large cavity between subunitsto accommodate the three

    tRNAs• tRNAs interact with 30S subunit

    through anticodon ends and

    bind to mRNA, also bound to

    30S• tRNAs interact with 50S through

    acceptor stems. This is where

    peptidyl transfer happens

    Structure of the 30S Subunit

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    133/144

    Fig. 19.8 Fig. 19.9

    Secondary structure3D structure (same colors)

    Central

    domain

    • Central domainstructure remains

    intact

    • Overall, tertiaryarrangement

    dominated by RNA

    50S

    S

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    134/144

    Structure

    • Monolithic RNA, not modular 

    • Most of protein mass onor near surface

    • Portions of proteins towardmiddle are in

    unprecedented, unfolded

    conformations; threaded

    through RNA

    50S Structure Shows No Proteins NearActive Site For Peptidyl Transfer

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    135/144

    Active Site For Peptidyl Transfer

    Fig. 19.16

    Fig. 19.17

    • The ribosome is a ribozyme  • Proteins snake toward, but notinto, active site

    Ribosome Structure and Assembly

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    136/144

    Ribosome Structure and Assembly

    1. Introduction: The Process of Translation

    2. Structures of the Ribosome and Subunits

    3. Ribosome Assembly (30S)

    Processing of the rRNA Precursor

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    137/144

    Fig. 16.4 16S 23S 5S

    • E. coli  has seven operons (rrn) that encode rRNAs

    • Cleavage events give rise to processed rRNAs 

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    138/144

    Binding of Some 30S Proteins Is

    N F Bi di f Oth

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    139/144

    Necessary For Binding of Others

    Fig. 19.6

    • 30S reconstitution demonstrated by Nomura and colleagues (late 1960s) 

    [3H]-labeled S12• Added back proteins in

    different orders to build up

    assembly pathway

    • A. S4, S7, S8, S13, S16, S20 B. S4, S8, S16, S17

    C. All except S12

    Sucrose gradient ultracentrifugation

    The Nomura 30S Assembly Map

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    140/144

    • Proteins separated into primary,

    secondary, and tertiary binders

    • S15, S17, S4, S8, S20, S13, and S7 areprimary binders

    • In general, proteins lower down on themap are on outside of 30S particle.

    • Suggests similarity betweenthermodynamic pathway outlined here

    and kinetic pathway in vivo

    • Much less known about 50S assembly 

    Kinetics of 30S Reconstitution

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    141/144

    Traub and Nomura, J. Mol. Biol. (1969), 40, 391-413

    • Very strong temperature dependence forformation kinetics

    • Complete 30S subunit formation assayed byactivity in translation assay

    • Proteins below dashed line in fig. 19.7 (previousslide) are not bound stably in RI intermediate

    Mass Spectrometry Approach To Follow Association of

    Individual Proteins With 16S rRNA

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    142/144

    Talkington and Williamson, Nature (2005) 438, 628-632

    • Assembly initiated with *15N]-labeled proteins, then ‘chased’ with unlabeled proteins 

    • Extent of binding of each protein at time of chase measured by mass spectrometry  

    • Primary binders from Nomura map mostly bind fast 

    • Binding is faster in general for proteins that bind closer to 5’ end 

    Colors represent relative binding rates

    Are Molecular Chaperones Involved in

    Ribosome Assembly?

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    143/144

    Ribosome Assembly?

    • Three of five DEAD-box proteins in E. coli  are implicated in ribosome assembly

    • The Hsp70 protein chaperone (DnaK) has been implicated also 

    • Numerous small RNAs (snoRNAs) are required, which bind transiently to regionswithin the rRNAs. These RNAs direct modifications, but some could also function

    as chaperones

    Key Points

  • 8/10/2019 Struktur Dan Fungsi Biomelekul Kompleks[1] - Copy

    144/144

    1. Prokaryotic ribosomes are composed of two subunits, the 50S and the 30S. The

    50S subunit includes two rRNAs, the 23S and 5S rRNAs, and 34 proteins. The

    30S subunit includes one rRNA, the 16S, and 21 proteins.

    2. Recent structural analyses have revolutionized our understanding of the

    ribosome. Most of the base pairs and many tertiary contacts were predictedcorrectly by comparative analysis, but the structures reveal molecular details,

    interactions with proteins, and many features that were not predictable.

    3. The 30S subunit can be reconstituted from pure 16S RNA and proteins. Thisprocess is thought to involve hierarchical steps of RNA folding and protein