João Vitor Campos e Silva - Instituto Juruá

216
Manejo Participativo nas Várzeas Amazônicas e seus Efeitos Multi-tróficos João Vitor Campos e Silva Ray Troll

Transcript of João Vitor Campos e Silva - Instituto Juruá

Manejo Participativo nas Várzeas Amazônicas e seus

Efeitos Multi-tróficos

João Vitor Campos e Silva

Ray Troll

i

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE BIOCIÊNCIAS

PÓS-GRADUAÇÃO EM ECOLOGIA DEPARTAMENTO DE ECOLOGIA

TESE DE DOUTORADO

Manejo participativo nas várzeas amazônicas e seus

efeitos multi-tróficos

João Vitor Campos e Silva

Orientador: Dr. Carlos Augusto da Silva Peres Co-orientador: Dr. Carlos Roberto Sorensen Dutra da Fonseca

Natal, Junho de 2016

ii

Universidade Federal do Rio Grande do Norte - UFRN

Sistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial do Centro de Biociências - CB

Campos-Silva, João Vitor.

Manejo participativo nas várzeas amazônicas e seus efeitos

multi-tróficos / João Vitor Campos e Silva. - Natal, 2016. 209 f.: il.

Tese (Doutorado) - Universidade Federal do Rio Grande do Norte.

Centro de Biociências. Programa de Pós-Graduação em Ecologia. Orientador: Prof. Dr. Carlos Augusto da Silva Peres.

Coorientador: Prof. Dr. Carlos Roberto Sorensen Dutra da

Fonseca.

1. Pesca na Amazônia - Tese. 2. Gestão baseada na comunidade -

Tese. 3. Desenvolvimento sustentável - Tese. I. Peres, Carlos Augusto da Silva. II. Fonseca, Carlos Roberto Sorensen Dutra da.

III. Título.

RN/UF/BSE-CB CDU 639.2

iii

“... Os animais são super legais, ganhei um livro da minha mãe que fala que os animais são diferentes em cada lugar. Fico imaginando se os animais da Amazônia são parecidos com os animais daqui. Eu vi a foto de um bicho pequeno, chamado tamanduaí! Eu queria muito criar um desse, mas tenho dó de fazer ele mudar de Estado. Eu rezo todo dia para que eu conheça a Amazônia. Quero trabalhar lá quando eu crescer. Quero andar de barco nos rios, pescar com os pescadores ribeirinhos. Adoro pescar! Tomara que lá as pessoas sejam amigas dos animais. ” João Vitor Campos e Silva, 1992. Redação escolar.

iv

Dedicatória Dedico essa tese ao médico cardiologista Dr. Wlademir dos Santos Junior que com seu dom e técnica fez com que o coração de meu pai não parasse de bater, postergando assim, a felicidade de nossa família.

v

Agradecimentos

Sabe aqueles períodos incríveis da vida? Inundados de descobertas, erros, acertos,

crescimento e felicidade? O doutorado foi exatamente isso. E eu me pergunto: Como

agradecer a oportunidade de vivenciar tudo isso?

Durante a materialização dessa tese tive o prazer de viver de perto a realidade de

pescadores, seringueiros, agricultores e extrativistas do Médio Juruá, um rio lindo, todo

sinuoso que nasce nos Andes e corta o coração da Amazônia. Conheci os causos

inacreditáveis da exploração da seringa, uma página sangrenta da história de nosso

país, repleta de abusos e exploração do Povo humilde da beirada do rio.

Também vi esse mesmo Povo emergir da condição de explorado para se tornar um

exemplo mundial de manejo de recursos naturais e desenvolvimento local. Também

ouvi muitas histórias de heróis ainda vivos, que vivem anonimamente combatendo as

injustiças desse mundão de meu deus. Vi cidadãos, desprovidos de qualquer

oportunidade, desafiarem essa política nefasta ao conduzir seu desenvolvimento com

as próprias mãos cheias de calo.

Aprendi a pescar com rede, nadei no rio com piranha, fugi de jacaré, andei atrás de

passarinho, vi a morte de perto ao naufragar um barco, tirei e bebi açaí, acompanhei

caçadas, tirei leite da seringa, comi arabú, tratei corte de facão com banha de sucuri,

curei dor de barriga com capurana, curei dor de amor com céu estrelado e viola,

pesquei com jaticá, tomei vinho de apuruí, comi muito tambaqui, alaguei canoa, tomei

muita picada de caba, tomei peia de potó.

Me enchi de guereré, caí do assacú e me atolei na lama, contei pirarucu, confundi

bodeco com sulamba, plantei roça, fiz farinha, perdi amigo morto em conflito pesqueiro,

quase perdi amigos com picadas de cobras, morei 15 meses em um barco, compreendi

o que é organização social, aprendi a falar e a ouvir, aprendi a ser flor e espinho com o

mesmo semblante. Aprendi a respeitar, aprendi o que devo ser para obter respeito.

Aprendi que qualquer sociedade tem seus alicerces na relação que estabelece com a

natureza. Fiz tantos amigos na beira desse rio que as lagrimas despencam sem cessar

de tanta saudade.

Não lembro mais quem eu era antes do Médio Juruá. O doutorado acabou e foi um

pequeno detalhe.

Muitas pessoas marcaram esse momento.

Primeiramente, agradeço de coração aos meus pais por terem me ensinado o valor de

sempre lutar pela humildade e honestidade. A grande sorte que dei na vida foi ter

nascido em uma família que me permitiu seguir meus desejos sem a pressão e a

cobrança de um mundo sedento por dinheiro. Meus pais são pessoas incríveis que

abdicaram de seus sonhos para que eu pudesse tentar alcançar os meus. Não quero

desmerecer meus esforços, mas tenho plena consciência que tudo que eu possa

conquistar na vida, terão as marcas suadas das mãos de meus pais, que garantiram a

vi

oportunidade de estudo em um país às avessas. Além de muito amor, tenho por eles a

mais grandiosa gratidão.

Sou muito grato também à algumas pessoas que, lá atrás, me incentivaram a me jogar

em solos amazônicos, como é o caso da querida Dri (Adriane Morais) e do Roberto

Ávila, amigo especial que teve importância fundamental inclusive na minha escolha

pela biologia.

Devo fazer um agradecimento especial à passagem que tive pela secretaria de

desenvolvimento sustentável do Estado, trabalhando especificamente no Programa

participativo de monitoramento da biodiversidade e uso dos recursos naturais nas

Unidades de conservação do Amazonas, o ProBUC. Esse programa mudou minha

vida, pois me lançou na esfera que sempre desejei estar: entre os seres humanos e a

natureza. Ali conheci grandes amigos que me inspiraram na caminhada rumo a um

mundo mais justo e mais harmônico na relação homem/natureza. São eles: Henrique

C. Santiago (Cachaça), Sinomar F. Jr, Davi Teles Vinhas, Marcelo Castro, Polly Lemos

e Wilde Itaborahy. Um abraço no coração de cada um, aprendi muito com vocês.

Agradeço de coração todos os amigos no médio Juruá que possibilitaram essa imersão

que se tatuou para sempre em minha formação como ser humano. Tenho o prazer em

dizer que construí uma família no Médio Juruá passando por todas as comunidades do

Bacaba ao São Sebastião. Impossível citar nomes, é muita gente boa por lá!!!!!!!!!!!!!

Quero agradecer também as instituições responsáveis pelo lindo trabalho que ocorre

por lá – ASPROC, AMARU, DEMUC, ICMBio, IBAMA, Colônia de pescadores e todo o

time de profissionais que que fazem do trabalho uma linda luta.

Agradeço muito ao Carlos Peres, meu orientador, por toda sua dedicação. Um

orientador que incansavelmente me mostrou atalhos para se chegar à ciência de alta

qualidade. Carlos me deu uma oportunidade incrível de coordenar o campo de um

grande projeto, serei sempre muito grato. Carlos também elevou minha referência e me

ensinou que a ciência é muito divertida, quando feita com criatividade, sem amarras e

grandes dogmas.

Agradeço ao governo brasileiro por ter me concedido a oportunidade de pensar um

tema que não gera lucros à grandes empresas. Agradeço à UFRN e seu corpo docente

por todas as oportunidades e por me mostrar que é possível criar um espaço

acadêmico sem vaidade e mesquinharia.

Agradeço imensamente ao meu co-orientador Carlinhos Fonseca, por ser um grande

exemplo de pesquisador, professor, pai, amigo e ser humano. Eita família bonita a

desse cabra! Foi inspirador ter conhecido a forma como ele encara a vida de cientista.

E como é bom discutir ciência com a mesma pessoa que te acompanha no samba,

tocando pandeiro e no ataque das peladas!

Agradeço muito à Priscila Lopes por ser sempre tão solicita, querida, inspiradora e de

esquerda! Ao Coca pelo seu exemplo mostrando que política e ciência fazem parte do

mesmo discurso, e à Adriana Carvalho que contribuiu muito com o desenvolvimento de

vii

minha tese e nunca me recebeu sem um sorriso estampado no rosto! Renato Cintra

com sua positividade impressionante tem um agradecimento especial também!

João Henrique, o minhoca, também foi um grande amigo muito importante no

desenvolvimento desse trabalho. Ele me guiou nas viagens ao fantástico mundo dos

fitoplâncton. Sua paciência, alegria e prontidão para o compartilhamento da cachaça

foram de grande valia!

Joseph Hawes, além de coautor e parceiro profissional, também foi um grande amigo

que ganhei durante o doutorado.

São tantos amigos importantes na caminhada que seria muito arriscado citar nomes

com uma memória avoada como a minha…

Mas alguns tiveram participação decisiva em algum momento dessa tese: Fernanda

Meirelles, Leo Xina, Chimbinha, fumaça, Guiga, Dri, Bernardo, Carol, Helder, Juampy,

Juanka e Eugenia... E a materialização final da tese foi especialmente amparada pela

positividade e no companheirismo compreensivo da Julia!!! Que sorte a minha!

Obrigado também Carolina Freitas por todo o companheirismo profissional em campo!

A Carol foi um baita reforço em nosso projeto e enriqueceu de mais os longos trabalhos

de campo, juntamente com os amigos Hugo Costa, Almir e Thonha!

Foram tão vastas as experiências, são tão intensos os agradecimentos, pena que seja

tão limitado o espaço. Pois aqui não caberia o oceano de gratidão que me lava a alma

nesse momento. Devo me cuidar para não ser piegas e redundante, mas dentre todos

os ensinamentos, o doutorado me mostrou que o crescimento é muito maior quando

nos dedicamos à colaboração e ao altruísmo. De coração, obrigado a todos que de

alguma forma contribuíram com esse período da minha vida.

viii

vii

Sumário

Página

Introdução 1

Estrutura da tese 7

Capítulo 1 (artigo 1)

13 Policy reversals do not bode well for conservation in Brazilian Amazonia

Capítulo 2 (artigo 2)

22

Community-based management induces rapid recovery of a high-value tropical freshwater fishery

Capítulo 3 (artigo 3)

74

Community-based management drives food web structure in Amazon floodplains lakes

Capítulo 4 (artigo 4)

102 Responses of waterbirds to fisheries management on Amazon floodplains

Capítulo 5 (artigo 5)

126

Unintended multi-species co-benefits of community-based fluvial beach protection in lowland Amazonia

Capítulo 6 (artigo 6)

158

Arapaima management as a tool for conservation of Amazon floodplains: Bottlenecks, threats and recommendations

Anexo 1 (Artigos de divulgação)

171 Artigo 7 - Tempos sombrios para a conservação da Amazônia

Artigo 8 - Comunidades ribeirinhas da Amazônia melhoram a qualidade de vida protegendo a biodiversidade 177

Artigo 9 - Espécies guarda-chuva: O manejo da tartaruga da Amazônia garante a conservação de muitas outras espécies

189

Anexo 2

194 Artigo 10 - Brazilian fisheries dipped in a sea of uncertainty

Anexo 3 - Além tese: Ensinamentos caboclos para problemas também existentes na academia

Conto 1: Sobre a solidão 198

Conto 2: Sobre a meritocracia 200

Conto 3: Sobre a aplicabilidade (ou não) da Ciência 202

Conto 4: Sobre bens materiais, dinheiro e felicidade 205

Conto 5: Sobre a alteridade 207

Conto 6: Sobre o tempo 208

Introdução e Estrutura da tese

1

1. Introdução geral

Um dos aspectos mais fascinantes do planeta Terra é a colossal diversidade

biológica que habita seus domínios. Estimativas sugerem que cerca de 9 milhões de

espécies de plantas, fungos, animais e microrganismos dividem espaço com cerca

de 7 bilhões de pessoas. Essa numerosa população humana consome mais de 40%

da produção primária líquida do planeta (Vitousek et al. 1986, Rojstaczer et al.

2001), cerca de 35% da produtividade oceânica (Pauly e Christensen 1995) e cerca

de 60% do fluxo de água doce (Postel et al. 1996). Essa escala de consumo fez

emergir uma crise ambiental sem precedentes, com genes, espécies e grupos

funcionais sendo eliminados em taxas nunca antes observadas na história da

humanidade (Cardinale et al. 2012). Essa dantesca problemática traz um homérico

desafio para as sociedades contemporâneas: usar os recursos naturais de forma

sustentável, sem comprometer os sistemas biológicos.

Atenção especial vem sendo dada aos ambientes de água doce, que representam

apenas 0,8% da superfície terrestre (Gleick 1996). Apesar da pequena

representatividade, esses sistemas foram fundamentais para o desenvolvimento das

sociedades humanas, sustentando as atividades agrícolas e industriais (UNDP,

2006). Com o rápido aumento das populações humanas, particularmente nos

trópicos, esses sistemas de água doce se tornaram os ambientes mais ameaçados,

com taxas de perda de espécies substancialmente mais altas que os ambientes

terrestres ( Dudgeom et al 2005; Sala et al. 2010).

Os grandes rios de água doce e suas planícies de inundação podem ser

caracterizados como complexos sistemas sócio ecológicos, onde as normas sociais,

relações ecológicas e interações biofísicas são dinâmicas, complexas e recíprocas

Introdução e Estrutura da tese

2

(Liu et al. 2009; Ostrom 2009). As comunidades humanas residentes nesses

ambientes de água doce são altamente dependentes dos recursos naturais, como é

o caso do pescado, por exemplo. Nesse caso, a conservação dos estoques é

essencial para a estabilidade econômica e social das comunidades humanas. A

conservação desses ambientes, portanto, pode ser considerada um problema

comum que afeta diferentes escalas e se relaciona com os grandes desafios do

milênio: conservação da biodiversidade, melhoria da qualidade de vida e redução da

pobreza (Sacchs et al. 2009).

A floresta amazônica ilustra bem essa problemática, pois ela representa cerca de

metade de todo remanescente de floresta tropical do mundo (Hansen et al. 2013),

uma grande fração da biodiversidade terrestre e uma diversidade cultural

impressionante. Toda essa riqueza abaixo e a cima do solo representa também uma

incisiva oportunidade de desenvolvimento para todos os países que compartilham

suas fronteiras. Na prática, o destino do bioma depende da habilidade humana de

implementar atividades sustentáveis para o desenvolvimento da região.

As áreas protegidas constituem uma das maiores ferramentas globais de

conservação. São instrumentos governamentais, criados com a grandiosa missão de

preservar e conservar a diversidade biológica e os recursos naturais associados a

ela (UICN 1994). As unidades de desenvolvimento sustentável compõem uma

categoria de área protegida que permite diferentes tipos e intensidades de

manipulação humana. Elas abrigam as chamadas “populações tradicionais” que

ainda mantém uma forte relação com a terra, apresentando, muitas vezes, um

modelo de subsistência, quanto à ocupação do espaço e uso dos recursos naturais.

As áreas protegidas reservadas ao desenvolvimento sustentável correspondem a

61,6% de todas as áreas protegidas do mundo (WDPA 2011). No Brasil, a grande

Introdução e Estrutura da tese

3

maioria das unidades de desenvolvimento sustentável (cerca de 99% em área)

encontra-se na Amazônia (Rylands e Brandom 2005).

Não restam dúvidas quanto à importância das áreas protegidas na conservação

da biodiversidade, contenção de desmatamentos e manutenção de serviços

ambientais (Peres 2005; Nepstad 2006; Malhi et al. 2008). No entanto, a grande

maioria das áreas protegidas criadas foram sedimentadas sobre os alicerces da

ecologia terrestre (Castelo 2013). Além disso, a Amazônia vive atualmente um

período político substancialmente desfavorável à criação e implementação de novas

áreas protegidas (Campos-Silva et al. 2015). Portanto, urge a necessidade de se

pensar estratégias conservacionistas complementares que contemplem os

ambientes aquáticos.

Uma forma alternativa de se pensar a conservação da biodiversidade de forma

integrada com o desenvolvimento das populações tradicionais se sedimenta na

inclusão das populações locais nas tomadas de decisão que regulam o uso de

recursos naturais (Somanatham 2009). Esse manejo colaborativo dos recursos

naturais (também chamados de co-manejo) surgiu cerca de 30 anos atrás como uma

tentativa de descentralizar o uso de recursos naturais, antes centralizado no Estado

(Cleaver 1999). O objetivo do co-manejo é o compartilhamento das tomadas de

decisão que regulam o uso de recursos naturais entre os diferentes usuários, dessa

forma as regras poderiam refletir melhor as peculiaridades de cada local e as

propostas teriam uma maior adesão por parte dos usuários. (Jentoft 2000). Embora

soe convincente, existe uma grande lacuna sobre experiencias empíricas de co-

manejo (Gutierrez et al. 2011; Cinner et al. 2012). Basicamente, a literatura global

carece de estudos que avaliem esses sistemas sob uma perspectiva ecológica.

A presente tese de doutorado se desenvolveu de 2012 a 2016 na região média do

Introdução e Estrutura da tese

4

rio Juruá, um importante afluente do rio Amazonas. Vale ressaltar a grande

organização social observada na região. No último século, a exploração da borracha

foi uma importante atividade econômica no norte do Brasil, no entanto, conduziu

uma grande parcela da população ribeirinha à extrema pobreza, sem suporte

governamental e sob constantes ameaças dos chamados “patrões da borracha”

(Fearnside 1989). Essa situação criou uma grande necessidade de organização

social e culminou com a criação das duas reservas de uso sustentável, a Reserva de

Desenvolvimento Sustentável (RDS) de Uacari e a Reserva Extrativista (RESEX) do

Médio Juruá.

A RESEX do Médio Juruá (5º33’54”S, 67º42’47”W) encontra-se na margem

esquerda do Rio Juruá, dentro dos limites da cidade de Carauari, Amazonas. A

reserva foi criada em 1997 e possui 253.227 hectares. A vegetação é caracterizada

pela predominância de Floresta Ombrófila Densa Aluvial de Terras Baixas e a

Floresta Ombrófila Aberta de Terras Baixas. Na RESEX existem cerca de 13

comunidades, onde residem aproximadamente 700 pessoas.

A RDS de Uacari (5º43'58"S, 67º46'53"W) foi criada em 2005, possui 632.949

hectares e forma, juntamente, com a Terra Indígena Rio Biá e a Reserva de

Desenvolvimento Sustentável Cujubim, um mosaico de áreas protegidas com quase

4,5 milhões de hectares. Dentro dos limites da reserva são encontradas 32

comunidades onde residem 1200 pessoas.

Um aspecto marcante das várzeas amazônicas é o pulso de inundação (Junk

1989). Muitas vezes a diferença entre o período de águas baixas e altas pode atingir

cerca de 12 metros. Esse fenômeno molda todas as comunidades biológicas que

residem na várzea, inclusive os grupos humanos. Na época da seca, os lagos e

corpos d’agua tornam-se unidades discretas na paisagem, permitindo a ordenação

Introdução e Estrutura da tese

5

das atividades pesqueiras. Uma dessas atividades é o manejo do pirarucu, que vem

se difundido por muitas localidades da Amazônia.

O Pirarucu pode ser chamado de gigante vermelho das várzeas. Trata-se do

maior peixe de escamas do mundo, que pode atingir mais de 200 Kg e medir mais

de 3 metros de comprimento. Devi ao alto valor nutricional de sua carne, alinhado ao

alto valor cultural de sua pesca, o pirarucu foi dizimado dos rios amazônicos, sendo

extinto em muitas localidades. O manejo se iniciou por volta de 1999 com o objetivo

de reverter essa tendência de diminuição populacional. Atualmente o manejo ocorre

em mais de 20 localidades e os resultados reportados têm sido surpreendentes. O

manejo ocorre basicamente de forma comunitária, onde as comunidades protegem

os lagos em períodos críticos do ano, solicitam a cota de abate ao governo e, por

fim, realizam a pesca do pirarucu, vendendo-o em escala municipal e estadual.

Na baixada das águas também surgem centenas de praias que funcionam como

sítios reprodutivos de várias espécies de animais, dentre eles a tartaruga da

Amazônia. Assim como o pirarucu, a tartaruga da Amazônia, juntamente com outras

espécies como o tracajá e o iaçá, representam um grupo de altíssimo valor cultural

para a população ribeirinha amazônica, pois sua carne é considerada uma

incomparável iguaria. Essas espécies de quelônios vêm sendo explorados desde

épocas pré-colombianas, consolidando-se como uma importantíssima fonte proteica

para as sociedades ribeirinhas e ameríndias. Além da carne, os ovos possuem um

valor nutricional impressionante e é consumido pela população geralmente

acompanhado de farinha açúcar, quando chamado de arabu. Trata-se de algo

equivalente a gemada, mistura feita com ovos de galinha e açúcar bastante

consumida na cidade.

Introdução e Estrutura da tese

6

Além da alimentação humana os ovos dos quelônios foram amplamente

explorados para iluminação pública e para confecção de manteiga. Estima-se que

milhões de ovos eram utilizados anualmente para iluminação pública das grandes

cidades amazônicas, Belém e Manaus. Diante dessa pressão drástica as

populações de tartaruga da Amazônia declinaram e desapareceram de muitos rios

da Amazônia.

Com o objetivo de reverter esse processo de redução populacional, comunitários

organizados socialmente iniciaram um processo de proteção das praias de desova,

que tem por objetivo garantir a proteção das fêmeas adultas. Essa iniciativa se

espalhou para mais de 100 localidades e hoje se constitui na maior ferramenta de

conservação dos quelônios de água doce da Amazônia.

O Médio Juruá a proteção dos tabuleiros de desova se iniciou ainda nos tempos

dos patões da borracha, que protegiam a praia para ter o recurso em abundância.

Hoje ele ocorre de forma organizada em 14 praias protegidas, dentro de duas

Unidades de conservação, a RESEX Médio Juruá e a RDS Uacari. Basicamente os

protetores das praias, ou monitores como são chamados, passam cerca de cinco

meses por mês em uma casa de madeira em frente à praia afastando qualquer

pessoa que tente coletar os ovos ou as fêmeas. É um trabalho árduo, muitas vezes

perigosos, pois a tartaruga tem um altíssimo valor no comércio ilegal. Uma fêmea

adulta pode ser vendida por até 1000 reais em Manaus. Como benefício cada

monitor recebe uma cesta básica por mês, durante o período que fica protegendo a

praia.

O manejo do pirarucu e a proteção de tabuleiros de desova de quelônios têm

como objetivo a conservação e uso dos recursos mais emblemáticos e importantes

do interior do Amazonas. O objetivo dessa tese é avaliar os efeitos ecológicos,

Introdução e Estrutura da tese

7

econômicos e sociais desses dois sistemas de conservação de base comunitária.

Cada capítulo da tese aborda um tema relacionado a essa problemática.

2. Estrutura da tese:

A presente tese é estruturada em seis capítulos e três anexos. No capítulo 1, faço

uma breve explanação sobre o cenário político da conservação na Amazônia.

Basicamente, a meu ver, é necessário o fortalecimento de outras ferramentas de

conservação que não sejam centralizadas nas instâncias governamentais. Isso é

importante em momentos onde a crise econômica e as prioridades políticas estejam

afastadas das necessidades conservacionistas. Esse capítulo se resume em um

artigo publicado na Natureza & Conservação na forma de Policy essay.

No capítulo 2 apresento um artigo sobre o manejo do pirarucu (Arapaima gigas)

publicado na Scientific Reports, onde avalio os benefícios ecológicos e

socioeconômicos do manejo, concluindo que o manejo do pirarucu é uma grande

janela de oportunidades para a conservação das várzeas amazônicas, pois há

claramente a oportunidade de associar a conservação da biodiversidade aquática

com a melhoria da qualidade de vida das populações ribeirinhas.

No capítulo 3, avalio a relação entre o manejo do pirarucu e a produtividade

primária dos lagos de várzea. Além dos fatores bottom up, amplamente discutidos

nas abordagens limnológicas, encontramos que o manejo comunitário da pesca tem

forte influência na biomassa de fitoplâncton, provavelmente por fenômenos tróficos

induzidos pelas grandes populações de pirarucu residentes em lagos protegidos.

Esse capítulo está em processo de submissão para a Journal of applied Ecology.

No capítulo 4, avalio as respostas das aves aquáticas ao manejo pesqueiro. Para

Introdução e Estrutura da tese

8

algumas guildas de aves, como os mergulhões, garças e socós, o manejo pesqueiro

foi o fator mais forte para explicar a variação no número de indivíduos dessas

espécies. Esse capítulo está em processo de submissão na Ecological applications.

No capítulo 5, avalio os efeitos ecológicos de outro sistema de conservação de base

comunitária, que é a proteção de tabuleiros de desova da tartaruga da Amazônia

(Podocnemis expansa). Analisamos 34 anos de dados e concluímos que os

resultados são fortes e substanciais tanto para a conservação da tartaruga da

Amazônia como para diversos outros grupos taxonomicos que também usam as

praias. Esse artigo está submetido para a PNAS. O capítulo 6 é um artigo escrito em

coautoria com membros da ampla maioria das instituições envolvidas no manejo do

pirarucu na Amazônia. A ideia foi discutir as principais ameaças e entraves ao

manejo do pirarucu sob o ponto de vista de todas as instituições protagonistas:

comunidades, associações locais, ONGs e governo. As recomendações geradas

nesse artigo poderão servir de alicerce para futuros projetos acadêmicos,

governamentais ou do terceiro setor.

No anexo 1 apresentarei todos os resultados dessa tese na forma de artigos de

divulgação científica que serão submetidos à Ciência Hoje e outras revistas

equivalentes. Penso que isso é importante por dois motivos: o primeiro é

disponibilizar os resultados dessa tese na língua portuguesa, o segundo é levar a

informação da tese para outras esferas, além da acadêmica. No anexo 2 apresento

uma breve carta submetida à Fisheries Research, relatando o completo descaso

governamental com a pesca brasileira. Devemos ter em mente que a pesca garante

a captura de cerca de 800.000 toneladas de pescado por ano, garantindo emprego

para mais de 3,5 milhões de pessoas e segurança alimentar e social para milhões de

famílias. No entanto, não temos ideia sobre a condição dos estoques, uma vez que

Introdução e Estrutura da tese

9

não temos estatística pesqueira em vigor. A necessidade de investimento no

monitoramento pesqueiro é algo pulsante no país. Por isso escrevemos essa carta

para tentar chamar um pouco de atenção ao caso.

Por fim, no anexo 3, eu apresento alguns contos escritos com base nos

aprendizados que tive no decorrer dessa tese. Apesar desses contos não se

enquadrarem no espaço convencional de uma tese, devido ao seu caráter livre e

subjetivo, resolvi inseri-los para compartilhar um pouco da sabedoria cabocla com

outros alunos que, por ventura, possam passar pelos mesmos anseios e indagações

que passei nos 15 meses que convivi com a sábia população do rio Juruá.

Referencias

1.Campos-Silva, J. V., da Fonseca Junior, S. F. & da Silva Peres, C. A.2015. Policy

reversals do not bode well for conservation in Brazilian Amazonia. Natureza &

Conservação, 13(2).

2.Cardinale, B.J.; Duffy, J.E. Gonzales, A.; Hooper, D.U.; Perrings, C.; Venail, P.;

Narwani,A.;Mace, G.M.; Tilman, D.; Wardle, D.A.;Kinzing, A.P.; Daily, G.C.;

Loreau,M.; Grace, J.B.; Larigauderie, A.; Srivastava, D.S. and Naeem, S. 2012,

Nature. Biodiversity loss and its impacto n humanity, 486,pp59-67.

3.Cleaver, F., 1999. Paradoxes of participation: questioning participatory approaches

to development. Journal of International Development 11, 597–612.

4.Castello, L.; McGrath, D.G.; Hess, L.L.; Coe, M.T.; Lefebvre, P.A.;Petry, P.; Macedo,

M.N.; Reno, V.F.; and Arantes, C.C.2013. The vulnerability of Amazon freshwater

ecosystems. Conservation Letters 0 (2013) 1–13

5.Cinner. J.E. et al. 2012. Transitions toward co-management: The process of marine

resource management devolution in three east African countries, Global

Introdução e Estrutura da tese

10

Environmental Change 22, 651–658.

6.Dudgeon D, et al. 2006. Freshwater biodiversity: Importance, threats, status and

conservation challenges. Biological Reviews 81: 163–182

7.Fearnside, P. M. 1989. Extractive reserves in Brazilian Amazonia: An opportunity to

maintain tropical rain forest under sustainable use. BioScience 39:387-393.

8.Gleick, P.H., 1996. Basic Water Requirements for Human Activities: Meeting Basic

Needs, 21. Water International (IWRA), pp. 83–92.

9.Hansen, M.C. High-resolution global maps of 21st-century forest cover change

Science, 342 (2013), pp. 850-853.

10.Gutierrez, N.L.; Hilborn, R. and Defeo, O. 2011. Leadership, social capital and

incentives promote successful fisheries

11.IUCN/WCMC. 1994. Guidelines for Protected Area Management

Categories. Gland and Cambridge: IUCN.

12.Jentof, S. 2000, Legitimacy and disappointment in fisheries management, Marine

Policy, 24,pp141-148.

13.Junk. W. J., Bayley, P. B., and Sparks, R. E. 1989. ‘The flood pulse concept in

river-floodplain systems’, Special Publication of the Canadian Journal of Fisheries

and Aquatic Sciences, 106, 1 10-127

14.Liu, J.; Dietz, T.; Carpenter, S.R.;Alberti, M.; Folke, C.; Moran,E.;Pell, A.N.;

Deadman, P.; Kratz, T.; Lubchenco, J.; Ostrom, E.; Ouyang, Z.; Provencher, W.;

Redman, C.; Schneider, SH.; Taylor, W.W. Complexity of Coupled Human and

Natural Systems. Science 2009

15.Malhi, Y. Roberts. J. T. Betts, R. A.; Killen, T.; Li, W.; Nobre, C.2008. Climate

Change, deforestation an the fate of the Amazon, Science Vol 3.

16.Nepstad, D.; Schwartzman, S.; Bamberger, B.; Santilli, M.; Ray, D.; Schlesinger,

P.; Lefebvre, P.; Alencar, A.; Prinz, E.; Fiske, G. and Rolla, A. 2006. Inhibition ao

Amazon Deforestation and Fire by Parks and Indigenous lands, Conservation Bilogy.

Vol 2: N1, 65-73.

17.Ostrom, E. 2009. A general Framework for Analyzing sustainability of Social-

Ecological Systems.Science (325)419-422.

18.Pauly, D. and Christensen, V. (1995) Primary production required to sustain global

fisheries. Nature 374, 255–257

19.Peres, C. 2005. Why we need a megareserves in Amazonia. Conservation

Biology, V:19, N3, P 728-733.

Introdução e Estrutura da tese

11

20.Postel, S.; Daily, G.; Ehrlich, P. Human appropriation of renewable fresh water.

Science, v. 271, n. 5250, p. 785-788, 1996.

21.Rojstaczer, S., Sterling, S. M., & Moore, N. J. (2001). Human appropriation of

photosynthesis products. Science, 294(5551), 2549 – 2552.

22.Rylands, A. Brandon, K.2005. Brazilian Protected Areas. Conservation Biology,

19:3, 612-618.

23.Sachs, J. D.; Baillie, J.E.M.; Sutherland, W.J.; Armsworth, P.R.; Ash, N.;

Beddington, J.; Blacburn, T.M.; Collen, B.; Gardiner,B.; Gaston, K.J.; Godfray, H.C.J.;

Green, R.E.; Harvey, P.H.; House, B.; Knapp, S.; Kumpel, N.F.;Macdonald,D.W.;

Mace. G.M.; Mallet,J.; Matthews, A.; May, R.M.; Petchey, O.; Purvis, A.; Roe, D.; Safi,

K.; Turner, K.; Walpole, M.; Watson, R.; Jones,K.E. 2009. Biodiversity Conservation

and the Millennium Development Goals. Science 325, 1502–1503.

24.Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, R., Bloomfield, J., Dirzo, R.,

Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzing, A., Leemans, R.,

Lodge, D.,

Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M. &

Wall, D. H. 2000. Global biodiversity scenarios for the year 2100. Science, 287,

1770–1774.

25.Somanathan, E., Prabhakar, R. & Mehta, B. S. Decentralization for cost-effective

conservation. Proceedings of the National Academy of Sciences 106, 4143-4147

(2009).

26.UNDP (United Nations Development Programme). Human Development Report

2006. Beyond Scarcity: Power, Poverty and the Global Water Crisis. UNDP, New

York, 422 pp.

27.Vitousek, P.; Erlich, P.; Ehrlich, A.; Matson, P. Human Appropriation of the

Products of Photosynthesis. Bioscience, v. 36, n. 6, p. 368-373, 1986.

28.World database on Protected Area. Disponível em <http.www.wdpa.org>

Acessado em 09/11/2011.

Capítulo 1

Policy reversals do not bode well for conservation in

Brazilian Amazonia

Julia T. Verba

Julia Verba

Capítulo 1

14

Policy reversals do not bode well for conservation in Brazilian Amazonia*

João Vitor Campos-Silva, Sinomar Ferreira da Fonseca Junior, Carlos Augusto da

Silva Peres

*Publicado na Natureza e Conservação 2015; 13:193-5, doi: 10.1016/j.ncon.2015.11.006

The Amazon basin represents nearly half of the world's remaining tropical

forests (Hansen et al. 2013) and a large fraction of the terrestrial biodiversity. Due to

a wealth of increasingly desirable above- and below-ground natural resources, the

Amazon also represents a divisive development opportunity for South American

countries. In practice, however, reconciling the Herculean challenges of implementing

sustainable strategies for biodiversity conservation, poverty alleviation, and economic

growth will determine the ultimate fate of the region. Here, we express concerns over

two successful conservation and development strategies in the Brazilian Amazon over

the last two decades involving the concomitant creation of a comprehensive system

of protected areas and strengthening of the scientific and technical capacity to manage

natural resources.

In 2000, the Brazilian government established the National Protected Areas

System (SNUC), which was enshrined by the new constitution. Currently, SNUC has

consolidated a total of 1940 protected areas containing 1,513,828km2 of tropical

forest, which represents 17.8% of Brazil's entire territory. Of this total, 205 are

managed by municipal county agencies, 781 are protected areas managed by state

government agencies, whereas the remaining 954 are managed by the federal

government (MMA 2015). Since 2006, indigenous and Quilombola (traditional

communities of Afro-Brazilian descendants) territories were included as part of the

National Plan for Protected Areas, which represents about one quarter of the Brazilian

Capítulo 1

15

territory under non-private protection (PNAP 2006). This is an area larger than France,

Spain, Portugal, the United Kingdom, Italy and Germany combined.

This national protected area system represents the key frontline of deterrence

against tropical deforestation, habitat degradation, and biodiversity loss (Bruner et al.

2001; Nepstad et al. 2006; Ricketts et al. 2010), and is often considered as the largest

contributor to recently observed global scale declines in tropical forest loss (Hansen

et al. 2013). The huge advances made over the last 15 years are undeniable, when

Brazil gained a world leadership status in conservation (Ferreira et al. 2014). However,

in the last few years, these hard-won conservation gains have been severely

embattled by central-government environmental policy, particularly in the State of

Amazonas, the largest subnational political unit in Brazil (155.9 million hectares),

where >95% of the total area remains forested, ∼51% of which within formal protected

areas and indigenous territories (IMAZON 2015).

It is widely known that in most cases the mere creation of a protected area on

paper does not in itself ensure its long-term conservation. Most Amazonian protected

areas have yet to be properly implemented through local investments in reserve

personnel, infrastructure and securing land-tenure, so they remain at the mercy of

encroachment by squatters, other economic interests, poaching and deforestation

(Peres and Terborgh 1995; WWF 2012; Ferreira et al. 2013). For instance, 46.4% of

all state protected areas within Amazonas have no management plans, but even if

management plan guidelines are the first precondition to manage a protected area,

they alone cannot ensure legal enforcement of reserve regulations. Moreover, overall

human capacity to implement protected areas is wholly insufficient. Currently, only 27

full- or part-time staff are employed to manage the 42 state protected areas of

Capítulo 1

16

Amazonas, representing only 0.65 employees per reserve, or a mean reserve area of

6966km2 under the watch of each full or part-time reserve manager. This situation is

even worse when reserve personnel who are physically stationed at the state capital,

rather than in situ, are excluded from this workforce. This would equate to only 16

reserve staff, representing only 0.38 employees per reserve or a mean forest reserve

area of 11,756km2 per park manager.

Clearly, despite considerable conservation investments over the last two

decades, Brazil remains at a cross-roads in implementing and consolidating its large

network of protected areas on paper. While further governmental investments in

science, surveillance technology, and human resources could lead low-governance

regions like Amazonia to truly sustainable growth, most of the dividends from

conservation investments over the last four decades could be lost if the current

atmosphere of political neglect persists.

Another component of conservation management investments is scientific

capacity and output. Over the last two decades the number of postgraduate students

who are based at universities and research agencies within Brazilian Amazonia leaped

from 214 to 2159 per year, representing an >1000% increase in capacity throughput.

This is reflected in the growing number of papers published, from 471 to 2776 per year

(SECTI 2015). Sustainable natural resource exploitation and scientific development

are inextricably linked. Moreover, many of these postgraduate students go on to work

in research institutes, government agencies and NGOs, and continue to contribute to

regional scientific development one way or another. Retaining proficient research and

technical staff within Amazonia is critical, so government agencies should think

strategically about continued career opportunities in regional job markets.

Capítulo 1

17

However, all recent hallmarks in government executive orders have rapidly

drifted in the opposite direction, generating alarming concerns over the balance

between conservation and unhinged development, at least in Amazonia. This follows

a series of policy swings, beginning with the controversial overhaul of the well

established Forest Act (Metzger et al. 2010; Michalski et al. 2010). Recently, new

political decisions implemented by the state government of Amazonas severely

threaten the operational viability of the main agencies implementing conservation and

natural resource management. First, the Science, Technology and Innovation Council

(SECTI) was dissolved by the new state governor, which will severely damage

scientific growth, since this agency funds much of the science investment throughout

Amazonas.

Second, the Protected Area Management and Climate Change Agency was

also dissolved under the watch of the State Department of the Environment and

Sustainable Development. This massive cut in human resources can result in the

collapse of the entire state protected area system since most of these PAs depend on

state resources and are far from implemented. If human resources were insufficient

prior to these cuts, they are now virtually non-existent. Overall investments in

environmental management (including funding allocation to protected areas) were

also cut off by 88%, and it is important to emphasize that these budget cuts will impair

not only the upkeep of protected areas but all associated local collaborative

management structures. In a scenario of meager investments becoming even scarcer,

the state government will likely fail to honor collaborative management arrangements

and contracts previously co-signed by conservation NGOs.

Capítulo 1

18

To make matters worse, the current government plans to link what is left of the

conservation departments to the state Production Department. This is a Machiavellian

strategy to eliminate the autonomy of the former, subordinating it to the economic

demands of primary production, which are often diametrically opposite to the interests

of forest and biodiversity conservation. Unfortunately these political blunders do not

stop there. Indigenous reserves – which represent 27.3% of the state area – have also

succumbed to the current wave of government proposals. There are loud rumors that

the State Secretariat for Indigenous Peoples will also become subordinate to another

department, which led to protests by indigenous leaders, due to their sudden loss of

autonomy.

The government's simple justification is the wider context of budget cuts.

However, beyond monetary issues, this reform reflects the operational paradigm of

the Brazilian Federal Government: economic growth at any cost. In March 2015 the

State government passed a new law (PL155/2015) effectively fast-tracking the

licensing of large infrastructure projects without the scrutiny of federal environmental

institutions. These institutions control the approval and installation of new large

development projects, and the new law essentially provides a ‘blank check’ for large

contracts to be rolled out to large construction companies operating in the Amazon.

This is added to the fact that some 277 dams across the entire Brazilian Amazon basin

have been earmarked for construction, which at the very least is highly questionable,

not least because the costs of large dams on biodiversity and livelihoods of traditional

peoples are prohibitive and still difficult to predict and quantify (Gunkel et al. 2003)

given their overall environmental and biodiversity costs (Finer and Jenkins 2012;

Benchimol and Peres 2015). There is also a clear government strategy to invest in

mining exploration in Amazonia, even within protected areas. In 2011, the central

Capítulo 1

19

government created the State Department of Mining, Geodiversity and Water

Resources (SEGEORH), whose main objective is to support the construction of large

infrastructure and mining projects to promote regional economic growth. This is very

alarming, because approximately one fifth of all strictly protected areas and indigenous

reserves overlap officially sanctioned mining claims, representing an area of

315.6km2 under threat (Bernard et al. 2014; de Marques and Peres 2015).

Moreover, if government plans are to cut costs, there is little justification for the

strong increment in staff in the Governor's Office, which now has the highest number

of employees ever recorded. There are more than 70 staff, 34 positions assigned to

the direct assistance of the Office and 40 positions assigned to ceremonial duties

(Diário Oficial 2015). This means that the State of Amazonas has more employees to

organize the annual calendar of solemnities of a single office than to support

conservation and sustainable use of natural resources in the subnational political unit

controlling the largest tropical forest area on Earth.

The government saga to instigate economic exploitation of Amazonian surface

and underground resources, followed by the rapid dismantling of state-level

conservation agencies suggest that Brazil is reaffirming its postmodern colonial

condition, in which natural resources are exploited without proper planning and

environmental restraints, often caving in to external demands, rather than regional

socio-economic needs.

This sea-change in government attitudes to strategic planning has amounted to

serious detrimental effects since 2008. Brazil has lost 12,400km2 of protected areas

to degazetting, and an additional 31,700km2 to downsizing of forest reserves.

Moreover, an additional 21,000km2 could be lost via these processes if new law

Capítulo 1

20

proposals under discussion in the National Congress are sanctioned (Bernard et al.

2014; de Marques and Peres 2015). Moreover, since last year Brazil has seen a 215%

increase in deforestation, which partly reflects both legal and illegal clear-cutting in

private landholdings in the aftermath of the controversial legislative reform to the

Brazilian Forest Code (IMAZON 2015).

Apparently, new governmental development trajectories no longer take into

account the conservation of biological and cultural diversity. Thanks to a series of

unwise policies forcefully fast-tracked by the federal executive under the questionable

watch of President Dilma Rousseff, Brazil once again is entering a gloomy time for

conservation in the Amazon. Active engagement in the political process by both the

science community and civil society is therefore critically needed to veer off course

from the worst collisions steamrolled by wanton disregard for the long term-future of

natural resources, which after all is the bedrock of sustainable development.

References

1.Benchimol, M., C.A. Peres. Widespread forest vertebrate extinctions induced by a

mega hydroelectric dam in lowland Amazonia. PLOS ONE, 10 (2015), pp. 7.

2.Bernard, E.,L.A.O. Pena,E. Araujo. Downgrading, downsizing, degazettement, and

reclassification of protected areas in Brazil. Conserv. Biol., (2014), pp. 1-12.

3.Bruner, A.G. Effectiveness of parks in protecting tropical biodiversity. Science, 291

(2001), pp. 125-127.

4.Marques, A.A.B., C.A. Peres. Pervasive legal threats to protected areas in Brazil

Oryx, 49 (2015), pp. 25-29.

5. Ferreira, A.J.M. Relatório Conclusivo de Auditoria Operacional e Ambiental em

Unidades de Conservação Estaduais do Amazonas. Tribunal de Contas do Estado do

Amazonas (2013).

6. Ferreira, J. Brazil's environmental leadership at risk. Science, 346 (2014), pp. 706-

707.

7. Finer M., C.N. Jenkins. Proliferation of hydroelectric dams in the Andean Amazon

Capítulo 1

21

and implications for Andes-Amazon connectivity PLoS ONE, 7 (2012), pp. e35126.

8. Gunkel G. The environmental and operational impacts of Curuá-Una, a reservoir in

the Amazon region of Pará, Brazil. Lakes Reservoirs Res. Manage., 8 (2003), pp. 201-

216.

9. Hansen, M.C. High-resolution global maps of 21st-century forest cover change

Science, 342 (2013), pp. 850-853.

10. IMAZON – Instituto do Homem e meio ambiente da Amazonia, (2015). Available

from http://imazon.org.br/ (accessed 26.06.15).

11. Metzger J.P. Brazilian law: full speed in reverse? Science, 329 (2010), pp. 276-

277.

12. Michalski, F.,D. Norris,C.A. Peres. No return from biodiversity loss. Science (New

York, NY), 329 (2010), pp. 1282.

13. MMA – Ministério do Meio Ambiente. (2015). Available from

http://www.mma.gov.br/images/arquivo/80112/CNUC_Categoria_Fevereiro_2015.pdf

/(accessed 26.06.15).

14. Nepstad D. Inhibition of Amazon deforestation and fire by parks and indigenous

lands. Conserv. Biol., 20 (2006), pp. 65-73.

15. PNAP - Plano Estratégico Nacional de Áreas Protegidas. Decreto número 5.758

(2006).

16. Peres C.A., J.W. Terborgh. Amazonian nature reserves: an analysis of the

defensibility status of existing conservation units and design criteria for the future.

Conserv. Biol., 9 (1995), pp. 34-46.

17. Ricketts, T.H. Indigenous lands, protected areas, and slowing climate change

PLoS Biol., 8 (2010), pp. 1-4.

18. SECTI – Secretaria do Estado de Ciencia Tecnologia e Inovação, (2015). Available

from http://www.cienciaempauta.am.gov.br/ (accessed 26.06.15).

19. WWF and Instituto Chico Mendes de Conservação da Biordiversidade

Management Effectiveness of Brazilian Federal Protected Areas: Results of 2010

(2012).

22

Capítulo 2

Community-based management induces rapid

recovery of a high-value tropical freshwater

fishery

Carolina Freitas 22

Capítulo 2

23

Community-based management induces rapid recovery of a high-value

tropical freshwater fishery*

João Vitor Campos-Silva and Carlos A. Peres

*Publicado na Nature Scientific Reports 6 (2016), doi:10.1038/srep34745

Abstract

Tropical wetlands are highly threatened socio-ecological systems, where local communities rely heavily on aquatic animal protein, such as fish, to meet food security. Here, we quantify how a ‘win-win’ community-based resource management program induced stock recovery of the world's largest scaled freshwater fish (Arapaima gigas), providing both food and income. We analyzed stock assessment data over eight years and examined the effects of protected areas, community-based management, and landscape and limnological variables across 83 oxbow lakes monitored along a ~500-km section of the Juruá River of Western Brazilian Amazonia. Patterns of community management explained 71.8% of the variation in arapaima population sizes. Annual population counts showed that protected lakes on average contained 304.8 (± 332.5) arapaimas, compared to only 9.2 (± 9.8) in open-access lakes. Protected lakes have become analogous to a high-interest savings account, ensuring an average annual revenue of US$10,601 per community and US$1046.6 per household, greatly improving socioeconomic welfare. Arapaima management is a superb window of opportunity in harmonizing the co-delivery of sustainable resource management and poverty alleviation. We show that arapaima management deserves greater attention from policy makers across Amazonian countries, and highlight the need to include local stakeholders in conservation planning of Amazonian floodplains.

Key words: tropical fisheries, protected areas, stock recovery, wetlands,

floodplains, community-based management

Introduction

Although freshwater ecosystems comprise only 0.8% of Earth’s surface1,

they host one third of all vertebrate species worldwide2, and have always played a

critical role in societal development throughout human history. Currently,

freshwater environments and wetlands are top global scale conservation priorities,

because they are rapidly becoming the most threatened ecosystems, particularly

in the tropics, with rates of species loss substantially higher than those of terrestrial

environments3.

Capítulo 2

24

Many of these overexploited and increasingly degraded freshwater

environments can be described as socio-ecological systems (SES), where social

norms, ecological relationships and biophysical interactions are dynamic, complex

and reciprocal4. Human settlements, for example, are heavily dependent on

freshwater resources such as fish, and the top-down structure of entire fish

communities is often governed by the intensity of human overexploitation5.

Conservation and management of fish stocks are therefore essential to the

economic stability and social wellbeing of floodplain dwellers. Conservation of

freshwater ecosystems is widely considered an intractable problem affected at

different spatial scales, and is inextricably related to the often extolled but rarely

reconciled major challenges for humanity in the new millennium: biodiversity

conservation, improved quality of life, and poverty alleviation6.

Establishing the framework for sustainable resource use in locally co-

managed SESs is often a herculean task. This challenge is particularly difficult

partly because resource populations are affected by both biotic and abiotic factors,

in addition to the landscape dynamics of human exploitation pressure. For

example, marine fisheries respond to large-scale spatial patterns, such as latitude,

elevation, annual precipitation, and ecosystem primary productivity7. At smaller

scales, several other important variables can govern freshwater resource

availability including landscape and habitat heterogeneity8, water chemistry, and

plankton productivity9.

Setting aside and implementing well-managed protected areas is but one way of

achieving sustainable resource use10. For example, effectively established

marine protected areas have resulted in significant seascape-scale increases in

fishery yields11. Moreover, there are contentious discussions that remain

unresolved about the role of sustainable-use protected areas in realistically

Capítulo 2

25

reducing poverty and promoting other social benefits, mainly in developing

countries12. The rationale behind the thorny issue of reconciling biodiversity

conservation with local socioeconomic needs can be mainly justified at two levels.

First, implementation and maintenance of existing protected areas, particularly

large tropical reserves, are rarely effective due to scarce financial and human

resources, and inherent surveillance difficulties in enforcing reserve regulations

against a myriad of increasing external threats13. Therefore, formal alliances with

reserve residents can decentralize resource management, strengthen full-time

surveillance systems, and reduce overall conservation costs14. Secondly,

protected areas can enhance income opportunities, creating direct social and

economic benefits for local people15. For both of these reasons, legally occupied

sustainable-use reserves now exceed people-free strictly-protected reserves in

terms of both numbers and total area throughout the tropics16.

There are good examples of local communities that have been effectively

empowered to manage their own resources. These approaches are often referred

to as Community-Based Management (hereafter, CBM), whereby local people

with a vested interest in sustainable-use activities undergo an empowering

process to gain management control of their local natural resources17. This has

been independently demonstrated to work in different resource management

systems, for example to strengthen the sustainability of coral reef fisheries18,

convert commercial hunters into conservationists in Afrotropical forests19 and

improve conservation outcomes in Himalayan forests14. However, well-grounded

examples of positive ecological outcomes from CBM schemes have been rarely

demonstrated20.

A rare noteworthy example of community empowerment of artisanal

fisheries management has been occurring in lowland Amazonia21. With growing

market demand and technological innovation, large-scale commercial fishing

Capítulo 2

26

pressure on Amazonian fish stocks has been escalating since the early 1960s22.

This fueled the emergence of community-based management initiatives, whereby

fisherfolk began to restrict access by large commercial fishing boats into lakes near

their communities23. These initiatives, whenever they can be formalized, have

been variously referred to as ‘Fishing Accords’ between subsistence and

commercial fishing interests and have had a strong effect on local fisheries

management. In 1993, government agencies legally sanctioned these local

agreements as a formal fisheries management tool, which has since become a

powerful strategy to prevent overexploitation of important fish species24. Since

1999, such fishing accords, based on a strong social organization movement,

paved the way to the development of a promising community-based management

system focused on the exploitation of arapaima or pirarucú (Arapaima gigas,

Arapaimidae), a target species of marked importance in Amazonian history and

prehistory.

Arapaima spp. represents an apex predator in Amazonian fish communities

and Earth’s largest scaled freshwater fish, reaching >3.0m and >220kg

(Supplementary Information, Fig. S1). The alpha taxonomy of this monotypic

genus is poorly understood, and some new Amazonian species may yet be

described25. Adult arapaima exhibit high levels of parental care, protecting its fry

at all times, which contributes to its relatively low fecundity26. Fry-guarding adults

produce a mucous secretion, which flows through the water creating a safety net

that maintains a more cohesive family unit, and reducing natural predation on

young27. Due to its high ecological, economic and cultural value, large body size,

late maturity, and small brood sizes, Arapaima spp. is highly vulnerable to

overexploitation, and has been driven to local extinction at many localities28.

Surprisingly, however, A. gigas is currently listed as ‘data deficient’ in the most

recent IUCN Red List of Threatened Species.

Capítulo 2

27

Here, we provide a quantitative assessment of how CBM can promote the

recovery and conservation of arapaima, one of the most important tropical

freshwater fisheries, while generating both significant income and economic food

security for local livelihoods across Amazonian floodplains. We examine the

effects of different spatial scales of protection (protected lakes within and outside

protected areas), community management regime, distance to nearest markets,

and limnological and landscape-scale variables associated with 80 monitored

lakes spread across a ~600-km section of the Juruá River of western Brazilian

Amazonia. We further identify the patterns of local perception on arapaima

population growth as witnessed across 41 semi-subsistence communities

surveyed over the last 10 years. Finally, we discuss CBM initiatives as a powerful

tool for Amazonian floodplain conservation in decentralizing responsible decision-

making over natural resources, while serving the interests of both biodiversity

conservation and local livelihoods.

Methods

Study Landscape and Social Context

This study was carried out at 80 floodplain lakes inside and outside (upriver

and downriver) of two large contiguous sustainable-use reserves along the middle

section of the Juruá River, the second-largest white-water tributary of the Amazon

River (Fig. 1). The ~14,000-km2 study landscape contains two main forest types:

17.7% of seasonally-flooded (várzea) forest along the wide floodplain and 82.3%

of upland (terra firme) forest which is rarely if ever inundated29. The wet and dry

seasons coincide with periods of high (January – June) and low floodplain water

levels (August – November), with a prolonged flood pulse often exceeding 10 m in

amplitude30.

Capítulo 2

28

Figure 1. Distribution of 87 floodplain lakes sampled across a ~600-km segment of the Juruá River of western Brazilian Amazonia. White and orange circles indicate lakes inside and outside protected areas, respectively. Dark-red lines show the boundaries of two contiguous sustainable-use forest reserves, which amount to a combined area of 886,176 ha. This map was generated in ArcGIS 10.3(http://www.esri.com).

We note the unusually high level of socio-political organization of the local

communities occupying this region. Over much of the last century, natural latex

exploitation by rubber tappers was the dominant economic activity in central-

western Brazilian Amazonia. However, as government subsidies dwindled, rubber

extractivists gradually succumbed to extreme rural poverty. This created a serious

need for social self-organization fueling local demands for sustainable-use forest

reserves, where traditional extractive lifestyles were granted communal territory

rights, thereby preventing more predatory forms of land use31.

In this context, the federally-managed 253,227-hectare Médio Juruá

Extractive Reserve (RESEX Médio Juruá) was created in 1997. Located on the

west bank of the river (5⁰33’54”S, 67⁰42’47”W; Fig. 1), this reserve is legally

occupied by some 700 people distributed across 13 villages. This was followed by

the creation of the state-managed 632,949-hectare Uacari Sustainable

Development Reserve (RDS de Uacari) (5⁰43'58"S, 67⁰46'53"W) where ~1200

people live in 32 villages. In addition to those 45 local communities, we also

Capítulo 2

29

monitored 14 communities outside these protected areas. The local economy is

sustained by fisheries, slash-and-burn cassava agriculture, and non-timber forest

products such as oil seeds and palm fruits.

‘Fishing Accords’

To ensure food and economic security for rural communities, Fishing

Accords in the mid Juruá region were negotiated between local communities at the

two focal reserves, communities outside those reserves, and the Fishermen

Cooperative of Carauari, the nearest town. However, this is the first attempt to

evaluate the effectiveness of these fishing agreements.

These agreements established three categories of lake resource access

during the dry season, when lakes become discrete geographic features in the

landscape: (1) Open-access lakes contain free-for-all resource pools and remain

available for any fishing interests, including commercial fishing boats; (2)

Subsistence-use lakes are designed to supply local subsistence needs and

restrict access to only subsistence artisanal fishermen from the resident

community responsible for guarding that lake; and (3) Protected lakes are

managed by local communities primarily as stock recovery and arapaima

management sites, and exclude both commercial and subsistence fishing boats.

A floating wooden guard post is usually erected at the main strategic entrance of

the lake, thereby serving as a full-time armed vigilance unit managed by the

resident community (Fig. 2). During the arapaima management season, some of

protected lakes are harvested by the resident community for only a brief dry-

season period of up to 5 days per year, according to a previously set proportional

harvest quota based on the number of adult and juvenile arapaima censused at

that lake in the previous year.

Capítulo 2

30

Figure 2. Section of the Rio Juruá floodplain showing the upland (terra firme) forest (dark

green area) and floodplain várzea forest (light green area), containing oxbow lakes and

levees. Community-based full-time surveillance scheme protecting lakes during the dry

season is made possible by a wooden floating house placed at a strategic access point at

the mouth of the lake (red squares). Different families in each resident community, who

are often armed with a shotgun, take turns guarding the lake against underhand poachers.

Intermediate inset figure shows details of a protected lake; small inset figure shows a

harpoon fisherman in a dugout canoe harvesting arapaimas.

Annual arapaima counts along the mid Juruá started at several lakes in

2005, whereas lake management was implemented in 2010 by a partnership

between local communities, local associations and government agencies.

Arapaima counts take place during the low-water season at each monitored lake

every year, and the census data are forwarded to IBAMA (Brazilian Natural

Resources Agency), which then authorizes a lake-specific harvest quota of up to

30% of all adults (>1.5 m in length) counted, depending on the fish processing

requirements of the resident community and other extenuating factors.

Arapaima counts

Arapaima spp. is an air-breathing fish that is highly adapted to hypoxic and

anoxic environments27, thereby frequently coming to the surface to breathe air,

Capítulo 2

31

which facilitates direct sightings and counts (supplementary video S1). This census

method is highly effective, was developed and repeatedly field-tested in Central

Amazonian floodplains, with the specific objective of quantitatively surveying

arapaima populations (see Ref. 32 for further details). This census method

produces population size estimates that are strongly correlated with those from

mark-recapture abundance estimates32. Along the Juruá, this technique involved

the collaborative participation of up to 20 previously trained and highly experienced

arapaima fishermen per lake, who could detect air-breathing arapaima on the lake

surface through both visual and acoustic cues. During systematic censuses of

each lake, each fisherman working collectively sequentially covered a non-

overlapping lake area ranging from 0.2 to 2.0 ha, depending on local constraints

such as macrophyte coverage and lake area, to avoid double-counts.

During census periods, each observer remained silent on the lake margins

and counted all arapaima detected within each census area over multiple 20-min

periods (coinciding with the mean observed air-breathing interval at which they

become visible), which were synchronized across observers. These counts could

distinguish two main size classes: juveniles (1.0 - 1.5m in length) and adults

(>1.5m in length). In very large lakes, counts were conducted over more than one

census session often taking the whole day, until the entire census had been

completed. To preclude any detectability problems due to background noise,

arapaima counts were restricted to favourable weather conditions, which excluded

rainy days and strong winds.

Arapaima revenues

For each lake and each family household, we estimated the total revenue

derived from sales of legally harvested arapaima for local communities of the Juruá

region. This was based on ~6200 adult arapaima counted in 2015 at 26 protected

Capítulo 2

32

lakes. In doing so, we assumed (i) the maximum legally permitted offtake of 30%

of the recently censused adult population (Sept – Oct 2015) at managed lakes; (ii)

the average dressed weight of butchered and clean carcasses ready to be

commercialized (71.3 kg per adult); (iii) the mean market price in the nearest local

town (R$ 5.5 ≈ US$2.08 per kg), which is a conservative estimate of market value

but more realistically reflects transaction prices actually paid to floodplain dwellers;

and (iv) a mean monetary exchange rate of US$1 = R$2.64 (December 2014). We

include both subsistence and open-access lakes in these calculations for

comparison, but in practice, arapaima catches from these lakes can be consumed

locally or bartered, but cannot be sold to external traders.

Datasets and Variables

To understand the determinants of arapaima population sizes within oxbow

lakes, we examined systematic arapaima census data obtained at 83 lakes located

along a ~500-km fluvial distance along the Rio Juruá (31 protected; 34

subsistence; and 18 open-access lakes; Fig. 1) that had been surveyed at least

once during the dry season of 2013. We also had access to yearly dry-season

arapaima count data (2005 – 2015) from most of these lakes, obtained by a

collaborative institutional partnership, which yielded a total of 269 counts at 77

lakes (mean = 3.49 annual counts per lake).

For the full set of 83 lakes (Dataset 1), we obtained explanatory data on

fisheries management history and a range of landscape variables extracted for

each lake using ArcGIS (version 10.2). Predictors of arapaima stock sizes across

those lakes included: Protection area status: if the lake was inside or outside any

protected area; Lake management category: open-access, subsistence, or

protected; Lake area: including both open-water and macrophyte cover; Distance

to nearest community: the true nonlinear path distance on foot or boat used by

Capítulo 2

33

local users, which was measured using a GPS; Distance to nearest market:

expressed as the nonlinear fluvial travel distance from the lake entrance to the

town of Carauari port; Distance to the river channel: the Euclidean distance

between the lake entrance and the main Juruá river channel; Connectivity:

presence of a perennial levee or secondary channel connecting the lake to any

larger water body; and Water geochemistry: ‘black’ or ‘white’, defined as the locally

perceived amount of suspended alluvial sediments in the lake water column.

Secondly, for a subset of 43 of the 83 lakes (Dataset 2), we quantified

proxies of primary productivity of the lakes and obtained detailed limnological data

based on both field and laboratory measurements of water samples collected

during both the dry (low-water) and wet (high-water) seasons. These included:

Depth: maximum lake depth; Water transparency: estimated using a Secchi disk;

Conductivity: measured in S/cm using a conductivity meter; Macrophyte cover:

initially mapped in the field and then independently measured using 5-m resolution

RapidEye© images, which we purchased for the entire study area; Phytoplancton

biomass: estimated based on both dry- and wet season water samples and

chlorophyll-a measurements using high-performance liquid chromatography

(HPLC); and Total phosphorus and nitrogen: determined using light absorbance at

882 nm. A more detailed description of these variables, measurements and

hypotheses are presented in Supplementary Table S1.

Local perception surveys

We conducted 63 semi-structured interviews at 41 local extractive

communities containing at least six households. A total of 26 and 15 of these

communities were located inside and outside our two focal protected areas,

respectively. Interviewees were selected if they were heads of households who

were both highly experienced arapaima fishermen and had been continuous full-

Capítulo 2

34

time residents at any given community for >10 years. During these interviews, we

objectively asked about the overall perception of the local arapaima population

status (i.e. increasing, decreasing, or stable) in terms of the perceived size of the

present population within one or more lakes that had been frequently visited by

local villagers during the dry season, against perceived background population

trends over the last 10 years. The experienced fishermen have been chosen

according the leadership indication, at least one per community

We also conducted 28 interviews with self-declared formerly illegal

arapaima fishers at 13 communities, 12 of which inside the reserves and one

outside. These experienced fishers had since abandoned illegal fishing practices

and are currently working with the arapaima management program. They also

reported on perceived socio-economic changes since the onset of the

management program. Essentially, we asked about major perceived changes in

local livelihoods after the implementation of CBM. We also assessed the level of

importance of any given response, in terms of its overall relative frequency across

all interviews. Each interview lasted up to 15 min, and was facilitated by the overall

experience of resident fishermen in terms of frequent observational exposure to

arapaima populations at community lakes, and fishing effort over at least a decade

using harpoons, gillnets, or both.

In this study, we adhere to the full set of legislative and ethical specifications

to conduct the research within or outside Brazilian protected areas, including the

way we handled local interviews and conducted arapaima surveys. Our methods

were explicitly carried out in accordance with the formally approved legal

guidelines and licensing requirements as stipulated by the Brazilian Ministry of

Science and the Environment (SISBIO license number 45054). We can confirm

that all sampling protocols were approved by Brazilian law; and that any data

Capítulo 2

35

acquisition activities that may have involved people or third parties were conducted

with their explicit and clear-headed consent, once they had been completely

informed by native Portuguese speakers about the nature and objectives of the

research. We further declare no conflicts of interest in reporting the results of this

research work.

Data Analysis

To understand the local environmental and management determinants of

arapaima population size, we examined Datasets 1 and 2, using the number of

adult and juvenile arapaima estimated from systematic counts at each focal

floodplain lake as response variables. Dataset 3 was then used to examine the

variation in population size and annualized population growth rates from multiple

counts within each lake.

First, we ran generalized linear models (GLMs) to examine the variation in

recent (2013) counts within the full set of 83 lakes (dataset 1) as a function of all

potential predictors. Second, we performed GLMs to examine the variation in

arapaima population size within the subset of 43 lakes for which limnological data,

including proxies of productivity, were available (dataset 2). Our patch metrics, lake

management, and limnological fixed effects are listed above for these datasets.

Although arapaima population sizes should scale to lake area, we opted to retain

this variable as a fixed effect, rather than as an offset measure, because both

census detectability and habitat suitability within lakes were likely highly variable.

However, because ecological studies using count data are often affected by

overdispersion, a quasi-poisson and negative binomial distribution are often used

33. We used the latter because the variance-mean relationship provided a better

fit.

Third, we used generalized linear mixed models (GLMMs) and a negative

binomial error structure to examine variation in all 269 yearly arapaima counts

Capítulo 2

36

(2005 – 2015) considering the same set of predictors, but nesting population

counts within the 77 lakes surveyed at least twice (range = 2 – 8 yearly counts),

with lake identity defined as a random factor. Fourth, we examine the variation in

annualized population growth rates (𝐺𝑁) within and across lakes by calculating

percentage changes in population sizes between any two consecutive dry-season

counts (including both adults and juveniles) within the same lake (𝐺𝑁 =

(𝑌𝑟1 – 𝑌𝑟2)

𝑌𝑟1 ⦁ 100

𝑁𝑦𝑟𝑠), which did not necessarily take place in consecutive years. This

yielded 186 positive or negative GN estimates (% yr‒1) across 71 lakes exploited

by 26 local communities.

We first selected the most parsimonious random intercept structure by

identifying the model with the lowest Akaike Information Criterion corrected for

small sample size (AICc) with all fixed effects added34. AICc is calculated as the

difference between the AICc of each model and the lowest AICc, with AICc < 2

interpreted as substantial support that the model belongs to the set of best models.

Akaike weights give the probability that a model is the best model, given the data

and the set of candidate models 35. Models were fit with lmer in the lme4 package

and every model combination examined with the MuMIn package36 within the R

platform (R Development Core Team 2015). When comparing models that varied

in their random effects but not fixed effects, models were fit using restricted

maximum likelihood (REML). Finally, we calculated the hierarchical partitioning of

each explanatory variable.

Because arapaimas exhibit seasonal movements during the flood pulse

(JVCS and CAP, unpubl. data), it is possible that population sizes could be

homogenized through source-sink dynamics across lakes near one another

regardless of their prevailing local management history. We therefore examined

the spatial structure of the data across all 83 lakes (yielding 3,160 pairwise

Capítulo 2

37

Euclidian distances between any two lakes; mean = 73.6 ± 55.6 km; range = 1.3 –

223.3 km) to investigate the degree to which lakes could be considered as spatially

independent. However, there were no differences in model fits between whether

or not we included the geospatial structure of the data (expressed as the x,y

centroids of lake localities) as additional terms in spatial autoregressive models

explaining arapaima stock sizes within lakes based on key environmental and

management predictors ( 2 likelihood ratio test, P = 0.15). In addition, stock sizes

in open-access lakes were unrelated to physical distances to the nearest protected

lake (R2 < 0.001, P = 0.966). We therefore decided to interpret, rather than formally

incorporate, large-scale spatial effects in any subsequent analyses.

Results

Population responses to community management

There was a dramatic positive response of local arapaima populations to

community-based lake management regime (Fig. 3 and 4). Lake protection status,

as enforced by local communities, explained 71.2% of the variation in population

sizes in dataset 1 and 66.8% in dataset 2.

Population size estimates were significantly different between the three lake

management classes (p<0.001), and averaged over three orders of magnitude

from 304.8 (± 332.46, N = 31) individuals in protected lakes to 34.1 (± 24.4, N =

34) and 9.2 (± 9.8, N = 18) individuals in subsistence and open-access lakes,

respectively (Supplementary Fig. S2). This becomes even more striking

considering that open-access lakes were much larger (222.5 ± 172.1 ha, N = 18)

than protected lakes (126.5 ± 117.4 ha, N = 31), resulting in a mean arapaima

population density 131-fold higher in the latter (open-access lakes: 0.002 ind. ha‒

1; protected lakes: 0.294 ind. ha‒1). Whether or not a lake was formally within or

Capítulo 2

38

outside protected areas was not a significant predictor of arapaima stock sizes

(Supplementary Fig. S2).

Figure 3. Spatial distribution of protected (green circles), subsistence (yellow circles) and open-access lakes (red circles) along a ~500-km section of the Rio Juruá, Western Brazilian Amazon. Symbol sizes are scaled according to the 2013 arapaima annual population counts. Background elevation map of the study region shows a colour gradient from higher (dark grey) to lower terrain (light grey), with várzea floodplains and oxbow lakes shown in very light grey. This map was generated in ArcGIS 10.3 (http://www.esri.com)

Figure 4. Arapaima population size as a function of floodplain lake area for protected, subsistence

and open-access lakes. These relationships were broken down into two main categories of lake

water geochemistry, black- and white-water lakes. Intercepts (but not slopes) are significantly

different across lake management classes. Slopes are significantly different between black- and

white-water protected lakes, with population sizes expanding with lake area much faster in the

latter.

Capítulo 2

39

Lake management class also induced marked differences in the relative

abundance of both adults and juveniles (ANOVA, F75,2=14.6, P<0.001). In protected

lakes, there were no numerical differences between these age classes, with adults

representing an average ratio of 53.4% (± 3.7%) of all individuals (162.9 ± 170.3

adults vs. 141.9 ± 171.6 juveniles). In contrast, subsistence lakes were

proportionally dominated by juveniles (71.6 ± 3.3%), with mean counts of 9.4 (±

10.7) adults and 24.7 (± 19.23) juveniles (Supplementary Fig. S3), almost certainly

because the persistent year-round harvesting in those lakes selectively targeted

adults, whereas live captures of juveniles (<1.5m in length) were always released.

Positive growth rates were widespread in arapaima populations in both protected

and subsistence lakes following the onset of community-based management

(Supplementary Fig. S4). Annualized population growth rates across lakes of

different management categories (subjected to at least two annual counts) were

negative for seven open-access lakes (median = ‒7.1%, N = 21 GN estimates), but

invariably positive for all 41 subsistence (22.7%, N = 125) and 29 protected lakes

(34.6%, N = 123). In exceptional cases, arapaima stocks from one year to the next

grew five to eight-fold in subsistence lakes, and five to 16-fold in protected lakes.

Comparing the first and last years of management at each lake, population sizes

increased by 213.3% in protected lakes (mean interval = 5.4 ± 2.5 yrs, N = 29) and

193.5% in subsistence lakes (3.9 ± 2.0 yrs, N = 41), but declined or remained at

persistently low numbers at open-access lakes. For example, the very small Year1

populations recorded at open-access lakes (range 0 – 24 ind.), which were

surveyed over three consecutive years (2013 – 2015), declined even further or

remained unchanged (median change = ‒11.1%), except for two lakes (Lago

Santo Antônio and Lago Baliera) whose initially small stocks more than trebled,

perhaps showing some signs of source-sink demographic subsidies from

neighbouring protected and subsistence lakes.

Capítulo 2

40

Local management, landscape and limnological effects

Whether we considered (i) all 83 lakes where at least a single arapaima

count was available for the same dry season (2013), (ii) the 77 lakes subjected to

at least two annual counts, or (iii) the smaller subset of 43 lakes for which

limnological data were available, community-enforced mode of lake access always

explained the most amount of variance in stock sizes and population growth rates

(Fig. 5A-C), with protected lakes always containing the largest or fastest growing

populations, followed by subsistence lakes. As expected, although lake area was

a significant positive predictor of stock sizes, its effect was consistently smaller

than that of lake management class. Recovery time (years) was a significant

positive predictor of stock sizes for those lakes counted over more than one year,

with high growth rates for protected lakes showing no evidence of slowing down

(Supplementary Fig. S4). Nonlinear walking distance to the nearest local

community had a significant negative effect on population growth rates (Fig. 5B

and Supplementary Fig. S5), presumably because protection measures were

inherently more effective at lakes in close proximity to a village, provided residents

remained vigilant to enforce widely agreed community rules in light of Fishing

Accords. None of the limnological variables were important predictors of population

descriptors, except for the proportion of macrophyte cover which was negatively

correlated with stock sizes (r = ‒0.41). Further model details can be seen in

Supplementary Table S2).

Capítulo 2

41

Figure 5. Coefficient estimates (± 95% confidence intervals) showing the magnitude and direction of effects of different local and landscape scale variables on arapaima stock sizes and population growth rates within floodplain lakes of Western Brazilian Amazonia. Arapaima stock sizes were modelled with (A) generalized linear models (GLMs) using a set of 83 lakes censused in the dry-season of 2013; (B) GLMs for a subset of 43 lakes where detailed limnological and lake productivity variables were also quantified; and (C) generalized linear mixed models (GLMMs) for a subset of 77 lakes for which 269 annual counts (2005 – 2015) were available. ‘Time’ in panel C interaction terms refers to recovery time or the number of years since the onset of sustainable management at any given lake. Explanatory variables were standardized prior to analyses.

Local perception of stock recovery

Perception surveys with experienced fishermen confirmed the increasingly

evident notion that local arapaima populations have been growing inside but not

outside protected areas. However, at two communities well outside the protected

areas, there was unanimous consensus that arapaima stocks were also increasing

since a community management scheme was established (Fig. 6). This again

lends support to the idea that lake management in itself overrides the wider effects

of protected area status in determining arapaima population trajectories.

Socioeconomic benefits accrued from population recovery, as listed by formerly

illegal fishermen, were in order of importance: generation of local income,

strengthening of cultural values, growing “pride” in the community, and a more

equitable distribution of profits from fisheries (Supplementary Table S3).

Figure 6. Local perceptions on arapaima population trajectories based on semi-structured interviews with experienced arapaima fishermen. Red and green circles indicate communities (and community lakes) for which local informants reported either a decline or an increase in arapaima population sizes over the last decade, respectively. Yellow circles indicate stable populations that have not appreciably changed over time. Yellow lines represent the boundaries of the two

Capítulo 2

42

contiguous sustainable-use forest reserves, which may or may not contain lakes referred to during interviews. This map was generated in ArcGIS 10.3 (http://www.esri.com)

Arapaima revenues

The bulk of local income benefits accrued from fisheries management was

restricted to protected lakes, with subsistence and open-access lakes flat-lined at

virtually zero commercial value (Fig. 7). Protected lakes could derive total fishing

revenues from arapaima stocks averaging US$10,601 [95% CI: US$5,393,

US$15,808] every year, provided that full compliance with management rules

takes place and total allowable catches (TACs) are harvested. However, some

exceptionally large white-water lakes could yield as much as US$52,093 yr‒1 if the

officially sanctioned TAC had been sold. This translates into mean annual

revenues per community household of US$1,046.6 [95% CI, US$497, US$1,596],

considering the 14.4 ± 8.5 families per community (range = 4 – 30) that were

engaged in arapaima management activities. These family revenues were

positively correlated with the number of years since the onset of the CBM program

(r = 0.791, P < 0.001). Arapaima population growth (and potential revenues) scaled

Capítulo 2

43

strongly to lake area in white-water lakes, but not in black-water lakes, which

appear to be intrinsically less productive in terms of carrying capacity and stock

recovery (Fig. 7). White-water lakes on average yielded significantly higher mean

revenues (US$1,662.2 ± 350.6) than black-water lakes (US$449.4 ± 395.2; P =

0.025).

Figure 7. Gross fishing revenues per local community across three classes of lake resource protection through community-based management, which were further broken down into two main lake types in terms of water geochemistry. Slopes for protected lakes are significantly different between black- and white-water lakes, with arapaima populations in increasingly larger lakes accruing much higher revenues.

Finally, we used a predictive model to estimate the average recovery time

to achieve a stock size of 1000 adult arapaimas per lake, which could generate a

reasonable annual income (≈ US$44,491) for the resident community managing

that lake. We used as predictors the size of the lake, the distances to the nearest

local community and to the main river channel, and the nearest market town. This

shows that achieving a stock size of 1000 individuals would take a mean recovery

time of only 7.5 to 8.0 years from the onset of the CBM program for white-water

and black-water lakes, respectively, and at most 14 years considering the upper

95% CI of our estimates (Supplementary Fig. S6).

Capítulo 2

44

Discussion

Even some of the most severely underfunded protected areas can be

powerful instruments of tropical biodiversity conservation37. However, most tropical

protected areas are designed on the basis of known terrestrial ecology guidelines,

even if they contain extensive freshwater ecosystems. In Amazonia, the

overwhelming majority of protected areas are designed to protect forest

biodiversity, whereas increasingly threatened freshwater biotas remain highly

neglected38. This emphasizes the need to rethink how best to protect freshwater

ecosystems, but this is hindered by severe political resistance to create new, or

expand existing, protected areas39. In fact, protected area policy will likely succumb

to serious setbacks in many tropical countries, where existing reserves are being

downgraded, downsized or degazetted40. Given this unfavourable scenario and

government suspension of spawning season closures41, decentralization of

conservation policies and alliances with highly engaged local stakeholders can

become powerful tools14.

Recovery of arapaima fisheries has been suggested within some

Amazonian protected areas21,42. Although our study reinforces these findings, we

further show that CBM initiatives, in which floodplain lakes are the management

unit of interest, can impart even stronger positive outcomes for conservation, even

if implemented outside the boundaries of formally protected areas. Local

stewardship, direct in situ surveillance, full-time presence, and management of

high-value fish stocks were the most important factors in boosting arapaima

population sizes across a wide range of lakes. Proximity to the nearest community

was a key proxy of effective protection, largely because community management

rules and de facto exclusion of competing resource users cannot be easily

Capítulo 2

45

enforced in more remote lakes. Moreover, arapaima represents an umbrella

species in floodplain lakes, so that protecting their stocks brings about collateral

benefits to other important taxonomic groups, such as freshwater turtles43 and

caimans (JVCS and CAP, unpubl. data).

Although arapaima populations in subsistence lakes are not fully protected,

these lakes are in theory closed to commercial fishing boats. This resulted in a

much reduced and more size-selective offtake, with live catches of smaller

individuals released back into the lakes. This explains both the intermediate

arapaima population size compared to either open-access or protected lakes, and

the high number of juveniles. In fact, subsistence lakes likely serve a critical role

in juvenile recruitment, and ensure largely exclusive access to highly-selective

artisanal fisheries targeting large populations of smaller-bodied detritivore and

frugivore fish, which provide the mainstay of animal protein for Amazonian

floodplain dwellers21.

Although protected area context has been shown to be imperative to ensure

arapaima stock recovery elsewhere21,42, and remains an important overarching

scale of protection, we argue that the Juruá sustainable-use reserves were not

only important in protecting harvest-sensitive stocks, but also provided more

favourable conditions for successful CBM establishment. Community-level socio-

political organization and local compliance are critical determinants of successful

resource management44, and these community traits were conspicuously missing

in villages outside protected areas.

Beyond the protected area and CMB effects on arapaima populations,

understanding the environmental factors that govern resource distribution and

abundance is critical to the establishment of resource use guidelines45. First, all

other things being equal, larger lakes should be expected to contain larger

Capítulo 2

46

arapaima populations, and should be prioritized for management (cf. 45).

Distances to the nearest town and to the main river channel could also important

predictors of stock sizes. The mid Juruá town of Carauari serves as a convergence

point for an operational fleet of over 800 variable-sized fishing boats, which largely

supply chilled fish to a few wholesale middlemen who monopolize the regional fish

trade. Therefore, harvesting pressure on fish stocks is substantially higher near

the town than at distant sites up- or down-river, for which travel costs are higher,

as well documented in other CBM schemes46. The floodplain distance effect can

be explained simply in terms of physical access, because more remote (and often

older) floodplain lakes far from the meandering main channel are rarely visited by

commercial fishing boats.

Considering the subset of 43 lakes where detailed limnological variables

were quantified, macrophyte cover was an important yet ambiguous predictor of

arapaima population size. The habitat heterogeneity created by macrophytes

positively affects aquatic species richness47 — providing shelter, refuge and

foraging sites for many species48— but hinders physical access to gillnet and

harpoon fishermen. The macrophyte zone also provides a critical food supply for

juvenile arapaima49, so we expected the coverage of macrophytes and number of

arapaima to covary positively. Surprisingly, however, our data show an inverse

relationship, possibly due to a sampling artifact. High levels of macrophyte cover

impair counts of arapaima whose detectability is associated with surfacing in open-

water32, thereby super-inflating sampling imprecision. In this study, arapaima

population sizes were most likely underestimated in lakes dominated by large

areas of macrophytes.

Water geochemistry also played important roles in arapaima population size as

proxies of primary productivity. Although this effect size was weak, more

Capítulo 2

47

productive white-water lakes with high phytoplankton biomass likely supported

larger numbers of arapaima. In sum, arapaima populations within dry-season lakes

responded strongly to both human exploitation and some biophysical variables.

Therefore, we can identify both top-down and bottom-up factors affecting

populations of an Amazonian harvest-sensitive large-bodied fish, so that large

white-water lakes, particularly those near local communities should be prioritized

for local co-management initiatives both within and outside protected areas.

Arapaima population growth trajectories in protected lakes were a function

of time. This is consistent with the results from Mamirauá Sustainable

Development Reserve, Brazil, where the arapaima population increased nine-fold

in eight years21. We cannot yet estimate the maximum carrying capacity of these

lakes, but all protected subpopulations were still growing, partly fueled by the

annual input of alluvial nutrients brought in by the rising floodwaters, which likely

enhances the resilience of exploited animal populations48. An example worth

highlighting is the Marari Grande lake (Supplementary Table S4), which had been

entirely unprotected and available for professional fisheries until 2008.

Experienced fishers from the nearest community reported that this lake had long

been depleted, and that arapaimas had been locally extirpated. After only 7 years

of protection this lake yielded the largest arapaima population in our study

landscape (~2,020 individuals). Like elsewhere in Amazonia 22, 24, , much of this

depletion process was driven by less selective large-scale commercial fishing

boats, which come from far afield to harvest arapaima and other high-value fish

from unprotected lakes. The rapid reversal in this situation resulted from a local

initiative to guard the Marari Grande and other protected lakes, which suddenly

enforced the exclusion of professional fishing boats from those lakes.

Capítulo 2

48

Throughout our study landscape, experienced fisherfolk have reported that

arapaima stocks gradually dwindled to very low numbers during the heyday of

commercial fishing boats of the 1980s, to the point of perceived local extinction

from most lakes in the region. However, this predicament was only reversed with

the onset of negotiated fishing closures in both protected and subsistence lakes.

This becomes clear when we assessed stock sizes in open-access lakes, which

have been bearing the brunt of overfishing. These free-for-all lakes clearly fall

under a ʻtragedy of the commonsʼ scenario50, whereby scramble competition for

valuable fish resources accelerate overexploitation. During the first years of

exploiting an open-access lake, the benefits are disproportionately concentrated

on the few commercial fishermen harvesting that lake, to the detriment of all local

users. Over time, the pressure on harvest-sensitive resources became

prohibitively high, so the population eventually collapsed. Fishing Accords are thus

a concrete example of positive communal organization, defining boundaries, and

establishing rules of governance that are instrumental in managing common-pool

resources, thereby precluding resource collapse51. Moreover, such local initiatives

can trigger rapid co-benefits in multi-species population recovery in previously

depleted lakes, thus increasing the overall fisheries productivity of both those lakes

and the neighbouring waterscape22.

Although arapaima population growth is restricted to managed lakes, the

map resulting from local perception surveys indicates that the recovery is

widespread throughout the reserves (Fig. 6), whereas arapaima stocks are

perceived to have bottomed out outside protected areas. This clear perception

pattern is largely due to the absence of widely known protected lakes outside

protected areas. However, in the few cases where grassroots management plans

were self-established by communities outside protected areas, the arapaima

population has been clearly showing an early growth trajectory. This can be seen

Capítulo 2

49

at Lago Grande (Supplementary Table S4), a 294-ha lake outside the protected

areas where the arapaima population increased from ~30 to over 1200 individuals

in only 3 years of CBM lake protection.

Yet the degree to which population growth is due to internal recruitment or

immigration remains poorly known. For example, it is inconceivable that a low-

fecundity fish population can increase 3900% in only 3 years, such as in Lago

Grande. Rapid stock recovery must therefore be due to both local reproduction

and lateral migration during the high-water season52, whereby protected lakes

likely function as demographic sources. This is consistent with the long-range

movements exhibited by arapaima during the flood pulse. For example, one of the

juveniles we tracked at RDS Uacari using VHF radio-telemetry moved ~30 km in

a few days (JVCS and CAP, unpubl. data). A better understanding of seasonal

subpopulation movements during floodwaters is critical in designing a landscape-

scale network of protected, semi-protected and unprotected lakes that maximizes

fisheries productivity for all regional stakeholders.

Integrated development strategies that render biodiversity conservation

truly compatible with poverty alleviation are still too rhetorical but often elusive53.

Locally co-managed arapaima fisheries in Amazonian floodplains could become

an important window of opportunity because this can generate income for

thousands of families, apparently without significant wider opportunity costs, for

example, in depressing fish catches for excluded commercial stakeholders.

Indeed, we show that protected lakes have recently become something analogous

to a high-interest savings account, ensuring an average value of nearly

US$10,600, assuming the maximum allowable harvest quota of up to 30% of

adults and an adequate level of communal organization and compliance. This rare

cash-earning opportunity has also improved the socioeconomic welfare of local

Capítulo 2

50

communities, enhancing education and health services. Moreover, resident

communities managing protected lakes can count on an unprecedented annual

windfall payment every year, which enables often prohibitive private or communal

investments, such as house refurbishment and purchase of expensive equipment.

In addition to local income and social welfare, emergency funds can be generated

from arapaima sales, which have covered costs of urgent travel and medical care

at nearby urban centers or the state capital (Manaus) in case of serious illness or

accidents. This form of immediate access to health care, often resulting in life-

saving interventions, is unavailable from state health services. In sum, we show

that arapaima CBM schemes can become a colossal welfare enhancement

opportunity at relatively low costs. For example, covering all additional expenses

for both counting the arapaima population at a large lake (>150 ha) each year, and

enforcing anti-poaching vigilance at that lake costs only US$700 per year.

Socioeconomic benefits listed in our perception surveys with formerly illegal

arapaima fishermen include local income, more equitable distribution of fisheries

profits, and maintenance of cultural integrity. Prior to the management program,

illegal arapaima sales were distributed throughout the annual calendar, rather than

accrued as a lump sum following the collective dry-season offtake. This cash

windfall contributes further administrative benefits in terms of village and

household scale financial organization, enabling local managers to invest, for

example, in community infrastructure. Fisheries CBM has also been instrumental

in propagating traditional knowledge. Children often help during the fish offtake

season, while simultaneously learning about arapaima ecology and capture

techniques. Experienced fishermen also reported that CBM communities now

show a stronger “sense of pride” flowing from the management program, which

has been reinforced by positive media coverage disseminating this success story.

All of these direct and collateral benefits have greatly strengthened local

Capítulo 2

51

empowerment, providing positive feed-back on the emergence of the management

program as a whole54. Finally, local income distribution within villages has become

significantly more egalitarian following arapaima CBM because everyone can

participate, whereas illegal catches were previously oligopolized by a few highly

skilled fishermen.

In recent decades, the Brazilian government, local organizations, local

communities, and conservation NGOs have attempted to develop participatory

management strategies with a broad base of local uptake55. One of the most

important features of arapaima CBM in this study is the robust social organization

of both small and large communities, which ensures the dialogue, articulation and

partnership among stakeholders at different institutional scales, ensuring that the

lake protection system operates properly. The management structure is essentially

communitarian, whereby the resident community coupled with other lake users

define the rules of engagement and use of that environment, so that the spatial

patterns of resource access are defined at both individual and collective levels.

Moreover, CBM becomes more robust with the adhesion of additional partners

because of higher financial benefits, stronger self-monitoring of management

effectiveness, and greater collective vigilance in terms of formal or informal law

compliance. We also note the strong participation of grassroots institutions,

including reserve resident cooperatives and associations of rural producers, which

were erected by community members themselves. This ensures that decision-

making is in fact in the hands of local communities that were hitherto

disenfranchised and had no political voice. This further empowers local resource-

users to co-adapt and fine-tune management guidelines according to local culture,

which is critical to the success of conservation interventions56.

Capítulo 2

52

However, the long-term viability of Arapaima CBM will depend on a number

of externalities. Legal trade of sustainably harvested fish requires producers to

meet a number of sanitary preconditions stipulated by Brazilian health authorities.

This demands minimum processing equipment and infrastructure, which most

local communities do not yet have. These historically deprived communities have

so far been isolated from public policies, so meeting even minimum certification

standards will clearly require catalysis from government subsidies.

But perhaps the most important incidental challenge to be considered is the

likely urban market saturation from many competing arapaima management

initiatives at several Amazonian river basins, which would considerably increase

supply but depress market prices. Moreover, illegal fishing also remains a

significant competitive threat57, because offtakes from unknown sources are

delivered to consumers in large amounts at substantially lower cost. A third

wildcard threat to sustainable arapaima management comes from aquaculture in

that many Amazonian fish farms are now beginning to produce captive-bred

arapaima for local and regional markets58. Understanding these market

bottlenecks will be vital for the continuity of successful community-based wild fish

management. In doing so, government agencies, NGOs and other stakeholders

should consider the nuances of trade chains to enhance market conditions for

novice CBM traders. Managing wild arapaima populations remains a highly

promising conservation opportunity, but maintaining economically viable CBM in

the long term will critically depend on solving these challenges.

Arapaima, a paradigm “fish of change”

Local Fishing Accords are not new, as they have been established at

several Amazonian sites for nearly four decades, although the outcomes have

been elusive59. However, arapaima fisheries have profoundly changed the concept

Capítulo 2

53

of local fishing agreements. This fishery and its associated value reinforces the

justification of protecting lakes, and allocating much community time and endeavor

to this end.

Undoubtedly, arapaima management is a rare window of opportunity to

harmonize the often incompatible goals of sustainable resource management and

poverty alleviation. All similar efforts across the Amazon are also showing positive

results 21,42. This is significant because these local communities rarely have any

alternative cash-earning opportunities. Arapaima management can thus positively

empower local communities, and fishing agreements can be instrumental in the

sustainable management of aquatic resources in tropical floodplains, thereby

serving as an excellent stratagem to recruit allies with full-time physical presence

in protecting these threatened environments. Yet, there is not enough federal and

state government investment in Brazil—in terms of information transfer, technical

input and trade subsidies—to catalyze the initiation and consolidate similar CBM

programs despite widespread popular demand. Finally, we emphasize that fishing

agreements alone are not a panacea and cannot substitute the creation of large

protected areas, because these also ensure the continuity of many complex

ecological processes that sustain baseline resource productivity60.

References

1. Watkins, K. Human Development Report 2006-Beyond scarcity: Power, poverty

and the global water crisis. UNDP Human Development Reports (2006) (2006).

2.Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science

328, 1164-1168 (2010).

3. Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and

conservation challenges. Biological reviews 81, 163-182 (2006).

4. Liu, J. et al. Complexity of coupled human and natural systems. science 317,

1513-1516 (2007).

Capítulo 2

54

5. Darimont, C. T., Fox, C. H., Bryan, H. M. & Reimchen, T. E. The unique ecology

of human predators. Science 349, 858-860 (2015).

6. Sachs, J. D. et al. Biodiversity conservation and the millennium development

goals. Science 325, 1502-1503 (2009).

7. Attrill, M. J. & Power, M. Climatic influence on a marine fish assemblage. Nature

417, 275-278 (2002).

8. Richards, C., Johnson, L. B. & Host, G. E. Landscape-scale influences on

stream habitats and biota. canadian Journal of Fisheries and aquatic sciences 53,

295-311 (1996).

9. Dodson, S. I., Arnott, S. E. & Cottingham, K. L. The relationship in lake

communities between primary productivity and species richness. Ecology 81,

2662-2679 (2000).

10. Assessment, M. E. Ecosystems and human well-being. Vol. 5 (Island press

Washington, DC:, 2005).

11. Gell, F. R. & Roberts, C. M. Benefits beyond boundaries: the fishery effects of

marine reserves. Trends in Ecology & Evolution 18, 448-455 (2003).

12. Gurney, G. G. et al. Poverty and protected areas: an evaluation of a marine

integrated conservation and development project in Indonesia. Global

Environmental Change 26, 98-107 (2014).

13. Peres, C. A. & Terborgh, J. W. Amazonian nature reserves: an analysis of the

defensibility status of existing conservation units and design criteria for the future.

Conservation Biology 9, 34-46 (1995).

14.Somanathan, E., Prabhakar, R. & Mehta, B. S. Decentralization for cost-

effective conservation. Proceedings of the National Academy of Sciences 106,

4143-4147 (2009).

15.Wells, M. P. & McShane, T. O. Integrating protected area management with

local needs and aspirations. AMBIO: A Journal of the Human Environment 33, 513-

519 (2004).

16.Peres, C. A. Conservation in Sustainable‐Use Tropical Forest Reserves.

Conservation Biology 25, 1124-1129 (2011).

17.Brosius, J. P., Tsing, A. L. & Zerner, C. Representing communities: Histories

and politics of community‐based natural resource management. Society & Natural

resources: An international Journal 11, 157-168 (1998).

18.Cinner, J. et al. Transitions toward co-management: The process of marine

resource management devolution in three east African countries. Global

Environmental Change 22, 651-658 (2012).

Capítulo 2

55

19.Gibson, C. C. & Marks, S. A. Transforming rural hunters into conservationists:

an assessment of community-based wildlife management programs in Africa.

World Development 23, 941-957 (1995).

20.Evans, L., Cherrett, N. & Pemsl, D. Assessing the impact of fisheries co-

management interventions in developing countries: A meta-analysis. Journal of

Environmental Management 92, 1938-1949 (2011).

21.Castello, L., Viana, J. P., Watkins, G., Pinedo-Vasquez, M. & Luzadis, V. A.

Lessons from integrating fishers of arapaima in small-scale fisheries management

at the Mamirauá Reserve, Amazon. Environmental management 43, 197-209

(2009).

22.McGrath, D. G., De Castro, F., Futemma, C., de Amaral, B. D. & Calabria, J.

Fisheries and the evolution of resource management on the lower Amazon

floodplain. Human ecology 21, 167-195 (1993).

23.De Castro, F. Fishing accords: The political ecology of fishing intensification in

the Amazon. (Indiana University, 2000).

24.McGrath, D. G. Avoiding a tragedy of the commons: recent developments in the

management of Amazonian fisheries. Amazonia at the Crossroads. Institute of

Latin American Studies: London, 171-197 (2000).

25.Stewart, D. J. A New Species of Arapaima (Osteoglossomorpha:

Osteoglossidae) from the Solimões River, Amazonas State, Brazil. Copeia 2013,

470-476 (2013).

26.Godinho, H. P., Santos, J. E., Formagio, P. S. & Guimarães‐Cruz, R. J. Gonadal

morphology and reproductive traits of the Amazonian fish Arapaima gigas (Schinz,

1822). Acta Zoologica 86, 289-294 (2005).

27.Parker, B. H. Arapaima: An Amazonian fish species of immense proportions.

Biodiversity 3, 21-24 (2002).

28.Castello, L., Arantes, C. C., Mcgrath, D. G., Stewart, D. J. & Sousa, F. S. D.

Understanding fishing‐induced extinctions in the Amazon. Aquatic Conservation:

Marine and Freshwater Ecosystems 25, 587-598 (2015).

29.Hawes, J. E., Peres, C. A., Riley, L. B. & Hess, L. L. Landscape-scale variation

in structure and biomass of Amazonian seasonally flooded and unflooded forests.

Forest Ecology and Management 281, 163-176 (2012).

30.Hawes, J. E. & Peres, C. A. Patterns of Plant Phenology in Amazonia

Seasonally Flooded and Unflooded Forests. Biotropica, doi:10.1111/btp.12315

(2016).

Capítulo 2

56

31.Fearnside, P. M. Extractive reserves in Brazilian Amazonia: An opportunity to

maintain tropical rain forest under sustainable use. BioScience 39,387-393

(1989)..

32.Castello, L. A method to count pirarucu Arapaima gigas: fishers, assessment,

and management. North American Journal of Fisheries Management 24, 379-389

(2004).

33.Ver Hoef, J. M. & Boveng, P. L. Quasi-Poisson vs. negative binomial

regression: how should we model overdispersed count data? Ecology 88, 2766-

2772 (2007).

34.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects

Models and Extensions in Ecology with R. (Springer-Verlag, 2009).

35.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a

practical information-theoretic approach. (Springer Science & Business Media,

2003).

36.Bartoń, K. MuMIn: multi-model inference. R package version 1 (2013).

37.Bruner, A. G., Gullison, R. E., Rice, R. E. & Da Fonseca, G. A. Effectiveness of

parks in protecting tropical biodiversity. Science 291, 125-128 (2001).

38.Castello, L. et al. The vulnerability of Amazon freshwater ecosystems.

Conservation Letters 6, 217-229 (2013).

39.Campos-Silva, J. V., da Fonseca Junior, S. F. & da Silva Peres, C. A. Policy

reversals do not bode well for conservation in Brazilian Amazonia. Natureza &

Conservação (2015).

40.Mascia, M. B. et al. Protected area downgrading, downsizing, and

degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean,

1900–2010. Biological Conservation 169, 355-361 (2014).

41.Pinheiro, H. T. et al. Brazilian aquatic biodiversity in peril. Science (New York,

NY) 350, 1043 (2015).

42.Petersen, T. A., Brum, S. M., Rossoni, F., Silveira, G. F. V. & Castello, L.

Recovery of Arapaima sp. populations by community-based management in

floodplains of the Purus River, Amazon. Journal of Fish Biology (2016).

43.Miorando, P. S., Rebêlo, G. H., Pignati, M. T. & Brito Pezzuti, J. C. Effects of

community-based management on Amazon river turtles: a case study of

Podocnemis sextuberculata in the lower Amazon floodplain, Pará, Brazil.

Chelonian Conservation and Biology 12, 143-150 (2013).

Capítulo 2

57

44.Pollnac, R. B., Crawford, B. R. & Gorospe, M. L. Discovering factors that

influence the success of community-based marine protected areas in the Visayas,

Philippines. Ocean & Coastal Management 44, 683-710 (2001).

45.Arantes, C. C., Castello, L., Cetra, M. & Schilling, A. Environmental influences

on the distribution of arapaima in Amazon floodplains. Environmental biology of

fishes 96, 1257-1267 (2013).

46.Maire, E. et al. How accessible are coral reefs to people? A global assessment

based on travel time. Ecology letters 19.4, 351-360 (2016).

47.Hercos, A., Sobansky, M., Queiroz, H. & Magurran, A. Local and regional rarity

in a diverse tropical fish assemblage. Proceedings of the Royal Society of London

B: Biological Sciences 280, 20122076 (2013).

48.Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-

floodplain systems. Special Publication of the Canadian Journal of Fisheries and

Aquatic Sciences 106, 110-127 (1989).

49.Affonso, A. G., Queiroz, H. & Novo, E. M. L. M. in Biologia, conservação e

manejo participativo de pirarucus na Pan-Amazônia (ed Ellen Silvia Amaral

Figueiredo) 278 (IDSM, 2013).

50.Hardin, G. The tragedy of the commons. science 162, 1243-1248 (1968).

51.Ostrom, E. Tragedy of the commons. The New Palgrave Dictionary of

Economics, 3573-3576 (2008).

52.Castello, L. Lateral migration of Arapaima gigas in floodplains of the Amazon.

Ecology of Freshwater Fish 17, 38-46 (2008).

53.Adams, W. M. et al. Biodiversity conservation and the eradication of poverty.

Science 306, 1146-1149 (2004).

54.Morales, M. C. & Harris, L. M. Using subjectivity and emotion to reconsider

participatory natural resource management. World Development 64, 703-712

(2014).

55.Constantino, P. d. A. L. et al. Empowering local people through community-

based resource monitoring: a comparison of Brazil and Namibia. Ecology and

Society 17, 22 (2012).

56.Waylen, K. A., Fischer, A., McGowan, P. J., Thirgood, S. J. & Milner‐Gulland,

E. Effect of Local Cultural Context on the Success of Community‐Based

Conservation Interventions. Conservation Biology 24, 1119-1129 (2010).

57.Cavole, L. M., Arantes, C. C. & Castello, L. How illegal are tropical small-scale

fisheries? An estimate for arapaima in the Amazon. Fisheries Research 168, 1-5

(2015).

Capítulo 2

58

58.dos Santos, C. H. d. A. Genetic relationships between captive and wild

subpopulations of Arapaima gigas (Schinz, in Cuvier, 1822). International Journal

of Fisheries and Aquaculture 6, 108-123 (2014).

59.Castro, F. d. & McGrath, D. G. Moving toward sustainability in the local

management of floodplain lake fisheries in the Brazilian Amazon. Human

Organization 62, 123-133 (2003).

60.Peres, C. A. Why we need megareserves in Amazonia. Conservation Biology

19, 728-733 (2005).

Capítulo 2

59

Supporting Information

1. Supplementary Information tables

Table S1. Description of explanatory variables, details of measurements and hypotheses examined.

Variable Description Variable type Dataset Hypotheses

Protection status

If the lake is located within or outside protected areas

Binary 1 and 2 Lakes inside protected area hold larger arapaima population sizes

Management class

Class of community-based management: Protected, Subsistence or Open-access

Categorical 1 and 2 The arapaima population is largest in protected lake, followed by subsistence lakes, and smallest in open-access lakes

Lake area Total area (ha) Continuous, extracted using ArcGIS 10

1,2 and 3

Larger lakes hold larger arapaima populations

Distance to nearest community

Distance on foot travelled by local users

Continuous, extracted in ArcGIS 10

1 and 2 Lakes near the community have smaller arapaima populations, due to high fishing pressure

Distance to market

Fluvial (nonlinear) distance to the nearest market town

Continuous, extracted using ArcGIS 10

1 and 2 Lakes near large markets have smaller arapaima populations, due to high fishing pressure

Distance to river channel

Nonlinear distance along water bodies and the Jurua river channel

Continuous, extracted using ArcGIS 10

1 and 2 Lakes near the river have smaller arapaima populations because they are more accessible

Connectivity Presence of a perennial streams connecting the lake to another water body

Continuous, extracted in ArcGIS 10

1 and 2 Highly connected lakes have larger arapaima populations, likely due to immigration

Capítulo 2

60

Lake water type

Lakes with a primary hydrological connection to either the main river or streams draining upland catchments are defined as “white-water” or “black-water”, respectively.

Categorical 1 White-water lakes have larger arapaima populations than black-water lakes, due to higher productivity and nutrient load

Depth Maximum depth Continuous, measured in situ

2 Deep lakes have larger arapaima populations

Transparency Estimated with a Secchi disk Continuous, measured in situ

2 Lakes with higher transparency have larger arapaima populations, due to higher planktonic productivity

Macrophyte cover

Mapped in the field and then measured again using RapidEye© images purchased for the entire study area

Continuous, measured both in the field and extracted using ArcGis 10

2 Lakes with high macrophyte cover have larger arapaima populations

Chlorophyll-a Chlorophyll-a was estimated using the high performance liquid chromatography (HPLC) method

HLPC method in the laboratory

2 Lakes with higher levels of chlorophyll-a hold larger arapaima populations

Capítulo 2

61

Table S2. Human perception of socioeconomic changes following the implementation of Arapaima population

management within lakes guarded by any given local community.

Dataset 1

Model Predictors AICc Δ AICc

Weight

1 Management class + Area + Distance to town 833.3 0.00 0.163

2 Management class + Area 834 0.67 0.117

3 Management class + Area + Distance to community + Distance to river 831.2 0.89 0.105

4 Management class + Area + Distance to community 834.3 1 0.099

5 Management class + Area + Distance to community + Distance to town 834.6 1.26 0.087

6 Management class + Area + Distance to community + Distance to river + Distance to town 835.1 1.73 0.069

7 Management class + Area + Distance to river + Distance to town 835.2 1.86 0.064

Dataset 2

1 Management class + Area + Distance to community + Distance to town 452.5 0.00 0.091

2 Management class + Area + Distance to community + Distance to town + Distance to river 452.8 0.35 0.076

3 Management class + Area + Distance to community + Distance to town + Macrophyte coverage 453.3 0.87 0.059

4 Management class + Area + Distance to town 454.0 1.5 0.043

5 Management class + Area + Distance to community + Distance to town + Depth 454.2 1.71 0.039

6 Management class + Area + Distance to town + transparency 454.3 1.83 0.036

7 Management class + Area + Distance to community + Distance to town + Transparency 454.4 1.95 0.034

Dataset 3

1 Management class + Recovery time + Lake area + Distance to river + Distance to community 637.62 0.00 0.265

2 Management class + Lake area + Recovery time + Distance to river + Management class * Recovery time + Distance to community

638.35

0.73 0.173

Table S3. Local perception of socioeconomic changes following the implementation of Arapaima population

management within lakes guarded by any given local community.

Capítulo 2

62

Table S4. Lake identification, geographic coordinates, and environmental variables associated with each floodplain lake.

Lake: lake identity; Community: identity of nearest village; Protected Area: inside or outside a reserve; Man. Class: class

of management; Lake area: area in ha; Water type: black or white; Per: perimeter of the lake; Dist.Comm.: distance to

nearest community; Geographic coordinates: Latitude and longitude; Lim.var.: availability of limnological data obtained in

situ; Pop. size: arapaima population size (adults and juveniles) based on annual counts.

Benefits Brief explanation Relative importance score (%)

Income generation Fisheries income is accrued by individual households as an annual windfall payment. This substantial amount of money enables several investments that were previously not feasible.

1 (100%)

Cultural maintenance Arapaima fisheries is a deeply entrenched traditional extractive activity. With the establishment of CBM, this activity and traditional knowledge associated with the target species can be learned by adolescents and children, thereby perpetuating this practice.

2 (75%)

Increasing local “pride” Professional fishermen reported an increase in community “pride”. Essentially, arapaima management increases the self-respect, pride and self-esteem of the local community associated with community-based management.

3 (68%)

Enhanced income distribution

Prior to CBM, only experienced families could benefit from the arapaima fishery. Following the implementation of management, all community members can participate.

4 (27.5%)

Capítulo 2

63

Lake Community Protect. Man. Class Lake area

Water type

Per. Dist.comm. Latitude Longitude Lim.var. Pop.size

Acurau Xeruã reserve Subsistence 42 White 4750 3736.8 6° 1'52.12"S 67°47'25.28"W yes 22,000

Anaxiqui Sao José reserve Protected 173 White 2085 67.5 5°43'33.34"S 67°48'24.72"W yes 592,000

Andreza Novo Horizonte reserve Unprotected 90 White 5456 2962.5 5° 5'53.35"S 67° 8'25.27"W yes 4,000

Angelim Nova União reserve Subsistence 7 Black 2790 3451.1 5°22'2.00"S 67°27'15.62"W no 23,000

Aruanã Nova União reserve Protected 16 Black 2823 3491.4 5°20'46.07"S 67°25'27.01"W yes 70,000

Baliera Nova União reserve Subsistence 21 White 5317 3406.9 5°23'5.89"S 67°21'28.72"W yes 24,000

Bauana Bauana reserve Unprotected 93.3 White 7000 1054 5°25'45.11"S 67°18'53.43"W yes 8,000

Bom Fim Bom Fim reserve Protected 220 White 1486 686.4 6° 0'19.82"S 67°52'33.92"W no 345,000

Boto Bom Jesus reserve Protected 92 Black 8814 3378.7 5°23'56.20"S 67°14'54.93"W yes 298,000

Boto Nova União reserve Subsistence 11 Black 3492 4580.4 5°19'43.82"S 67°24'56.91"W no 15,000

Braga Concordia outside Protected 25 Black 5602 2242.1 4°41'2.23"S 66°37'28.54"W yes 176,000

Branco Vista Alegre outside Protected 255 Black 9056 3811 5°11'22.19"S 67°16'38.85"W yes 77,000

Branco Fortuna reserve Protected 15 White 2918 2274.2 4°43'3.43"S 66°39'59.17"W yes 172,000

cameta Boa Vista reserve Subsistence 6 Black 1926 1203.5 4°45'29.79"S 66°43'0.22"W no 7,000

Camponesa Xibauazinho reserve Subsistence 13 Black 3972 3899.5 5°56'15.48"S 67°45'12.77"W no 52,000

Canico Lago Cerrado outside Unprotected 306 White 1717 6540.2 4°47'10.39"S 66°48'30.17"W yes 0,000

Cobras Monte Carmelo reserve Subsistence 4 Black 2213 4511.2 5°24'36.01"S 67°16'57.95"W yes 26,000

Comprido Roque reserve Protected 12 White 3017 3840.4 5° 7'41.20"S 67°12'47.71"W yes 137,000

Curape Lago Cerrado outside UnProtected 573 White 32244 5491 4°42'56.13"S 66°47'26.95"W yes 22,000

Damião São Francisco reserve Subsistence 46 White 3653 1069.7 5°41'12.27"S 67°46'9.55"W no 38,000

Deserto Santo Antonio reserve Subsistence 105 White 20706 4663.6 4°33'34.62"S 66°43'30.51"W yes 37,000

Doca São Raimundo reserve Subsistence 113 Black 7450 5062.9 5°27'51.3"S 67°30'52.3" W no 63,000

Dona_Maria Sao Raimundo reserve Protected 101 Black 9926 137.2 5°25'21.48"S 67°31'17.38"W yes 97,000

Esperança Sao Raimundo reserve Protected 108 Black 6711 6507.1 5°25'12.63"S 67°15'26.63"W no 45,000

Farias Morada Nova reserve Subsistence 16 White 1955 3437.7 5°11'16.22"S 67°18'12.81"W no 29,000

Florenço Morada Nova reserve Subsistence 3 Black 865 3173.1 5°29'21.33"S 67°35'49.46"W no 26,000

Grande Concordia outside Protected 88 Black 5681 102.9 4°34'30.06"S 66°37'47.57"W yes 84,000

Grande Lago Cerrado outside Protected 294 White 2048 137.2 4°44'39.55"S 66°42'54.41"W yes 473,000

Capítulo 2

64

Henrique Fortuna reserve Subsistence 17 Black 5031 7825.2 5°14'6.40"S 67°18'18.24"W no 80,000

Ilha Sao Raimundo reserve Subsistence 3 Black 1368 4662.6 05°28'35,2"S 67°31'43,3" W no 67,000

Istume Fortuna reserve Subsistence 20 Black 3440 6395.1 5°30'15.13"S 67°36'44.81"W no 126,000

Itabaiana Xeruã reserve Protected 28 Black 6408 5747.1 6° 3'9.73"S 67°45'53.56"W yes 82,000

Janiceto Morada Nova reserve Subsistence 6 Black 2562 2447 5°30'9.20"S 67°36'17.74"W yes 13,000

Jiburi Fortuna outside Unprotected 88.8 White 11000 10010 5°13'7.45"S 67°12'28.67"W no 6,000

Limoeiro Morada Nova reserve Subsistence 28 White 2557 3844.2 5°28'46.44"S 67°34'24.72"W no 27,000

Luis_Ceará Fortuna reserve Subsistence 4 Black 1593 7022.3 5°13'36.30"S 67°17'44.90"W no 23,000

Macaco Xibauazinho reserve Protected 53 White 5912 10 5°58'38.99"S 67°46'2.14"W no 429,000

Maia Caroçal reserve Subsistence 15 Black 5187 5736 5°54'14.59"S 67°48'10.04"W no 10,000

Mamuria Concordia outside Unprotected 81 White 5537 4274.4 4°41'55.62"S 66°38'56.30"W yes 4,000

Manaria Sao Raimundo reserve Protected 293 White 2433 121 5°27'58.27"S 67°31'20.15"W yes 1013,000

Mandioca Mandioca reserve Protected 200 White 1372 1443.8 5°52'16.15"S 67°48'19.72"W yes 482,000

Mandioquinha Mandioca reserve Subsistence 129 White 8739 4373.1 5°52'51.23"S 67°49'15.26"W no 37,000

Marari_Grande Xibauazinho reserve Protected 269 White 2040 63 5°56'27.74"S 67°45'58.93"W yes 1509,000

Maravilha Maravilha outside Subsistence 368 White 2344 900 6° 6'6.69"S 67°56'1.34"W yes 71,000

Marinho Concordia outside Subsistence 41 White 3396 1000 4°35'1.30"S 66°37'35.14"W yes 34,000

Maximiano Monte Carmelo reserve Unprotected 51.4 White 3700 5039 5°45'40.09"S 67°48'46.91"W no 5,000

Mutum Vista Alegre outside Protected 22 Black 3833 4640.2 4°43'26.29"S 66°40'43.27"W yes 85,000

Oncas Morada Nova reserve Subsistence 11 White 2614 1393.6 5°32'33.65"S 67°36'8.30"W yes 17,000

Parana_Manariã Sao Raimundo reserve Protected 132 White 23989.9 3499.6 5°27'9.66"S 67°30'34.76"W no 290,000

Patocino Xibauazinho reserve Subsistence 7 White 2787 5060.7 5°53'09.7''S 67°46'23.2''W no 54,000

Pau_Furado Monte Carmelo reserve Subsistence 38 White 2958 4333.9 5°44'39.52"S 67°47'49.44"W no 22,000

Pe_da_Terra Xeruã reserve Protected 5 Black 2172 8245.1 6° 2'38.32"S 67°44'59.58"W no 63,000

Pirapitinga Concordia outside Protected 6 Black 1546 2823.3 4°40'4.89"S 66°37'30.14"W yes 94,000

Ponga Concordia outside Unprotected 132 White 1102 7200 4°39'26.09"S 66°36'24.08"W yes 9,000

Preto Nova Esperança reserve Protected 54 White 5342 183.9 4°37'10.57"S 66°42'45.20"W yes 182,000

Puca Xué reserve Unprotected 85 White 7233 2495.7 5°35'32.12"S 67°33'40.08"W yes 0,000

Pupunha_Baixo Pupunha reserve Unprotected 138.5 White 9929 1500 5°35'36.99"S 67°45'52.18"W no 13,000

Raimundão Vista Alegre outside Protected 14 White 2076 7343.8 4°44'19.73"S 66°40'6.21"W yes 23,000

Capítulo 2

65

Rato Caroçal reserve Protected 335 White 2034 50 5°43'4.05"S 67°43'45.11"W yes 663,000

Recreio São Raimundo reserve Subsistence 86 White 4532 3246.7 5°25'56.62"S 67°32'31.35"W no 16,000

Redondo Xibauazinho reserve Subsistence 30 White 2688 1378.2 5°59'04.0"S 67°46'57.5" W no 47,000

Redondo Novo Horizonte reserve Unprotected 82.4 White 3310.9 1047 5° 4'9.08"S 67° 7'43.65"W no 9,000

Ressaca_Xibaua Xibauá reserve Subsistence 143 Black 1132 4375.4 5°53'44.64"S 67°54'7.67"W no 18,000

Roque Roque reserve Unprotected 90.8 White 8710 1500 5° 6'18.36"S 67°12'4.41"W no 4,000

Sacado_Eré Goiabal outside Unprotected 306 White 16926.3 3590 5° 7'3.77"S 66°59'27.15"W no 18,000

Sacado_jiburi Fortuna reserve Protected 412 White 2879 57 5° 8'48.67"S 67°13'29.31"W yes 627,000

Sacado_mari São Raimundo reserve Protected 282 White 1730 34 5°25'11.63"S 67°26'47.90"W no 87,000

Samauma Morada Nova reserve Protected 105 White 8747 3302.8 5°31'39.36"S 67°38'4.09"W yes 643,000

Santa_clara Xibauazinho reserve Unprotected 200 White 1452 1918.2 5°57'59.40"S 67°49'45.58"W yes 7,000

Santa_Cruz Xibauazinho reserve Subsistence 8 White 2963 7090.9 5° 51'43.1"S 67° 45'70.8"W no 42,000

Santa_fe Concordia outside Unprotected 401 White 2766 2700 4°38'18.60"S 66°38'17.61"W yes 3,000

Santo_antonio Santo Antonio reserve Unprotected 53 White 4664 2443.8 5°33'9.06"S 67°33'33.43"W yes 5,000

São_sebastiao São Sebastião outside Unprotected 344 White 2375 500 6° 3'33.20"S 67°52'39.11"W yes 16,000

Soco São Raimundo reserve Subsistence 10 White 1683 5950.6 05°22'41.6"S 67°30'27.1"W no 11,000

Tambaqui São Raimundo reserve Subsistence 7 White 2037 6820.6 4°32'43.35"S 66°40'3.96"W no 23,000

Tangara Monte Carmelo reserve Unprotected 37 Black 9098 5111.3 5°45'12.14"S 67°43'59.50"W yes 31,000

Toare Xeruã reserve Protected 9 Black 1989 6767.4 6° 2'8.93"S 67°46'23.90"W yes 43,000

Torcate Monte Carmelo reserve Protected 108 Black 4783 1850 5°43'50.77"S 67°46'34.38"W yes 85,000

Tracaja Morada Nova reserve Protected 14 Black 2069 4045.6 5°52'47.34"S 67°51'5.74"W no 66,000

Tucunare Ouro Preto reserve Subsistence 6 Black 1654 8966.4 5°14'38.33"S 67°18'7.59"W no 20,000

Veado Toari reserve Protected 183 White 1940 100 5°49'36.85"S 67°47'55.27"W no 418,000

Xibaua Xibauá reserve Subsistence 17 Black 2023 1590.2 5°52'59.30"S 67°53'5.85"W no 28,000

Ze Xibauazinho reserve Subsistence 5 Black 2200 7234.7 6°00'51.1"S 67°52'14.3" W no 67,000

Capítulo 2

66

Supplementary Information figures

Figure S1. Adult arapaima being weighed following a capture from a managed (protected) oxbow lake,

and a local family of arapaima managers.

Capítulo 2

67

Figure S2. Arapaima population size in relation to floodplain lake management class and protected

area context. Green and red boxes (showing median values, lower and upper quartiles and outliers),

represent lakes located inside and outside protected areas, respectively.

Capítulo 2

68

Figure S3 . Arapaima population sizes for both adults (grey boxes) and juveniles (yellow

boxes) across the three classes of floodplain lakes in terms of implementation of community-

based fisheries management. Box plots show median values, and the lower and upper

quartiles.

Capítulo 2

69

Figure S4. Arapaima population recovery trajectories over time for individual floodplain lakes

for both (A) adults and (B) juveniles (see text). Individual lines represent annual time series

for any given lake for which data from repeated annual counts were available. Blue lines

indicate protected and subsistence lakes; red lines indicate open-access lakes.

Capítulo 2

70

Figure S5. Arapaima population size based on annual counts within floodplain lakes as a

function of physical (nonlinear) distance on foot from the nearest local community

Capítulo 2

71

Figure S6. Model predictions of the time lag (yrs) required to achieve a population recovery

of a local arapaima population size of 1000 individuals, given the rates of population growth

observed in either white-water (blue curve) or black-water protected lakes (red curve),

managed by local communities. Arrows indicate 95% confidence intervals.

74

Capítulo 3

Community-based management drives food web

structure in amazon floodplains lakes

Helder Espírito-Santo

Capítulo 3

75

Community-based management drives food web structure in amazon floodplains

lakes*

João Vitor Campos-Silva, Carlos A. Peres, João H.do Amaral, Hugo Sarmento and Carlos R.S.Fonseca

*Manuscrito a ser submetido para Journal of Applied Ecology

Keywords: phytoplankton, flood pulse, community-based conservation, community-

based management

Summary

A. The drivers of energy sources in freshwater systems is a central topic in environmental sciences. Primary producers are typically controlled by bottom-up factors (nutrients and light), however, the models developed do not fit very well in tropical floodplain environments, which show very high spatio-temporal variation. This high variation on producer’s responses could be result of a lack of integrated approaches, which considers bottom-up and top down forces into the models.

B. Here we quantified the relative effect size of bottom up and top down mechanism

on phytoplankton biomass, controlling the influence of local and landscape heterogeneity for 58 floodplain lakes spread along almost 500 km of an important tributary of the Amazon River. We used as top down forces a surrogate of top predator abundance.

C. We show that the effect of large predators on protected managed lakes is the

strongest factor controlling phytoplankton during the wet season. Our results can help to understand the responses of phytoplankton across different levels of fisheries pressure, beyond the known bottom up variables, in a large scale in tropical floodplain lakes.

D. Synthesis and applications: Our findings highlight the importance of using an

integrated bottom-up and top down approach to predict phytoplankton biomass in amazon environments, furthermore our results point out the need to include the human pressure into an ecosystem perspective in the same assessment. It can provide a powerful tool for fisheries authorities and stakeholders, interested in managing fisheries, according to different levels of productivity.

Capítulo 3

76

1. Introduction

Top down and bottom-up controls of trophic-level biomass have been described in

terrestrial and aquatic environments. Phytoplankton is very important in the dynamics of

aquatic environments, due to its substantial contribution to primary production (Zwart et

al. 2015). In the floodplains of Amazon basin, phytoplankton has a minor contribution to

net ecosystem production - 5% approximately (Black & Forsberg 2001) – but it has a

substantial trophic importance, once sustains a large portion of the fish production,

ensuring food security for millions of families (Araujo-lima 1986; FAO 2014; Mortillaro et

al. 2015). The role of bottom up factors influencing phytoplankton biomass has been

studied for decades, however the solid knowledge comes mostly from studies in the

temperate regions, mainly Europe and North America (Belcon 2012). Such developed

models, do not fit for tropical environments, which show higher spatio-temporal variation

when compared to temperate ones (Huszar et al. 2006; Sarmento 2012). Therefore,

integrated models, evaluating both bottom-up and top down mechanism structuring

phytoplankton biomass for tropical floodplain lakes are warranted.

Phosphorus emerges as a major limiting nutrient into bottom-up approach, explaining

most of phytoplankton biomass variation (Dillon & Rigler 1974; Phillips et al. 2008). Total

nitrogen also appears as an important nutrient, once it is a limiting factor in some tropical

and subtropical systems (Forsberg & Trevisan 2007; Xu et al. 2010). Other bottom up

factors, such as light availability, have considerable effects on phytoplankton dynamics,

since it can limit the photosynthetic process, and population’s growth, interfering in

phytoplankton successional evolution (Huisman 1999; Polimene et al. 2014).

Macrophytes also show a complex interaction with phytoplankton frequently causing

Capítulo 3

77

alternated phases of dominance (Goulder 1969; Asaeda et al. 2001; Van Donk & Van de

Bund 2002) due to asymmetric light inhibition, nutrient competition (Van Donk et al. 1993),

and alteration of the nitrogen availability due to denitrification (Weisner et al. 1994).

Food web structure can be particularly relevant for our understanding of the high

variance in productivity of tropical lakes (Sarmento 2012). The effects of the presence of

top predator on producers have been developed since the second half of last century

(Hodgson 2005). This approach resulted in the trophic cascade hypothesis, which states

that an increase in piscivorous fish decreases the biomass of planktivorous fish, lowering

the consumption of herbivorous zooplankton, and finally reducing the phytoplankton

biomass (Carpenter et al. 1985). Many studies have demonstrated this hypothesis in

enclosure experiments, whole lake experiments and long term studies in the temperate

regions (e.g. Brett & Goldman 1996; Meijer et al. 1999; Mittelbach et al. 1995). However,

to investigate this top down effect in tropical environments, which show high spatio-

temporal variation in nutrients availability, light conditions (particles in suspension),

excretion, food web length, landscape variables, and fisheries pressure, is a huge

challenge. In fact, the complexity of tropical environments can attenuate the magnitude

or even reverse the expected effects of the trophic cascade hypothesis (Hart 2002; Van

Leeuwen et al. 2007).

Landscape and lake morphometric traits can also play a substantial role on

phytoplankton dynamics by affecting both bottom up and top down processes (Søballe &

Kimmel 1987; Prepas et al. 2001; Sheffer & Van Nes, 2007). In freshwater systems

governed the seasonality of the hydrological cycle, such as Amazonian floodplains, this

is particularly important, once the flood pulse controls drastically nutrients cycles (Junk

Capítulo 3

78

1989, 1997). Changes in the spatio-temporal characteristics of water bodies and the

transport of organism and nutrients are severely impacted by the hydrological oscillation

(Thomaz et al. 2007). Therefore, with the constant drying and flooding cycles, where

terrestrial environments become aquatic environments and vice-versa, features of

landscape can regulate the availability and dynamic of nutrients (Junk 1989;

Schonbrunner et al. 2012). Moreover, morphometric traits, such as lake depth and shape

(fetch) can strongly influence ecological process (Hakanson 2005).

Landscape changes during flood pulse, has also the potential to affect top-down

processes via fisheries management. During the dry season lakes become discrete units

on most Amazonian floodplains, providing an attractive ground for fishery. In response to

the uncontrolled large-scale commercial fisheries pressure that was occurring in the

Brazilian Amazon, community-based management emerged (Mcgrath et al. 1993). In

such management systems, natural resources are controlled by local populations,

preventing overexploitation of important fish species (Mcgrath et al. 1993; Castro 1999).

For instance, community-based management of the largest freshwater top predator

scaled fish Arapaima gigas (Schinz, 1822), locally named arapaima, successfully

recovered several populations across the Amazon basin (Castello 2009; Campos-Silva &

Peres in press). Therefore, while populations of arapaima are scarce or absent in open

access lakes due to overexploitation, they show impressive population size in protected

lakes (Campos-Silva & Peres in press). This heterogeneity in food web structures due to

management in very similar lakes creates favourable conditions to test, in a real complex

system, the size effect of food web structure (top down) control versus nutrients and light

(bottom up) limitation on phytoplankton productivity.

Capítulo 3

79

Understanding the drivers of phytoplankton dynamics in Amazonian floodplains can

provide a main contribution not only for ecologists, but also for environmental

stakeholders and fisheries managers. Phytoplankton is the main source of energy for

detritivore fish, one of the most important groups for local fisheries economy and

subsistence of community livelihoods (Araujo-Lima et al. 1986; Forsberg et al. 1993;

Batista et al. 1998; Begossi et al. 1999). Identifying the factors controlling fish production

can subsidize effective management fisheries plans (Forsberg et al. 1993).

Here we aim to quantify the relative effect size of food web structure (top down) control

versus nutrients and light (bottom up) limitation on phytoplankton biomass, controlling the

influence of local and landscape heterogeneity. We sampled 58 lakes spread along 500

km in the Juruá River, during both wet and dry seasons. The bottom up variables were

represented by total phosphorus, total nitrogen, light availability, and macrophyte

coverage, while the top down factor was the distance to the local community, a well-

known proxy of top predator abundance in this Amazon region (Campos-Silva & Peres,

in press). The landscape and lake traits factors included in our models were lake area,

depth, shape, connectivity, distance to main river and distance to head water. We

hypothesise that beside bottom up factors, the landscape will be a strong predictor of

phytoplankton biomass, because phosphate rocks from Andes mountains are the most

important source of nutrients of amazon lowlands (McClain & Naiman, 2008), and lakes

and water bodies nearby the main channel or headwater of river can show a higher

concentration of nutrients. Moreover, due to the importance of the top predator A. gigas

in the ecological network of Amazon lakes, we also expect top-down forces to have a

strong influence in the phytoplankton biomass.

Capítulo 3

80

2. Materials and Methods

Study area

This study was carried out at 58 floodplain lakes within and outside two contiguous

sustainable-use protected area along the Juruá River, a large meandering tributary of the

Amazon River localized in the upper-central portion of the Amazon basin (Fig. 1).

Figure 1. Location of the 58 lakes studied along the Juruá River, Amazon. The red poligons indicate two conservation units of sustainable use. The white circles the lakes studied.

Juruá arises on Andes mountains, the principal supplier of inorganic and organic matter

for the Amazon lowlands (McClain & Naiman 2008). The waters from Juruá are

characteristic to have high suspend sediments load with high turbidity and nutrients,

typical from the so-called “white waters” (Sioli 1986).

Capítulo 3

81

The floodplain of the Juruá is immersed in a drastic flood pulse, which often exceeds

10 m in amplitude (Hawes & Peres, 2016). The wet and dry seasons represent periods

of high (January – June) and low water levels (August – November). We sampled the

lakes during the high water period (march/April 2014) and during the low water period

(August/September 2014). Water dynamics produces a scenario containing 17.7% of

seasonally-flooded (várzea) forest and 82.3% of upland (terra firme) forest which is rarely

if ever inundated (Hawes et al. 2012). There are mainly two types of lakes spread into

landscape, oxbow lakes - formed through complex process of meanders-cut (Stølum

1996), and ria lakes - former, deeply incised river systems, usually nearby upland forest

(Bertani et al. 2015). The average depth of the lakes is around: 11.7 (± 5.4) meters at the

high water period and 4.8 (± 3.4) meters in the low water period. Due the high productivity,

Juruá River has a strong importance as a fish supplier in the Amazon region (Batista &

Petrere Jr, 2003).

Phytoplankton biomass estimates

Phytoplankton biomass was measured in all lakes during the wet and dry season. We

used the Chlorophyll a biomass (chl-a) as a proxy for phytoplankton biomass sampling at

the deepest point of each lake. We first, determined the extent of the euphotic zone, using

the depth of the Secchi disk multiplied by a factor of 2.7 (Cole 1994). Then, we integrate,

the euphotic zone, in a 20 liter bucket using a vertical Van Dorn sampler (3 L). A

subsample (2 L) from the bucket, was transferred to a polyethylene terephthalate (PET)

bottle, stored in insulated boxes for further filtration, to Chl-a determination, and total

phosphorus and nitrogen analysis. For Chl-a, water was filtered through a GF/F glass

fiber filter (Whatman), after a time period which never exceeded 8 hours after the first

Capítulo 3

82

sampling. The concentration of Chl-a (μg l–1, Chla) was determined

spectrophotometrically, after pigment extraction with 90% acetone (10 ml), after two

sonication steps of 15 min separated by an overnight period at 4°C, the Chl-a extracts

were subsequently centrifuged and spectrophotometer readings at 750, 664, 647, 630

nm were performed in a 1 cm glass cuvette (Strickland & Parsons 1968). Filtration was

done in an improvised lab on a riverboat in dim light. Filters were frozen until analysis

(maximum of two months).

Fisheries management and a surrogate for top down forces

During the drying period, lakes become discrete geographic features in the landscape,

enabling a fishery management based on effective protection of some lakes. Basically,

during the low water the local communities can deny to commercial boats the access of

fish stocks of lakes located near the local communities. These agreements ensure a

management composed by three classes of lakes: (1) Open-access lakes which contain

free resource pools, including commercial fishing boats; (2) Subsistence-use lakes that

supply local subsistence needs for the local community; and (3) Protected lakes that

exclude both commercial and subsistence fisheries but allow the sustainable use of

arapaima once a year (see more details in Campos-Silva & Peres in press).

The protected and subsistence class show a variable level of protection: near the

communities the surveillance is enforced and more effective, however in lakes far from

communities the surveillance is often ineffective. These configurations can be used as a

natural experiment, where the top predators are virtually removed from lakes with low

protection and open-access, but has a very high abundance on lakes properly protected,

near the villages. Campos-Silva & Peres (In press) showed that the distance to nearest

Capítulo 3

83

community is the most important predictor of protection, and it is tightly related with

arapaima and others top predator abundance. Here, therefore, we use distance to nearest

community as a surrogate of top down forces.

Bottom up variables

Total nitrogen (TN) and total phosphorus (TP) were determined by simultaneous analysis

(Valderrama 1981) for both, dry and wet season. Samples were first digested with a

mixture of potassium peroxodisulphate, boric acid and sodium hydroxide in autoclave.

Phosphorus concentration has been determined by light absorbance in 882 nm. Samples

for nitrogen concentration were submitted to a col- umn of Cadmium with ammonium

chloride and sulfanilamide solutions followed by the addition of ethylenediamine

dihydrochloride for light absorbance at 543 nm. Light availability was estimated for each

lake using a Secchi disk transparency, at the deeper point of the lake, during the both,

wet and dry season. Finally, macrophyte coverage was initially mapped in the field and

then independently estimated in ArcGIS (version 10.2) using 5-m resolution RapidEye©

images from august to october of 2013. All information about lakes and variables can be

accessed in Table 1 of supplementary information.

Landscape and lake variables

The landscape variables were Distance to river channel, estimated as the nearest

Euclidian distance between the lake edge and the river channel; distance to source,

estimated as the fluvial distance to the headwater; and connectivity, which means if the

lake show a connectivity perennially with another water bodies. The lakes traits were

area, measured in ha; index shape (IS), measured by the formula SI= (P/200) *(πA)0.5,

Capítulo 3

84

where; P = perimeter of the lake in km; π = 3.1416; A = area of the lake in ha. The shape

index is the deviation from a circle, where a circular lake shows a IS=1 (adapted of Patton

1975). Depth is defined as the maximum lake depth in meters, estimated in the field

during the both, wet and dry season. All spatial measures were done in ArcGIS (version

10.2) using 5-m resolution RapidEye© images from august to october of 2013.

Data analysis

Foremost, we accessed changes on phytoplankton biomass and nutrients

concentration using paired t tests, comparing 41 lakes measured in both, wet and dry

season. Posteriorly, we performed linear models (LMs) to examine variation in

phytoplankton biomass within the full set of 58 lakes (in dry season) and within a subset

of 42 lakes (in wet season) as a function of all potential predictors. We modeled all

possible models, from the constant model (without predictors) to the full model, where

Chl-a ~ Total phosphorus + Total nitrogen + light availability + shape + connectivity +

macrophyte coverage + lake area + distance to main river + distance to nearest

community + distance to headwater. Models were fit with lmer in the lme4 package and

every model combination examined with the MuMIn package (Barton, 2009) within the R

platform (R Development Core Team 2015).

We selected the most parsimonious model with the lowest Akaike Information

Criterion corrected for small sample size (AICc). AICc is calculated as the difference

between each model’s AICc and the lowest AICc, with a AICc < 2 interpreted as

substantial support that the model belongs to the set of best models. Akaike weights give

the probability that a model is the best model, given the data and the set of candidate

models (Burnham and Anderson, 2002). After model selection, we did a model average,

Capítulo 3

85

which considers the beta average of all variables included in parsimonious models.

Finally, as the variables were standardized through z standardization, we compared the

relative effect size of all variables. All assumptions were respected, according with Zuur

et al. (2010).

3. Results

The flood pulse affected strongly phytoplankton biomass and bottom up predictors (Fig.

2). The average chl-a on the dry season (40.3 ± 28.5 µg l-1) was more than 350 times

higher than on the wet season (0.11 ± 0.04 µg l-1), t = -8.1891, p <0.001. Phosphorus

concentration was also higher during the dry season (2.6 ± 1.1 µM) in comparison with

the wet season (1.7± 2.1 µM), t = -2.9942, p <0.005. An opposite pattern was found for

total nitrogen, which was almost 30 times higher during the wet season (33.6 ± 8.4 µM)

compared with the dry season (0.8 ± 1.2 µM), t = 23.458, p< 0.001.

Figure 2. Chl-a concentration (A), total phosphorus (B), and total nitrogen (C) during the dry and wet season for 58 lakes of the Juruá River, Amazon.

During the dry season, phytoplankton biomass was determined by both bottom-up and

top-down process. After model average, chl-a was positively related to distance to nearest

Capítulo 3

86

community, total phosphorus and light availability (Fig. 3A). The most important variable

was the top down force - distance to community – with the highest effect size (β=0.40±

0.1) followed by light availability (β=0.38± 0.1) and total phosphorus (β= 0.31 ± 0.1);

Figure 5). Although not significative, depth and lake shape were positively correlated in

some parsimonious models and should be important at a minor level (see all

parsimonious models at table 1).

Figure 3. Relative size effect (z-estimates) of botton up, top down, landscape, and lake variables. The dots are the mean estimates while the vertical lines indicate the confidence intervals (CI). For significant variables the CI do not cross the horizontal dotted line at zero. The box A represent the dry season, while the box B represents the wet season.

During the wet season, however, landscape homogenization took place and only lake

depth influenced chl-a. Depth had a negative effect on phytoplankton biomass (Fig. 3B

Capítulo 3

87

and 4). Distance to main river, phosphorus and light availability were present in

parsimonious models, but were not significative (Table 1).

Figure 4. Biomass of phytoplankton (measured as Chl-a) as a function of: A- distance to the nearest community (measured in meters); B-Total phosphorus (measures in lmol l–1) and C- Light availability (measured in centimeter by a Secchi disc depth).

Figure 5. Phytoplankton biomass (measured as Chl-a) during the wet season in function of lake depth.

Capítulo 3

88

Table 1. Selection of candidate models explaining the biomass of phytoplankton in floodplain lakes along the Juruá River, ranked according to increasing value of ΔAICc, with β average of each variable, AIC and Weight.

4. Discussion

The hegemonic paradigm considers fish yields as products of system productivity

(Melack 1976; Runge 1988; Junk 1989; Malick et al. 2015). Although true, the opposite

way – in which fisheries can modify a system’s productivity – should also be evaluated.

We bring an important finding, which can help to understand the responses of

phytoplankton across different levels of fisheries pressure, beyond the known bottom up

variables in Amazon floodplains lakes. Basically, the flood pulse leads a drastic shift on

landscape, which allows different mechanism driving the phytoplankton, according with

the water level. During the wet season, for example, only the depth of lakes was an

important variable, however, in the dry season when the phytoplankton increases

dramatically, the most important factor was a top-down force and probably a trophic

cascade benefiting phytoplankton growth, due the high abundance of top predators.

Few studies have tried to understand the effects size of top predators on producers

Model kβ top

predator

β light

availability

β total

phosphorusβ shape β depth

β distance

to main

river

AIC Δ AICc Weight

1 6 0.4 ± 0.1 0.39 ± 0.1 0.29 ± 0.1 0.22 ± 0.1 ----- ----- 150.5 0 0.092

2 7 0.4 ± 0.1 0.37 ± 0.1 0.30 ± 0.1 0.21 ± 0.1 0.10 ± 0.1 ----- 152 1.5 0.043

3 5 0.4 ± 0.2 0.40 ± 0.1 0.32 ± 0.1 ----- ----- ----- 152.2 1.75 0.038

1 4 ----- ----- ----- ----- - 0.40 ± 0.1 -0.20 ± 0.1 113.46 0 0.07

2 3 ----- ----- ----- ----- - 0.40 ± 0.1 ----- 114.47 1 0.04

3 5 ----- ----- -0.14 ± 0.1 ----- - 0.39 ± 0.1 -0.20 ± 0.1 115.08 1.6 0.03

4 4 ----- - 0.19 ± 0.1 ----- ----- - 0.36 ± 0.1 ----- 115.16 1.7 0.03

5 4 ----- ----- - 0.18 ± 0.1 ----- - 0.38 ± 0.1 ----- 115.26 1.8 0.03

Dry season

Wet season

Model selection

Capítulo 3

89

biomass on large scale, especially in tropical environments (Brett & Goldman 1996;

Hodgson 2005; Borer et al. 2005). In part, the little information about tropical systems is

due to their complexity, such as high diversity of habitats, difficult access, spatial

heterogeneity, resources availability and physiology of organisms, and most of these

factors are important to understand the magnitude of top down controls on biomass of

producers (Borer et al. 2005). After the conceptual framework proposed by Carpenter et

al. (1993), several studies have corroborated the trophic cascade hypothesis (Strong

1992; Polis 1994; Flecker & Townsend 1994). The mechanism shows strong variation in

effect size, but it is present in many types of environments (Shurin et al. 2002). In long-

term experiments for example, the reintroduction or eradication of piscivorous fish

induces drastic changes in planktivorous fish abundance, resulting in substantial changes

in lower levels of trophic chain (Mittelbach et al. 1995). Our study reinforces these

findings, showing that the presence of top predators has a high effect size on biomass of

phytoplankton, even in a large scale.

On the other hand, the trophic cascade hypothesis has also been target of some

criticism. Indeed, some approaches showed that changes in food web structure are

accompanied by several compensatory mechanisms, and the trophic cascade hypothesis

would be too simplistic to describe the complexity as a whole in the long run (Person

1999; Hodgson 2005). Manipulation experiments have highlighted that shifts in predator

abundance can modify the herbivory rates or induce changes in nutrients recycling,

through excretion for example, which it has strong influence on producer dynamics (Vanni

& Findlay 1990; Vanni & Layne 1997). Therefore, the details of the mechanism behind

the trophic cascade hypothesis are complex and still not well understood, but it is clear

Capítulo 3

90

that the presence of higher trophic levels strongly influences producers in many

environments, explaining a large part of the variance not explained by bottom up

approach (Hodgson 2005).

There is a vast literature about the bottom up factors controlling phytoplankton

biomass. Phosphorus is often the main limiting factor (Vollenweider 1976; Schindler 1978;

Vollenweider & Kerekes 1980; Tilzer 1990), but nitrogen may play a central role in some

tropical lakes (Thornton 1987; Forsberg & Trevisan 2007; Lewis 2010). Our results

support the findings that phosphorus has a strong effect on phytoplankton biomass, but

only during the dry season. Nitrogen, in its turn, was not important as a driver of

phytoplankton in Juruá sampled lakes, but it can play a mighty role in lakes of different

geological origins, such as ria lakes in central Amazonia (Forsberg & Trevisan 2007).

Besides nutrients, light is another key factor influencing phytoplankton (Havens 1998;

Huisman 1999). We show that light availability should be included as a major driver

controlling chl-a variation in Amazon lakes, probably due to its importance in

photosynthetic process (Eilers & Peeters 1988; Palmer et al. 2013). In sum, large part of

the energy source during the dry season is autochthone, once the discrete features

enable the growing of a large biomass of phytoplankton, through a mix effect of nutrients

supply, top predator presence (and its effects on the food web) and light availability.

During the flooded period however, the flood pulse changes all landscape dynamics,

due the water level oscillation, which can ascend up to 10 meters in amplitude. The large

amount of water discharged into the system leads a huge homogenization of the

landscape. In this scenario, the only important variable influencing the phytoplankton was

the lake depth, which can induce an alternation of a submerged macrophytes phase or a

Capítulo 3

91

turbid phytoplankton dominated state, influencing substantially the lake dynamic

(Hakanson 2005; Sheffer & Van Nes 2007). Moreover, shallow lakes could be affected by

wind, which has a high influence on nutrients resuspension (e.g. Carper & Bachmann

2011). Both mechanisms can change substantially the biomass of phytoplankton.

Nonetheless, the phytoplankton production on wet season is very low, compared with dry

season. We conclude, therefore, that the energy source during wet season is mainly

allochthonous to the extent that the flooded forest is very rich in organic material (Junk

1989), which is evidenced by the high concentration of nitrogen on our sampled lakes.

The flood pulse, due the huge water oscillation, have a strong dilution effect, changing

not only the biomass, but all structure and composition of phytoplankton assemblage

(García de Emiliani 1997; Huszar & Reynolds 1997). Therefore, the flooded period can

be understood as a “reset phenomenon”, which can lead a homogenization of biological

communities. However, after this period, the biological communities are redefined in

discrete units’ lakes, according with a variety of forces. In the case of phytoplankton top

predator abundance, total phosphorus and light availability has the strongest influence on

biomass increasing, undermining all others variables. Future approaches should try to

understand how these mechanism work in the long-term, once the particularities of each

lake are dissolved annually with the flood pulse. Another issue to be discussed is how to

detect phytoplankton responses into the places where the fisheries management is not

explicit. In this case the population size of large predators can vary in function of others

factors, such as distance to market or human density (Cinner et al. 2013), and it should

be clarified and quantified and inserted in the models.

Our study contributes with a better comprehension of the ecology of Amazon

Capítulo 3

92

floodplains lakes, confirming that the variation on phytoplankton biomass in tropical lakes

needs an integrated approach between bottom up and top down factors to be understood.

Phytoplankton is the main important energy source of detritivorous fish, which comprise

a very important group for subsistence and commercial fisheries (Araujo-Lima et al. 1986;

Forsberg et al. 1993). Our findings reinforce the importance of including human activities

and ecosystem perspective in the same ecological assessment, even in remote, low

density populated areas, theoretically low impacted areas such as the upper Amazon. It

can provide a powerful tool for fisheries management and stakeholders, whose are

interested in organize the fisheries, according different levels of productivity.

5. References

1. Araujo-Lima, C. A. R. M., B. R. Forsberg, R. Victoria & L. Martinelli, 1986. Energy

sources for detrivorous fishes in the Amazon. Science 234: 1256–1258

2. Asaeda, T.; Trung, V.K.; Manatunge, J; Van Bon, T. 2001.Modelling macrophyte–

nutrient–phytoplankton interactions in shallow eutrophic lakes and the evaluation of

environmental impacts, Ecological Engineering, 16: 341-357.

3. Batista, V. S., A. J. Inhamuns, C. E. C. Freitas, and D. Freire-Brasil. 1998.

Characterization of the fishery in river communities in the low-Solimões/High-Amazon

region. Fisheries Management & Ecology 5:419-435.

4. Batista, V. S. and Petrere Jr., M. 2003. Characterization of the commercial fish

production landed at Manaus, Amazonas State, Brazil. Acta Amazonica, 33 (1); 53-66 .

2003.

5. Begossi, A.; Silvano, R.A.M.; do Amaral, B.D.; Oyakawa, O.T. 1999. Uses of Fish

and Game by Inhabitants of an Extractive Reserve (Upper Jurua, Acre, Brasil).

Environment, Development and Sustainability, 1:73.

6. Belcon, A.U.2012. Philosophy in Earth and Ocean Sciences in the Graduate

School of Duke University.

Capítulo 3

93

7. Bertani, T.C.; Rosseti, D.F.; Hayakawa, E. H. and Cohen, M.C.L. 2015.

Understanding Amazonian fluvial rias based on a late Pleistocene-Holocene analog,

Earth surface processes and landforms, 40:285-292.

8. Borer, E.T.; Seabloom, E.W., Shurin, J.B., Anderson, K.E., Blanchette, C.A.,

Broitman, B. 2005. What determines the strength of a trophic cascade? Ecology, 86, 528–

537.

9. Brett, M.T.; and Goldman, C.R. 1996. A meta-analysis of the freshwater trophic

cascade Proc. Natl. Acad. Sci. USA, 93:7723-7726.

10. Campos-Silva, J.V. and Peres, C. 2016. Community-based management induces

rapid recovery of a high-value tropical freshwater fisheries

11. Carper, G.L; Bachmann, R.W. 1984. Wind resuspension of sediments in a Prairie

Lake, Canadian Journal of Fisheries and Aquatic Sciences, 41(12),1763-1767

12. Carpenter, S.R.; Kitchell, J.F. and Hodgson, J.R.1985. Cascading Trophic

Interactions and Lake Productivity BioScience, 35: 634-639.

13. Carpenter, S.R. and Kitchell, J.F. (1993) The Trophic Cascade in Lake

Ecosystems, Cambridge University Press.

14. Castello, L.; Viana, J.P.; Watkins, G.; Pinedo-Vasquez, M. and Luzadis, V.A. 2009.

Lessons from Integrating Fishers of Arapaima in Small-Scale Fisheries management

at the Mamiraua Reserve, Amazon. Enviromental Management 43, 197-209.

15. Castro, F. Fishing Accords: the political ecology of fishing intensification in the

Amazon. PhD dissertation - University of Indiana. 1999.

16. Cinner,J.E.;Graham,N.A.J.;Huchery,C.; Macneil,M.A.2013. Global Effects of Local

Human Population Density and Distance to Markets on the Condition of Coral Reef

Fisheries. Conservation Biology 27, 453-458.

17. Cole GA (1994) Textbook of Limnology. Waveland Press Inc, Long, Grove, Illinois

18. Descy J.P; Higgins, H.W., Mackey D.J., Hurley J.P. andFrost T.M. 2000. Pigment

ratios and phytoplankton assessment in northern Wisconsin lakes. Journal of Phycology,

36, 274–286.

19. Dillon, P.J. and Rigler, F.H. 1974. The Phosphorus-Chlorophyll Relationship in

Lakes. Limnology and Oceanography 19(5):767-773.

Capítulo 3

94

20. Eilers, P.H.C.; Peeters, J.C.H. 1988. A model for the relationship between light

intensity and the rate of photosynthesis in phytoplankton, Ecological Modeling, 42:199-

215.

21. FAO, Food and Agriculture Organization of the United Nations. 2014. 243p.

22. Flecker, A.S. and C.R. Townsend. 1994. Community-wide consequences of trout

introduction in New Zealand streams. Ecological Applications 4:798–807.

23. Forsberg, B.R.; Araujo-Lima, C. A. R. M.; Martinelli, L.A; Victoria, R.L. and

Bonassi, J. A. 1993. Autotrophic carbon sources for fish of the central

Amazon, Ecology, 74: 643–652.

24. Forsberg, B. R. and Trevisan, G. V .2007. Relationships among nitrogen and total

phosphorus, algal biomass and zooplankton density in the central Amazonia lakes.

Hydrobiologia, 586:357-365.

25. Goulder, R. 1969. Interactions between the rates of production of a freshwater

macrophyte and phytoplankton is a poun. Oikos, 20:300-309.

26. Hakanson, L. 2005.The Importance of Lake Morphometry for the Structure and

Function of Lakes,Internat. Rev. Hydrobiol. 90 4 433– 461.

27. Hart, D.R.2002. Intraguild predation, invertebrate predators, and trophic cascades

in lakes food webs. Journal of Theoretical Biology, 218:111-128.

28. Hawes, J.E., C.A. Peres, L.B. Riley, and L.L. Hess, 2012. Landscape-scale

variation in structure and biomass of Amazonian seasonally flooded and unflooded

forests. For Ecol Manage 281: 163–176.

29. Hawes, J. E. & Peres, C. A. 2016. Patterns of Plant Phenology in Amazonia

Seasonally Flooded and Unflooded Forests. Biotropica, Online ISSN: 1744-7429.

30. Hodgson, J.Y.S. 2005. The Biologists' Forum: A trophic cascade synthesis: review

of top-down mechanisms regulating lake ecosystems. BIOS, 76(3):137-144.

31. Huot, Y.; Babim, M.; Bruyant, C.; Grob and Twardowski,M.S. 2007. Does

chlorophyll a provide the best index of phytoplankton biomass for primary productivity

studies?. Biogeosciences Discussions, European Geosciences Union, 4: 707-745.

Capítulo 3

95

32. Husman, J.; Jonker, R.R.; Zonneveld, C. and Weissing, F.J. 1999. Competition for

light between phytoplankton species: Experimental tests of mechanistic theory. Ecology,

80: 211-222.

33. Huszar, V.L.M.; Caraco, N.F.; Roland, F. and Cole, J. 2006. Nutrient–chlorophyll

relationships in tropical– subtropical lakes: do temperate models fit? Biogeochemistry,

79: 239–250.

34. Junk, W. J., 1997. General aspects of floodplain ecology with special reference to

Amazonian floodplains. – In: JUNK, W. J. (ed.): The Central Amazon Floodplain: 3–20. –

Ecological Studies, Springer, Berlin.

35. Junk, W. J., Bayley, P. B. and Sparks, R. E., 1989: The flood pulse concept in river-

floodplain systems. – In: DODGE, D. P. (ed.): Proceedings of the International Large

River Symposium. – Can. Publ. Fish. Aquat. Sci. 106: 110–127.

36. Lewis, W. M. J. 2010. Biogeochemistry of tropical lakes. Pages 1595–1603 in J.

Jones, editor. International Association of Theoretical and Applied Limnology, Vol 30, Pt

10, Proceedings.

37. Mcgrath, D.; De Castro, F.; Futemma, C.; Amaral, B.; Calabria, J. 1993. Fisheries

and the evolution of resource management on the Lower Amazon Basin. Journal of

Human Ecology, v. 21, n. 2, p. 167-195.

38. Malick, M.J.; Cox, S.P.; Mueter, F.J. and Peterman, R.M. 2015. Linking

phytoplankton phenology to salmon productivity along a north-south gradient in the

northeast Pacific Ocean, Canadian Journal of Fisheries and Aquatic Sciences, 2015,

72(5): 697-708.

39. Meijer, M.L.; Boois, I.; Scheffer, M.; Portielje, R. and Hosper, H.

1999.Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case

studies. Hydrobiologia 408/409: 13–30.

40. Melack, J.M. 1976. Primary productivity and fish yields in tropical lakes.

Transactions of the American fisheries society, 105: 575-580.

41. Mittelbach, G.G., A.M. Turner, D.J. Hall, J.E. Rettig, and

C.W.Osenberg.1995.Perturbation and resilience : a long term, whole-lake study of

predator extinction and reintroduction. Ecology 76:2347–2360.

Capítulo 3

96

42. Mortillaro, J.M; Pouilly, M.; Wach, M.; Freitas. C.E.C.; Abril, G. and Meziane, T.

2015. Trophic opportunism of central amazon floodplain fish. Freshwater biology 60,

1659-1670.

43. Newton, P., A. R. Watkinson, and C. A. Peres. 2011. Determinants of yield in a

non–timber forest product: Copaifera oleoresin in Amazonian extractive reserves. Forest

Ecology and Management 261, 255–264.

44. Palmer, M.A.; Van Dijken, G.L.;Mitchell, B.G.; Seegers, B.J.; Lowry, K.E.; Mills,

M.M. and Arrigo, K.R. 2013. Light and nutrient control of photosynthesis in natural

phytoplankton populations from the Chukchi and Beaufort seas, Arctic Ocean, Limnol.

Oceanogr., 58(6), 2185–2205

45. Patton, D. R. 1975. A diversity index for quantifying habitat edge. Wildlife Society

Bulletin 3: 171-173

46. Persson, L. 1999. Trophic cascades: abiding heterogeneity and the trophic level

concept at the end of the road. Oikos 85:385–397.

47. Phillips G, Pietiläinen OP, Carvalho L, Solimini A, Lyche Solheim A, and Cardoso

A. 2008. Chlorophyll–nutrient relationships of different lake types using a large European

dataset. Aquatic Ecology 42(2):213-226.

48. Polimene, L., Brunet, C., Butenschön, M., Martinez-Vicente, V., Widdicombe, C.,

Torres, R., and Allen, J. I.:2014 Modelling a lightdriven phytoplankton succession, J.

Plankton Res., 36, 214–229.

49. Polis, G.A. 1994. Food webs, trophic cascades and community structure.

Australian Journal of Ecology19:121–136.

50. Prepas, E.E.; Planas, D.; Gibson, J.J.; Vitt, D.H.; Prowse, T.D.; Dinsmore ,W.P.;

Halsey,L.A.; McEachern,P.M.; Paquet, S.; Scrimgeour, G.J.; Tonn, W.M.; Paszkowski,

C.A. and Wolfstein, K. 2001.Landscape variables influencing nutrients and phytoplankton

communities in Boreal Plain lakes of northern Alberta: a comparison of wetlandand

upland-dominated catchments, Can. J. Fish. Aquat. Sci., 58:1286-1299.

51. Runge, J.A. 1988. Should we expect a relationship between primary production

and fisheries? The role of copepod dynamics as a filter of trophic variability.

Hydrobiologia, 167:61-71.

Capítulo 3

97

52. Sarmento, H. 2012. New paradigms in tropical limnology: the importance of the

microbial food web. Hydrobiologia 686:1-14.

53. Schindler, D.W.1978. Factors regulating phytoplankton production and standing

crop in the world’s lakes. Limnology and Oceanography 23:478–486.

54. Scheffer, M. And Van Nes, E. 2007. Shallow lakes theory revisited: various

alternative regimes driven by climate, nutrients, depth and lake size, Hydrobiologia,

584:455-466.

55. Schönbrunner, I.M.; Preiner, S. and Hein, T. 2012. Impact of drying and re-flooding

of sediment on phosphorus dynamics of river–floodplain systems, Sci Total Environ, 432:

329–337.

56. Shurin, J.B., Borer, E.T., Seabloom, E.W., Anderson, K., Blanchette, C.A.,

Broitman, B., Cooper, S.D. & Halpern, S. (2002). A cross-ecosystem comparison of the

strength of trophic cascades. Ecol. Lett., 5, 785–791.

57. Søballe, D. M. and Kimmel, B. L. 1987. A Large-Scale Comparison of Factors

Influencing Phytoplankton Abundance in Rivers, Lakes, and Impoundments. Ecology,

68:1943-1954.

58. Stølum,H.H. 1996. River Meandering as a Self-Organization Process.Science,Vol.

271, No. 5256, pp. 1710-1713.

59. Strong, D.R.1992.Are trophic cascades all wet? Differentiation and donor-control

in speciose ecosystems. Ecology 73:747–754.

60. Thomaz, S. M., Bini, M., and Bozelli, R. L. (2007). Floods increase similarity among

aquatic habitats in river–floodplain systems. Hydrobiologia 579, 1–13.

61. Thornton, J. A. 1987. Aspects of eutrophication management in tropical/subtropical

regions: A review. J. Limnol. Soc S. Afr.,13,25-43.

62. Tilzer, M.M. 1990. Environmental and Physiological Control of Phytoplankton

Productivity in Large Lakes, in Large Lakes, pp 339-367.

63. Vanni, M.J. and Findlay,D.L. 1990. Trophic cascades and phytoplankton

community structure. Ecology 71:921– 937.

64. Vanny, M.J. and Layne, C.D. 1997. Nutrient recycling and herbivory as mechanism

in the “top-down”effect of fish on algae in lakes, Ecology. 78: 21-40.

Capítulo 3

98

65. Van Donk, E., Gulati, R.D., Iedema, A., Meulemans, J., 1993. Macrophyte-related

shifts in the nitrogen and phosphorus contents of the different trophic levels in a

biomanipulated shallow lake. Hydrobiologia 251, 19– 26.

66. Van Donk, E. and Van de Bund, W.J. 2002. Impact of submerged macrophytes

including charophytes on phyto- and zooplankton communities: allelopathy versus other

mechanisms. Aquatic Botany, 72:261–274.

67. Van Leeuwen, E.; Lacerot G.; Van Nes, E.H.; Hemerik L. and Scheffer, M. 2007.

Reduced top–down control of phytoplankton in warmer climates can be explained by

continuous fish reproduction. ecological modelling 206: 205–212.

68. Vollenweider R. A. 1976.Advances in defining critical loading levels for phosphorus

in lake eutrophication. Mem. Ist, Ital Idrobio. 33, 53-83.

69. Vollenweider R. A. & Kerekes J. J.1980.Background and summary results of the

OECD cooperative programme on eutrophication. OECD publication, Paris, France.

70. Weisner, S. E. B., P G. Eriksson, W. Granell & L. Leonardson, 1994. Influence of

macrophytes on nitrate removal in wetlands. Ambio 23: 363–366.

71. Xu, H.; Paerl, H.W.; Quin, B.; Zhu, G. and Gao, G. 2010. Nitrogen and phosphorus

inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr.,

55: 420–432.

72. Zuur, A.F.; Ieno, E.N. and Elphick, C.S. 2010. A protocol for data exploration to

avoid common statistical problems. Methods in Ecology and Evolution 1, 3-14.

73. Zwart, J.A.; Solomon, C.T and Jones, S.E. 2015. Phytoplankton traits predict

ecosystem function in a global set of lakes. Ecology, 96: 2257–2264.

Capítulo 3

99

Supplementary Information

Supplementary Information tables Table S1. Lake identification, geographic coordinates, and environmental variables associated with each lake. Lake: name of lake; Lat: latitude; Long:longitude; CW: chl-a on wet season; TNW: total nitrogen on wet season; TPW: Total phosphorus on wet season; Area: total are in ha; MC: macrophyte coverage in ha; Per: perimeter; DNC: distance to nearest community; DMR: distance to main river; LW: light on wet season; LD: light on dry season; D wet: depth on wet season; D dry: depth on dry season; TN Dry: total nitrohen on dry season; TP Dry: total phosphorus on dry season and CD: chl-a on dry season.

Lake Lat Long CW TNW TPW Area MC Per DNC DMR LW LD D

wet D

dry TN Dry

TP Dry

CD

Acurau 6° 1'52.12"S 67°47'25.28"W 0.108 31.8 6.3 42 0 4750 3736.8 3435 40 8 10.6 2 0.3 5.9 127

Anaxiqui 5°43'33.34"S 67°48'24.72"W 0.109 42 6.9 173 0 2085 5043.1 2145.4 32 48 11.3 6 0.682 1.7 13.6

Andreza 5° 5'53.35"S 67° 8'25.27"W 0.145 30.9 0.5 90 0.0778 5456 2962.5 370.8 34 73 5.1 3.73 0.388 1.7 34.5

Aruana 5°20'46.07"S 67°25'27.01"W 0.069 16.3 6.9 16 0 2823 3491.4 3743.5 70 36 11 6.61 1.48 3.3 46.5

Baliera 5°23'5.89"S 67°21'28.72"W 0.1 33.5 1.6 21 0 5317 3406.9 2380.9 40 20 11.2 7.75 0.303 2.3 24.1

Bauana 5°25'45.11"S 67°18'53.43"W 0.155 35.1 0.6 93.3 43.3 7000 1054 900 40 45 9.1 5 0.391 1.5 15.4

Boto 5°23'56.20"S 67°14'54.93"W 0.07 30.6 0.5 11 0 3492 4580.4 4417.1 70 29 12 9.66 0.48 2.5 45.9

Braga 4°41'2.23"S 66°37'28.54"W NA NA NA 25 0 5602 2242.1 1956.2 67 84 NA 8.42 0.336 2.1 113

Branco 5°11'22.19"S 67°16'38.85"W 0.087 43.6 1.1 15 0.2667 2918 2274.2 2369.8 60 30 9.9 1.22 0.475 2.6 17.2

Branco_VA 4°43'3.43"S 66°39'59.17"W NA NA NA 255 0 9056 3811 1041.9 60 27 NA 1.22 0.096 1.2 15.1

Canico 4°47'10.39"S 66°48'30.17"W 0.1 33.5 1.6 306 0.24836

1717 6540.2 476.9 49 12 11.1 11 0.326 2.5 20.2

Cobras 5°24'36.01"S 67°16'57.95"W 0.135 34.8 0.6 4 56.2 2213 4511.2 1699 28 70 4.5 4.4 0.439 2.3 68.4

Cobras Bauana 5°24'36.01"S 67°16'57.95"W 0.085 39.3 0.5 17.8 0 1710 1082 140 65 50 8.7 2.82 0.132 3.1 16.1

Comprido 5° 7'41.20"S 67°12'47.71"W 0.172 40.8 0.6 12 0 3017 3840.4 2510.2 70 9.5 11.1 2.5 1.38 3.2 63

Capítulo 3

100

Curape 4°42'56.13"S 66°47'26.95"W NA NA NA 573 0.0698 32244

5491 837.4 35 24 NA 5 1.33 4.8 90.8

Deserto 4°33'34.62"S 66°43'30.51"W 0.092 30.8 0.7 105 0.0571 20706

4663.6 1552.2 30 50 9.5 1.98 0.113 3.7 57.9

Dona_maria 5°25'21.48"S 67°31'17.38"W 0.145 23.2 0.9 101 0.0594 9926 54.6 5549.4 44 38 12.9 3.44 0.422 1.5 8.79

fortuna 5° 9'53.01"S 67°17'0.26"W 0.073 51 3.1 18.9 0 3900 0 4100 70 37 13.5 5.56 1.13 2.3 11.9

Grande 4°34'30.06"S 66°37'47.57"W NA NA NA 294 0.5454 2048 4113.2 2166.7 35 58 NA 3.2 0.796 2.9 67.7

Grande_conc 4°44'39.55"S 66°42'54.41"W NA NA NA 88 0.1020 5681 1000 357.8 70 96 NA 5.7 0.421 2.2 50.1

Itabaiana 6° 3'9.73"S 67°45'53.56"W 0.059 37.1 0.6 28 0 6408 5747.1 3581.3 100 50 16.9 12.48 0.475 2 20.6

Janiceto 5°30'9.20"S 67°36'17.74"W NA NA NA 6 0 2562 2447 2279.7 35 51 NA 4.56 0.692 2.1 21.6

Jiburi 5°13'7.45"S 67°12'28.67"W 0.168 32.9 0.9 88.8 52.2 11000

10000 530 35 42 7.5 1.4 0.938 4.4 57.4

Mamuria 4°41'55.62"S 66°38'56.30"W NA NA NA 81 0.08642

5537 4274.4 493.2 40 32 NA 4.17 0.818 2.5 50.9

Manaria 5°27'58.27"S 67°31'20.15"W 0.099 33.6 0.7 293 0 2433 3453.5 2342.2 35 53 14.1 6.63 9.3 2.4 63.3

Mandioca 5°52'16.15"S 67°48'19.72"W 0.102 29.4 0.6 200 0.075 1372 1443.8 757.2 28 50 9.5 4.17 0.128 6 85

Marari_grande 5°56'27.74"S 67°45'58.93"W 0.107 5.5 0.6 269 0.1078 2040 1319 1100 39 51 30 4.15 0.814 2.7 55.3

Maravilha 6° 6'6.69"S 67°56'1.34"W 0.1 33.5 NA 368 0.0461 2344 900 1192.2 40 64 NA 6.75 0.269 1.5 38.1

Marinho 4°35'1.30"S 66°37'35.14"W NA 1.6 NA 41 0.4146 3396 1000 1500 49 30 11.7 5 0.273 1.8 20.1

Maximiano 5°45'40.09"S 67°48'46.91"W NA NA NA 51.4 0.64 3700 5039 620 NA 70 NA 3.8 0.5 2.3 73.5

Mutum 4°43'26.29"S 66°40'43.27"W NA NA NA 22 0.0454 3833 4640.2 4202.7 NA 45 NA 5 0.71 1.4 38.8

Onças 5°32'33.65"S 67°36'8.30"W 0.208 33.5 0.6 11 0 2614 1393.6 608.9 33 30 7.6 1.28 3.17 2.1 20.3

Pirapitinga 4°40'4.89"S 66°37'30.14"W NA NA NA 6 0 1546 2823.3 1955.6 NA 48 NA 4.28 0.296 1.9 33.5

Ponga 4°39'26.09"S 66°36'24.08"W NA NA NA 132 0 1102 7200 3048.8 NA 30 NA 4 0.486 2.4 41.1

Preto 4°37'10.57"S 66°42'45.20"W 0.085 35.9 0.5 54 0.3333 5342 1183.2 119.2 70 19 7.9 1.38 0.515 2.2 9.47

Preto Pupuai 5° 3'58.36"S 67° 9'58.83"W 0.099 34.8 0.8 32.7 0 3206.3

1035 947.7 35 24 9.9 2.7 0.401 2.2 12.3

Puca 5°35'32.12"S 67°33'40.08"W NA NA NA 85 0 7233 2495.7 835.9 NA 14 NA 6.69 0.48 2.7 38.2

Pupunha de baixo

5°35'36.99"S 67°45'52.18"W 0.088 23.9 0.6 138.5 0.2 9929 1500 10 40 10 16.3 4.23 0.928 3.3 37.2

Capítulo 3

101

Pupunha de cima

5°35'36.99"S 67°45'52.18"W 0.117 21.4 0.7 162.2 0.2 15540

1500 10 40 7 15.3 1.89 1.056 4.8 49.5

Raimundao 4°44'19.73"S 66°40'6.21"W NA NA NA 14 0 2076 7343.8 3954.3 NA 48 NA 1.53 0.093 1.8 24.3

Recreio 5°25'56.62"S 67°32'31.35"W 0.059 32.9 0.6 25.6 0.0291 3026.1

2000 7545.4 70 18 11.1 1.78 0.598 4.6 24.2

Redondo 5°59'04.0"S 67°46'57.5" W 0.14 44.7 1 82.4 0.0571 3310.9

1047 589.3 45 15 6.5 1.86 0.57 2.7 20.7

Roque 5° 6'18.36"S 67°12'4.41"W 0.159 48.8 0.8 90.8 0.2 8710 1500 0 70 38 15 2.8 0.16 1.9 96.5

Sacado do erê 5° 7'3.77"S 66°59'27.15"W NA NA NA 306 0.0947 16926.3

3590 0 NA 54 NA 2.74 0.766 2 40.1

Sacado_jiburi 5° 8'48.67"S 67°13'29.31"W 0.059 30.1 0.6 412 0.0566 2879 1689.5 0 67 75 20.7 8.62 0.103 2.2 67.6

Samauma 5°31'39.36"S 67°38'4.09"W 0.107 39 0.7 105 0.0697 8747 3302.8 2583.5 32 48 9.6 2.98 1.62 2.4 85.8

Santa_clara 5°57'59.40"S 67°49'45.58"W 0.051 32.9 0.5 200 0 1452 1918.2 1854.4 28 50 14.1 8.3 0.44 3.5 17.6

Santa_fe 4°38'18.60"S 66°38'17.61"W NA NA NA 401 0 2766 2700 0 NA 30 NA 4 0.522 2.5 29.3

Santo_antonio 5°33'9.06"S 67°33'33.43"W NA NA NA 53 0.4074 4664 2443.8 413.2 NA 28 NA 1.76 0.438 3.1 4.92

São_sebastiao 6° 3'33.20"S 67°52'39.11"W 0.107 29.8 5.3 344 53.1 2375 500 0 20 53 14.7 7.38 1.55 4.9 21.4

seco 5° 3'44.13"S 67° 2'52.73"W 0.144 29.8 0.5 83.4 26.7 6972.9

1820 1664.3 32 41 10 6.48 0.736 3.8 13.6

Tabuleiro 5°31'23.30"S 67°40'35.58"W 0.061 33.4 7.2 15.8 38.5 5973.9

0 2357.2 30 40 9.6 15.9 0.083 2.2 7.32

Tangara 5°45'12.14"S 67°43'59.50"W 0.051 38.1 5.6 37 0.49 9098 5111.3 2245.3 80 74 30 17.27 0.61 1.3 29.8

Toare 6° 2'8.93"S 67°46'23.90"W 0.054 31.4 0.9 9 41 1989 6767.4 5972.9 95 38 13.4 4.83 1.47 2.1 84.6

Tocos 5°31'39.80"S 67°41'23.79"W 0.139 34 0.6 6 0 1120 1850 2787.9 100 37 6.5 0.6 1.058 2.5 3.19

Torcate 5°43'50.77"S 67°46'34.38"W 0.121 37.9 0.4 108 33.3 4783 81.7 256 28 93 4.3 2.56 0.101 1.5 46.7

Vera 5°23'13.60"S 67°26'30.93"W 0.164 42.6 2.9 8.3 0.06 3481.9

3460 2494.9 53 23 11.5 4.8 0.76 2.5 24.9

viana 5° 4'19.94"S 67° 3'2.47"W 0.137 33.1 0.5 18.3 0.54 2636.1

2960 2116.2 33 41 6.6 3.28 0.101 1.8 21.1

102

Capítulo 4

Responses of waterbirds to fisheries management

on amazon floodplains

Hugo costa

Hugo Costa

Capítulo 4

103

Responses of waterbirds to fisheries management on amazon floodplains*

João Vitor Campos-Silva, Carlos A. Peres, Carlos R. Fonseca

*Manuscrito a ser submetido à Ecological Applications

Keywords: Birds conservation, piscivorous, egretts, herons, raptors

Abstract

Waterbirds comprise a conspicuous assemblage of species living and depending of the wetlands. The Amazon floodplains are a remarkable example of wetland representing 14% of the Amazon basin, the world’s largest basin. Fisheries management are spread for whole Amazon, and can be an important factor driving the abundance of waterbirds. This study investigates the effects of fisheries management on waterbirds abundance across 31 lakes spread on amazon floodplains. We found that population size of a target apex predator species from fisheries management has a strong negative influence on piscivorous waterbirds guilds. Others important variables were water transparency, depth, area, distance to river channel and macrophyte coverage. For non-piscivorous the fisheries management have no effect, and the important factors were only macrophyte coverage, area and landscape richness. Our findings help us to improve the understanding about the drivers of waterbird abundance in the Amazon floodplains, especially some piscivorous groups, which were strongly influenced by the fisheries activities.

1. Introduction

The wetlands play a fundamental role in a variety of key ecosystem services,

once they strongly influence climate regulation, nutrients recycling and hydrological

cycles (Millennium Ecosystem Assessment, 2005). They are also very rich in species

diversity and endemism (Revenga et al. 2005), hosting one third of all vertebrate

species worldwide (Dudgeom et al. 2006). The waterbirds comprise a conspicuous

assemblage of species living and depending on the wetlands. However, over 50% of

the world’s wetlands were lost in the past century (Fraser and Keddy, 2005), which

has negatively affected waterbirds. For this reason, the maintenance of these aquatic

environments is a central topic in their conservation (Erwin 2002; Ma et al. 2010).

Capítulo 4

104

The Amazon floodplains are a remarkable example of wetland representing

14% of the Amazon basin (Hess et al. 2015), the world’s largest basin. A very peculiar

characteristic of the Amazon floodplain is the yearly flood pulse, which is the strongest

force driving biological communities, source of productivity and landscape features

(Junk 1989, 1997). The flood pulse works as a reset phenomenon, homogenizing the

characteristics of water bodies during the flooded period (Campos-Silva et al in press

1). However, in the dry season, the waterbodies become discrete units, with different

patterns of isolation, productivity, resources availability, prey and predator abundance,

fisheries pressure, and others (Junk, 1997; Robinson et al. 2002; Thomas et al. 2006;

Campos-Silva et al. in press). This high environmental heterogeneity provides habitats

for aquatic bird species of different ecological needs.

The waterbirds are highly mobile organisms able to explore a large area and

different habitats in little time (Kameda et al., 2006; Bauer & Hoye, 2014; Kloskowski

& Trembaczowski, 2015). The decision of where to forage will depend on several

variables. This leads us to a very interesting question: what are the drivers of waterbird

assemblages in complex environments, such as the Amazon floodplains? Ecological

assessments from several studies showed that the richness and community

composition of waterbirds are influenced by local and landscape-scale variables. In

sum, lake morphometry, lake depth, physicochemical attributes, water type and habitat

diversity are important determinants of bird community (Ntiamoa-Baidu et al. 1998;

Cintra et al., 2007a, 2007b, 2015). However, the environmental factors influencing

habitat use will be dependent of the waterbird guild (Tavares et al., 2015), therefore

the direction and size of the effects can be different, according to the behavior and

ecological requirements of each species or guild.

Capítulo 4

105

Fisheries activities are spread through the Amazon, ensuring the livelihoods of

millions of people (Castello, 2009) and also having a great potential as predictor of

waterbird assemblages, due its magnitude. Due to the increase in large-scale

commercial fisheries pressure that has occurred in the Brazilian Amazon, community-

based management was established in many places, where fisheries are controlled by

local populations, avoiding overexploitation of important fish species in lakes nearby

the human settlements (Mcgrath et al., 1993). Beside the fish stock defense, the

protection phenomenon benefits other unintended groups which often use the lake,

such as freshwater turtles and others species of fish (Silvano et al., 2008; Miorando et

al., 2013; Arantes & Freitas, 2016). A notable example of community-based

management on Amazon floodplains is the arapaima exploitation, where local

communities are recovering the populations of the Arapaima gigas (Schinz, 1822), the

largest scaled freshwater fish of the earth (Castello, 2009; Campos-silva & Peres in

press 2). Although never evaluated, fisheries management can be an important factor

driving the abundance of waterbirds in Amazon floodplains. Nonetheless, the effects

of fisheries can be controversial, because several mechanisms are possible: The high

abundance of apex predator, for instance, can increase the pressure on prey

availability, promoting a negative response on waterbirds. On the other hand, the

protection can increase prey availability, affecting positively piscivorous birds. Yet the

protection of waterbodies can positively affect the waterbirds ensuring safe habitat,

once many species are hunted for local subsistence (Gonzales, 1999). All these

possibilities are important to increase the ecological understanding of these groups,

providing subsidies to strengthen conservation frameworks as a whole

Here we aim to quantify the relative effect size of fisheries management on

different waterbird guild abundance, considering the influence of local scale and

Capítulo 4

106

landscape heterogeneity. We sampled 31 lakes immersed in two contiguous protected

areas in the Jurua River. The local scale and landscape variables were represented

by chlorophyll a, macrophyte coverage, water transparency, lake depth, lake area,

shape, landscape heterogeneity, distance to main river and distance to human

settlements. The fisheries management provide lakes with different levels of protection

and arapaima population size (Campos-Silva & Peres, in press 2), which can be a

potential competitor with piscivorous birds. We hypothesize that besides the known

important variables for each guild, fisheries management will be a strong predictor of

piscivorous water birds species abundance. We expect large population size of

arapaima will lead a negative response on piscivorous birds, probably due the

competition. For non-piscivorous species, such as vegetation gleaners and ducks, we

expected no effects of fisheries management.

2. Materials and Methods

Study site

This study was conducted at 31 floodplain lakes within two contiguous

sustainable-use protected areas along the Juruá River, a very productivity tributary of

the Amazon River localized in the upper-central portion of the Amazon basin (Fig. 1).

The floodplain of the Juruá is under a drastic flood pulse, which often exceeds 10 m in

amplitude (Hawes & Peres, 2016). The wet and dry seasons represent periods of high

(January – June) and low water levels (August – November). There are mainly two

types of lakes spread into landscape along the Jurua river basin, oxbow lakes - formed

through complex process of meanders-cut (Stølum, 1996), and ria lakes - former,

deeply incised river systems, usually nearby upland forest (Bertani et al., 2015). The

average depth of the lakes is around: 11.7 (± 5.4) meters at the high water period and

Capítulo 4

107

4.8 (± 3.4) meters in the low water period. Due the high productivity, Juruá River has

a strong importance as a fish supplier in the Amazon region (Batista & Petrere Jr,

2003).

Figure 1. Distribution of 31 floodplain lakes sampled. White circles indicate lakes. Dark-red lines show the boundaries of two contiguous sustainable-use protected areas, which amount to a combined area of 886,176 ha. The detailed figure on bottom right corner show an oxbow lake, and yellow lines represent the sampled transects.

During the low water, lakes become discrete units immersed into the

floodplains, providing an attractive ground for fishery. This area hosts a huge example

of fisheries management, which have been recovering the population of Arapaima

gigas (Schinz, 1822), a target species overexploited in many places (Castello, 2009).

This activity often stablishes different levels of access to the lakes: (1) Open-access

lakes contain free-for-all resource pools and remain available for commercial fishing

boats; (2) Subsistence-use lakes show a medium level of protection, once are

designed to supply local subsistence needs from the resident community responsible

for guarding that lake; and (3) Protected lakes are managed by local communities

primarily as a stock recovery site and exclude both commercial and subsistence

Capítulo 4

108

fishermen. Some protected lakes are managed one time per year, where the arapaima

is caught according with a quota allowed by the government. While populations of

arapaima are scarce or absent in open access lakes due to overexploitation, they show

impressive population size in protected lakes with an average up to 300 individuals per

lake (Campos-Silva & Peres in press 2).

Waterbirds survey

This work was conducted into a participatory perspective. Participatory

monitoring systems have been used successfully in developing countries, where

investments in research are scarce (Vieira et al., 2015). Scientific skills and local

knowledge can be integrated, generating a useful tool for biodiversity monitoring

(Townsend et al., 2005; Marinelli et al., 2007; Constantino et al., 2008). We choose

the participatory approach to cover a large area with repeated sampling. To do it, we

trained 10 experienced hunters, from 10 rural communities. As the motivation of

monitors can ensure the success of the activity (Singh et al., 2014), we provided an

economical reward for each monitor for each sampling event.

We sampled 31 lakes, three times each one, during the dry season, where the

abundance of waterbirds species is higher. We stablished between four and ten

transects in each lake (Fig. 1), and bird surveys were conducted between 6.30–9.00

h. Each transect represent about 400 meters of the lake perimeter, which was

sampled quietly by a canoe in a constant speed (~1 km/h). The number of transect

varies between 4 and 10, according with the lake area. Every individual present in the

transect were counted.

To avoid sampling bias, the observers were trained in exactly same way. We

also compare the perception of the monitors with a specialist ornithologist in a paired

sampling test. The results show no difference in the estimates of richness of species

Capítulo 4

109

(t=0.37; p=0.7) and abundance of individuals (t=1.6 p=0.1). Moreover, we selected a

group of 25 remarkable species, reducing therefore, the risk of false absences.

Waterbirds guilds

We grouped the focal species according with their foraging behaviour, following

Blondel (2003). The guilds were represented by diving species, fishing species, large

waiding birds, small waiding birds, king fishers, ducks and vegetation gleaners. This

approach was successfully used in Tavares (2015). The species from each guild can

be found on table S1 of supplementary material.

Response and explanatory variables

We used as response variable the number of individuals per kilometre, which

represent the f individuals counted into the transects. The response variable was log

transformed. Predictors of waterbirds abundance were Lake management category:

open-access, subsistence, or protected; Distance to human settlements: the true

nonlinear path distance on foot used by local users, which was measured using a GPS;

Distance to the main river: the Euclidean distance between the lake entrance and the

main Juruá river channel; Landscape richness: number of water bodies in a buffer with

5 km radius; Lake area: measured in ha; Lake depth: maximum lake depth; Water

transparency: estimated using a Secchi disk; Macrophyte coverage: initially mapped

in the field and then independently measured using 5-m resolution RapidEye© images,

which we purchased for the entire study area; Primary productivity: phytoplankton

biomass estimated by chlorophyll-a measurements using high-performance liquid

chromatography (HPLC); Arapaima population size: Number of adult arapaima

counted according Castello (2004); Prey availability: Abundance of prey was

measured using data from fisheries made in the lakes. The fisheries were conducted

Capítulo 4

110

by a local residents using one sets of four monofilament gillnets. Each gillnet had a

length of 50 m, with heights around 2m. The mesh sizes had 15,25,35 and 50 mm

between opposite knots. Fish sampling were also conducted during the dry season.

The complete dataset is available on Table S3 of supplementary information.

Statistical analysis

To understand the effects of fisheries management and environmental variables

on waterbirds abundance variation, we performed linear models (LMs) within the full

set of 31 lakes. Foremost, we got the total abundance of piscivorous species and

modeled all possible models combination, from the constant model (without predictors)

to the full model, where piscivorous abundance ~ management class+ distance to

human settlements + distance to main river + landscape richness+ lake area + lake

depth + water transparency + macrophyte coverage + primary productivity + arapaima

population size + prey availability. Models were fit with lmer in the lme4 package and

every model combination examined with the MuMIn package (Barton, 2009) within the

R platform (R Development Core Team 2015). Secondly, we did the same procedures

for all guilds identified.

Posteriorly, we selected the most parsimonious model with the lowest Akaike

Information Criterion corrected for small sample size (AICc). AICc is calculated as

the difference between each model’s AICc and the lowest AICc, with a AICc < 2

interpreted as substantial support that the model belongs to the set of best models.

Akaike weights give the probability that a model is the best model, given the data and

the set of candidate models (Burnham & Anderson, 2002). Finally, we fitted a model

average, considering the beta average of all standardized variables into the

parsimonious models. Thus, we compared the relative effect size of all variables. All

assumptions were respected, according with Zuur et al. (2010).

Capítulo 4

111

3. Results

The piscivorous species represented 75.7% of all 9,660 individuals from 33

species sampled. Analysing the piscivorous group as a whole, we found that the water

transparency was the strongest predictor (β=0.42 ± 0.1) of species abundance,

followed by arapaima population size (β= - 0.31 ± 0.1) and depth (β= - 0.1 ± 0.02; Fig.

2). The model average and estimates can be found on table S3 of supplementary

material.

Figure 2. Schematic figures showing the effect size of the three significative variables on piscivorous total abundance. The red and blue arrow represent a negative and positive effect, respectively. The size of arrow also indicates the magnitude of the effect size.

Looking to the guilds the results vary, as expected (Fig. 3). For diving birds and

large waiding birds the arapaima population size was the strongest predictor, leading

a negative effect on abundance these guilds. Water transparency was the second most

important variable, influencing positively both groups. Large waiding birds are also

influenced positively by the distance of main river channel, and exhibit a higher

Capítulo 4

112

abundance in lakes far from main river channel. Fishing birds responded only to water

transparency, and all others variables had no effects. Small waiding birds exhibited

responses only to the macrophyte coverage. Finally, the king fisher`s followed the

pattern for water transparency, but were also influenced negatively by lake area, lake

depth and macrophyte coverage.

Figure 3. Coefficient estimates (± 95% confidence intervals) showing the magnitude and direction of effects of different variables on piscivorous guilds abundance. Explanatory variables were standardized prior to analyses.

Capítulo 4

113

The non-piscivorous species, represented by ducks and vegetation gleaners,

does not show responses for fisheries managements, as expected (Fig. 4). Vegetation

gleaners were positively influenced by macrophyte coverage, and negatively by area,

while the ducks responded only negatively to landscape richness. All responses can

be checked on figure 1 of supplementary material.

Figure 4. Coefficient estimates (± 95% confidence intervals) showing the magnitude and direction of effects of different variables on non-piscivorous guilds abundance. Explanatory variables were standardized prior to analyses.

4. Discussion

Our findings help us to improve the understanding about the drivers of waterbird

abundance in the Amazon floodplains, especially some piscivorous groups, which

were strongly influenced by the fisheries activities. During the dry season the water

level falls and the lakes become discrete units in the landscape, allowing the action of

several mechanisms which induce changes on primary productivity, availability of prey

and predators and heterogeneity of habitat (Junk, 1989; Campos-Silva et al. in press

Capítulo 4

114

1). Thereby, the responses from each guild of bird vary according to their behavior and

ecological need.

The competition between waterbirds and fishermen could be unclear because

of the difference in composition of harvested species or size of individuals consumed

(Ydelis & Kontautas, 2008). However, there is several ways that fisheries can affect

piscivorous birds. We highlighted the negative influence of fisheries management on

abundance of piscivorous birds through arapaima population size, a strong potential

competitor. Large population of arapaima leads a negative influence on piscivorous

abundance in general, but was the stronger predictor for the abundance of diving birds

and large waiding birds. In fact, due the success of the community-based

managements, population size of arapaima is very large into protected lakes, often

exceeding 1,000 individuals (Campos-Silva & Peres in press 2). As this fish is an apex

predator, large populations can represent a strong competition with piscivorous

waterbirds guilds during the foraging activities, once they often eat a large amount of

fish (Ogden et al. 1976; Fenech et al. 2004).

Piscivorous guilds depends of visual signals to detect prey (Keppeler et al.,

2006). So, the lake selection involves variables which allow prey detectability and the

possibility to catch them (Newbrey et al., 2005). Water transparency has a positive

effect for all piscivorous guilds, except small waiding birds. Fishing species, for

instance, was only influenced by water transparency. We should consider that this guild

can fly over many lakes per day, once they are adapted for long-haul flights

(Strandberg & Alerstam, 2007; Davenport et al., 2016). Thus, they can cover a large

amount of habitat and foraging in places with a high water transparency, which allow

the prey detectability.

Macrophytes coverage shows an ambiguous effect on waterbirds. The

Capítulo 4

115

presence of large banks of macrophytes can hamper the fisheries, once it provides

shelter and food for many species of fish (Casatti et al., 2003). This negative effect

was evidenced by king fishers. However, for small waiding birds the macrophytes

coverage has a positive effect. In fact, small herons, egretts and storks can take

advantage of large banks of floating vegetation, catching the prey that uses the

vegetation as a refuge. The same occurs for vegetation gleaners, a non-piscivorous

group, adapted to use the macrophytes banks for breeding, feeding, and predators

avoiding (Osborne & Bourne, 1977).

Others variables were important predictors of piscivorous birds, such as depth,

which can influence the catchability and prey availability, because shallow lakes may

provide refuge for fishes vulnerable to predation (Paterson and Whitfield, 2000). Large

waiding birds also prefer lakes distant from the main river channel. Probably, it is

related with water level stability, once the water dynamics should be more intense

nearby the main river.

For non-piscivorous guilds the fisheries management was not important, as

expected. For ducks the only important variable was the landscape richness, which

induces a negative effect on their abundance. Although the known importance of

landscape richness on waterbirds community’s parameters (Cintra, 2015), our results

show a different understanding, which can occur due the changes on habitat

availability. High concentrations of waterbodies around the sampled lake, for instance,

means a high concentration of habitat available, which can reduce the abundance of

a determined species into the sampled lake. For vegetation gleaners, beside the

macrophytes coverage, the lake area also has a negative effect on their abundance, it

means that in smaller lakes occurs a densification of these species over the

macrophytes patches available.

Capítulo 4

116

The conservation of wetlands, specially Amazon floodplains, has become a

global aim, once the threats hovering over these environments increased in large

scales (Castello & Macedo, 2015). The understanding of habitat use by waterbirds is

fundamental to establish concrete conservation plans, which can be useful tools to

ensure the conservation of the system as a whole. Our results highlight the importance

to include the fisheries management as a factor influencing the piscivorous guilds.

However, although the arapaima population size leads a negative response of

piscivorous species, the arapaima management does not seem a concern threat,

because the management schemes predicts different levels of lakes protection,

ensuring places where the apex arapaima is virtually non-existent (Campos-Silva &

Peres in press 2), thus these arrangements can provide a compensatory mechanism,

which can also contribute to the waterbirds conservation.

5. References

Arantes, M.L., Freitas, C.E.C., 2016. Effects of fisheries zoning and environmental

characteristics on populations parameters of the tambaqui (Colossoma macropomum)

in managed floodplain lakes in the central Amazon. Fisheries. Manag. Ecol., 23, 133-

143.

Batista, V. S., Petrere Jr., M., 2003. Characterization of the commercial fish production

landed at Manaus, Amazonas State, Brazil. Acta Amaz., 33, 53-66.

Bauer, S., Hoye, B. J., 2014. Migratory animals couple biodiversity and ecosystem

functioning worldwide. Science, 344, 1242552.

Bertani, T. C., Rosseti, D. F., Hayakawa, E. H., Cohen, M. C. L., 2015. Understanding

Amazonian fluvial rias based on a late Pleistocene-Holocene analog, Earth Surf.

Process. Landf., 40, 285-292.

Blondel, J., 2003. Guilds or functional groups: does it matter? Oikos, 100, 223–231.

Burnham, K. P., Anderson, D. R., 2002. Model selection and multimodel inference: a

practical information‐theoretic approach. New York, NY: Springer.

Campos-Silva, J. V., Peres, C. A., Amaral, J. H., Sarmento, H. Beside phosphorus and

Capítulo 4

117

light availability, fisheries drive primary productivity in Amazon floodplains lakes. In

press 1.

Campos-Silva, J. V., Peres, C. A. Community-based management induces rapid

recovery of a high-value tropical freshwater fisheries. In press 2.

Castello, L., 2004. A method to count pirarucu Arapaima gigas: fishers, assessment,

and management. North Am. J. Fish. Mana., 24, 379–389.

Castello, L., Viana,, J. P., Watkins, G., Pinedo-Vasquez,, M. Luzadis, V. A., 2009.

Lessons from Integrating Fishers of Arapaima in Small-Scale Fisheries

management at the Mamiraua Reserve, Amazon. Environ. Manag., 43, 197-209.

Castello, L., Macedo, M. N., 2015. Large-scale degradation of Amazonian freshwater

ecosystems, Glob. Change. Biol., 22,990-1007.

Cintra, R., Sanaiotti, T., Cohn-Haft, M., 2007a. Composition and spatial distribution of

the Anavilhanas Archipelago bird community in the Brazilian Amazon. Biodivers.

Conserv., 16, 313–336.

Cintra, R., Santos, P. M. R. S., Leite, C.B., 2007b. Composition and structure of the

bird communities of seasonally flooded wetlands of western Brazilian Amazonia at high

water. Waterbirds, 30, 521–540.

Cintra, R., 2015. Spatial distribution and composition of waterbirds in relation to

limnological conditions in the Amazon basin. Hydrobiologia, 747, 235-252.

Constantino, P.D.A.L., Carlos H.S.A., Ramalho, E.E., Rostant, L., Marinelli, C.E.,

Teles, D., Valsecchi, J., 2012. Empowering local people through community-based

resource monitoring: a comparison of Brazil and Namibia. Ecol. Soc., 17, 22.

Davenport, L. C., Goodenough, K. S., Haugaasen, T., 2016. Birds of Two Oceans?

TransAndean and Divergent Migration of Black Skimmers (Rynchops niger

cinerascens) from the Peruvian Amazon. PLoS ONE, 11.

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J.,

Lévêque, C. et al., 2006. Freshwater biodiversity: importance, threats, status and

conservation challenges. Biol. Rev., 81, 163-182.

Erwin, R. M., 2002. Integrated management of waterbirds: beyond the conventional.

Waterbirds, 25(suppl. 2), 5–12.

Fenech, A.S., Lochmann, E, L., Radomski, A. A., 2004. Seasonal Diets of Male and

Female Double-crested Cormorants from an Oxbow Lake in Arkansas, USA,

Waterbirds, 27, 170-176.

Fraser, L. H., Keddy, P.A., 2005. The world’s largest wetlands: Ecology and

Capítulo 4

118

conservation. Cambridge University Press, Cambridge.

Gonzalez, J. A., 1999. Effects of Harvesting of Waterbirds and Their Eggs by Native

People in the Northeastern Peruvian Amazon. Waterbirds, 22, 217-224.

Hawes, J. E., Peres, C. A., 2016. Patterns of Plant Phenology in Amazonia Seasonally

Flooded and Unflooded Forests. Biotropica, doi:10.1111/btp.12315.

Hess, L. L., Melack, J. M., Affonso, A. G., Barbosa, C., Gastil-Buhl, M., Novo, E. M. ,

2015. Wetlands of Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-season

Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands, 35, 745-

756.

Ma, Z., Cai, Y., Li, B., Chen, J., 2010. Managing Wetland Habitats for Waterbirds: An

International Perspective. Wetlands, 30, 15–27.

Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being. Island

Press, Washington, DC, USA.

Newbrey, J. L., Bozek, M. A., Niemuth, N.D., 2005. Effects of lake characteristics and

human disturbance on the presence of piscivorous birds in northern Wisconsin, USA.

Waterbirds, 28,478-486.

Junk. W. J., Bayley, P. B., Sparks, R. E., 1989. ‘The flood pulse concept in river-

floodplain systems’, Special Publication of Canadian Journal of Fisheries and Aquatic

Sciences, 106, 110-127.

Junk, W. J., 1997. General aspects of floodplain ecology with special reference to

Amazonian floodplains. In: JUNK, W. J. (ed.): The Central Amazon Floodplain: 3–20.

Ecological Studies, Springer, Berlin.

Kameda, K., Koba, Hobara, S., Osono, T., Terai, M., 2006. Pattern of natural 15 N

abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen.

Hydrobiologia, 567, 69–86.

Keppeler, F.W., Cruz, D.A., Dalponti, G., Mormul, R.P., 2016. The role of deterministic

factors and stochasticity on the trophic interactions between birds and fish in temporary

floodplain ponds. Hydrobiologia, 773, 225–240.

Kloskowski, J., Trembaczowski, A., 2015. Fish reduce habitat coupling by a waterbird:

evidence from combined stable isotope and conventional dietary approaches. Aquatic.

Ecol., 49, 21–31.

Marinelli, C.E., Carlos, H.S.A. Batista, R.F., Rohe, F., Waldez, F., Kasecker, T.P., Endo,

W., et al. 2007. Programa de Monitoramento da Biodiversidade e do Uso de Recursos

Naturais – ProBUC. Revista Áreas Protegidas da Amazônia, 1, 73-78.

Capítulo 4

119

Miorando, P.S, Rebelo, G.H., Pignati, M.T., Pezzuti, C.B., 2013. Effects of Community-

Based Management on Amazon River Turtles: A Case Study of Podocnemis

sextuberculata in the Lower Amazon Floodplain, Pará, Brazil. Chelonian Conser. Biol.,

12,143-150.

Ntiamoa-Baidu, Y., Piersma, T., Wiersma, P., Bttley, M, Gordon, C., 1998. Water depth

selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana.

IBIS, 140, 89-103.

Ogden, J. C, Kushlan, J. A., Tilmant, J.T., 1976. Prey Selectivity by the Wood Stork.

Condor, 78, 324-330.

Osborne, D. R., Bourne, G. R., 1977. Breeding, Behavior and Food Habits of the

Wattled Jacana. Condor, 79, 98-105.

Paterson, A. W., Whitfield, A. K., 2000. Do Shallow-water habitats function as Refugia

for juvenile fishes? Estuar. Coast. Shelf S., 51, 359-364.

Silvano, R. A. M., Ramires, M., Zuanon, J., 2008. Effects of fisheries management on

fish communities in the floodplain lakes of a Brazilian Reserve. Ecol. Freshw. Fish, 4,

1-11.

Singh, N. J., Danell, K., Edenius, L., Ericsson, G., 2014. Tackling the motivation to

monitor: success and sustainability of a participatory monitoring program. Ecol. Soc.,

19, 7.

Strandberg, R., Alerstam, T., 2007. The strategy of fly-and-forage migration, illustrated

for the osprey (Pandion haliaetus). Behav. Ecol. Sociobiol., 61, 1865-1875.

Revenga, C., Campbell, I., Abell, R., Pd, V., Bryer, M., 2005. Prospects for monitoring

freshwater ecosystems towards the 2010 targets. Phil. Trans. R. Soc. B, 360, 397–

413.

Robinson, C. T., Tockner, K., Ward, J. V., 2002. The fauna of dynamic riverine

landscapes. Freshwater Biol, 47, 661-667.

Stølum, H. H., 1996. River Meandering as a Self-Organization Process. Science, 271,

1710-1713.

Tavares, D.C., Guadagnin,D. L., De Moura, F. J., Siciliano, S., Merico, A., 2015.

Environmental and anthropogenic factors structuring waterbird habitats of tropical

coastal lagoons: Implications for management. Biol. Conserv., 186, 12–21.

Thomaz, S. M., Bini, L. M., Bozelli, R. L., 2006. Floods increase similarity among

aquatic habitats in river-floodplain systems. Hydrobiologia, 579, 1-13.

Townsend, W. R., A. R. Borman, E. Yiyoguaje, L. Mendua., 2005. Cofan Indians

Capítulo 4

120

monitoring of freshwater turtles in Zabalo, Ecuador. Biodivers. Conserv., 14, 2743-

2755.

Vieira, M. A. R. M., Von Muhlen, E. M., Sheppard, G. H., 2015. Participatory Monitoring

and Management of Subsistence Hunting in the Piagaçu-Purus Reserve, Brazil.

Conservat. Soc., 13, 254-264.

Casatti, L., Mendes, H. F., Ferreira, K. M., 2003. Aquatic macrophytes as feeding sites

for small fishes in the Rosana Reservoir, Paranapanema River, Southeasrtern, Brazil,

Braz. J. Biol., 63, 213-222.

Ydelis, A., Kontautas A., 2008. Piscivorous birds as top predators and fishery

competitors in the lagoon ecosystem. Hydrobiologia, 611, 45–54

Zuur, A. F., Ieno, E. N., Elphick, C. S., 2010. A protocol for data exploration to avoid

common statistical problems. Methods Ecol, Evol., 1, 3-14.

Capítulo 4

121

Supplementary Information

Supplementary table

S1. Guilds and species sampled in this study

Guild Species

Diving birds Aninhga anhinga

Phalacrocorax brasilianus

Large waiding birds Ardea alba

Ardea cocoi

Mycteria americana

Tigrisoma lineatum

small waiding birds Egretta thula

Butorides striata

Pilherodius pileatus

Cochlearius cochlearius

fishing birds Pandion haliaetus

Busarellus nigricolis

Buteogallus urubitinga

Rynchops niger

Phaetusa simplex

Sternula superciliaris

King fishers Megaceryle torquata

Chloroceryle amazona

Chloroceryle americana

Ducks Cairina moschata

Dendrocigna autumnalis

Neochen jubata

Vegetation gleaners Jacana jacana

Anhima cornuta

Aramus guarauna

Capítulo 4

122

S2. Dataset with 31 lakes. MC= Macrophyte coverage; MNG= Management class; PA: Prey availability; LA: ake area; DR: Distance to main river; DC: Distance to nearest community; LR: Landscape richness; ARP: population size of arapaima; CHL: chlorophyll a; WT: Water transparency; LD: Lake depth; VG: Vegetation gleaners; D: Ducks; DB: Diving birds; FB: Fishing birds; LWB: Large waiding birds; SWB: Small waiding birds and KF: King fishers.

Lake MC MNG PA LA DR DC LR ARP CHL WT LD VG D DB FB LWB SWB KF

preto 0 unp 19.8 32.7 947.7 1035 4 1 12.28766 24 2.7 0 0 18 24 6 3 18

tocos 1 prot 44 6 2787.9 1850 4 1 3.187492 37 0.6 21 26 24 28 23 7 9

seco 0.71 unp 21.3 83.4 1664.3 1820 8 2 13.597045 71 6.5 62 26 152 190 82 58 21

janiceto 0 prot 32 6 2279.7 2447 5 2 21.60312 51 4.5 52 13 15 107 63 55 51

santo_antonio 1 unp 35.1 53 413.2 2443.8 3 2 4.915064 28 1.7 62 27 33 45 20 21 24

viana 1 unp 14.3 18.3 2116.2 2960 5 2 21.095844 41 3.3 50 8 9 63 26 19 16

redondo 0.8 unp 36 82.4 589.3 1047 4 2 20.657868 15 1.8 13 16 12 5 14 4 2

tabuleiro 0.43 prot 60.1 15.8 2357.2 0 5 2 7.3227 40 15.9 20 0 9 27 18 7 18

vera 0 prot 15.2 8.3 2494.9 3460 3 2 24.88794 23 4.8 14 3 11 10 14 1 7

Acurau 0.37 prot 18.7 42 3435 3736.8 6 2 127.4281483 8 2 5 13 6 33 32 17 16

sao_sebastiao 0.8 unp 18.1 344 0 500 6 3 21.441035 53 7.4 64 16 97 147 61 37 26

recreio 0.33 prot 30 25.6 7545.4 2000 5 3 24.200484 18 1.8 30 17 19 43 33 17 24

andreza 0.43 unp 43.3 90 370.8 2962.5 7 3 34.537888 73 3.7 27 3 17 22 13 6 8

santa_clara 0.6 unp 10.7 200 1854.4 1918.2 2 4 17.56524 69 8.3 106 40 139 60 68 24 21

onca 0.5 prot 33.2 11 608.9 1393.6 5 4 20.34032 30 1.3 67 17 32 125 62 71 42

maixmiano 0.75 unp 49 51.4 620 5039 5 4 73.469088 70 3.8 34 0 2 37 12 8 16

sacado_ere 1 unp 53.8 306 0 3590 3 6 40.103525 54 2.7 24 85 42 41 39 2 10

baliera 0 unp 19.4 21 2380.9 3406.9 6 6 24.060652 20 7.7 7 3 5 12 12 5 9

tangara 0.1 prot 33.6 37 2245.3 5111.3 5 8 29.80054 74 17.3 23 16 10 50 36 15 22

aruana 0 prot 16.2 16 3743.5 3491.4 2 10 46.49106 33 6.6 12 8 4 26 27 14 20

fortuna 0 prot 51.4 18.9 4100 0 4 20 11.92268 37 5.5 20 16 23 67 27 14 34

Capítulo 4

123

itabaiana 0 prot 33.4 28 3581.3 5747.1 4 20 20.603044 50 12.5 0 8 3 50 26 4 31

toare 0 prot 16.7 9 5972.9 6767.4 5 21 84.603596 38 4.8 1 11 12 46 29 16 29

dona_maria 0.43 prot 30 101 5549.4 137.2 3 32 8.785084 38 3.4 48 23 25 92 72 18 39

branco 0.4 prot 47.7 15 2369.8 2274.2 5 51 15.107708 27 1.2 75 15 12 77 17 81 42

torcate 1 prot 30 108 256 81.7 4 67 46.725756 93 2.6 26 4 6 34 17 23 9

samauma 1 prot 40 105 2583.5 3302.8 4 100 85.779848 58 2.9 26 14 15 60 42 22 21

mandioca 1 prot 7.5 200 752.2 1443.8 3 259 84.951328 50 4.1 23 23 6 26 12 23 10

sacado_jiburi 0 prot 52.1 412 0 1689.5 4 357 67.57828 75 8.6 3 16 20 44 16 13 28

manarian 0 prot 30 293 2342.2 3453.5 6 537 63.34328 53 6.6 2 0 14 22 22 14 13

marari 0 prot 5.8 269 1100 1319 5 676 55.346368 51 4.1 0 21 9 68 22 8 30

Capítulo 4

124

S3. Parameters of the Linear models for abundance of total piscivorous as function of fisheries management and others variables on 31 amazon floodplains lakes. Significant variables are marked in bold.

Model average variables β estimates

IC lower IC upper z value p value

Water transparency 0.42164 0.145464 0.69781 2.992 0.00277 Arapaima population size -0.31329 -0.60335 -0.02324 0.14799 0.03426 Lake depth -0.0733 -0.12892 -0.01768 0.02838 0.0098 Distance to main river channel 0.20143 -0.05285 0.45571 0.12974 0.12052 Management class -0.39245 -1.01163 0.22673 1.242 0.21414 Macrophyte coverage -0.69427 -1.46917 0.08062 1.756 0.07908 Prey availability -0.11647 -0.33154 0.09859 1.061 0.28849 Distance to human settlements -0.10672 -0.32883 0.11538 0.942 0.34631 Chlorophyll -0.10941 -0.37185 0.15303 0.817 0.41389 Lake area -0.14521 -0.47262 0.18218 0.869 0.38467 Landscape richness -0.11004 -1.20046 0.98036 0.198 0.8432

Capítulo 4

125

Supplementary Figures Figure 1. Responses of waterbirds guilds abundances to significant explanatory variables.

126

Capítulo 5

Unintended multi-species co-benefits of community-

based fluvial beach protection in lowland Amazonia

Capítulo 5

127

Unintended multi-species co-benefits of community-based fluvial beach

protection in lowland Amazonia*

João V. Campos-Silva, Carlos A. Peres, Joseph E. Hawes & Paulo C. M. Andrade

*Manuscrito a ser submetido à PNAS

Keywords: community conservation, freshwater turtles, management, sustainability

Abstract

Tropical floodplains arguably represent the most threatened freshwater ecosystems

worldwide, and various strategies have been proposed for their conservation. Despite the

increasing threats from large dams, floodplain agriculture, overexploitation of aquatic resources

and global climate change, these environments remain relatively neglected, particularly in the

Amazon. Building a solid conservation programme to address floodplains system is therefore

an intractable but pressing challenge. The protection of fluvial sand beaches, focusing on the

conservation of South American river turtles, effectively represents a successful programme in

reverting population trajectories for overexploited aquatic species. Furthermore, the effects of

beach protection can have positive ripple effects for many other taxa that also use fluvial

beaches and adjacent habitats. Here, we analyzed 34 years of Giant South American Turtle

(Podocnemis expansa) reproductive monitoring, through community-based beach protection,

along the Juruá River of western Brazilian Amazonia. The number of hatchlings released

increased 23 fold and the population recovery is confirmed across 41 human settlements. We

also implemented a multi-taxa approach in evaluating 14 pairs of protected and unprotected

beaches (N = 28) during the dry season of 2013. We sampled caimans, large catfish, other

aquatic megafauna (with sonar), migratory beach-nesting birds, resident birds, lizards and

invertebrates. We found a drastic effect of community-based protection for all taxa sampled.

Moreover, 99% of the P. expansa nests recorded on unprotected beaches were raided by

poachers, compared to just 2.1% on protected beaches. We therefore show that P. expansa

can act as a powerful umbrella species in protecting many other taxa, and that community-

based fluvial beach protection is an efficient conservation strategy that merits greater attention

Capítulo 5

128

from policy makers in Amazonian countries. However, this will require improving

socioeconomic conditions for "beach-guards" who enforce protection at their own risk, to

address the stark asymmetry existing between the ecological and social gains stemming from

this programme, and to ensure long-term sustainability.

1. Introduction

The Earth is immersed in a severe biodiversity crisis, with the highest extinction rates ever

recorded (Pereira et al. 2010; Barnosky et al. 2011). Tropical environments are often between

the cross and the sword, playing an emblematic role in this issue, since they host two thirds of

worldwide terrestrial biodiversity (Gardner et al. 2009), but are at the center of attention in terms

of biodiversity loss (Bradshaw et al. 2008). Several threats – such as deforestation,

overexploitation, pollution, climate change, and other human activities – affect tropical

ecosystems as a whole, and governments of tropical countries are not able to provide enough

support to preserve these habitats (Sala et al. 2010; Castelo et al. 2013; Castelo and Macedo

2015). Efficient strategies ensuring the conservation of tropical environments in harmony with

social needs are acutely necessary, and constitute the framework of major goals for humanity

in the new millennium (Sachs et al. 2009).

Protected areas are the most widespread conservation tools within tropical countries,

especially sustainable-use reserves – which have been created to try to consolidate the goals

of biodiversity conservation and social aspiration (Naughton-Treves et al. 2005; Dudley 2008).

However, a heated debate continues over the success of sustainable-use protected areas;

their effectiveness is widely dependent on the region, financial support, surveillance and

political context (Terborgh 1999; Peres and Terborgh 1995; Terborgh 2000; Naughton-Treves

et al. 2005; Bruner et al. 2010). Their implementation is still an arduous challenge in tropical

countries, where many reserves suffer from severe under-funding and effectively exist on paper

only (Bruner, et al. 2004).

Capítulo 5

129

On the other hand, the community-based conservation (CBC) approach – based on various

levels of governance and partnership – shows great potential to comply with both conservation

goals and social demands (Berkes 2007). Some initiatives have contributed to the

conservation of biodiversity and provided good conditions to improve local communities’

welfare (Castello et al. 2009; Cinner et al. 2012a, 2012b; Campos-Silva and Peres, in press),

particularly in socio-ecological systems – where social rules, ecological interactions, policy and

biophysical relations are dynamic and reciprocal (Liu et al. 2009; Ostrom 2009). Moreover, this

approach could become an effective strategy to decentralize resource management and

conservation, strengthen surveillance systems, and reduce costs (Somanatham et al. 2009),

especially in tropical countries, which suffer due to human resources scarcity, lack of financial

support and inoperability of weak institutions (Barret, 2001; Campos-Silva et al. 2015).

Although the CBC approach seems convincing, it is not a panacea, and there remains a

clear lack of outcome evaluation (Barret et al. 2001; Evans et al. 2011). Most evaluations have

been conducted in fisheries activities, and are often measured from a socio-economic

perspective that includes profit distribution, costs and benefits, impact on income and

livelihoods, and optimal rate of use of a specific resource (Pomeroy and Ahmed, 2006; Evans

et al., 2011; Napier et al., 2005). As a result, it is clear that this approach constitutes an

interesting strategy to strengthen the power of communities, to consolidate institutions, and to

enhance social capital, social learning and conflict solving (Berkes, 2009). However, there is

little empirical information on broad ecological effects, and deep impact assessment studies

are still critically necessary (Barret et al. 2001; Evans, et al. 2011; Gutierrez et al. 2011).

Often the main strategy of CBC involves habitat protection of one or a group of species, so

that the benefits from conservation can be extended to other taxa co-occurring in the same

environment as in the umbrella species concept (Roberge and Angelstam, 2004). This

potentially unintended result can strengthen the ecological outputs of CBC, while the

Capítulo 5

130

quantification of collateral ecological benefits could compose a very useful tool for outcome

evaluation.

Here we show a comprehensive example of a CBC project, which has been supporting

population recovery of the threatened giant South American turtle (Podocnemis expansa) for

34 years. The preset study helps to fill a strong gap on CBC ecological effects understanding.

We found that protected areas of sustainable use are not enough to protect the target species,

but the community participation is a very effective tool to avoid poachers. We also showed

precious positive effects on the protection of several unintended groups, such as caimans,

fishes, migratory and resident birds, green iguana (Iguana iguana), terrestrial invertebrates and

others species of turtle. Finally, we achieved the social and economic dividends, which are key

elements for long-term sustainability of this activity. Our results confirm a strong effect of a CBC

initiative on biodiversity conservation. We reinforce the need to include local people on

conservation programs, and also highlight a great window of opportunity, which can help to

ensure an effective large-scale conservation outcome in Amazonian floodplains.

2. Results

Population recovery of target species

After 34 years of programme implementation, the number of hatchlings released increased

26-fold (Figure 2) with an average of 71,087 (± 6,501) hatchlings released every year. Beyond

the clear increase in number of hatchlings released, we can see a strong pattern of population

recovery according to local knowledge or perception. In 38 of 41 communities sampled,

experienced fisherman confirmed the popular notion that the Giant river turtle population

increased in the last 15 years (Figure 3). Even communities far from protected beaches

confirmed this pattern, with the exception of three communities near the urban center, of which

two reported a decreasing and one a stable population.

Capítulo 5

131

Figure 2. Hatchling release trajectories over 34 years (1980 – 2014) of community-based conservation.

Figure 3. Local perceptions of giant South American river turtle population recovery based on semi-structured interviews with experienced fishermen. Red and green circles indicate communities for which local informants reported a decline or increase in population sizes over the last 15 years. Yellow circles indicate stable populations that have not appreciably changed over time. Brown lines represent the boundaries of the two contiguous sustainable-use reserves reserves, and in the upper right is the representation of the location of the nearest market town, Carauari.

Capítulo 5

132

Beyond the clear effect of protection, our model of nest counts also showed others variables

with strong influence on the number of nests. However, only one of all models was

parsimonious, showing a Δ AIC < 2. Three variables were significant, but years of protection

was the most important factor (β = 1.4 ± 0.14), positively influencing our response variable,

followed by declivity (β = -0.71 ± 0.14) and distance to human settlement (β = -0.31 ± 0.13),

which both show a negative relation with the number of nests counted (Figure 4).

Figure 4. Relative size effect (z-estimates) of all predictors of freshwater turtle nests. Dots represent mean estimates while horizontal lines indicate confidence intervals (CI). For significant variables CIs do not cross the vertical dotted line at zero. Estimates colored blue represent a significant positive effect; red estimates represent a significant negative effect.

Collateral benefits for non-target taxa

The protection effect was detected for all sampled groups, –for measures of both abundance

and nest counts (Figure 5 and 6). Surprisingly, even unexpected groups, such as terrestrial

invertebrates, green iguana and resident birds occurred in much higher abundance on

protected beaches (Supplementary Information: Table S1). Model averaging revealed only the

Capítulo 5

133

duration of beach protection as a significant driver of success for these non-target taxa (Figure

S1).

Figure 5. Paired t-test of abundance responses for non-target taxa: (A) continental migrant birds, (B) intra-Amazonia migrant birds, (C) large catfishes, (D) terrestrial invertebrates, (E) aquatic fauna, and (F) caimans. Red and blue circles represent protected and unprotected beaches, respectively.

Capítulo 5

134

Figure 6. Paired t-test of reproduction responses (number of nests/ha) for target and non-target taxa: (A) giant South American river turtle, (B) terecay, (C) six-tubercle turtle, (D) continental migrant birds, (E) intra-Amazonia migrant birds, and (F) green iguanas. Red and blue circles represent protected and unprotected beaches, respectively.

Capítulo 5

135

Patterns of abundance

The aquatic biodiversity abundance in general is much higher in front of protected beaches.

The average biomass of large catfishes for example, is six-fold higher for protected (23.4 ±

19.5) than unprotected (3.6 ± 18.9) beaches. Moreover, we found 25 catfish species in

protected beaches, against only eight species in unprotected beaches. Black caimans

(Melanosuchus niger) also occur in higher abundance around protected beaches (PB: 12.1 ±

5.2 individuals/km; UB: 7.4 ± 18.0; t = 4.25, p < 0.05). The same pattern was found with sonar

detections of aquatic megafauna (PB: 0.97 ± 0.5 individuals/m; UB: 0.65 ± 0.5; t = 1.82, p =

0.09), with the protection effect therefore inducing shifts in abundance for most riverine taxa.

The results for terrestrial biodiversity are equally impressive. All groups of birds occur in

much higher number on protected beaches. The migrant Black skimmer (Rynchops niger), for

example, is 80 times more abundant on protected beaches (PB: 3.3 ± 2.4 individuals/ha; UB:

0.04 ± 2.2; t = 5.2, p < 0.05). The same pattern is found for both other migrant species such as

the Large-billed tern (Phaetusa simplex; PB: 5 ± 4.8; UB: 0.17 ± 4.6; t = 4.3, p < 0.05), and

resident species such as the Sand-coloured nighthawk (Chordeiles rupestris; PB: 3.2 ± 2.9;

UB: 0.3 ± 2.7; t = 4.5, p < 0.05. Pitfall traps sampled 4,401 terrestrial invertebrate individuals

from 11 orders, with total abundance almost twice as high on protected beaches. (PB: 196.2 ±

9.86 individuals/trap; UB: 116.6 ± 9.84; N = 14, t = 3.3, p < 0.05). The most abundant order

was Orthoptera with a total of 3,307 individuals (13.1 ± 9.8 individuals/trap), followed by

Coleoptera total = 649; 3.6 ± 9.8 individuals/trap).

Patterns of reproductive activity

We found a strong positive effect of protection for reproductive success in all three

species of freshwater turtle with 1,370 chelonian nests recorded on protected beaches

compared to just 171 on unprotected beaches. There were 58 times more nests of the target

Capítulo 5

136

turtle species (P. expansa) on protected beaches (Table S1), while Terecay turtles (P. unifilis)

and Six-tubercled Amazon river turtles (P. sextuberculata) were also beneficiaries of protection

showing a strong difference between the treatments. This result was mirrored for birds; we

found 8,700 nests of migrant species (Black simmer and large-billed tern) on protected

beaches compared to just 371 nests on unprotected beaches, and almost four times more

nests of the resident sand-collared nighthawk as on protected beaches (Table S1). Finally, the

folivorous green iguana also preferred to build their nests on protected beaches, where the

density of nests was almost seven times higher.

Community-based protection against illegal poaching

We found a drastic effect of protection in reducing poaching activity on the nests of the three

Podocnemis species. On protected beaches, we recorded 521 nests of the Giant South

American river turtle (37.2 ± 52.5 nests/beach, 371 of the Terecay turtle (26.5 ± 21.6), and

1,467 of the Six-tubercled amazon river turtle (104.8 ± 157.8). Of the total of 2,359 sampled

Podocnemis nests, only 2.1 % were raided by poachers. In contrast, we found only four nests

of Giant South American river turtle (0.2 ± 22.5 nests/xxx), 42 nests of Terecay turtle (3.0 ±

20.3), and 156 nests of Six-tubercled amazon river turtle (11.1 ± 55.5) on unprotected beaches,

where 99% of the 202 nests sampled were raided by poachers.

Economic and social dividends

We interviewed all 40 beach-guards involved in the protection of the 14 sampled beaches

spread along more than 300 km of river. The beach-guards interviewed related many positive

outcomes from the beach protection, but also highlighted serious concerns, which threaten the

long-term sustainability of the CBC programme (Table S2). The positive aspects were based

on the population recovery of an important resource, the strengthening of cultural values and

the maintenance of a valued culinary culture. The concerns voiced covered (1) the failure of

the programme to generate a source of local income, (2) the perception of insufficient support

Capítulo 5

137

from the surveillance departments, including a lack of adequate equipment and unsatisfactory

financial reward, and (3) the perception of being undervalued by the government and society

for the considerable time and effort they have invested. Often their primary motivation to

persevere with beach protection is described as a moral obligation to continue the work their

parents and grandparents began.

3.Discussion

The conservation of tropical environments is an enormous challenge, often exacerbated by

the scarcity of human resources and financial support. Thus, new conservation strategies on a

large scale are very welcome, especially those that can be effective through harnessing local

community action and with minimal financial input. We provide strong evidence of positive

ecological outcomes from a multi-level community-based management scheme, which has

released more than 2 million freshwater turtle hatchlings over the last 34 years, driving the

population recovery of a threatened species (Cantarelli et al. 2014).In addition, the scheme is

demonstrated to have had strong collateral benefits for multiple non-target taxa. The broad

attractiveness of this model is further enhanced by the great potential for replication across

threatened Amazonian floodplains, even in communities outside protected areas (Fig. 3).

Freshwater turtles are the most threatened group among vertebrates (Gibbons et al.,2000;

IUCN, 2011). The giant river turtle (and other Podocnemis species), for example, have been

exploited for a long time – from the pre-Columbian indigenous groups up to the contemporary

mixed groups of Brazilian indigenous and European descendants (Peres 2000; Prestes-

Carneiro et al. 2015; Van Vliet et al. 2015). As a result, catastrophic population declines have

been recorded across Amazonia (Thorbjarnarson et al. 1997; Gibbons et al. 2000). In

response, fluvial beach protection has recently been ensuring the vital activity of reproduction,

helping wild populations to recover in many sites. Moreover, the local perception – corroborated

by population recovery findings (Fig. 3) – shows us that community beach protection also

Capítulo 5

138

provides the possibility for preserving local culture , as the Podocnemis genus has a high

importance for rural subsistence (Thorbjarnarson et al., 2000; Prestes-Carneiro et al. 2015).

We considered certain environmental variables, including mineral composition and sediment

grain size, which could influence oviposition in Podocnemis (Milton et al. 1997; Souza and

Vogt, 1994). However, due to their relentless overexploitation, protection has become the

overriding factor driving nest site selection. We showed that the number of nests increases

cumulatively with years of protection, and is negatively influenced by proximity to human

settlements due to increased hunting pressure (Conway-Gomes, 2007). However, beaches

near human settlements are may also be more easily protected because of the high number

of people watching them, as was found for fisheries management in protected lakes, with lakes

nearer settlements showing a higher population size of pirarucu (Arapaima gigas) (Campos-

Silva and Peres, in press). In addition, we also found that slope is an important negative factor,

which can discourage turtles from emerging to oviposit.

Even though large portions of suitable Podocnemis habitat are covered by of sustainable-

use protected areas in Amazonia (Fagundes et al. 2016), the protected area strategy could be

insufficient to ensure their conservation, due to high rates of hunting and egg harvest across

rural communities within extractive reserves (Fachín-Terán et al. 2004; Caputo et al., 2005).

Besides, illegal commerce in small cities within protected areas can place substantial pressure

on turtle populations (Peñaloza et al., 2013). For example, in Carauari – a small town in lowland

Amazonia – the profit generated from the ten largest illegal turtle traders is around U$57K per

year, with the majority of harvested individuals sourced from protected areas (PMJ,

unpublished data). In fact, our findings support the idea that sustainable-use reserves cannot

guarantee the successful freshwater turtle reproduction, since the nest raiding is around 99%

on unprotected beaches within protected areas. Breathtakingly, the CBC approach reduces

poaching to around 2.1%.

Capítulo 5

139

Beyond the strong outputs for target species, the unintended effects of beaches protection

are also overwhelmingly positive for all sampled groups. It is not necessarily novel to detect

positive effects of protection for taxa such as large catfishes, caimans and other species of

turtles, which are commonly harvested within extractive reserves (Peres and Palacios, 2007).

However, that we found similar results for groups that are not exploited by humans shows the

potential of the giant South American river turtle to play a prominent role as an umbrella

species, supporting the conservation of many other species.

Human pressure is known to severely impact wild fish populations (Pauly, et al. 2002;

Woodroffe et al. 2005), which are particularly important in the Amazon for both the local

economy and subsistence (Petrere Jr. et al. 2004). Our results show that protected beaches

function as havens, extending protection from overexploitation to fish and other aquatic species

in the adjacent river. Although it is not possible to reliably differentiate the various taxa detected

by sonar, it is informative to note the higher aquatic biomass in sections of the river alongside

protected beaches. This occurs because uncontrolled commercial fisheries along the main

river channel are permitted even within protected areas, and the pressure is greatest alongside

unprotected beaches.

Caimans too occur in greater abundance near protected beaches, but the explanation is

slightly different. From 1950 to 1965, around 7.5 million caiman skins were harvested for export

(Smith, 1980), leading to a dramatic population decline until the prohibition of wildlife hunting

in 1967 (Da Silveira and Thorbjarnarson, 1999). The current threat to caimans comes not from

harvesting, but principally from conflicts with fishermen who often resort to killing them in

unprotected places (PMJ, unpublished data).

A very attractive result are the responses of groups that are not used by humans. Terrestrial

invertebrates had to develop tolerance to inundation, reproductive strategies and migratory

behavior to live in stressful environments, such as the Amazonian floodplains – which are

Capítulo 5

140

immersed in pronounced seasonal periodicity (Adis and Junk, 2002). Surprisingly, terrestrial

invertebrates were also recorded in higher abundance on protected beaches, contrary to

expectations of top down control of terrestrial invertebrates from the higher abundance of

insectivorous birds. The strong input of nutrients from dead hatchlings, egg remains and

carcasses in general on protected beaches could therefore possibly represent a stronger

bottom-up mechanism. Another surprising example is the green iguana. While the consumption

of green iguana eggs or meat occurs in some Brazilian regions (Alves et al. 2012), it is virtually

non-existent in our study area so the higher abundance of iguana nests in protected beaches

has no relation to variable human exploitation.

Finally, we showed that the community protection of beaches makes a strong contribution

to the conservation of migratory birds. The high concentration of individuals and nests for

migrant black skimmers, long-billed terns and resident sand-coloured nighthawk on protected

beaches suggests that beach protection can provide vital support for the successful

reproduction of these colonial breeding species, which are often under threat from egg

harvesting and other human disturbances (Del Viejo et al. 2004).

Notably, the ecological benefits of beach protection are particularly impressive compared to

the low cost of implementation. This CBC scheme currently costs the Brazilian government

and partners about US$106.40 per beach-guard/month, paid as a monthly basic food basket

throughout the six months of the dry season. This means that each turtle hatchling released

cost just US$0.03 over the last five years. There is a heated discussion about the most

appropriate mechanism of payments for biodiversity conservation in developing countries

(Ferro and Kiss, 2002). Here, we suggest a mixed approach, with the costs supported by

government and local communities, because we understand that rural communities cannot

carry the heavy burden of conservation of biodiversity alone, once biodiversity maintenance is

considered a global objective (Ferraro, 2000). Moreover, there is a clear dissatisfaction with

Capítulo 5

141

current rewards, and beach-guards are increasingly vocal in their claims for a basic salary. We

argue that CBC programmes should strive to generate enough income to ensure their

continuation in the long term. To become less independent on government rewards, the

programme itself could potentially start management schemes, as already occurs in the study

region with Arapaima management (Campos-Silva and Peres in press).

Another fundamental characteristic of this system is the multi-level partnership (Berkes

2007, 2009), where multiple institutions link up effectively to increase the likelihood of success

and reduce the danger of falling into the tragedy of the commons (Hardin, 1968) as exemplified

by the 99% levels of poaching on unprotected beaches. The key is shared responsibility; the

community is responsible for programme activities as a whole, but the government also has a

crucial function in providing financial support and regulating the scheme through data

monitoring.

Our study provides a substantial reflection on the ecological effects of CBC schemes in

tropical environments. Quantifying unintended ecological outputs is crucial for a better

understanding of the broad effects of CBC. Quantifying the ecological co-benefits is also

fundamental for discussing the cost-benefits of implementing this type of programme,

particularly in tropical countries, which are racing against time to develop conservation

strategies that are economically viable and efficient. Community-based fluvial beach protection

is a powerful tool for floodplains conservation, and one that deserves more attention from

government and stakeholders, especially in the Amazon due to the frequent scarcity of financial

support and common bureaucratic difficulties (Cantarelli, 2014; Campos-Silva et al., 2015). The

improvement of beach-guards’ welfare will be essential to ensure the fate of this activity, which

provides a series of positive outcomes for conservation.

4.Materials and methods

Study area

Capítulo 5

142

The Juruá River is a large and productive white-water tributary of the Amazon, arising in the

Andes mountains, and delivering a supply of sediments and nutrients to an extensive part of

the Amazonian lowlands (McClain and Naiman, 2008). The study landscape contains 17.7%

of seasonally-flooded (várzea) forest along the wide floodplain and 82.3% of upland (terra

firme) forest which is rarely if ever inundated (Hawes et al. 2012). The wet and dry seasons

coincide with periods of high (January – June) and low water levels (August – November), with

the prolonged flood pulse often exceeding 10 m in amplitude (Hawes and Peres 2016). During

the dry season sand beaches are formed along the main river, providing suitable nesting sites

for several taxonomic groups. This study was conducted in 28 of those beaches within two

contiguous extractive reserves, along Jurua river (Figure 1).

The high level of socio-political organization of the local communities is a prominent

legacy of historical activity in the region. After the bankruptcy of natural latex exploitation, the

central economic activity in central-western Brazilian Amazonia during the period 18XX-19XX

(REF), the ex-rubber tappers became immersed in extreme rural poverty, creating a huge

demand for self-organization, which eventually led to the creation of sustainable-use protected

areas (Fearnside, 1989). The Médio Juruá Extractive Reserve (ResEx Médio Juruá) was

created in 1997, covering 253,227 hectares on the left bank of the river (5º33’54”S,

67º42’47”W; Fig. 1), and supporting some 700 people distributed across 13 villages. The

adjacent Uacari Sustainable Development Reserve (RDS Uacari; 5º43'58"S, 67º46'53"W) was

created later in 2005 and covers 632,949 hectares, with ~1200 people living in 32 villages. The

local economy in both reserves is sustained by fisheries, slash-and-burn cassava agriculture,

and non-timber forest products such as oil seeds and palm fruits (Newton et al., 2011).

Figure 1. Location of the 28 study beaches along the Juruá River, Amazonas, Brazil. White polygons indicate the

two conservation units of sustainable-use; black and grey circles represent protected and unprotected beaches,

respectively. The smaller square in the bottom right corner shows an example of the paired sampling design.

Capítulo 5

143

Evaluation of target species conservation programme

Ever since the colonization of Brazil, meat and eggs from Amazonian turtle species have

been widely consumed, with steep declines in wild populations, especially for the Giant South

American river turtle (Alho, 1985; Prestes-Carneiro et al. 2015) which, reaching up to 90 Kg in

body mass and 80 cm in carapace length (Pritchard and Trebbau 1984), is the largest

neotropical freshwater turtle. Faced with increasing contemporary threats, and considering

their high cultural importance, several projects were established to protect their nesting sites

(Cantarelli et al. 2014). In our study area, fluvial beach protection was started in the 1990s by

local rubber tappers, to provide meat and eggs for the owners of rubber plantations. With the

demise of the rubber barons, beach protection finally fell into the hands of local communities.

The current project scheme is a mixed approach, where universities, NGOs, government

agencies and local communities are working in partnership to recover wild populations of this

overexploited species.

Within the two study reserves there are currently 14 beaches protected by 42 beach-guards

Capítulo 5

144

(2-4 per beach). For 5-6 months during the dry season, in rotation where possible, beach-

guards occupy a wooden house in front of the beach, maintaining vigilance 24 hours a day,

seven days per week. The pressure from the illegal commerce of freshwater turtles in the

region is substantial, and beach-guards are often the target of threats from poachers attempting

to harvest eggs and females laying eggs on the beach. Beach-guards also monitor nesting

success, recording the number of nests for all three turtle species, any predation or poaching

events and the number of live or dead hatchlings in each nest. From the partnership between

government agencies and university projects, beach-guards receive a total of ~U$107 per

month, in the form of food items.

We analyzed 34 years of data collection (1980 – 2014) to verify the effectiveness of this

community-based conservation model in achieving its aim of ensuring the successful release

of hatchlings. To verify population recovery, we also conducted 63 semi-structured interviews

(Bernard, 1994) at 41 local communities containing at least six households, both within (N=26)

and outside (N=15) protected areas. Interviews were conducted with highly experienced

fishermen who had been continuous full-time residents at the community for >10 years. We

recorded the broad perception of population status (i.e. increasing, decreasing, or neutral) for

the Giant South American turtle at beaches that were frequently visited by local villagers during

the dry season, relative to perceived baseline population status over the last 10 years.

Sample design and multi-taxa approach for non-target species

To understand the unintended benefits of beach protection we sampled, in addition to beach-

guard data on turtle species, multiple non-target taxa, using two approaches: counts of

individuals (abundance approach) and counts of nests (reproduction approach). We sampled

28 beaches (14 protected and 14 unprotected) during the dry season, which is the reproductive

peak for most beach-nesting species. Sampled groups were beach-nesting birds, caimans,

Capítulo 5

145

terrestrial invertebrates, green iguana, large catfishes, and other aquatic fauna (sampled with

sonar). Full methodological details of for each group are available in the supplementary

materials.

Poaching pressure and environmental variables

Poaching pressure was quantified for both protected and unprotected beaches during 45

days, by monitoring the number of nests raided. All beach-guards were highly experienced,

allowing them to detect poaching activity from footprints or other signs around raided nests.

We also established the number of years since the establishment of protection for each

protected beach and extracted two landscape variables related to human pressure using

ArcGIS (version 10.2): the fluvial distances to the nearest local community and to the market

town of Carauari. The crescent area of each beach was calculated by geo-referencing the

peripheral points and measuring the maximum width, we conducted a granulometry analysis,

to provide the percentage of coarse sand, fine sand, clay and silt, and we measured the beach

profile to calculate the gradient within 10 m of the river shore.

Data analyses

We performed general linear models (GLMs) to examine variation in the number of nests of

Giant South American turtles across all 28 beaches (14 protected and 14 unprotected) as a

function of all potential predictors. Because of correlation between granulometry proportions

we included only the percentage of coarse sand in the models. We constructed all possible

models, from the constant model (without predictors) to the full model: Number of nests ~ Years

of protection Distance to nearest community + Distance to nearest town Beach area + Beach

slope + Coarse sand proportion. Models were fitted using the lmer function from the lme4

package and each model combination was examined using the MuMIn package (Barton,

2009). All analyses were conducted in R (R Development Core Team 2015).

Capítulo 5

146

We selected the most parsimonious model with the lowest Akaike Information Criterion

corrected for small sample size (AICc). AICc is calculated as the difference between each

model’s AICc and the lowest AICc, with a AICc < 2 interpreted as substantial support that the

model belongs to the set of best models. Akaike weights give the probability that a model is

the best model, given the data and the set of candidate models (Burnham and Anderson,

2002). After model selection, we calculated a model average, which considers the beta average

of all variables included in parsimonious models. Finally, as the variables were standardized

through z standardization, we compared the relative effect size of all variables.

We tested for differences in abundance or number of nests in all sampled groups using

paired t-tests. Finally, we performed linear models (LMs) and general linear models (GLMs),

according to the error structure, to verify the drivers of abundance or number of nests in our

sampled groups. Model selection procedure followed the same steps described previously.

5.Acknowledgements

This study was funded by a DEFRA Darwin Initiative (UK) grant (Ref. 20-001). We thank the

Secretaria do Estado do Meio Ambiente e Desenvolvimento Sustentável of Amazonas (SDS)

and the Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis

(IBAMA)/Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for authorizing

this research. We are grateful for the participation of all beach-guards and the co-operation of

all communities of the Médio Juruá region. XXX assisted identification of terrestrial

invertebrates, and XXX conducted granulometry analyses. We thank XXX for comments on an

earlier version of the manuscript. This is publication no. XX of the Projeto Médio Juruá series

on Resource Management in Amazonian Reserves.

6.References

1. Adis, J., & Junk, W. J. 2002. Terrestrial invertebrates inhabiting lowland river floodplains of

Central Amazonia and Central Europe: a review. Freshwater Biol, 47(4), 711-731.

Capítulo 5

147

2. Alho, C.J.R. 1985. Conservation and management strategies for commonly exploited

Amazonian turtles. Biological Conservation,32,291-298.

3. Alves, R. R. N., Vieira, K. S., Santana, G. G., Vieira, W. L. S., Almeida, W. O., Souto, W. M.

S., ... & Pezzuti, J. C. B. 2012. A review on human attitudes towards reptiles in Brazil. Environ

Monit Assess,184(11), 6877-6901.

4. Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O.U., Swartz, B., Quental, T. B., Marshall,

C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; Mersey, B. and Ferrer B.A. 2011. Has the

Earth/'s sixth mass extinction already arrived?. Nature, 471(7336), 51-57.

5. Bartón, K. 2009. MuMIn: multi-model inference. R package, version 0.12.2. http://r-forge.r-

project.org/projects/mumin/.

6. Barrett, C. B., Brandon, K., Gibson, C., & Gjertsen, H. 2001. Conserving tropical biodiversity

amid weak institutions. BioScience, 51(6), 497-502.

7. Bernard HR.1994. Research Methods in Anthropology: qualitative and quantitative

approaches. 4th ed. London: Altamira Press.

8. Berkes, F. 2007. Community-based conservation in a globalized world.Proc Natl Acad Sci

USA, 104(39), 15188-15193.

9. Berkes, F. 2009. Evolution of co-management: role of knowledge generation, bridging

organizations and social learning. J Environ Manage, 90(5), 1692-1702.

10. Boswell, K.M.; Wilson, M.P. and Cowan, J.H. 2008. A Semiautomated Approach to Estimating

Fish Size, Abundance, and Behavior from Dual-Frequency Identification Sonar (DIDSON)

Data. North American Journal of Fisheries Management 28:799–807.

11. Bradshow, C.J.A.; Sodhi, N.S. and Brook, B. W. 2008. Tropical turmoil: a biodiversity tragedy

in progress. Frontiers in Ecology and Environment, 7, 79-87.

12. Bruner, A. G., Gullison, R. E., & Balmford, A. 2004. Financial costs and shortfalls of managing

and expanding protected-area systems in developing countries. BioScience, 54(12), 1119-

1126.

13. Bruner, A. G., Gullison, R. E., Rice, R. E., & Da Fonseca, G. A. (2001). Effectiveness of parks

in protecting tropical biodiversity. Science, 291(5501), 125-128.

14. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L. Introduction to

Distance Sampling. Oxford University Press, Oxford. 2001.

15. Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical

information‐theoretic approach. New York, NY: Springer. p 488.

16. Campos-Silva,J.V.; Fonseca-Junior, S.F., Peres, C.A. 2015. Policy reversals do not bode well

Capítulo 5

148

for conservation in Brazilian Amazonia. Natureza & Conservação, 13:193-195.

17. Cantarelli, V. H., Malvasio, A., & Verdade, L. M. 2014. Brazil's Podocnemis expansa

conservation program: retrospective and future directions. Chelonian Conserv Biol, 13(1), 124-

128.

18. Caputo, F.P.; Canestrlli, D. and Boitani, L. 2005. Conserving the terecay (Podocnemis unifilis,

Testudines: Pelomedusidae) through a community-based sustainable harvest of its eggs.

Biological Conservation,126, 82-92.

19. Castello, L.; Viana, J.P.; Watkins, G.; Pinedo-Vasquez, M. and Luzadis, V.A. 2009. Lessons

from Integrating Fishers of Arapaima in Small-Scale Fisheries management at the

Mamiraua Reserve, Amazon. Enviromental Management 43, 197-209.

20. Castello, L.; McGrath, D.G.; Hess, L.L.; Coe, M.T.; Lefebvre, P.A.; Petry, P.; Macedo, M.N.;

Renós, V. and Arantes, C.C. 2013. The vulnerability of Amazon freshwater ecosystems.

Conservation Letters, 6(4), 217-229.

21. Castello, L., & Macedo, M. N. (2015). Large-scale degradation of Amazonian freshwater

ecosystems. Global Change Biology,22,990-1007.

22. Cinner. J.E. et al. 2012. Transitions toward co-management: The process of marine resource

management devolution in three east African countries, Global Environmental Change 22,

651–658.

23. Cinner. J.E.et al. 2012. Comanagement of coral reef social-ecological systems. Proceedings

of the National Academy of Sciences of the USA 109, 5219–5222.

24. Conway-Gómez, K. 2007. Effects of human settlements on abundance of Podocnemis unifilis

and P. expansa turtles in northeastern Bolivia. Chelonian Conserv Biol, 6(2), 199-205.

25. Da Silveira, R., and Thorbjarnarson, J. B. 1999. Conservation implications of commercial

hunting of black and spectacled caiman in the Mamirauá Sustainable Development Reserve,

Brazil. Biol Conserv, 88(1), 103-109.

26. Da Silveira, R., Magnusson, W. E., & Campos, Z. 1997. Monitoring the distribution, abundance

and breeding areas of Caiman crocodilus crocodilus and Melanosuchus niger in the

Anavilhanas Archipelago, Central Amazonia, Brazil. J Herpetol, 514-520.

27. Davenport, L. C., Goodenough, K. S., & Haugaasen, T. 2016. Birds of Two Oceans? Trans-

Andean and Divergent Migration of Black Skimmers (Rynchops niger cinerascens) from the

Peruvian Amazon. PloS One, 11(1).

28. de Souza, R. R., & Vogt, R. C. 1994. Incubation temperature influences sex and hatchling size

in the neotropical turtle Podocnemis unifilis. J Herpetol, 453-464.

Capítulo 5

149

29. del Viejo, A. M., Vega, X., González, M. A., & Sánchez, J. M. (2004). Disturbance sources,

human predation and reproductive success of seabirds in tropical coastal ecosystems of

Sinaloa State, Mexico. Bird Conserv Int, 14(03), 191-202.

30. Dudley, N.2008. Guidelines for Applying Protected Area Management Categories. Gland,

Switzerland: IUCN. 86pp.

31. Evans, L., Cherrett, N., & Pemsl, D. 2011. Assessing the impact of fisheries co-management

interventions in developing countries: A meta-analysis. J Environ Manage, 92(8), 1938-1949.

32. Fachín-Terán, A., Vogt, R. C., & Thorbjarnarson, J. B. 2004. Patterns of use and hunting of

turtles in the Mamirauá Sustainable Development Reserve, Amazonas, Brazil. People in

Nature: Wildlife Conservation in South and Central America, 1.

33. Fagundes, C. K., Vogt, R. C., & De Marco Júnior, P. 2016. Testing the efficiency of protected

areas in the Amazon for conserving freshwater turtles. Divers Distrib, 22(2), 123-135.

34. Gardner, T. A., Barlow, J., Chazdon, R., Ewers, R. M., Harvey, C. A., Peres, C. A., and Sodhi,

N. S. 2009. Prospects for tropical forest biodiversity in a human‐modified world. Ecol

Lett, 12(6), 561-582.

35. Gerlotto, F.; Soria, M. and Fréon, P. 1999. From two dimensions to three: the use of multibeam

sonar for a new approach in fisheries acoustics. Can. J. Fish. Aquat. Sci. 56: 6–12.

36. Gerlotto, F.; Georgakarakosb, S. and Eriksen, P.K. 2000. The application of multibeam sonar

technology for quantitative estimates of fish density in shallow water acoustic surveys Aquat.

Living Resour. 13, 385−393

37. Gibbons, J. W., et al. 2000. The Global Decline of Reptiles, Déjà Vu Amphibians. BioScience,

50(8), 653-666.

38. Gonzalez-Socoloske, D. and Olivera-Gomez, L.D..2012. Gentle Giants in Dark Waters: Using

Side-Scan Sonar for Manatee Research. The Open Remote Sensing Journal, 5, 1-14

39. Glennie, R., Buckland, S. T., & Thomas, L. 2015. The effect of animal movement on line

transect estimates of abundance. PloS One, 10(3)

40. Greenslade, P. J. M. 1973. Sampling ants with pitfall traps: digging-in effects. Insectes Soc,

20(4), 343-353.

41. Gutierrez, N.L.; Hilborn, R. and Defeo, O. 2011. Leadership, social capital and incentives promote

successful fisheries

42. Hardin, G. 1968. The tragedy of the commons. Science 162,1243–8

43. International Union for Conservation of Nature (IUCN) (2011) 2011 IUCN Red List of

Capítulo 5

150

Threatened Species. Available at: www.iucnredlist.org (accessed 5 January 2015).

44. Liu, J. et al. 2007. Complexity of coupled human and natural systems. Science 317, 1513-

1516.

45. McLaughlin, V. P. 1979. Occurrence of Large-billed Tern (Phaetusa simplex) in Ohio. American

Birds, 33, 727.

46. Milton, S. L., Schulman, A. A., & Lutz, P. L. 1997. The effect of beach nourishment with

aragonite versus silicate sand on beach temperature and loggerhead sea turtle nesting

success. J Coastal Res, 904-915.

47. Napier, V. R., Branch, G. M., & Harris, J. M. 2005. Evaluating conditions for successful co-

management of subsistence fisheries in KwaZulu-Natal, South Africa. Environ Conserv,

32(02), 165-177.

48. Naughton-Treves, L., Holland, M. B., & Brandon, K. 2005. The role of protected areas in

conserving biodiversity and sustaining local livelihoods. Annu. Rev. Environ. Resour., 30, 219-

252.

49. Newton, P., A. R. Watkinson, and C. A. Peres. 2011. Determinants of yield in a non–timber

forest product: Copaifera oleoresin in Amazonian extractive reserves. Forest Ecology and

Management 261, 255–264.

50. Ostrom, E. 2009. A general framework for analyzing sustainability of social-ecological systems.

Science 325, 419-422.

51. Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., ... &

Zeller, D. 2002. Towards sustainability in world fisheries. Nature, 418(6898), 689-695.

52. Peñaloza, C. L., Hernández, O., Espín, R., Crowder, L. B., & Barreto, G. R. 2013. Harvest of

endangered sideneck river turtles (Podocnemis spp.) in the middle Orinoco, Venezuela.

Copeia, 2013(1), 111-120.

53. Pereira, H. M., et al. (2010). Scenarios for global biodiversity in the 21st century. Science, 330,

1496–1501.

54. Peres, C. A. 2000. Effects of subsistence hunting on vertebrate community structure in

Amazonian forests. Conserv Biol, 14(1), 240-253.

55. Peres, C. A., & Palacios, E. 2007. Basin-Wide Effects of Game Harvest on Vertebrate

Population Densities in Amazonian Forests: Implications for Animal-Mediated Seed Dispersal.

Biotropica, 39(3), 304-315.

56. Peres, C. A., & Terborgh, J. W. 1995. Amazonian nature reserves: an analysis of the

defensibility status of existing conservation units and design criteria for the future. Conserv

Capítulo 5

151

Biol, 9(1), 34-46.

57. Petermann, P. 1997. The birds. In The Central Amazon Floodplain vol 126,pp. 419-452.

Springer Berlin Heidelberg.

58. Petrere Jr, M., Barthem, R. B., Córdoba, E. A., & Gómez, B. C. 2004. Review of the large

catfish fisheries in the upper Amazon and the stock depletion of piraíba (Brachyplatystoma

filamentosum Lichtenstein). Rev Fish Biol Fisher, 14(4), 403-414.

59. Pomeroy, R. S., Pollnac, R. B., Katon, B. M., & Predo, C. D. (1997). Evaluating factors

contributing to the success of community-based coastal resource management: the Central

Visayas Regional Project-1, Philippines. Ocean Coast Manage, 36(1), 97-120.

60. Pomeroy, R.S., and Ahmed, M. 2006. Fisheries and Coastal Resources Co-management in

Asia: Selected Results from a Regional Research Project. WorldFish Center Studies and

Reviews 30, 240p.

61. Prestes-Carneiro, G.; Béarez, P.; Bailon, S.; Py-Daniel, A.R. and Neves, E.G.2015.

Subsistence fishery at Hatahara (750–1230 CE), a pre-Columbian central Amazonian village.

Journal of Archaeological Science: Reports.

62. Pritchard, P.C.H.; Trebbau T. 1984 . The Turtles of Venezuela . Society for the Study of Amph

ibians and Reptiles, Contributions to Herpetology, Vo l . 2 . Ox ford (OH): Miami University

63. Roberge, J.M. and Angelstam, P. 2004. Usefulness of the Umbrella Species Concept as a

Conservation Tool. Conservation Biology,18,76-85.

64. Sachs, J.D. 2009. Biodiversity conservation and the millennium development goals. Science

325, 1502-1503.

65. Sala, O. E., Chapin, F. S.; Armesto, J. J.; Berlow, E.; Bloomfield, J., Dirzo; R.; Huber-Sanwald,

E.; Huenneke, L.F.; Jackson, R.B.; Kinzing, A.; Leemans, R.; Lodge, D.M.; Mooney, H.A.;

Oesterheld, M.; Poff, N.L.; Sykes, M.T.; Walkers, B.H.; Walker, M. andWall, D.H. 2000. Global

biodiversity scenarios for the year 2100. Science, 287(5459), 1770-1774.

66. Somanathan, E.; Prabhakar, R. Mehta, B.S.2009. Decentralization for cost-effective

conservation. Proceedings of the National Academy of Sciences of the USA 106, 4143–4147.

67. Terborgh, J. 1999. Requiem for nature. Island Press.

68. Terborgh, J. 2000. The fate of tropical forests: a matter of stewardship. Conserv Biol, 14(5),

1358-1361.

69. Thorbjarnarson, J. B., Pérez, N., & Escalona, T. 1997. Biology and conservation of aquatic

turtles in the Cinaruco-Capanaparo National Park, Venezuela. In Proceedings, conservation,

Capítulo 5

152

restoration, and management of tortoises and turtles—an international conference. New York

Turtle and Tortoise Society, New York, 109-112.

70. Thorbjarnarson, J., Lagueux, C. J., Bolze, D., Klemens, M. W., & Meylan, A. B. 2000. Human

use of turtles: a worldwide perspective. Turtle Conservation, 33-84.

71. Van Vliet, N.; Cruz, D.; Quiceno-Mesa, M.P.; Neves de Aquino, L.J.; Moreno, J.; Ribeiro,

R.T.; Fa, J.E. 2015. Ride, shoot, and call: wildlife use among contemporary urban hunters in

Três Fronteiras, Brazilian Amazon.Ecology and Society, 20:8.

Capítulo 5

153

Supplementary material

Materials and Methods Migratory birds: We sampled three species of migratory bird, the black skimmer (Rynchops

niger) and the long-billed tern (Phaetusa simplex), which both conduct continent-wide migration

(McLaughlin, 1979; Davenport et al. 2016) and the sand-coloured nighthawk (Chordeiles

rupestris), which conduct intra-Amazonian migration (Peterman, 1997). For the abundance

approach, two observers walked slowly in defined linear transects (Buckland et al. 2001) along

the middle of the beach, starting at 06h30 and counting the number of individuals in each

species. Each observer conducted either (1) counts for half of the beach, which were then

combined (in the case of large beaches) or (2) counts for the whole beach, which were then

compared to reach a consensus (small beaches). Counts were conducted once per beach but

abundances at each beach were observed to be consistent between days. Counts were

facilitated by the lack of vegetation or any other obstructions. Moreover, the birds are

accustomed to human presence, due the monitoring by beach guards, and so we are confident

that their movements were not affected by our presence (Glennie et al. 2015).

Large catfishes: Large catfishes were sampled with two consecutive trawls of 100 m length

and 4 m depth (mesh sizes: 14 and 18 mm) between 10h00 and 12h00. The trawl was pulled

by a metal riverboat from the bank of the beach up to the middle of the river, following the

upstream direction. All individual fish were identified, weighed, and released. All the beaches

were sampled with the same effort.

Aquatic biodiversity abundance: Sonar technology has been satisfactorily used to sample

aquatic fauna, including fishes and manatees (Gerlotto et al. 1999; 2000; Boswell et al. 2000;

Gonzalez-Socoloske and Olivera-Gomez, 2012). We employed a Humminbird® 958c HD

Capítulo 5

154

combo system to survey fish and others vertebrates along transects along each beach and

along the opposite bank of the river. All transect had the same length (400 m) and were covered

by small motor boat a steady slow speed (5 km hr-1). Humminbird® fish finders have a side-

scan sonar with two beams; we used the narrow side beams producing 455 kHz and covering

180°, which is suitable for shallow environments sampling (Gerlotto et al. 2000). The transducer

is attached directly to the boat, and the unit is powered by 12 V batteries. These sonar systems

have a screen to view acoustic images in real time, and the presence of fishes or other aquatic

fauna was detected by a standard alarm. There are three size classes detected but, because

it is not possible to distinguish a small caiman from a medium fish, for example, we included

all classes together to reflect a total abundance index of aquatic vertebrates for each sampled

transect.

Caimans: We sampled caimans using nocturnal surveys (between 19h00 and 23h00) from an

aluminum boat with a 15 HP motor moving between 8 and 10 km/h. Caimans were sampled

by their eyeshine when illuminated with a spotlight (Da Silveira et al., 1997). Spotlight surveys

were made between august and September of 2013, during the wet season. We sampled the

all the beach arch and the bank in front of the beach.

Terrestrial invertebrates: Terrestrial invertebrates were sampled using an array of ten cylindrical

pitfall traps (opening diameter of 75 mm and depth 100 mm) at each beach. Traps filled with

70% ethanol and 5% glycerol were placed 100 m apart along a transect line in the middle of

each beach, parallel to the shoreline, and were retrieved 48 h after installation to avoid any

digging effect (Greenslade 1973). Samples were stored in a solution composed of 70% ethanol

and 30% distilled water. Specimens were identified to the order level with expert taxonomic

assistance from Universidade Federal do Amazonas.

Green iguana, fresh water turtles and bird nests: Nests of the green iguana, freshwater turtles

and birds were sampled by three experienced beach-guards. The whole beach was surveyed

Capítulo 5

155

systematically on a single day during peak nesting activity, counting all nests and identifying

the species by the characteristic tracks and/or egg appearance.

Supplementary figures

Figure S1. Relative size effect (z-estimates) of all predictors of abundance for non-target taxa. Dots represent mean estimates while horizontal lines indicate confidence intervals (CI). For significant variables CIs do not cross the vertical dotted line at zero. Estimates colored blue represent a significant positive effect; red estimates represent a significant negative effect.

Capítulo 5

156

Supplementary tables

Table S1. Paired t-test results, with taxonomic groups, species, metrics of sampling, mean, SD, t and p value.

Taxonomic group

Species Sample unit Mean/SD protected beaches

Mean/SD unprotected

beaches

t p

Abundance approach

Caimans Melanosuchus niger individuals/km 12.1 (± 5.2) 7.4 (± 18.0) 4.26 0.0009

siluriformes Several species CPUE 23.4 (± 19.5) 3.6 (± 18.9) 2.59 0.022

Aquatic vertebrates

several species Individuals/m 0.97 (± 0.5) 0.6 (± 0.5) 1.82 0.09

Migratory birds Rynchops niger Individuals/ha 3.3 (± 2.4) 0.04 (± 2.2) 5.2 1.89E-05

Migratory birds Phaetusa simplex Individuals/ha 5.0 (± 4.8) 0.2 (± 4.6) 4.3 0.0002

Resident birds Chordeiles rupestris Individuals/ha 3.2 (± 2.9) 0.3 (± 2.7) 4.5 0.00013

Invertebrates Several species Individuals/trap/ha 19.8 (± 9.9) 12.1 (± 9.8) 3.7 0.00105

Reproductive approach

Turtles Podocnemis expansa nests/ha 1.4 (± 1.9) 0.03 (±1.2) 2.7 0.01256

Turtles Podocnemis unifilis nests/ha 0.6 (± 0.4) 0.1 (±0.3) 3.8 0.0023

Capítulo 5

157

Turtles Podocnemis sextuberculata

nests/ha 3.3 (± 2.4) 1.2 (±1.02) 3.1 0.0086

Reptile Iguana iguana nests/ha 0.8 (± 0.5) 0.1 (± 0.5) 8.1 1.08E-08

Migratory birds Rynchops niger nests/ha 5.0 (± 5.1) 0.6 (± 5.1) 2 0.00719

Migratory birds Phaetusa simplex nests/ha 40.1 (± 18.9) 28.5 (± 18.7) 3.2 0.00355

Resident birds Chordeiles rupestris nests/ha 1.4 (± 1.3) 0.4 (± 1.4) 3.1 0.00418

Table S2. Perceptions by 40 beach-guards of the benefits and concerns of community-based beaches protection

Benefits Brief explanation Relative

importance score (%)

Concerns Brief explanation Relative importance score (%)

Population recovery

All beach-guards reported the population increases of the Giant south American river turtle.

1 (100%) Lack of generation of local income/financial reward is not enough

The beach guards claim for a salary.

1 (100%)

Maintenance of an important culinary culture

The turtle meat has a high culinary value.

2 (80%) t Feeling of being under-valued by government and society

They feel part of an undervalued profession.

2 (95%)

Strengthening of cultural values

Turtle hunting and consumption has a high cultural importance.

3 (70%) Lack of surveillance They need more assistance to curb the action of poachers.

3 (90%)

158

Capítulo 6

Arapaima management as a tool for conservation of amazon floodplains: Bottlenecks, threats and

recommendations

Carolina Freitas

Capítulo 6

159

Arapaima management as a tool for conservation of amazon floodplains: Bottlenecks, threats and recommendations*

João Vitor Campos-Silva, Felipe Rossoni, Carolina Freitas, Rosi Batista, Paula

Pinheiro, Adevaldo Dias, Cristina Isis Buck Silva, Flavio Ruben Junior, Marcelo Castro, Leonardo Kurihara e Carlos Peres

*Manuscrito a ser submetido à Fisheries Research

1- Universidade Federal do Rio Grande do Norte- UFRN 2- Instituto Piagaçu Purus - IPI 3- Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio 4- Associação dos produtores rurais de Carauari – ASPROC 5- Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA 6- Secretaria do Meio Ambiente do Amazonas - SEMA 7- Fundação Amazonas Sustentável - FAS 8- Operaçao Amazonia Nativa – OPAN 9- University of East Anglia - UEA

Keywords: Amazônia, Amazon protected areas, Community-based-

management, sustainable development, fisheries.

1. Introdução

O pirarucu é o maior peixe de escamas de água doce do mundo, podendo

atingir até três metros de comprimento e pesar cerca de 200 kg. Nativo da Bacia

Amazônica, esse predador de topo sempre foi um importante alvo de pescarias

devido ao seu alto valor cultural e econômico. Ao longo do século XIX e início do

século XX, o pirarucu foi caracterizado como o principal recurso pesqueiro da

Amazônia brasileira (Veríssimo 1895, Santos e Santos 2005), o que indica que

havia uma intensa pressão de exploração sobre a espécie. Com isso, suas

populações logo começaram a apresentar sinais de sobrepesca, expressos

principalmente na diminuição das taxas de captura e do tamanho médio dos

indivíduos (Isaac et al. 1993). O pirarucu deixou de ser encontrado em algumas

partes da Amazônia e passou a existir em baixíssimos números em outras, o que

Capítulo 6

160

gerou preocupação acerca da manutenção da espécie. Atualmente, o status do

pirarucu na Lista Vermelha de Espécies Ameaçadas da IUCN é inconclusivo,

devido à insuficiência de dados (IUCN,2015).

O manejo comunitário do pirarucu teve início há cerca de 15 anos na

Reserva de Desenvolvimento Sustentável Mamirauá. Nesse modelo de manejo,

as comunidades rurais passam a proteger lagos, garantindo a reprodução de

peixes adultos e o crescimento dos filhotes. Esse modelo de manejo recuperou

as populações de pirarucu em Mamirauá (Castello 2009) e vem sendo

estabelecido em diversas outras localidades. De uma forma impressionante, o

padrão de recuperação populacional vem se mantendo o mesmo (Campos-Silva

e Peres in press, Petersen et al. 2016). Além da recuperação populacional do

pirarucu, a proteção dos lagos de manejo também proporciona benefícios

substanciais para outros grupos taxonômicos, como peixes (Silvano et al. 2008;

Arantes 2015) jacarés (Campos-Silva e Peres in press) e quelônios (Miorando

2009).

Além dos benefícios ecológicos, pode-se perceber também expressivos

resultados sociais e econômicos no manejo comunitário do pirarucu. Os lagos

protegidos estão funcionando como uma poupança bancária, assegurando um

lucro anual considerável para muitas famílias da área rural (Castello 2009,

Campos-Silva e Peres in press). Essa rara oportunidade de fonte de renda

alternativa está provendo segurança econômica para muitas comunidades da

Amazônia. Com o dinheiro que adquirem com comercialização da cota de

pirarucu pescada, os ribeirinhos podem investir em melhorias nas suas casas e

comunidades, proporcionando, por exemplo, reformas nas escolas e compra de

motores de luz e equipamentos de trabalho.

Capítulo 6

161

Os benefícios gerados pelo manejo do pirarucu também fazem com que

as comunidades aumentem sua autoestima e sintam orgulho por promover o uso

sustentável de um recurso tão importante que chegou a ser quase extinto. Além

disso, com as práticas do manejo, o conhecimento tradicional relacionado à

biologia, ecologia e pesca do pirarucu está sendo amplamente propagado dentre

os comunitários e compartilhado com os jovens (Campos-Silva e Peres in press).

De uma maneira geral, os comunitários participantes do manejo estão se

mostrando cada vez mais engajados, o que exerce forte influência sobre os

resultados das iniciativas. Ao mesmo tempo, um número cada vez maior de

comunidades tem buscado implementar o manejo do pirarucu, aumentando a

escala dos efeitos dessa atividade na região amazônica.

Assim, este modelo de manejo emerge como uma grande janela de

oportunidades para promover a conservação da biodiversidade aliada à melhoria

da qualidade de vida das comunidades rurais nas áreas de várzea da Amazônia.

Pode-se dizer que a sociedade brasileira se depara com um raro modelo de

conservação, em que os ganhos são substancialmente altos comparados ao

custo relativamente baixo de implementação do modelo.

Atualmente, o manejo do pirarucu ocorre em 24 unidades no estado do

Amazonas, localizadas em 14 municípios (Figura 1). Cerca de 300 comunidades

e mais de 3000 estão envolvidos na pesca de cerca de 100 toneladas de pirarucu

por ano. Vale ressaltar que o número de indivíduos pescados anualmente

corresponde ao máximo de 30% do total de indivíduos adultos contados, pois

esta é a cota anual máxima concedida para cada unidade de manejo pelo

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

(IBAMA). A porcentagem de cota concedida varia de acordo com uma série de

Capítulo 6

162

variáveis avaliadas pelo IBAMA, como o tamanho da população de pirarucus no

local, a relação entre o número de pirarucus adultos e juvenis contabilizados, a

estrutura da unidade de manejo, o tempo em que o manejo vem sendo realizado

no local, a capacidade de captura e comercialização da unidade. A magnitude do

manejo, tanto em termos do número de indivíduos pescados quanto do número

de famílias envolvidas, vem aumentando substancialmente a cada ano, o que

representa mais um indicativo de sucesso do programa.

Figura 1. Áreas de manejo comunitário do pirarucu no Estado do Amazonas (Brasil). Os círculos amarelos indicam as unidades de manejo, e o tamanho do círculo representa a magnitude da cota de pesca autorizada para cada unidade no ano de 2015.

O desenvolvimento das atividades do manejo ocorre principalmente no

nível comunitário, mas diferentes instituições parceiras desempenham papel

fundamental no processo. Tais parceiros podem ser organizações não

governamentais (ONGs), poder público local, associações locais e/ou

instituições de outras naturezas. As comunidades são responsáveis pela

proteção dos lagos, contagem dos estoques, pesca da cota autorizada, venda

do pescado, e avaliação do processo de manejo. Já os parceiros desempenham

Capítulo 6

163

função de capacitação dos comunitários, elaboração de relatórios, solicitação de

cota ao IBAMA, procura de mercado consumidor e viabilização de recursos

financeiros e humanos para fortalecer as atividades desempenhadas pelas

comunidades. Ao mesmo tempo, o governo federal assume um papel chave ao

controlar e regular a atividade, além de poder contribuir com recursos financeiros

e humanos dentro das Unidades de Conservação. Sendo assim, observa-se um

forte modelo de manejo comunitário sedimentado em diferentes esferas

complementares de parcerias (Figura 2). Tal modelo baseado em diferentes

níveis possui uma alta probabilidade de gerar resultados positivos para o manejo

como um todo (Berkes 2007).

Figura 2. Esquema ilustrativo do modelo de manejo comunitário do pirarucu na Amazônia Brasileira. O modelo é sedimentado em diferentes esferas complementares de parceria, incluindo comunidades rurais, pesquisadores, organizações não governamentais, associações locais e o

poder público.

Apesar de todos os benefícios ecológicos e econômicos listados, o

manejo do pirarucu depara-se com diversos entraves que limitam o alcance e a

magnitude de seus resultados, e podem comprometer a sua adequada

continuidade. Neste sentido, no presente artigo discutimos as maiores

preocupações compartilhadas pelas diferentes unidades de manejo, de acordo

Capítulo 6

164

com a ótica complementar das diversas instituições envolvidas. Expomos

também uma série de recomendações que podem contribuir para futuras ações

governamentais ou do terceiro setor. Nosso principal objetivo é guiar futuros

projetos que possam promover o desenvolvimento dessa promissora atividade

na região amazônica.

2. Gargalos, ameaças e recomendações

1. Dilemas de Mercado

1a. Sazonalidade da produção

Devido ao período reprodutivo do pirarucu e o período sazonal mais adequado

para sua captura, toda a produção pesqueira da espécie ocorre de forma

concentrada em um mesmo período do ano. Com isso, tende a haver uma

grande saturação do mercado e, por conseguinte, uma queda no preço de venda.

A queda do preço compromete a sustentabilidade econômica da atividade e gera

um desestímulo aos comunitários, que sentem que a sua produção não está

sendo valorizada de maneira adequada. Além disso, uma vez que a pesca ilegal

do pirarucu ainda é uma atividade muito comum e difícil de ser fiscalizada na

região, o possível desestímulo gerado pelo baixo preço do pirarucu vendido de

forma legal pode contribuir para um aumento da pesca ilegal.

Recomendações:

I.Viabilização de estrutura frigorífica em cada município onde ocorre o manejo,

para que o pescado possa ser armazenado e vendido ao longo do ano. Desta

forma os pescadores poderão dispor de melhores ofertas pelo produto,

vendendo-o em feiras e mercados do próprio município. Este tipo de venda local

é mais vantajosa para o pescador, pois gera maior valor agregado. Atualmente,

o valor do pirarucu vendido em feiras e mercados locais chega a custar R$

Capítulo 6

165

10,00/kg, enquanto aquele vendido em grandes quantidades para comerciantes

de outras cidades rende cerca de R$ 5,50/kg para os pescadores. A viabilização

de frigoríficos é dependente da articulação política entre as instituições

protagonistas do manejo, como ONGs e associações locais, e o poder público.

Vale ressaltar que tal estrutura frigorífica pode beneficiar outras atividades

importantes para a economia local.

II.O pulso de inundação não ocorre da mesma forma em todas as unidades de

manejo, o que faz com que o período ótimo de captura seja variável de acordo

com a oscilação do nível da água em cada localidade. Assim, a flexibilização do

período permitido para a prática da despesca de acordo com a época de estação

seca de cada localidade seria uma alternativa. Mas para isso, deve-se gerar

informações sobre a dinâmica das águas em cada unidade de manejo.

III.As instituições parceiras que apoiam o desenvolvimento do manejo em cada

local devem estimular constantemente os comunitários a diversificar suas fontes

de renda. O pirarucu deve ser uma fonte de renda complementar, uma vez que

a sua pesca é restrita a um curto período do ano e à uma determinada cota.

1b. Mercado restrito

Embora exista o potencial de exportar o pirarucu para outros Estados e países,

a produção atual está concentrada apenas na região Norte. Isso faz com que o

mercado se sature facilmente, uma vez que anualmente toneladas de pirarucu

são ofertadas na região.

Recomendações

I.Com a assinatura do decreto 36083/2015, que regulamenta a pesca manejada

do pirarucu no estado do Amazonas, espera-se um maior protagonismo do

estado e, por conseguinte, uma maior articulação com o setor empresarial. Tal

Capítulo 6

166

articulação com o setor empresarial poderia resultar em estratégias eficientes de

expansão de mercado. Portanto, é necessário que as diversas entidades

envolvidas com o manejo promovam uma ampla divulgação da oportunidade

econômica que esta atividade representa, despertando o interesse do setor

empresarial em contribuir com a ampliação do mercado.

II.Organização de um seminário estadual para discutir a criação de uma

cooperativa que integre todas as unidades de manejo do Amazonas,

beneficiando, certificando e articulando a venda do pescado em uma escala mais

ampla.

2. Sistema de vigilância ineficaz

A fiscalização na Amazônia é um grande desafio, pois os recursos humanos e

financeiros disponíveis para ações de conservação geralmente são muito

limitados, especialmente considerando-se a ampla escala geográfica da região

e a existência de muitas áreas de difícil acesso. Frente à tal deficiência de

fiscalização tem-se uma forte pressão de pesca ilegal do pirarucu. O peixe ilegal

encontra-se disponível durante todo o ano nas feiras municipais e é vendido por

um valor mais baixo do que o peixe manejado, o que cria um cenário de

competição desigual e gera desestímulo aos pescadores que participam do

manejo comunitário.

Recomendação:

I. Realização de seminários nos municípios onde ocorre o manejo com o objetivo

de sensibilizar a população e articular um sistema de fiscalização local,

envolvendo tanto os próprios comunitários, quanto a colônia de pescadores, a

polícia militar e o ministério público.

3. Exigências sanitárias incompatíveis com a realidade das comunidades rurais.

Capítulo 6

167

As normas sanitárias exigidas atualmente para a produção pesqueira não

contemplam as especificidades das comunidades rurais da Amazônia. É

praticamente inviável para tais comunidades conseguir se adequar às normas

sem receber um forte subsídio externo. Por outro lado, a legislação dificilmente

será flexibilizada, uma vez que essa temática envolve riscos à saúde humana.

Recomendações:

I. Facilitar o transporte do pescado às câmaras frigoríficas, com evisceração

ocorrendo a bordo.

II. Aumentar a proporção de venda de pirarucu seco e salgado, uma vez que

este, além de possuir maior valor agregado, pode ser armazenado por mais

tempo e em condições mais factíveis com a realidade local. Para tanto, seria

necessária a disponibilização de uma salgadeira móvel que contemplasse todas

as comunidades envolvidas. Esta ideia já vem sendo discutida na Agencia de

Defesa Agropecuária e Florestal do Estado do Amazonas, porém ainda não há

decisão final a respeito. Nesse sentido, as instituições envolvidas com o manejo

devem tentar se articular com o governo ou buscar outras formas de

financiamento para viabilizar a salga do pirarucu em maiores proporções dentre

as unidades de manejo.

III. Articular com o governo a criação de créditos rurais específicos e editais

facilitados que ofereçam recursos suficientes para viabilizar a adequação dos

comunitários às normas sanitárias previstas na legislação.

4. Competição com a piscicultura e incentivos desiguais

A piscicultura conta com maiores subsídios governamentais do que a pesca de

pequena escala. Com isso, o preço de venda do pirarucu criado em cativeiro

Capítulo 6

168

pode se tornar mais baixo em comparação ao do peixe manejado, gerando uma

competição desigual e, portanto, desfavorecendo a produção do manejo

comunitário.

Recomendações:

I. Articular com o poder público a disponibilização de maiores incentivos

governamentais à produção do pirarucu manejado. As instituições envolvidas

com o manejo devem se organizar para expor ao governo as demandas desse

mercado, bem como a sua importância ecológica e socioeconômica tanto para a

escala local quanto os efeitos diretos e indiretos em escala regional e nacional.

II. Divulgar para a população de forma sensibilizadora os benefícios ecológicos

e socioeconômicos do manejo comunitário do pirarucu, buscando-se incentivar

uma maior valorização do pescado advindo desta atividade. As insituições

envolvidas com o manejo poderiam se articular com veículos de mídia (formal ou

independente) para elaborar estratégias que pudessem atingir o maior número

de pessoas possível e despertar nas mesmas o interesse em priorizar a compra

do peixe manejado em detrimento do peixe proveniente da piscicultura (ou da

pesca ilegal).

5. O risco de se avaliar os benefícios do manejo apenas sob a perspectiva

econômica

A sustentabilidade econômica do manejo vem sendo bastante discutida. No

entanto, deve-se tomar cuidado com analises superficiais de custo/benefício

uma vez que a vasta maioria dos benefícios sociais e ecológicos ainda não estão

quantificados e valorados. Os grandes benefícios do manejo do pirarucu para a

população local não são apenas econômicos, mas envolvem a dignificação de

uma atividade que antes era ilegal, bem como a manutenção de práticas

Capítulo 6

169

tradicionais e um estímulo a uma maior organização social, empoderamento e

capacitação comunitária, dentre outros possíveis benefícios. Além disso, a

recuperação dos estoques de pirarucu que vem sendo diagnosticada na área

das unidades de manejo é de extrema importância, tanto para a segurança

alimentar das famílias ribeirinhas quanto para a conservação da biodiversidade

no bioma amazônico.

Recomendação: Estimular o desenvolvimento de pesquisas que busquem

quantificar os benefícios advindos do manejo, especialmente os benefícios

sociais, que foram muito pouco estudados de forma sistemática. Avaliações mais

completas sobre os benefícios da atividade possibilitarão um entendimento mais

aprofundado acerca de todas as dimensões que a envolvem.

6. Mudanças climáticas

Ainda não se sabe ao certo até que ponto as mudanças climáticas irão influenciar

a dinâmica das águas na Amazônia. Os povos locais têm observado diversas

alterações nos padrões de vazante e enchente ao longo dos últimos anos, tanto

no que se refere ao nível da água atingido em cada estação quanto ao período

de início e fim da mesma. Vem sendo discutido no universo acadêmico a

possibilidade de tais alterações já serem resultado de processos climáticos de

escala global, o que causa preocupação a respeito das consequências para as

atividades de subsistência dos povos ribeirinhos.

Recomendação: Estimular o desenvolvimento de pesquisas que busquem

inferir sobre as consequências das prováveis mudanças climáticas globais no

desenvolvimento das atividades do manejo, considerando tanto possíveis

mudanças na biologia do pirarucu (ex. taxa de reprodução) quanto mudanças

nos períodos adequados para a despesca.

Capítulo 6

170

3. Referências

1. Berkes F. 2007. Community-based conservation in a globalized world. P

Natl Acad Sci USA 104: 15188–93.

2. Campos-Silva, J.V. and Peres, C. 2016. Community-based management

induces rapid recovery of a high-value tropical freshwater fisheries

3. Isaac, V. J.; Rocha, V. L. C. e Mota, S. “Considerações sobre a legislação

da ‘piracema’ e outras restrições da pesca na região do médio Amazonas”.

Em FURTADO, L.; LEITÃO, W. e MELLO, F. (eds.). Povos das Águas –

realidade e perspectivas na Amazônia. Belém, MCT/ CNPq/ MPEG, 1993,

pp. 188-211, 292 p.

4. IUCN,2015. The IUCN Red List of Threatened Species. Version 2015-4.

<www.iucnredlist.org>. Downloaded on 08 December 2015.

5. Santos, G.M.; Santos, A.C.M. 2005 Sustentabilidadeda pesca na

Amazônia. Estudos Avançados, v. 19; n.54, p.165-182. (Dossiê Amazônia

brasileira II).

6. VERÍSSIMO, J. 1895. A pesca na Amazônia. Livraria Clássica Francisco

Alves. Rio de Janeiro, 206 p.

171

Anexo 1

Divulgação científica

Creio que haverá um avanço muito grande na formação da opinião pública,

quando a divulgação científica tiver a mesma magnitude (e valorização) dos artigos

científicos. Isso implica, obviamente, em um maior compromisso do pesquisador com

esse tipo de produto, para que o conhecimento gerado seja ao menos disponibilizado

na língua local, de uma forma acessível. O presente anexo é composto de três artigos

de divulgação que, de forma singela, tentam resumir os principais resultados dessa

tese, disponibilizando-os para a população em geral.

Anexo 1

172

Artigo 7

Tempos sombrios para a conservação da Amazônia*

João Vitor Campos-Silva, Sinomar F. Fonseca & Carlos Peres

*Artigo de opinião submetido à revista da FAPEAM “Amazônia faz ciência”

A bacia amazônica representa cerca de metade dos remanescentes florestais

do mundo, além de uma grande fração da biodiversidade terrestre. Devido à

grandiosa riqueza de recursos naturais, a Amazônia também significa uma

oportunidade ímpar de desenvolvimento aos países sul americanos. No entanto, o

desafio de implementar estratégias que conciliem o desenvolvimento sustentável, a

redução da pobreza e o crescimento econômico, são tremendos, e de certa forma

irão determinar o destino da região. Nesse texto discutimos duas grandes estratégias

de desenvolvimento que se encontram sob forte ameaça, devido à postura

governamental nos últimos anos.

Em 2000, o governo brasileiro estabeleceu o Sistema Nacional de Áreas

Protegidas (SNUC), que foi incorporado à constituição. Atualmente, o SNUC tem

consolidados 1940 áreas protegidas, contendo cerca de 1,513,828 km2 de floresta

tropical, o que representa 17.8 do território brasileiro. Desse total, 205 são de

responsabilidade dos municípios, 781 dos Estados e 954 do governo federal. Desde

2006 terras indígenas e territórios quilombolas foram inclusos no SNUC, o que

significa dizer que 25% do território brasileiro estaria sob proteção não privada. Trata-

se de uma área maior que a França. Espanha, Portugal, Reino Unido, Alemanha e

Itália juntos.

Anexo 1

173

O SNUC representa uma estratégia chave de defesa contra o desmatamento,

a degradação de habitat e a perda de biodiversidade. Os grandes avanços feitos nos

últimos 15 anos são inegáveis e o Brasil chegou a ganhar a liderança mundial em

conservação da natureza. No entanto, nos últimos anos esses grandes ganhos estão

se desmantelando pela política ambiental brasileira, particularmente no Estado do

Amazonas, o maior Estado brasileiro, com cerca de 155.9 milhões de hectares.

Em primeiro lugar, a mera criação de uma área protegida, ou Unidade de

conservação (UC) como são chamadas, não garante que ela funcione. A maioria das

UCs da Amazônia não estão bem implementadas em termos de infraestrutura,

recursos humanos e investimentos em fiscalização, portanto elas são alvos

constantes de caça ilegal, desmatamento e outros interesses econômicos espúrios.

Cera de 46.4% de todas as UCs do Estado, por exemplo, não possuem plano de

manejo, que é o documento básico para se pensar a gestão da reserva.

Além disso, os recursos humanos necessários para a implementação desse

grande sistema de reservas são absolutamente insuficientes. Atualmente apenas 27

profissionais são responsáveis pela gestão de 42 unidades de conservação,

representando apenas 0.65 funcionários por reserva, ou se preferirem 6966 km2 para

serem geridos e vigiados apenas por um par de olhos. A situação é ainda pior quando

calculamos o número de funcionários que reside de fato nas reservas – apenas 16

funcionários- o que representa 0.38 profissionais por reserva ou 11.756 km2 por

profissional. Nota-se, portanto, que apesar dos grandes investimentos em

conservação nos últimos 20 anos, o Brasil está nitidamente em uma fase de

implementação desse grande sistema de proteção ainda não consolidado.

Outro componente importante para o desenvolvimento sustentável da região

amazônica é o desenvolvimento científico. Nos últimos vinte anos o número de

Anexo 1

174

estudantes de pós-graduação de universidades baseadas na Amazônia saltou de 214

para 2154 por ano, representando mais de 1000% de aumento. Isso reflete também

na produção acadêmica que passou de 471 para 2776 artigos publicados todos os

anos. Indiscutivelmente, a exploração sustentável dos recursos naturais e o

desenvolvimento científico estão substancialmente interligados. Além disso, muitos

desses estudantes acabam ocupando importantes posições em institutos de

pesquisa, ONGs e agências governamentais, contribuindo com o desenvolvimento da

região como um todo. A manutenção e fixação desse distinto recurso humano deveria

ser prioridade em qualquer governo que preze pelo desenvolvimento sustentável.

Entretanto as últimas investidas governamentais têm caminhado para direções

completamente opostas ao desenvolvimento equitativo e sustentável. No Estado do

Amazonas por exemplo, as últimas decisões políticas tem sido catastrófica para a

conservação da biodiversidade e manejo dos recursos naturais. Primeiramente, a

secretaria de ciência, tecnologia e inovação (SECTI) foi dissolvida, prejudicando

severamente o desenvolvimento científico, uma vez que grande parte do

financiamento científico é feito via secretaria. Segundo, o departamento de manejo

de áreas protegidas e mudanças climáticas foi extinta. Esse corte massivo em

recursos financeiros e humanos pode colapsar todo o sistema de gestão das áreas

protegidas, uma vez que essas áreas ainda não estão devidamente implementadas.

Os investimentos em conservação e gestão de áreas protegidas foram cortados em

cerca de 88%, deixando todo o sistema à minguas.

Para piorar a situação, o atual governo planeja ligar o que sobrou do

departamento de gestão de áreas protegidas ao departamento de produção. Essa é

uma estratégia maquiavélica de eliminar a autoridade do setor, subordinando-o às

Anexo 1

175

demandas produtivas do Estado, as quais muitas vezes vão de encontro aos objetivos

conservacionistas.

A justificativa superficial do governo é a redução de custos. No entanto, por

trás das justificativas econômicas, essas reformas refletem o paradigma operacional

do governo federal, que é o crescimento econômico independentemente dos custos

socioambientais. Em março do ano passado o governo estadual materializou uma lei

(PL155/2015) dinamizando o licenciamento de grandes projetos de infraestrutura,

sem considerar as decisões das agencias ambientais que regulamentam esse tipo de

empreendimento. Sem o controle das normas socioambientais, grandes empresas

basicamente têm carata branca para implementar grandes projetos

desenvolvimentistas, sem se preocupar com os custos socioambientais envolvidos.

Isso é muito preocupante em um lugar onde são previstas as construções de 277

hidrelétricas, altamente questionáveis quanto a sua produção em detrimento aos altos

custos em relação à conservação da biodiversidade e bem-estar da população

ribeirinha.

Há também uma nítida investida governamental nos setores de exploração de

minérios, mesmo dentro de áreas protegidas, através da criação do departamento

estadual de mineração, geodiversidade e recursos aquáticos. E é bom ter em mente

que cerca de um quinto das áreas protegidas estabelecidas estão sob solo com alta

riqueza mineral, que já estão na mira das grandes mineradoras.

A ironia do fato é que se o governo planeja conter gastos, basicamente não há

justificativa para o grande incremento no número de funcionários contratados para o

gabinete do governador, o qual já é o maior em todos os tempos. Organizar o

calendário anual do governador do que para pensar o uso sustentável dos recursos

naturais no Estado político que controla a maior floresta tropical do planeta.

Anexo 1

176

A saga governamental em impulsionar a exploração econômica dos recursos

naturais sem o devido planejamento, seguido do rápido desmantelamento das

agências estaduais, sugerem que o brasil está reafirmando sua condição colonial pós-

moderna, onde os recursos naturais são explorados sem nenhuma restrição,

satisfazendo apenas demandas externas que não refletem as verdadeiras demandas

socioambientais.

Aparentemente, as novas trajetórias governamentais não contemplam em

suas metas a manutenção da diversidade cultural e biológica. Graças a uma série de

políticas questionáveis, o Brasil está entrando em tempos sombrios para a

conservação da Amazônia. É necessário que a sociedade se organize para rever o

projeto de país vigente, o qual está amplamente distante das bases do

desenvolvimento sustentável.

Anexo 1

177

Artigo 8

Comunidades ribeirinhas da Amazônia melhoram a qualidade de vida e

protegendo a biodiversidade*

João Vitor Campos-Silva, Carolina Freitas & Carlos A. Peres

*Artigo a ser submetido para Ciência Hoje

As várzeas amazônicas são ambientes fantásticos onde uma diversidade

cultural impressionante divide espaço com uma biodiversidade exuberante. Esses

ambientes são sistemas sócio ecológicos, onde aspectos físicos, biológicos e sociais

interagem de forma complexa. Comunidades humanas, por exemplo, dependem

diretamente dos benefícios ofertados pela natureza, como animais de caça, pescado,

produtos oriundos do extrativismo, dentre outros. Essa dependência atinge várias

esferas, pois além da comida a natureza fornece entretenimento, espiritualidade, cura

para doenças e muitos outros tipos de relações. No entanto, como todos os sistemas

alagáveis de água doce no mundo, as várzeas amazônicas estão imersas em um mar

de ameaças.

Conservar e manejar adequadamente esses ambientes pode contribuir com a

conservação da biodiversidade, melhoria da qualidade de vida dos povos tradicionais

Os ambientes de água doce correspondem à apenas 0.8% da

superfície terrestre. Mesmo com essa baixa

representatividade, foram fundamentais para o

desenvolvimento das grandes sociedades humanas. Com a

população mundial perto de sete bilhões de pessoas, esses

ambientes aquáticos se tornaram os mais ameaçados do

mundo, com taxas de extinção substancialmente maiores

que os ambientes terrestres.

Anexo 1

178

e ainda reduzir a pobreza dessa população, que muitas vezes, estão à margem das

políticas públicas. No entanto, essa não é uma tarefa fácil, uma vez que esses

ambientes são extremamente complexos. Uma das ferramentas amplamente utilizada

é a criação de áreas protegidas.

As áreas protegidas vem sendo uma ferramenta bastante eficaz em muitos

países na contenção de desmatamento, conservação da biodiversidade, manutenção

de serviços ambientais, aumentar a captura de pescado de pescadores artesanais

dentre outros benefícios. No entanto, a ampla maioria das áreas protegidas foram

pensadas para suprir demandas da ecologia terrestre. Os ambientes aquáticos

continuam sendo os mais ameaçados e os mais negligenciados em todo o mundo.

Além disso, o contexto político atual não é propício para a criação de novas

áreas protegidas. Pois, antes de criar novas áreas, deve-se implementar as já

As áreas protegidas foram criadas com a grandiosa missão de

preservar e conservar a diversidade biológica e os recursos naturais

associados a ela. As unidades de desenvolvimento sustentável compõem

uma categoria de área protegida que permite diferentes tipos e

intensidades de manipulação humana. O mapa a baixo mostra as áreas

protegidas existentes na Amazônia brasileira.

Essas reservas abrigam as chamadas “populações tradicionais” que ainda

mantém uma forte relação com a terra, apresentando, muitas vezes, um

modelo de subsistência, quanto à ocupação do espaço e uso dos recursos

naturais.

As áreas

protegidas reservadas ao

desenvolvimento

sustentável correspondem

a 61,6% de todas áreas

protegidas do mundo. No

Brasil, a grande maioria

das Unidades de

desenvolvimento

sustentável (cerca de 99%

em área) encontra-se na

Amazônia.

Anexo 1

179

existentes. No Estado do Amazonas por exemplo, as áreas protegidas estaduais

possuem uma média de apenas 0.38 funcionários trabalhando diretamente em cada

área protegida. Além disso, a insuficiência orçamentária não permite que novas áreas

protegidas sejam criadas e implementadas para frear as ameaças que pairam sob os

ambientes aquáticos da Amazônia. Assim urge a necessidade de novas ferramentas

de conservação, que seja sedimentada na conservação da biodiversidade e na

melhoria da qualidade de vida dos povos locais

Uma alternativa que tem sido implementada em todo o mundo em muitos tipos

de ambientes é a conservação de base comunitária. Nesse modelo as populações

locais assumem um papel chave na estratégia de conservação. Isso é importante

basicamente por dois grandes motivos: geração de renda e novas oportunidades no

nível local e descentralização da conservação. Estudos mostram que as chances de

resultados positivos advindos dessa abordagem são bastante altas. Nesse artigo

mostramos um exemplo fascinante onde comunidades ribeirinhas de várias

localidades do Amazonas estão recuperando a população do pirarucu e melhorando

a qualidade de vida.

O Pirarucu pode ser chamado de gigante vermelho das várzeas. Trata-se do

maior peixe de escamas do mundo, que pode atingir mais de 200 Kg e medir mais de

3 metros de comprimento. Devi ao alto valor nutricional de sua carne, alinhado ao alto

valor cultural de sua pesca, o pirarucu foi dizimado dos rios amazônicos, sendo extinto

em muitas localidades (Figura 1). Sua pesca foi proibida e sua história quase virou

lenda.

Anexo 1

180

Figura 1. Pirarucu oriundo do manejo e família de manejadores

Contudo, cerca de 15 anos atrás, pescadores ribeirinhos em parceria com o

governo e o Instituto Mamirauá iniciaram uma homérica jornada: recuperar as

populações de pirarucu, gerando renda para as comunidades locais. O sucesso da

atividade foi tão grande que a ideia se espalhou, e muitos rios da Amazônia estão

tendo o pirarucu de volta. Estudamos o manejo de pirarucu na região do médio rio

Juruá, onde dezenas de famílias estão manejando o pirarucu a conseguindo alcançar

resultados muito promissores.

O Médio Juruá é uma região bastante emblemática da Amazônia.Pode-se dizer

que a área vivenciou uma grande revolução social silenciosa, onde o comércio da

borracha impôs uma condição de semiescravidão à população ribeirinha, levando-a

à extrema pobreza. Com a organização social, decorrente sobretudo das ações do

movimento de base da igreja católica, a população local tomou consciência de seu

direito e investiu fundo na educação transformadora de seus jovens. Atualmente os

netos desses seringueiros conduzem projetos de desenvolvimento sustentável de

muito sucesso nas duas Unidades de Conservação criadas na área: a RESEX Médio

Juruá e a RDS Uacari.

Anexo 1

181

Essas comunidades se organizam em um acordo de pesca onde os lagos são

categorizados de acordo com seu nível de exploração: Há os lagos protegidos,

destinados à reprodução das espécies. Nesses lagos não ocorre pesca durante o ano

todo, mas em alguns deles – os chamados lagos de manejo – a pesca do pirarucu

ocorre uma vez por ano. Há também os lagos de subsistência, destinados à

manutenção das comunidades. Nesses lagos, apenas pescadores residentes nas

comunidades podem pescar. Por fim. Os lagos abertos, ou de livre acesso, são

aqueles onde a pesca profissional é permitida.

O efeito da proteção de lagos é impressionante. Em lagos protegidos a média

populacional de pirarucu é de 304 indivíduos, seguidos de 34 em lagos de

subsistência e apenas nove em lagos abertos. O sucesso dos lagos protegidos vem

levando a recuperação dos estoques de pirarucus, como atestam os dados de

contagem analisados desde 2008 e a percepção dos próprios comunitários. A figura

02 mostra as respostas de pescadores experientes, quando questionados se a

população de pirarucu cresceu, diminuiu ou manteve-se estável nos últimos 10 anos.

Mesmo considerando todas as variáveis importantes para o pirarucu a

proteção do lago explica a maior parte na variação da população. Grandes

populações de pirarucu só existem em lagos protegidos (Figura 02).

Anexo 1

182

Figura 2. Mapa esquemático mostrando o tamanho da população de pirarucu em lagos de diferentes classes de manejo

Mas como funciona o manejo?

Para manejar o pirarucu as comunidades devem proteger o lago durante o

período da seca e da vazante das águas. Nessa época é construída uma casa de

madeira na entrada do lago e as famílias revezam a proteção, permanecendo ali

cuidando do lago (Figura 04).

Figura 03. Desenho esquemático do sistema de proteção de lagos

Quando o lago está seco, um grupo de comunitários altamente treinados

realiza a contagem dos pirarucus. Esse método é possível oi os pirarucus,

Anexo 1

183

diferentemente da grande maioria dos peixes, respiram oxigênio. Portanto, ele deve

vir até a superfície do lago para pegar oxigênio. Nesse momento ele é contado (Figura

04)

Figura 04. Momento exato em que um pirarucu vem à superfície para respirar, possibilitando sua contagem.

Após a contagem, uma solicitação de cotas é enviada ao IBAMA que pode

liberar até 30% dos indivíduos adultos contador para o abate. Essa cota varia de

acordo com o tamanho populacional dos pirarucus e também com o nível

organizacional das comunidades. Por fim, com a cota em mãos, as comunidades e

os parceiros realizam a despesca e os pirarucus podem ser vendidos nas cidades

mais próximas e nas grandes cidades.

Efeitos indiretos do manejo do pirarucu

Produtividade primária

O pirarucu adulto se alimenta predominantemente de peixes, exercendo uma

forte pressão em toda a fauna de peixes presente nos lagos. Esse fato pode alterar

toda a dinâmica trófica do sistema.

Analisando lagos protegidos e não protegidos encontramos um resultado

bastante interessante – Em lagos com grandes populações de pirarucu a

Julia Verba

Anexo 1

184

produtividade primária do sistema tende a ser menor. Isso pode ocorrer como produto

de um mecanismo biológico denominado cascata trófica.

Em lagos protegidos, onde o pirarucu está presente em grande número, há

uma forte pressão de predação em espécies de peixes que se alimentam do

zooplâncton. Dessa forma, ocorre uma redução na população desses peixes e um

aumento na biomassa de zooplâncton, por conseguinte. O grande número de

zooplâncton aumenta a pressão de forma considerável no fitoplâncton. Como

resultado temos uma biomassa menor de fitoplâncton realizando a produção primária

em lagos protegidos (Figura 05).

Figura 05. Desenho esquemático da hipótese da cascata trófica, onde a presença de pirarucus exerce uma grande pressão nos elos inferiores da teia alimentar.

Em lagos desprotegidos o mesmo mecanismo ocorre de forma inversa. Em

lagos com números baixos de pirarucus ocorre um grande aumento de peixes que se

alimentam do zooplâncton, o que reduz as populações desses microrganismos. Com

a redução do zooplâncton ocorre uma explosão na biomassa do fitoplâncton, como

mostra a figura 06.

Lagos protegidos

Anexo 1

185

Figura 06. Desenho esquemático mostrando o inverso da hipótese da cascata trófica. Nesse modelo a remoção de pirarucu afeta de modo diferente a teia alimentar.

Esse fato é bastante interessante pois o fitoplâncton é a base energética de

toda a teia alimentar do sistema. Assim, os lagos sem proteção podem suportar uma

grande produção de peixes que se alimentam de fitoplâncton. Essas espécies de

peixes são muito importantes, pois compõem a maior parte da dieta de subsistência

das populações ribeirinhas.

Zooplâncton – Microrganismos que vivem nos lagos. São considerados

consumidores pois não produzem seu próprio alimento.

Fitoplâncton – Microalgas responsáveis por parte da produção primária dos

lagos. O fitoplâncton também serve de alimento para muitas espécies de

peixes.

Anexo 1

186

Jacarés e tartarugas

Outro fato bastante

positivo do manejo do

pirarucu é que ele

funciona como uma

espécie guarda-chuva.

Isso quer dizer que sua proteção também beneficia muitas outras espécies que

compartilham o mesmo habitat. É o caso da tartaruda da Amazônia (Podocnemis

expansa), do jacaré- Açú (Melanusuchus niger) e de outras espécies de peixes de

alto valor econômico, como é o caso do tambaqui (Colossoma macropomum).

Aves aquáticas

As aves existentes nesses ambientes alagáveis são organismos com alta mobilidade

que exploram grandes áreas em pouco tempo. A decisão de onde fazer uma parada

envolve diversos fatores, como a paisagem em que o lago está inserido, a

morfometria dos lagos, profundidade, atributos físico-químicos, tipo de água e

diversidade de hábitats.

Além dessas variáveis conhecidas, encontramos que as grandes populações

de pirarucus em lagos de manejo influenciam negativamente alguns grupos de aves

As aves aquáticas representam

um grupo bastante emblemático das

várzeas amazônicas. A diversidade de

comportamento, tamanho e coloração

fazem do grupo um grande atrativo nas

margens dos rios e lagos.

Anexo 1

187

piscívoras (Figura 07). De forma geral, aves piscívoras escolhem permanecer em um

lago de acordo com a transparência do lago (o que facilita a localização das presas),

o número de indivíduos de pirarucus (provavelmente por competição, já que o efeito

é negativo) e a profundidade do lago (lagos mais rasos facilitam as pescarias).

De forma geral, as aves que são influenciadas pelos pirarucus são as garças

grandes, socós e mergulhões. São grupos que consumem presas maiores e podem,

de alguma forma, competir com os pirarucus.

Figura 07. Variáveis que influenciam as aves piscívoras.

Benefícios socioeconômicos

Além dos benefícios ecológicos, o manejo do pirarucu assegura fortes

benefícios econômicos para as comunidades. Na realidade, os lagos protegidos estão

funcionando como verdadeiras poupanças bancárias, onde os comunitários podem

resgatar uma considerável renda anualmente. Isso é bastante importante nessas

regiões onde as oportunidades de renda são bastante raras. Destacamos, por

exemplo, dois casos que ocorreram ano passado onde o manejo do pirarucu

possibilitou que duas lideranças fossem levadas de avião para Manaus para tratar

Anexo 1

188

sérios problemas de saúde. Essa possibilidade era impensável décadas atrás, uma

vez que a população ribeirinha sempre esteve às margens de políticas públicas.

Quando questionados sobre os benefícios que o manejo trouxe, os

manejadores enumeram, além da renda anual, a auto estima, advinda do orgulho de

protagonizar uma atividade econômica em consonância com a legislação; a

possibilidade de manutenção cultural, uma vez que os jovens estão aprendendo com

pais e avôs toda a ciência da pesca do pirarucu; e também a distribuição de renda

mais equitativa, pois antigamente apenas os pescadores especializados no arpão

podiam fazer renda com o pirarucu, e após a implementação do manejo toda a

comunidade pode participar e usufruir da atividade.

Janela de oportunidades

Observamos então, que o manejo do pirarucu surge como uma grande janela

de oportunidades para integrar os dois grandes objetivos do milênio: conservação da

biodiversidade e melhoria da qualidade de vida da população rural. Nossos resultados

mostram que o manejo é uma grande ferramenta para geração de renda e

conservação da biodiversidade. Além disso, trata-se de uma excelente oportunidade

para aumentar o número de pessoas zelando pela biodiversidade amazônica, pois o

envolvimento das pessoas locais faz com que haja um aumento do cuidado com a

natureza, uma vez que os comunitários realmente protegem os lagos contra os

invasores.

Anexo 1

189

Artigo 9

Espécies guarda-chuva: O manejo da tartaruga da Amazônia garante a conservação de muitas outras espécies

João Vitor Campos-Silva, Carlos Peres, Joseph Hawes e Paulo de Andrade

*Artigo a ser submetido à Revista FAPESP

A tartaruga da Amazônia é um animal pré-histórico amplamente distribuído

pela bacia amazônica. Trata-se do maior quelônio de água doce brasileiro e um dos

maiores do mundo, podendo chegar a quase um metro de comprimento e pesar até

45 kg (Figura 1). Durante as épocas de seca, onde os rios atingem os limites mínimos

de inundação, as tartarugas desovam nas praias emergentes. Cada praia dessa, ou

tabuleiro como são chamados, recebem dezenas, centenas ou até milhares de

tartarugas que depositam seus ninhos construídos sob na areia.

Figura 1. Tartaruga da Amazônia em praia de desova

As tartarugas da Amazônia, juntamente com outras espécies como o tracajá e

o iaçá, representam um grupo de altíssimo valor cultural para a população ribeirinha

amazônica, pois sua carne é considerada uma incomparável iguaria. Essas espécies

de quelônios vêm sendo explorados desde épocas pré-colombianas, consolidando-

Anexo 1

190

se como uma importantíssima fonte proteica para as sociedades ribeirinhas e

ameríndias. Além da carne, os ovos possuem um valor nutricional impressionante e

é consumido pela população geralmente acompanhado de farinha açúcar, quando

chamado de arabu. Trata-se de algo equivalente a gemada, mistura feita com ovos

de galinha e açúcar bastante consumida na cidade.

Além da alimentação humana os ovos dos quelônios foram amplamente

explorados para iluminação pública e para confecção de manteiga. Estima-se que

milhões de ovos eram utilizados anualmente para iluminação pública das grandes

cidades amazônicas, Belém e Manaus. Diante dessa pressão drástica as populações

de tartaruga da Amazônia declinaram e desapareceram de muitos rios da Amazônia.

Com o objetivo de reverter esse processo de redução populacional,

comunitários organizados socialmente iniciaram um processo de proteção das praias

de desova, que tem por objetivo garantir a proteção das fêmeas adultas. Essa

iniciativa se espalhou para mais de 100 localidades e hoje se constitui na maior

ferramenta de conservação dos quelônios de água doce da Amazônia.

O Médio Juruá a proteção dos tabuleiros de desova se iniciou ainda nos

tempos dos patões da borracha, que protegiam a praia para ter o recurso em

abundância. Hoje ele ocorre de forma organizada em 14 praias protegidas, dentro de

duas Unidades de conservação, a RESEX Médio Juruá e a RDS Uacari.

Basicamente os protetores das praias, ou monitores como são chamados,

passam cerca de cinco meses por mês em uma casa de madeira em frente à praia

afastando qualquer pessoa que tente coletar os ovos ou as fêmeas (figura 2). É um

trabalho árduo, muitas vezes perigosos, pois a tartaruga tem um altíssimo valor no

comércio ilegal. Uma fêmea adulta pode ser vendida por até 1000 reais em Manaus.

Como benefício cada monitor recebe uma cesta básica por mês, durante o período

Anexo 1

191

que fica protegendo a praia.

Figura 2. Sistema de proteção construída em frente à praia de desova

Pode-se dizer que esses arranjos comunitários estão trazendo as tartarugas

de volta, pois em cerca de 30 anos de programa aproximadamente 2,5 milhões de

filhotes foram soltos na natureza. Segundo pescadores experientes a população de

tartaruga da Amazônia vem aumentando consideravelmente (Figura 3).

Figura 3. Mapa de percepção sobre a tendência populacional da tartaruga da Amazônia. Círculos verdes representam que a população está em crescimento; em amarelo indicam que a população está estável; e vermelho representam as populações em declínio.

O efeito da proteção comunitária é tão forte que apenas 2.1% dos ninhos são

roubados das praias protegidas, enquanto essa taxa é de 98% nas praias sem

Anexo 1

192

proteção. Portanto mesmo dentro de áreas protegidas de uso sustentável, as

iniciativas comunitárias são fundamentais e podem compor uma forte ferramenta que

assegura a reprodução dessa espécie tão apreciada e ameaçada.

Além das tartarugas muitas outras espécies se beneficiam da proteção das

praias. A gaivota, o corta-agua, o bacurau, peixes de couro, iguana, jacarés e até

mesmo grilos e formigas são exemplos de espécie que se beneficiam da proteção e

preferem ficar nas praias protegidas, onde também se reproduzem (Figura 4).

Amostramos todas essas espécies em 28 praias, sendo 14 protegidas e 14 não

protegidas. Para todos os grupos o efeito da proteção foi decisivo.

Figura 4. Aves que também se beneficiam da proteção de praias para os eventos reprodutivos.

Os benefícios ecológicos da proteção dessas praias de desova são drásticos

e os custos são relativamente baixos. Para proteger um filhote de tartaruga são gastos

cerca de 0.10 centavos de real, por exemplo. No entanto, a assimetria entre os

benefícios ecológicos e socioeconômicos são muito grandes. Todos os monitores

consideram que são pouco valorizados e completamente mal remunerados.

Basicamente os monitores clamam por benefícios econômicos além da cesta básica,

Anexo 1

193

pois segundo eles “um ser humano precisa de outras coisas na vida além de comida”.

Tal fato compromete a sustentabilidade do programa como um todo, pois se não há

um benefício socioeconômico claro o programa fica completamente vulnerável.

Apesar da insatisfação dos monitores em relação à valorização da atividade,

pode-se dizer que o programa é um verdadeiro sucesso em termos ecológicos. Trata-

se na verdade de uma grande janela de oportunidades para conservação da

biodiversidade aquática das várzeas amazônicas, uma vez que o beneficiamento da

proteção é engloba muitos grupos taxonômicos. O grande desafio futuro é beneficiar

economicamente o trabalho dos monitores, pois resolvendo a questão da geração de

renda, através da exploração sustentável ou do próprio pagamento por serviço

ambiental, o programa de proteção das praias de desova de tartarugas pode se tornar

um grande exemplo mundial de manejo de base comunitária.

194

Anexo 2 (Artigo 10)

Brazilian fisheries dipped in a sea of uncertainty*

João V. Campos-Silva, Carolina T. Freitas, Carlos A. Peres, Priscila F. M. Lopes

*Manuscrito a ser submetido à Fish and Fisheries, como uma carta de opinião

Brazil hosts one of the richest fish faunas on Earth, spread along 8400 km of

coastline and vast freshwater drainages. Currently, about 800,000 tons of wild fish are

caught annually in the Brazilian territory, providing high-quality protein for millions of

families, and employing over 3.5 million of people (FAO, 2014). Despite the scale of

this industry, the government is unable to produce reliable fishing statistics and the

official estimates available can be substantially off the mark.

In 2015 the Brazilian Federal Investigation Department (CGU) disclosed an

official report pointing out several irregularities within the Brazilian Ministry of Fisheries

and Aquaculture (MPA), including provision of false fisheries production data to the

Food and Agriculture Organization of the United Nations (FAO) and to the International

Commission for the Conservation of Atlantic Tunas (ICCAT) (CGU, 2015). Such

investigation was launched after a letter written by the MPA technical department,

which claimed the data was unreliable and based on poor technical-scientific

procedures. Such letter did not prevent the Brazilian fisheries statistics from being

generated.

Part of such unreliability is due to a total absence of a national fish landing

statistics program since 2010. Even before this program was put on a halt, there was

plenty of criticism regarding its quality and geographic coverage, punctuated by

numerous interruptions along the way, since it started in 1980. Scientists and

managers alike complained about the lack of training of the personnel working in the

Anexo 2

195

field and of local corruption. Many of the staff was from the places they were sampling,

which gave risen to suspicious that some of them were turning a blind eye on the catch

of certain species, even though the statistics program did not deal with any sort of

enforcement. Moreover, the geographic coverage tended to ignore most of the

artisanal fisheries, due to inaccessibility to many of the places where such fisheries

happen.

Ironically, when we see in retrospective, all such problems look now desirable,

as at least we had some data to criticize. For the last six years, we simply do not know

how much, where or how each fish species is being caught in Brazil. This scenario of

uncertainty does not look any promising, it could result in the collapse of stocks,

biodiversity loss and its associated ecosystem services, followed by a dramatic

dismantlement of local value chains, which is deeply associate to the poor. Some

researches already indicate that some stocks, target or bycatch species, have

collapsed or are on its way.

The Brazilian government urgently needs to get back on track of fisheries

sustainability, if we are to prevent larger losses of biodiversity and ecosystem services,

and their reverberating impacts on food, employment and income for millions of

people. We reinforce the urgent necessity to follow the guidelines present in the open

letter written by Brazilian organizations and fisheries specialists to the president Dilma

Rousseff, which mainly refers to re-establishing an effective fish landing statistics

program, increasing investment in applied research, establishing recovery plans for

overexploited stocks and increasing surveillance against illegal fisheries (Open letter,

2015).

Anexo 2

196

References

1. Food and Agriculture Organization of the United Nations. Fishery and

Aquaculture Country Profiles: The Federative Republic of Brazil.

http://www.fao.org/fishery/facp/BRA/en (2016).

2. Controladoria Geral da União. Relatório de Demandas Externas, número

00190.017846/2014-01. Available online in

http://sistemas2.cgu.gov.br/relats/uploads/6978_%20RDE%2000190.01784

6-2014-01%20-%20Pesca%20e%20Aquicultura%20-%20Bras%C3%ADlia-

DF.pdf ( 2014).

3. Open letter to the Brazilian President. Available online in

http://ciencia.estadao.com.br/blogs/herton-escobar/wp-

content/uploads/sites/81/2015/01/Carta-Aberta-a-presidenta-Ordenamento-

da-Pesca.pdf (2016).

197

Anexo 3

Além tese:

Ensinamentos caboclos para problemas também existentes na academia

O presente anexo é composto de seis pequenos contos sobre algumas

problemáticas que me acompanharam durante os 15 meses que passei em

campo, desenvolvendo esta tese de doutorado. Cada conto representa uma

pequena história, vivenciada com diferentes protagonistas, que com seus

trejeitos, comportamentos e sabedoria popular me ajudaram a refletir sobre

alguns temas inerentes ao ser humano e à nossa sociedade. Resolvi incluir esse

anexo na tese com o objetivo de trazer um pouco do dia a dia do trabalho de

campo para esse documento.

Talvez, também seja uma forma a mais de agradecimento à toda

sabedoria popular compartilhada pelo povo alegre, sofrido e digno da beirada do

rio. Para não citar nomes, chamarei todos os personagens de “Seu Gracias”, em

homenagem ao Gracias Pinto de Lima morador da comunidade do Tabuleiro -um

grande amigo que viveu a degradação humana causada pela exploração da

borracha e o ressurgimento da dignidade advindo do empoderamento das

comunidades tradicionais que povoam o vale desse rio impressionante.

Obrigado amigo Gracias. Seus ensinamentos farão sempre parte de mim.

Anexo 3

198

1. Sobre a solidão

Andava pensando muito sobre o efeito da solidão na condição humana.

Havia completado há pouco 160 dias morando no barco e, mesmo com os 3

companheiros de trabalho presentes na jornada, as vezes me percorria às veias

um sentimento de vazio, tristeza sem explicação.... Pensei estar em frente à tal

solidão.

Na lentidão do tempo, em uma manhã onde a neblina cobria o horizonte,

reencontrei um amigo que não via há cerca de dois anos. Ele é morador isolado

de um canto desses do Brasil onde o tudo e o nada podem ser exatamente a

mesma coisa, dependendo do estado de espírito de quem vê.

Seu Gracias, ao me ver, logo gracejou com seu jeito caboclo, carinhoso e

educado: " JB quanto tempo! Que bom lhe ver rapaz! Pois faz 15 meses que eu

não via ninguém! Nem uma alma penada que pudesse bater um papo!"

Eu em minha pueril ingenuidade logo pensei: “ave Maria, como deve ser

triste viver mergulhado na solidão! Dentre todos os sentimentos, a solidão deve

ser o mais avassalador. Ela mata devagar, como um gás fatal que se ancora em

Hugo costa

Anexo 3

199

cada espaço vazio de nossos alvéolos, nos conduzindo à fadiga e agonia”. Com

isso na cabeça, passei a observar a alegria que emanava de seu Gracias ao

contar suas peripécias aos outros companheiros.

Enquanto fitava o sorriso em seu semblante, comecei a pensar melhor as

entrelinhas de seu sorriso. Me lembrei de muitas viagens que fiz para chãos

despovoados, onde muitas pessoas vivem na mais sublime paz, mesmo

distantes de tudo. Percebi então, que na realidade, a solidão nada tem a ver com

reclusão social e falta de pessoas que possam estabelecer laços de amor ou

amizade. A verdadeira solidão ocorre quando nos perdemos de nós mesmo.

Quando nosso "eu" se desencontra o mundo desmorona. Tudo perde o sentido

e o vazio que se aloja no peito tem o peso do mundo.

Qualquer vida deve abarcar um sentido, por mais simples que ele seja.

Se perdermos esse sentido o nosso "eu" também se esvai. Por isso vemos

eremitas vagando em templos, florestas e desertos com o coração

transbordando de alegria e, ao mesmo tempo, vemos grandes legiões de

pessoas em megalópoles com milhares de amigos nas redes sociais, mas

padecendo na mais brutal solidão. Eles estão completamente sós no meio de

milhares.

Por isso, seu Gracias é tão feliz. Mesmo vivendo em reclusão, ele nunca

esteve realmente sozinho, pois o sentido de sua vida e sua própria companhia

sempre foram o bastante. Dar um sentido à vida é blindar-se frente à

solidão! Que tolo era eu ao pensar que a solidão era ausência de algo externo.

Quero mesmo é viver me encontrando para que eu nunca me perca de mim!

Anexo 3

200

2.Sobre a meritocracia

Seu Gracias é o maior pescador de pirarucu da região. Sua veia

naturalista é grandiosa como as grandes cheias que inundam toda a terra que

se pode ver. Seu sonho? Era ser biólogo, hora vejam vocês...

Em um dia chuvoso, estávamos no barco conversando sobre a vida dura

do pescador, quando de repente, ele me desabafa: “Poxa JB... voce é inteligente

né?! Só pode ser muito inteligente quem faz faculdade e depois esses estudo

que faz virá dotô... Queria muito ter nascido inteligente pra ser biólogo também.

Estudar as plantas os animais.....que coisa legal!”

Antes de lhe responder, uma tristeza aguda tomou meu corpo, fruto de

uma lembrança escondida nos recônditos de minha mente. Vou explicar

Hugo costa

Anexo 3

201

brevemente: Ulisses era o garoto mais inteligente de meu colégio e um de meus

melhores amigos. Compartilhávamos dentre tantas coisas, o sonho de ser

biólogo. Ulisses era brilhante e incomparável, não consigo me lembrar sequer

uma prova em que o menino não tivesse tirado nove ou dez. Já eu, com certa

inclinação à preguiça, nunca me afastei da média, nem para baixo nem para

cima. Todas as notas altas que tive não vieram sem as longas horas de bunda

na cadeira.

Mas havia outra diferença entre nós, que nunca foi notada por ser

absolutamente desprezível, mas que o tempo fez ganhar força a ponto de mudar

substancialmente nossos rumos: a mãe de Ulisses era a faxineira da escola,

enquanto a minha era uma comerciante com condições financeiras bem mais

altas. O fato é que Ulisses continuou na mesma (e precarizada escola), enquanto

meus pais, com muito suor, me mandaram para uma das melhores escolas da

região. Na época não haviam políticas sociais que pudessem fazer o menino

deslanchar nos estudos, e com 11 anos Ulisses se tornou um pintor de paredes,

profissão que exerce com muita dignidade e distinção até hoje. O sonho de ser

biólogo foi deixado para trás.

Ulisses era intelectualmente muito superior a mim. Não há como comparar

e não vejo motivos para me envergonhar disso, uma vez que a beleza do mundo

está nos diferentes saberes que cada um carrega consigo. Mas infelizmente,

Ulisses não teve a sorte que tive de nascer em uma família com mais dinheiro.

Não quero em momento algum reduzir os grandes esforços que fiz até hoje para

estar aqui escrevendo esse texto. Mas de fato, os calos nas mãos de meus pais

me abriram muito mais portas que minha parca inteligência.

Lembrar do Ulisses me faz brotar uma imensurável valentia para lutar

nesse mundo para que os Gracias desse país tenham mais oportunidades e

deixem de usar o lenitivo da inteligência para ocultar a brutal desigualdade que

destroça seus sonhos.

Olhando nos olhos do Gracias, olhos que almejam a inteligência (que eu

nunca tive) para se tornar um doutor, findei a conversa abrindo uma lata de

cerveja e brindando: “Que besteira Gracias, queria eu ser inteligente como o

senhor para saber onde jogar o arpão e acertar o lombo de um pirarucu,

garantindo a broca da minha família. Isso é que é ser inteligente rapaz! ”.

Anexo 3

202

3. Sobre a aplicabilidade (ou não) da Ciência

Fazer Ciência básica ou Ciência aplicada? É comum nos depararmos com

esse anseio pelo menos em alguma fase de nossa trajetória acadêmica. Já

pensei que a Ciência (e até mesmo a arte) deveriam unicamente servir para

solver as demandas de nossa sociedade. Pensava eu que a ciência deveria, em

primeiro lugar, atacar os grandes problemas do mundo, como a fome,

criminalidade, inequidade social, dentre tantos e tantos outros. Hoje acho isso

uma grande besteira! Mas essa conclusão começou com o canto de um sabiá,

durante o trabalho de campo do doutorado.

Tudo começou em uma manhã quente na comunidade do tabuleiro,

localizada no Juruá, um rio lindo, todo sinuoso que nasce nos Andes e corta o

coração da Amazônia. Ao chegar na comunidade, encontrei seu Gracias, caboclo

esperto e bonachão, sentado em baixo de uma estrondosa sumaúma. Logo lhe

Anexo 3

203

indaguei: “Eiii caboclo, que ta fazendo aí parado que nem tracajá? ” Ele com seu

sorriso padrão me replicou “ tô escutando meu amigo, só escutando”. Então ele

apontou para um sabiá que cantava uma melodia tão bonita que me fez sentar

para admira-la por longos 45 minutos. Aprendiz de ornitólogo que sou, logo

comecei a reparar na infinidade de cantos percorrendo os espaços daquela

várzea mansa. Então comecei a refletir sobre a natureza e, invariavelmente,

acabei chegando na ciência. E a “crise” do momento era Ciência básica x Ciência

aplicada.

Assim como a diversidade de cantos embeleza o mundo dos pássaros, a

diversidade de perfis embeleza o mundo dos homens. As pessoas são muito

diferentes, logo a criação humana, seja na arte ou na ciência, também será.

Acontece que muitos cientistas são completamente avessos ao convívio social.

Eles se deliciam na solidão de seus aposentos e suas habilidades são voltadas

unicamente para a produção de conhecimento básico. Sim, eles estão

preocupados com os pormenores das vias da ocitocina; com o tempo que o

elétron leva para mudar de camada; com os pósitrons gerados pela radiação

beta ou pelos íntros que possam interferir na duplicação do DNA. Essas pessoas

não devem carregar o fardo de terem que produzir algo de utilidade imediata

para a sociedade! O conhecimento humano não deve ser suprimido por uma

demanda contemporânea. Muitas vezes, a ciência básica de hoje pode ser a

necessidade do amanhã. Ciência e sociedade nem sempre estão no mesmo

tempo cronológico.

Lembro-me de uma passagem onde um matemático ganhou um alto prêmio

da rainha inglesa, por resolver uma equação que estava há décadas sem

resolução. Na entrega da premiação, a generosa rainha pergunta: "Meu nobre

senhor, acabaste de ganhar uma fortuna por resolver uma equação matemática.

Qual é a importância disso para o mundo?" De forma avassaladora o matemático

responde: "Querida rainha, qual é a importância de um bebê para o mundo?".

Essa resposta não seria tão genial se 20 anos depois essa equação não tivesse

sido fundamental no desenvolvimento do aparelho mais moderno para o

tratamento do câncer. Ora, qual é a importância de um bebe para o mundo? Ele

pode ser uma pessoa comum como nós, um Einstein, um Gandhi, um Mandela

ou um Hittler... Assim também acontece com a ciência básica, uma equação

hoje pode significar muita coisa no futuro.

Anexo 3

204

Já pensaram se Darwin estivesse preocupado em pesquisar algo útil para a

humanidade? Quem financiaria elucubrações de uma mente que buscava um

ancestral comum entre homens e macacos? Por outro lado, a teoria evolucionista

hoje estrutura todo o entendimento que temos da natureza e da vida. Se gostas

e és inclinado a fazer ciência básica, vá em frente! Ela é tão necessária quanto

a compreensão dos efeitos do aquecimento global sobre a produção de

alimentos! Tudo é uma questão de perfil, o que precisamos no fundo é mais

autoconhecimento, assim os espíritos irrequietos com a situação do mundo

poderão compreender os diferentes perfis que existem. É um barato encontrar

aqueles que se preocupam com o salto máximo que a musculatura da perna de

um gafanhoto pode proporcionar. Não há limites para a curiosidade humana!

A ciência deve ser livre! Muitas vezes os caminhos mais fantásticos não se

revelam de uma forma óbvia. As coisas nem sempre precisam de justificativas

para serem bonitas. Isso seu Gracias me mostrou com o canto daquele sabiá...

Anexo 3

205

4. Sobre bens materiais, dinheiro e felicidade

Tenho um grande amigo de longa data na cidade de Carauari, base de

onde partíamos para nossas aventuras no rio Juruá. Apesar de sermos

completamente diferentes, nutrimos um grande respeito um pelo outro. Num dia

desses de embriaguez desmedida, ele me indagou com seu olhar aristocrata:

"Como vocês podem ser felizes, pingando de lugar em lugar, sem adquirir bens

e estabilidade? Carro, casa, propriedades...Ave maria, como pode ser feliz

assim?"

Como estava sem tempo e paciência para uma resposta honesta fui me

embora para o rio, pois tinha muito trabalho a fazer mas fiquei de lhe escrever

sobre essa sua declaração indigesta. Quando anoiteceu, comecei a pensar um

pouco no assunto. No fundo acho muito triste quem vive a vida alimentando a

felicidade com bens. Ora, o alicerce é frágil de mais quando ancorado em objetos

externos. A felicidade só pode ser genuína e perene se vier de dentro para fora.

O contrário disso há de ser efêmero e passa mais rápido que o afago do vento.

Anexo 3

206

Esse tema foi discutido extensivamente pela filosofia e é impressionante

como é negligenciado pela maioria. Não se trata de negar o dinheiro, mas de

colocá-lo em seu devido lugar. Sabe como é?

A cada dia nos distanciamos da realidade em busca da externalidade

supérflua. Nesse momento, por exemplo, eu poderia estar imerso em meu laptop

ou celular, mas resolvi vir na proa do barco para sentir a brisa da noite que

refresca meu rosto após um dia de árduo trabalho. Estrelas muito brilhantes

rabiscam um céu negro e vagalumes sobrevoam a agua mansa que nasce na

floresta distante. Já reparou como isso é bonito?

Nas entrelinhas da natureza e dos pequenos acontecimentos diários

estão as respostas para perguntas complexas que acompanham desde sempre

a humanidade. E todo esse universo de reflexão e conhecimento lhe é gratuito.

Isso não te soa interessante?

Nesse instante percorre meu corpo um sentimento de felicidade tão

intenso que me faz pensar: Quanto dinheiro é necessário para isso? Qual a real

necessidade humana? O que realmente devemos buscar nessa vida?

Ora, tudo que acumulamos além do necessário é supérfluo e tem efeito

reverso. O mundo pode sustentar todas as nossas necessidades, mas jamais

poderia suprir toda nossa ambição material e cobiça. O telhado de sapê protege

da mesma forma que o de ouro, e se não proteger deve haver um meio termo

que nos satisfaça.

Obviamente não sou nenhum franciscano pós-moderno que anda pelas

ruas com a roupa do corpo pregando paz e amor. Pelo contrário, usufruo e

dependo do dinheiro. Ganho e gasto bastante. A questão, portanto, não é de

negação e sim de dominação. Quem é dominado por dinheiro padece de tristeza

em algum momento da vida. Exemplos não faltam de pessoas com a conta

bancaria cheia e os olhos vazios de tanta lágrima derramada. Afinal, as coisas

mais valiosas que adquirimos na vida estão muito longe da lógica da pergunta

feita pelo meu amigo. Bom mesmo é gastar nossas economias com o que nos

amplia os horizontes.

Não devemos cair no erro de vincular bens materiais e dinheiro à

felicidade. Corre o risco de chegar ao fim da vida com muitos bens e

pouquíssimas histórias para contar. E acredito que nossos netos irão nos cobrar

mais histórias que dinheiro.... Ninguém toma posse da felicidade. Ela é um

Anexo 3

207

estado de espírito que brota involuntariamente da nossa forma de enxergar o

mundo. Lembro-me do grande amigo Gracias quando eu perguntei qual era a

maior felicidade dele e ele me respondeu “Primeiro é acordar e ver que ainda

estou respirando, segundo é dar um beijo bem gostoso de bom dia na minha

véinha”.

5. Sobre a alteridade

Cinco da manhã e a canoa já deslizava igapó a dentro.... Na proa seu

Gracias fitava o vai e vem dos pirarucus nos primeiros raios de sol....De repente

ele desabafa: “E Jb.…O Homem é bicho ruim né...Como pode dizimar a

natureza? Fazer guerra? Matar índios? Veja, por exemplo, aquele pirarucu

macho com os filhotes que coisa linda.... Como posso julgar o amor daquele pai

menor que o amor que tenho pelos meus filhos? Como podemos passar por cima

de tudo isso sem se colocar no lugar das coisas? Acho que todos os problemas

do mundo se iniciam quando o ser humano pensa que uma vida tem mais valor

que outra”.

Hugo costa

Anexo 3

208

6. Sobre o tempo

Eu andava apressado e cansado na floresta densa enquanto pensava nos

30 anos que acabara de completar. Confesso que estava um pouco em crise

pois sentia que algumas coisas já não eram iguais há pouco tempo atrás...

Seu Gracias vinha vagarosamente atrás observando um grupo de macaco

de cheiro. Eu disse: “Ei seu Gracias você já se incomodou com o tempo? Tenho

a impressão de que ele tem passado rápido de mais...”

Gracias com seu jeito caboclo me responde: “Menino, o tempo é a maior

benção que pode existir...somente com o tempo é que podemos acumular

histórias, e essa é a graça da vida!!” Esbravejei um sorriso com a certeza de que

nesse instante minha relação com o tempo iria de mudar!

Continuou o matuto: “O tempo só é um problema, se passarmos a vida

em branco. Nos momentos finais da nossa existência deve ser agonizante olhar

para trás e não ver nada além de uma imensidão desértica. Aquela vida comum,

movida à trabalho e comida…sem experimentações, sem compartilhar alegrias,

Hugo costa

Anexo 3

209

sem ajudar o próximo, sem música, sem dança, sem amar (na maior concepção

possível de amor). ”

Cabra sábio esse seu Gracias! Quando vivemos acumulando histórias

para contar, construímos nosso navio para navegar em um sublime sentimento

de missão cumprida. Aí não importa se o tempo nos fez calvo, solteiro, fora dos

padrões da moda ou beleza. O importante é que não existe vazio em nosso

passado. Nossa passagem pela terra então, terá sido densa e totalmente

preenchida, com coisas que somente o tempo pode preencher! Realmente o

tempo está do nosso lado, ele é um grande presente absolutamente necessário

para justificarmos a sorte de ter experimentado esse fenômeno raro que é a vida.