Handbook of Water Analysis - Taylor & Francis

535
© 2011 Taylor & Francis Group, LLC THIRD EDITION

Transcript of Handbook of Water Analysis - Taylor & Francis

© 2011 Taylor & Francis Group, LLC

T H I R D E D I T I O N

© 2011 Taylor & Francis Group, LLC

CRC Press is an imprint of theTaylor & Francis Group, an informa business

Boca Raton London New York

T H I R D E D I T I O N

E D I T E D B Y

L e o M . L . N o l l e tL e e n S . P. D e G e l d e r

CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government worksVersion Date: 20130614

International Standard Book Number-13: 978-1-4398-8966-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

and the CRC Press Web site athttp://www.crcpress.com

v© 2011 Taylor & Francis Group, LLC

Contents

Preface ...................................................................................................................................................... ixEditors ....................................................................................................................................................... xiContributors ............................................................................................................................................xiii

Section I Sampling and Data Treatment Methods

1. Sampling Methods in Surface Waters ............................................................................................ 3Munro Mortimer, Jochen F. Müller, and Matthias Liess

2. Methods of Treatment of Data ...................................................................................................... 47Riccardo Leardi

Section II Radioanalytical Analysis

3. Radioanalytical Methodology for Water Analysis ...................................................................... 79Jorge S. Alvarado

Section III Organoleptical Analysis

4. Organoleptical Methodology ........................................................................................................101Abdul Moheman, Md. Musawwer Khan, and K. S. Siddiqi

Section IV Analysis of Biological Parameters

5. Bacteriological Analysis of Water ................................................................................................115Paulinus Chigbu and Salina Parveen

6. Marine Toxins Analysis ................................................................................................................153Luis M. Botana, A. Alfonso, M. R. Vieytes, N. Vilariño, A. M. Botana, C. Louzao, and C. Vale

7. Algal Analysis ................................................................................................................................163Leonardo Rubi Rörig

Section V Halogens, N-Compounds, and Phosphates

8. Halogens .........................................................................................................................................189Géza Nagy and Livia Nagy

9. Analysis of Sulfur Compounds in Water ................................................................................... 233Leo M. L. Nollet

vi Contents

© 2011 Taylor & Francis Group, LLC

10. Determination of Ammonia in Water Samples ......................................................................... 249Juliana Antunes Galvão, Alexandre Matthiensen, Marília Oetterer, Y. Moliner-Martínez, R. A. Gonzalez-Fuenzalida, M. Muñoz-Ortuño, R. Herráez-Hernández, J. Verdú-Andrés, C. Molins-Legua, and P. Campíns Falcó

11. Nitrites and Nitrates ..................................................................................................................... 283Adnan Aydın

12. Phosphates in Aquatic Systems ................................................................................................... 327Alexandre Matthiensen, Juliana Antunes Galvão, and Marília Oetterer

Section VI Cyanides, Asbestos, Metals, and Si-Compounds

13. Cyanides ........................................................................................................................................ 365Leo M. L. Nollet

14. Asbestos in Water ......................................................................................................................... 379James S. Webber

15. Heavy Metals, Major Metals, Trace Elements .......................................................................... 385Jorge E. Marcovecchio, Sandra E. Botté, Claudia E. Domini, and Rubén H. Freije

16. Determination of Silicon and Silicates ........................................................................................435Salah M. Sultan

Section VII Organic Parameters

17. Main Parameters and Assays Involved with the Organic Pollution of Water ....................... 459Lorena Vidal, Claudia E. Domini, and Antonio Canals

18. Determination of Organic Nitrogen in the Aquatic Environment .......................................... 493Juliana Antunes Galvão, Alexandre Matthiensen, and Marília Oetterer

19. Determination of Urea in Aquatic Samples ................................................................................511Juliana Antunes Galvão, Alexandre Matthiensen, and Marília Oetterer

20. Organic Acids ................................................................................................................................521Mercedes Gallego Fernández, Evaristo Ballesteros Tribaldo, and Beatriz Jurado Sánchez

21. Determination of Volatile Organic Compounds in Water ....................................................... 549Iván P. Román Falcó and Marta Nogueroles Moya

Section VIII Phenolic and Humic Compounds

22. Determination of Phenolic Compounds in Water ......................................................................613Leo M. L. Nollet

23. Characterization of Humic Matter ............................................................................................. 647Leo M. L. Nollet

viiContents

© 2011 Taylor & Francis Group, LLC

Section IX Residues of Pesticides

24. Determination of Pesticides in Water ......................................................................................... 665Evaristo Ballesteros Tribaldo

25. Analysis of Herbicide and Fungicide Residues in Waters ........................................................ 697N. Sridhara Chary, Maria Jose Gómez Ramos, and Amadeo R. Fernández-Alba

Section X Residues of PCBs, PCDDs, PCDFS, and PAHs

26. Analysis of PCBs in Waters ......................................................................................................... 765L. Bartolomé, O. Zuloaga, and N. Etxebarria

27. PCDDs and PCDFs ...................................................................................................................... 789Luigi Turrio-Baldassarri, Paola Pettine, and Laura Achene

28. Polynuclear Aromatic Hydrocarbons ......................................................................................... 807Chimezie Anyakora

Section XI Surfactants and Petroleum Hydrocarbon Analysis

29. Surfactants .................................................................................................................................... 825Eva Pocurull and Rosa Maria Marcé

30. Petroleum Hydrocarbon Analysis .............................................................................................. 845Iván P. Román Falcó

Section XII EDCs and Residues of Plastics

31. Endocrine-Disrupting Chemicals, Pharmaceuticals, and Personal Care Products .............. 871Dimitra A. Lambropoulou and Eleni Evgenidou

32. Residues of Plastics .......................................................................................................................917Dimitra A. Lambropoulou and Eleni Evgenidou

ix© 2011 Taylor & Francis Group, LLC

Preface

The Handbook of Water Analysis, Third Edition, strives to provide the most comprehensive text available in terms of the physicochemical and biological properties and analysis techniques of all types of water.

Organized in sections, most chapters cover the physical, chemical, and other relevant properties of a particular subset of water components, followed by a description of sampling, cleanup, extraction, and derivatization procedures, and concluding with detection methods. Earlier techniques that are still frequently in use are compared to recently developed protocols, and an outlook is provided on future trends. Figures are incorporated to provide procedure �ow charts and schematics concerning sampling or analytical devices. Numerous tables categorizing methods according to type of component, origin of the water sample, parameters and procedures used, and application range, facilitate the search for further references.

Section I of the book lays out two crucial aspects besides the actual analysis procedures. Sound scien-ti�c investigation starts with a sampling strategy designed to capture the real-world situation as closely as possible, and ends with an adequate chemometrical and statistical treatment of the acquired data.

Section II summarizes health and environmental problems due to radionuclides in water and presents new techniques for their determination.

Section III regarding organoleptical analysis of water acknowledges that ultimately the consumers of drinking water have the �nal vote over its quality regarding odor, �avor, and color.

Water houses many organisms, of which the smallest may cause illness and produce toxic substances. Section IV discusses bacteriological and algal analysis, as well as the occurrence and detection of marine toxins.

Sections V through XII encompass harmful or toxic components originating from domestic, agricul-tural, or industrial sources that can be found in different waters. Inorganic substances include nitrogen, sulfur, phosphate, silica, and halogenated compounds, cyanides, (heavy) metals, and asbestos. Organic compounds comprise organic nitrogen and acids, volatile and phenolic compounds, and humic mat-ter. The main groups of anthropogenic polluting compounds are discussed: pesticides, PCBs, PCDDs, PCDFS, PAHs, petroleum hydrocarbons, and surfactants.

Speci�c chapters in these sections are also dedicated to the challenging category of micropollut-ants, such as endocrine disrupting compounds, pharmaceutical and personal care products and plastic residues.

This book aims to be a reference work for anybody learning about or carrying out water analysis, from undergraduate and graduate students to scienti�c researchers and technicians in academic, governmen-tal, industrial, or nonpro�t sectors.

All contributors are international experts in their �eld of water analysis, whom we would like to thank cordially for all their efforts.

This book is dedicated to three granddaughters, Fara, Fleur, and Kato, and two grandsons Naut and Roel and two daughters, Hanne and Mona, for whom we wish that they can always enjoy fresh, clean water in their lifetime.

It is far more impressive when others discover your good qualities without your help.

— Judith Martin

xi© 2011 Taylor & Francis Group, LLC

Editors

Leo M. L. Nollet received an MS (1973) and a PhD (1978) in biology from the Katholieke Universiteit Leuven, Belgium. Dr. Nollet is the editor and associate editor of numerous books. He edited for Marcel Dekker, New York—now CRC Press of Taylor & Francis Group—the �rst, second, and third editions of Food Analysis by HPLC and Handbook of Food Analysis. The last edition is a three-volume book. He also edited the Handbook of Water Analysis (�rst and second editions) and Chromatographic Analysis of the Environment, third edition (CRC Press).

With F. Toldrá he coedited two books published in 2006 and 2007: Advanced Technologies for Meat Processing (CRC Press) and Advances in Food Diagnostics (Blackwell Publishing—now Wiley). With M. Poschl he coedited Radionuclide Concentrations in Foods and the Environment also published in 2006 (CRC Press).

Dr. Nollet coedited several books with Y. H. Hui and other colleagues such as the Handbook of Food Product Manufacturing (Wiley, 2007), Handbook of Food Science, Technology and Engineering (CRC Press, 2005), Food Biochemistry and Food Processing, �rst and second editions (Blackwell Publishing—Wiley, 2006 and 2012), and Handbook of Fruits and Vegetable Flavors (Wiley, 2010). He edited the Handbook of Meat, Poultry and Seafood Quality, �rst and second editions (Blackwell Publishing—Wiley, 2007 and 2012).

From 2008 to 2011 he published �ve volumes with F. Toldrá in animal products–related books: Handbook of Muscle Foods Analysis, Handbook of Processed Meats and Poultry Analysis, Handbook of Seafood and Seafood Products Analysis, Handbook of Dairy Foods Analysis, and Handbook of Analysis of Edible Animal By-Products. Also in 2011 with F. Toldrá he coedited two volumes for CRC Press: Safety Analysis of Foods of Animal Origin and Sensory Analysis of Foods of Animal Origin. In 2012 Nollet and Toldrá published the Handbook of Analysis of Active Compounds in Functional Foods.

Coediting with Hamir Rathore, the book Handbook of Pesticides: Methods of Pesticides Residues Analysis was marketed in 2009 and Pesticides: Evaluation of Environmental Pollution in 2012.

Other completed book projects are Food Allergens: Analysis, Instrumentation, and Methods with A. van Hengel (CRC Press, 2011) and Analysis of Endocrine Compounds in Food (Wiley-Blackwell, 2011).

Leen S. P. De Gelder is a professor of microbiology, biochemical technology, and environmental bio-technology at the Faculty of Bioscience Engineering of Ghent University, Belgium. Her main research interests include applied microbiology, microbial ecology, biodegradation and biological waste water treatment. She received her MS in bioengineering (2002) from the University of Ghent, Ghent, Belgium and her PhD in biology (2006) from the University of Idaho, Moscow, USA, and is the author or coauthor of several peer-reviewed articles and conference abstracts.

xiii© 2011 Taylor & Francis Group, LLC

Laura AcheneIstituto Superiore di SanitàRome, Italy

A. AlfonsoDepartment of PharmacologyCampus de Lugo, USCLugo, Spain

Jorge S. AlvaradoEnvironmental Science DivisionArgonne National LaboratoryArgonne, Illinois

Chimezie AnyakoraDepartment of Pharmaceutical ChemistryUniversity of LagosLagos, Nigeria

Adnan AydınDepartment of ChemistryMarmara UniversityIstanbul, Turkey

L. Bartolomé General Research ServiceUniversity of the Basque Country (UPV/EHU)Bizkaia, Spain

A. M. BotanaDepartment of Analytical ChemistryCampus de Lugo, USCLugo, Spain

Luis M. BotanaDepartment of PharmacologyCampus de Lugo, USCLugo, Spain

Sandra E. BottéArea de Oceanogra�a QuimicaInstituto Argentino de Oceanogra�a

(IADO-CONICET/UNS)Casilla de CorreoBahia Blanca, Argentina

Antonio Canals Departamento de Química AnalíticaNutrición y Bromatología e Instituto

Universitario de MaterialesUniversidad de AlicanteAlicante, Spain

N. Sridhara CharyIMDEA-Water (Madrid Institute for Advanced

Studies-Water) Cienti�co de la Universidad de AlcalaAlcalá de HenaresMadrid, Spain

Paulinus ChigbuDepartment of Natural SciencesUniversity of Maryland Eastern ShorePrincess Anne, Maryland

Claudia E. Domini Departamento de QuímicaUniversidad Nacional del SurBahía Blanca, Argentina

N. EtxebarriaDepartment of Analytical ChemistryUniversity of the Basque Country

(UPV/EHU)Biscay (Basque Country), Spain

Eleni EvgenidouDepartment of ChemistryAristotle University of ThessalonikiThessaloniki, Greece

Iván P. Román FalcóDepartment of Analytical Chemistry and

Food SciencesUniversity of AlicanteAlicante, Spain

P. Campíns FalcóDepartamento de Química AnalíticaUniversitat de ValenciaValencia, Spain

Contributors

xiv Contributors

© 2011 Taylor & Francis Group, LLC

Mercedes Gallego FernándezDepartment of Analytical ChemistryUniversity of CórdobaCórdoba, Spain

Amadeo R. Fernández-Alba IMDEA-Water (Madrid Institute forAdvanced

Studies-Water)Cienti�co de la Universidad de AlcalaAlcalá de HenaresMadrid, SpainandPesticide Residue Research GroupUniversity of AlmeríaAlmería, Spain

Rubén H. Freije Area de Oceanogra�a QuimicaInstituto Argentino de Oceanogra�a

(IADO-CONICET/UNS)Casilla de CorreoBahia Blanca, Argentina

Juliana Antunes GalvãoDepartment of Agri-Food IndustryUniversity of São PauloSão Paulo, Brazil

R. A. Gonzalez-FuenzalidaDepartamento de Química AnalíticaUniversitat de ValenciaValencia, Spain

R. Herráez-HernándezDepartamento de Química AnalíticaUniversitat de ValenciaValencia, Spain

Musawwer KhanDepartment of ChemistryAligarh Muslim University Aligarh, India

Dimitra A. LambropoulouDepartment of ChemistryAristotle University of ThessalonikiThessaloniki, Greece

Riccardo LeardiDepartment of PharmacyUniversity of GenovaGenova, Italy

Matthias LiessDepartment of System-EcotoxicologyUFZ-Helmholtz-Zentrum für Umweltforschung

GmbHLeipzig, Deutschland

C. LouzaoDepartment of PharmacologyCampus de Lugo, USCLugo, Spain

Rosa Maria MarcéDepartment of Analytical Chemistry and

Organic ChemistryUniversitat Rovira i VirgiliTarragona, Spain

Jorge E. MarcovecchioArea de Oceanogra�a QuimicaInstituto Argentino de Oceanogra�a

(IADO-CONICET/UNS)Casilla de CorreoBahia Blanca, Argentina

Alexandre Matthiensen Department of Agri-Food IndustryUniversity of São PauloSão Paulo, BrazilandEmbrapa-Brazilian Agricultural Research

CorporationEmbrapa Swine and PoultrySanta Catarina, Brazil

Abdul MohemanDepartment of ChemistryAligarh Muslim UniversityAligarh, India

Y. Moliner-MartínezDepartamento de Química AnalíticaUniversitat de ValenciaValencia, Spain

C. Molins-LeguaDepartamento de Química AnalíticaUniversitat de ValenciaValencia, Spain

Munro MortimerNational Research Centre for Environmental

ToxicologyThe University of QueenslandBrisbane, Australia

xvContributors

© 2011 Taylor & Francis Group, LLC

Marta Nogueroles MoyaDepartment of Analytical Chemistry and Food

SciencesUniversity of AlicanteAlicante, Spain

Jochen F. MüllerNational Research Centre for Environmental

ToxicologyThe University of QueenslandBrisbane, Australia

M. Muñoz-OrtuñoDepartamento de Química AnalíticaUniversitat de ValenciaValencia, Spain

Géza NagyDepartment of General and Physical

ChemistryUniversity of PécsPécs, Hungary

Livia NagyDepartment of General and Physical

ChemistryUniversity of PécsPécs, Hungary

Leo M. L. Nollet (Retired)University College GhentGent, Belgium

Marília Oetterer Department of Agri-Food IndustryUniversity of São PauloSão Paulo, Brazil

Salina ParveenDepartment of Agriculture, Food and Resource

SciencesUniversity of Maryland Eastern ShorePrincess Anne, Maryland

Paola PettineIstituto Superiore di SanitàRome, Italy

Eva PocurullDepartment of Analytical Chemistry and

Organic ChemistryUniversitat Rovira i VirgiliTarragona, Spain

Maria Jose Gómez RamosIMDEA-Water (Madrid Institute forAdvanced

Studies-Water)Cienti�co de la Universidad de AlcalaAlcalá de HenaresMadrid, SpainandPesticide Residue Research GroupUniversity of AlmeríaAlmería, Spain

Leonardo Rubi RörigDepartment of BotanyFederal University of Santa CatarinaSanta Catarina, Brazil

Beatriz Jurado SánchezDepartment of Analytical ChemistryUniversity of CórdobaCórdoba, Spain

K. S. SiddiqiDepartment of ChemistryAligarh Muslim UniversityAligarh, India

Salah M. SultanSamf Pharmaceutical Co, WLLTubli, Bahrain

Evaristo Ballesteros TribaldoDepartment of Physical and Analytical

ChemistryUniversity of JaénJaén, Spain

Luigi Turrio-BaldassarriIstituto Superiore di SanitàRome, Italy

C. ValeDepartment of PharmacologyCampus de Lugo, USCLugo, Spain

J. Verdú-AndrésDepartamento de Química AnalíticaUniversitat de ValenciaValencia, Spain

xvi Contributors

© 2011 Taylor & Francis Group, LLC

Lorena Vidal Departamento de Química AnalíticaUniversidad de AlicanteAlicante, Spain

M. R. VieytesDepartment of PhysiologyCampus de Lugo, USCLugo, Spain

N. VilariñoDepartment of PharmacologyCampus de Lugo, USCLugo, Spain

James S. WebberWadworth CenterNew York State Department of HealthAlbany, New York

O. Zuloaga Department of Analytical ChemistryUniversity of the Basque Country

(UPV/EHU)Biscay (Basque Country), Spain

© 2011 Taylor & Francis Group, LLC

Section I

Sampling and Data Treatment Methods

3© 2011 Taylor & Francis Group, LLC

1Sampling Methods in Surface Waters

Munro Mortimer, Jochen F. Müller, and Matthias Liess

CONTENTS

1.1 Introduction ...................................................................................................................................... 41.2 General Aspects of Sampling and Sample Handling ...................................................................... 5

1.2.1 Initial Considerations .......................................................................................................... 51.2.2 Spatial Aspects .................................................................................................................... 61.2.3 Temporal Aspects ................................................................................................................ 61.2.4 Number of Samples ............................................................................................................. 71.2.5 Sample Volume .................................................................................................................... 71.2.6 Storage and Conservation .................................................................................................... 7

1.2.6.1 Contamination...................................................................................................... 71.2.6.2 Loss ...................................................................................................................... 81.2.6.3 Sorption ................................................................................................................ 81.2.6.4 Recommended Storage ........................................................................................ 91.2.6.5 Quality Control in Water Sampling ....................................................................16

1.3 Sampling Strategies for Different Ecosystems ...............................................................................161.3.1 Lakes and Reservoirs .........................................................................................................161.3.2 Streams and Rivers .............................................................................................................17

1.3.2.1 Location of Sampling within the Stream ............................................................171.3.2.2 Description of the Longitudinal Gradient ..........................................................181.3.2.3 Temporal Changes of Water Quality ..................................................................181.3.2.4 Using Sediments to Integrate over Time ........................................................... 19

1.3.3 Estuarine and Marine Environments ................................................................................ 191.3.4 Urban Areas ....................................................................................................................... 201.3.5 Wastewater Systems .......................................................................................................... 21

1.4 Sampling Equipment ...................................................................................................................... 221.4.1 General Comments ............................................................................................................ 221.4.2 Manual Sampling Systems ................................................................................................ 22

1.4.2.1 Simple Sampler for Shallow Water .................................................................... 221.4.2.2 Sampler for Large Quantities in Shallow Water ................................................ 221.4.2.3 Simple Sampler for Deepwater .......................................................................... 221.4.2.4 Deepwater Sampler (Not Adding Air to the Sample) ........................................ 231.4.2.5 Deepwater Sampler for Trace Elements (Allowing Air to Mix

with the Sample) ................................................................................................ 231.4.3 Systems for Sampling the Benthic Boundary Layer at Different Depths ......................... 26

1.4.3.1 Deepwater (>50 m) ............................................................................................. 261.4.3.2 Shallow Water (<50 m) ...................................................................................... 26

1.4.4 Automatic Sampling Systems ............................................................................................ 261.4.4.1 Sampling Average Concentrations ..................................................................... 261.4.4.2 Sampling Average Concentrations: Sampling Buoy .......................................... 261.4.4.3 Event-Controlled Sampling of Industrial Short-Term Contamination .............. 271.4.4.4 Rapid Underway Monitoring ............................................................................. 27

4 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

1.1 Introduction

A U.S. Environmental Protection Agency (USEPA) wastewater sampling handbook published three decades ago lists four basic factors that affect the quality of environmental data—sample collection, sample preservation, analyses, and recording, and warns that improper actions in any one of these “may result in poor data from which poor judgements are certain” [1]. That advice is as relevant today as it was then—the quality of output from an environmental sampling project is limited by whichever is the weakest component—whether that occurs during sampling or analysis.

Progress in analytical protocols, including the development of new and more sophisticated tech-niques described elsewhere in this handbook, results in the taking of samples increasingly becoming the quality- determining step in water quality assessment [2,3]. Conclusions based on laboratory results from the most careful analysis of water samples may be invalidated because the original collection of the samples was inadequate or invalid. Poor sampling design or mistakes in sampling technique or sample handling during the sampling process inevitably lead to erroneous results, which cannot be corrected afterward [4–8]. For example, a recent review [9] found that in sampling from sources inherently vari-able in terms of �ow rate and contaminant concentrations, less than 5% of studies explicitly considered internationally acknowledged guidelines or methods for the experimental design of monitoring. Thus, owing to relatively long sampling intervals, potentially inadequate sampling methods, or insuf�cient documentation, it was unclear whether observed variations were actually “real” variations or merely sampling artifacts. Further, despite the critical role of an appropriate sampling protocol in ensuring good quality data, the review noted that in almost all papers, the descriptions of analytical methods usually extended over several paragraphs and up to several pages, but sampling methodology was covered in one or two sentences, with justi�cation for choice of protocol generally more implicit than explicit.

The objective of this chapter is to describe and discuss methods for environmental sampling in surface waters (lakes, rivers, and the marine environment). This aspect of sampling is of major importance in view of the increasing concern about environmental contamination and its correct description and moni-toring. Conventional methods used for sampling solid material differ considerably and are not covered in this chapter. However, where appropriate, a short discussion of sampling of suspended particulates (mineral or organic sediments) is included. These water-associated solids are of great importance for the less water-soluble chemicals (like many insecticides) since such chemicals are dynamically distributed between the small suspended particles and the water phase.

One of the basic problems of environmental water analysis is that, generally, it must be carried out with selected portions (i.e., samples) of the water of interest, and the quality of this water must then be inferred from that of the samples. If the quality is essentially constant in time and space, this inference would present no problem. However, such constancy is rare if ever observed in the real world; in most circumstances, virtually all waters show both spatial and temporal variations in quality. It follows that the timing and choice of location for taking water samples must be chosen with great care. Also, since an increase in the number of sampling locations and sampling occasions increases the cost of the mea-surement program, it is important to attempt to de�ne the minimal number of sampling positions and occasions needed to provide the desired information.

1.4.4.5 Event-Controlled Sampling: Surface Water Runoff from Agricultural Land ................................................................................................................... 291.4.4.6 Other Considerations Regarding Automatic Sampling Equipment ................... 30

1.4.5 Extraction Techniques ....................................................................................................... 321.4.5.1 Liquid–Liquid Extraction of Large Volumes .................................................... 321.4.5.2 Solid-Phase Extraction Techniques ................................................................... 321.4.5.3 Passive Sampler Devices .................................................................................... 35

1.4.6 Concentration of Contaminants in Suspensions and Sediment ........................................ 391.4.6.1 Suspended-Particle Sampler for Small Streams ................................................ 39

Acknowledgment ..................................................................................................................................... 42References ................................................................................................................................................ 42

5Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

The whole process of analyzing a material consists of several steps: sampling, sample storage, sample preparation, measurement, evaluation of results, comparison with standards or threshold values, and assess-ment of results. This chapter is concerned with sampling strategy, storage of samples, and sampling equip-ment. Further steps will be described and discussed in the following chapters on speci�c chemical groups.

Section 1.2 focuses on some general aspects of sampling design and some characteristics of the sub-stances to be sampled and analyzed, since properties such as degradation or sorption that may occur after sample collection can substantially affect the results. Section 1.3 gives an overview of sampling strategies in different ecosystems. The temporal and spatial scaling of sampling depends to a great extent on the ecosystem under study and on the question being addressed by the study. Finally, Section 1.4 describes some types of sampling equipment and their speci�c properties. This part covers general methods as well as speci�c methods like deepwater sampling, event-controlled sampling, large-volume sampling, and time-integrated (passive sampling) methods.

1.2 General Aspects of Sampling and Sample Handling

1.2.1 Initial Considerations

It can be said that there are as many approaches to sampling as there are possible moves in a chess game. First, the situation to be assessed must be accurately de�ned. Then, an appropriate sampling design should be chosen on the basis of temporal and spatial processes of the part of the ecosystem under inves-tigation to ensure that the samples are truly representative of the system from which they are taken. This is a prerequisite to providing meaningful analytical results. Handling, preservation, and storage of the samples should be adapted to the properties of the chemicals of interest and the effort invested should be optimized to obtain the necessary information with such resources as are available. To achieve these objectives, the following considerations are useful (Figure 1.1).

Define time and frequencyof sampling

Define objectivesand accuracy required

Define locationsof sampling

Choose analytical methods,sampling volume

Choose sampling methods

Define sample stabilizationand transport

Define analytical procedures

Interpretation on the basis of–assessed accuracy

–sampling design (arrows)

FIGURE 1.1 Initial considerations for planning and carrying out sampling procedures.

6 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

1.2.2 Spatial Aspects

Sampling for quality control of material in the metal or food industry normally follows statistical approaches to ensure that relatively small subsamples will be representative of the material as a whole. Although simi-lar requirements exist for environmental sampling, the principal difference is that spatial variation is gener-ally very much greater in the case of environmental contamination. Currents in �owing water and marine ecosystems must be considered. Very often, strati�cation crucially affects the distribution of substances of interest, especially in lakes (see Section 1.3.1). The chosen locations for environmental sampling must be related to the expected sources of contamination, for example, different distances downstream of a sewage ef�uent discharge point. A detailed description and understanding of the exact sampling site (locational coordinates, longitudinal gradient, lateral gradient, depth, water level, and distance to possible sources of contamination) is a basic requirement of designing an adequate sampling program.

1.2.3 Temporal Aspects

The temporal pattern of sampling is of great importance if the environment to be sampled shows changes over time, for example, river systems within minutes or hours, or lakes within days or weeks. The sched-ule of the sampling program depends mainly on the expected temporal resolution of changes in the envi-ronment. In governmental programs for monitoring wastewater-treatment ef�uents, sampling around the clock may be required to determine whether control variables have been met or exceeded.

A single sample gives only a snapshot of the situation, and the power and reliability of the results are normally low and depend strongly on the background data and additional information available. However, the advantage is that often the equipment necessary for this type of sampling is very simple and inexpensive.

If many samples are taken over a period of time, it is often appropriate to match the sampling rate to the expected pattern of variation in the environment. For example, to detect peak concentrations during short-term changes of water quality, event-controlled samplers are useful. When it is necessary to quan-tify a contaminant load, discontinuous sampling systems may be needed. Various types of discontinuous sampling that are of special importance for quality control purposes and for automatic wastewater sam-pling in accordance with international standards (ISO 5667-10) are illustrated in Figure 1.2. If sampling is time proportional, then samples containing identical volumes are taken at constant time intervals. In discharge-proportional sampling, the time intervals are constant but the volume of each sample is

Q

t

Q

tTime proportional

Q

tDischarge proportional

Q

tQuantity proportional

FIGURE 1.2 Different types of discontinuous sampling.

7Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

proportional to the volume of discharge during the speci�c time interval. In quantity-proportional sam-pling (or �ow-weighted sampling), the volume of each sample is constant but the temporal resolution of sampling is proportional to the discharge. The last type is event-controlled sampling, which depends on a trigger signal (e.g., discharge threshold), which is discussed in Section 1.4.5.

In addition to single and discontinuous sampling, continuous sampling and determination of analyti-cal values is desirable in some cases. An example is the quality control for a very complex ef�uent with unpredictable temporal changes in composition that are not linked to possible trigger variables like discharge or temperature. For this purpose, automatic sampling and in some cases automatic analyzing units are useful. The expenditure of time and money is in general considerably higher for this type of sampling and cannot always be justi�ed.

Another important type of sample is a composite sample generated by mixing several single samples, or a composite of samples accumulated during an automatic sampling program. Composite samples can also be generated by mixing discontinuous samples collected according to any of the types discussed previously and depicted in Figure 1.2.

1.2.4 Number of Samples

The number of samples required depends on the problem to be addressed. If an average concentration is to be obtained from several samples, a general calculation of the necessary number of samples N can be done using the following equation:

N

Sxd

=

42

where S is the estimate of standard deviation of the arithmetic mean of all single samples, x is the estimate of arithmetic mean of all single samples, and d is the tolerable uncertainty of the result, for example, 20% (d = 0.2).

If peak concentrations are to be quanti�ed, the number of samples depends on the speci�c problem.

1.2.5 Sample Volume

The appropriate sample volume depends on the elements or substances required to be analyzed on their expected concentration in the sample and on the required quanti�cation limits. For trace metal analyses, sample volumes of about 100 mL are suf�cient in most cases. For the analysis of organic chemicals (e.g., pesticides), 1 L samples are commonly used. A 3 L sample volume has been suggested for both �rst-�ush and �ow-weighted composite samples in the monitoring of storm water runoff from industries and municipalities [10]. Fox [11] described an apparatus and procedure for the collection, �ltration, and subsequent extraction of 20 L water and suspended-solid samples using readily available, inexpensive, and sturdy equipment. With this equipment, he obtained quanti�cation limits for several organochlorine (OC) substances at nanogram per liter levels.

1.2.6 Storage and Conservation

Samples that are not analyzed immediately must be protected from addition of contaminants, loss of determinants by sorption or other means, and any other unintended changes that affect the concentra-tions of determinants of interest. For this purpose sample bottles should be chosen for long-term storage with no or as few changes to sample composition as possible.

1.2.6.1 Contamination

An unintended contamination of samples can occur during the sampling process, either from external sources or from contaminated sampling or storage equipment. Normally, polyethylene or Te�on® bottles are used in inorganic, and glass or quartz bottles in organic trace analysis. Organic compounds have

8 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

been known to leach from the bottle material into the sample, react with the trace elements under study, and cause systematic mistakes. Such problems become very important at detection limits below the microgram per gram level.

Some publications recommend that each sample container should be rinsed two or three times with sample before �nally being �lled. However, this may lead to errors when undissolved materials, and perhaps also readily adsorbed substances, are of interest. It is suggested not to rinse containers with the sample when trace organic compounds are of interest [4], and in particular when sampling for determi-nants that adsorb to container surfaces.

Empirical studies have shown that poly(tetra�uoroethylene) (PTFE) and poly(vinylidene di�ouride) (PVDF) can be of varying purity, often resulting in unexpected contamination problems in ultratrace analysis, whereas per�uoroalkoxy (PFA) �uorocarbon proved to be cleaner by origin, and consequently, acidic washing processes could be successfully applied. These different �uorinated polymers have been compared regarding their suitability for container or sampler material [10]. It has been found that PFA exhibits the lowest nanoroughness and hence seems best suited as container material.

1.2.6.2 Loss

Loss during storage can result from biological processes, hydrolysis, or evaporation. Available proce-dures to reduce or prevent these loss processes include:

• Acidification to pH between 1 and 2: prevention of metabolism by microorganisms and of hydrolysis and precipitation

• Cooling and freezing: reduction of bacterial activity

• Addition of complexing substances: reduction of evaporation

• UV irradiation (together with addition of H2O2): destruction of biological and organic com-pounds to prevent complexation reactions

Loss of target elements can also occur due to volatilization. When contact of the sample with air is to be avoided (because it contains dissolved gases or volatile substances), sample containers or sample bottles should be completely �lled. Evaporation is a problem during storage of mercury under reducing conditions; other elements evaporate as oxides (e.g., As, Sb), halogenides (e.g., Ti, Cr, Mo), or hydrides (e.g., As, Sb, Se), or they are able to diffuse through the walls of plastic bottles. Volatilization is a special problem in the case of organic compounds like hydrocarbons or halogenated hydrocarbons.

1.2.6.3 Sorption

Sorption to the walls of sample bottles can reduce the concentration in the water phase considerably. Depending on the target substances, plastic or quartz bottles show the lowest adsorption and can, there-fore, be used for the storage of samples in aqueous solution. In general, the wall material of storage bottles can change over time and the potential for adsorption of target substances can increase consider-ably. In the case of many metals, this problem can be reduced by acidifying the sample.

The af�nity to glass and PTFE of selected OC, pyrethroid, and triazine pesticides at concentrations ≤0.25 μg L−1 has been described [11]. For the OC pesticides, the adsorption behavior correlates well with octanol–water partition coef�cients. For triazines, sorption to glass or PTFE is negligible, whereas for the pesticides α-BHC, lindane, dieldrin, and endrin are weakly adsorbed relative to DDT, DDE, TDE, permethrin, cypermethrin, and fenvalerate. Adsorption constants Ka (= amount of adsorbed pesticide per unit area of surface) have been calculated (Table 1.1) by these authors to quantify the sorption af�nity of the compounds on glass and PTFE:

Ka

Amount of sorbed pesticideper unitareaof surface,ngcmConce

=−2

nntration in aqueous solution ngcm, −3

9Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

As an example, the adsorption of fenvalerate on a Duran glass surface is calculated using the above equation: A bottle with a surface area of 325 cm2 contains 500 mL of an aqueous solution of fenvalerate. After 48 h under these circumstances, approximately 84% of the fenvalerate is adsorbed to the glass sur-face and only about 16% remains in solution, with the concentration in water reduced accordingly (e.g., from an initial concentration of 10 ng mL−1 in a 500 mL bottle, 4.2 ng are adsorbed and 0.8 ng stays in solution, a concentration of only 1.6 ng mL−1). For lindane and permethrin, 0.32% and 96%, respectively, of the chemical are absorbed to the glass surface after 48 h.

The role of �ltration of water samples at the time of collection and in relation to storage and preser-vation of the sample is often an important consideration. Many substances of interest may be present in a water sample in particulate as well as soluble form. Filtration removes particulate matter so that a decision on whether to �lter at the point of collection will depend on the objectives of the study. Another consideration relevant to �ltration and the possible presence of particulate matter are the effects on such matter of adding a sample preservative such as acid. Generally, it is a sound practice to �lter before add-ing a preservative that may solubilize particulate matter or leach contaminants from it.

In the case of water samples that contain microscopic cellular matter such as algae, the potential effects of �ltration, added preservatives, and freezing as a means of preservation, each need to be con-sidered. Filtration will remove microscopic cellular matter, and along with it determinants that may be relevant to the study. On the other hand, some preservatives, and certainly freezing, can cause cells to rupture and release materials that may be of relevance. Guidance to appropriate courses of action is provided in the section that follows.

1.2.6.4 Recommended Storage

For quality control and for the use of analytical results in forensic chemistry, national and international standardizations are necessary. Several international standards (ISO) have been de�ned for water quality sampling. These cover, among other topics, guidance on the design of sampling programs [12], sampling techniques [13], and the preservation and handling of water samples [14]. An alternative source of advice is a compilation of the USEPA’s recommended sampling and analysis methods, which also covers sample preservation, sample preparation, quality control, and analytical instrumentation [15–17].

Even if the above-mentioned conservation methods are used, the storage period for water samples is limited. Table 1.2, derived from the current (2003 edition) international ISO standard [14], gives an overview of recommended sampling and storage bottles as well as conservation methods and maximum storage periods for different determinants in the sample.

TABLE 1.1

Mean Values of the Distribution Coef�cient Ka Calculated for Duran Glass and PTFE Containers (48 h at 25°C) with the Associated Deviations (in Brackets) Appropriate to the Range of Concentrations Determined in the Solution

Duran Glass Surface PTFE Surface

Pesticide Ka (cm)Concentration

Range (ng mL−1) Ka (cm)Concentration

Range (ng mL−1)

α-BHC 0.014 (0.007) 0.05 0.036 (0.011) 0.01–0.04

Lindane 0.005 0.04–0.12 0.048 0.04–0.07

Dieldrin 0.027 (0.009) 0.17–0.19 0.093 (0.009) 0.11–0.15

Endrin 0.019 (0.006) 0.19–0.21 0.059 (0.005) 0.12–0.18

DDD 0.226 (0.053) 0.09–0.11 0.887 (0.087) 0.01–0.07

DDE 1.35 (0.38) 0.03–0.05 5.94 (1.35) 0.005–0.02

DDT 0.87 (0.25) 0.04–0.07 2.028 (0.116) 0.008–0.04

Permethrin 1.44 (0.30) 0.01–0.07 3.32 (1.68) 0.001–0.01

Cypermethrin 43.3 (16.8) 0.002–0.007 11.61 (5.97) 0.002–0.007

Fenvalerate 8.15 (2.48) 0.002–0.03 11.8 (3.99) 0.002–0.01

Source: From House, W.A. and Ou, Z., Chemosphere, 24, 819, 1992. With permission.

10 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

TABLE 1.2

Recommended Storage Containers for Water Samples, with Preservation Options and Maximum Recommended Periods for Storage Prior to Analysis

AnalyteContainer

(Capacity mL) PreservationMaximum Time Recommended Notes

Acidity, alkalinity and hydrogen carbonates

P G 500or C air24 h On-site analysis preferable,

particularly for samples high in dissolved gases. Preservation to 14 days feasible

Acidic herbicides 1000 + PTFEcap liner and leave air space

G HCl C 2 weeks Do not prerinse with sample (analytes absorb to glass) and extract both container and sample. If chlorinated see Note 1

Adsorbable organic halides (AOX) and organic chlorine

P G 1000or airHNO3 C5 days

1000P F 1 month

AluminiumG orPA 100or BGA HNO3

1 month

Ammonia, free or ionized

P Gor 500 CH2SO421 days Filter on-site before

preservation

P 500 F 1 month Filter on-site before preservation

Anions (Br, F, Cl, NO2, NO3, SO4, and PO4)

P Gor 500 C 24 h Filter on-site before preservation

P 500 F 1 month Filter on-site before preservation

Antimony100GAPA or HCl HNO3or 1 month HCl should be used if

hydride technique used for analysis

Arsenic500GAPA or HCl HNO3or 1 month HCl should be used if

hydride technique used for analysis

Barium PA BGA 100or HNO31 month Do not use H2SO4

Beryllium100GAPA or HNO3

1 month

Biochemical oxygen demand (BOD)

P Gor 1000 air C24 h

P 1000 F 1 month Feasible to store 6 months if frozen and BOD <50 mg L−1

Boron P 100 air1 month Feasible to store 6 months

Bromate, bromide and bromine compounds

P Gor 100 C 1 month

Bromine residual P Gor 500 C24 h Analysis should be completed

on-site within 5 min of sample collection

11Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

TABLE 1.2 (continued)

Recommended Storage Containers for Water Samples, with Preservation Options and Maximum Recommended Periods for Storage Prior to Analysis

AnalyteContainer

(Capacity mL) PreservationMaximum Time Recommended Notes

Cadmium PA BGA 100or HNO31 month Feasible to store 6 months

Calcium and hardness

P Gor 100 HNO31 month

Carbamate pesticides

GS 1000 C 14 days If chlorinated, see Note 1

P 1000 F 1 month If chlorinated, see Note 1

Carbon dioxide P Gor 500 C air24 h Preferable to measure on-site

Carbon, total organic (TOC)

P Gor 100 H2SO4 C 7 days Acidi�cation with H3PO4 is suitable. If volatile organics suspected, do not acidify, and analyse within 8 hP 100 F 1 month

Chemical oxygen demand

P Gor 100 H2SO41 month Feasible to store 6 months

P 100 F 1 month Feasible to store 6 months

Chloramine P Gor 500 5 min Analyse on-site within 5 min of collection

Chlorate P Gor 500 C 7 days

Chloride P Gor 100 1 month

Chlorinated solvents

250 + head space vial with PTFE cap

G HCl

C air

24 h For purge and trap, HCl interferes. If chlorinated, see Note 124 h

Chlorine dioxide/residual

P Gor 500 5 min Analyse on-site within 5 min of collection

Chlorite P Gor 500 C5 min Analyse on-site within 5 min

of collection

Chlorophyll P Gor 1000 C24 h

1000P filter, and extract with hot ethanol

F1 month

1000P F* filter1 month

Chromium100GAPA or HNO3

1 month Feasible to store 6 months

Chromium (VI)100GAPA or C 24 h

Cobalt PA BGA 100or HNO31 month Feasible to store 6 months

Colour P Gor 500 C5 days

continued

12 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

TABLE 1.2 (continued)

Recommended Storage Containers for Water Samples, with Preservation Options and Maximum Recommended Periods for Storage Prior to Analysis

AnalyteContainer

(Capacity mL) PreservationMaximum Time Recommended Notes

Conductivity P BGor 100 C air24 h Analysis on-site preferable

Copper100GAPA or HNO3

1 month Feasible to store 6 months

Cyanide by diffusion at pH6

500P NaOHC 24 h

Cyanide easily liberated

500P NaOHC7 days Preservation only 24 h if

sulphide present

Cyanide, total500P NaOHC

7 days Feasible to store 6 months. Preservation only 24 h if sulphide present

Cyanochloride500P C 24 h

Fluorides200 not PTFEP 1 month

Hydrazine G 500 HCl24 h

Hydrocarbons and petroleum

GS 1000 HCl H2SO4or 1 month Bottle rinse solvent same as used for extraction. Do not prerinse bottle with sample (analytes absorb to glass)

Iodide G 500 C 1 month

Iodine G 500 C24 h

Iron (II) PA BGA 100or airHCl7 days

Iron, total PA BGA 100or HNO31 month

Kjeldahl nitrogen P BGor 250 H2SO41 month Feasible to store 6 months

250P F 1 month Feasible to store 6 months

LeadPA BGA 100or HNO3

1 month Feasible to store 6 months

Lithium250P 1 month

MagnesiumPA BGA 100or HNO3

1 month

ManganesePA BGA 100or HNO3

1 month

MercuryBGA 500 HNO3 K2Cr2O7

1 month K2Cr2O7 0.05% by �nal mass concentration

Monocyclic aromatic hydrocarbons

500 vials with PTFE-lined septum

G airH2SO4

7 days If chlorinated, see Note 1

13Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

TABLE 1.2 (continued)

Recommended Storage Containers for Water Samples, with Preservation Options and Maximum Recommended Periods for Storage Prior to Analysis

AnalyteContainer

(Capacity mL) PreservationMaximum Time Recommended Notes

NickelPA BGA 100or HNO3

1 month Feasible to store 6 months

Nitrate P Gor 250 C 24 h

P Gor 250 HCl 7 days

P 250 F 1 month

Nitrite 200GorP C 24 h Analysis preferably on-site. Feasible to store 2 days

Nitrogen total 500GorP H2SO41 month

500P F 1 month

Odour 500G C 6 h Qualitative test can be conducted on site

Oil and grease GS 1000 HClorH2SO41 month

Organotin compounds

500G C 7 days Extraction on site preferable

Oxygen (dissolved)P Gor 300 C air

4 days On-site measurement preferable

Permanganate index

500GorP H2SO42 days Analyse as soon as possible,

acid 8 mol L−1

500GorP C2 days Analyse as soon as possible

500P F 1 month

Pesticides, (organochlorine, organophosphate, organo-nitrogen containing)

GS 1000 – 3000 + PTFE cap liner andleave air space

C 5 days (for extract)

Do not pre-rinse container with sample (analytes absorb to glass). Extraction within 24 hours of sampling is desirable. If chlorinated, see Note 1

1000 – 3000 only for glyphosate

P

pH 100GorP airC6 h On-site measurement

preferable

Phenol index1000G

See comments 21 days CuSO4 to inhibit biochemical oxidation, and acidify to pH < 4 with H3PO4

Phenols BGS 1000 + PTFE cap liner and leave air space

See comments 3 weeks Do not prerinse container with sample (analytes absorb to glass). Acidify to pH < 4 with H3PO4 or H2SO4. If chlorinated, see Note 1

continued

14 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

TABLE 1.2 (continued)

Recommended Storage Containers for Water Samples, with Preservation Options and Maximum Recommended Periods for Storage Prior to Analysis

AnalyteContainer

(Capacity mL) PreservationMaximum Time Recommended Notes

Phosphorus and orthophosphates (dissolved)

BG orG 250or P C 1 month Filter on-site at the time of sampling, oxidising agents may be removed by addition of iron(II) sulfate or sodium arsenite prior to analysis

250P F 1 month

Phosphorus and orthophosphates (total)

BG orG 250or P H2SO41 month Filter on-site at the time of

sampling, oxidising agents may be removed by addition of iron(II) sulfate or sodium arsenite prior to analysis

250P F 1 month

Polychlorinated biphenyls (PCBs)

GS 1000 with PTFE cap liner and leave air space

C 7 days Do not prerinse container with sample (analytes absorb to glass). Extraction on-site is desirable. If chlorinated, see Note 1

Polycyclic aromatic hydrocarbons (PAHs)

GS 500 with PTFE cap liner

C 7 days Extraction on-site is desirable. If chlorinated, see Note 1

Potassium100P HNO3

1 month

Purgeables by purge and trap

100 with PTFE cap liner

G H2SO47 days If chlorinated, see Note 1

Feasible to store 14 days

Selenium100GAPA or HNO3

1 month

Silicates (dissolved)

200P C 1 month Filter on-site at the time of sampling

Silicates (total)100P C 1 month

Silver100GAPA or HNO3

1 month

Sodium 100GorP HNO31 month

Solids (suspended) 500GorP C 2 days

Sulfate200GorP C 1 month

Sul�de (easily liberated)

500P C air1 week Fix immediately on-site with

2 mL zinc acetate with 10% mass concentration. If chlorinated, add 80 mg ascorbic acid per 100 mL of sample

Sul�te 500GorP air2 days Fix on-site with 1 mL of 2.5%

by mass EDTA per 100 mL of sample

Surfactants and detergents (anionic)

500 + rinse with methanol

G C H2SO42 days Glassware should not be

detergent-washedSame sample can be used for nonionic

15Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

TABLE 1.2 (continued)

Recommended Storage Containers for Water Samples, with Preservation Options and Maximum Recommended Periods for Storage Prior to Analysis

AnalyteContainer

(Capacity mL) PreservationMaximum Time Recommended Notes

Surfactants and detergents (cationic)

500 + rinse with methanol

G C 2 days Glassware should not be detergent-washed

Surfactants and detergents (nonionic)

500G

+ see comments

airC1 month Glassware should not be

detergent-washed. Add 37% by vol. formaldehyde to give 1% by vol. solution

TinPA BGA 100or HCl 1 month

Total solids (total residues, dry extract)

100GorP C 24 h

Trihalomethanes 100 vials with PTFE septum

G airC14 days If chlorinated, see Note 1

Turbidity 100GorP C24 h On-site measurement

preferable

UraniumPA BGA 200or HNO3

1 month

VanadiumPA BGA 100or HNO3

1 month

ZincPA BGA 100or HNO3

1 month

P Plastic C Cool to 1–5°C

PA Plastic, acid-washed F Freeze to –20°C

GGlass F* Freeze to –80°C

GA Glass, acid-washed Exclude light (e.g., amber glass or wrap in foil)

GS Glass, solvent-washedair

Exclude air (e.g., �ll bottle to cap)

BGBorate glass HNO3

Acidify with nitric acid to pH 1–2

BGABorate glass, acid-washed H2SO4

Acidify with sulphuric acid to pH 1–2

BGSBorate glass, solvent washed HCl Acidify with hydrochloric acid to pH 1–2

NaOH Add sodium hydroxide to pH >12

Note 1. If sample chlorinated, add Na2S2O3 ⋅ 5H2O at rate of 80 mg per liter of sample.

K2Cr2O7Add potassium dichromate 0.05% by mass �nal concentration

Source: Consistent with ISO. Water quality—Sampling—Part 3: Guidance on the preservation and handling of samples. ISO 5667/3 2003.

16 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

1.2.6.5 Quality Control in Water Sampling

Each of the sample collection, sample handling, sample storage, and sample preservation steps should be validated to ensure positive or negative interferences with the determinants of interest are eliminated or at least reduced and quanti�ed. This involves the use of blanks (to determine possible additions) and ref-erence samples containing known levels of the relevant analytes (to determine losses and/or changes). In general, such blanks should accompany each batch of sample containers to a �eld sampling site, and be subjected to the same handling regime (e.g., opening, closure, preservation) as actual sample containers.

1.3 Sampling Strategies for Different Ecosystems

The strategy to be used in environmental sampling differs considerably depending on the details of the investigated ecosystem and the problems at issue. Hence, strategies can be described in relation to either the goals of the study or the ecosystems involved. In the following section, the different sampling strate-gies appropriate to the main types of ecosystem (still water, �owing water, estuarine or marine environ-ment) and their temporal and spatial scaling are discussed. In Section 1.3.4, considerations for sampling storm water runoff are used as an example of a sampling design speci�c to urban areas.

1.3.1 Lakes and Reservoirs

Often, a number of physical, chemical, and biological processes have to be considered as they may mark-edly affect water quality and its spatial variations. Sources of heterogeneity within a body of water that need careful consideration in selecting sampling sites are as follows:

• Thermal strati�cation, which leads to variations of quality in depth

• Effects of in�uent streams

• Lake morphology

• Wind

Any of these factors acting alone or in combination may produce both lateral and vertical heterogene-ity of water quality.

Some important topics relevant to the choice of sites for sampling are noted (e.g., Refs. [4,18]). It must be kept in mind that shallow and/or relatively isolated embayments of lakes and reservoirs may show marked differences in quality from the main body of water.

In water bodies of suf�cient depth in temperate climates, thermal strati�cation is often the most important source of vertical heterogeneity from spring to autumn (Figure 1.3). Measurement of dissolved oxygen and temperature is a convenient means of following the development of such strati�cation, and has the advantage that both measurements can be made automatically and continuously in situ.

Thermal strati�cation may retard the mixing of streams entering lakes or reservoirs. This important source of materials derived from the surrounding land consequently has to be sampled with due consid-eration of its spatial variability.

The number of algae in the surface layer of a water body may have a marked effect on the concentra-tions of nutrients and other substances: It is often not possible to measure any dissolved nutrients during algal blooms because all nutrients are bound in the algae. Therefore, the trophic status and spatial het-erogeneity in the distribution of algae should be considered while choosing a sampling site.

The choice of the correct sampling point can depend on the depth of a lake [19]. These authors have compared different water sampling techniques in a series of lakes. In deep lakes, they observed no signi�cant differences between mean summer nutrient concentrations measured in a tube sample integrating over the photic zone, taken from the deepest point, and a surface dip sample taken by wad-ing into the water’s edge. However, in shallower lakes, the integrating tube sampler gave signi�cantly higher estimates of mean concentrations than the other method due to the increase in volume of the unmixed hypolimnion, which reduced the depth of the well-mixed epilimnion to less than the tube

17Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

length. For national survey purposes, they suggested samples taken from the edge of the lake as the most cost effective.

1.3.2 Streams and Rivers

1.3.2.1 Location of Sampling within the Stream

Sampling locations especially in larger streams and rivers should, whenever possible, be at cross sections where vertical and lateral mixing of any ef�uents or tributaries is complete. To avoid nonrepresentative samples caused by surface �lms and/or the entrainment of bottom deposits, it has often been recommended that samples should, whenever possible, be collected no closer than 30 cm to the surface or the bottom [6].

Simple surface-grab procedures have been compared with more involved, cross-sectionally inte-grated techniques in streams [20]. Paired samples for analysis of selected constituents were collected over various �ow conditions at four sites to evaluate differences between the two sampling methods. Concentrations of dissolved constituents were not consistently different. However, concentrations of sus-pended sediment and the total forms of some sediment-associated constituents, such as phosphorus, iron, and manganese, were signi�cantly lower in the surface-grab samples than in the cross-sectionally integrated samples. The largest median percent difference in concentration for a site was 60% (total recoverable manganese). Median percent differences in concentration for sediment-associated constitu-ents considering all sites grouped were in the range of 20–25%. The surface-grab samples underrepre-sented concentrations of suspended sediment and some sediment-associated constituents, thus limiting the applicability of such data for certain purposes.

When the quality of river water extracted for a particular end use is of interest (e.g., the production of drinking water), the sampling point should, in general, be at or near the point of extraction. It must be noted, however, that changes in quality may occur between the actual point of extraction and the inlet to

O2

O2

O2

O2

Ice

4°C

20°C

4°C

Winter

Autumn

Summer

EM

H

Spring

FIGURE 1.3 Seasonal variation of oxygen and temperature within the different layers of a meso/eutrophic lake in temper-ate latitudes. E, epilimnion; M, metalimnion; H, hypolimnion.

18 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

the treatment plant. If the amount or time of extraction is to be controlled on the basis of the water qual-ity, an additional sampling location upstream of the extraction point will usually be needed, the distance upstream being dependent on the travel-time of the river, the speed with which the relevant analysis can be made, and the upstream locations of sources of the determinants. This is of course dif�cult to achieve. The need of an early warning system for drinking water purposes was emphasized by the Sandoz acci-dent in 1986, since which online biomonitors have been in place in the Rhine River [21].

1.3.2.2 Description of the Longitudinal Gradient

When the aim is to assess the quality of a complete stream, river or river basin, the number of potentially relevant sampling locations is usually extremely large. It is, therefore, usually necessary to assign differ-ent priorities to the various locations to arrive at a feasible sampling program [6,18]. Such considerations are very closely connected to the issue of sampling frequency, and a number of approaches for the overall design of sampling programs for river systems have been described [4]. The value of, and need for, iden-ti�cation of locations where quality problems are or may be most acute, have been stressed several times. These questions can be addressed with �xed-location monitoring and intensive, short-term surveys at selected locations for the routine assessment of rivers.

Water quality is usually monitored on a regular basis at only a small number of locations in a catch-ment, generally concentrated at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data that identify major sources and processes. For example, as part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km2 catchment in southeastern Australia, a “snapshot” of water quality was undertaken during stable summer �ow conditions. These low �ow conditions exist for long periods, so water quality at these �ow levels is an important constraint on the health of instream biological communities. Over a 4-day period, a study of the low �ow water quality characteristics throughout the Latrobe River catch-ment was undertaken. Sixty-four sites were chosen to enable a longitudinal pro�le of water quality to be established. All tributary junctions and sites along major tributaries as well as all major industrial inputs were included. Samples were analyzed for a range of parameters, including total suspended solid concentration, pH, dissolved oxygen, electrical conductivity, turbidity, �ow rate, and water temperature. Filtered and un�ltered samples were taken from 27 sites along the mainstream and tributary con�uences for the analysis of total N, NH4, oxidized N, total P, and dissolved reactive P concentrations. The data were used to illustrate the utility of this sampling methodology for establishing speci�c sources and estimating nonpoint source loads of phosphorus, total suspended solids, and total dissolved solids. The methodology enabled several new insights into system behavior, including quanti�cation of unknown point discharges, identi�cation of key instream sources of suspended material, and the extent to which biological activity (phytoplankton growth) affects water quality. The costs and bene�ts of the sampling exercise are reviewed in Ref. [22].

1.3.2.3 Temporal Changes of Water Quality

The discharge of streams in comparison with larger rivers is highly dynamic, depending mainly on local rainfall conditions and/or groundwater level [23]. It follows that the chemical composition of the stream water is profoundly in�uenced by the allochthonous input of water, nutrients, sediments, and pesticides. Two-thirds of the contamination of headwater streams with sediments, nutrients, and pesticides is caused by those nonpoint sources [24]. Substances with a high water solubility are introduced through soil �ltra-tion. Less water-soluble substances enter by way of the surface water runoff during heavy rains [25]. The total loss of a particular pesticide depends on the time period between application and the rain event, the pattern of precipitation, various soil parameters, and the physical and chemical properties of the pesti-cide. Consequently, streams with an agricultural catchment area are susceptible to unpredictable, brief pesticide inputs following precipitation [26,27].

To determine the in�uence of sampling frequency on the reliability of water quality estimates in small streams, a cultivated (0.12 km2) and a forested basin (0.07 km2) were studied in spring and autumn

19Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

[28]. During the 2-month spring season and 3-month autumn season, 97–99% of the annual loads of total nitrogen, total phosphorus, and suspended solids was acquired from the cultivated basin and 89%–91% from the forested basin. During the same seasons, 99% and 87% of the total annual runoffs were recorded in the cultivated and forested basins. This means that in only 5 months of the year more than 95% of the nutrient and water runoff occurred in the cultivated catchment, and about 90% in the forested catchment. Thus, the values of nonpoint loads, normally presented as annual means, can give a very misleading impression of the effects of nonpoint loading on watercourses, particularly in the case of relatively small streams.

The same author [28] estimated the number of samples needed to calculate the load of various sub-stances by varying the sampling frequency at the two sites. In the cultivated basin, the means of concen-tration data would be within ±20% of the mean of the whole data set in spring, if nitrogen and phosphorus samples were taken at least �ve times and suspended-solid samples at least three times monthly. In the forested basin, the corresponding sampling frequencies were twice monthly for nitrogen samples and four times monthly for phosphorus and suspended solids. In autumn, the concentration means in runoff waters would be within ±20% of the mean obtained using the whole data set if three samples per month were taken for nitrogen and phosphorus and �ve samples for suspended solids. In the forested basin the same deviation of the mean would be obtained with 1 nitrogen sample, 5 phosphorus samples, and 16 suspended-solid samples.

When intending to measure the peak concentrations of slightly soluble substances in streams within a cultivated watershed, it is necessary to use runoff-triggered sampling methods. A headwater stream in an agricultural catchment in northern Germany was intensively monitored for insecticide occurrence (lindane, parathion-ethyl, fenvalerate). Brief insecticide inputs following precipitation with subsequent surface runoff result in high concentrations in water and suspended matter (e.g., fenvalerate: 6.2 μg L−1, 302 μg kg−1). These transient insecticide contaminations are typical of headwater streams with an agri-cultural catchment area, but have been rarely reported. Event-controlled sampling methods for the deter-mination of this runoff-related contamination with a time resolution of as little as 1 h make it possible to detect such events [29].

Within monitoring programs, loading errors are generally associated with an inadequate speci�cation of the temporal variance of discharge and of the parameters of interest. Often little consideration is given to the impact of additional transport characteristics on contaminant sampling error and design. Detailed examination of �ve transport characteristics at a single river cross section emphasizes the importance of understanding the complete transport/loading regime at a sampling station, de�ning the required end products of the monitoring program, and de�ning the accuracy required to meet speci�c program needs before implementing or evaluating a monitoring program. River transport characteristics are: (a) con-taminant transport modes, (b) short-term temporal and seasonal variability, (c) the relationship between dissolved and particulate contaminant concentrations and discharge, (d) load distribution with sediment particle size, and (e) spatial variability in a cross section [30].

It is also worth noting that the procedure known as catchment quality control, though intended for a different purpose, includes the identi�cation of most important ef�uents entering a river system from a viewpoint of water quality [31].

1.3.2.4 Using Sediments to Integrate over Time

The analysis of river sediments has been suggested as a convenient means of reconnaissance of river systems to decide the locations where water quality is of particular interest with respect to pollutants.

1.3.3 Estuarine and Marine Environments

The potential spatial heterogeneity (lateral and vertical—both are time-dependent) of these bodies of water makes it essential that sampling locations be chosen with reference to the relevant basic processes [18]. Sampling of ocean waters and the handling of such samples have been described in general [5].

A well-known practical problem is the unintended contamination of samples by material released from the research vessel or by the sampling apparatus. A sampling apparatus for the collection and

20 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

�ltration of up to 28 L of water at sea has been designed to minimize possible contamination from both the equipment and the ship’s surroundings [32]. It was used in the analysis of chlorinated biphe-nyls (CBs), persistent OC pesticides, and pentachlorophenol (PCP), in both the aqueous and particu-late phases. The system is suitable for collection of estuarine and coastal waters where the levels of dissolved CBs, OCs, and PCP are above the limit of determination of 15 pg L−1. The ef�ciency of the recovery of these compounds and variance of the extraction and analysis have been estimated by anal-ysis of �ltered seawater spiked at a range of concentrations from picogram per liter to nanogram per liter. Recoveries ranged from 66.5% to 97.3% with coef�cients of variation for the complete method from 7.2% to 29.9%.

The procedure of using small boats provided with sample bottles attached to a telescopic device is recommended as a means to minimize contamination from the research vessel during coastal water sampling. Of the wires used to suspend samplers, plastic-coated steel gave negligible, and Kevlar and stainless steel only slight, contamination for some metals [8].

The high spatial and temporal variability of estuaries poses a challenge for characterizing estuarine water quality. This problem was examined by conducting monthly high-resolution transects for several water quality variables (chlorophyll-a, suspended particulate matter, and salinity) in San Francisco Bay, California [33]. Using these data, six different ways of choosing station locations along a transect, to estimate mean conditions, were compared. In addition, 11 approaches to estimating the variance of the transect mean when stations are equally spaced were compared, and the relationship between variance of the estimated transect mean and number of stations was determined. These results were used to derive guidelines for sampling along the axis of an estuary. In addition, the changes in the concentration of various substances due to the tide seem to be extremely important. Seawater with a low concentration of substances becomes mixed with the highly loaded water in the estuaries and along the shores. Automatic samplers can be used to integrate the concentrations of materials over time (see Section 1.4).

An overview of the analysis of polar pesticides in water samples has been presented [34]. The sam-pling plans and strategies for different types of waters such as rivers, wells, and seawater are discussed. In situ preconcentration methods, involving online techniques or direct measurement, are suggested as alternatives to conventional techniques. Attention is devoted to the in�uence of organic matter and its interaction with polar pesticides. The use of various types of �ltration steps prior to the preconcentration of the analytes from water samples is also reviewed.

1.3.4 Urban Areas

In urban areas, sampling strategies for storm water runoff from industries and municipalities are of speci�c importance. The United States Federal Storm Water Regulations of 1990 specify protocols for such storm water runoff sampling. These regulations de�ne two separate samples that must be collected when a storm occurs. A �rst-�ush sample is to be collected during the �rst 30 min of the storm event. A �ow-weighted composite sample must be collected for the entire storm event or at least the �rst 3 h of the event [35].

The �rst-�ush sample and the �ow-weighted composite sample must be analyzed for the pollutants listed in Table 1.3. In general, the sample volume required for laboratory analysis depends on the particular pol-lutants being monitored and varies for each application. As a general rule, a 3 L sample volume for both �rst-�ush and �ow-weighted composite sample usually is suf�cient for the majority of applications [35].

Both manual and automatic methods can be used to collect samples for the required analysis [35]. For manual sampling, the samples can be taken at �xed time intervals in individual bottles. After collection, a speci�c volume must be poured out of each bottle to form a �ow-weighted composite. The exact vol-ume must be calculated using the �ow data taken when each bottle was �lled. The advantage of manual sample collection is that, regardless of runoff amount, a fairly constant volume of sample is collected. This is because the �ow-weighted composite is formed after the event and does not depend on calcula-tions for runoff volume.

Automatic storm water monitoring systems typically consist of a rain gauge, �owmeter, automatic sampler, and power source. The rain gauge measures on-site rainfall. The �owmeter measures the runoff

21Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

water level and converts this level to a �ow rate. In many systems, the �owmeter activates the sampler when user-speci�ed conditions of rainfall and water level have been reached. Once activated, the sampler collects water samples by pumping the runoff water into bottles inside the sampler.

Automatic storm water monitoring systems can form the �ow-weighted composite sample automati-cally during the storm event, if there is suf�cient storage capacity to accommodate variations in the runoff amount. Such automatic samplers are described in Refs. [16,17,35].

1.3.5 Wastewater Systems

By their nature and function, wastewater systems are a potential source of contaminants of interest in relation to potential impacts in downstream receiving waters, as shown in the growing interest in sources and fate of “contaminants of concern” (CECs) in surface waters such as endocrine-disrupting com-pounds (EDCs) as well as pharmaceuticals and personal care products (PPCPs) [36]. See Ref. [37] for a recent review. However, the design of a sampling protocol to capture adequately a truly representative sample of a wastewater discharge is often a far from simple task because of a number of factors inherent to the purpose, design, and function of wastewater systems. This can result in highly variable volumes of discharge over short time periods as well as short-term �uctuations in the concentrations of contami-nants of interest in the system input and discharge streams. Despite this complexity, a recent review of published papers relating to the assessment of chemicals in the input to sewage treatment systems [8] suggests that the sampling protocols in less than 5% of studies explicitly considered and took account of these short-term �uctuations.

TABLE 1.3

Storm Water Analysis Requirements According to the United States Federal Storm Water Regulations

Industrial Municipal

PollutantFirst-Flush

Grab SampleFlow-Weighted

Composite SampleFlow-Weighted

Composite Sample

Oil and grease X X

pH X X

Biological oxygen demand (BOD) X X X

Chemical oxygen demand (COD) X X X

Total suspended solids (TSS) X X X

Total phosphorus X X X

Nitrate and nitrite nitrogen X X X

Total Kjeldahl nitrogen X X X

Any pollutant in the facility’s ef�uent guideline X X

Any pollutant in the facility’s NPDESa permit X X

Any pollutant in the EPA form 2F tables believed to be present

X X

Total dissolved solids X

Fecal streptococcus X

Fecal coliforms X

Dissolved phosphorus X

Total ammonia plus organic nitrogen X

13 Metals, total cyanide, and total phenol X

28 Volatile compounds X

11 Acid compounds X

46 Base/neutral compounds X

25 Pesticides X

Source: From Friling, L., Pollut. Eng., 25, 36, 1993. With permission.Note: X, analysis required.a National pollutant discharge elimination system.

22 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

For an example approach to characterization of variability in wastewater and the optimization of sam-pling protocols to minimize errors caused by temporal variation, see Ref. [38]. This typically involves a preliminary sampling study in which a high frequency is necessary.

For the purpose of quantifying dilution of a sewage ef�uent discharge to receiving waters, recent work [39] demonstrated that due to the widespread use in human disease treatment of the rare earth element gadolinium as a contrast agent in magnetic resonance imaging (MRI), this anthropogenic Gd can be used as a conservative tracer for discharges from sewage treatment systems with catchments contain-ing MRI facilities, and potentially even small catchments where an anthropogenic Gd signature can be generated by MRI patients treated elsewhere [40].

1.4 Sampling Equipment

1.4.1 General Comments

This section discusses the advantages and disadvantages of sampling systems designed for the various sampling roles discussed above.

Any component of a sampling device that is not normally present in the water body may affect the concentrations of determinants of interest in the water through three main effects: (a) by disturbance of physical, chemical, and biological processes and equilibria, (b) by contaminating the water with some parts of the sampler (e.g., organic compounds may leach out of plastic materials), and (c) by direct reac-tions between determinants and the materials of which the device is constructed (e.g., dissolved oxygen can react with copper, decreasing the oxygen concentration in the water). Another source of error may occur from processes within sample devices, such as the deposition of undissolved, solid materials on to the walls of a device, or sorption of chemicals to such surfaces.

1.4.2 Manual Sampling Systems

1.4.2.1 Simple Sampler for Shallow Water

For many purposes, specially designed and installed sampling devices are not required. It often suf�ces simply to immerse a bottle in the water of interest, and this technique may be applicable also for some purposes in water-treatment plant.

1.4.2.2 Sampler for Large Quantities in Shallow Water

A system for the sampling and �ltering of large quantities of surface seawater that is suitable for trace metal analysis is described in Ref. [41]. The water is brought aboard the ship via an all-Te�on pump and PFA tubing from a buoy deployed away from the vessel. The sample is delivered directly into a polycarbonate pressure reservoir and is subsequently �ltered through a polycarbonate �lter and in-line holder.

Sampling systems based not on sample containers but on inlet tubes are commonly required in water-treatment and other plants, and are also employed in a number of applications for natural waters [6]. In some systems, the �ow of sample through the inlet tube is achieved by the natural pressure differential, whereas in others the sample must be pumped, sucked (by vacuum), or pressurized (by a gas) through the tube. When dissolved gases and volatile organic compounds and possibly other determinants whose chemical forms and concentrations may be affected by dissolved gases are of interest, it is generally desirable to ensure that the sample is slightly pressurized to prevent gases coming out of solution.

1.4.2.3 Simple Sampler for Deepwater

When it is necessary to sample from a particular depth in waters where the simple technique (see Section 1.2.2) cannot be used, special sample collection containers are available that can be lowered into the water on a cable to collect a sealed sample at the required depth.

23Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

One of the simplest kinds of equipment with which to obtain samples from various depths is an empty weighted bottle closed with a stopper. This stopper is connected to the bottleneck by a rope, which can be used for releasing the stopper and opening the bottle at the desired depth (scoop bottle according to Meyer, Figure 1.4). However, for some sampling tasks, such as measuring dissolved gases, allowing the water �owing into the bottle to mix with the air inside the bottle is unacceptable.

This simple-technology approach can be adapted easily to enable sample collection for a more com-plex sampling design. For example, as illustrated in Figure 1.5, if the sampling design requires samples to be taken simultaneously at several discrete depths in the water column, this can be achieved by mount-ing sample collection bottles on a pole, and using multiple ropes to release the stoppers.

1.4.2.4 Deepwater Sampler (Not Adding Air to the Sample)

A common tool for taking water samples from different depths is the standard water sampler according to Ruttner. The sampler, still open, is lowered by cable into the water. When it reaches the desired depth, a messenger is let down on the cable. Upon striking the standard water sampler, the messenger releases the closing mechanism and the lids of the sampling tube close. In some versions, a separate cable is used to close the sampling bottle. The advantage is that no mixing of air with the sample will occur. But this system has the disadvantage that the inner surface of the sampling tube is in contact with water at all the depths through which the sampler travels on its way to the desired depth, and thus may introduce contaminants to the sample from the shallower layers through which it has passed.

Figure 1.6 shows an apparatus from Hydrobios as an example of a sampler according to Ruttner. This version contains a thermometer ranging from −2°C to +30°C, indicating the temperature of the sample; the temperature can easily be read through the plastic tube of the sampler. The water sample can be drawn off through the discharge cock in the lower lid for the various analyses. A similar version with a metal-free interior of the sampling tube for the determination of trace metals is also available.

1.4.2.5 Deepwater Sampler for Trace Elements (Allowing Air to Mix with the Sample)

The Mercos Water Sampler from Hydrobios (Figure 1.7) is suitable for ultratrace metal analysis. It con-sists of a holder device and exchangeable 500 mL Te�on bottles as sampling vessels, which can be used down to 100 m water depth. All �ttings are made of titanium.

The sampler is attached to a plastic-coated steel hydrographic wire and lowered into the water in closed con�guration to prevent sample contamination by surface water. Upon reaching the desired water

Cork

Sample bottle

Weight

FIGURE 1.4 Scoop bottle according to Meyer, a very simple sampler for various depths.

24 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

depth, the sampler is opened by means of plastic-covered messengers. When the messenger hits the anvil, the silicone tubings spring up to allow water to �ow in and air to leave the bottle. In the case of serial operation, a second messenger for release of the next sampler is set free at the same time. A disad-vantage of the system is the contact between air and the water sample within the bottle.

For the determination of trace elements in seawater, the system sampling bottle = storage bottle = reac-tion vessel is used, so that the samples cannot be falsi�ed by pouring from one vessel to another. To sterilize the bottles for microbiological investigations, the Te�on bottles, along with coupling pieces and silicone tubings, can easily be taken from the holder.

A modi�cation of an inexpensive and easy-to-handle let-go system, a semiautomatic apparatus for primary production incubations at depths between 0 and 200 m, has been suggested [42]. The system is composed of a buoy, a nylon line, a �berglass ballast weight, and about 15 sampling chambers. The entire volume of this apparatus is less than 80 dm3 and weighs about 7–8 kg. The sampling chambers sink with the ballast in an open position. When the line is stretched between the buoy at the surface and the bal-last at the bottom, the chambers automatically enclose the water sample at the predetermined depth. The complete deployment of the apparatus takes less than 10 min. By an easy modi�cation of the length of the line and/or the position of the chambers along it, sampling depth can be varied for repeated deploy-ment over variable depth. The advantage of this system is that parallel samples from different depths can be obtained with relatively low costs and technical complexity.

FIGURE 1.5 A simple sampler approach for taking simultaneous samples at discrete depths in the water column. Individual sample bottles are attached with standard laboratory clamps to a pole premarked with a depth scale. Individual ropes attached to bottle stoppers enable the samples to be taken when the pole is in position. This sampler was used to sample water from storage tanks, but the approach is adaptable to a variety of �eld situations such as lakes and streams. (Photograph from T. Soutberg and C. Barnes.)

25Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

FIGURE 1.6 Standard water sampler according to Ruttner for various depths. (Photograph from Hydrobios Apparatebau GmbH.)

FIGURE 1.7 MERCOS water sampler with two bottles that are lowered while closed and are opened at the desired depth. (Photograph from Hydrobios Apparatebau GmbH.)

26 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

1.4.3 Systems for Sampling the Benthic Boundary Layer at Different Depths

1.4.3.1 Deepwater (>50 m)

Instrumented tripods with �owmeters, transmissiometers, optical backscatter sensors (OBS), in situ settling cylinders, and programmable camera systems have often been used in marine environments, for example, oceanographic studies of �ow conditions and suspended particle movements in the bottom nepheloid layer [43,44]. These instruments were deployed to study suspended-sediment dynamics in the benthic bound-ary layer and were able to collect small water samples (1–2 L) at given distances from the sea�oor. An instrumented tripod system (Bioprobe), which collects water samples and time-series data on physical and geological parameters within the benthic layer in the deep sea at a maximum depth of 4000 m, has been described [45]. For biogeochemical studies, four water samples of 15 L each can be collected between 5 and 60 cm above the sea�oor. Bioprobe contains three thermistor �owmeters, three temperature sensors, a transmissiometer, a compass with current direction indicator, and a bottom camera system.

1.4.3.2 Shallow Water (<50 m)

An instrument that collects water from the benthic boundary layer in more shallow waters with a maxi-mum depth of 50 m is described in Ref. [46]. Four water samples of 7 L each can be collected between 5 and 40 cm above the sediment. Handling is easy and the sampling operation is brief enough to allow repeated employment even on time-limited, routine investigations.

1.4.4 Automatic Sampling Systems

As already noted, it is usual that concentrations of determinants of interest in a water sampling project are variable over time. To describe this situation in the �eld, it might be necessary either to take an average of the contamination or to obtain information about the short-term peak concentration. To estimate the average contamination, often the simplest way is to take a continuous sample or to generate a composite sample by sampling with constant time intervals. In this case, the frequency of sampling should be at least as great as the frequency with which the concentration changes. If nonpredictable peak concentrations are to be sampled, it is necessary to use a trigger, some easy-to-measure variable that speci�es the optimum sampling time. A wide range of triggers are available (e.g., water level, conductivity, turbidity, temperature).

1.4.4.1 Sampling Average Concentrations

Automatic systems consist, in general, of a sampling device and a unit, which automatically controls the timing of the collection of a series of samples and houses the appropriate number of sampling containers [4,6,16,17]. The control unit usually provides the ability to vary several factors such as the number of samples in a given time period, the length of that period, and the time period over which each sample is collected. Some units also allow sample collection to be based on the �ow rate of the water of interest rather than time. One common example of the application of such a system is the collection of 12 or 24 samples in a period of 24 h. The individual samples can be analyzed separately or subsequently be used to prepare one composite sample for analysis. Such automatic sampler units, which allow composite samples to be taken, are available, for example, from ISCO Inc.

1.4.4.2 Sampling Average Concentrations: Sampling Buoy

An automatic sampler for water and suspensions (SWS), which can be used in marine systems, lakes, and rivers, is shown in Figure 1.8. Pumps and bottles are situated in the underwater part of the �oating device so that the sampler can be used in subzero weather (no freezing of water samples) and tropical regions (no overheating of electronic circuits). As the sampling time can be programmed, the data provided by this sampler re�ect the average level of contamination (e.g., metals and pesticides) better than do single or random samples.

27Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

1.4.4.3 Event-Controlled Sampling of Industrial Short-Term Contamination

Short-term loading of toxic substances into natural waterways is a common phenomenon, with substan-tial impacts on biota. The effects of shock (pulse) pollution loading from two major industries on a river and wetland system in southern Ontario, Canada have been described in Ref. [47]. The assessment of shock loading frequency indicated that sporadic discharges of polluted water occurred on average once every other day during the 38 days of monitoring in the period April 1986 to November 1987. To estimate the frequency and intensity of the shock loads, an automatic pump sampler triggered by a threshold con-ductivity was used. Samples were withdrawn from the river when the speci�c conductivity of the stream exceeded a threshold value of two times background.

1.4.4.4 Rapid Underway Monitoring

The advent of easy access to the satellite-based global positioning system (GPS) and availability of off-the-shelf portable probes and rapid analyzers for a number of water quality determinants have enabled the development of systems that can be carried on small survey vessels to map water quality conditions. Rapid data acquisition is now practical using probes and sondes for measuring temperature, conductivity, turbidity, pH, and dissolved oxygen; �uorometric technologies for chlorophyll biomass and phytoplank-ton composition; �ow injection and loop �ow analysis for some nutrient species; and acoustic Doppler-based devices for current pro�ling.

One such onboard rapid monitoring system was developed recently and �eld tested in Queensland, Australia [48]. A schematic representation of the system is shown in Figure 1.9. While the survey vessel is underway, subsurface water is pumped to the instrumentation using a diaphragm pump from an intake positioned approximately 1 m below the surface to avoid turbulence created by boat wash. Trials of the system have shown that it can be successfully used from vessels as small as 4 m, and depending on which instruments are deployed, data acquired at speeds of 25 knots or more.

0.5 m

1 1

2

5

3 4 4

6

8

7

Surface

Bottom

1. Inner tube of tire2. Water pump and timer3. Battery4. Bottle (8 L), one PE one glass

5. Connection tube, PTFF6. Inlet tube, PTFF7. Ropes8. Anchor

FIGURE 1.8 Design of a sampler for water and suspensions (SWS) in marine systems including subzero temperature and tropical regions and in large rivers or lakes. (Design: Liess, M., used in Duquesne, S. and Liess, M., 2003. Increased sensi-tivity of the macroinvertebrate Paramorea walkeri to heavy-metal contamination in the presence of solar UV radiation in Antarctic shoreline waters, Marine Ecology Progress Series, 255, 183–191.)

28 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

Trials of the system in the estuarine reaches of the Brisbane River, Queensland, successfully mapped small-scale differences in turbidity and salinity pro�les during a high rainfall period. The onboard rapid monitoring data were characterized by sharp spikes and dips in turbidity and salinity, respectively, associated with inputs from tributaries (Figure 1.10). Such perturbations were not present during a dry season sampling run when freshwater inputs from the tributaries were negligible. In addi-tion, the overlay on Figure 1.10 of turbidity data points acquired from routine �xed-site monitoring points illustrates the relative underestimation of turbidity by routine monitoring under such spatially variable conditions.

The potential of such a vessel-mounted rapid data acquisition system for assessing discharge mixing zone size and compliance was demonstrated during dry weather sampling runs past the discharge point of a wastewater-treatment plant near the mouth of the Brisbane River. The impacts of the discharge on the ambient environment were readily captured (Figure 1.11), showing spikes in chlorophyll-a and turbidity and a dip in salinity. The perturbations returned to ambient conditions within a few hundred meters of the discharge point.

Three-dimensional underway monitoring is also feasible with the addition to the system of a towed body probe (Bio�sh; ADM-Elektronik, Germany) that continually moves between surface and bottom waters under control from the towing vessel, collecting water quality data and relaying it to an onboard computer. Such an approach has been employed for water quality monitoring on the Great Barrier Reef, Australia [49].

Graphicalinterface

Water intake vent

Waterdischarge

vents

Serial to USBconverters (×2)

GPS receiver(g)

(f) Acoustic Doppler current profiler(current velocity and direction,

TSS estimates)

(e) Depth sounder

(d) Nutrient analyzer(dissolved forms of N and P)

(c) Chlorophyll-a fluorescence probe(major groups and photosynthetic capacity)

(b) Multiparameter water quality probe(pH, DO, temperature, salinity,

turbidity, chlorophyll-a fluorescence)

(a)Diaphragm pump

FIGURE 1.9 Schematic diagram of the rapid underway monitoring system illustrating key components and required integration: Diaphragm pump (a) used to deliver water to the onboard instrumentation (b–d), instruments mounted in the water column (e,f), and GPS unit and computer components (g). (Reproduced from Hodge, J. et al. Mar. Pol. Bull., 51, 113, 2005. With permission.)

29Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

The use of rapid underway monitoring systems offers the capacity to detect small-scale spatial vari-ability in water quality parameters that might otherwise be missed by discrete sampling site methodolo-gies. Potentially, a rapid underway system provides a detailed view of where problem areas originate and their spatial extent.

1.4.4.5 Event-Controlled Sampling: Surface Water Runoff from Agricultural Land

Streams in intensively cultivated areas are characterized by a high input of material from the surround-ings. The characteristics of this contamination have been detailed in Section 1.3.2.3; most important are the unpredictability and brevity of such inputs.

0 10 20 30 40 50 60 70 80Distance upstream (km)

3530

25201510

50

Salin

ity (p

pt)

1009080

605040302010

0

70

Turb

idity

(NTU

)

TurbiditySalinityRoutine sites

FIGURE 1.10 Turbidity and salinity data acquired by the rapid underway monitoring system from the Brisbane River during a sampling run in January 2004 (high-rainfall period). High small-scale variability was evident in relation to inputs from tributaries at 7, 40, and 60 km. In addition, the overlay of data points from routine site-based monitoring shows that such monitoring underestimates the underlying conditions revealed by the rapid underway monitoring system. (Reproduced from Hodge, J. et al. Mar. Pol. Bull., 51, 113, 2005. With permission.)

TurbiditySalinityChlorophyll-a

6

5

4

3

2

1

000.50

0

5

10

15

20

25

30

35

4020

15

10

5

0

Turb

idity

(NTU

)

Salin

ity (p

pt)

Distance upstream (km)

Chlo

roph

yll-a

(μg

L−1)

FIGURE 1.11 Data captured by the rapid underway monitoring system show the increase in turbidity, and decrease in salinity, as well as the more diffuse increase in chlorophyll-a associated with the discharge from a major wastewater- treatment plant near the mouth of the Brisbane River. One useful application of the system is this capacity to map mixing and impact zones from discharges. (Reproduced from Hodge, J. et al. Mar. Pol. Bull., 51, 113, 2005. With permission.)

30 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

Because typical runoff water has low conductivity, in such circumstances, the conductivity of a stream is lowered when it receives edge-of-�eld runoff. This conductivity decrease was used to trigger an auto-matic sampler, which provides an accurate measurement of the maximum pesticide contamination of sus-pended matter and water, by sampling only the brief peak contamination levels during runoff events [29]. The conductivity was measured every 4 min. During runoff events, a 500 mL water sample was taken every 8 min. For each event, a mixture of subsamples was analyzed for insecticide content. An example of the high variability of the measured concentrations of insecticides is shown in Figures 1.12 and 1.13.

A simple qualitative method for the detection of pesticide contamination in the rainfall-induced sur-face runoff from agricultural �elds into surface waters is described in Ref. [50]. At each runoff site in an agricultural catchment, a passively collecting glass bottle (2.5 L) was installed in the embankment. The glass bottle was placed in a plastic container with a lid, the upper surface of which was �ush with the soil surface. The neck of the bottle passed through a 4 cm diameter hole in the lid. The opening of the bottle (diameter 3 cm) was 2 cm above the soil surface. This value was chosen to prevent animals (e.g., carabid beetles) from falling into the bottles and to sample runoff water in excess of a particular amount. A metal roof prevented rainfall from entering the collecting bottle (Figure 1.14).

1.4.4.6 Other Considerations Regarding Automatic Sampling Equipment

1.4.4.6.1 Interference from Biological Films

Since automatic samplers generally include an inlet tube, the development of problematic biological �lms within the tube and control unit can arise. The in�uence of automatic sampling equipment on biological oxygen demand (BOD) test nitri�cation in nonnitri�ed �nal ef�uent has been evaluated [51]. Samples were tested for BOD, carbonaceous BOD, nitrogenous oxygen demand, and concentration of nitrifying bacteria.

Feb. Mar. Apr. May Jun. Jul. Sep. Oct. Nov.Aug.Time (month)

1

10

100

1000

1 2 5 63 4 7 8 9 10

510

20

30

40

Disc

harg

e (L

s−1 )

Rain

fall

(mm

day

−1)

FIGURE 1.12 Daily rainfall, discharge, and surface runoff events in an agricultural stream in 1994. The arrows indicate the time of surface runoff. Black arrows point to insecticide contamination. (Reproduced from Liess, M. et al. Water Res., 33(1), 239, 1999. With permission.)

31Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

Bio�lms inside the equipment were tested for nitri�cation potential. A sampler utilizing continuous circula-tion of �nal ef�uent was found to support attached growth of nitrifying bacteria and was associated with relatively high-ef�uent nitrogenous oxygen demand. The ef�uent nitrogenous oxygen demand and nitri�ca-tion potential of attached growth were signi�cantly less with a unit that aspirated ef�uent on an intermittent basis, purging the sample line with air before and after sampling. Peak nitri�er counts in samples from the continuous-�ow equipment exceeded those in samples from the intermittent-�ow equipment.

1.4.4.6.2 Deterioration of Samples

For some determinants, the possibility that the integrity of samples taken by automatic sampling equipment may be compromised by losses or other changes in concentration of determinants due to delayed preserva-tion (see Section 1.4.6) needs to be considered. More sophisticated samplers, which provide refrigeration of samples after collection and/or addition of appropriate preservatives, are commercially available.

Agricultural field

2.5 L Glass bottle

Roof

Height: 2 cm

Plastic container

Stream

FIGURE 1.14 Construction of a runoff-sampling apparatus, which is installed in erosion rills in the embankment. (Reproduced from Schulz, R. et al. Chemosphere, 36(15), 3071, 1998. With permission.)

0

1

2

3

4

5

6

7

Rainfall events

Mar

-01-

1994

Apr

-13-

1994

Apr

-25-

1994

May

-19-

1994

May

-25-

1994

Jun-

08-1

994

Aug

-13-

1994

Aug

-18-

1994

Aug

-24-

1994

May

-27-

1995

Mar

-17-

1994

Jun-

01-1

995

Apr

-19-

1995

Jul-0

2-19

95

Jul-1

7-19

95

Jul-2

7-19

95

Aug

-25-

1995

Aug

-29-

1995

Nov

-02-

1995

Parathion-ethylLindaneFenvalerate

Conc

entr

atio

n in

runo

ff w

ater

(μg

L−1)

FIGURE 1.13 Insecticide contamination during runoff events in an agricultural stream, 1994 and 1995. (Data from Liess, M. et al. Water Res., 33(1), 239, 1999.)

32 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

1.4.5 Extraction Techniques

All the sampling systems that are mentioned previously are based on the principle of extracting the con-taminants from the water samples after collection, or direct identi�cation/quanti�cation of determinants. Systems are also available for concentrating and/or extracting contaminants directly in the �eld. These systems take advantage of the tendency of determinants with low water solubility to bind to speci�c solid materials (solid-phase extraction [SPE]) or the fact that a determinant is more soluble in speci�c solvents (liquid–liquid extraction) than in the water phase.

One main advantage of in situ concentration is that huge amounts of water can be extracted in the �eld and need not be transported. In addition, because these systems can be deployed for long periods, they can pro-vide a relatively inexpensive method for integration of contaminants over time. Another advantage of in situ concentration is that for many organic chemicals, the typical sample volumes normally collected by “grab-sampling” methods are often inadequate for obtaining analytical results in the concentration range necessary for assessment of whether the chemicals pose a risk to the environment or human health, since threshold concentrations of concern may be near or less than levels of quantitation from a typical “grab-sample.”

1.4.5.1 Liquid–Liquid Extraction of Large Volumes

An accurate extraction and measurement procedure to determine CBs in surface waters is presented in Ref. [52]. The procedure involved a 10 L batch liquid–liquid extraction directly from the sample bottle to prevent loss due to adsorption to the wall. Exhaustive extraction for recovery measurements was proposed, resulting in an extraction time of 10–45 h. A detection limit lower than 10 pg kg−1 and a coef-�cient of variation of 3–9% were obtained.

Equipment and procedure for the collection, �ltration, and subsequent extraction of 20 L of water and suspended-solid samples to be analyzed for organic chemicals using readily available, inexpensive, and sturdy apparatus have been described [53]. Water collection, �ltration, and extraction of both phases can be accomplished in less than 1 h. Recoveries of selected representative OC contaminants spiked into “organic-free” water and Lake Ontario water at environmentally realistic levels are presented (Table 1.4). These data show good total recoveries from the lake water and suspended sediments for all except a few compounds for which poor recoveries from the solids may be a factor, since their recoveries from “organic-free” water were relatively ef�cient.

1.4.5.2 Solid-Phase Extraction Techniques

1.4.5.2.1 Overview

The growing availability of SPE media with an af�nity for a wide spectrum of compounds, reduced solvent requirements relative to liquid–liquid extraction techniques, high recovery rates and ease of use, has lead to an increasing application of high-volume water sampling in the �eld based on SPE tech-niques [54] and a number of commercial devices such as the In�ltrex and Kiel in situ pump are avail-able, although the basic elements for such a system (piping, �lter, sorbent column, pump, power supply, �owmeter, and control system) can be assembled readily by a good laboratory workshop. Such a system is illustrated in Figure 1.15.

An XAD-4 resin accumulative sampling method was tested as a means of on-site extraction of sur-face waters [55]. Recoveries for most OC, organophosphorus, organonitrogen, chlorophenol, and chlo-rophenoxy acid pesticides and related pollutants were acceptable (≥50%) when samples were spiked at the 10 and 0.1 μg kg−1 levels. Detection limits of 1−100 pg kg−1 were attainable for most compounds in river water, although lower levels required the use of an HPLC cleanup/fractionation step prior to those GC determinations using electron-capture detection. XAD-4 accumulative sampling was competitive with solvent extraction of grab samples in terms of recoveries, and offered advantages in volume of water sampled, detection limits, and sample handling. The wide range of solute applicability combined with the ease of constructing and operating the accumulative sampler recommends it over grab sam-pling for many types of monitoring applications. The use of a similar system, supported liquid mem-branes for sampling and sample preparation of pesticides in water, has been described [56]. A porous

33Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

PTFE membrane is impregnated with a water-immiscible organic solvent, producing the supported liquid membrane.

Owing to the risk of contamination during �eld extraction of water samples using SPE, it is highly desirable to avoid contact of water being sampled with the mechanical components of the pump prior to the water reaching the extractant. Generally, this necessitates plumbing the pump so that it sucks rather than drives water through the extracting media. In practice, this requires that the sampling device be situated as close as practical to the level of the water source because suction is limited to 1 atm of nega-tive pressure, and in practice, due to inherent resistances in the system (piping, �lters, and extracting media), 1–2 m altitude difference is the maximum.

Thorough �ltration of the inward water stream prior to extraction is a necessity since only the dissolved phase should be captured by the absorbant media. In addition, the �lter residue may be of interest in its own right in some studies (see Section 1.4.6). Many studies have used glass �ber �lters with a maximum cut off of 1 μm (Table 1.5). Filter breakthrough problems can be reduced by minimizing overall �ow rate through the system and maximizing contact time in the sorbent column. As shown in Table 1.5, most workers have limited �ow rate to less than 1 L min−1. The use of two extracting columns in parallel can reduce the overall sampling time while maintaining low �ow conditions [57]. Flow through centrifuges has also been used prior to �ltration to reduce the load on the �lter [58], but again this introduces a risk of contamination.

The most commonly used sorbent media for these systems is XAD polymer (Table 1.5), used as early as 1972 for assessing polychlorinated biphenyls (PCBs) contaminants in the North Atlantic by extracting 60 L water samples [72]. However, XADs require time-consuming and solvent-intensive cleaning and

TABLE 1.4

Recovery of Spiked Organochlorine Contaminants from “Organic-Free” and Lake Ontario Water and Suspended Solids

Percentage Recovery

“Organic-Free” FiltrateLake Ontario

FiltrateLake Ontario

Suspended Solids

Compound

Amount Spiked

(ng L −1)Spike

1Spike

2 MeanSpike

1Spike

2Spike

1Spike

2Mean Total

1,2,4-Trichlorobenzene 0.83 88 95 92 104 101 nd nd 103

1,2,3-Trichlorobenzene 0.42 110 121 116 117 119 nd nd 118

2,4,5-Trichlorotoluene 0.94 104 87 96 78 92 nd nd 85

2,3,6-Trichlorotoluene 0.93 93 97 95 85 77 nd nd 81

1,2,4,5-Tetrachlorobenzene 0.59 113 106 110 99 94 nd nd 97

1,2,3,4-Tetrachlorobenzene 0.24 120 107 114 91 122 nd nd 107

Pentachlorobenzene 0.12 100 98 99 68 87 nd nd 78

Pentachlorotoluene 0.18 112 107 110 105 95 nd nd 100

Hexachlorobenzene 0.14 99 89 94 88 62 <1 nd 75

2,2′,5-Trichlorobiphenyl 0.79 83 88 86 65 67 <1 3 68

2,2′,5,5′-Tetrachlorobiphenyl 0.52 109 112 111 93 81 13 16 102

2,2′,3,3′-Tetrachlorobiphenyl 0.34 128 134 131 93 80 20 16 105

2,2′,4,4′,5-Pentachlorobiphenyl 0.42 81 94 88 54 35 19 11 60

2,2′,4,4′,5,5′-Hexachlorobiphenyl 0.33 93 132 113 43 34 19 21 59

2,2′,3,3′,4,4′,5,5′-Octachlorobiphenyl 0.23 85 96 91 36 38 19 23 58

Octachlorostyrene 0.14 102 91 97 59 70 54 35 109

Mirex 0.33 87 101 94 28 35 23 25 56

Overall mean recovery 102 86

Source: From Fox, M.E., in Methods for Analysis of Organic Compounds in the Great Lakes, University of Wisconsin Sea Grant Institute, Madison, 1986, 27–34. With permission.

Note: nd, not detected.

34 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

Filterdisk

Pump

Inflow

Outflow

Sorbentcolumn

Flow meter

FIGURE 1.15 An example of a system for high-volume extraction in the �eld based on solid-phase extraction techniques.

TABLE 1.5

Published High-Volume Solid-Phase Extraction Con�gurations for Water Sampling in the Field

AdsorbantFilter

Cutoff (µm)Diameter

(cm)Flow Rate (mL min−1)

Column Dimensions

Volume Extracted (L)

Water Sampling Context and Reference

Insolute Env+ GF/F ns ns 200 mg 20 Arctic [59]

XAD-2 and Speedisks

GF/F ns 200 ns 50 High elevation lake [60]

XAD-2 0.1 14.2 300 75 g 100 Mountain lake [61]XAD-2 GF/F 29.3 <600 75 g ns Lake Superior [62]

XAD-2 0.7 29.3 1000 (�lter) 250 (column)

ns 65 Lake Michigan [63]

XAD-2 and PUF GF/F 14.2 100–1900 PUF: 5 × 30.5 cm 42–1000 Seawater [64]

0.5 XAD: 2.7 × 20 cmXAD-2 140 14 1600 2 × 75 g in parallel 1000 Ohio River [57]

XAD-2 and C18 GF/F ns 400 (XAD-2) XAD-2:50 g XAD: 50 Milli-Q and seawater [65]Empore 0.7 50 (C18) 90 mm dia disk C18:10XAD-2 None ns 50–200 37 cm length

2.5 cm dians Ocean outfalls, California

[66]XAD-2 Gelmasn AE

GF/F14.9 500 100 mL 221–435 Reef platform and

seawater basins [67]PUF GF/F 0.7 14.2 1000 45 mm length

30 mm dia30–40 Aluminum reduction plant

discharge [68]XAD-2 None ns <300 300 mm length

22 mm diameter150–400 Oceanic [69]

XAD-2 1.0 ns 1400 250 g and 2 × 75 g 400 San Francisco Estuary [70]

XAD-2 GF/F ns 5 bed volumes ns ns Deep Atlantic [71]

Source: From Stephens, S. and Mueller, J., in Passive Sampling Techniques in Environmental Monitoring, Elsevier, Amsterdam, 2006.

Note: ns, not stated.

35Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

extracting procedures and are prone to contamination during transport and handling [54]. Other sorbents such as SBD-1 or LiChrolut EN have been reported to be less susceptible to contamination [65,73]. Premature breakthrough (the formation of water channels) in the sorbent column is another potential problem in high-volume water SPE. More modern sorbent products such as particle-loaded Empore disks [74] and Bakerbond Speedisks are reportedly less prone to this problem [54].

Summaries of the properties of both classical and modern sorbents and their applications in high- and low-volume extractions of surface waters are found in Refs. [75,76]. Novel SPE products with application in surface water sampling will continue into the future, and detailed information concerning these as well as existing sorbents can be sourced from manufacturers.

1.4.5.2.2 Solid-Phase Extraction Using Floating Complexing Granules

A technique for solid-phase preconcentration of contaminants dissolved in surface waters has been presented in Ref. [77]. The method is based on application of extraction material that is not packed, as in conventional SPE systems, but instead is present in a freely �oating form, as in a �uidized-bed reactor. The feasibility of the �uidized-bed extraction approach has been demonstrated for the determination of heavy metals in surface waters using 8-hydroxyquinoline attached to solid supports as complexing agent. Recoveries, repeatability, and sensitivity appear satisfactory for this applica-tion, even when no �ltration of the sample is done. As �uidized-bed extraction is based on free-�oating, unpacked extraction material, the pressure drop over the column is minimal and �ltration is not required. Hence, the technique seems eminently suited for employment as an in situ, long-term, sampling method. As such, it will provide time-integrated contamination levels that are not biased by biological variability or �ltration artifacts, disadvantages of the commonly used methods for monitor-ing of contaminants in surface water.

1.4.5.3 Passive Sampler Devices

1.4.5.3.1 Overview

Systematic attempts have been made to develop passive sampling systems that accumulate chemicals, and from which reliable exposure concentrations can be calculated. The passive samplers used in such systems are usually designed either as “kinetic samplers” or as “equilibrium samplers.”

The concept of the equilibrium sampler is analogous to that of the octanol–water equilibrium partition coef�cient (Kow) used since the 1970s to predict the potential for persistent nonpolar contaminants to concentrate in aquatic organisms [71]. The use of equilibrium-type passive samplers in the aquatic envi-ronment depends on the development of a sampler–water partition coef�cient (Ksw) de�ned as the ratio of sampler to water concentration of the compound of interest at thermodynamic equilibrium. The other key parameter determining the utility of an equilibrium-type passive sampler is the time taken to reach an approximate equilibrium condition. A range of approaches applied in developing equilibrium-type passive samplers include polyethylene or silicon sheets of various volume to surface area ratio [78,79] and solid-phase microextraction techniques [80].

In the last two decades, there has been substantial progress in developing kinetics-based passive sam-plers for ultratrace pollutants in water. These allow prediction of time-averaged concentrations of chemi-cals for the period when samplers were exposed [81–87]. In principle, kinetic samplers rely on a large sampler capacity, or a large sampler–water partition coef�cient, for the contaminants to be sampled. This ensures that under sampling conditions, the concentration of the chemical within the sampler does not approach an equilibrium state during sampler exposure. The models used to calculate the chemical con-centration in the water-phase (Cp) sampled are based on the assumption that uptake is linearly related to the exposure concentration throughout exposure, that is, a �rst-order diffusion model. Resistance at either the hydrodynamic boundary layer or within the sampler membrane/sequestering phase acts to control con-taminant �ux into the sampler. The mean concentration in the water-phase Cp can then be predicted from

C

C VR tp

s s

s=

36 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

where Cs is the concentration of the analyte in the sampler, Vs is the sampler volume, Rs is the speci�c sampling rate, and t is the exposure period. Note that the volume of a sampler with a given con�guration is necessarily related to its sampling area for which Rs is determined in laboratory exposure experiments. Models such as the one above have been used to describe the behavior of passive samplers and to esti-mate the concentration of chemicals in water.

These time-integrating passive sampling techniques have become widely used in the last decade. In particular, the use of performance reference compounds introduced into the sampler to enable adjust-ment of �eld data from the samplers using kinetic data from the laboratory has increased user con�-dence in these sampling techniques. Table 1.6 provides a summary of the major types of such devices developed to date and their application. While some uncertainty factors associated with the use of these sampling techniques remain, such as their representativeness as mimics of biota uptake and measures of bioavailable fractions, as well as issues relating to biofouling and nonlinear uptake, the utility of these new sampling tools in part re�ects the limitations of the other techniques available. Accordingly, these sampling techniques provide an additional set of tools often useful for modern monitoring programs.

1.4.5.3.2 Kinetic Samplers for Nonpolar Organic Chemicals

The development of kinetic samplers for nonpolar chemicals in water commenced in the 1980s. Since then, probably the most widely used passive sampler design for nonpolar chemicals in water is the semi-permeable membrane device (SPMD). Standard commercially available SPMDs consist of a strip of nonporous polyethylene tubing �lled with a small volume (1 mL) of triolein [87]. Other samplers using the same approach, but different membranes and/or solvent–lipids combinations (e.g., hexane or tri-methylpentane), are also used [88]. It has been argued that the combination of small solvent or lipid volume with a large membrane simulates the high surface-area-to-volume ratios characteristic of gill structures. Trace levels of contaminants that cannot be detected in conventional water samples are often concentrated to detectable levels by SPMDs or similar devices placed in water for a controlled exposure period. One general problem with passive samplers is that they can become coated with a bio�lm that

TABLE 1.6

Examples of Passive Samplers for Trace Aquatic Pollutants

Chemicals of Interest for Sampling Purposes Sampler Types Comments

Nonpolar organic pollutants, for example, PAHs, PCBs, OCs, and other nonpolar pesticides

Semipermeable membrane device (SPMD)

(1) PE only samplers(2) Trimethylpentane �lled PE sampler

A relatively large surface area of nonpolar membrane is required because these chemicals often occur at ultratrace levels. SPMDs are commercially available and the most widely used type of passive samplers to date. Some advantages for SPMDs over other passive sampler types are the availability of the largest set of calibration data together with an extensive literature and the use of performance reference compounds for in situ calibration is routine. However, analysis of SPMDs is relatively complex compared to PE and trimethylpentane samplers. All samplers have biofouling issues

Polar chemicals Polar organic chemical-integrated sampler (POCIS); Portsmouth sampler using solid-phase sorbent-based samplers

Relatively new methods developed in parallel through the last decade. Limitations to the methods and availability of the devices at the present time should be solved in the near future. The optional use of different phases and membranes or even deployment without a membrane provides a high selectivity and �exibility in the analytes targeted. To date, few calibration data are available and the polar samplers are not yet widely used for routine monitoring but show great potential

Metals, radionuclides, and some nutrients

Diffusion gradient in thin �lms (DGT) and equilibrium techniques such as Peepers and DETs

Developed in the 1990s, these are now a widely used method for monitoring certain trace metals. To date, primarily used in research and not for routine monitoring, although increasing numbers of studies show the potential of this technique for sampling metals. Discussion continues concerning the fraction of metal collected with DGTs

37Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

reduces the uptake of organic chemicals [89]. Furthermore, the uptake also depends on temperature and the boundary layer between membrane and water. All these parameters are dif�cult to assess over a long exposure period (weeks). However, in situ calibration techniques have been developed that can be used to obtain information on kinetics to improve the predictive capabilities of passive sampling techniques [87]. A typical form of the SPMD passive sampling device is illustrated in Figure 1.16.

1.4.5.3.3 Kinetic Passive Samplers for Polar Organic Chemicals

In the last decade, the importance of polar organic pollutants has resulted in the development of kinetic samplers for polar organic pollutants. These types of samplers typically consist of a solid-phase absorp-tion media with a relatively high capacity for the chemical of interest, combined in most cases with a membrane that allows diffusion of polar chemicals. Examples of these types of devices include the Chemcatcher passive sampling device developed by Kingston et al. [84], which is a very robust passive sampling device that employs the C18 Empore disk as the absorbant media. Similarly, Alvarez et  al. developed the polar organic chemical-integrated sampler [92]. Stephens and Mueller [54] have demon-strated that SDB Empore disks without membranes are effective samplers for herbicides. An illustration of the Chemcatcher device is illustrated in Figure 1.17. As the use of performance reference compounds for polar organic compounds is still de�cient [93,94] samplers need to be calibrated in situ to derive time-weighted average concentrations from kinetic sampling.

1.4.5.3.4 Devices Comprising Diffusive and Resin Gels

The diffusion gradient in thin �lms (DGT) device originally developed in the early 1990s at Lancaster University (UK) [86] employs a resin gel as the accumulating absorbant media, overlaid by a �lter (to exclude particulates) and a diffusive hydrogel to maintain a concentration gradient, with the whole loaded into a cylindrical plastic housing (Figure 1.18). A series of different gels have been developed to sample a range of metals (both labile and organic species), phosphorus, sul�des, and radioactive cesium, and are available in a range of thicknesses. Parallel deployment of two DGT units assembled with different diffu-sive gel thicknesses allows accurate measurement under low �ow conditions. For measurement of metal concentrations, the DGT has been shown to give results close to those of anodic stripping voltammetry [86,86], and with dissolved metals measured by �ltration or in situ dialysis when the natural waters con-tain low proportions of metals present as colloids or strong complexes [95,96].

An important advantage of using DGT to measure metals in saline or marine waters is that the gels do not accumulate the major ions that often cause interferences in the analysis of metals in grab samples of water. The devices sample satisfactorily over a range of pH, with the range limits varying between

A length of sealed lay-flat PE tubing (themembrane) containing a small volume oftriolene (the absorbant phase) is wovenaround a stainless steel frameThe device is then inserted into a perforatedstainless steel shroud for protection frommechanical damage during deployment

Photograph supplied by M. Shaw,EnTox, Brisbane, Australia

FIGURE 1.16 An example of a semipermeable sampling device (SPMD).

38 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

5

6

10

1

7

4

21 7

39

568 11

Exposure towater column

The sampler consists of three interlocking sections (2, 3, 9) manufactured from polytetrafluoroethylene(PTFE) that screw together during deployment to form water-tight seals (4, 10)

Integral to the device is a 50 mm rigid PTFE disk (7) designed to support both the chromatographicreceiving phase (5) and the diffusion-limiting membrane (6)

On the reverse is a lug (1) for attaching the device during deployment

The surface of the diffusion-limiting membrane is protected from mechanical damage duringdeployment by a mesh (8) of either stainless steel for organic analytes or nylon for inorganic analytes.This mesh is held in place during deployment by a removable PTFE ring (g)

A PTFE screw cap (11) replaces the ring (9) during transport to and from the deployment site

FIGURE 1.17 The Chemcatcher passive sampler. (Reproduced from Kingston, J.K. et al. J. Environ. Monit., 2, 487, 2000. With permission.)

(a)

(b)C

(c)

20 mm

Membrane filterDiffusive gelBinding gel

Diagram supplied by Jerry Forsberg,Lulea° University of Technology, Sweden

FIGURE 1.18 The diffusion gradient in thin �lms (DGT) passive sampler. (a) Oblique view of sampler, (b) sampler in cross-section, and (c) enlargement of the section marked in (b).

39Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

metals (e.g., down to pH 2 for Cu, but only 4.5 for Cd) and over the range pH 2 to 9 for phosphate [97]. For published reports from �eld trials of DGT devices, see Refs. [98,99].

A variant of the device, known as diffusive equilibrium in thin �lms (DET), can be deployed to per-form relatively rapid (within a day) response times and has the ability to measure at high spatial resolu-tion. The DET comprises a single relatively thick sheet of gel (typically 0.8 mm) supported in a holder. Solutes in the surrounding water diffuse into the gel until concentrations in gel and water are equal.

DGT and DET devices, for both of which the University of Lancaster (UK) holds a worldwide patent, are available commercially, either preassembled or in kit form (gel disks and strips for local assembly). For details of supply, see http://www. dgtresearch.com.

1.4.6 Concentration of Contaminants in Suspensions and Sediment

It is generally accepted that heavy metals both of geogenic (i.e., natural) origin, like the so-called ref-erence elements, and those introduced anthropogenically are preferentially found (by 85–95%) in the �ne-grain fraction (≤ 20 μm fraction) of aquatic sediments and suspended solids. Similar conditions are assumed for pesticides with low water solubilities [100]. For this reason, sampling of contaminants in the suspended particulates can sometimes be much more effective than sampling in the water phase. In a study in the North Saskatchewan River [101], pathways and distribution of anthropogenic contaminants in water and in suspended and bottom sediments were examined. Synoptic sampling during stable low �ow allows maximum inference of point sources and, therefore, of chemical complexity. After chemical extraction of contaminants into two fractions for aqueous samples and �ve fractions for sediment sam-ples, the authors were able to assess the toxicity of the fractions using two independent bioassays. The results called into question the ef�cacy of a standard menu of priority chemicals applied to water samples for ambient (i.e., not end-of-pipe) aquatic quality sensing (monitoring) purposes. They concluded that water may be an inappropriate medium upon which to base toxic chemical criteria for toxic chemical sensing purposes in aquatic systems. Furthermore, a study on 97 pesticides in 24 streams comparing sediment sampling, grab water sampling, and passive sampling showed that sediment samples were most suitable to characterize toxic exposure of benthic organisms [102]. Nevertheless, for polar compounds, a similar study demonstrated that water and passive samplers deliver more relevant information for toxic exposure of aquatic organisms to pesticides than suspended-particle concentrations [103].

1.4.6.1 Suspended-Particle Sampler for Small Streams

An economical alternative to event-controlled sampling for sampling potentially contaminated sus-pended particles in small streams is the employment of sedimentation vessels (suspended particle sam-pler [SPS]) through which the water �ows continuously [104]. The SPS (Figure 1.19) is positioned in the stream so that water �ows through it from (a) to (e). It includes a 10 L sedimentation vessel (c) made of

e db a

gf

c

a: Inflowing waterb: Inlet tubec: Collecting vessel (10 L)d: Outlet tubee: Outflowing waterf: Cover plateg: Stainless steel box

WaterSediment

FIGURE 1.19 Construction of the suspended particle sampler (SPS). (Reproduced from Liess, M., Schulz, R., and Neumann, M., Chemosphere, 32(10), 1963, 1996. With permission.)

40 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

glass. This vessel is seated in a stainless-steel box (g) inserted into the bottom sediment of the stream. The box, closed by a cover plate (f) made of stainless steel, is positioned with the cover plate in the same plane as the stream bed, to prevent mobilization of the stream sediment in the region of the inlet tube (b). In addition to the inlet tube, an outlet tube (d) is mounted in the cover plate. Both tubes are 34 mm in diameter. The inlet tube is closed at its upper end and has a slit measuring 25 × 5 mm in the wall facing upstream. As a result, a pressure �ow is directed into the collecting vessel. The outlet tube is cut at an angle of 45° at its upper end, forming an opening facing downstream (e), exerting suction on the collect-ing vessel. By rotating the outlet tube, the magnitude of the suction effect can be changed, so that the velocity of �ow into the inlet tube can be matched to the current of the stream. The height of the inlet opening can be adjusted to enable sampling at any desired level in the water. This device cannot be used to measure exact maximal concentration, but gives the mean sediment contamination during the period from one emptying of the vessel to the next.

The grain-size-speci�c retention of the SPS was determined in laboratory experiments for the differ-ent �ow velocities (Figure 1.20). As expected, the amount retained by the SPS decreased with increasing rate of �ow. In evaluating retention properties, particular weight was placed on the small grain sizes

Current: 0.05 m s−1

Current: 0.12 m s−1

100908070605040302010

0100

908070605040302010

0100

90

2010

0

Current: 0.41 m s−1807060504030Re

tent

ion

(%)

Rete

ntio

n (%

)Re

tent

ion

(%)

<0.002 0.002<0.006

0.006<0.02 <0.06 <0.02

0.02 0.06

Grain size (mm)

Org. C

FIGURE 1.20 Retention by the suspended particle sampler (SPS) for current velocities between 0.05 and 0.41 m s−1. (Reproduced from Liess, M., Schulz, R., and Neumann, M., Chemosphere, 32(10), 1963, 1996. With permission.)

41Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

because pollutants become attached preferentially to the grain-size fraction below 0.02 mm grain diam-eter [25]. At the highest �ow velocity, 0.41 m s−1, the retention rate was 15% for the grain-size fraction smaller than 0.02 mm. However, such rapid �ow is rare in �atland streams. With the lower �ow veloci-ties tested here, the retention rate for this fraction was between 27% and 50%. The proportion of organic carbon retained, another parameter that is important regarding pesticide content, was between about 40% and 60% for these currents.

An example of long-term measurements of the concentrations of parathion-ethyl in an agricultural stream is shown in Figure 1.21.

0

5

10

15

20

*

0

5

10

15

20

* 1

10

100

1000

0

5

10

15

20

* 1

10

100

10000

5

10

15

20

*

50

1

10

100

10001

10

100

1000

Conc

entr

atio

n (μ

g kg

−1 d

w)

Disc

harg

e (L

s−1)

1995

1994

1993

1992

Time (month)Feb. Mar. Apr. May Jun. Jul. Sep. Oct. Nov.Aug.Jan. Dec.

FIGURE 1.21 Discharge and concentration of parathion-ethyl in suspended particles sampled with the SPS in an agri-cultural stream. * = limit of analytical determination. (Reproduced from Liess, M. et al. Water Res., 33(1), 239, 1999. With permission.)

42 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

ACKNOWLEDGMENTThe authors acknowledge the contribution of Ralf Schulz in the �rst edition of this chapter as published in Handbook of Water Analysis edited by L.M.L. Nollet, Marcel Dekker, New York, 2000.

REFERENCES 1. Handbook for Sampling and Sample Preservation of Water and Wastewater; 600/4-82-029; Environmental

Monitoring and Support Laboratory, USEPA. 1982. 2. R.L. Epstein. Residue chemistry—Past to present. Proceedings, 19CRC, Residue Chemistry in the 21st

Century, 19th Conference of Residue Chemists, September 16–18, 2003, Brisbane, Australia. 3. P. Hoffmann. Probenahme. Nachrichten aus Chemie, Technik und Laboratorium 40:M1–M32, 1992. 4. E.L. Berg, eds. Handbook for Sampling and Sample Preservation of Water and Wastewater (Report PB

83-124503). Spring�eld, VA: U.S. National Technical Information Service, 1982. 5. K. Grasshoff, M. Ehrhardt, and T. Almgren, eds. Methods of Seawater Analysis. Weinheim, Germany:

Verlag Chemie, 1983. 6. D.T.E. Hunt and A.L. Wilson. The Chemical Analysis of Water—General Principles and Techniques.

London: Royal Society of Chemistry, 1986. 7. B. Kratochvil and J.K. Taylor. Sampling for chemical analysis. Anal. Chem., 53:924A–938A, 1981. 8. B. Kratochvil, D. Wallace, and J.K. Taylor. Sampling for chemical analysis. Anal. Chem., 56:113R–129R,

1984. 9. C. Ort, M. Lawrence, J. Riekermann, and A. Joss. Products (PPCPs) and illicit drugs in wastewater sys-

tems: Are your conclusions valid? A critical review. Environ. Sci. Technol. 44, 6024–6035, 2010. 10. H.M. Ortner, H.H. Xu, J. Dahmen, K. Englert, H. Opfermann, and W. Görtz. Surface characterization of

�uorinated polymers (PTFE, PVDF, PFA) for use in ultratrace analysis. Fresen. J. Anal. Chem., 355:657–664, 1996.

11. W.A. House and Z. Ou. Determination of pesticides on suspended solids and sediments: Investigations on the handling and separation. Chemosphere, 24:819–832, 1992.

12. ISO. Water quality—Sampling—Part 1: Guidance on the design of sampling programs. ISO 5667/1 2003. 13. ISO. Water quality—Sampling—Part 2: Guidance on sampling techniques. ISO 5667/2 2003. 14. ISO. Water quality—Sampling—Part 3: Guidance on the preservation and handling of samples. ISO

5667/3 2003. 15. L.H. Keith. Compilation of EPAs Sampling and Analysis Methods. Boca Raton, FL: CRC Press, 1996,

1696pp. 16. NPDES Storm Water Sampling Guidance Document. USEPA, 1992. 17. Urban Stormwater BMP Performance Monitoring. A Guidance Manual for Meeting the National

Stormwater BMP Database Requirements. USEPA, April 2002. 18. Standing Committee of Analysts. General Principles of Sampling and Accuracy of the Results. London:

HMSO, 1980, pp. 15–48. 19. J. Hilton, T. Carrick, E. Rigg, and J.P. Lishman. Sampling strategies for water quality monitoring in lakes:

The effect of sampling method. Environ. Pollut., 57:223–234, 1989. 20. G.R. Martin, J.L. Smoot, and K.D. White. A comparison of surface-grab and cross sectionally integrated

stream-water-quality sampling methods. Water Environ. Res., 64:866–876, 1992. 21. K.G. Malle. Cleaning-up the River Rhine. Sci. Am., 274:55–59, 1996. 22. R.B. Grayson, C.J. Gippel, B.L. Finlayson, and B.T. Hart. Catchment-wide impacts on water quality: The

use of “snap shot” sampling during stable �ow. J. Hydrol., 199:121–134, 1997. 23. L.W.G. Higler. Caddis larvae in a Dutch lowland stream. Proceedings of the Third International

Symposium on Trichoptera, Perugia, Italy, 1981, pp. 127–128. 24. C.M. Cooper. Biological effects of agriculturally derived surface-water pollutants on aquatic systems—A

review. J. Environ. Qual., 22:402–408, 1993. 25. H. Ghadiri and C.W. Rose. Sorbed chemical transport in overland �ow. 2. Enrichment ratio variation with

erosion processes. J. Environ. Qual., 20:634–642, 1991. 26. J. Kreuger. Monitoring of pesticides in subsurface and surface water within an agricultural catchment

in southern Sweden. British Crop Protection Council Monograph No 62: Pesticide Movement to Water, 81–86, 1995.

43Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

27. R.D. Wauchope. The pesticide content of surface water draining from agricultural �elds—A review. J. Environ. Qual., 7:459–472, 1978.

28. T. Kohonen. Influence of Sampling Frequency on the Estimates of Runoff Water Quality. Helsinki: Water Research Institute, 1982.

29. M. Liess, R. Schulz, H.-D. Liess, B. Rother, and R. Kreuzig. Determination of insecticide contamination in agricultural headwater streams. Water Res., 33(1):239–247, 1999.

30. I.G. Droppo and C. Jaskot. Impact of river transport characteristics on contaminant sampling error and design. Environ. Sci. Technol., 29:161–170, 1995.

31. M.L. Richardson and J.M. Bowron. Notes on Water Research No. 32. Medmenham, Bucks: Water Research Centre, 1983, 241pp.

32. A.G. Kelly, I. Cruz, and D.E. Wells. Polychlorobiphenyls and persistent organochlorine pesticides in sea water at the pg L−1 level. Sampling apparatus and analytical methodology. Anal. Chim. Acta, 276:3–13, 1993.

33. A.D. Jassby, B.E. Cole, and J.E. Cloern. The design of sampling transects for characterizing water quality in estuaries. Estuar. Coast. Shelf Sci., 45:285–302, 1997.

34. D. Barcelo and M.C. Hennion. Sampling of polar pesticides from water matrices. Anal. Chim. Acta, 338:3–18, 1997.

35. L. Friling. Monitoring storm water runoff. Pollut. Eng., 25:36–39, 1993. 36. C.G. Daughton and I.S. Ruhoy. Environmental footprint of pharmaceuticals: The signi�cance of factors

beyond direct excretion to sewers. Environ. Toxicol. Chem., 28(12):2495–2521, 2009. 37. Treating Contaminants of Emerging Concern. A Literature Review Database. US Environmental

Protection Agency Of�ce of Water (4303T). EPA-820-R-10-002, 2010. 38. C. Ort, M.G. Lawrence, J. Reungoat, and J.F. Mueller. Sampling for PPCPs in wastewater systems:

Comparison of different sampling modes and optimization strategies Environ. Sci. Technol., 44, 6289–6296, 2010.

39. M.G. Lawrence and D.G. Bariel. Tracing treated wastewater in an inland catchment using anthropogenic gadolinium. Chemosphere, 80:794–799, 2010.

40. M. Rabiet, F. Brissaud, J.L. Seidel, S. Pistre, and F. Elbaz-Poulichet. Positive gadolinium anomalies in wastewater treatment plant ef�uents and aquatic environment in the Herault watershed (South France). Chemosphere, 75, 1057–1064, 2009.

41. D.J. Harper. A new trace metal-free surface water sampling device. Mar. Chem., 21:183–188, 1987. 42. P. Conan, M. Pujo-Pay, M. Leveau, and P. Raimbault. Une autre utilisation du systeme let-go:

Echantillonnage rapide d’une colonne d’Eau Entre 0 et 200 M. Annales de L’Institut Oceanographique, 72:221–227, 1996.

43. G.C. Kineke and R.W. Sternberg. The effect of particle settling velocity on computed suspended sedi-ment concentration pro�les. Mar. Geol., 90:159–174, 1989.

44. I.N. McCave and T.J. Gross. The effect of particle settling velocity on computed suspended sediment concentration pro�les. Mar. Geol., 99:403–413, 1991.

45. L. Thomsen, G. Graf, V. Martens, and E. Steen. An instrument for sampling water from the benthic boundary layer. Cont. Shelf Res., 14:871–882, 1994.

46. U. Eversberg. A new device for sampling water from the benthic boundary layer. Helgolaender Meeresunter Suchungen, 44:329–334, 1990.

47. M. Dickman and F. Johnson. Deployment of a threshold activated pump sampler in an industrial shock load impact study. Hydrobiologia, 344:181–193, 1997.

48. J. Hodge, B. Longstaff, A. Steven, P. Thornton, P. Ellis, and I. McKelvie. Rapid underway pro�ling of water quality in Queensland estuaries. Mar. Pollut. Bull., 51:113–118, 2005.

49. J. Udy, M. Gall, B. Longstaff, K. Moore, C. Roelfsema, D.R. Spooner, and S. Albert. Water quality moni-toring: A combined approach to investigate gradients of change in the Great Barrier Reef, Australia. Mar. Pollut. Bull., 51:224–238, 2005.

50. R. Schulz, M. Hauschild, M. Ebeling, J. Nanko-Drees, J. Wogram, and M. Liess. A qualitative �eld method for monitoring pesticides in the edge-of-�eld runoff. Chemosphere, 36(15):3071–3082, 1998.

51. B. Koopman, C.M. Stevens, C.L. Logue, P. Karney, and G. Bitton. Automatic sampling equipment and BOD test nitri�cation. Water Res., 23:1555–1562, 1989.

44 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

52. H. Hermans, F. Smedes, J.W. Hofstratt, and W.P. Co�no. A method for estimation of chlorinated biphe-nyls in surface waters: In�uence of sampling method on analytical results. Environ. Sci. Technol., 26:2028–2035, 1992.

53. M.E. Fox. A practical sampling and extraction system for the quantitative analysis of sub-ng/L organo-chlorine contaminants in �ltered water and suspended solids. In: W.C. Sonzogni and D.J. Dube, eds. Methods for Analysis of Organic Compounds in the Great Lakes. Madison, WI: University of Wisconsin Sea Grant Institute, 1986, pp. 27–34.

54. S. Stephens and J. Mueller. Techniques for quantitatively evaluating aquatic passive sampling devices. In: R. Greenwood, G.A. Mills, and B. Vrana, eds. Passive Sampling Techniques in Environmental Monitoring. Comprehensive Analytical Chemistry Series, Damia Barcelo (series editor), Elsevier: Amsterdam, 2006.

55. J.E. Woodrow, M.S. Majewski, and J.N. Seiber. Accumulative sampling of trace pesticides and other organics in surface water using XAD-4 resin. J. Environ. Sci. Health B, 21:143–164, 1986.

56. M. Knutsson, G. Nilve, L. Mathiasson, and J.A. Jonsson. Supported liquid membranes for sampling and sample preparation of pesticides in water. J. Chromatogr. A, 754:197–205, 1996.

57. S.A. Dinkins. Quanti�cation of dioxin concentrations in the Ohio River using high volume water sam-pling. Available online at: http://tinyurl.com/9valj.

58. M. Winkler, G. Kopf, C. Hauptvogel, and T. Neu. Fate of arti�cial musk fragrances associated with suspended particulate matter (SPM) from the River Elbe (Germany) in comparison to other organic con-taminants. Chemosphere, 37(6):1139–1156, 1998.

59. T. Harner, H. Kylin, T.F. Bidleman, and W.M.J. Strachan. Removal of α- and γ-hexachlorocyclohexane and enantiomers of α-hexachlorocyclohexane in the Eastern Arctic Ocean. Environ. Sci. Technol., 33(8):1157–1164, 1999.

60. S. Usenko, K.J. Hageman, D.W. Schmedding, G.R. Wilson, and S.L. Simonich. Trace analysis of semi-volatile organic compounds in large volume samples of snow, lake water, and groundwater. Environ. Sci. Technol., 39(16):6006–6015, 2005.

61. R.M. Vilinova, P. Fernández, and J.O. Grimalt. Polychlorinated biphenyl partitioning in the waters of a remote mountain lake. Sci. Total Environ., 279:51–62, 2001.

62. Minnesota Pollution Control Agency. Lake Superior/Duluth-Superior Harbor Toxics Loading Study. USEPA Grant#995402-1, 1999.

63. D.R. Achman, K.C. Hornbuckle, and S.J. Eisenreich. Volatilization of polychlorinated biphenyls from Green Bay, Lake Michigan. Environ. Sci. Technol., 27(1):75–87, 1993.

64. J.I. Gomez-Bellinchon, J.O. Grimalt, and J. Albaiges. Intercomparison study of liquid–liquid extraction and adsorption on polyurethane and Amberlite XAD-2 for the analysis of hydrocarbons, polychlorobi-phenyls, and fatty acids dissolved in seawater. Environ. Sci. Technol., 22:677–685, 1988.

65. J. Dachs and J.M. Bayona. Large volume preconcentration of dissolved hydrocarbons and polychlori-nated biphenyls from seawater. Intercomparison between C18 disks and XAD-2 column. Chemosphere, 35(8):1669–1679, 1997.

66. D.R. Green, J.K. Stull, and T.C. Heesen. Determination of chlorinated hydrocarbons in coastal waters using a moored in situ sampler and transplanted live mussels. Mar. Pollut. Bull., 17(7):324–329, 1986.

67. M.G. Ehrhard and K.A. Burns. Petroleum derived dissolved organic compounds concentrated from inshore waters in Bermuda. J. Exp. Mar. Biol. Ecol., 138(1):35–47, 1990.

68. J. Axelman, K. Naes, C. Näf, and D. Broman. Accumulation of polycyclic aromatic hydrocarbons in semipermeable membrane devices and caged mussels (Mytilis edulis L.) in relation to water column phase distribution. Environ. Toxicol. Chem., 18:2454–2461, 1999.

69. H. Iwata, S. Tanabe, N. Sakai, and R. Tatsukawa. Distribution of persistent organochlorines in the oce-anic air and surface seawater and the role of ocean on their global transport and fate. Environ. Sci. Technol., 27(6):1080–1098, 1993.

70. San Francisco Estuary Institute. South Bay/Fair�eld-Suisun Trace Organic Contaminants in Ef�uent Study. Available at: http://www.sfei.org/cmr/TOESv5.pdf.

71. D.E. Schultz, G. Petrick, and J.C. Duinker. Chlorinated biphenyls in North Atlantic surface and deep water. Mar. Pollut. Bull., 19(10):526–531, 1988.

72. G.R. Harvey, W.G. Steinhaver, and H.P. Miklas. Decline of PCB concentrations in North Atlantic surface water. Nature, 252(5482):387–388, 1974.

45Sampling Methods in Surface Waters

© 2011 Taylor & Francis Group, LLC

73. A. Rantalainen, M. Ikonomou, M.G. Ikonomou, and I.H. Rogers. Lipid-containing semipermeable mem-brane devices (SPMDs) as concentrators of toxic chemicals in the lower Fraser River, Vancouver, British Columbia. Chemosphere, 37(6):1119–1138, 1998.

74. T. McDonnell and J. Rosen�eld. Solid-phase sample preparation of natural waters with reversed-phase disks. J. Chromatogr. A, 629(1):41–53, 1993.

75. S. Weigel, K. Bester, and H. Hühnerfuss. New method for rapid solid-phase extraction of large-volume water samples and its application to non-target screening of North Sea water for organic contaminants by gas chromatography–mass spectrometry. J. Chromatogr. A, 912(1):151–161, 2001.

76. Perry’s Chemical Engineering Handbook, 7th edn., Chapter 16, New York: McGraw-Hill. 77. J.W. Hofstraat, J.A. Tierlrooij, H. Compaan, and W.H. Mulder. Fluidized-bed solid-phase extraction:

A novel approach to time-integrated sampling of trace metals in surface water. Environ. Sci. Technol., 25:1722–1727, 1991.

78. J. Müller, M. Krishnamohan, M. Mortimer, and M.S. McLaughlin. Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system. Fresen. J. Anal. Chem., 371:816–822, 2001.

79. R.B. Schäfer, L. Hearn, B.J. Kefford, D. Nugegoda, and J.F. Mueller, Using silicone passive samplers to detect polycyclic aromatic hydrocarbons from wild�res in streams and potential acute effects for inver-tebrate communities. Water Res., 44(15):4590–4600, 2010.

80. P. Mayer, W.H.J. Vaes, F. Wijnker, K.C.H.M. Legierse, R. Kraaij, J. Tolls, and J.L. Hermens. Sensing dis-solved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextractive �bers. Environ. Sci. Technol., 34:5177–5183, 2000.

81. A. Södergren. Solvent �lled dialysis membranes simulate uptake of pollutants by aquatic organisms. Environ. Sci. Technol., 21:855–859, 1987.

82. J.N. Huckins, J.P. Petty, H.F. Prest, R.C. Clark, D.A. Alvarez, D.C. Orazio, J.A. Lebo, W.L. Cranor, and B.T. Johnson. A Guide for the Use of Semipermeable Membrane Devices (SPMDs) as Samplers of Waterborne Hydrophobic Organic Contaminants. American Petroleum Institute Publication 4690, 2002.

83. J. Huckins, G. Manuweera, D. Petty, D. Mackay, and J.C.N. Lebo. Lipid-containing semipermeable mem-brane devices for monitoring organic contaminants in water. Environ. Sci. Technol., 27:2489–2496, 1993.

84. J.K. Kingston, R. Greenwood, G.A. Mills, G.M. Morrison, and L. Bjorklund Persson. Development of a novel passive sampling system for the time averaged measurement of a range of organic pollutants in aquatic environments. J. Environ. Monitor., 2:487–495, 2000.

85. D.A. Alvarez, J.N. Huckins, J.D. Petty, and S.E. Manahan. Progress toward the development of a passive in situ SPMD-like sampler for hydrophilic organic contaminants in aquatic environments. Twentieth Annual Meeting of Society of Environmental Technology and Chemistry, November, 1999, Philadelphia PA.

86. W. Davison and H. Zhang. In-situ speciation measurement of trace components in natural waters using thin-�lm gels. Nature, 367:546–548, 1994.

87. J.N. Huckins, J.D. Petty, and K. Booij. Monitors of Organic Chemicals in the Environment: Semipermeable Membrane Devices. New York: Springer, 2006.

88. A.W. Leonard, R.V. Hyne, and F. Pablo. Trimethylpentane-containing passive samplers for predicting time-integrated concentrations of pesticides in water: Laboratory and �eld studies. Environ. Toxicol. Chem., 21(12):2591–2599, 2002.

89. R.B. Schäfer, A. Paschke, and M. Liess. Aquatic passive sampling of a short-term thiacloprid pulse with the Chemcatcher: Impact of biofouling and use of a diffusion-limiting membrane on the sampling rate. J. Chromatogr., 1203(1):1–6, 2008.

90. J.N. Huckins, J.D. Petty, J.A. Lebo, F.V. Almeida, K. Booij, D.A. Alvarez, W.L. Cranor, R.C. Clark, and B.B. Mogensen. Development of the permeability/performance reference compound (PRC) approach for in situ calibration of semipermeable membrane devices (SPMDs). Environ. Sci. Technol., 36(1):85–91, 2002.

91. K.F. Booij, K. Smedes, and E.M. van Weerlee. Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 46(8):1157–1161, 2002.

92. D.A. Alveraz, J.D. Petty, J.N. Huckins, T.L. Jones-Lepp, D.C. Getting, J.P. Goddard, and S.E. Manahan. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ. Toxicol. Chem., 23:1640–1648, 2004.

93. R. Gunold, R.B. Schäfer, A. Paschke, G. Schüürmann, M. Liess. Calibration of the Chemcatcher pas-sive sampler for monitoring selected polar and semi-polar pesticides in surface water. Environ. Pollut., 15551:52–60, 2008.

46 Handbook of Water Analysis

© 2011 Taylor & Francis Group, LLC

94. M. Shaw, G. Eaglesham, J.F. Mueller. Uptake and release of polar compounds in SDB-RPS Empore (TM) disks; implications for their use as passive samplers. Chemosphere, 75(1):1–7, 2009.

95. H. Zang and W. Davidson. Performance characteristics of the technique of diffusion gradients in thin �lms (DGT) for the measurement of trace metals in aqueous solution. Anal. Chem., 67:3391–3400, 1995.

96. J. Gimpel, H. Zang, and W. Davidson. In-situ trace metal speciation in lake surface waters using DGT, dialysis and �ltration. Environ. Sci. Technol., 37:138–146, 2003.

97. J. Gimpel, H. Zang, W. Hutchinson, and W. Davidson. Effect of solution composition, �ow and deploy-ment time on the measurement of trace metals by DGT. Anal. Chim. Acta, 448:93–103, 2001.

98. S. Denney, J. Sherwood, and J. Leyden. In situ measurements of labile Cu, Cd and Mn in rivers using DGT. Sci. Total Environ., 239:71–80, 1999.

99. R.J.K. Dunn, P.R. Teasdale, J. Warnken, and P.R. Schleich. Evaluation of the diffusive gradient in a thin �lm technique for monitoring trace metal concentrations in estuarine waters. Environ. Sci. Technol., 37:2794–2800, 2003.

100. W.J. Adams, R.A. Kimerle, and J.W. Barnett Jr. Sediment quality and aquatic life assessment. Environ. Sci. Technol., 26:1865–1875, 1992.

101. E.D. Ongley, D.A. Birkholz, J.H. Carey, and M.R. Samoiloff. Is water a relevant sampling medium for toxic chemicals? An alternative environmental sensing strategy. J. Environ. Qual., 17:391–401, 1988.

102. R.B. Schäfer, V. Pettigrove, G. Rose, G. Allinson, A. Wightwick, P.C. von der Ohe, J. Shimeta, R. Kühne, and B.J. Kefford. Effects of pesticides monitored with three sampling methods in 24 sites on macroinver-tebrates and microorganisms. Environ. Sci. Technol., 45(4):1665–1672, 2011.

103. R.B. Schäfer, A. Paschke, B. Vrana, R. Mueller, and M. Liess. Performance of the Chemcatcher® passive sampler when used to monitor 10 polar and semi-polar pesticides in 16 Central European streams, and comparison with two other sampling methods. Water Res., 42(10–11):2707–2717, 2008.

104. M. Liess, R. Schulz, and M. Neumann. A method for monitoring pesticides bound to suspended particles in small streams. Chemosphere, 32(10):1963–1969, 1996.

References

1 Chapter 1 - Sampling Methods in SurfaceWaters

1. Handbook for Sampling and Sample Preservation of Waterand Wastewater; 600/4-82-029; Environmental Monitoring andSupport Laboratory, USEPA. 1982.

2. R.L. Epstein. Residue chemistry—Past to present.Proceedings, 19CRC, Residue Chemistry in the 21st Century,19th Conference of Residue Chemists, September 16–18, 2003,Brisbane, Australia.

3. P. Hoffmann. Probenahme. Nachrichten aus Chemie, Technikund Laboratorium 40:M1–M32, 1992.

4. E.L. Berg, eds. Handbook for Sampling and SamplePreservation of Water and Wastewater (Report PB83-124503). Spring�eld, VA: U.S. National TechnicalInformation Service, 1982.

5. K. Grasshoff, M. Ehrhardt, and T. Almgren, eds. Methodsof Seawater Analysis. Weinheim, Germany: Verlag Chemie,1983.

6. D.T.E. Hunt and A.L. Wilson. The Chemical Analysis ofWater—General Principles and Techniques. London: RoyalSociety of Chemistry, 1986.

7. B. Kratochvil and J.K. Taylor. Sampling for chemicalanalysis. Anal. Chem., 53:924A–938A, 1981.

8. B. Kratochvil, D. Wallace, and J.K. Taylor. Sampling forchemical analysis. Anal. Chem., 56:113R–129R, 1984.

9. C. Ort, M. Lawrence, J. Riekermann, and A. Joss.Products (PPCPs) and illicit drugs in wastewater systems:Are your conclusions valid? A critical review. Environ.Sci. Technol. 44, 6024–6035, 2010.

10. H.M. Ortner, H.H. Xu, J. Dahmen, K. Englert, H.Opfermann, and W. Görtz. Surface characterization ofuorinated polymers (PTFE, PVDF, PFA) for use in ultratraceanalysis. Fresen. J. Anal. Chem., 355:657– 664, 1996.

11. W.A. House and Z. Ou. Determination of pesticides onsuspended solids and sediments: Investigations on thehandling and separation. Chemosphere, 24:819–832, 1992.

12. ISO. Water quality—Sampling—Part 1: Guidance on thedesign of sampling programs. ISO 5667/1 2003.

13. ISO. Water quality—Sampling—Part 2: Guidance onsampling techniques. ISO 5667/2 2003.

14. ISO. Water quality—Sampling—Part 3: Guidance on thepreservation and handling of samples. ISO 5667/3 2003.

15. L.H. Keith. Compilation of EPAs Sampling and AnalysisMethods. Boca Raton, FL: CRC Press, 1996, 1696pp.

16. NPDES Storm Water Sampling Guidance Document. USEPA,1992.

17. Urban Stormwater BMP Performance Monitoring. A GuidanceManual for Meeting the National Stormwater BMP DatabaseRequirements. USEPA, April 2002.

18. Standing Committee of Analysts. General Principles ofSampling and Accuracy of the Results. London: HMSO, 1980,pp. 15–48.

19. J. Hilton, T. Carrick, E. Rigg, and J.P. Lishman.Sampling strategies for water quality monitoring in lakes:The effect of sampling method. Environ. Pollut.,57:223–234, 1989.

20. G.R. Martin, J.L. Smoot, and K.D. White. A comparisonof surface-grab and cross sectionally integratedstream-water-quality sampling methods. Water Environ. Res.,64:866–876, 1992.

21. K.G. Malle. Cleaning-up the River Rhine. Sci. Am.,274:55–59, 1996.

22. R.B. Grayson, C.J. Gippel, B.L. Finlayson, and B.T.Hart. Catchment-wide impacts on water quality: The use of“snap shot” sampling during stable �ow. J. Hydrol.,199:121–134, 1997.

23. L.W.G. Higler. Caddis larvae in a Dutch lowland stream.Proceedings of the Third International Symposium onTrichoptera, Perugia, Italy, 1981, pp. 127–128.

24. C.M. Cooper. Biological effects of agriculturallyderived surface-water pollutants on aquatic systems—Areview. J. Environ. Qual., 22:402–408, 1993.

25. H. Ghadiri and C.W. Rose. Sorbed chemical transport in

overland �ow. 2. Enrichment ratio variation with erosionprocesses. J. Environ. Qual., 20:634–642, 1991.

26. J. Kreuger. Monitoring of pesticides in subsurface andsurface water within an agricultural catchment in southernSweden. British Crop Protection Council Monograph No 62:Pesticide Movement to Water, 81–86, 1995.

27. R.D. Wauchope. The pesticide content of surface waterdraining from agricultural �elds—A review. J. Environ.Qual., 7:459–472, 1978.

28. T. Kohonen. Influence of Sampling Frequency on theEstimates of Runoff Water Quality. Helsinki: WaterResearch Institute, 1982.

29. M. Liess, R. Schulz, H.-D. Liess, B. Rother, and R.Kreuzig. Determination of insecticide contamination inagricultural headwater streams. Water Res., 33(1):239–247,1999.

30. I.G. Droppo and C. Jaskot. Impact of river transportcharacteristics on contaminant sampling error and design.Environ. Sci. Technol., 29:161–170, 1995.

31. M.L. Richardson and J.M. Bowron. Notes on WaterResearch No. 32. Medmenham, Bucks: Water Research Centre,1983, 241pp.

32. A.G. Kelly, I. Cruz, and D.E. Wells.Polychlorobiphenyls and persistent organochlorinepesticides in sea water at the pg L −1 level. Samplingapparatus and analytical methodology. Anal. Chim. Acta,276:3–13, 1993.

33. A.D. Jassby, B.E. Cole, and J.E. Cloern. The design ofsampling transects for characterizing water quality inestuaries. Estuar. Coast. Shelf Sci., 45:285–302, 1997.

34. D. Barcelo and M.C. Hennion. Sampling of polarpesticides from water matrices. Anal. Chim. Acta,338:3–18, 1997.

35. L. Friling. Monitoring storm water runoff. Pollut.Eng., 25:36–39, 1993.

36. C.G. Daughton and I.S. Ruhoy. Environmental footprintof pharmaceuticals: The signi�cance of factors beyonddirect excretion to sewers. Environ. Toxicol. Chem.,28(12):2495–2521, 2009.

37. Treating Contaminants of Emerging Concern. A LiteratureReview Database. US Environmental Protection Agency Of�ceof Water (4303T). EPA-820-R-10-002, 2010.

38. C. Ort, M.G. Lawrence, J. Reungoat, and J.F. Mueller.Sampling for PPCPs in wastewater systems: Comparison ofdifferent sampling modes and optimization strategiesEnviron. Sci. Technol., 44, 6289– 6296, 2010.

39. M.G. Lawrence and D.G. Bariel. Tracing treatedwastewater in an inland catchment using anthropogenicgadolinium. Chemosphere, 80:794–799, 2010.

40. M. Rabiet, F. Brissaud, J.L. Seidel, S. Pistre, and F.Elbaz-Poulichet. Positive gadolinium anomalies inwastewater treatment plant ef�uents and aquatic environmentin the Herault watershed (South France). Chemosphere, 75,1057–1064, 2009.

41. D.J. Harper. A new trace metal-free surface watersampling device. Mar. Chem., 21:183–188, 1987.

42. P. Conan, M. Pujo-Pay, M. Leveau, and P. Raimbault. Uneautre utilisation du systeme let-go: Echantillonnagerapide d’une colonne d’Eau Entre 0 et 200 M. Annales deL’Institut Oceanographique, 72:221–227, 1996.

43. G.C. Kineke and R.W. Sternberg. The effect of particlesettling velocity on computed suspended sedimentconcentration pro�les. Mar. Geol., 90:159–174, 1989.

44. I.N. McCave and T.J. Gross. The effect of particlesettling velocity on computed suspended sedimentconcentration pro�les. Mar. Geol., 99:403–413, 1991.

45. L. Thomsen, G. Graf, V. Martens, and E. Steen. Aninstrument for sampling water from the benthic boundarylayer. Cont. Shelf Res., 14:871–882, 1994.

46. U. Eversberg. A new device for sampling water from thebenthic boundary layer. Helgolaender MeeresunterSuchungen, 44:329–334, 1990.

47. M. Dickman and F. Johnson. Deployment of a thresholdactivated pump sampler in an industrial shock load impactstudy. Hydrobiologia, 344:181–193, 1997.

48. J. Hodge, B. Longstaff, A. Steven, P. Thornton, P.Ellis, and I. McKelvie. Rapid underway pro�ling of water

quality in Queensland estuaries. Mar. Pollut. Bull.,51:113–118, 2005.

49. J. Udy, M. Gall, B. Longstaff, K. Moore, C. Roelfsema,D.R. Spooner, and S. Albert. Water quality monitoring: Acombined approach to investigate gradients of change in theGreat Barrier Reef, Australia. Mar. Pollut. Bull.,51:224–238, 2005.

50. R. Schulz, M. Hauschild, M. Ebeling, J. Nanko-Drees, J.Wogram, and M. Liess. A qualitative �eld method formonitoring pesticides in the edge-of-�eld runoff.Chemosphere, 36(15):3071–3082, 1998.

51. B. Koopman, C.M. Stevens, C.L. Logue, P. Karney, and G.Bitton. Automatic sampling equipment and BOD testnitri�cation. Water Res., 23:1555–1562, 1989.

52. H. Hermans, F. Smedes, J.W. Hofstratt, and W.P. Co�no.A method for estimation of chlorinated biphenyls in surfacewaters: In�uence of sampling method on analytical results.Environ. Sci. Technol., 26:2028–2035, 1992.

53. M.E. Fox. A practical sampling and extraction systemfor the quantitative analysis of sub-ng/L organochlorinecontaminants in �ltered water and suspended solids. In:W.C. Sonzogni and D.J. Dube, eds. Methods for Analysis ofOrganic Compounds in the Great Lakes. Madison, WI:University of Wisconsin Sea Grant Institute, 1986, pp.27–34.

54. S. Stephens and J. Mueller. Techniques forquantitatively evaluating aquatic passive sampling devices.In: R. Greenwood, G.A. Mills, and B. Vrana, eds. PassiveSampling Techniques in Environmental Monitoring.Comprehensive Analytical Chemistry Series, Damia Barcelo(series editor), Elsevier: Amsterdam, 2006.

55. J.E. Woodrow, M.S. Majewski, and J.N. Seiber.Accumulative sampling of trace pesticides and otherorganics in surface water using XAD-4 resin. J. Environ.Sci. Health B, 21:143–164, 1986.

56. M. Knutsson, G. Nilve, L. Mathiasson, and J.A. Jonsson.Supported liquid membranes for sampling and samplepreparation of pesticides in water. J. Chromatogr. A,754:197–205, 1996.

57. S.A. Dinkins. Quanti�cation of dioxin concentrations inthe Ohio River using high volume water sampling. Available

online at: http://tinyurl.com/9valj.

58. M. Winkler, G. Kopf, C. Hauptvogel, and T. Neu. Fate ofarti�cial musk fragrances associated with suspendedparticulate matter (SPM) from the River Elbe (Germany) incomparison to other organic contaminants. Chemosphere,37(6):1139–1156, 1998.

59. T. Harner, H. Kylin, T.F. Bidleman, and W.M.J.Strachan. Removal of α- and γ-hexachlorocyclohexane andenantiomers of α-hexachlorocyclohexane in the EasternArctic Ocean. Environ. Sci. Technol., 33(8):1157–1164,1999.

60. S. Usenko, K.J. Hageman, D.W. Schmedding, G.R. Wilson,and S.L. Simonich. Trace analysis of semivolatile organiccompounds in large volume samples of snow, lake water, andgroundwater. Environ. Sci. Technol., 39(16):6006–6015,2005.

61. R.M. Vilinova, P. Fernández, and J.O. Grimalt.Polychlorinated biphenyl partitioning in the waters of aremote mountain lake. Sci. Total Environ., 279:51–62, 2001.

62. Minnesota Pollution Control Agency. LakeSuperior/Duluth-Superior Harbor Toxics Loading Study.USEPA Grant#995402-1, 1999.

63. D.R. Achman, K.C. Hornbuckle, and S.J. Eisenreich.Volatilization of polychlorinated biphenyls from GreenBay, Lake Michigan. Environ. Sci. Technol., 27(1):75–87,1993.

64. J.I. Gomez-Bellinchon, J.O. Grimalt, and J. Albaiges.Intercomparison study of liquid–liquid extraction andadsorption on polyurethane and Amberlite XAD-2 for theanalysis of hydrocarbons, polychlorobiphenyls, and fattyacids dissolved in seawater. Environ. Sci. Technol.,22:677–685, 1988.

65. J. Dachs and J.M. Bayona. Large volume preconcentrationof dissolved hydrocarbons and polychlorinated biphenylsfrom seawater. Intercomparison between C 18 disks andXAD-2 column. Chemosphere, 35(8):1669–1679, 1997.

66. D.R. Green, J.K. Stull, and T.C. Heesen. Determinationof chlorinated hydrocarbons in coastal waters using amoored in situ sampler and transplanted live mussels. Mar.Pollut. Bull., 17(7):324–329, 1986.

67. M.G. Ehrhard and K.A. Burns. Petroleum deriveddissolved organic compounds concentrated from inshorewaters in Bermuda. J. Exp. Mar. Biol. Ecol., 138(1):35–47,1990.

68. J. Axelman, K. Naes, C. Näf, and D. Broman.Accumulation of polycyclic aromatic hydrocarbons insemipermeable membrane devices and caged mussels (Mytilisedulis L.) in relation to water column phase distribution.Environ. Toxicol. Chem., 18:2454–2461, 1999.

69. H. Iwata, S. Tanabe, N. Sakai, and R. Tatsukawa.Distribution of persistent organochlorines in the oceanicair and surface seawater and the role of ocean on theirglobal transport and fate. Environ. Sci. Technol.,27(6):1080–1098, 1993.

70. San Francisco Estuary Institute. SouthBay/Fair�eld-Suisun Trace Organic Contaminants in Ef�uentStudy. Available at: http://www.sfei.org/cmr/TOESv5.pdf.

71. D.E. Schultz, G. Petrick, and J.C. Duinker. Chlorinatedbiphenyls in North Atlantic surface and deep water. Mar.Pollut. Bull., 19(10):526–531, 1988.

72. G.R. Harvey, W.G. Steinhaver, and H.P. Miklas. Declineof PCB concentrations in North Atlantic surface water.Nature, 252(5482):387–388, 1974.

73. A. Rantalainen, M. Ikonomou, M.G. Ikonomou, and I.H.Rogers. Lipid-containing semipermeable membrane devices(SPMDs) as concentrators of toxic chemicals in the lowerFraser River, Vancouver, British Columbia. Chemosphere,37(6):1119–1138, 1998.

74. T. McDonnell and J. Rosen�eld. Solid-phase samplepreparation of natural waters with reversed-phase disks.J. Chromatogr. A, 629(1):41–53, 1993.

75. S. Weigel, K. Bester, and H. Hühnerfuss. New method forrapid solid-phase extraction of large-volume water samplesand its application to non-target screening of North Seawater for organic contaminants by gas chromatography–massspectrometry. J. Chromatogr. A, 912(1):151–161, 2001.

76. Perry’s Chemical Engineering Handbook, 7th edn.,Chapter 16, New York: McGraw-Hill.

77. J.W. Hofstraat, J.A. Tierlrooij, H. Compaan, and W.H.Mulder. Fluidized-bed solid-phase extraction: A novel

approach to time-integrated sampling of trace metals insurface water. Environ. Sci. Technol., 25:1722–1727, 1991.

78. J. Müller, M. Krishnamohan, M. Mortimer, and M.S.McLaughlin. Partitioning of polycyclic aromatichydrocarbons in the polyethylene/water system. Fresen. J.Anal. Chem., 371:816–822, 2001.

79. R.B. Schäfer, L. Hearn, B.J. Kefford, D. Nugegoda, andJ.F. Mueller, Using silicone passive samplers to detectpolycyclic aromatic hydrocarbons from wild�res in streamsand potential acute effects for invertebrate communities.Water Res., 44(15):4590–4600, 2010.

80. P. Mayer, W.H.J. Vaes, F. Wijnker, K.C.H.M. Legierse,R. Kraaij, J. Tolls, and J.L. Hermens. Sensing dissolvedsediment porewater concentrations of persistent andbioaccumulative pollutants using disposable solid-phasemicroextractive �bers. Environ. Sci. Technol.,34:5177–5183, 2000.

81. A. Södergren. Solvent �lled dialysis membranes simulateuptake of pollutants by aquatic organisms. Environ. Sci.Technol., 21:855–859, 1987.

82. J.N. Huckins, J.P. Petty, H.F. Prest, R.C. Clark, D.A.Alvarez, D.C. Orazio, J.A. Lebo, W.L. Cranor, and B.T.Johnson. A Guide for the Use of Semipermeable MembraneDevices (SPMDs) as Samplers of Waterborne HydrophobicOrganic Contaminants. American Petroleum InstitutePublication 4690, 2002.

83. J. Huckins, G. Manuweera, D. Petty, D. Mackay, andJ.C.N. Lebo. Lipid-containing semipermeable membranedevices for monitoring organic contaminants in water.Environ. Sci. Technol., 27:2489–2496, 1993.

84. J.K. Kingston, R. Greenwood, G.A. Mills, G.M. Morrison,and L. Bjorklund Persson. Development of a novel passivesampling system for the time averaged measurement of arange of organic pollutants in aquatic environments. J.Environ. Monitor., 2:487–495, 2000.

85. D.A. Alvarez, J.N. Huckins, J.D. Petty, and S.E.Manahan. Progress toward the development of a passive insitu SPMD-like sampler for hydrophilic organic contaminantsin aquatic environments. Twentieth Annual Meeting ofSociety of Environmental Technology and Chemistry,November, 1999, Philadelphia PA.

86. W. Davison and H. Zhang. In-situ speciation measurementof trace components in natural waters using thin-�lm gels.Nature, 367:546–548, 1994.

87. J.N. Huckins, J.D. Petty, and K. Booij. Monitors ofOrganic Chemicals in the Environment: SemipermeableMembrane Devices. New York: Springer, 2006.

88. A.W. Leonard, R.V. Hyne, and F. Pablo.Trimethylpentane-containing passive samplers for predictingtime-integrated concentrations of pesticides in water:Laboratory and �eld studies. Environ. Toxicol. Chem.,21(12):2591–2599, 2002.

89. R.B. Schäfer, A. Paschke, and M. Liess. Aquatic passivesampling of a short-term thiacloprid pulse with theChemcatcher: Impact of biofouling and use of adiffusion-limiting membrane on the sampling rate. J.Chromatogr., 1203(1):1–6, 2008.

90. J.N. Huckins, J.D. Petty, J.A. Lebo, F.V. Almeida, K.Booij, D.A. Alvarez, W.L. Cranor, R.C. Clark, and B.B.Mogensen. Development of the permeability/performancereference compound (PRC) approach for in situ calibrationof semipermeable membrane devices (SPMDs). Environ. Sci.Technol., 36(1):85–91, 2002.

91. K.F. Booij, K. Smedes, and E.M. van Weerlee. Spiking ofperformance reference compounds in low densitypolyethylene and silicone passive water samplers.Chemosphere, 46(8):1157–1161, 2002.

92. D.A. Alveraz, J.D. Petty, J.N. Huckins, T.L.Jones-Lepp, D.C. Getting, J.P. Goddard, and S.E. Manahan.Development of a passive, in situ, integrative sampler forhydrophilic organic contaminants in aquatic environments.Environ. Toxicol. Chem., 23:1640–1648, 2004.

93. R. Gunold, R.B. Schäfer, A. Paschke, G. Schüürmann, M.Liess. Calibration of the Chemcatcher passive sampler formonitoring selected polar and semi-polar pesticides insurface water. Environ. Pollut., 15551:52–60, 2008.

94. M. Shaw, G. Eaglesham, J.F. Mueller. Uptake and releaseof polar compounds in SDB-RPS Empore (TM) disks;implications for their use as passive samplers.Chemosphere, 75(1):1–7, 2009.

95. H. Zang and W. Davidson. Performance characteristics ofthe technique of diffusion gradients in thin �lms (DGT)

for the measurement of trace metals in aqueous solution.Anal. Chem., 67:3391–3400, 1995.

96. J. Gimpel, H. Zang, and W. Davidson. In-situ tracemetal speciation in lake surface waters using DGT,dialysis and �ltration. Environ. Sci. Technol., 37:138–146,2003.

97. J. Gimpel, H. Zang, W. Hutchinson, and W. Davidson.Effect of solution composition, �ow and deployment time onthe measurement of trace metals by DGT. Anal. Chim. Acta,448:93–103, 2001.

98. S. Denney, J. Sherwood, and J. Leyden. In situmeasurements of labile Cu, Cd and Mn in rivers using DGT.Sci. Total Environ., 239:71–80, 1999.

99. R.J.K. Dunn, P.R. Teasdale, J. Warnken, and P.R.Schleich. Evaluation of the diffusive gradient in a thinlm technique for monitoring trace metal concentrations inestuarine waters. Environ. Sci. Technol., 37:2794–2800,2003.

100. W.J. Adams, R.A. Kimerle, and J.W. Barnett Jr.Sediment quality and aquatic life assessment. Environ.Sci. Technol., 26:1865–1875, 1992.

101. E.D. Ongley, D.A. Birkholz, J.H. Carey, and M.R.Samoiloff. Is water a relevant sampling medium for toxicchemicals? An alternative environmental sensing strategy.J. Environ. Qual., 17:391–401, 1988.

102. R.B. Schäfer, V. Pettigrove, G. Rose, G. Allinson, A.Wightwick, P.C. von der Ohe, J. Shimeta, R. Kühne, andB.J. Kefford. Effects of pesticides monitored with threesampling methods in 24 sites on macroinvertebrates andmicroorganisms. Environ. Sci. Technol., 45(4):1665–1672,2011.

103. R.B. Schäfer, A. Paschke, B. Vrana, R. Mueller, and M.Liess. Performance of the Chemcatcher ® passive samplerwhen used to monitor 10 polar and semi-polar pesticides in16 Central European streams, and comparison with two othersampling methods. Water Res., 42(10–11):2707–2717, 2008.

104. M. Liess, R. Schulz, and M. Neumann. A method formonitoring pesticides bound to suspended particles insmall streams. Chemosphere, 32(10):1963–1969, 1996.

2 Chapter 2 - Methods of Treatment of Data

ACOS S.p.A. (water supplier of Novi Ligure, Italy). 2003.Unpublished data.

R Bro, F van den Berg, A Thybo, CM Andersen, BM Jørgensen,and H Andersen. 2002. Multivariate data analysis as a toolin advanced quality monitoring in the food productionchain. Trends in Food Science & Technology 13:235–244.

V Centner, DL Massart, OE de Noord, S de Jong, BMVandeginste, and C Sterna. 1996. Elimination ofuninformative variables for multivariate calibration.Analytical Chemistry 68:3851–3858.

M Forina, C Casolino, and C Pizarro Millán. 1999. Iterativepredictor weighting (IPW) PLS: A technique for theelimination of useless predictors in regression problems.Journal of Chemometrics 13:165–184.

P Geladi. 1989. Analysis of multiway (multimode) data.Chemometrics and Intelligent Laboratory Systems 7:11–30.

T Kourti and JF MacGregor. 1995. Process analysis,monitoring and diagnosis using multivariate projectionmethods. Chemometrics and Intelligent Laboratory Systems28:3–21.

R Leardi, C Armanino, S Lanteri, and L Alberotanza. 2000a.Three-mode principal component analysis of monitoring datafrom Venice lagoon. Journal of Chemometrics 14:187–195.

R Leardi. 2000b. Application of genetic algorithm–PLS forfeature selection in spectral data sets. Journal ofChemometrics 14:643–655.

F Lindgren, P Geladi, S Rännar, and S Wold. 1994.Interactive variable selection (IVS) for PLS. 1. Theory andalgorithms. Journal of Chemometrics 8:349–363.

L Nørgaard, A Saudland, J Wagner, JP Nielsen, L Munck, andSB Engelsen. 2000. Interval partial least-squaresregression (iPLS): A comparative chemometric study with anexample from near-infrared spectroscopy. AppliedSpectroscopy 54:413–419.

AK Smilde. 1992. Three-way analyses. Problems andprospects. Chemometrics and Intelligent Laboratory Systems15:143–157.

J Workman Jr. 2002. The state of multivariate thinking forscience in industry: 1980–2000. Chemometrics andIntelligent Laboratory Systems 60:13–23.

FURTHER READING

Books

KR Beebe, RJ Pell, and MB Seasholtz. 1998. Chemometrics: APractical Guide. New York: Wiley & Sons.

RG Brereton. 2003. Chemometrics—Data Analysis for theLaboratory and Chemical Plant. Chichester: Wiley.

S Brown, R Tauler, and B Walczak (eds). 2009. ComprehensiveChemometrics, 1st edition. Chemical and Biochemical DataAnalysis. Amsterdam: Elsevier.

R Leardi (ed). 2003. Nature-Inspired Methods inChemometrics: Genetic Algorithms and Artificial NeuralNetworks, in Data Handling in Science and TechnologySeries, vol. 23. Amsterdam: Elsevier.

BFJ Manly. 1986. Multivariate Statistical Methods. APrimer. London: Chapman and Hall.

H Martens and T Naes. 1991. Multivariate Calibration. NewYork: Wiley & Sons.

DL Massart, BGM Vandeginste, SN Deming, Y Michotte, and LKaufman. 1990. Chemometrics: A Textbook, in Data Handlingin Science and Technology Series, vol. 2. Amsterdam:Elsevier.

DL Massart, BGM Vandeginste, LMC Buydens, S de Jong, PJLewi, and J Smeyers-Verbeke. 1997. Handbook ofChemometrics and Qualimetrics, Part A, in Data Handling inScience and Technology Series, vol. 20A. Amsterdam:Elsevier.

DL Massart, BGM Vandeginste, LMC Buydens, S de Jong, PJLewi, and J Smeyers-Verbeke. 1998. Handbook ofChemometrics and Qualimetrics, Part B, in Data Handling inScience and Technology Series, vol. 20B. Amsterdam:Elsevier.

M Meloun, J Militky, and M Forina. 1992. Chemometrics forAnalytical Chemistry. Vol 1: PC-Aided Statistical DataAnalysis. Chichester: Ellis Horwood.

M Meloun, J Militky, and M Forina. 1994. Chemometrics forAnalytical Chemistry. Vol 2: PC-Aided Regression andRelated Methods. Hemel Hempstead: Ellis Horwood.

MA Sharaf, DL Illman, and BR Kowalski. 1986. Chemometrics,in Chemical Analysis, A Series of Monographs on AnalyticalChemistry and Its Applications Series, vol. 82, PJ Elving,JD Winefordner (eds.,) New York: Wiley & Sons.

Websites

http://ull.chemistry.uakron.edu/chemometrics/

http://www.chemometry.com/

http://www.models.kvl.dk/

http://www.namics.nysaes.cornell.edu/

http://www.spectroscopynow.com

http://statmaster.sdu.dk/courses/ST02/index.html

http://www.statsoft.com/textbook/stathome.html Section IIRadioanalytical Analysis

3 Chapter 3 - Radioanalytical Methodologyfor Water Analysis

1. Friedlander, G., Kennedy, J.W., Macias, E.S., Miller,J.M. Nuclear and Radiochemistry, 3rd. ed., John Wiley &Sons, Inc., New York, 1981.

2. International Atomic Energy Agency, Summary Report onthe Post-Accident Review Meeting, Chernobyl Accident.Safety Series No. 75-INSAG-1, IAEA, Vienna, 1986.

3. United Nations Scienti�c Committee on the Effects ofAtomic Radiations, Sources, Effects and Risk of IonizationRadiation, United Nations, New York, 1988.

4. Wang, C.H., Willis, D.L., Loveland, W.D. RadiotracerMethodology in the Biological, Environmental, and PhysicalScience, Prentice-Hall, Inc., Englewood Cliff, NJ, 1975.

5. International Atomic Energy Agency, Measurement ofRadionuclides in Food and the Environment: A Guide Book,IAEA Technical Series No. 295, IAEA, Vienna, 1989.

6. Aupiais, J. Radium measurements in water samples byalpha-liquid scintillation counting with alpha/betadiscrimination. Analytical Chimica Acta, 2005, 532(2),199–207.

7. Greenberg, A.E., Clesceri, L.S., Eaton, A.D. StandardMethods for the Examination of Water and Wastewater, 18thed., American Public Health Association, Washington, DC,1992.

8. Aupiais, J. Rapid determination of uranium activity andconcentration by α-liquid scintillation counting with α/βdiscrimination, Analytical Chimica Acta, 2004, 517(1–2),221–228.

9. Environmental Measurements Laboratory, ML-ProcedureManual, HASL-300, U.S. Department of Energy, EnvironmentalMeasurement Laboratory, New York, 1992.

10. Goheen, S.C., McCulloch, M. DOE Methods for EvaluatingEnvironmental and Waste Management Samples, NTIS,DOE-EM-0089, U.S. department of Energy, Of�ce ofEnvironmental Restoration and Waste Management,Washington, DC, 1993.

11. Lucas, H.F. Jr. A fast and accurate survey techniquefor both radon-222 and radium-226, In: The Natural

Radiation Environment, J.A.S. Adams and W.M. Lowder, Eds,University of Chicago Press, Chicago, 1964.

12. Prichard, H.M., Gesell, T.F. Rapid measurements ofRn-222 concentrations in Water with a commercial liquidscintillator counter, Health Physics, 1977, 33, 577–581.

13. Aupiais, J. Deconvolution of alpha liquid scintillationspectra for quantitative analysis of actinide elements inwater samples, Radiochimica Acta, 2004, 92(3), 125–132.

14. Jia, G., Torri, G., Innocenzi, P. An improved methodfor determination of uranium isotopes in environmentalsamples by alpha spectrometry, Journal of Radioanalyticaland Nuclear Chemistry, 262(2), 2004, 433–441.

15. U.S. Environmental Protection Agency, Method 905.0. In:Prescribed Procedures for Measurement of Radioactivity inDrinking Water, U.S. EPA,Washington, DC, 1980, pp. 58–74.

16. U.S. Environmental Protection Agency, Method 907.0. In:Prescribed Procedures for Measurement of Radioactivity inDrinking Water, U.S. EPA,Washington, DC, 1980, pp. 75–82.

17. Liong, L., Wee Kwong, L.L., Gastard, J., LaRosa, J.,Lee, S.H., Pouinec, P.P., Wyse, E. Determination of Pu-241in marine samples using coprecipitation with rare earthuoride and liquid scintillation spectrometry, Journal ofRadioanalytical and Nuclear Chemistry, 2004, 261(2),283–289.

18. Blades, M.W., Caughlin, B.L. Excitation temperaturesand electron density in the inductively coupledplasma—Aqueous vs. organic solvents, Spectrochimica Acta,1985, 40B, 579–591.

19. Furita, N., Horlick, G. Spatial characterization ofanalyte emission and excitation temperatures in andinductively coupled plasma, 1982, 37(1), 53–64.

20. Daes, S.K., Kulkarni, A.V., Dhaneshwar, R.G.Determination of microgram amounts of uranium in thorium btdifferential pulse polarography, Analyst, 1993, 118,1153–1155.

21. Franek, M., Krivan, V. Determination of sub-ng/gconcentrations of thorium and uranium in microelectronicmaterials by radiochemical neutron activation analysis,Analytical Chimica Acta, 1993, 274, 317.

22. Jackson, P.E., Carnevale, J., Fuping, H., Haddad, P.R.Determination of thorium and uranium in mineral sands byion chromatography, Journal of Chromatography A, 1994, 671,181–191.

23. Rohr, U., Meckel, L., Ortner, H.M. Ultratrace analysisof uranium and thorium in glass, Part I. Fresenius Journalof Analytical Chemistry, 1994, 348, 356–364.

24. Browner, R.F., Boorn, A.W. Sample introductiontechniques for atomic spectrometry, Analytical Chemistry,1984, 56(7), 875A–888A.

25. Alvarado, J.S., Erickson, M.D. Determination oflong-lived radioisotopes using electrothermal vaporizationinductively coupled plasma mass spectrometry, Journal ofAnalytical Atomic Spectrometry, 1996, 11, 923–928.

26. Crain, J.S., Smith, L.L., Yaeger, J.S., Alvarado, J.S.Determination of actinide elements in environmentalmaterials, Journal of Radioanalytical and NuclearChemistry, 1995, 194(1), 131–139.

27. Kim, C.K., Seki, R., Morita, S., Yamasaki, S., Tsumura,A., Takaka, Y., Igarashi, Y., Yamamoto, M. Application ofa high resolution inductively coupled mass spectrometer tothe measurement of long-lived radioisotopes, Journal ofAnalytical Atomic Spectrometry, 1991, 6, 205.

28. Crain, J.S. Long-lived radionuclides by inductivelycouple plasma-mass spectrometry, Spectroscopy, 1996, 11,30–39.

29. Brown, R.M., Long, S.E., Pickford, C.J. The measurementof long radionuclides by non-radiometric methods, Scienceof the Total Environment., 1988, 70, 265–274.

30. Igarashi, Y., Kim, C.K., Takaku, Y., Shiraishi, K.,Yamamoto, M., Ikeda, N. Application of inductively couplesplasma mass spectrometry to the measurement of long-livedradionuclides in environmental samples: A review.Analytical Science, 1990, 6, 157–164.

31. Toole, J., Hursthouse, A.S., McDonald, P., Sampson, K.,Baxter, M.S., Scott, R.D., McKay, K. Plasma source massspectrometry, In: Royal Society of Chemistry, K.E. Jarvis,A.L. Gray, I. Jarvis, and J. Williams, Eds, Royal Societyof Chemistry, Cambridge, England, 1990, p. 155.

32. Smith, M., Wyse, E., Koppenaal, D. Radionuclide

detection by inductively coupled plasma mass spectrometry:A comparison of atomic and radiation detection methods.Journal of Radioanalytical and Nuclear Chemistry, 1992,160, 341–354.

33. Crain, J.S., Alvarado, J.S. Hydride interferences onthe determination of minor actinides isotopes byinductively coupled plasma mass spectrometry. Journal ofAnalytical Atomic Spectrometry, 1994, 9, 1223–1227.

34. Weiss, H.V., Shipman, W.H. Separation of strontium fromcalcium rhodiozanate. Applications to radiochemistry.Analytical Chemistry, 1957, 29, 1764.

35. Fourie, H.O., Ghijsels, J.P. Radiostrontium inbiological material: A precipitation and extractionprocedures eliminating the use of fuming nitric acid.Health Physics, 1969, 17(5), 685–687.

36. Butler, F.E. Separation of calcium and strontium byliquid ion exchange. Analytical Chemistry, 1963(13), 35,2069–2071.

37. Talvitie, N.A., Demint, R.J. Radioanalyticaldetermination of strontium-90 in water using ion exchange.Analytical Chemistry, 1965, 37(12), 1605–1607.

38. Moore, F.L. Separation of protactinium and niobium byliquid-liquid extraction. Analytical Chemistry, 1955,27(1), 70–72.

39. Cahill, D.F., Lindsay, G.J. Determination ofstrontium-90 in urine by anion exchange. AnalyticalChemistry, 1966, 38(4), 639–640.

40. Noshkin, V.E., Mott, N.S. Separation of strontium fromlarge amounts of calcium with application toradiostrontium analysis. Talanta, 1967, 14(1), 45–51.

41. Porter, C.R., Kalin, B., Carter, M.W., Vehnberg, G.L.,Pepper, E.W. Determination of radiostrontium in food andother environmental samples. Environmental ScienceTechnology, 1967, 1(9), 745–750.

42. Lada, W.A., Smulek, W. Determination of radiostrontiumusing solid-phase extraction chromatography.Radiochemistry and Radioanalytical Letters, 1978, 34,41–50.

43. Smulek, W., Lada, W.A. Separation of alkali and alkali

earth metals by polyethers using extractionchromatography—Effect of diluent. Journal ofRadioanalytical Chemistry, 1979, 50(1–2), 169–178.

44. Kremliakova, N.Y., Novikov, A.P., Mysoedov, B.F.Extraction chromatographic separations of radionuclides ofstrontium, cesium and barium with the use of TVEX-DCH18C6.Journal of Radioanalytical and Nuclear Chemistry, 1990,145(1), 23–28.

45. Horwitz, E.P., Chiarizia, R., Dietz, M.L. A novelstrontium selective extraction chromatography resin.Solvent Extraction and Ion Exchange, 1992, 10(2), 313–336.

46. Eichrom Industries, Inc. web page, 2012, “ourproducts,” [URL http://www.eichrom.com (as of February 21,2012)], Darien, Illinois, USA.

47. Smith, L.L., Orlandini, K.A., Alvarado, J.S., Hoffmann,K.M., Seely, D.C., Shannon, R.T. Applications of Empore TMSr-disk to the analysis of radiostrontium in environmentalwater samples. Radiochimica Acta, 1996, 73, 165–170.

48. Hagen, D., Markell, C., Schmitt, G. Membrane approachto solid-phase extractions. Analytical Chimica Acta, 1990,236, 157–164.

49. Barcelo, D., Durand, G., Bouvot, V., Nielen, M. Use ofextraction disk for trace enrichment of various pesticidesfrom river water and simulated seawater samples followed byliquid chromatography rapid scanning UV-visible andthermospray mass spectrometry detection. EnvironmentalScience and Technology, 1993, 27(2), 271–277.

50. Environmental Measurement Laboratory, Technetium inwater and vegetation In: Environmental MeasurementLaboratory Procedures Manual, HASL-300, 27th ed., Vol. 1;Tc-01; revised edition, U.S. Department of Energy, NewYork, 1992.

51. Holm, E., Rioseco, J., Garcia-Leon, M. Determination ofTc-99 in environmental samples. Nuclear Instruments andMethods in Physics Research, 1984, 223, 204–207.

52. Orlandini, K.A., King, J.G., Erickson, M.D. Rapidseparation and measurement of technetium-99, unpublisheddata.

53. U.S. Environmental Protection Agency, PrescribedProcedures for Measurement of Radioactivity in Drinking

Water, EPA 600-4-80-032, Environmental Monitoring andSupport Laboratory, Cincinnati, 1980.

54. Freeman, A.J., Keller, C. Handbook on the Physics andChemistry of the Actinides, Vol. 6, Elsevier SciencePublications Co., Inc. North Holland, New York, 1991.

55. Horwitz, E.P., Kalina, D.G., Diamond, H., Vandegrift,G.P., Schultz, W.W. The TRUEX process—A process for theextraction of the transuranic elements from nitric acid inwaste utilizing modi�ed purex solvent. Solvent Extractionand Ion Extraction, 1985, 3(1–2), 75.

56. Horwitz, E.P., Chiarizia, R., Dietz, M.L., Diamond, H.,Nelson, D.M. Separation and preconcentration of actinidesfrom acidic media by extraction chromatography. AnalyticalChimica Acta, 1993, 281(2), 361–372.

57. McDowell, W.J., McDowell, B.L. Liquid ScintillationAlpha Spectrometry, CRC Press, Boca Raton, FL, 1994.

58. Boll, R.A., Schweitzer, G.K., Garber, R.W. An improvedactinide separation method for environmental samples.Journal of Radioanalytical and Nuclear Chemistry, 1997,220(2), 201–206.

59. Golchert, N.W., Sedlet, J. Radioanalyticaldetermination of technetium-99 in environmental watersamples. Analytical Chemistry, 1969, 41(4), 669–671.

60. Chen, Q., Dahlgaard, H., Hansen, H.J.M., Aarkrog, A.Determination of Tc-99 in environmental samples by anionexchange and liquid-liquid extraction at controlledvalency. Analytical Chimica Acta, 1990, 228, 163–167.

61. Morse, R.S., Welford, G.A. Dietary intake of Pb-210.Health Physics, 1971, 21, 53–55.

62. Leyba, J.D., Vollmar, J.D., Fjeld, R.A., Devol, T.A.,Brown, D.D., Cadieux, J.R. Evaluation of a directextraction/liquid scintillation counting technique for themeasurement of uranium in water. Journal ofRadioanalytical and Nuclear Chemistry, 1995, 194(2),337–344.

63. Tsertos, H., Pashalidis, I. Radiometric determinationof uranium in natural waters after enrichment andseparation by cation exchange and liquid-liquid extraction.Journal of Radioanalytical and Nuclear Chemistry, 2004,260(3), 439–442.

64. Nilsson, M., Elberg, C., Foreman, H., Hudson, M.,Liljenzin, J. Modolo, G. Skarremark, G. Separation ofactinide(III) rom lanthanide(III) in simulated nuclearwaste streams using 6,6′-bis-(5,6-dipenthyl-[1,2,4]triazin-3-ul)-[2,2′]bipyridinyl (C5-BTBP) in cyclohexane.Solvent Extraction and Ion Exchange, 2006, 24, 823–843.

65. Guclu, K., Apak, R., Atun, T. Determination andpreconcentration of natural and radio-cesium from aqueoussamples. Journal of Radioanalytical and Nuclear Chemistry,2004, 259(2), 209–211.

66. American Society of Testing Materials, Standard TestMethod for Strontium-90 in Water, In: Annual Book of ASTMStandards, ASTM, Philadelphia, D-5811-95, 1995.

67. Pietrelli, L., Salluzzo, A., Troiani, F. Sorption ofEuropium and Actinides by means ofOctyl(phenyl)N,N-diisobutyl-carbamoylmethylphosphine oxide[CMPO] loaded in silica. Journal of Radioanalytical andNuclear Chemistry, 1990, 141(1), 107–115.

68. Borai, E.H., El-Sofany, E.A. Separation of strontium-90and ytrium-90 in the presence of thorium-234 by dynamicion chromatography. Journal Radioanalytical and NuclearChemistry, 2004, 262(3), 697–701.

69. Sullivan T. et al. Determination of Technetium-99 inBorehole Waters Using an Extraction Chromatographic Resin.37th Annual Conference on Bioassay, Analytical andEnvironmental Radiochemistry. Ottawa, Canada 1991.(ST191).

70. Burnett, W.C., Cable, P.H., Moser, R. Determination ofRadium-228 in natural waters using extractionchromatography resins. Radioactivity and Radiochemistry,1995, 6(3), 36.

71. Carney, K.P., Cummings, D.G. The applications ofmicro-column solid phase extraction techniques for thedetermination of rare earth elements in actinidescontaining matrices. Journal of Radioanalytical andNuclear Chemistry, 1995, 194, 41–49.

72. Berne, A. Use of Eichrom’s TRU Resin in theDetermination of Am, Pu, and U in Air Filters and WaterSamples, Environmental Measurement Laboratory, EML-75. NewYork, 1995.

73. Horwitz, E.P., Chiarizia, R., Dietz, M.L., Diamond, H.,Graczyk, D. Separation and preconcentration of uraniumfrom acidic media by extraction chromatography. AnalyticalChimica Acta, 1992, 266(1), 25–37.

74. Testa, C., Desideri, D., Meli, M.A., Roselli, C. Newradiochemical procedures for environmental actinidemeasurements and data quality control. Journal ofRadioanalytical and Nuclear Chemistry, Articles, 1995,194(1), 141–149.

75. Hashimoto, K., Matsuoka, H. Analysis of 188 Re-EDTMPcomplexes by HPLC and ultra�ltration. Radiochimica Acta,2004, 92(4–6), 285–290.

76. Preetha, C.R., Prasada R.T. Preparation of1-(2-pyridylazo)-2-naphthol functionalized benzophenone/naphthalene and their uses in solid phase extractionpreconcentration/separation of uranium (VI). RadiochimicaActa, 2003, 91(5), 247–252.

77. Smith, L.L., Crain, J.S., Yaeger, J.S., Horwitz, E.P.,Diamond, H. Chiarizia, R. Improved separation method fordetermining actinides in soil samples. Journal ofRadioanalytical and Nuclear Chemistry, Articles, 1995,194, 151–156.

78. Crain, J.S., Smith, L.L., Yaeger, J.S., Alvarado, J.S.Determination of long-lived actinides in soil leacheatesby inductively coupled plasma-mass spectrometry. Journal ofRadioanalytical and Nuclear Chemistry, Articles, 1995,194, 133–139.

79. Momoshima, N., Sayad, M., Takashima, Y. Determinationof Tc-99 in costal seawater collected in Fukuoka, Japan.Journal of Radioanalytical and Nuclear Chemistry, 1995,197(2), 245–251.

80. Hollenbach, M., Grohs, J., Mamich, S., Kroft, M.,Denoyer, E.R. Determination of technetium-99, thorium-230and uranium-234 in soils by inductively coupled plasma massspectrometry using �ow injection preconcentration. Journalof Analytical Atomic Spectrometry, 1994, 9, 927–933.

81. Shiraishi, K., Igarashi, Y., Yamamoto, M., Nakajima,T., Los, I.P., Zelensky, A.V., Buzinny, M.Z.Concentrations of thorium and uranium in freshwatercollected in the former USSR. Journal of Radioanalyticaland Nuclear Chemistry, 1994, 185, 157–165.

82. Beals, D.M. Determination of Technetium-99 in aqueoussamples by isotope dilution inductively coupledplasma-mass spectrometry, Journal of Radioanalytical andNuclear Chemistry, 1996, 204(2), 253–263.

83. Ritcher, R.C., Koirtyohann, S.R., Jurisson, S.S.Determination of technetium-99 in aqueous solutions byinductively coupled plasma mass spectrometry: Effects ofchemical form and memory. Journal of Analytical AtomicSpectrometry, 1997, 12, 557–562.

84. Mas, J.L., Garcia-Leon, M., Bolivar, J.P. Technetium-99detection in water samples by ICP-MS. Radiochimica Acta,2004, 92, 39–46.

85. Sumiya, S.H., Morita, S.H., Tobita, K., Kurabayashi, M.Determination of technetium-99 and neptunium-237 inenvironmental samples by inductively coupled plasma massspectrometry. Journal of Radioanalytical and NuclearChemistry, Articles, 1994, 177(1), 149–159.

86. Aldstadt, J.H., Kuo, J.M., Smith, L.L., Erickson, M.D.Determination of uranium by �ow injection inductivelycoupled plasma mass spectrometry. Analytical Chimica Acta,1996, 319(1–2), 135–143.

87. Liezers, M., Tye, C.T., Mennie, D., Koller, D.Ultra-Low Levels (pg/L) actinide determinations andsuperior isotope ratio precisions by quadrupole ICP-MS, In:Applications of Inductively Coupled PlasmaMassSpectrometry, R.W. Morrow, J.S. Crain, Eds., ASTM-STP1291,Philadelphia, 1995, p. 61–72.

88. Zhou, F., Van Berkel, G.J., Morton, S.J., Duckworth,D.C., Adeniyi, W.K., Keller, J.M. Development of on-lineelectrochemical sample pretreatment method for the analysisof thalium and uranium by ICP-MS, In: Applications ofInductively Coupled Plasma-Mass Spectrometry, R.W. Morrow,J.S. Crain, Eds., ASTM-STP1291, Philadelphia, 1995, pp.82–98.

89. Hollenbach, M., Grohs, J., Kroft, M., Mamich, S.Determination of Th-230, U234, Pu-239 and Pu-240 in soilby ICP-MS using �ow injection preconcentration, In:Applications of Inductively Coupled PlasmaMassSpectrometry, R.W. Morrow, J.S. Crain, Eds., ASTM-STP1291,Philadelphia, 1995, pp. 99–115.

90. McIntyre, R.C., Gregorie, D.C., Chakrabarti, L.Vaporization of radium and other alkaline earth elements

in electrothermal vaporization inductively coupled plasmamass spectrometry. Journal of Analytical AtomicSpectrometry, 1997, 12, 547–551.

91. Epov, V.N., Lariviere, D., Evans, K.R., Li, C.,Cornett, R.J. Direct determination of Ra-226 inenvironmental samples matrices using collision cellinductively coupled plasma mass spectrometry. Journal ofRadioanalytical and Nuclear Chemistry, 2003, 256(1), 53–60.

92. Wollenweber, D., Wildner, H., Wunsch, G. Uraniumdetermination in process chemicals: On the way to sub-pg/gconcentrations. Fresenius Journal of Analytical Chemistry,(1997), 359(4–5), 414–417.

93. Smith, L.L., Alvarado, J.S., Markun, F.J., Hoffmann,K.M., Seely, D.C., Shannon, R.T. An evaluation ofradium-speci�c solid phase extraction membranes.Radioactivity and Radiochemistry, 1997, 8(1), 30–37.

94. Seely, D.C., Osterheim, J.A. Radiochemical AnalysesUsing Empore TM Disk Technology, MARK IV Conference,Methods for Analytical Radiochemistry, Kona, Hawaii, April1997.

95. Purkl, S., Eisenhauer, A. J. Solid-phase extractionusing Empore TM radium disks to separate radium fromthorium. Radioanalytical and Nuclear Chemistry, 2003,256(3), 473–480.

96. Marley, N.A., Gaffney, J.S., Orlandini, K.A., Drayton,P.J., Cunningham, M.M. An improved method for theseparation of Bi-210 and Po-210 from Pb-210 by using solidphase extraction disk membrane: Environmentalapplications. Radiochimica Acta, 1999, 85, 71–78.

97. Waples, J.T., Orlandini, K.A., Weckerly, K.M.,Edginton, D.N., Klump, J.V. Measuring low concentrations ofTh-234 in water and sediment. Marine Chemistry, 2003, 80,265–281.

98. Kaplan, D.L., Bertsch, P.M., Adriano, D.C., Orlandini,K.A. Actinide association with groundwater colloids in acoastal plain aquifer. Radiochimica Acta, 1994, 66/67,181–187.

99. Orlandini, K.A., Bowling, J.W., Pinder, J.E., Penrose,W.R. Y-90 and Sr-90 disequilibrium in surface waters:Investigating short term particle dynamics by using a novelisotope pair. Earth and Planetary Science Letters, 2003,

207, 141–150.

100. Collon, P., Kutschera, W., Lu, Z.-T. Tracing noble gasradionuclides in the environment. Annual Review of Nuclearand Particle Science 2004, 54, 39–67.

101. Chen, C.Y., Li, Y.M., Bailey, K., O’Connor, T.P.,Young, L., Lu, Z.-T. Ultrasensitive isotope trace analysiswith a magneto optical trap. Science, 1999, 286, 1139–1141.

102. Sturchio, N.C. et al. One million year old groundwaterin the Sahara revealed by Kripton-81 and chlorine-36.Geophysical Research Letters, 2004, 31, L05503.

103. Jiang, W. et al. Ar-39 Detection at the 10 −16isotopic abundance level with Atom Trace Analysis. PhysicalReview Letters, 2011, 106(10), 103001. Section IIIOrganoleptical Analysis

4 Chapter 4 - Organoleptical Methodology

Acero, J. L., von Gunten, U., and Piriou, P. 2005. Kineticsand mechanisms of formation of bromophenols during drinkingwater chlorination: Assessment of taste and odordevelopment. Water Res. 39: 2979–2993.

Albaigés, J., Casadó, F., and Ventura, F. 1986. Organicindicators of groundwater pollution by a sanitary land�ll.Water Res. 20: 1153–1159.

Anselme, C., N’Guyen, K., Bruchet, A., and Mallevialle, J.1985. Can polyethylene pipes impart odors in drinkingwater? Environ. Technol. Lett. 6: 477–488.

Balbus, J. M. and Lang, M. E. 2001. Is the water safe formy baby? Pediatr. Clin. North Am. 48: 1129–1152.

Bao, M.-L., Pantani, F., Grif�ni, O., Burrini, D.,Santianni, D., and Barbieri, K. 1998. Determination ofcarbonyl compounds in water by derivatization–solid-phasemicroextraction and gas chromatographic analysis. J.Chromatogr. A 809: 75–87.

Benanou, D., Acobas, F., de Roubin, M. R., and Sandra, F.D. P. 2003. Analysis of off-�avors in the aquaticenvironment by stir bar sorptive extraction–thermaldesorption–capillary GC/MS/olfactometry. Anal. Bioanal.Chem. 376: 69–77.

Beránek, J. and Kubátová, A. 2008. Evaluation ofsolid-phase microextraction methods for determination oftrace concentration aldehydes in aqueous solution. J.Chromatogr. A 1209: 44–54.

Bichsel, Y. and von Gunten, U. 2000. Formation ofiodo-trihalomethanes during disinfection and oxidation ofiodide containing waters. Environ. Sci. Technol. 34:2784–2791.

Bruchet, A. and Duguet, J. P. 2004. Role of oxidants anddisinfectants on the removal, masking and generation oftastes and odors. Water Sci. Technol. 49: 297–306.

Bruchet, A., Duguet, J. P., and Suffet, I. H. (Mel). 2004.Review: Role of oxidants and disinfectants on the removal,masking and generation of tastes and odours. Environ. Sci.Bio/Tech. 3: 33–41.

Burlingame, G. A., Khiari, D., and Suffet, I. H. 1991a.

Odor reference standards: The universal language.Proceedings of the AWWA Water Quality TechnologicalConference, Orlando, FL, USA, pp. 7–39.

Burlingame, G. A., Muldowney, J. J., and Maddrey, R. E.1992. Cucumber �avor in Philadelphia drinking water. J.Am. Water Works Assoc. 84: 92–97.

Chang, S. L., Woodward, R. L., and Kabler, P. W. 1960.Survey of free-living nematodes and amoebas in municipalsupplies. J. Am. Water Works Assoc. 52: 613–617.

Cotsaris, E., Bruchet, A., Mallevialle, J., and Bursill, D.B. 1995. The identi�cation of odorous metabolites producedfrom algal monocultures. Water Sci. Technol. 31: 251–258.

Cox, C. H. R., ed. 1965. Control Processes of WaterTreatment, Geneva: WHO. (The collective work of twentyfourspecialists of the world community about all aspects ofphysical–chemical and sanitary and hygienic control ofwater quality.)

Delahunty, C. M., Eyres, G., and Dufour, J. P. 2006. Gaschromatography–olfactometry. J. Sep. Sci. 29: 2107–2125.

Diaz, A., Ventura, F., and Galceran, M. T. 2004.Identi�cation of 2,3-butanedione (diacetyl) as the compoundcausing odor events at trace levels in the Llobregat Riverand Barcelona’s treated water (Spain) J. Chromatogr. A1034: 175–182.

Dionigi, C. P., Millie, D. F., Spanier, A. M., and Johnsen,P. B. 1992. Spore and geosmin production byStreptomycestendae on several media. J. Agric. Food Chem.40: 122–125.

Durrer, M., Zimmermann, U., and Juttner, F. 1999. Dissolvedand particle-bound geosmin in a mesotrophic lake (LakeZurich): Spatial and seasonal distribution and the effectof grazers. Water Res. 33: 3628–3636.

Emde, K. M. E., Smith, D. W., and Facey, R. 1992. Initialinvestigation of microbially in�uenced corrosion (MIC) ina low temperature water distribution system. Water Res. 26:169–175.

Fadel, M., and Gammie, L. 1993. In: Proceedings of the AWWAWater Quality Technology Conference, Miami, AWWA: Denver,pp. 1907–1914.

Fontana, A. R. and Altamirano, J. C. 2010. Sensitivedetermination of 2,4,6-trichloroanisole in water samplesby ultrasound assisted emulsi�cation microextraction priorto gas chromatography–tandem mass spectrometry analysis.Talanta 81: 1536–1541.

Gardner, J. W. and Barlett, P. N. 1999. ElectronicNoses—Principles and Applications. Oxford UniversityPress, Oxford, pp. 245.

Hogben, P., Drage, B., and Stuetz, R.M. 2004. Electronicsensory systems for taste and odour monitoring inwater—Developments and limitations. Environ. Sci.Bio/Technol. 3: 15–22.

Huber, M. M., Korhonen, S., Ternes, T. A., and von Gunten,U. 2005. Oxidation of pharmaceuticals during watertreatment with chlorine dioxide. Water Res. 39: 3607–3617.

Izaguirre, G. and Taylor, W. D. 2004. A guide to geosmin-and MIB-producing cyanobacteria in the United States.Water Sci. Technol. 49: 19–24.

Jardine, C. G., Gibson, N., and Hrudey, S. E. 1999.Detection of odour and health risk perception of drinkingwater. Water Sci. Technol. 40: 91–98.

Jensen, S. E., Anders, C. L., Goatcher, L. J., Perley, T.,Kene�ck, S., and Hrudey, S. E. 1994. Actinomycetes as afactor in odour problems affecting drinking water from theNorth Saskatchewan River. Water Res. 28: 1393–1401.

Jung, S. W., Baek, K. H., and Yu, M. J. 2004. Treatment oftaste and odor material by oxidation and adsorption. WaterSci. Technol. 49: 289–295.

Khiari, D., Barrett, S., Chinn, R. , Bruchet, A., Piriou,P., Matia, L., Ventura, F., Suffet, I.H., Gittelman, T.,and Leutweiler, P. 2002. Distribution GeneratedTaste-and-Odor Phenomena. AWWA Research Foundation andAmerican Water Works Association, Denver, CO.

Kress-Rogers, E. 1996. Handbook of Biosensors andElectronic Noses. CRC Press, Boca Raton, FL.

Machado, S., Goncalves, C., Cunha, E., Guimarães, A., andAlpendurada, M. F. 2011. New developments in the analysisof fragrances and earthy–musty compounds in water bysolid-phase microextraction (metal alloy �bre) coupledwith gas chromatography–(tandem) mass spectrometry. Talanta

84: 1133–1140.

Malleret, L., Bruchet, A., and Hennion, M. C. 2001.Picogram determination of “earthy-musty” odorous compoundsin water using modi�ed closed loop stripping analysis andlarge volume injection GC/MS. Anal. Chem..73: 1485–1490.

Matsui, Y., Ando, N., Sasaki, H., Matsushita, T., and Ohno,K. 2009. Branched pore kinetic model analysis of geosminadsorption on superpowdered activated carbon. Water Res.43: 3095–3103.

McGuire, M. J. 1995. Off-�avor as the consumers measure ofdrinking-water safety. Water Sci. Technol. 31: 1–8.

Peter, A. 2008. Taste and odor in drinking water: Sourcesand mitigation strategies, Diss. ETH no. 17761.

Rosenfeldt, E. J., Melcher, B., and Linden, K. G. 2005. UVand UV/H 2 O 2 treatment of methylisoborneol (MIB) andgeosmin in water. J. Water Supply Res. Technol.-Aqua. 54:423–434.

Saito, K., Okamura, K., and Kataoka, H. 2008. Determinationof musty odorants, 2-methylisoborneol and geosmin, inenvironmental water by headspace solid-phasemicroextraction and gas chromatography–mass spectrometry.J. Chromatogr. A 1186: 434–437.

SanPin (Sanitary Rules and Norms of Russian Federation)2.1.4.559-96. Potable water. Moscow: State Committee onSanitary and Epidemiological Control of RussianFederation). (In Russian) (Hygienic requirements forquality of water of centralized systems of potable watersupply in Russia.)

Standard Methods for the Examination of Water andWastewater. 1998. 20th edn. American Public HealthAssociation/American Water Works Association/Water.Environment Federation, Washington DC.

Standing Committee of Analysts. 2010. The determination oftaste and odor in drinking waters. Methods for theExamination of Waters and Associated Materials, in thisseries, Environment Agency.

Suffet, I. H., Brady, B. M., Bartels, J. H. M., Burlingame,G., Mallevialle, J., and Yohe, T. 1988. Development of theavor pro�le analysis method into a standard method forsensory analysis of water. Water Sci. Technol. 20: 1–9.

Suffet, I. H., Khiari, D., and Bruchet, A. 1999. Thedrinking water taste and odor wheel for the millennium:Beyond geosmin and 2-methylisoborneol. Water Sci. Technol.40: 1–13.

Suffet, I. H., Mallevialle, J., and Kawczyski. E. (eds.)1995. Advances in taste-and-odor treatment and control.AWWA Research Foundation and Lyonnaise Des Eaux CooperativeResearch Report, American Water Works Association, Denver,CO, USA.

(Mel) Suffet, I. H., Schweitzer, L., and Khiari, D. 2004.Olfactory and chemical analysis of taste and odor episodesin drinking water supplies. Environ. Sci. Bio/Technol. 3:3–13.

Sung, Y.-H., Li, T.-Y., and Huang, S.-D. 2005. Analysis ofearthy and musty odors in water samples by solidphasemicroextraction coupled with gas chromatography/ion trapmass spectrometry. Talanta 65: 518–524.

Teillet, E., Schlich, P., Urbano, C., Cordelle, S., andGuichard, E. 2010. Sensory methodologies and the taste ofwater. Food Qual. Prefer. 21: 967–976.

Ventura, F. Boleda, M. R., Loret, R., and Martin, J. 1998.Strategies for the identi�cation of compounds causingodours in water: A study of creosote spills. Water Res. 32:503–509.

Von Gunten, U. 2003. Ozonation of drinking water: Part I.Oxidation kinetics and product formation. Water Res. 37:1443–1467.

Wang, Q., O’Reilly, J., and Pawliszyn, J. 2005.Determination of low-molecular mass aldehydes by automatedheadspace solid-phase microextraction with in-�brederivatisation. J. Chromatogr. A 1071: 147–154.

Watson, S. B. 2003. Cyanobacterial and eukaryotic algalodour compounds: Signals or byproducts? A review of theirbiological activity. Phycologia 42: 332–350.

Weaver, W. A., Li, J., Wen, Y., Johnston, J., Blatchey, M.R., and Blatchey II, E. R. 2009. Volatile disinfectionby-product analysis from chlorinated indoor swimming pools.Water Res. 43: 3308–3318.

Westerhoff, P., Rodriguez-Hernandez, M., Baker, L., and

Sommerfeld, M. 2005. Seasonal occurrence and degradation of2-methylisoborneol in water supply reservoirs. Water Res.39: 4899–4912.

Whit�eld, F. B. 1988. Chemistry of off-�avors in marineorganisms. Water Sci. Technol. 20: 63–74.

Widen, H. and Hall, G. 2007. Sensory characterization ofpolyester-based bottle material inertness using thresholdodour number determination. LWT-Food Sci. Technol. 40:66–72.

Young, W. F., Horth, H., Crane, R., Ogden, T., and Arnott,M. 1996. Taste and odor threshold concentrations ofpotential potable water contaminants. Water Res. 30:331–340.

Zhang, G. R., Kiene, L., Chan, U. S., and Duguet, J. P.1992. Evolution of organoleptic water quality duringtreatment in Macao. Environ. Technol. 13: 947–958. SectionIV Analysis of Biological Parameters

5 Chapter 5 - Bacteriological Analysis ofWater

American Public Health Association, APHA, 1998. StandardMethods for the Examination of Water and Wastewater, 20thed. APHA, Washington, DC.

Auer, M. T. and Niehaus, S. L. 1993. Modeling faecalcoliform bacteria-1. Field and laboratory determination ofloss kinetics. Water Res. 27: 693–701.

Barrett, J. T. and Gerner-Smidt, P. 2007. Molecular sourcetracking and molecular subtyping. In: Doyle, M. P. andBeuchat L. R. (eds), Food Microbiology: Fundamentals andFrontiers. ASM Press, Washington, D.C., pp. 987–1004.

Bergstein-Ben Dan, T. and Stone, L. 1991. The distributionof fecal pollution indicator bacteria in Lake Kinneret.Water Res. 25(3): 263–270.

Bitton, G., Farrah, S. R., Montague, C. L., and Akin, E. W.1986. Viruses in drinking water. Environ. Sci. Technol.20: 216–222.

Bitton, G. 2005. Microbial indicators of fecalcontamination: Application to microbial source tracking.Report submitted to the Florida Stormwater Association, 71pp.

Booth, D. B. 1991. Urbanization and the natural drainagesystem—Impacts, solutions and prognoses. NorthwestEnviron. J. 7: 93–118.

Bordalo, A. A. 2003. Microbiological water quality in urbancoastal beaches: The in�uence of water dynamics andoptimization of the sampling strategy. Water Res. 37:3233–3241.

Borrego, J. J., Cornax, R., Morinigo, M. A.,Martinez-Manzares, E., and Romero, P. 1990. Coliphages asan indicator of faecal pollution in water. Their survivaland productive infectivity in natural aquatic environments.Water Res. 24: 111–116.

Bowden, W. B. 1977. Comparison of two direct counttechniques for enumerating aquatic bacteria. Appl.Environ. Microbiol. 33(5): 1229–1232.

British Columbia Environmental Laboratory Manual 2005.Section E. Microbiological Examination. Her Majesty the

Queen in right of the Province of British Columbia. 101 pp.

Bruce, J. 1996. Automated system rapidly identi�es andcharacterizes microorganisms in food. Food Technol. 50:77–81.

Burkhardt, W. III., Calci, K. R., Watkins, W. D., Rippey,S. R., and Chirtel, S. J. 2000. Inactivation of indicatormicroorganisms in estuarine waters. Water Res. 34(8):2207–2214.

TABLE 5.16

Selective Media for the Enumeration of Staphylococcus Usingthe MPN Method

Medium Typical Reactions Incubation Conditions Reference

Presumptive Test

m-Staphylococcus broth Growth (turbid medium) 35°C ± 1°Cfor 24 h APHA 1998

Trypticase soy broth

(TSB) with 10% NaCl

and 1% sodium pyruvate Growth (turbid medium) 35°C for 48 ±2 h APHA 1998

Baird–Parker (BP)

medium Shiny, black convex colonies (1–5 mm in diameter)surrounded by clear zone 35°C for 48 ± 2 h APHA 1998

Confirmation Test

Lipovitellin salt mannitol

agar Colonies surrounded with yellow (after 48 h) oropaque (after 24 h) zones 35°C ± 1°C for 24–48 h APHA 1998

Source: Modi�ed from Michiels, C. W. and Moyson, E. L. D.2000. Handbook of Water Analysis. Marcel Dekker, Inc.,New York, pp. 115–141.

Burtscher, M. M., Köllner, K. E., Sommer, R., Keiblinger,K., Farnleitner, A. H., and Mach, R. L. 2006. Developmentof a novel ampli�ed fragment length polymorphism (AFLP)typing method for enterococci isolates from cattle faeces

and evaluation of the single versus pooled faecal samplingapproach. J. Microbiol. Methods 67(2): 281–293.

Cabelli, V. J., Dufour, A. P., McCabe, L. J., and Levin, M.A. 1982. Swimming-associated gastroenteritis and waterquality. Am. J. Epidemiol. 115: 606–616.

Camper, A. K., Jones, W. L., and Hayes, J. T. 1996. Effectof growth conditions on presence of coliforms inmixed-population bio�lms. Appl. Environ. Microbiol. 62:4103–4118.

Caplenas, N. R. and Kanarek, M. S. 1984. Thermotolerantnon-fecal source Klebsiella pneumoniae: Validity of thefecal coliform test in recreational waters. Am. J. PublicHealth 74: 1273–1275.

Chao, K. K, Chao, C. C., and Chao, W. L. 2003. Suitabilityof the traditional microbial indicators and theirenumerating methods in the assessment of fecal pollution ofsubtropical freshwater environments. J. Microbiol.Immunol. Infect. 36(4): 288–293.

Chigbu, P., Gordon, S., and Strange, T. 2004. Inter-annualvariations in fecal coliform levels in Mississippi Sound.Water Res. 38: 4341–4352.

Chigbu, P., Gordon, S., and Strange, T. 2005a. Fecalcoliform bacteria disappearance rates in a north-centralGulf of Mexico estuary. Estuarine Coastal Shelf Sci. 65:309–318.

Chigbu, P., Gordon, S., and Tchounwou, P. B. 2005b.Seasonal patterns of fecal coliform bacteria pollution andits in�uence on closures of shell�sh harvesting areas inMississippi Sound. Int. J. Environ. Res. Public Health2(2): 362–373.

Chung, H., Jaykus, L. A., Lovelace, G., and Sobsey, M. D.1998. Bacteriophages and bacteria as indicators of entericviruses in oysters and their harvesting waters. Water Sci.Technol. 38(12): 37–44.

Colford, J. M, Jr., Wade, T. J., Schiff, K. C., Wright, C.C., Grif�th, J. F., Sandhu, S. K., Burns, S., Sobsey, M.,Lovelace, G., and Weisberg, S. B. 2007. Water qualityindicators and the risk of illness at beaches withnonpoint sources of fecal contamination. Epidemiology18(1): 27–35.

Colwell, R. R. and Spira, W. M. 1992. The ecology of Vibriocholerae. In: Barua, D., and Greenough W. B. (eds),Cholera. Plenum, New York, pp. 107–127.

Colwell, R. R., Brayton, P. R., Grimes, D. J., Roszak, D.B., Huq, S. A., and Palmer, L. M. 1985. Viable butnonculturable Vibrio cholerae and related pathogens in theenvironment: Implications for release of geneticallyengineered microorganisms. BioTechnology 3: 817–820.

Colwell, R. R. and Huq, A. 2001. Marine ecosystems andcholera. Hydrobiologia 460: 141–145.

Conway, P. L. 1995. Microbial ecology of the human largeintestine. In: Gibson G. R., and Macfarlane G. T. (eds),Human Colonic Bacteria: Role in Nutrition, Physiology, andPathology. CRC Press, Boca Raton, FL, pp. 1–24.

Council Directive 98/83/EC 1998. Official Journal of theEuropean Communities. L330/32-L330/54.

Council Directive 2005. The quality of bathing water(76/160/EEC).

Crabill, C., Donald, R., Snelling, J., Foust, R., andSoutham, G. 1999. The impact of sediment fecal coliformreservoirs on seasonal water quality in Oak Creek, Arizona.Water Res. 33: 2163–2171.

Craun, G. F., Berger, P. S., and Calderon, R. L. 1997.Coliform bacteria and waterborne disease outbreaks. J. Am.Water Works Assoc. 89(3): 96–104.

Davis, E. M., Casserly, D. M., and Moore, J. D. 1977.Bacterial relationships in stormwaters. Water ResourcesBull. 13(5): 895–905.

Davis, C. M., Long, J. A., Donald, M., and Ashbolt, N. J.1995. Survival of faecal microorganisms in aquaticsediments of Sydney, Australia. Appl. Environ. Microbiol.61: 1888–1896.

Dickerson, J. W. Jr., Hagedorn, C., and Hassall, A. 2007.Detection and remediation of human-origin pollution at twopublic beaches in Virginia using multiple source trackingmethods. Water Res. 41(16): 3758–3770.

Doran, J. W. and Linn, D. M. 1979. Bacterial quality ofrunoff water from pasture land. Appl. Environ. Microbiol.37: 985–991.

Drasar, B. S. and Forrest, B. D. 1996. Cholera and theecology of Vibrio cholerae. In: Drasar, B. S., and ForrestB. D. (eds), Cholera and the Ecology of Vibrio Cholerae.Chapman and Hall Ltd., London, England, UK, 355 pp.

Dubinsky, E. A., Esmaili, L., Hulls, J. R., Cao, Y.,Grif�th, J. F., and Andersen, G. L. 2012. Application ofphylogenetic microarray analysis to discriminate sources offecal pollution. Environ. Sci. Technol. 46(8): 4340–4347.

Dufour, A. P. 1984. Bacterial indicators of recreationalwater quality. Can. J. Public Health 75: 49–56.

Dumontet, S., Krovacek, K., Baloda, S. B., Grottoli, R.,Pasquale, V., and Vanucci, S. 1996. Ecological relationshipbetween Aeromonas and Vibrio spp., and planktonic copepodsin the coastal marine environment in Southern Italy. Comp.Immunol. Microbiol. Infect. Dis. 19(3): 245–254.

Duran, M., Yurtsever, D., and Dunaev, T. 2009. Choice ofindicator organism and library size considerations forphenotypic microbial source tracking by FAME pro�ling.Water Sci. Technol. 60(1): 2659–2668.

Esham, E. C. and Sizemore, R. K. 1998. Evaluation of twotechniques: mFC and mTEC for determining distributions offecal pollution in small, North Carolina tidal creeks.Water Air Soil Pollut., 106(1/2): 179–197.

Falade, A. G. and Lawoyin, T. 1999. Features of the 1996cholera epidemic among Nigerian children in Ibadan,Nigeria. J. Trop. Pediatr. 45(1): 59–62.

Faust, M. A., Aotaky, A. E., and Hargadon, M. T. 1975.Effect of physical parameters on the in situ survival ofEscherichia coli MC-6 in an estuarine environment. Appl.Microbiol. 30: 800–806.

Feachem, R., Garelick, H., and Slade, J. 1981.Enteroviruses in the environment. Trop. Dis. Bull. 78:185–230.

Feng, P., Weagant, S. D., and Grant, M. A. 2002.Enumeration of Escherichia coli and the coliform bacteria.In: Bacteriological Analytical Manual Online September2002. U.S. Food & Drug Administration Center for FoodSafety & Applied Nutrition.

Ferguson, C. M., Coote, B. G., Ashbolt, N. J., and

Stevenson, I. M. 1996. Relationships between indicators,pathogens and water quality in an estuarine system. WaterRes. 30(9): 2045–2054.

Ferguson, A. S. et al. 2012. Comparison of fecal indicatorswith pathogenic bacteria and rotavirus in groundwater. Sci.Total Environ. 431: 314–322.

Field, R. and Pitt, R. E. 1990. Urban storm-induceddischarge impacts: U.S. Environmental Protection Agencyresearch program review. Water Sci. Technol. 22: 1–7.

Flint, K. P. 1987. The long-term survival of Escherichiacoli in river water. J. Appl. Bacteriol. 63: 261–270.

Foley, S. L., Lynne, A. M., and Nayak, R. 2009. Moleculartyping methodologies for microbial source tracking andepidemiological investigations of Gram-negative bacterialFoodborne pathogens. Infect. Genet. Evol. 9(4): 430–440.

Fry J. C. 1990. Direct methods and biomass estimation.Methods Microbiol. 22: 41–85.

Furukawa, T., Takahashi, H., Yoshida, T., and Suzuki, T.2011. Genotypic analysis of Enterococci isolated fromfecal-polluted water from different sources by pulsed-�eldgel electrophoresis (PFGE) for application to microbialsource tracking. Microbes Environ. 26(2): 181–183.

Gannon, J. J., Busse, M. K., and Schillinger, J. E. 1983.Fecal coliform disappearance in a river impoundment. WaterRes. 17: 1595–1601.

Gawler, A. H., Beecher, J. E., Brandao, J., Carroll, N. M.,Falcao, L., Gourmelon, M., Masterson, B. et al. 2007.Validation of host-speci�c Bacteroidales 16S rRNA genes asmarkers to determine the origin of faecal pollution inAtlantic Rim countries of the European Union. Water Res.41(16): 3780–3784.

Geissler, K., Mana�, M., Amoros, I., and Alonso, J. L.2000. Quantitative determination of total coliforms andEscherichia coli in marine waters with chromogenic and�uorogenic media. J. Appl. Microbiol. 88: 280–285.

Geldreich, E. E. 1976. Faecal coliform and faecalstreptococcus density relationships in water discharges andreceiving water. CRC Crit. Rev. Environ. Control 6,349–369.

Geldreich, E. E. and Kenner, B. A. 1969. Concepts of faecalstreptococci in stream pollution. J. Water Pollut. ControlFed. 41: 336–352.

George, I., Petit, M., Theate, C., and Servais, P. 2001.Distribution of coliforms in the Seine River and Estuary(France) studied by rapid enzymatic methods and platecounts. Estuaries. 24: 994–1002.

Gerba, C. P. and Goyal, S. M. 1988. Enteric virus: Riskassessment of ocean disposal of sewage sludge. Water Sci.Technol. 20: 25–31.

Gerba, C. P., Goyal, S. M., LaBelle, R. L., Cech, I., andBodgan, G. F. 1979. Failure of indicator bacteria tore�ect the occurrence of enteroviruses in marine waters.Am. J. Public Health 69(11): 1116–1119.

Girones, R., Ferrús, M. A., Alonso, J. L.,Rodriguez-Manzano, J., Calgua, B., Corrêa, A. A., Hundesa,A., Carratala, A., and Bo�ll-Mas, S. 2010. Moleculardetection of pathogens in water—The pros and cons ofmolecular techniques. Water Res. 44(15): 4325–4339.

Godfree, A. F., Kay, D., and Wyer, M. D. 1997. Faecalstreptococci as indicators of faecal contamination inwater. J. Appl. Microbiol. Symp. Suppl 83: 110S–119S.

Goyal, S. M., Adams, W. N., O’Malley, M. L., and Lear, D.W. 1984. Human pathogenic viruses at sewage sludgedisposal sites in the Middle Atlantic region. Appl.Environ. Microbiol. 48(4): 758–763.

Grimes, D. J. 1975. Release of sediment bound faecalcoliforms by dredging. Appl. Microbiol. 29: 109–111.

Grimes, D. J. 1980. Bacteriological water quality effectsof hydraulically dredging contaminated upper Mississippiriver bottom sediment. Appl. Environ. Microbiol. 39:782–789.

Grimont, F. and Grimont, P. A. D. 1986. Ribosomalribonucleic acid gene restriction patterns as potentialtaxonomic tools. Ann. Inst. Pasteur Microbiol. 137B:165–175.

Hahm, B. K., Maldonado, Y., Schreiber E., Bhunia, A. K.,and Nakatsu C. H. 2003. Subtyping of food borne andenvironmental isolates of Escherichia coli bymultiplex—PCR, rep –PCR, PFGE, ribotyping and AFLP. J.

Micriobiol. Methods 53: 387–399.

Haramoto, E., Yamada, K., and Nishida, K. 2011. Prevalenceof protozoa, viruses, coliphages and indicator bacteria ingroundwater and river water in the Kathmandu Valley, Nepal.Trans. R. Soc. Trop. Med. Hyg. 105(12): 711–716.

Harriague, A. C., Dibrino, M., Zampini, M., Albertelli, G.,Pruzzo, C., and Misic, C. 2008. Vibrios in association withsedimentary crustaceans in three beaches of the northernAdriatic Sea (Italy). Mar. Pollut. Bull. 56(3): 574–579.

Hartman, P. A. 1989. The MUG glucuronidase test for E. coliin food and water. In: Turano, A. (ed.), Rapid Methods andAutomation in Microbiology and Immunology. Brixia AcademicPress, Brescia, Italy, pp. 290–308.

Hobbie, J. E., Daley, R. J., and Jasper, S. 1977. Use ofnucleopore �lters for counting bacteria by �uorescencemicroscopy. Appl. Environ. Microbiol. 33: 1225–1228.

Hood, M. A. and Ness, G. E. 1982. Survival of Vibriocholerae and Escherichia coli in estuarine waters andsediment. Appl. Environ. Microbiol. 43(3): 578–584.

International Standard, ISO 6888 1983. Microbiology—Generalguidance for enumeration of Staphylococcus aureus—Colonycount technique.

International Standard, ISO 6222 1988. WaterQuality—Enumeration of Viable Micro-Organisms—Colony Countby Inoculation in or on a Nutrient Agar Culture Medium.International Organization for Standardization, Geneva,Switzerland.

International Standard, ISO 9308-2 1990. WaterQuality—Detection and Enumeration of Coliform Organisms,Thermotolerant Coliform Organisms and PresumptiveEscherichia coli—Part 2: Multiple Tube (most probablenumber) Method. International Organization forStandardization, Geneva, Switzerland.

International Standard, ISO 7899-1 1998. WaterQuality—Detection and Enumeration of Intestinal Enterococciin Surface and Waste Water—Part 1: Miniaturized Method(Most Probable Number) by Inoculation in Liquid Medium.International Organization for Standardization, Geneva,Switzerland.

International Standard, ISO 7899-2 2000. Water

Quality—Detection and Enumeration of IntestinalEnterococci—Part 2: Membrane Filtration Method.International Organization for Standardization, Geneva,Switzerland.

International Standard, ISO 9308-1 2000. WaterQuality—Detection and Enumeration of Escherichia Coli andColiform Bacteria—Part 1: Membrane Filtration Method.International Organization for Standardization, Geneva,Switzerland.

ISSC 2002. Interstate Shell�sh Sanitation Conference, ModelOrdinance. http:www.issc.org/on-line_docs/ onlinedocs.htm.

Isobe, K. O., Tarao, M., Zakaria, M. P., Chiem, N. H.,Minh, L. Y., and Takada, H. 2002. Quantitative applicationof fecal sterols using gas chromatography-massspectrophotometry to investigate fecal pollution intropical waters: Western Malaysia and Mekong Delta,Vietnam. Environ. Sci. Technol. 36: 4497–4507.

Jay, J. M. 2000. Modern Food Microbiology. 6th ed. Aspen,Gaithersburg, MD, pp. 201–235.

Jiang, S. C. 2001. Vibrio cholerae in recreational beachwaters and tributaries of Southern California.Hydrobiologia 460: 157–164.

Johnson, D. C., Enriquez, C. E., Pepper, I. L., Davis, T.L., Gerba, C. P., and Rose, J. B. 1997. Survival ofGiardia, Cryptosporidium, poliovirus and Salmonella inmarine waters. Water Sci. Technol. 35: 261–268.

Johnston, J. M., Becker, S. F., and McFarland, L. M. 1985.Man and the Sea. JAMA 253: 2850–2853.

Kelsey, R. H., Webster, L. F., Kenny, D. J., Stewart, J.R., and Scott, G. I. 2008. Spatial and temporal variabilityof ribotyping results at a small watershed in SouthCarolina. Water Res. 42(8–9): 2220–2228.

Kepner, R. and Pratt, J. 1994. Use of �uorochromes fordirect enumeration of total bacteria in environmentalsamples: Past and present. Microb. Rev. 58: 603–615.

Koster, W., Egli, T., Ashbolt, N., Botzenhart, K., Burlion,N., Endo, T., Grimont, P. et al. 2003. Analytical methodsfor microbiological water quality testing, In: Dufour, A.Snozzi, M. Koster, W. Bartram, J, Ronchi E., and FewtrellL. (eds), Assessing Microbial Safety of Drinking

Water-Improving Approaches and Methods. IWA Publishing,London, UK, 304 pp.

Kreader, C. A. 1998. Persistence of PCR-detectableBacteroides distasonis from human feces in river water.Appl. Environ. Microbiol. 64: 4103–4105.

LaBelle, R. L., Gerba, C. P., Goyal, S. M., Melnick, J. K.,Cech, I., and Bogdan, G. F. 1980. Relationships betweenenvironmental factors, bacterial indicators, and theoccurrence of enteric viruses in estuarine sediments.Appl. Environ. Microbiol. 39(3): 588–596.

LeChevallier, M. W. 1990. Coliform regrowth in drinkingwater: A review. J. Am. Water Works Assoc. 82: 74–86.

Lee, D. Y., Weir, S. C., Lee, H., and Trevors, J. T. 2010.Quantitative identi�cation of fecal water pollution sourcesby TaqMan real-time PCR assays using Bacteroidales 16S rRNAgenetic markers. Appl. Microbiol. Biotechnol. 88(6):1373–1383.

Leonard, D. L. 2001. National Indicator Study: Is aninternational approach feasible. J. Shellfish Res., 20(3):1293–1298.

Lipp, E. K., Kurz, R., Vincent, R., Rodriguez-Palacios, C.,Farrah, S., and Rose, J. B. 2001a. The seasonal variabilityand weather effects on microbial fecal pollution andenteric pathogens in a subtropical estuary. Estuaries. 24:266–276.

Lipp, E. K., Schmidt, N., Luther, M. E., and Rose, J. B.2001b. Determining the effects of El Niño-SouthernOscillation events on coastal water quality. Estuaries. 24:491–497.

Liu, R., Chan, C. F., Lun, C. H, and Lau, S. C. 2012.Improving the performance of an end-point PCR assaycommonly used for the detection of Bacteroidales pertainingto cow feces. Appl. Microbiol. Biotechnol. 93(4):1703–1713.

Mackowiak, P. A., Caraway, C. T., and Portnoy, B. L. 1976.Oyster-associated hepatitis: Lessons from the Louisianaexperience. Am. J. Epidemiol. 103(2): 181–191.

Mallin, M. A., Ensign, S. H., McIver, M. R., Shank, G. C.,and Fowler, P. K. 2001. Demographic, landscape, andmeteorological factors controlling the microbial pollution

of coastal waters. Hydrobiologia 460(1– 3): 185–193.

Mallin, M. A., Esham, E. C., Williams, K. E., and Nearhoof,J. E. 1999. Tidal stage variability of fecal coliform andchlorophyll a concentrations in coastal creeks. Mar.Pollut. Bull. 38(5): 414–422.

Mana�, M. 1996. Fluorogenic and chromogenic substrates inculture media and identi�cation tests. Int. J. FoodMicrobiol. 31: 45–58.

Mana�, M. 1998. New approaches for the fast detection ofindicators, in particular enzyme detection methods (EDM).OECD Workshop Molecular Methods for Safe Drinking Water,1–16.

Mana�, M. 2000. New developments in chromogenic anduorogenic culture media. Int. J. Food Microbiol. 60:205–218.

Mancini, J. L. 1978. Numerical estimates of coliformmortality rates under various conditions. J. Water Pollut.Control Fed. 50: 2477–2484.

Manz, W., Szewzyk, U., Ericsson, P., Amann, R., Schleifer,K. H., and Stenström, T. A. 1993. In situ identi�cation ofbacteria in drinking water and adjoining bio�lms byhybridization with 16S and 23S rRNAdirected �uorescentoligonucleotide probes. Appl. Environ. Microbiol. 59:2293–2298.

Mara, D., and Feachem, R. G. A. 1999. Water- andexcreta-related diseases: Unitary environmentalclassi�cation. N. Environ. Engineer 125: 334–339.

Martinez-Urtaza, J., Bowers, J. C., Trinanes, J., andDePaola, A. 2010. Climate anomalies and the increasingrisk of Vibrio parahaemolyticus and Vibrio vulnificusillness. Food Res. Int. 43(7): 1780–1790.

Maugeri, T. L., Carbone, M., Fera, M. T., and Gugliandolo,C. 2006. Detection and differentiation of Vibriovulnificus in seawater and plankton of a coastal zone ofthe Mediterranean Sea. Res. Microbiol. 157(2): 194–200.

McFeters, G. A., Bissonnette, G. K., and Jezeski, J. J.1974. Comparative survival of indicator bacteria andenteric pathogens in well water. Appl. Microbiol. 27:823–829.

Menon, P., Billen, G., and Servais, P. 2003. Mortalityrates of autochthonous and fecal bacteria in naturalaquatic ecosystems. Water Res. 37(17): 4151–4158.

Michiels, C. W. and Moyson, E. L. D. 2000. Bacteriologicalanalysis. In: Nollet L. M. L. (ed.), Handbook of WaterAnalysis. Marcel Dekker, Inc., New York, pp. 115–141.

Morinigo, M. A., Wheeler, D., Berry, C., Jones, C., Munoz,M. A., Cornax, R., and Borrego, J. J. 1992. Evaluation ofdifferent bacteriophage groups as faecal indicators incontaminated natural waters in Southern England. WaterRes. 26: 267–271.

National Primary Drinking Water Regulations 2006: Title 40:Protection of Environment. Part 141.

Nebra, Y., Bonjoch, X., and Blanch, A. R. 2003. Use ofBifidobacterium dentium as an indicator of the origin offecal water pollution. Appl. Environ. Microbiol. 69:2651–2656.

Neufeld, N. 1984. Procedures for the bacteriologicalexamination of seawater and shell�sh. In: Greenberg, A.E., and Hunt D. A. (eds), Laboratory Procedures for theExamination of Seawater and Shellfish. 5th ed. AmericanPublic Health Association. Washington, DC.

Noble, R. T., and Fuhrman, J. A. 2001. Enterovirusesdetected by reverse transcriptase polymerase chain reactionfrom the coastal waters of Santa Monica Bay, California:Low correlation to bacterial indicator levels.Hydrobiologia 460: 175–184.

NSSP 2009. National Shell�sh Sanitation Program Guide forthe Control of Molluscan Shell�sh 2009 Revision, US FDA.

Olive, D. M. and Bean, P. 1999. MINIREVIEW. Principles andApplications of Methods for DNA-Based Typing of MicrobialOrganisms. J. Clin. Microbiol. 37(6): 1661–1669.

Oliver, J. D. 1995. The viable but non-culturable state inthe human pathogen Vibrio vulnificus. FEMS Microbial.Ecol. 133: 203–208.

Oliver, J. D., Hite, F., McDougald, D., Andon, N. L., andSimpson, L. M. 1995. Entry into, and resuscitation from,the viable but nonculturable state by Vibrio vulnificus inan estuarine environment. Appl. Environ. Microbiol. 61:2624–2630.

Paruch, A. M. and Maehlum, T. 2012. Speci�c features ofEscherichia coli that distinguish it from coliform andthermotolerant coliform bacteria and de�ne it as the mostaccurate indicator of faecal contamination in theenvironment. Ecol. Indicators 23: 140–142.

Parveen, S., Hodge, N. C., Stall, R. E., Farrah, S. R., andTamplin, M. L. 2001. Phenotypic and genotypiccharacterization of human and nonhuman Escherichia coli.Water Res. 35: 379–386.

Parveen, S., Lukasik, J., Scott, T. M., Tamplin, M. L.,Portier, K. M., Sheperd, S., Braun, K., and Farrah, S. R.2006. Geographical variation in antibiotic resistancepatterns of Escherichia coli isolated from swine, poultry,beef and dairy cattle farms in Florida. J. Appl. Microbiol.100: 50–57.

Parveen, S., Murphree, R. L., Edmiston, L., Kaspar, C. W.,Portier, K. M., and Tamplin, M. L. 1997. Association ofmultiple-antibiotic-resistance pro�les with point andnonpoint sources of Escherichia coli in Apalachicola Bay.Appl. Environ. Microbiol. 63: 2607–2612.

Parveen, S., Portier, K. M., Robinson, K., Edmiston, L.,and Tamplin, M. L. 1999. Discriminant analysis of ribotypepro�les of Escherichia coli for differentiating human andnonhuman sources of fecal pollution. Appl. Environ.Microbiol. 65: 3142–3147.

Parveen, S. and Tamplin, M. L. 2002. Sources of FecalContamination. Encyclopedia of Environmental Microbiology.vol. 3, John Wiley and Sons, Inc. New York, NY, pp.1256–1264.

Payment, P. 1993. Viruses: Prevalence of Disease, Levelsand Sources. In: Craun, G. F. (ed.), Safety of WaterDisinfection: Balancing Chemical and Microbial Risks. ILSIPress, Washington, pp. 99–113.

Payment, P. and Franco, E. 1993. Clostridium perfringensand somatic coliphages as indicators of the ef�ciency ofdrinking water treatment for viruses and protozoan cysts.Appl. Environ. Microbiol., 59: 2418–2424.

Porter, K. G. and Feig, Y. S. 1980. The use of DAPI foridentifying and counting aquatic micro�ora. Limnol.Oceanogr. 14: 799–801.

Reasoner, D. J. 1990. Monitoring heterotrophic bacteria inpotable water. In: G. A. McFeters (ed.), Drinking WaterMicrobiology, Springer-Verlag, New York, pp. 452–477.

Reasoner, D. J. 2004. Heterotrophic plate count methodologyin the United States. Int. J. Food Microbiol. 92(3):307–315.

Reasoner, D. J. and Geldreich, E. E. 1985. A new medium forthe enumeration and subculture of bacteria from potablewater. Appl. Environ. Microbiol., 49: 1–7.

Rogers, S. W., Donnelly, M., Peed, L., Kelty, C. A.,Mondal, S., Zhong, Z., and Shanks, O. C. 2011. Decay ofbacterial pathogens, fecal indicators, and real-timequantitative PCR genetic markers in manure-amended soils.Appl. Environ. Microbiol. 77(14): 4839–4848.

Roland F. P. 1970. Leg gangrene and endotoxin shock due toVibrio parahaemolyticus: An infection acquired in NewEngland coastal waters. N. Engl. J. Med. 282: 1306.

Rose, J. B., Epstein, P. R., Lipp, E. K., Sherman, B. H.,Bernard, S. M., and Patz, J. A. 2001. Climate variabilityand change in the United States: Potential impacts onwater- and foodborne diseases caused by microbiologicagents. Environ. Health Perspect. 109(Supplement 2):211–221.

Roszak, D. B. and Colwell, R. R. 1987. Survival strategiesof bacteria in the natural environment. Microbiol. Rev.51: 365–379.

Sadowsky, M. J., Call, D. R., and Santo Domingo J. W. 2007.The future of microbial source tracking studies. In: SantoDomingo, J. W. and Sadowsky M. J. (eds), Microbial SourceTracking. ASM Press, Washington, D.C., pp. 235–277.

Sambrook, J. and Russell, D. W. 2001. Molecular Cloning: ALaboratory Manual. Cold Spring Harbor Laboratory Press.

Schueler, T. 1994. The importance of imperviousness.Watershed Protect. Tech. 1: 100–111.

Scott, T. M., Parveen, S., Portier, K. M., Rose, J. B.,Tamplin, M. L., Farrah, S. R., and Lukasik, J. 2003.Geographical Variation in ribotype pro�les of Escherichiacoli isolated from humans, swine, poultry, beef and dairycattle in Florida. Appl. Environ. Microbiol. 69(2):1089–1092.

Seeley, N. D. and Primrose, S. B. 1982. The isolation ofbacteriophages from the environment. J. Appl. Bacteriol.53: 1–17.

Shapiro, R. L., Altekruse, S., Hutwagner, L., Hammond, R.,Wilson, S., Ray, B., Thompson, S., Tauxe, R. V., andGrif�n, P. M. 1998. The role of Gulf Coast oystersharvested in warmer months in Vibrio vulnificus infectionsin the United States, 1988-1996. Vibrio Working Group. J.Infect. Dis. 178: 752–759.

Sinigalliano C. D., Fleisher J. M., Gidley M. L.,Solo-Gabriele H. M., Shibata T., Plano L. R., Elmir S. M.et al. 2010. Traditional and molecular analyses for fecalindicator bacteria in non-point source subtropicalrecreational marine waters. Water Res. 44(13): 3763–3772.

Stevens, M., Ashbolt, N., and Cunliffe, D. 2003.Recommendations to Change the Use of Coliforms asMicrobial Indicators of Drinking Water Quality. NationalHealth and Medical Research Council, AustralianGovernment. 42 pp.

Stevenson, G. R. and Rychert, R. C. 1982. Bottom sediment:A reservoir of Escherichia coli in rangeland streams. J.Range Manage. 35: 119–123.

Stewart, J., Santo Domingo, J. W., and Wade, T. J. 2007.Fecal pollution, public health, and microbial sourcetracking. In: Santo Domingo, J. W. and Sadowsky M. J.(eds), Microbial Source Tracking. ASM Press, Washington,D.C., pp.1–32.

Taylor, R. H. and Geldreich, E. E. 1979. A new membranelter procedure for bacterial counts in potable water andswimming pool samples. J. Am. Water Works Assoc. 71:402–405.

Todar, K. 2002. The Bacterial Flora of Humans. Departmentof Bacteriology, University of Wisconsin-Madison. Internetaddress: http://www.bact.wisc.edu/Bact303/Bact303normal�ora(accessed February 2, 2002).

Todar, K. 2005. Vibrio cholerae and Asiatic cholera.Todar’s Online Textbook of Bacteriology.

Turley, C. M. 1993. Direct estimates of bacterial numbersinseawater samples without incurring cell loss due to samplestorage. In: Kemp, P. F., Sherr, B. F., Sherr, E. B., and

Cole J. J. (eds), Handbook of Methods in MicrobialEcology. Lewis Publishers, Boca Raton, FL.

Turley C. M. and Hughes D. J. 1992. Effects of storage ondirect estimates of bacterial numbers of preservedseawater samples. Deep Sea Res. 39: 375–394.

US Environmental Protection Agency 1986. Ambient WaterQuality Criteria for Bacteria. EPA440/5-84-002, 18 pp.

US Environmental Protection Agency 2003. Bacterial waterquality standards for recreational waters.

US Environmental Protection Agency Of�ce of Research andDevelopment. 2005. Microbial source tracking guidedocument.

US Food and Drug Administration’s BacteriologicalAnalytical Manual, BAM Online 2001. http://www.cfsan.fda.gov/~ebam/bam-toc.html.

Venkateswaran, K., Kim, S. W., Nakano, H., Onbe, T., andHashimoto, H. 1989. The association of Vibrioparahaemolyticus serotypes with zooplankton and itsrelationship with bacterial indicators of pollution. Syst.Appl. Microbiol. 11(2): 194–201.

Vernam, A. H. and Evans, M. G. 2000. EnvironmentalMicrobiology. ASM Press, Washington, D.C., 160 pp.

Verstraete, W. and Voets, J. P. 1976. Comparative study ofE. coli survival in two aquatic ecosystems. Water Res. 10:129–136.

Wagner, M., Amann, R., Lemmer, H., and Schleifer, K. H.1993. Probing activated sludge with oligonucleotidespeci�c for proteobacteria: Inadequacy of culture-dependentmethods for describing microbial community structure. Appl.Environ. Microbiol. 59: 1520–1525.

Walters, S. P., Gannon, V. P. J., and Field, K. G. 2007.Detection of Bacteroidales fecal indicators and thezoonotic pathogens E. coli O157:H7, Salmonella, andCampylobacter in river water. Environ. Sci. Technol.41(6): 1856–1862.

Wheeler, A. L., Hartel, P. G., Godfrey, D. G., Hill, J. L.,and Segras, W. I. 2002. Potential of Enterrcoccus faecalisas a human fecal indicator for microbial source tracking.J. Environ. Qual. 31: 1286–1293.

Whitlock, J. E., Jones, D. T., and Harwood, V. J. 2002.Identi�cation of the sources of fecal coliforms in anurban watershed using antibiotic resistance analysis. WaterRes. 36: 4273–4282.

Whittam T. S. and Bergholz, T. M. 2007. MolecularSubtyping, source tracking, and food safety. In: SantoDomingo, J. W. and M. J. Sadowsky (eds), Microbial SourceTracking. ASM Press, Washington, D.C., pp. 93–136.

Whitman, R. J and Flick, G. J. 1995. Microbialcontamination of shell�sh: Prevalence, risk to human healthand control strategies. Annu. Rev. Public Health 16:123–140.

WHO 1993. Guidelines for Drinking Water Quality. 2nd ed.,Vol. 1, Recommendations. World Health Organization,Geneva.

WHO 1996. Guidelines for Drinking Water Quality. 2nd ed.,Vol. 2, Health Criteria and other supporting information.World Health Organization, Geneva.

WHO 1998. Cholera in 1997. Weekly Epidemiological Record,73: 201–208.

Wiggins, B. A. 1996. Discriminant analysis of antibioticresistance patterns in fecal streptococci, a method todifferentiate human and animal sources of fecal pollutionin natural waters. Appl. Environ. Microbiol. 35: 379–386.

Wiggins, B. A., Andrews, R. W., Conway, R. A., Corr, C. L.,Dobratz, E. J., Dougherty, D. P., Eppard, J. R. et al.1999. Use of antibiotic resistance analysis to identifynonpoint sources of fecal pollution. Appl. Environ.Microbiol. 65(8): 3483–3486.

Wilkes, G., Edge, T., Gannon, V., Jokinen, C., Lyautey, E.,Medeiros, D., Neumann, N., Ruecker, N., Topp, E., andLapen, D. R. 2009. Seasonal relationships among indicatorbacteria, pathogenic bacteria, Cryptosporidium oocysts,Giardia cysts, and hydrological indices for surface waterswithin an agricultural landscape. Water Res. 43(8):2209–2223.

Xu, P., Brissaud, F., and Fazio, A. 2002. Non-steady-statemodelling of fecal coliform removal in deep tertiarylagoons. Water Res. 36: 3074–3082.

Yoshpe-Purer, Y. 1989. Evaluation of media for monitoringfecal streptococci in seawater. Appl. Environ. Microbiol.55: 2041–2045.

6 Chapter 6 - Marine Toxins Analysis

Alfonso, C., Alfonso, A., Pazos, M. J. et al. 2007.Extraction and cleaning methods to detect yessotoxins incontaminated mussels. Anal Biochem, 363, 228–38.

Alfonso, C., Alfonso, A., Vieytes, M. R., Yasumoto, T., andBotana, L. M. 2005. Quanti�cation of yessotoxin using theuorescence polarization technique and study of the adequateextraction procedure. Anal Biochem, 344, 266–74.

Alfonso, A., Fernandez-Araujo, A., Alfonso, C. et al. 2012.Palytoxin detection and quanti�cation using theuorescence polarization technique. Anal Biochem, 424,64–70.

Alfonso, A., Vale, C., Vilariño, N. et al. 2009. Recentadvances in marine phycotoxin mechanisms of action.Toxines et Signalisation–Toxins and Signalling. Paris:Editions de la SFET—SFET Editions.

Alfonso, A., Vieytes, M. R., Yasumoto, T., and Botana, L.M. 2004. A rapid microplate �uorescence method to detectyessotoxins based on their capacity to activatephosphodiesterases. Anal Biochem, 326, 93–9.

Aligizaki, K., Katikou, P., Nikolaidis, G., and Panou, A.2008. First episode of shell�sh contamination bypalytoxin-like compounds from Ostreopsis species (AegeanSea, Greece). Toxicon, 51, 418–27.

AOAC. 1995. AOAC Of�cial Methods Program. J AOAC Int, 78,143A–160A.

AOAC. 2002. AOAC Of�cial Method 991.26. Domoic acid inmussels, liquid chromatographic method. In: Horowitz (ed.)Official Methods of Analysis of the AOAC. Gaithersburg,Maryland: AOAC.

AOAC. 2005. Method 2005.06: Paralytic shell�sh poisoningtoxins in shell�sh. prechromatographic oxidation andliquid chromatography with �uorescence detection. OfficialMethods of Analysis of the Association of OfficialAnalytical Chemists, Method 2005.06, First Action.

Araoz, R., Vilarino, N., Botana, L. M., and Molgo, J. 2010.Ligand-binding assays for cyanobacterial neurotoxinstargeting cholinergic receptors. Anal Bioanal Chem, 397,1695–704.

Aune, T., Aasen, J. A., Miles, C. O., and Larsen, S. 2008.Effect of mouse strain and gender on LD(50) of yessotoxin.Toxicon, 52, 535–40.

Aune, T., Larsen, S., Aasen, J. A. et al. 2007. Relativetoxicity of dinophysistoxin-2 (DTX-2) compared withokadaic acid, based on acute intraperitoneal toxicity inmice. Toxicon, 49, 1–7.

Ben-Gigirey, B., Rodriguez-Velasco, M. L., Villar-Gonzalez,A., and Botana, L. M. 2007. In�uence of the sample toxicpro�le on the suitability of a high performance liquidchromatography method for of�cial paralytic shell�shtoxins control. J Chromatogr A, 1140, 78–87.

Bire, R., Krys, S., Fremy, J. M. et al. 2002. Firstevidence on occurrence of gymnodimine in clams fromTunisia. J Nat Toxins, 11, 269–75.

Bondu, S., Genta-Jouve, G., Leirós, M. et al. 2012.Additional bioactive guanidine alkaloids from theMediterranean sponge Crambe crambe. RSC Advances, 2,2828–35.

Botana, L. M., Alfonso, A., Botana, A. et al. 2009.Functional assays for marine toxins as an alternative,highthroughput screening solution to animal tests. TrendsAnal Chem, 28, 603–11.

Botana, L. M., Louzao, M. C., Alfonso, A. et al. (eds.)2011. Measurement of Algal Toxins in the Environment,Encyclopedia of Analytical Chemistry, Chichester: JohnWiley & Sons Ltd. 268–91.

Botana, L. M., Vilariño, N., Elliott, C. T. et al. 2010.The problem of toxicity equivalent factors in developingalternative methods to animal bioassays for marine toxindetection. Trends Anal Chem, 29, 1316–25.

Cagide, E., Louzao, M. C., Espina, B. et al. 2009.Production of functionally active palytoxin-like compoundsby Mediterranean Ostreopsis cf. siamensis. Cell PhysiolBiochem, 23, 431–40.

Campbell, K., Haughey, S. A., van Den Top, H. et al. 2010.Single laboratory validation of a surface plasmonresonance biosensor screening method for paralytic shell�shpoisoning toxins. Anal Chem, 82, 2977–88.

Campbell, K., Stewart, L. D., Doucette, G. J. et al. 2007.

Assessment of speci�c binding proteins suitable for thedetection of paralytic shell�sh poisons using opticalbiosensor technology. Anal Chem, 79, 5906–14.

Canete, E. and Diogene, J. 2008. Comparative study of theuse of neuroblastoma cells (Neuro-2a) andneuroblastomaxglioma hybrid cells (NG108-15) for the toxiceffect quanti�cation of marine toxins. Toxicon, 52,541–50.

Ciminiello, P., Dell’aversano, C., Fattorusso, E. et al.2006. The Genoa 2005 outbreak. Determination of putativepalytoxin in Mediterranean Ostreopsis ovata by a new liquidchromatography tandem mass spectrometry method. Anal Chem,78, 6153–9.

Ciminiello, P., Dell’aversano, C., Fattorusso, E. et al.2008. Putative palytoxin and its new analogue, ovatoxin-a,in Ostreopsis ovata collected along the Ligurian coastsduring the 2006 toxic outbreak. J Am Soc Mass Spectrom,19, 111–20.

Commission, E. 2004a. Regulation (EC) No 853/2004 of theEuropean Parliament and of the Council of 29 April 2004laying down speci�c hygiene rules for food of animalorigin. Off J Eur Union, L 226, 22–82.

Commission, E. 2004b. Regulation (EC) No 854/2004 of theEuropean Parliament and of the Council of 29 April 2004laying down speci�c rules for the organisation of of�cialcontrols on products of animal origin intended for humanconsumption. Off J Eur Union, L 226, 83–127.

Commission, E. 2006. Commission Regulation (EC) No1664/2006 of 6 November 2006 amending Regulation (EC) No2074/2005 as regards implementing measures for certainproducts of animal origin intended for human consumptionand repealing certain implementing measures. Off J EurUnion, L 320, 13–45.

Commission, E. 2007a. Commission Regulation (EC) No1244/2007 of 24 October 2007 amending Regulation (EC) No2074/2005 as regards implementing measures for certainproducts of animal origin intended for human consumptionand laying down speci�c rules on of�cial controls for theinspection area. Off J Eur Union, L 281, 12–18.

Commission, E. 2007b. Commission Regulation (EC) No2074/2005 of 24 October 2007 amending Regulation (EC) No2074/2005 as regards implementing measures for certain

products of animal origin intended for human consumptionand laying down speci�c rules on of�cial controls for theinspection of meat. Off J Eur Union, L 281, 12–18.

Communities, E. 1986. COUNCIL DIRECTIVE of 24 November 1986on the approximation of laws, regulations andadministrative provisions of the Member States regardingthe protection of animals used for experimental and otherscienti�c purposes (86/609/EEC). Off J Eur Communities,L358, 1–29.

Darius, H. T., Ponton, D., Revel, T. et al. 2007. Ciguaterarisk assessment in two toxic sites of French Polynesiausing the receptor-binding assay. Toxicon, 50, 612–26.

Degrasse, S. L., Van De Riet, J., Hat�eld, R., and Turner,A. 2011. Pre- versus post-column oxidation liquidchromatography �uorescence detection of paralytic shell�shtoxins. Toxicon, 57, 619–24.

Della Loggia, R., Sosa, S., and Tubaro, A. 1999.Methodological improvement of the protein phosphataseinhibition assay for the detection of okadaic acid inmussels. Nat Toxins, 7, 387–91.

Draisci, R., Croci, L., Giannetti, L. et al. 1994.Comparison of mouse bioassay, HPLC and enzyme immunoassaymethods for determining diarrhetic shell�sh poisoningtoxins in mussels. Toxicon, 32, 1379–84.

Empey Campora, C., Hokama, Y., Yabusaki, K., and Isobe, M.2008. Development of an enzyme-linked immunosorbent assayfor the detection of ciguatoxin in �sh tissue using chickenimmunoglobulin Y. J Clin Lab Anal, 22, 239–45.

Espina, B., Cagide, E., Louzao, M. C. et al. 2009. Speci�cand dynamic detection of palytoxins by in vitro microplateassay with human neuroblastoma cells. Biosci Rep, 29,13–23.

Eu-Rl 2011. EU-harmonised standard operating procedure fordetermination of lipophilic marine biotoxins in molluscsby LC-MS/MS.

Fonfria, E. S., Vilarino, N., Campbell, K. et al. 2007.Paralytic shell�sh poisoning detection by surface plasmonresonance-based biosensors in shell�sh matrixes. Anal Chem,79, 6303–11.

Fonfria, E. S., Vilarino, N., Espina, B. et al. 2010a.

Feasibility of gymnodimine and 13-desmethyl C spirolidedetection by �uorescence polarization using areceptor-based assay in shell�sh matrixes. Anal Chim Acta,657, 75–82.

Fonfria, E. S., Vilarino, N., Molgo, J. et al. 2010b.Detection of 13,19-didesmethyl C spirolide by �uorescencepolarization using Torpedo electrocyte membranes. AnalBiochem, 403, 102–7.

Fonfria, E. S., Vilarino, N., Vieytes, M. R., Yasumoto, T.,and Botana, L. M. 2008. Feasibility of using a surfaceplasmon resonance-based biosensor to detect and quantifyyessotoxin. Anal Chim Acta, 617, 167–70.

Fujii, I. 2009. Heterologous expression systems forpolyketide synthases. Nat Prod Rep, 26, 155–69.

Gonzalez, A. V., Rodriguez-Velasco, M. L., Ben-Gigirey, B.,and Botana, L. M. 2006. First evidence of spirolides inSpanish shell�sh. Toxicon, 48, 1068–74.

González, J. C., Leira, F., Fontal, O. I. et al. 2002.Inter-laboratory validation of the �uorescent proteinphosphatase inhibition assay to determine diarrheticshell�sh-toxins: Intercomparison with liquid chromatographyand mouse bioassay. Anal Chim Acta, 466, 233–46.

Gueguen, M., Amiard, J. C., Arnich, N. et al. 2011.Shell�sh and residual chemical contaminants: Hazards,monitoring, and health risk assessment along French coasts.Rev Environ Contam Toxicol, 213, 55–111.

Hess, P., Grune, B., Anderson, D. B. et al. 2006. Three Rsapproaches in marine biotoxin testing. The Report andRecommendations of a Joint ECVAM/DG SANCO Workshop (ECVAMWorkshop 54). Altern Lab Anim, 34, 193–224.

Hossen, V., Jourdan-Da Silva, N., Guillois-Becel, Y.,Marchal, J., and Krys, S. 2011. Food poisoning outbreakslinked to mussels contaminated with okadaic acid and esterdinophysistoxin-3 in France, June 2009. Euro surveillance:Bulletin Europeen sur les maladies transmissibles=Europeancommunicable disease bulletin, 16.

Ikehara, T., Imamura, S., Yoshino, A., and Yasumoto, T.2010. PP2A inhibition assay using recombinant enzyme forrapid detection of okadaic acid and its analogs inshell�sh. Toxins, 2, 195–204

Kellmann, R., Stuken, A., Orr, R. J., Svendsen, H. M., andJakobsen, K. S. 2010. Biosynthesis and molecular geneticsof polyketides in marine dino�agellates. Marine Drugs, 8,1011–48.

Kita, M., Ohno, O., Han, C., and Uemura, D. 2010. Bioactivesecondary metabolites from symbiotic marinedino�agellates: Symbiodinolide and durinskiols. Chem Rec,10, 57–69.

Kleivdal, H., Kristiansen, S. I., Nilsen, M. V., andBriggs, L. 2007. Single-laboratory validation of thebiosense direct competitive enzyme-linked immunosorbentassay (ELISA) for determination of domoic acid toxins inshell�sh. J AOAC Int, 90, 1000–10.

Lawrence, J. F., Charbonneau, C. F., Menard, C., Quilliam,M. A., and Sim, P. G. 1989. Liquid chromatographicdetermination of domoic acid in shell�sh products using theparalytic shell�sh poison extraction procedure of theassociation of of�cial analytical chemists. J. Chromatogr.,462, 349–56.

Lawrence, J. F., Menard, C., and Cleroux, C. 1995.Evaluation of prechromatographic oxidation for liquidchromatographic determination of paralytic shell�sh poisonsin shell�sh. J AOAC Int, 78, 514–20.

Lawrence, J. F., Niedzwiadek, B., and Menard, C. 2005.Quantitative determination of paralytic shell�sh poisoningtoxins in shell�sh using prechromatographic oxidation andliquid chromatography with �uorescence detection:Collaborative study. J AOAC Int, 88, 1714–32.

Leao, P. N., Engene, N., Antunes, A., Gerwick, W. H., andVasconcelos, V. 2012. The chemical ecology ofcyanobacteria. Nat Prod Rep, 29, 372–91.

Ledreux, A., Krys, S., and Bernard, C. 2009. Suitability ofthe Neuro-2a cell line for the detection of palytoxin andanalogues (neurotoxic phycotoxins). Toxicon, 53, 300–8.

Leira, F., Alvarez, C., Cabado, A. G. et al. 2003.Development of a F actin-based live-cell �uorimetricmicroplate assay for diarrhetic shell�sh toxins. AnalBiochem, 317, 129–35.

Leira, F., Alvarez, C., Vieites, J. M., Vieytes, M. R., andBotana, L. M. 2002. Characterization of distinct apoptoticchanges induced by okadaic acid and yessotoxin in the

BE(2)-M17 neuroblastoma cell line. Toxicol In Vitro, 16,23–31.

Lin, S. 2011. Genomic understanding of dino�agellates. ResMicrobiol, 162, 551–69.

Litaker, R. W., Vandersea, M. W., Faust, M. A. et al. 2010.Global distribution of ciguatera causing dino�agellates inthe genus Gambierdiscus. Toxicon, 56, 711–30.

Llamas, N. M., Stewart, L., Fodey, T. et al. 2007.Development of a novel immunobiosensor method for therapid detection of okadaic acid contamination in shell�shextracts. Anal Bioanal Chem, 389, 581–7.

Louzao, M. C., Rodriguez Vieytes, M., Garcia Cabado, A.,Vieites Baptista De Sousa, J. M., and Botana, L. M. 2003.A �uorimetric microplate assay for detection andquantitation of toxins causing paralytic shell�shpoisoning. Chem Res Toxicol, 16, 433–8.

Louzao, M. C., Vieytes, M. R., Baptista De Sousa, J. M.,Leira, F., and Botana, L. M. 2001. A �uorimetric methodbased on changes in membrane potential for screeningparalytic shell�sh toxins in mussels. Anal Biochem, 289,246–50.

Louzao, M. C., Vieytes, M. R., Yasumoto, T., and Botana, L.M. 2004. Detection of sodium channel activators by a rapid�uorimetric microplate assay. Chem Res Toxicol, 17, 572–8.

Monroe, E. A. and Van Dolah, F. M. 2008. The toxicdino�agellate Karenia brevis encodes novel type I-likesynthases containing discrete catalytic domains. Protist,159, 471–82.

Mouri, R., Oishi, T., Torikai, K. et al. 2009. Surfaceplasmon resonance-based detection of ladder-shapedpolyethers by inhibition detection method. Bioorg Med ChemLett, 19, 2824–8.

Nikapitiya, C. 2012. Bioactive secondary metabolites frommarine microbes for drug discovery. Adv Food Nutr Res, 65,363–87.

Oshima, Y., Machida, M., Sasaki, K., Tamaoki, Y., andYasumoto, T. 1984. Liquid chromatographic-�uorimetricanalysis of paralytic shell�sh toxins. Agric Biol Chem, 48,1707–11.

Otero, P., Alfonso, A., Alfonso, C. et al. 2011. Effect ofuncontrolled factors in a validated liquid chromatography-tandem mass spectrometry method question its use as areference method for marine toxins: Major causes forconcern. Anal Chem, 83, 5903–11.

Otero, P., Alfonso, A., Rodriguez, P. et al. 2012.Pharmacokinetic and toxicological data of spirolides afteroral and intraperitoneal administration. Food ChemToxicol, 50, 232–7.

Otero, P., Alfonso, A., Vieytes, M. R. et al. 2010a.Effects of environmental regimens on the toxin pro�le ofAlexandrium ostenfeldii. Environ Toxicol Chem, 29, 301–10.

Otero, P., Perez, S., Alfonso, A. et al. 2010b. Firsttoxin pro�le of ciguateric �sh in Madeira Arquipelago(Europe). Anal Chem, 82, 6032–9.

Panel, E. C. 2008a. Opinion of the Scienti�c Panel onContaminants in the Food chain on a request from theEuropean Commission on marine biotoxins inshell�sh—azaspiracids. EFSA J, 723, 1–52.

Panel, E. C. 2008b. Opinion of the Scienti�c Panel onContaminants in the Food chain on a request from theEuropean Commission on marine biotoxins in shell�sh—okadaicacid and analogues. EFSA J, 589, 1–62.

Panel, E. C. 2008c. Scienti�c opinion on marine biotoxinsin shell�sh- Yessotoxin group. EFSA Panel on Contaminantsin the Food Chain (CONTAM). EFSA J, 907, 1–62.

Panel, E. C. 2009a. Marine biotoxins in shell�sh-Summary onregulated marine biotoxins. EFSA J, 1306, 1–23.

Panel, E. C. 2009b. Marine toxins in shell�sh. Summary onregulated marine biotoxins. Scienti�c Opinion of the Panelon Contaminants in the Food chain. EFSA J, 1306, 1–23.

Panel, E. C. 2009c. Opinion of the scienti�c panel oncontaminants in the food chain on a request from theEuropean Commission on marine biotoxins inshell�sh—Saxitoxin group. EFSA J, 1019, 1–76.

Panel, E. C. 2009d. Scienti�c Opinion on marine biotoxinsin shell�sh- Domoic acid. EFSA Panel on Contaminants inthe Food Chain (CONTAM). EFSA J, 1181, 1–61.

Panel, E. C. 2009e. Scienti�c Opinion on marine biotoxins

in shell�sh- Pectenotoxin group. EFSA Panel onContaminants in the Food Chain (CONTAM). EFSA J, 1109,1–47.

Panel, E. C. 2010. Statement on further elaboration of theconsumption �gure of 400 g shell�sh meat on the basis ofnew consumption data. EFSA Panel on Contaminants in theFood Chain (CONTAM). EFSA J, 8, 1706 (20 pp.).

Pazos, M. J., Alfonso, A., Vieytes, M. R. et al. 2004.Resonant mirror biosensor detection method based onyessotoxin-phosphodiesterase interactions. Anal Biochem,335, 112–8.

Pazos, M. J., Alfonso, A., Vieytes, M. R., Yasumoto, T.,and Botana, L. M. 2005. Kinetic analysis of the interactionbetween yessotoxin and analogues and immobilizedphosphodiesterases using a resonant mirror opticalbiosensor. Chem Res Toxicol, 18, 1155–60.

Perez, S., Vale, C., Botana, A. M. et al. 2011.Determination of toxicity equivalent factors for paralyticshell�sh toxins by electrophysiological measurements incultured neurons. Chem Res Toxicol, 24, 1153–7.

Proksch, P. 1994. Defensive roles for secondary metabolitesfrom marine sponges and sponge-feeding nudibranchs.Toxicon, 32, 639–55.

Reguera, B. and Pizarro, G. 2008. Planktonic dino�agellatesthat contain polyether toxins of the old “DSP complex”.In: Botana, L. M. (ed.) Seafood and Freshwater Toxins:Pharmacology, Physiology and Detection. 2nd edition, BocaRaton, FL: CRC Press (Taylor & Francis Group).

Regulation, C. 2011. Commission Regulation (EU) No 15/2011of 10 January 2011 amending Regulation (EC) No 2074/2005as regards recognised testing methods for detecting marinebiotoxins in live bivalve molluscs. Off J Eur Communities,L, 3–4.

Rodriguez, P., Alfonso, A., Botana, A. M., Vieytes, M. R.,and Botana, L. M. 2010. Comparative analysis of pre- andpost-column oxidation methods for detection of paralyticshell�sh toxins. Toxicon, 56, 448–57.

Rodriguez, P., Alfonso, A., Vale, C. et al. 2008. Firsttoxicity report of tetrodotoxin and 5,6,11-trideoxyTTX inthe trumpet shell Charonia lampas lampas in Europe. AnalChem, 80, 5622–9.

Rodriguez, L. P., Vilarino, N., Molgo, J. et al. 2011.Solid-phase receptor-based assay for the detection ofcyclic imines by chemiluminescence, �uorescence, orcolorimetry. Anal Chem, 83, 5857–63.

Rubiolo, J. A., Lopez-Alonso, H., Vega, F. V., Vieytes, M.R., and Botana, L. M. 2011. Okadaic acid and dinophysistoxin 2 have differential toxicological effects in hepaticcell lines inducing cell cycle arrest, at G0/G1 or G2/Mwith aberrant mitosis depending on the cell line. ArchToxicol, 85, 1541–50.

Rubiolo, J. A., Lopez-Alonso, H., Vega, F. V., Vieytes, M.R., and Botana, L. M. 2012. Comparative study oftoxicological and cell cycle effects of okadaic acid anddinophysistoxin-2 in primary rat hepatocytes. Life Sci,90, 416–23.

Rundberget, T., Aasen, J. A., Selwood, A. I., and Miles, C.O. 2011. Pinnatoxins and spirolides in Norwegian bluemussels and seawater. Toxicon, 58, 700–11.

Stewart, L., Elliott, C., Walker, A., Curran, R., andConnolly, L. 2009a. Development of a monoclonal antibodybinding okadaic acid and dinophysistoxins-1, -2 inproportion to their toxicity equivalence factors. Toxicon,54, 491–98.

Stewart, L. D., Hess, P., Connolly, L. and Elliott, C. T.2009b. Development and single-laboratory validation of apseudofunctional biosensor immunoassay for the detection ofthe okadaic acid group of toxins. Anal Chem, 81, 10208–14.

These, A., Klemm, C., Nausch, I. and Uhlig, S. 2011.Results of a European interlaboratory method validationstudy for the quantitative determination of lipophilicmarine biotoxins in raw and cooked shell�sh based onhigh-performance liquid chromatography-tandem massspectrometry. Part I: Collaborative study. Anal BioanalChem, 399, 1245–56.

Truman, P., Stirling, D. J., Northcote, P. et al. 2002.Determination of brevetoxins in shell�sh by theneuroblastoma assay. J AOAC Int, 85, 1057–63.

Tubaro, A., Florio, C., Luxich, E. et al. 1996. A proteinphosphatase 2A inhibition assay for a fast and sensitiveassessment of okadaic acid contamination in mussels.Toxicon, 34, 743–52.

Turner, A. D., Hat�eld, R. G., Rapkova, M. et al. 2011.Comparison of AOAC 2005.06 LC of�cial method with othermethodologies for the quantitation of paralytic shell�shpoisoning toxins in UK shell�sh species. Anal BioanalChem, 399, 1257–70.

Turner, A. D., Hat�eld, R. G., Rapkova-Dhanji, M. et al.2010. Single-laboratory validation of a re�ned AOAC HPLCmethod 2005.06 for oysters, cockles, and clams in U.K.shell�sh. J AOAC Int, 93, 1482–93.

Turner, A. D., Norton, D. M., Hat�eld, R. G. et al. 2009.Re�nement and extension of AOAC Method 2005.06 to includeadditional toxins in mussels: Single-laboratory validation.J AOAC Int, 92, 190–207.

Vale, C., Alfonso, A., Vieytes, M. R. et al. 2008. in vitroand in vivo evaluation of paralytic shell�sh poisoningtoxin potency and the in�uence of the pH of extraction.Anal Chem, 80, 1770–6.

Van de Riet, J. M., Gibbs, R. S., Chou, F. W. et al. 2009.Liquid chromatographic post-column oxidation method foranalysis of paralytic shell�sh toxins in mussels, clams,scallops, and oysters: Single-laboratory validation. J AOACInt, 92, 1690–704.

van Den Top, H. J., Elliott, C. T., Haughey, S. A. et al.2011a. Surface plasmon resonance biosensor screeningmethod for paralytic shell�sh poisoning toxins: A pilotinterlaboratory study. Anal Chem, 83, 4206–13.

van Den Top, H. J., Gerssen, A., Mccarron, P. and VanEgmond, H. P. 2011b. Quantitative determination of marinelipophilic toxins in mussels, oysters and cockles usingliquid chromatography-mass spectrometry: Inter-laboratoryvalidation study. Food Addit Contam A, 28, 1745–57.

Van Dolah, F. M., Leigh�eld, T. A., Doucette, G. J. et al.2009. Single-laboratory validation of the microplatereceptor binding assay for paralytic shell�sh toxins inshell�sh. J AOAC Int, 92, 1705–13.

Vasconcelos, V., Azevedo, J., Silva, M. and Ramos, V. 2010.Effects of marine toxins on the reproduction and earlystages development of aquatic organisms. Mar Drugs, 8,59–79.

Vieites, J. M. and Cabado, A. G. 2008. Incidence of marine

toxins on industrial activity. In: Botana, L. M. (ed.)Seafood and Freshwater toxins: Pharmacology, Physiology andDetection. 2nd edition, Boca Raton, FL: CRC Press (Taylor& Francis Group).

Vieytes, M. R., Fontal, O. I., Leira, F., Baptista DeSousa, J. M. and Botana, L. M. 1997. A �uorescentmicroplate assay for diarrheic shell�sh toxins. AnalBiochem, 248, 258–64.

Vilarino, N., Fonfría, E., Louzao, M. C. and Botana, L. M.2009. Use of Biosensors as alternatives to currentregulatory methods for marine biotoxins. Sensors, 9,9414–43.

Vilarino, N., Louzao, M. C., Vieytes, M. R. and Botana, L.M. 2010. Biological methods for marine toxin detection.Anal Bioanal Chem, 397, 1673–81.

Villar-Gonzalez, A., Rodriguez-Velasco, M. L., Ben-Gigirey,B. and Botana, L. M. 2007. Lipophilic toxin pro�le inGalicia (Spain): 2005 toxic episode. Toxicon, 49, 1129–34.

Wang, C. Z., Zhang, H., Jiang, H. et al. 2006. A novelconotoxin from Conus striatus, mu-SIIIA, selectivelyblocking rat tetrodotoxin-resistant sodium channels.Toxicon, 47, 122–32.

Yakes, B. J., Degrasse, S. L., Poli, M. and Deeds, J. R.2011. Antibody characterization and immunoassays forpalytoxin using an SPR biosensor. Anal Bioanal Chem, 400,2865–9.

Yasumoto, T., Oshima, Y. and Yamaguchi, M. 1978. Occurrenceof a new type of shell�sh poisoning in the TohokuDistrict. Bull Jpn Soc Sci Fish, 44, 1249–55.

7 Chapter 7 - Algal Analysis

APHA, AWWA, WEF. 2012. Standard Methods for examination ofwater and wastewater. 22nd ed. Washington: American PublicHealth Association; 1360 pp.

Begon, M., Townsend, C., and Harper, J. 2006. Ecology fromIndividuals to Ecosystems. 4th ed. Blackwell Publishing,Malden. 759p.

Boyce, D.G., Lewis, M.R., and Worm, B. 2010. Globalphytoplankton decline over the past century. Nature, 466:591–596.

Brock, T.D. 1978. Use of �uorescence microscopy forquantifying phytoplankton, especially �lamentous bluegreenalgae. Limnology and Oceanography, 23(1): 158–160.

Carlson, R.E. 1977. A trophic state index for lakes.Limnology and Oceanography, 22(2): 361–369.

Gauch Jr, H.G. 1994. Multivariate Analysis in CommunityEcology. Cambridge University Press, Cambridge. 298p.

Gómez, N., Sierra, M.V., Cortelezzi, A., and RodriguesCapítulo, A. 2008. Effects of discharges from the textileindustry on the biotic integrity of benthic assemblages.Ecotoxicology and Environmental Safety, 69: 472–479.Gar_00

(a) (b) Gar_98 Transparency Transparency Como_AbbadiaMag_99 Mag_97 Mag_98 Gar_99 Ise_99 Alkalinity Alkalinity TPTribon Volvoc Chl a 1

–1.0

– 1

. 0 1.0

1 . 0 – 1 . 0 1 . 0 –1.0 1.0 1.5 3.5 54 Chloro NostocChlamy Desmid Zygnem Peridi Ochrom Oscill Pennal CryptoCentra Chrooc Prymne Lug_99 Ise_98 Lug_98 Lug_00 Ise_00 Chla TP

FIGURE 7.8 Ordination of (a) some alpine lakes and (b)phytoplankton orders in a canonical correspondence analysis

(CCA) plane de�ned by the �rst two axes. The symbols in (a)represent names of lakes (Gar, Garda; Ise, Iseo; Lug,

Lugano;

Mag, Maggiore) and the studied years. In (b), the numbersat the bottom are the trophic weights assigned to differentalgal

orders. (From Salmaso, N. et al. 2006. Hydrobiologia, 563:167–187.)

Graham, L.E., Graham, J.M., and Wilcox, L.W. 2009. Algae.Prentice-Hall, Upper Saddle River, NJ. 616p.

Gray, T.L.J.S. and Elliott, M. 2009. Ecology of MarineSediments—From Science to Management. 2nd ed. OxfordUniversity Press, New York. 225p.

Hallegraeff, G., Anderson, D.M., and Cembella, A.D. 1985.Manual on Harmful Marine Microalgae. IOC Manuals andGuides No. 33. UNESCO. 551p.

Hays, G.C., Richardson, A.J., and Robinson, C. 2005.Climate change and marine plankton. Trends in Ecology &Evolution, 20(6): 337–344.

Hobbie, J.E., Daley, R.J., and Jasper, S. 1977. Use ofnuclepore �lters for counting bacteria by �uorescencemicroscopy. Applied and Environmental Microbiology, 33,1225–1228.

IOC-UNESCO. 2010. Intergovernmental OceanographicCommission of—UNESCO. In: Karlson, B., Cusack, C., andBresnan, E. (Eds), Microscopic and Molecular Methods forQuantitative Phytoplankton Analysis. Paris, UNESCO. (IOCManuals and Guides, no. 55.) (IOC/2010/MG/55). 110p.

Jaccard, P. 1908. Nouvelles recherches sur la distributionorale. Bulletin de la Societe vaudoise des Sciencesnaturelles. Lausanne, 44: 223–270.

Jeffrey, S.W., Mantoura, R.F.C., and Wright, S.W. (Eds).1997. Phytoplankton Pigments in Oceanography: Guidelinesto Modern Methods. Monographs on oceanographic methodology10. UNESCO Publishing. 661p.

Kitsiou, D. and Karydis, M. 2000. Categorical mapping ofmarine eutrophication based on ecological indices. Scienceof the Total Environment, 255, 113–127.

Kolkwitz, R. and Marsson, M. 1902. Grundsätze für diebiologische Beurteilung des Wassers nach seiner Flora und

Fauna. Mitt. aus d. Kgl. Prüfungsanstalt fürWasserversorgung u. Abwasserbeseitigung Berlin 1:33–72.

LAWA. 2000. Gewasserstrukturgutekartierung in derBundesrepublik Deutschland—Verfahren fur kleine undmittelgrose Fliesgewasser. Empfehlung. Januar 2000.Landerarbeitsgemeinschaft Wasser.

Livingstone, R.J. 2001. Eutrophication Processes in CoastalSystems: Origin and Succession of Plankton Blooms andEffects on Secondary Production in Gulf Coast Estuaries.CRC Press, Boca Raton. 327p.

Lobo, E.A., Callegaro, V.L.M., and Bender, P. 2002.Utilização de algas diatomáceas epilíticas como indicadorasda qualidade da água em rios e arroios da RegiãoHidrográ�ca do Guaíba, RS, Brasil. Santa Cruz do Sul,EDUNISC. 127p.

Macisaac, E.A. and Stockner, J.G. 1993. Enumeration ofphototrophic picoplankton by auto�uorescence microscopy.In: Kemp, P.F., Sherr, B.F., Sherr, E.B., and Cole, J.J.(Eds), Handbook of Methods in Aquatic Microbial Ecology.Lewis Publishers, Boca Raton. pp. 187–197.

McCormick, P.V. and Cairns Jr., J. 1994. Algae asindicators of environmental change. Journal of AppliedPhycology, 6: 509–526.

Munawar, M. and Weisse, T. 1989. Is the microbioal loop anearly indicator of anthropogenic stress? Hydrobiologia,188/189: 163–174.

Nayar, S., Goh, B.P.L., and Chou, L.M. 2005. Settlement ofmarine periphytic algae in a tropical estuary. Estuarine,Coastal and Shelf Science, 64: 241–248.

Nygaard, G. 1976. Tavlerne fra “Dansk Planteplankton”.Gyldendal, Copenhagen. 26p.

Nygaard, G. 1949. Hydrobiological studies in some ponds andlakes. Part II: The quotient hypothesis and some new orlittle known phytoplankton organisms. Kgl. Danske. Vidensk.Selsk. Biol. Skrifter, 7(1): 1–293.

Odum, E.P and Barrett, G.W. 2004. Fundamentals of Ecology.Thomson Brooks/Cole, Belmont. 624p.

Paerl, H.W., Dyble, J., Pinckney, J.L., Valdes, L.M.,Millie, D.F., Moisander, P.H., Morris, J.T., Bendis, B.,

and Piehler, M.F. 2005. Using microalgal indicators toassess human- and climate-induced ecological change inestuaries. In: Bortone, S.A. (Ed), Estuarine Indicators.CRC Press, Boca Raton. pp. 145–174.

Paerl, H.W., Valdes, L.M., Pinckney, J.L., Piehler, M.F.,Dyble, J., and Moisander, P.H. 2003. Phytoplanktonphotopigments as indicaltors of estuarine and coastaleutrophication. BioScience, 53(10): 953–964.

Palmer, C.M. 1969. A composite rating of algae toleratingorganic pollution. Journal of Phycology, 5: 78–82.

Palmer, C.M. 1980. Algae and Water Pollution: TheIdentification, Significance, and Control of Algae in WaterSupplies and in Polluted Water. Castle House Publications,London. 123p.

Parsons, T.R., Maita, Y., and Lalli, C.M. 1989. A Manual ofChemical and Biological Methods for Seawater Analysis.Pergamon Press, Oxford. 173p.

Porter, K.G. and Feig, Y.S. 1980. The use of DAPI foridentifying and counting aquatic micro�ora. Limnology andOceanography, 25(5): 943–948.

Poulton, N.J. and Martin, J.L. 2010. Imaging �ow cytometryfor quantitative phytoplankton analysis— FlowCAM. In:Karlson, B., Cusack, C., and Bresnan, E. (Eds), Microscopicand Molecular Methods for Quantitative PhytoplanktonAnalysis. Paris, UNESCO. (IOC Manuals and Guides, no. 55.)(IOC/2010/ MG/55). pp. 47–54.

Rawson, D.S. 1956. Algal indicators of trophic lake types.Limonology and Oceanography, 1(1): 18–25.

Reynolds, C.S. 2006. The Ecology of Phytoplankton.Cambridge University Press, New York. 535p.

Ribeiro Filho, R.A., Petrere Junior, M., Benassi, S.F., andPereira, J.M.A. 2011. Itaipu reservoir limnology:Eutrophication degree and the horizontal distribution ofits limnological variables. Brazilian Journal of Biology,71(4): 889–902.

Rörig, L.R., Almeida, T.C.M., and Garcia, V.M.T. 2006.Structure and succession of the surf-zone phytoplankton inCassino Beach, Southern Brazil. Journal of CoastalResearch, SI 39: 1246–1250.

Rörig, L.R., Tundisi, J.G., Schettini, C.A.F., PereiraFilho, J., Menezes, J.T., Almeida, T.C.M., Urban, S.R. et al. 2007. From a water resource to a point pollutionsource: The daily journey of a coastal urban stream.Brazilian Journal of Biology, 67: 631–637.

Salmaso, N., Morabito, G., Buzzi, F., Garibaldi, L.,Simona, M., and Mosello, R. 2006. Phytoplankton as anindicator of the water quality of the deep lakes south ofthe Alps. Hydrobiologia, 563: 167–187.

Salusso, M.M. and Moraña, L.N. 2000. Característicasfísicas, químicas y �toplancton de ríos y embalses de laalta cuenca del Rio Juramento (Salta, Argentina). NaturaNeotropicalis, 31: 29–44.

Sieburth, J.M. 1979. Sea Microbes. Oxford University Press,New York. 491p.

Sládecek, V. 1973. System of water quality from thebiological point of view. Archiv fur Hydrobiologie, Archivfur Hydrobiologie, Beiheft Ergebnisse der Limnologie, Heft,7: 1–218.

Sosik, H.M. and Olson, R.J. 2007. Automated taxonomicclassi�cation of phytoplankton sampled with imagein-�owcytometry. Limnology and Oceanography Methods, 5: 204–216.

Sournia, A. (Ed). 1978. Phytoplankton Manual (Monographs onOceanographic Methodology, n°6). SCOR/ UNESCO, Paris. 337p.

Steidinger, K.A. 1979. Collection, enumeration andidenti�cation of free-living marine dino�agellate. In:Taylor, D.L. and Seliger, H.H. (Eds), Toxic DinoflagellateBlooms. Elsevier/North-Holland, New York. pp. 435–442.

Steidinger, K.A. and Tangen, K. 1996. Dino�agellates. In:Tomas, C.R. (Ed), Identifying Marine Diatoms andDinoflagellates. Academic Press, New York. pp. 387–598.

Stockner, J.G. 1988. Phototrophic picoplankton: An overviewfrom marine and freshwater ecosystems. Limnology andOceanography, 33: 765–775.

Stockner, J.G. and Antia, N.J. 1986. Algal picoplanktonfrom marine and freshwater ecosystems: A multidisciplinaryperspective. Canadian Journal of Fisheries and AquaticSciences, 43: 2472–2503.

Sumita, M. 1986. A numerical water quality assessment of

rivers in Hokuriku District using epilithic diatomassemblage in riverbed as a biological indicator (II). Thevalues of RPId in surveyed rivers. Diatom. The JapaneseJournal of Diatomology, 2: 9–18.

Swift, Elijah. 1967. Cleaning diatom frustules withultraviolet radiation and peroxide. Phycologia, 6(2 and 3):161–163.

Toledo Jr., A.P., Talarico, M., Chinez, S.J., and Agudo,E.G. 1983. A aplicação de modelos simpli�cados para aavaliação do processo da eutro�zação em lagoas ereservatórios tropicais. CETESB, São Paulo. 34p.

Valentin, J.L. 2012. Ecologia Numérica. Uma introdução àanalise multivariada de dados ecológicos. 2. ed.Interciência, Rio de Janeiro. 153p.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R.,and Cushing, C.E. 1980. The river continuum concept.Canadian Journal of Fisheries and Aquatic Sciences, 37:130–137.

Walley, W.J., Grbovic, J., and Dzeroski, S. 2001. Areappraisal of saprobic values and indicator weights basedon Slovenian river quality data. Water Research, 35(18):4285–4292.

Watanabe, T., Asai, K., and Houki, A. 1986. Numericalestimation to organic pollution of �owing water by usingthe epilithic diatom assemblage—Diatom Assemblage Index(DAIpo). Science of the Total Environment, 55: 209–218.

Wetzel, R.G. and Likens, G.E. 2000. Limnological Analyses.Springer, New York. 429p.

Wilhelm, J.L. and Dorris, T.C. 1968. Biological parametersfor water quality criteria. Review Bioscience, 16(6):477–481.

Wright, S., Jeffrey, S., Mantoura, R., Llewellyn, C.,Bjornland, T., Repeta, D., and Welschmeyer, N. 1991. Animproved HPLC method for the analysis of chlorophylls andcarotenoids from marine phytoplankton. Marine EcologyProgress Series, 77: 183–196. Section V Halogens,N-compounds, and Phosphates

8 Chapter 8 - Halogens

1. J. Y. Gao, A. H. Xian, Lihua Jianyan. Huaxue Fence. 33:220–222, 1997. Anal. Abstr. 59: 12H109, 1997.

2. M. Beltz, W. J. O. Boyle, K. F. Klein, K. T. V. Grattan.Smart-sensor approach for a �ber-optic-based residualchlorine monitor. Sens. Actuators B 39: 380–385, 1997.

3. F. B. Serrat, G. B. Morell, D. R. Polo. Comparison ofmethods and kits for colorimetric determination ofresidual chlorine in water. J. AOAC Int. 80: 1117–1121,1997. Anal. Abstr. 60: 5H106, 1998.

4. R. P. Pantaler, L. A. Egorova, L. I. Avramenko, A. B.Blank. Zh Anal. Khim. 51: 521–524, 1996.

5. H. C. Hu. Chronoamperometric determination of freechlorine by using a wax-impregnated carbon electrode. J.Am. Water Works Assoc. 73 (3): 150–153, 1981.

6. B. Saunier. Y. Regnier Eau. Ind. 56: 43–49, 1981. Anal.Abstr. 43: 1H68, 1982.

7. E. Barbolani, G. Piccardi, F. Pantani. Potentiometrictitration of chlorine and its oxy compounds in water.Anal. Chim. Acta 132: 223–228, 1981.

8. Huang. J, L. Wang, N. Ren, X. L. Liu, R. F. Sun, G.Yang. Disinfection effect of chlorine dioxide on viruses,algae and animal planktons in water. Wat. Res. 31: 455–460,1997.

9. R. B. Smart, J. W. Freese. Measuring chlorine dioxidewith a rotating voltammetric membrane electrode. J. Am.Water Works Assoc 74: 530–531, 1982.

10. E. M. Aieta, P. V. Roberts, M. Hernandez. Determinationof chlorine dioxide, chlorite and chlorate in water. J.Am. Water Works Assoc. 76: 64–70, 1984.

11. F. Quentel, C. Elleouet, C. L. Madec. Determination oftrace levels of chlorine dioxide in drinking water byelectrochemistry. Analysis 24: 199–203, 1996.

12. T. Vatanabe, T. Ishii, Y. Yoshimura, H. Nakazawa.Determination of chlorine dioxide using 4-aminoantipyrineand phenol by �ow injection analysis. Anal. Chim. Acta 341:257–262, 1997.

13. H. Chen, G. Z. Wang, L. Yuan. Extractionspectrophotometric determination of trace chlorine dioxidewith methylene blue. Anal. Lett. 30: 1415–1421, 1997.

14. U. Pinnkernell, B. Nowack, H. Gallard, U. von Gunten.Methods for the photometric determination of reactivebromine and chlorine species with ABTS. Wat. Res. 34(18):4343–4350, 2000. TABLE 8.7 Lower Limit of DetectionObtained with ICP AES Using the Listed EmissionWavelengths Element Wavelength (nm) LOD (μm/L) Cl 134.72300 Br 163.3 170 I 179.85 20 I 182.98 8

15. J. W. Williams. Handbook of Anion Determination,Butterworths, London, 1979.

16. H. N. Armstrong, H. H. Gill, R. F. Rolf. Fluorine, inTreatise in Analytical Chemistry (Ed. I. M. Kolthoff, P.J. Elving), Part II. Vol. 7, Interscience, New York, 1961,p. 246.

17. I. M. Kolthoff, E. B. Sandell, E. J. Meehan, S.Bruckenstein. Quantitative Chemical Analysis, 4th ed.,Macmillan, London, 1969, p. 580.

18. K. Little. Practical analysis of high puritychemicals-V. Precision silver chloride gravimetry. Talanta18: 927–933, 1971.

19. M. N. Desai, K. C. Desai, M. H. Gandhi. Lab. Prac. 18:939–1063, 1969.

20. British Standard 2690: Part 6 1968.

21. E. Bishop. Ultramico-potentiometric titrimetricanalysis. Differential electrolytic potentiometry in redoxsystems. Mikrochim. Acta. 619–629, 1956.

22. E. Bishop. Differential electrolytic potentiometry,Part II Precision and accuracy of applications tooxidation–reduction titrimetry. Analyst 83: 212–221, 1958.

23. E. Bishop, R. G. Dhaneshwar. Differential electrolyticpotentiometry. Part VIII. The behaviour and energetics ofcurrent-carrying silver and silver halide electrodes in thesemi-micro scale titration of nanogram amounts of halidesat extreme dilution. Analyst 87: 845–852, 1962.

24. A. Cedergren, G. Johansson. Coulometric tracedetermination of chloride. Talanta 18: 917–923, 1971.

25. E. Cotlove, H. V. Trantham, R. L. Bowman. An instrumentand method for automatic, rapid, accurate, and sensitivetitration of chloride in biologic samples. J. Lab. Clin.Med. 51: 461–468, 1958.

26. H. A. Laitinen, J. M. Kolthoff. Voltammetricdeterminations and amperometric titrations with a rotatingmicroelectrode of platinum wire. J. Phys. Chem. 45:1079–1083, 1941.

27. J. J. Lingane. Automatic coulometric titration withelectrolytically generated silver ion: Determination ofchloride, bromide, and iodide ions. Anal. Chem. 26:622–626, 1954.

28. F. W. Cheng, A rapid method for microdetermination ofhalogen in organic compounds. Microchem. J. 3: 537–542,1959.

29. Standard Methods for the Examination of Water, Sewageand Industrial Waters. The American Public HealthAssociation and the American Waterworks Association, 13thed., American Public Health Association, New York, 1971.

30. Official, Standardized and Recommended Methods ofAnalysis, The Society for Analytical Chemistry, London,351–359, 1973.

31. Annual Book of ASTM Standards. Part 23. Philadelphia,Am. Soc. for Test. and Mat. 1971.

32. J. E. Barney, R. J. Bertolacini. Colorimetricdetermination of chloride with mercuric chloranilate. Anal.Chem. 29: 1187–1188, 1957.

33. R. J. Bertolacini, J. E. Barney. Ultravioletspectrophotometric determination of sulfate, chloride, anduoride with chloranilic acid—correction. Anal. Chem. 30:202–205, 1958.

34. E. Scheubeck, O. Ernst. Photometrische Bestimmung vonkleinen Mengen Bromid und Chlorid, einzeln undnebeneinander, in wasserlöslichen Substanzen. Fresenius’Zeitschrift für analytische Chemie 249: 370–374, 1970.

35. M. Taras. Colorimetric determination of free chlorinewith methyl orange. Anal. Chem. 19: 799–803, 1947.

36. D. F. Boltz, W. J. Holland. Chlorine, in ColorimetricDetermination of Non-Metals (Ed. D. F. Boltz)

Interscience, New York. 1958.

37. J. Ramírez-Munoz. Determination of chloride in naturaland potable water samples by turbidimetric discrete-sampleautomatic analysis. Anal. Chim. Acta 74: 309–317, 1975.

38. J. Chwastowska, Z. Marczenko, U. Stolarczyk. Chemia.Analit. 8: 517–523, 1963. Anal. Abstr. 11: 3662, 1964.

39. A. B. Lamb, P. W. Carleton, W. B. Meldrum. Thedetermination of chlorine with the nephelometer. J. Am.Chem. Soc. 42: 251–259, 1920.

40. W. Reichel, L. Acs. Determination of chlorine inselenium by a distillation-atomic absorption procedure.Anal. Chem. 41: 1886–1888, 1969.

41. H. Fujinuma, K. Kasama, K. Takeuchi, S. Hirano. Jpn.Anal. 97: 1487–1494, 1970. Anal. Abstr. 22: 2272, 1972.

42. R. Belcher, A. Nadja�, J. A. Rodroguez-Vazquez, W. I.Stephen. The determination of chloride byatomic-absorption spectrophotometry. Analyst. 97: 993–999,1972.

43. J. F. Lechner, I. Sekerka. Chloride ion-selectiveelectrode based on HgS/Hg 2 Cl 2 . J. Electroanal. Chem.57: 317–323, 1974.

44. K. Torrance. A potentiometric method for thedetermination of chloride in boiler waters in the range 0.1to 10 μg ml −1 of chloride. Analyst 99: 203–210, 1974.

45. G. Nagy, K. Toth, Zs. Feher, J. Kunovics.Potentiometric analyser employing programmed coulometricstandard addition or subtraction techniques in �owingsolutions. Anal. Chim. Acta 319: 49–58, 1996.

46. Z. Y. Zhao. Determination of chloride in domestic waterby �ow injection analysis integrated with dualbeamspectrophommetry. Fenxi Ceshi Xuebao. 16: 32–34, 1997.Anal. Abstr. 60: 4H76, 1998.

47. S. R. Piedade, C. C. Oliveira, E. A. G. Zagatto.Turbidimetric �ow injection determination of chloride innatural waters. Quim. Anal. (Barcelona) 16: 233–237, 1997.

48. L. C. Hong, X. G. Zhou. Lihua Jianyan. Huaxue Fence.33: 11–13, 1997. Anal. Abstr. 59: 8H87, 1997.

49. T. P. Aleksandrova, Y. B. Kletenik. Voltammetricanalysis of chloride ions in natural, potable, and ef�uentwaters using renewable silver electrode. Zavod. Lab. 63:7–10, 1997.

50. K. Tagami, S. Uchida, I. Hirai, H. Tsukada, H. Takeda.Determination of chlorine, bromine and iodine in plantsamples by inductively coupled plasma-mass spectrometryafter leaching with tetramethyl ammonium hydroxide under amild temperature condition. Anal. Chim. Acta 570: 88–92,2006.

51. EPA Fluoride Standards Database: Overviewhttp:www.�uoridealert.org/health/epa/index.html

52. F. J. Green. The Sigma-Aldrich Handbook of Stains, Dyesand Indicators. Aldrich Chemical Company Inc. Milwaukee,Wisconsin, 1991, p. 209.

53. Y. M. Liao, J. F. Wang, M. Z. Feng, W. Wang, Q. S. He,G. Y. Wu. Fenxi Huaxue 25: 201–204, 1997. Anal. Abstr. 59:8H64, 1997.

54. K. Shimada, T. Shimoda, H. Kokusen, S. Nakanoc.Automatic microdistillation �ow-injection system for thespectrophotometric determination of �uoride. Talanta 66:80–85, 2005.

55. M. Garrido, A. G. Lista, M. Palomeque, B. S. FernándezBand. Fluorimetric determination of �uoride in a �owassembly integrated on-line to an open/closed FIA system toremove interference by solid phase extraction. Talanta 58:849–853, 2002.

56. J. Nishimoto, T. Yamada, M. Tabata. Solvent extractionand �uorometric determination of �uoride ion at ppb levelin the presence of large excess of aluminum(III) andiron(III) by using an expanded porphyrin, sapphyrin. Anal.Chim. Acta 428: 201–208, 2001.

57. R. Sai Sathish, U. Sujith, G. Nageswara Rao, C.Janardhana. Fluoride ion detection by8-hydroxyquinoline–Zr(IV)–EDTA complex. Spectrochim. ActaPart A 65: 565–570, 2006.

58. M. S. Frant, J. W. Ross. Electrode for sensing �uorideion activity in solution. Science 154: 1553–1555, 1966.

59. M. S. Frant, J. W. Ross. Use of a total ionic strengthadjustment buffer for electrode determination of �uoride

in water supplies. Anal. Chem. 40(7): 1169–1171, 1968.

60. S. S. M. Hassan. Microdetermination of �uorine in someinorganic and organic compounds using the �uorideion-selective electrode. Michrochim. Acta 889–895, 1974.

61. P. A. Evans, G. J. Moody, J. D. R Thomas. Lab. Pract.20: 644–679, 1971.

62. J. Alpizar, A. Crespi, A. Cladera, R. Forteza, V.Cerda. Simultaneous determination of chloride and pH inwastewaters by sequential injection. Anal. Electroanal. 8:1051–1054, 1996.

63. D. R. R. Sarma, S. L. N. Rao. Fluoride concentrationsin ground waters of Visakhapatnam. India Bull. Environ.Contam. Toxicol. 58: 241–247, 1997.

64. J. D. Winefordner, T. Maung. Separation of tracequantities of Bromide from large amounts of chloride by adistillation method and measurement of the Bromide byprecision null-point potentiometry. Anal. Chem. 35:382–389, 1963.

65. APHA AWWA WPCF. Standard Methods for the Examination ofWater and Wastewater, 20th Ed., United Book Press, Ind.,Maryland, USA, 1998.

66. V. A. Stenger, I. M. Kolthoff. The detection andcolorimetric estimation of micro quantities of Bromide. J.Am. Chem. Soc. 57(5): 831–833, 1935.

67. J. R. Davis. Improved spectrophotometric method for thedetermination of low levels of bromide. Anal. Chim. Acta271: 315–323, 1993.

68. P. I. Anagnostopoulou, M. A. Koupparis. Automatedow-injection phenol red method for determination ofbromide and bromide salts in drugs. Anal. Chem. 58:322–326, 1986.

69. E. P. Borges, A. F. Lavorante, B. F. dos Reis.Determination of bromide ions in seawater using �ow systemwith chemiluminescence detection. Anal. Chim. Acta 528:115–119, 2005.

70. D. C. White. Micro determination of chlorine or brominein organic compounds. Microchim. Acta 49(3): 449–453,1961.

71. S. Rovio, M. Mantynen, H. Siren. Determination ofbromide and potassium in saline groundwaters by capillaryelectrophoresis without prior dilution. Appl. Geochem. 19:1331–1337, 2004.

72. A. Steyermark, R. A. Lalancette, E. M. Contreras. J.Assoc. Off. Anal. Chem. 55: 680–687, 1972.

73. S. I. Gusev, E. V. Sokolova, I. A. Kozhevnikova. Zh.Anal. Khim. 17: 499–503, 1962. Anal. Abstr. 10, 1795 1962.

74. L. Charles, D. Pepin, B. Casetta. Electrospray ionchromatography-tandem mass spectrometry of bromate atsub-ppb levels in water. Anal. Chem. 68: 2554–2558, 1996.

75. K. Tagami, S. Uchida. Concentrations of chlorine,bromine and iodine in Japanese rivers. Chemosphere 65(11):2358–2365, 2006.

76. U. Lundstrom, A. Olin, F. Nydahl. Determination of lowlevels of bromide in fresh water after chromatographicenrichment. Talanta 31: 45–48, 1984.

77. M. Denis, W. J. Masschelein. Determinationpolarographiques de traces de bromure en milieu aqueux.Analusie 9: 429–432, 1981.

78. C. A. Abeledo, I. M. Kolthoff. The reaction betweennitrite and iodide and its application to the iodometrictitration of these anions. J. Am. Chem. Soc. 53: 2893–2897,1931.

79. S. Kirchner, A. Stelz, E. Muskat. Contribution ofnatural mineral waters to the iodine supply of population.Z. Lebensm Unters Forsch. 203: 311–315, 1996.

80. A. Moller, M. Lovric, F. Scholz. Evidence for theoccasional appearance of molecular iodine in sea water.Int. J. Environ. Anal. Chem. 63: 99–106, 1996.

81. B. Fang, S. P. Li, H. Q. Fang, H. Y. Chen. FenxiHuaxue. 25: 59–62, 1997. Anal. Abstr. 59: 8D92, 1997.

82. L. Liang, Y. Cai, S. Mou, J. Cheng. Comparisons ofdisposable and conventional silver working electrode forthe determination of iodide using high-performanceanion-exchange chromatography with pulsed amperometricdetection. J. Chromatogr. A 1085: 37–41, 2005.

83. C. Bruggink, W. J. M. van Rossum, E. Spijkerman, E. S.

E. van Beelen. Iodide analysis by anionexchangechromatography and pulsed amperometric detection in surfacewater and adsorbable organic iodide. J. Chromatogr. A1144: 170–174, 2007.

84. V. Martınez, N. Garcıa, I. Antigüedad, R. M. Alonso, R.M. Jiménez. Capillary electrophoresis as a useful tool forthe analysis of chemical tracers applied to hydrologicalsystems J. Chromatogr. A 1032: 237–242, 2004.

85. K. Yokota, K. Fukushi, S. Takeda, S. I. Wakida. J.Simultaneous determination of iodide and iodate inseawater by transient isotachophoresis-capillary zoneelectrophoresis with arti�cial seawater as the backgroundelectrolyte. Chromatogr. A 1035: 145–150, 2004.

86. S. Landsberger, M. S. Basunia, F. Iskander, Halogendetermination in Arctic aerosols by neutron activationanalysis with Compton suppression methods. J. Radioanal.Nucl. Chem. 249: 303–305, 2001.

87. J. B. Luten, J. R. W. Woittiez, H. A. Das, C. L. DeLigny. Determination o�odate in rainwater. J. Radioanal.Chem. 43: 175–185, 1978.

88. E. Steinnes, M. V. Frontasyeva, Marine gradients ofhalogens in soil studied by epithermal neutron activationanalysis. J. Radioanal. Nucl. Chem. 253: 173–177, 2002.

89. P. Hajós, O. Horvath, V. Denke. Prediction of retentionfor halide anions and oxoanions in suppressed ionchromatography using multiple species eluent. Anal. Chem.67: 434–440, 1995.

90. WHO. Guidelines for Drinking Water Quality, 2nd ed. Vol1, Recommendations, World Health Organization, Geneva,1993.

91. US EPA. The Determination of Inorganic Anions in Waterby Ion Chromatography, Method 300.0, US Washington, DC,1989.

92. Phenomenex for Chromatography Catalog, 1998, p. 238.

93. UD EPA. The Determination of Inorganic Anions in Waterby Ion Chromatography, Method 300.0, US Washington, DC,1991.

94. A. C. M. Brandao W. W. Buchberger, E. C. V. Butler, P.A. Fagan, P. R. Haddad. Matrix-elimination ion

chromatography with post-column reaction detection for thedetermination of iodide in saline waters. J. Chromatogr.A. 706: 271–275,1995.

95. ASTM Standard 1997. D1193–91 Standard Speci�cation forReagent Water.

96. ASTM Standard 1997. D5542–92 Standard Test Methods forTrace Anions in High Purity Water by Ion Chromatography.

97. ASTM Standard 1997. D5996–96 Standard Test Method forMeasuring Anionic Contaminants in HighPurity Water byOn-Line Ion Chromatography.

98. L. Nagy, Separation of inorganic anions in highlydilluted solution by ion chromatographic method,Proceeding of Chemist Conference in Eger, Hungary, 1996, p.83.

99. ASTM Standard 1997. D4327/97 Standard Test Method forAnions in Water by Chemically Suppressed IonChromatography.

100. R. P. Singh, N. M. Abbas, S. A. Smesko. Suppressed ionchromatographic analysis of anions in environmental waterscontaining high salt concentrations. J. Chromatogr. A. 733:73–91, 1996.

101. Z. Binghui, Z. Zhixiong, Y. Jing. J. Ionchromatographic determination of trace iodate, chlorite,chlorate, bromide, bromate and nitrite in drinking waterusing suppressed conductivity detection and visibledetection. J. Chromatogr. A 1118 (1): 106–110, 2006.

102. R. Bose, R. Saari-Nordhaus A. Sonaike, D. S. Sethi.New suppressor technology improves the ion chromatographicdetermination of inorganic anions and disinfectionby-products in drinking water. J. Chromatogr. A. 1039:45–49, 2004.

103. M. Pantsar-Kallio, P. K. G. Manninen. Speciation ofhalogenides and oxyhalogens by ionchromatography-inductively coupled plasma massspectrometry. Anal. Chim. Acta 360(1–3): 161–166, 1998.

104. C. Brede, S. Pedersen-Bjergaard. State-of-the art ofselective detection and identi�cation of I-, Br-, Cl-, andF-containing compounds in gas chromatography and liquidchromatography. J. Chromatogr. A 1050: 45–62, 2004.

105. C. Emmenegger, Y. Zhen, J.-R. Kim, A. Wille.http://products.metrohm.com. 2012.

106. G. S. Pyen, D. E. Erdman. Automated determination ofbromide in waters by ion chromatography with anamperometric detector. Anal. Chim. Acta 149: 355–358, 1983.

107. E. L. Johnson, K. K. Haak. Anion analysis by ionchromatography, Chapter 6 in Liquid Chromatography inEnvironmental Analysis (Ed. J. F. Lawrence), Humana Press.Clifton, New Jersey, 1984, p. 295.

108. S. Dogan, W. Haerdi. Separation and measurement ofinorganic anions in natural waters by ionic chromatographyand conductometric determination. Chimia 35: 339–342, 1981.

109. S. Motomizu, I. Sawatani, T. Hironaka, M. Oshima, K.Toei. Comparison of separation ef�ciency of benzenecarboxylate derivatives for the determination of chloride,sulfate and nitrate ions in river water by indirectphotometric ion chromatography. Bunseki Kagaku 36: 77–81,1987.

110. J. A. Hern, G. K. Rutherford, G. W. vanLoon.Determination of chloride, nitrate, sulphate and totalsulphur in environmental samples by single-column ionchromatography. Talanta 30: 677–682, 1983.

111. T. Okutani, M. Tanaka. Determination of micro-amountof �uoride-ion in water samples by micro method-ionchromatography. Bunseki Kagaku 36: 169–173, 1987.

112. H. Itoh, Y. Shinbori. Determination of anions insea-water by ion-chromatography. Bunseki Kagaku 29:239–243, 1980.

113. H. Ito, H. Sunahara. Ion-chromatography of iodinde ionin seawater using concentrated sodium-chloride solution aseluent. Bunseki Kagaku 37: 292–295, 1988.

114. C. Erkelens, A. H. Biliet, L. De Galan, E. W. B. DeLeer. Origin of system peaks in single-column ionchromatography of inorganic anions using high pHborate—gluconate buffers and conductivity detection. J.Chromatogr. 404: 67–72, 1987.

115. G. S. Pyen, M.J. Fishman. (Ed. D. Mulik, E. Sawicki)Ion Chromatographic Analysis of Environmental PollutantsVol. 2. Ann Arbor Sci Publ., Ann Arbor, MI, 1979, p. 235.

116. A. Liu, L. Xu, T. Li, S. Dong, E. Wang.Electrocatalytic oxidation and ion chromatographicdetection of Br−, I−, SO32−, S2O32− and SCN− at a platinumparticle-based glassy carbon modi�ed electrode.J. Chromatogr. A 699: 39–47, 1995.

117. M. Yamanaka, T. Sakai, H. Kumagai, Y. Inoue. Speci�cdetermination of bromate and iodate in ozonized water byion chromatography with postcolumn derivatization andinductively-coupled plasma mass spectrometry. J.Chromatogr. A 789: 259–269, 1997.

118. J. T. Creed, M. L. Magnuson, J. D. Pfaff, C.Brockhoff; J. T. Creed, M. L. Magnuson, J. D. Pfaff, C. Brockhoff. Determination of bromate in drinking waters byion chromatography with inductively coupled plasma massspectrometric detection. J. Chromatogr. A 753: 261–267,1996.

119. H. Becker-Ross, S. Florek, U. Heitmann, M. D. Huang,M. Okruss, B. Radziuk. Continuum source atomic absorptionspectrometry and detector technology: A historicalperspective. Spectrochim Acta B 61: 1015–1030, 2006.

120. M. Resano, E. García-Ruiz. High-resolution continuumsource graphite furnace atomic absorption spectrometry: Isit as good as it sounds? A critical review. Anal. Bioanal.Chem. 399: 323–330, 2011.

121. B. Welz, F. G. Lepri, R. G. O. Araujo, S. L. C.Ferreira. Determination of phosphorus, sulfur and thehalogens using high-temperature molecular absorptionspectrometry in �ames and furnaces. Anal. Chim. Acta647:137–148, 2009.

122. B. Welz, S. Mores, E. Carasek, M. G. R. Vale, M.Okruss, H. Becker-Ross. High-resolution continuum sourceatomic and molecular absorption spectrometry. Appl.Spectrosc. Rev. 45: 327–354, 2010.

123. M. D. Huang, H. Becker-Ross, S. Florek, U. Heitmann,M. Okruss. Determination of halogens via molecules in theair–acetylene �ame using high-resolution continuum sourceabsorption spectrometry, Part II: Chlorine. Spectrochim.Acta Part B 61: 959–964, 2006.

124. M. D. Huang, H. Becker-Ross, S. Florek, U. Heitmann,M. Okruss. High-resolution continuum source electrothermalabsorption spectrometry of AlBr and CaBr for thedetermination of bromine. Spectrochim. Acta Part B: Atomic

Spectrosc. 63: 566–570, 2008.

125. M. D. Huang, H. Becker-Ross, S. Florek, U. Heitmann,M. Okruss. Dermination of halogens via molecules in theair–acetylene �ame using high-resolution continuum sourceabsorption spectrometry, Part II: Chlorine. FluorineSpectrochim. Acta Part B 61: 572–578, 2006.

126. H. Gleisner, B. Welz, J. W. Einax. Optimization ofuorine determination via the molecular absorption ofgallium mono-�uoride in a graphite furnace using ahigh-resolution continuum source spectrometer.Spectrochim. Acta Part B 65: 864–869, 2010.

127. M. D. Huang, H. Becker-Ross, S. Florek, M. Okruss, B.Welz, S. Morésb. Determination of iodine via the spectrumof barium mono-iodide using high-resolution continuumsource molecular absorption spectrometry in a graphitefurnace. Spectrochim. Acta Part B: Atomic Spectrosc. 64:697–701, 2009.

128. Horiba Application Note 10 ICP AES.

129. M. Yamanaka, T. Sakai, H. Kumagai, Y. Inoue. Speci�cdetermination of bromate and iodate in ozonized water byion chromatography with postcolumn derivatization andinductively-coupled plasma mass spectrometry. J.Chromatogr. A 789: 259–265, 1997.

9 Chapter 9 - Analysis of SulfurCompounds in Water

1. L.M.L. Nollet (Ed.), Chromatographic Analysis of theEnvironment, 3rd edition, CRC Press, Boca Raton, FL, 2006,p. 344.

2. M. Ábalos, X. Prieto, and J.M. Bayona. Determination ofvolatile alkyl sul�des in wastewater by headspacesolid-phase microextraction followed by gaschromatography–mass spectrometry. J. Chromatogr. A, 963,249–257, 2002.

3. D. Rizkov, O. Lev, J. Gun, B. Anisimov, and I. Kuselman.Development of in-house reference materials fordetermination of inorganic polysul�de in water. Accredit.Qual. Assur., 9, 399–403, 2004.

4. D. Tang, L.-S. Wen, and P.H. Santschi. Analysis ofbiogenic thiols in natural water samples byhigh-performance liquid chromatographic separation anduorescence detection with ammonium7-�uorobenzo2-oxa-1,3-diazole-4-sulfonate (SBD-F). Anal.Chim. Acta, 408, 299–307, 2000.

5. S. Bilgi and C. Demir. Identi�cation of photooxidationdegradation products of C.I. Reactive Orange 16 dye by gaschromatography–mass spectrometry. Dyes Pigments, 66, 69–76,2005.

6. N.K. Kolotilina and A.M. Dolgonosov. Ion-chromatographicdetermination of borates and sul�des with the use of adeveloping column. J. Anal. Chem., 60, 738–742, 2005.

7. Y. Miura, Y. Matsushita, and P.R. Haddad. Stabilizationof sul�de and sul�te and ion-pair chromatography ofmixtures of sul�de, sul�te, sulfate and thiosulfate. J.Chromatogr. A, 1085, 47–53, 2005.

8. T. Reemtsma. Liquid chromatography–mass spectrometry andstrategies for trace-level analysis of polar organicpollutants. J. Chromatogr. A, 1000, 477–501, 2003.

9. A. Kloepfer, M. Jekel, and T. Reemtsma. Determination ofbenzothiazoles from complex aqueous samples by liquidchromatography–mass spectrometry following solid-phaseextraction. J. Chromatogr. A, 1058, 81–88, 2004.

10. T. Reemtsma. Analysis of sulphotalimide and some of itsderivatives by liquid chromatography–electrospray

ionization tandem mass spectrometry. J. Chromatogr. A, 919,289–297, 2001.

11. C. Crescenzi, A. Di Corcia, A. Marcomini, G. Pojana,and R. Samperi. Method development for trace determinationof poly(naphthalenesulfonate)-type pollutants in water byliquid chromatography–electrospray mass spectrometry. J.Chromatogr. A, 923, 97–105, 2001.

12. F. Hissner, J. Mattusch, and K. Heinig. Quantitativedetermination of sulfur-containing anions in complexmatrices with capillary electrophoresis and conductivitydetection. J. Chromatogr. A, 848, 503–513, 1999.

13. L. Ferrer, G. de Armas, M. Miró, J.M. Estela, and V.Cerdà. A multisyringe �ow injection method for theautomated determination of sul�de in waters usingminiaturised optical �ber spectrophotometer. Talanta, 64,1119–1126, 2004.

14. M.S.P. Silva, C.X. Galhardo, and J.C. Masini.Application of sequential injection-monosegmented �owanalysis (SI-MSFA) to spectrophotometric determination ofsulphide in simulated waters samples. Talanta, 60, 45–52,2003.

15. D.S. Mackie, C.M.G. van den Berg, and J.W. Readman.Determination of pyrithione in natural waters by cathodicstripping voltammetry. Anal. Chim. Acta, 511, 47–53, 2004.

16. L. Ferrer, G. de Armas, M. Miró, J.M. Estela, and V.Cerdá. Interfacing in-line gas-diffusion separation withoptrode sorptive preconcentration exploiting multisyringe�ow injection analysis. Talanta, 68, 343–350, 2005.

17. I.P.A. Morais, M.R.S. Souto, T.I.M.S. Lopes, andA.O.S.S. Rangel. Use of a single air segment to minimisedispersion and improve mixing in sequential injection:Turbidimetric determination of sulphate in waters. WaterRes., 37, 4243–4249, 2003.

18. G. de Armas, L. Ferrer, M. Miró, J.M. Estela, and V.Cerdá. In-line membrane separation method for sul�demonitoring in wastewaters exploiting multisyringe �owinjection analysis. Anal. Chim. Acta, 524, 89–96, 2004.

19. M.C. Alonso, L. Tirapu, A. Ginebreda, and D. Barceló.Monitoring and toxicity of sulfonated derivatives ofbenzene and naphthalene in municipal treatment plants.Environ. Pollut., 137, 232–262, 2005.

20. K.J. Huang, C.H. Han, C.Q. Han, J. Li, Z.W. Wu , andY.M. Liu. Determination of thiol compounds by solid-phaseextraction using multi-walled carbon nanotubes as adsorbentcoupled with high-performance liquidchromatography-�uorescence detection. Microchim. Acta, 174(3–4), 421–427, 2011.

21. K. Beiner, P. Popp, and R. Wennrich. Selectiveenrichment of sul�des, thiols and methylthiophosphatesfrom water on metal-loaded cation-exchange materials forgas chromatographic analysis. J. Chromatogr. A, 968,171–176, 2002.

22. G. Socher, R. Nussbaum, K. Rissler, and E. Lankmayr.Analysis of sulfonated compounds by ion-exchangehigh-performance liquid chromatography–mass spectrometry.J. Chromatogr. A, 912, 53–60, 2001.

23. E. Caro, R.M. Marcé, P.A.G. Cormack, D.C. Sherrington,and F. Borrull. A new molecularly imprinted solid-phaseextraction of naphthalene sulfonates from water. J.Chromatogr. A, 1047, 175–180, 2004.

24. M. Holcapek, P. Jandera, and P. Zderadicka. Highperformance liquid chromatography–mass spectometricanalysis of sulphonated dyes and intermediates. J.Chromatogr. A, 926, 175–186, 2001.

25. M. Stüber and T. Reemstma. Evaluation of threecalibration methods to compensate matriz effects inenvironmental analysis with LC-ESI-MS. Anal. Bioanal.Chem., 378, 910–916, 2004.

26. N. Saito, K. Sasaki, K. Nakatome, K. Harada, T.Yoshinaga, and A. Koizumi. Per�uorooctane sulfonateconcentrations in surface water in Japan. Arch. Environ.Contam. Toxicol., 45, 149–158, 2003.

27. M.C. Alonso, M. Castillo, and D. Barceló. Solid-phaseextraction procedure of polar benzene- andnaphthalenesulfonates in industrial ef�uents followed byunequivocal determination with ion-pairchromatography/electrospray–mass spectrometry. Anal. Chem.,71, 2586–2593, 1999.

28. T. Storm, T. Reemtsma, and M. Jekel. Use of volatileamines as ion-pairing agents for the high-performanceliquid chromatographic–tandem mass spectrometricdetermination of aromatic sulfonates in industrial

wastewater. J. Chromatogr. A, 854–175, 1999.

29. S. Perez, P. Eichhorn, and D.S. Aga. Evaluating thebiodegradability of sulfamethazine, sulfamethoxazole,sulfathiazole, and trimethoprim at different stages ofsewage treatment. Environ. Toxicol. Chem., 24, 1361–1367,2005.

30. I. Lavilla, F. Pena-Pereira, S. Gil, M. Costas, and C.Bendicho. Microvolume turbidimetry for rapid and sensitivedetermination of the acid labile sul�de fraction in watersafter headspace single-drop microextraction with in situgeneration of volatile hydrogen sul�de. Anal. Chim. Acta,647(1), 112–116, 2009.

31. A. Manova, M. Strelec, F. Cacho, J. Lehotay, and E.Beinrohr. Determination of dissolved sulphides in wastewater samples by �ow-through stripping chronopotentiometrywith a macroporous mercury-�lm electrode. Anal. Chim.Acta, 588 (1), 16–19, 2007.

32. M. Colon, J.L. Todolí, M. Hidalgo, and M. Iglesias.Development of novel and sensitive methods for thedetermination of sul�de in aqueous samples by hydrogensul�de generation-inductively coupled plasmaatomic emissionspectroscopy. Anal. Chim. Acta, 609, 160–180, 2008.

33. D.-M. Tsai, A.S. Kumar, and J.-M. Zen. A highly stableand sensitive chemically modi�ed screen-printed electrodefor sul�de analysis. Anal. Chim. Acta, 556(1), 145–150,2006.

34. I. Kristiana, A. Heitz, C. Joll, and A. Satahasivan.Analysis of polysul�des in drinking water distributionsystems using headspace solid-phase microextraction and gaschromatography-mass spectrometry. J. Chromatogr. A, 1217,5995–6001, 2010.

35. G. Vinzelberg J. Schwarzbauer, and R. Littke.Groundwater contamination by chlorinated naphthalenes andrelated substances caused by activities of a formermilitary base. Chemosphere, 61, 770–782, 2005.

36. R.A. Gimeno, A.F.M. Altelaar, R.M. Marcé, and F.Borrull. Determination of polycyclic aromatic hydrocarbonsand polycylic aromatic sulfur heterocycles byhigh-performance liquid chromatography with �uorescenceand atmospheric pressure chemical ionization massspectrometry detection in seawater and sediment samples.J. Chromatogr. A, 958, 141–148, 2002.

37. C. Yu, Z. Yao, and B. Hu. Preparation ofpolydimethylsiloxane/β-cyclodextrin/divinylbenzene coated“dumbbell-shaped” stir bar and its application to theanalysis of polycyclic aromatic hydrocarbons andpolycyclic aromatic sulfur heterocycles compounds in lakewater and soil by high performance liquid chromatography.Anal. Chim. Acta, 641(1–2), 75–82, 2009.

38. S. Ehala, M. Vaher, and M. Kaljurand. Separation ofaromatic hydrophobic sulfonates by micellar electrokineticchromatography. J. Chromatogr. A, 1161 (1–2), 322–326,2007.

39. S. Farquharson, F.E. Inscore, and S. Christese.Detecting chemical warfare agents and their hydrolysisproducts in water. In: Surface-Enhanced RamanScattering—Physics and Applications. K. Kneipp, M.Moskovits, H. Kneipp, Eds. Topics Appl. Phys., 103,447–460, 2006.

40. P.K. Kanaujia, D. Pardasani, V. Tak, and D.K. Dubey.Solid supported liquid-liquid extraction of chemicalwarfare agents and related chemicals from water.Chromatographia, 70, 623–627, 2009.

41. B.T. Røen, E. Unneberg, J.A. Tørnes, and E. Lundanes.Trace determination of sulphur mustard and relatedcompounds in water by headspace-trap gaschromatography–mass spectrometry. J. Chromatogr. A,1217(5), 761–767, 2010.

42. O. Terzic. Screening of degradation products,impurities and precursors of chemical warfare agents inwater and wet or dry organic liquid samples by in-sorbenttube silylation followed by thermal desorption–gaschromatography–mass spectrometry. J. Chromatogr. A,1217(30), 4987–4995, 2010.

43. L.M. Laglera, and A. Tovar-Sánchez. Direct recognitionand quanti�cation by voltammetry of thiol/ thioamide mixesin seawater. Talanta, 89, 496–504, 2012.

44. C.-C. Shen, W.-L. Tseng, and M.-M. Hsieh. Selectiveextraction of thiol-containing peptides in seawater usingTween 20-capped gold nanoparticles followed by capillaryelectrophoresis with laser-induced �uorescence. J.Chromatogr. A, 1220, 162–168, 2012.

45. L.Y. Lin and S.J. Jiang. Determination of sulfur

compounds in water samples by ion chromatography dynamicreaction cell inductively coupled plasma mass spectrometry.J. Chinese Chem. Soc., 56, 967– 973, 2009.

46. A. Safavi, N. Maleki, S. Momeni, and F. Tajabadi.Highly improved electrocatalytic behavior of sul�te atcarbon ionic liquid electrode: Application to the analysisof some real samples. Anal. Chim. Acta, 625(1), 8–12,2008.

47. H. Zhou, W. Yang, and C. Sun. Amperometric sul�tesensor based on multiwalled carbon nanotubes/ferrocene-branched chitosan composites. Talanta, 77(1),366–371, 2008,

48. S.-I. Ohira and K. Toda. Ion chromatographicmeasurement of sul�de, methanethiolate, sul�te and sulfatein aqueous and air samples. J. Chromatogr. A, 1121(2),280–284 2006.

49. V. del Rio, M.S. Larrechi, and M.P. Callao.Determination of sulphate in water and biodiesel samplesby a sequential injection analysis—Multivariate curveresolution method. Anal. Chim. Acta, 676 (1–2), 28–33,2010.

10 Chapter 10 - Determination of Ammoniain Water Samples

Afkhami, A. and Norooz-Asl, R. 2008. Micelle-mediatedextraction and spectrophotometric determination of ammoniain water samples utilizing indophenols dye formation.Journal of the Brazilian Chemical Society, 19(8):1546–1552.

Al-Gailani, B.R.M, Greenway, G.M., and McCreedy, T. 2007.Miniaturized �ow-injection-analysis (mu FIA) system withon-line chemiluminescence detection based on theluminol-hypochlorite reaction for the determination ofammonium in river water. International Journal ofEnvironmental Analytical Chemistry, 87: 425–436.

Almeida, M.I.G.S., Estela, J.M., Segundo, M.A., and Cerdà,V. 2011. A membraneless gas-diffusion unit— multisyringeow injection spectrophotometric method for ammoniumdetermination in untreated environmental samples.Talanta, 84: 1244–1252.

Almendral-Parra, M.J., Alonso-Mateos, A., andFuentes-Prieto, M.S. 2010. A gas diffusion techniquecoupled with �ow injection systems. Optimization of theprocess in its application to the �uorimetric determinationof ammonium in water samples. Journal of Fluorescence, 20:55–65.

AMC. 1994. Analytical Methods Committee of the RoyalSociety of Chemistry. Official and Standardized Methods ofAnalysis. 3rd ed. Royal Society of Chemistry, Cambridge.

Aminot, A., Kérouel, R., and Birot, D. 2001. A �owinjection �uorometric method for the determination ofammonium in fresh and saline waters with a view to in situanalysis. Water Research, 35(7): 1777–1785.

Amornthammarong, N., Jakmunee, J., Li, J. et al. 2006.Hybrid �uorometric �ow analyzer for ammonia. AnalyticalChemistry, 78: 1890–1896.

APHA. 1992. Standard Methods for the Examination of Waterand Wastewater. 18th ed. American Public HealthAssociation, American Water Works Association and WaterEnvironmental Federation. Washington, DC.

APHA. 1999. Standard Methods for the Examination of Waterand Wastewater. American Public Health Association,American Water Works Association, Water Environment

Federation, Washington, DC.

Armstrong, D.A., Chippendale, D., Knight, A.W., and Colt,J.E. 1978. Interaction of ionized and un-ionized ammoniaon short-term survival and growth of prawn larvae,Macrobrachium rosembergii. Biological Bulletin, 154:15–31.

ASTM. 1966. Manual of Industrial Water and Industrial WasteWater. 2nd ed. Washington, DC.

Azmi, N.E., Abdullah, J., Ahmad, M., Heng, L.Y., Sidek, H.,and Abd Rahman, S. 2011. Bioanalysis based on glutamatedehydrogenase/diaphorase system for ammonium determination.Sains Malaysiana, 40(11): 1263–1269.

Badr, E.-S.A., Achterberg, E.P., Tappin, A.L., Hill, S.J.,and Braungardt, C.B. 2003. Determination of dissolvedorganic nitrogen in natural waters using high-temperaturecatalytic oxidation. TrAC Trends in Analytical Chemistry,22(11): 819–827.

Belcher, R., Bogdanski, S.L., Calokerinos, A.C., andTownshend, A. 1981. Determination of ammonium- andnitrate-nitrogen by molecular emission cavity analysis.Analyst, 106: 625–635.

Bjorkvist, B. 1981. Separation and determination ofaliphatic and aromatic amines by high performance liquidchromatography with ultraviolet detection. Journal ofChromatography, 204: 109–114.

Brasil, Resolução CONAMA n° 397, de 03 de abril de 2008.Altera o inciso II do parágrafo 4° e a Tabela X doparágrafo 5°, ambos do Art. 34 da Resolução CONAMA n°357/2005, 2008. Brasil, Resolução CONAMA n° 357, de 17 demarço de 2005. Dispõe sobre a classi�cação dos corposd’água e diretrizes ambientais para o seu enquadramento,bem como estabelece as condições e padrões de lançamento dee�uentes, e dá outras providências. Diário O�cial da União,18 de março de 2005, 58–63, 2005.

Braz, H.L., Ito, D.T., Fracassi da Silva, J.A. et al.2011. Trace levels determination of ammonium by �owinjection analysis using gas-diffusion and capacitivelycoupled contactless conductivity detection.Electroanalysis, 23: 2594–2600.

Broderius, S., Drummond, R., Fiandt, J., and Russon, C.1985. Toxicity of ammonia to early life stages of the

smallmouth bass at four pH values. Environmental Toxicologyand Chemistry, 4(1): 87–96.

Brzezinski, M.A. 1987. Colorimetric determination ofnanomolar concentration of ammonium in seawater usingsolvent extraction. Marine Chemistry, 20: 277–288.

Burt, T.P., Heathwaite, A.L., Trudgill, S.T. 1993. Nitrate:Processes, Patterns and Management. John Wiley & Sons, NewYork.

Caballo-López, A. and Luque de Castro, M.D. 2006.Continuous ultrasound-assisted extraction coupled to �owinjection−pervaporation, derivatization, andspectrophotometric detection for the determination ofammonia in cigarettes. Analytical Chemistry, 78(7):2297–2301.

Campins-Falcó, P., Meseguer-Lloret, S., Climent-Santamaria,T., and Molins-Legua, C. 2008. A microscale Kjeldahlnitrogen determination for environmental waters. Talanta,75: 1123–1126.

Capelo, S., Mira, F., and de Bettencourt, A.M. 2007. Insitu continuous monitoring of chloride, nitrate andammonium in a temporary stream. Comparison with standardmethods. Talanta, 71: 1166–1171.

Carlson, R.M. 1978. Automated separation and conductimetricdetermination of ammonia and dissolved carbon dioxide.Analytical Chemistry, 50(11): 1528–1531.

Çelik, A. and Henden, E. 1989. Determination of ammonium-,nitrite- and nitrate-nitrogen by molecular emission cavityanalysis using a cavity containing an entire �ame. Analyst,114: 563–566.

CETESB. Norma Técnica L5.136. 1978. Determinação denitrogênio amoniacal em águas: Método da nesslerização comdestilação prévia: Método de ensaio. Brasil, Jan.

Chapman, D. and Kimstach, V. 1996. Selection of waterquality variables, in: D. Chapman (Ed.), Water QualityAssessments—A Guide to Use of Biota, Sediments and Water inEnvironmental Monitoring. 2nd ed. E & FN Spon, London. pp.59–125.

Chen, E.C.M. and Farquharson, R.A. 1979. Analysis of tracequantities of ammonia and amines in aqueous solutions byreverse phase high performance liquid chromatography using

m-toluoyl derivatives. Journal of Chromatography, 178:358–363.

Chen, G., Zhang, M., Zhang, Z., Huang, Y., and Yuan, D.2011. On-line solid phase extraction and spectrophotometricdetection with �ow technique for the determination ofnanomolar level ammonium in seawater samples. AnalyticalLetters, 44(1–3): 310–326.

Clark, D.R., Fileman, T.W., and Joint, I. 2006.Determination of ammonium regeneration rates in theoligotrophic ocean by gas chromatography/mass spectrometry.Marine Chemistry, 98: 121–130.

Clear�eld, A. and Stynes, J.A. 1964. The preparation ofcrystalline zirconium phosphate and some observations onits ion exchange behavior. Journal of Inorganic and NuclearChemistry, 26(1): 117–129.

Cox, R.L., Schnieder, T.W., and Koppang, M.D. 1992.Ferrocene tagging of amines, amino acids and peptides forliquid chromatography with electrochemical detection.Analytical Chimical Acta, 262: 145–159.

Da Silva Borges, S., Acevedo, M.S.M.S.F., and Korn, M.2009. Multicommuted �ow system for ammonium andmonochloramine determinations in wastewater anddisinfection products. Química Nova, 32(5): 1175–1179.

Delmas, D., Frikha, M.G., and Linley, E.A.S. 1990.Dissolved primary amine measurement by �ow injectionanalysis with o-phthalaldehyde comparison with highperformance liquid chromatography. Marine Chemistry, 29:145–154.

Demutskaya, L.N. and Kalinichenko, I.E. 2010. Photometricdetermination of ammonium nitrogen with the Nesslerreagent in drinking water after its chlorination. Journalof Analytical Chemistry and Technology, 32(2): 90–94.

Directive 2008/105/CE. Available from :

Dugan, P.R. 1975. Biochemical Ecology of Water Pollution.Plenum/Rosetta edition, New York.

Duong, H.A., Berg, M. Hoang, M.H. et al. 2003.Trihalomethane formation by chlorination of ammonium-andbromide-containing ground water in water supplies of Hanoi,Vietnam. Water Research, 37: 3242–3252.

EEC, 2006—Directive 76/464/EEC—Water pollution bydischarges of certain dangerous substances. May 1976,codi�ed as Directive 2006/11/EC of The European Parliamentand of The Council of 15th February 2006, on pollutioncaused by certain dangerous substances discharged into theaquatic environment of the community. In:

Environmental Protection Agency (EPA). 1989. Summary reviewof health effects associated with ammonia. Washington, DC,US, (EPA/600/8–89/052F).

Environmental Protection Agency. EPA-821-R-01-004. Method1687, 2001.

Eskandari, H. and Shariati, M.R. 2011. Dodecylbenzenesulfonate-coated magnetite nanoparticles as a newadsorbent for solid phase extraction-spectrophotometricdetermination of ultra trace amounts of ammonium in watersamples. Analytica Chimica Acta, 704: 146–153.

European Water Framework Directive (2000/60/CE). Availablefrom: http://europa.eu/environemt/water/waterframework/index_en.html.

Fang, X., Guo, X., Shi, H., and Cai, Q. 2010. Determinationof ammonia nitrogen in wastewater using electronic nose.Bioinformatics and Biomedical Engineering (iCBBE), 2010 4thInternational Conference on, 18–20 June 2010. IEEE.

Fernandes, R.N. and Reis, B.F. 2002. Flow system exploitingmulticommutation to increase sample residence time forimproved sensitivity. Simultaneous determination ofammonium and ortho-phosphate in natural water. Talanta.58: 729–737.

Frank, C., Schroeder, F., Ebinghaus, R., and Ruck, W. 2006.A fast sequential injection analysis system for thesimultaneous determination of ammonia and phosphate.Microchimica Acta, 154: 31–38.

Fukushi, K., Ito, H., Kimura, K., Yokota, K., Saito, K.,Chayama, K. Takeda, S., and Wakida, S.-I. 2006.Determination of ammonium in river water and sewage samplesby capillary zone electrophoresis with direct UVdetection. Journal of Chromatography A, 1106: 61–66.

Fukushi, K., Minami, S., Kitakata, M. et al. 2006.Determination of ammonium cations and alkali and alkalineearth metal cations in jelly�sh by capillary zoneelectrophoresis. Analytical Sciences, 22: 1129–1133.

Gallardo, J., Alegret, S., De Roman, M.A. et al. 2003a.Determination of ammonium ion employing an electronictongue based on potentiometric sensors. Analytical Letters,36: 2893–2908.

Gallardo, J., Alegret, S., Munoz, R. et al. 2003b. Anelectronic tongue using potentiometric all-solid-statePVC-membrane sensors for the simultaneous quanti�cation ofammonium and potassium ions in water. Analytical andBioanalytical Chemistry, 377: 248–256.

Gibb, S.W. 2000. Ammonia. In: L.M. Nollet (ed.). Handbookof Water Analysis. Marcel Dekker, New York, 223–260.

Gladyshev, V.P., Kovalena, S.V., and Khramtsova, N.A. 2001.Determination of ammonium by stripping voltammetry.Journal of Analytical Chemistry, 56(5): 443–448.

Gorzelska, H. and Galloway, J.N. 1990. Amine nitrogen inthe atmospheric environment over the North Atlantic Ocean.Global Biogeochemical Cycles, 4(3): 309–333.

Grasshoff, K., Ehrhardt, M., and Kremling, K. (eds.). 1976.Methods of Seawater Analysis. Verlag Chemie, Weinheim.

Gruger Jr., E.H. 1972. Chromatographic analyses of volatileamines in marine �sh. Journal of Agricultural and FoodChemistry, 20(4): 781–785.

Haghighi, B. and Kurd, S.F. 2004. Sequential �ow injectionanalysis of ammonium and nitrate using gas phase molecularabsorption spectrometry. Talanta, 64: 688–694.

Harbin, A.-M. and van den Berg, C.M.G. 1993. Determinationof ammonia in seawater using catalytic cathodic strippingvoltametry. Analytical Chemistry, 65: 3411–3416.

Hashimoto, S., Sun, H.Y., Otsuki, A., Kawakami, S., Murata,F., and Yokomizo, M. 1992. Enzymatic determination ofammonia in lake water using a semi-automatic analyser.International Journal of Environmental AnalyticalChemistry, 48: 155–161.

Hermes, M. and Scholz, F. 1997. The electrochemicaldetermination of ammonium based on the selectiveinhibition of the low-spin iron (II)/(III) system ofPrussian Blue. Journal of Solid State Electrochemistry, 1:215–220.

Holness, D.L., Purdham, J.T., and Nethercott, J.R. 1989.Acute and chronic respiratory effects of occupationalexposure to ammonia. American Industrial HygieneAssociation Journal, 50(12): 646–650.

Hong, L., Sun, X., and Wang, L. 2009. Determination ofammonia in water using �ow injection analysis withautomatic pervaporation enrichment. Analytical Letters,42(15): 2364–2377.

Horstkotte, B., Duarte, C., and Cerdà, V. 2011. A miniatureand �eld-applicable multipumping �ow analyzer for ammoniummonitoring in seawater with �uorescence detection. Talanta,85: 380–385.

Hui, Y., Zhou, L., and Chen, X.-G. 2010. Analysis ofammonia and aliphatic amines in environmental water bymicellar electrokinetic chromatography and QSPR modeling ofelectrophoretic migration time. Talanta, 80: 1619–1625.

Infante, C.M.C., Masini, J.C., and Dos Santos, A.C.V. 2011.Development of a spectrophotometric sequential injectionanalysis (SIA) procedure for determination of ammonium: AResponse Surface Methodology (RSM) approach. MicrochemicalJournal, 98: 97–102.

Karakoc, G., Unlu, K., and Katircioglu, H. 2003. Waterquality and impacts of pollution source for Eymir andMogan Lakes (Tourkey). Environmental International, 29:21–27.

Kashihira, N., Makino, K., Kirita, K., and Watanabe, Y.1982. Chemiluminescent nitrogen detector-gaschromatography and its application to measurement ofatmospheric ammonia and amines. Journal of Chromatography,239: 617–624.

Kopácek, J. and Procházkova, L. 1993. Semi-microdetermination of ammonia in water by the rubazoic acidmethod. International Journal of Environmental AnalyticalChemistry, 53(3): 243–248.

Koroleff, F. 1966. Direct spectrophotometric determinationof ammonia in precipitation. Tellus, XVIII, 2.

Kruse, J.M. and Mellon, M.G. 1953. Colorimetricdetermination of ammonia and cyanate. Analytical Chemistry,25(8): 1188–1210.

Kuo, C.T., Wang, P.Y., and Wu, C.H. 2005. Fluorometric

determination of ammonium ion by ion chromatography usingpost-column derivatization with o-phthaldialdehyde. Journalof Chromatography A, 1085: 91–97.

Li, Q.P., Zhang, J.-Z., Millero, F.J., and Hansell, D.A.2005. Continuous colorimetric determinations of traceammonium in seawater with a long-path liquid waveguidecapillary cell. Marine Chemistry, 96: 73–85.

Lin, J.K. and Lai, C.C. 1980. High performance liquidchromatography determination of naturally occurringprimary and secondary amines with dabsyl chloride.Analytical Chemistry, 52: 630–635.

Lloyd, R. and Herbert, D.W.M. 1960. The in�uence of carbondioxide on the toxicity of un-ionized ammonia to rainbowtrout (Salmo gardnerii Richardson). Annals of AppliedBiology, 48: 399–404.

Mana, H. and Spohn, U. 2000. Rapid and selectivedetermination of ammonium by �uorimetric �ow injectionanalysis. Freseniu’s Journal of Analytical Chemistry,366(8): 825–829.

Marques, K.L., Pires, C.K., Santos, J.L.M. et al. 2007. Amulti-pumping �ow system for chemiluminescentdetermination of ammonium in natural waters. InternationalJournal of Environmental Analytical Chemistry, 87: 77–85.

Masár, M., Sydes, D., Luc, M., Kaniansky, D., and Kuss,H.-M. 2009. Determination of ammonium, calcium, magnesium,potassium and sodium in drinking waters by capillary zoneelectrophoresis on a columncoupling chip. Journal ofChromatography A, 1216(34): 6252–6255.

Masserin, R. and Fanning, K.A. 2000. A sensor package forthe simultaneous determination of nanomolar concentrationsof nitrite, nitrate, and ammonia in seawater by �uorescencedetection. Marine Chemistry, 68(4): 323–333.

McCormick, J.H., Broderius, S.J., and Fiandt, J.T. 1984.Toxicity of ammonia to early life stages of the greensun�sh Lepomis cyanellus. Environmental Pollution Series A,Ecological and Biological, 36(2): 147–163.

Meseguer-Lloret, S., Molins-Legua, C., and Campins-Falcó,P. 2002. Ammonium determination in water samples by usingOPA-NAC reagent: A comparative study with Nessler andammonium selective electrode methods. InternationalJournal of Environmental Analytical Chemistry, 82: 475–489.

Meseguer-Lloret, S., Molins-Legua, C., and Campins-Falcó,P. 2005. Selective determination of ammonium in waterbased on HPLC and chemiluminescence detection. AnalyticaChimica Acta, 536: 121–127.

Meseguer-Lloret, Molins-Legua, C., Verdú-Andres, J., andCampins-Falcó, P. 2006. Chemiluminescent method fordetection of eutrophication sources by estimation oforganic amino nitrogen and ammonium in water. AnalyticalChemistry, 78: 7504–7510.

Meseguer-Lloret, S., Verdú-Andrés, J., Molins-Legua, C.,and Campins-Falcó, P. 2005. Determination of ammonia andprimary amine compounds and Kjeldahl nitrogen in watersamples with a modi�ed Roth’s �uorimetric method. Talanta,65: 869–875.

Metropoulos, K., Maliou, E., Loizidou, M., and Spyrellis,N. 1993. Comparative studies between synthetic and naturalzeolites for ammonium uptake. Journal of EnvironmentalScience Health—Part A: Environmental Science andEngineering, 28(7): 1507–1518.

Michalski, R. and Kurzyca, I. 2006. Determination ofnitrogen species (nitrate, nitrite and ammonia ions) inenvironmental samples by ion chromatography. Polish Journalof Environmental Studies, 15(1): 5–18.

Mishra, S., Singh, V., Jain, A., and Verma, K.K. 2001.Simultaneous determination of ammonia, aliphatic amines,aromatic amines and phenols at μg l −1 levels inenvironmental sample waters by solid-phase extraction oftheir benzoyl derivatives and gas chromatography-massspectrometry. The Analyst, 126: 1663–1668.

Moliner-Martinez, Y., Campins-Falcó, P., andHerráez-Hernández, R. 2006. In�uence of the presence ofsurfactants and humic acid in waters on theindophenols-type reaction method for ammoniumdetermination. Talanta, 69(4): 1038–1045.

Moliner-Martínez, Y., Herráez-Hernández, R., andCampins-Falcó, P. 2005. Improved detection limit forammonium/ammonia achieved by Berthelot’s reaction by use ofsolid-phase extraction coupled to diffuse re�ectancespectroscopy. Analytica Chimica Acta, 532(2): 327–334.

Moliner-Martínez, Y., Herraez-Hernandez, R., andCampins-Falcó, P. 2007. A microanalytical method for

ammonium and short-chain primary aliphatic amines usingprecolumn derivatization and capillary liquidchromatography. Journal of Chromatography A, 1164: 329–333.

Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martínez,Y., and Campins-Falcó, P. 2006. A guide for selecting themost appropriate method for ammonium determination in wateranalysis. Trends in Analytical Chemistry, 25(3): 282–290.

Mori, M., Hironaga, T., Satori, T., and Itabashi, H. 2011.Development of simultaneous ion-exclusion/anionexchangechromatographic determination of ammonium, nitrite andnitrate ions and its application to high-salt contentsample. Tetsu-to-Hagané, 97(5): 273–278.

Mori, M., Tanaka, K., Helaleh, M., Xu, Q., Ikedo, M.,Ogura, Y., Saito, S., Hu, W., and Hasebe, K. 2003.Selective determination of ammonium ions by high-speedion-exclusion chromatography on a weakly basicanion-exchange resin column. Journal of Chromatography A,997: 191–197.

Nakajima, Y. and Yoshida, I. 1996. Adsorption andconcentration of ammonia in water with copper zirconiumphosphate metal. Analytical Science, 12(1): 125–128.

Newell, B.S. 1967. The determination of ammonia in seawater. Journal of Marine Biological Association of theUnited Kingdom, 47: 271–280.

Nie, F., Wang, N., Zheng, J. et al. 2011. An ultrasensitivepost chemiluminescence reaction of ammonium inNBS-dichloro�uorescein system and its application. Talanta,84: 1063–1067.

Nishikawa, Y. and Kuwata, K. 1984. Liquid chromatographicdetermination of low molecular weight aliphatic amines inair via derivatization with7-chloro-4-nitro-2,1,3-benzoxadiazole. AnalyticalChemistry, 56: 1790–1793.

Of�cial Journal of the European Union L24 (Vol. 51) of 29January 2008.

Okumura, M., Honda, S., Fujinaga, K., and Seike, Y. 2005. Asimple and rapid in situ preconcentration method for traceammonia nitrogen in environmental water samples using asolid-phase extraction followed by spectrophotometricdetermination. Analytical Sciences, 21: 1137–1140.

Oliveira, S.M., Lopes, T.I.M.S., Toth, I.V. et al. 2007. Amulti-commuted �ow injection system with a multichannelpropulsion unit placed before detection: Spectrophotometricdetermination of ammonium. Anaytica Chimica Acta, 600:29–34.

Oliveira, S.M., Marques da Silva-Lopes, T.I., Toth, I.V.et al. 2009. Determination of ammonium in marine watersusing a gas diffusion multicommuted �ow injection systemwith in-line prevention of metal hydroxides precipitation.Journal of Environmental Monitoring, 11: 228–234.

Parham, H. and Mobarakzadeh, M. 2002. Solventextraction-spectrophotometric determination of traceamounts of ammonium, barium and potassium in a mixture bydicyclohexyl-18-crown-6 and orange II. Talanta, 58:281–287.

Poulin, P. and Pelletier, E. 2007. Determination ofammonium using a microplate-based �uorometric technique.Talanta, 71: 1500–1506.

Pranaityte . , B., Jermak, S., Naujalis, E., andPadarauskas, A. 2007. Capillary electrophoreticdetermination of ammonia using headspace single-dropmicroextraction. Microchemical Journal, 86(1): 48–52.

Procházkova, L. 1964. Spectrophotometric determination ofammonia as rubazoic acid with bispyrazolone reagent.Analytical Chemistry, 36(4): 865–871.

Qin, W., Zhang, Z., Li, B., and Peng, Y. 1999.Chemiluminescence �ow system for the determination ofammonium ion. Talanta, 48(1): 225–229.

Reis, J.A.T. and Mendonça, A.S.F. 2009. Análise técnica dosnovos padrões brasileiros para amônia em e�uentes e corposd’água. Engenharia Sanitária Ambiental, 14(3): 353–362.

Robinson-Wilson, E.F. and Seim, W.K. 1975. The lethal andsublethal effects of a zirconium process ef�uent onjuveniles salmonids. Water Resources Bulletin, 11: 975–986.

Roth, M. 1971. Fluorescence reaction for ammonia.Analytical Chemistry, 43(7): 880–882.

Santos, A.C.V. and Masini, J.C. 2010. Análise por injeçãosequencial (SIA): Vinte anos em uma perspectivabrasileira. Química Nova, 33(9): 1949–1956.

Sasaki, T., Komatsu, Y., and Fujiki, Y. 1984. Sorption ofammonia/ammonium ion on crystalline hydrous titaniumdioxide �bers. Bulletin of Chemical Society of Japan,57(5): 1331–1335.

Sawyer, J. 2008. Surface Waters: Ammonium is notAmmonia—Part two. In: http://www.extension.iastate.edu/CropNews/2008/0502JohnSawyer.htm. Assessed on 17th January2012.

SCA, U.K. Standing Committee of Analysts. 1981. Methods forthe Examination of Waters and Associated Materials—Ammoniain Water. Her Majesty’s Stationery Of�ce, London.

Searle, P.L. 1984. The Berthelot or indophenols reactionand its use in the analytical chemistry of nitrogen.Analyst, 109: 549–568.

Segundo, R.A., Ribeiro-Mesquita, R.B., Oliveira-Ferreira,M.T.S. et al. 2011. Development of a sequential injectiongas diffusion system for the determination of ammonium intransitional and coastal waters. Analytical Methods, 3:2049–2055.

Senra-Ferreiro, S., Pena-Pereira, F., Costas-Mora, I.,Romero, V., Lavilla, I., and Bendicho, C. 2011. Ionpairbased liquid-phase microextraction combined withcuvetless UV-Vis micro-spectrophotometry as a miniaturizedassay for monitoring ammonia in waters. Talanta, 85:1448–1452.

Shakir, I.M.A., Atto, S.Y., and Jawkal, N.A. 1988.Determination of ammonia and ammonium ions in air and inartesian wells in Arbil Governorate using thermalchemiluminescence by molecular emission cavity analysis(MECA). Journal of the University of Kuwait (Science),15(2): 269–279.

Shoji, T. and Nakamura, E. 2010. Collection of IndonaphtholBlue on a membrane �lter for the spectrophotometricdetermination of ammonia with 1-naphthol anddichloroisocyanurate. Analytical Sciences, 26: 779–783.

Siljeg, M., Foglar, L., and Kukucka, N. 2010. The groundwater ammonium sorption onto Croatian and Serbianclinoptilolite. Journal of Hazardous Materials, 178:572–577.

Solórzano, L. 1969. Determination of ammonia in naturalwaters by the phenol hypochlorite method. Limnology and

Oceanography, 14(5): 799–801.

Tan, L.L., Musa, A., and Lee, Y.H. 2011. Determination ofammonium ion using a reagentless amperometric biosensorbased on immobilized alanine dehydrogenase. Sensors, 11:9344–9360.

Tanaka, M., Ohguni, H., Adachi, K., Tsumura, T., Hirokawa,T., and Ito, K. 2010. Simultaneous determination ofnitrite, nitrate, and ammonium ions in lake and riversamples by ion chromatography. BUNSEKI KAGAKU, 59(10):879–884.

Tovar, A., Moreno, C., Manuel-Vez, M.P. et al. 2002. Asimple automated method for the speciation of dissolvedinorganic nitrogen in seawater. Analytica Chimica Acta,469: 235–242.

USEPA, United States Environmental Protection Agency. 1991.Integrated Risk Information System (IRIS), Ammonia (CASRN7664-41-7). In:http://www.epa.gov/iris/subst/0422.htm#re�nhal. Assessed on20th January 2012.

USEPA, United States Environmental Protection Agency. 1999.Update of ambient water quality criteria for ammonia.Washington, DC: Of�ce of Water, Of�ce of Science andTechnology.

USEPA, United States Environmental Protection Agency. 2011.Ef�uent Guidelines (Clean Water Act, Section 304(m)). In:http://water.epa.gov/lawsreg/lawsguidance/cwa/304m/index.cfm. Assessed in 09th January 2012.

USEPA, United States Environmental Protection Agency. 2012.CADDIS, Vol. 2, Sources, Stressors and Responses: Ammonia.In: http://www.epa.gov/caddis/ssr_amm_int.htm; last updatedon Monday, 20th September 2010. Assessed January 20, 2012.

USEPA, United States Environmental Protection Agency.Methods for chemical analysis of water and wastes.Washington, DC, 1983.

Valentini, F., Biagiotti, V., Lete, C. et al. 2007. Theelectrochemical detection of ammonia in drinking waterbased on multi-walled carbon nanotube/copper nanoparticlecomposite paste electrodes. Sensors and Actuators B, 128:326–333.

Verberk, M.M. 1977. Effects of ammonia in volunteers.

International Archives of Occupational and EnvironmentalHealth, 39: 73–81.

Wang, P.-Y., Wu, J.-Y., Chen, H.-J., Lin, T.-Y., and Wu,C.-H. 2008. Purge-and-trap ion chromatography for thedetection of trace ammonium ion in high-salinity watersamples. Journal of Chromatography A, 1188: 69–74.

Watson, R.J., Butler, E.C.V., Clementson, L.A., and Berry,K.M. 2005. Flow-injection analysis with �uorescencedetection for the determination of trace levels of ammoniumin seawater. Journal of Environmental Monitoring, 7(1):37–42.

WHO, World Health Organization, 2011. Guidelines fordrinking-water quality, 4th ed. Ch, 10 – AcceptabilityAspects: Taste, Odor and Appearance. In:

WHO/SDE/WSH/03.04.01. Guidelines for drinking-waterquality, 2nd ed., vol. 2. Health criteria and othersupporting information. WHO, Geneva, 1996.

Xie, Z., Guo, L., Zheng, X. et al. 2005. A new porousplastic �ber probe for ammonia monitoring. Sensors andActuators B, 104: 173–178.

Yang, X.-H., Lee, C., and Seranton, M.I. 1993.Determination of nanomolar concentrations of individualdissolved low molecular weight amines and organic acids insea water. Analytical Chemistry, 65: 572–576.

Zeng, W., Chen, Y., Cui, H., Wu, F., Zhu, Y., and Fritz,J.S. 2006. Single-column method of ion chromatography forthe determination of common cations and some transitionmetals. Journal of Chromatography A, 1118: 68–72.

11 Chapter 11 - Nitrites and Nitrates

1. Lomas, M.W. and Lipschultz, F., Forming the primarynitrite maximum: Nitri�ers or phytoplankton? Limnology andOceanography 51, 2453–2467, 2006.

2. Palmer, R.M.J., Ferrige, A.G., and Moncada, S.,Nitric-oxide release accounts for the biological activityof endothelium-derived relaxing factor, Nature 327, 524,1987.

3. Ellis, G., Adatia, I., Yazdanpanah, M., and Makela,S.K., Nitrite and nitrate analyses: A clinical biochemistryperspective, Clinical Biochemistry 31, 195–220, 1998.

4. Fan, A.M., Nitrate and nitrite in drinking water: Atoxicological review, Encyclopedia of Environmental Health137–145, 2011.

5. Radojević, M., Nitrite in rainwater, AtmosphericEnvironment 20, 1309–1310, 1986.

6. Acker, K., Beysens, D., and Möller, D., Nitrite in dew,fog, cloud and rain water: An indicator for heterogenousprocesses on surfaces, Atmospheric Research 87, 200–212,2008

7. Gabbay, J., Almog, Y., Davidson, M., and Donagi, A.E.,Rapid spectrophotometric microdeterminations of nitritesin water, Analyst 102, 371, 1977.

8. Sverdrup, H.U., Johnson, M.W., and Fleming, R.H., TheOceans, their Physics, Chemistry and General Biology, 7thed. Prentice-Hall Inc, NJ, 1957.

9. Za�rou, O.C., Ball, L.A., and Hanley, Q., Trace nitratein oxic waters, Deep-Sea Research, Part A. OceanographicResearch Papers 39, 1329, 1992.

10. Patey, M.D., Achterberg, E.P., Rijkenberg, M.J.A.,Statham, P.J., and Mowlem, M., Interferences in theanalysis of nanomolar concentrations of nitrate andphosphate in oceanic waters, Analytica Chimica Acta 673,109–116, 2010.

11. (a) Baykut, F., Aydın, A., and Artüz, M.I., Ecologicalsituation of Sea of Marmara, Chemosphere 16, 339–350,1987. (b) Okuş, E., Öztürk, İ., Sur, H.I., Yüksek, A., Tas,S., Yilmaz, A.A., Altiok, H., et al. Critical evaluationof wastewater treatment and disposal strategies for

Istanbul with regards to water quality monitoring studyresults, Desalination 226, 231–248, 2008.

12. Clesceri, L.S., Greenberg, A.E., and Eaton, A.D.,(Eds), APHA-AWWA-WEF, Standard Methods for the Examinationof the Water and Wastewater, 21st ed., American PublicHealth Association, American Water Work Association, WaterEnvironment Federation, Washington, DC, 2005.

13. WHO (World Health Organization), Guidelines forDrinking-Water Quality, 4th ed., Chemical Fact Sheets,World Health Organization, Geneva, 2011.

14. U.S. Envionmental Protection Agency, 2011 Edition ofthe Drinking Water Standards and Health Advisories, EPA820-R-11–002 Of�ce of Water, Washington, DC.

15. European Standards for Drinking Water, CouncilDirective 98/83/EC on the quality of water intended forhuman consumption, Adopted by the Council, on 3 November1998.

16. Gardolinski, P.C.F.C., Hanrahan, G., Achterberg, E.P.,Gledhill, M., Tappin, A.D., House, W.A., and Worsfold,P.J., Comparison of sample storage protocols for thedetermination of nutrients in natural waters, WaterResearch 35, 3670–3678, 2001.

17. Roman, M., Dovi, R., Yoder, R., Dias, F., and Warden,B., Determination of ion chromatography andspectrophotometry of the effects of preservation on nitriteand nitrate, Journal of Chromatography A 546, 341–346,1991.

18. Aydın, A., Ercan,Ö., and Taşcioğlu, S., A novel methodfor the spectrophotometric determination of nitrite inwater, Talanta 66, 1181–1186, 2005.

19. Aminot, A. and Kérouel, R., Pasteurization as analternative method for preservation of nitrate and nitritein seawater samples, Marine Chemistry 61, 203–208, 1998.

20. Moshage, H., Kok, B., Huizenga, J.R., and Jansen, P.L.,Nitrite and nitrate determinations in plasma: A criticalevaluation, Clinical Chemistry 41, 892–896, 1995.

21. Moshage, H., Nitric oxide determinations: Much adoabout NO-thing, Clinical Chemistry 43, 553–556, 1997.

22. Dejam, A., Hunter, C.J., Pelletier, M.M., Hsu, L.L.,

Machado, R.F., Shiva, S., Power, G.G., Kelm, M., Gladwin,M.T., and Schechter, A.N., Erythrocytes are the majorintravascular storage sites of nitrite in human blood,Blood 106, 734–739, 2005.

23. Pelletier, M.M., Kleinbongard, P., Ringwood, L., Hito,R., Hunter, C.J., Schechter, A.N., Gladwin, M.T., andDejam, A., The measurement of blood and plasma nitrite bychemiluminescence: Pitfalls and solutions, Free RadicalBiology & Medicine 41, 541–548, 2006.

24. Froelich, P.N., Bender, G.P., Luedtke, M.L., Heath,G.R., Cullen, D., Dauphin, P., Hammond, D., Hartmann, B.,and Maynard, V., Early oxidation of organic matter inpelagic sediments of the eastern equatorialAtlantic-suboxic diagenesis, Geochimica Et CosmochimicaActa 43, 1075–1090, 1979.

25. Herzsprung, P., Duffek, A., Friese, K., de Rechter, M.,Schultze, M., and Tümpling Jr, W.v., Modi�cation of acontinous �ow method for analysis of trace amounts ofnitrate in iron-rich sediment pore- waters of mine pitlakes, Water Research 39, 1887–1895, 2005.

26. Melchert, W.R., and Rocha, F.R.P. A green analyticalprocedure for �ow-injection determination of nitrate innatural waters, Talanta 65, 461, 2005.

27. Gentle, B.S., Ellis, P.S., Grace, M.R., and McKelvie,I.D., Flow analysis methods for the direct ultravioletspectrophotometric measurement of nitrate and totalnitrogen in freshwaters, Analytica Chimica Acta 704,116–122, 2011.

28. Ferree, M.A., and Shannon, R.D., Evaluation of a secondderivative UV/Visible spectroscopy technique for nitrateand total nitrogen analysis of wastewater samples, WaterResearch 35, 327–332, 2001.

29. Crumpton, W.G., Isenhart, T.M., and Mitchell P.D.,Nitrate and organic N analyses with second-derivativespectroscopy, Limnology Oceanography 37, 907–913, 1992.

30. Liu,R., Wang, H., Sun, A., and Liu, D., Reversed �owinjection spectrophotometric determination of trace amountof ammonia in natural water by oxidation of ammonia tonitrite, Talanta 45, 405, 1997.

31. Tovar, A., Moreno, C., Mánuel-Vez, M..P., andGarcia-Vargas, M., A simple automated method for the

speciation of dissolved inorganic nitrogen in seawater,Analytica Chimica Acta 469, 235–242, 2002.

32. Lane, R., Chow, C.W.K., Davey, D.E., Mulcahy, D.E., andMcLeod, S., An integrated microdistillation �ow injectionsystem for nitrite measurement, Analytica Chimica Acta 395,225–234, 1999.

33. Pagliano, E., Onor, M., Pilzalis, E., Mester, Z.,Sturgeon, R.E., and D’Ulivo, A., Quanti�cation of nitriteand nitrate in seawater by triethyloxonium tetra�uoroboratederivatization-Headspace SPME GC-MS, Talanta 85,2511–2518, 2011.

34. Wang, G.F., Satake, M., and Horita, K.,Spectrophotometric determination of nitrate and nitrite inwater and some fruit samples using columnpreconcentration, Talanta 46, 671–678, 1998.

35. Horita, K., Wang, G., and Satake, M.,Spectrophotometric determination of nitrate and nitrite insoil and water samples with a diazotizable aromatic amineand coupling agent using column preconcentration onnaphtalene supported with ion-pair oftetradecyldimethylbenzylammonium and iodide, AnalyticaChimica Acta 350, 295–303, 1997.

36. Chen, G., Yuan, D., Huang, Y., Zhang, M., and Bergman,M., In-�eld determination of nanomolar nitrite in seawaterusing a sequential injection technique combined with solidphase enrichment and colorimetric detection, AnalyticaChimica Acta 620, 82–88,2008.

37. Wada, E. and Hattori, A., Spectrophotometricdetermination of traces of nitrite by concentration of azodye on an anion–exchange resin: Application to sea waters,Analytica Chimica Acta 56, 233, 1971.

38. Zhang, M., Yuan, D., Chen, G., Li, Q., Zhang, Z., andLiang, Y., Simultaneous determination of nitrite andnitrate at nanomolar level in seawater using on-line solidphase extraction hyphenated with liquid waveguidecapillary cell for spectrophotometric detection,Microchimica Acta 165, 427–435, 2009.

39. Abbas, M.N. and Mostafa, G.A., Determinations of tracesof nitrite and nitrate in water by solid phasespectrophotometry, Analytica Chimica Acta 410, 185–192,2000.

40. Miró, M., Frenzel, W., Cerdà, V., and Estela, J.M.,Determination of ultra traces of nitrite by solid phasepreconcentration using a novel �ow-throughspectrophotometric optrode, Analytica Chimica Acta 437,55–65, 2001.

41. Zuo, Y., Wang, C., and Van, T., Simultaneousdetermination of nitrite and nitrate in dew, rain, snow andlake water samples by ion pair high-performance liquidchromatography, Talanta 70, 281–285, 2006.

42. Kodamatani, H., Yamazaki, S., Saito, K., Tomiyasu, T.,and Komatsu, Y., Selective determination method formeaurement of nitrite and nitrate in water samples usinghigh-performance liquid chromatography with post-columnphotochemical reaction and chemiluminescence detection,Journal of Chromatography A 1216, 3163–3167, 2009.

43. Zhang, M., Zhang, Z., Yuan, D., Feng, S., and Liu, B.,An automatic gas-phase molecular absorption spectrometricsystem using a UV-LED photodiode based detector fordetermination of nitrite and total nitrate, Talanta 84,443–450, 2011.

44. Li, Y., Whitaker, J.S., and McCarty, C.L., Reversephase liquid chromatography/electrospray ionization/massspectrometry with isotope dilution for the analysis ofnitrate and nitrite in water, Journal of Chromatography A1218, 476–483, 2011.

45. Pagliano, E., Meija, J., Sturgeon, R.E., Mester, Z.,and D’Ulivo, A., Negative chemical ionization GC/ MSdetermination of nitrite and nitrate in seawater usingexact matching double spike isotope dilution andderivatization with triethyloxonium tetra�uoroborate,Analytical Chemistry 84, 2592–2596, 2012.

46. Bogard, J.S., Johnson, S.A., Kumar, R., and Cunningham,P.T., Quantitative analysis of nitrate ion in ambientaerosols by Fourier-transform infrared-spectroscopy,Environmental Science and Technology 16, 136, 1982.

47. Kleber, R.J., Bullard, L., and Seaton, P.J.,Determination of 15 N nitrate and nitrite in spikednatural waters, Analytical Chemistry 70, 3969–3973, 1998.

48. United States Environmental Protection Agency US EPAMethod 300.0 Determination of Inorganic Anions by IonChromatography US EPA, Cincinnati, OH, 1993.

49. Garside, C., A chemiluminescent technique for thedetermination of nanomolar concentrations of nitrate andnitrite in seawater. Marine Chemistry 11, 159–167, 1982.

50. Dore, J.E. and Karl, D.M., Nitrite distributions anddynamics at station ALOHA. Deep Sea Research Part II.Topical Studies in Oceanography, 43, 385–402, 1996.

51. Yao, W., Byrne, R.H., and Waterbury, R.D.,Determination of nanomolar concentrations of nitrite andnitrate in natural waters using long path length absorbancespectroscopy, Environmental Science and Technology 32,2646–2649, 1998.

52. Steimle, E.T., Kaltenbacher, E.A., and Byrne, R.H., Insitu nitrite measurements using a compactspectrophotometric analysis system. Marine Chemistry 77,255–262, 2002.

53. Adornato, L.R., Kaltenbacher, E.A., Villareal, T.A.,and Byrne, R.H., Continous in situ determinations ofnitrite at nanomolar concentrations, Deep Sea Research.Part I 52, 543–551, 2005.

54. Zuo,Y. and Deng, Y., The near-UV absorption constantsfor nitrite ion in aqueous solution, Chemosphere 36,181–188, 1998.

55. Armstrong, F.A.J., Determination of nitrate in water byultraviolet spectrophotometry, Analytical Chemistry 35,1292–1294, 1963.

56. Finch, M.S., Hydes, D.J., and Clayson, C.H., A lowpower ultraviolet spectrophotometer for measuremnent ofnitrate in seawater: Introduction, calibration and initialsea trials, Analytica Chimica Acta 377, 167–177, 1998.

57. Brown, L. and Bellinger, E.G., Nitrate determination infresh and some estuarine waters by ultraviolet lightabsorption: A new proposed method, Water Research 12,223–229, 1978.

58. Rennie, P.O., Summer, A.M., and Basketter, F.B.,Determination of nitrate in raw, potable and wastewaters byultraviolet spectrophotometry, Analyst 104, 837–845, 1979.

59. Miles, D.L. and Espejo, C., Comparison between an UVspectrophotometric procedure and 2,4-xylenol method fordetermination of nitrate in groundwaters of low salinity,Analyst 102, 104–109, 1977.

60. Simal, J., Lage, M.A., and Iglesias, I., Secondderivative ultraviolet spectroscopy and sulfamic acidmethod for determination of nitrates in water, Journal ofthe Association of Official Analytical Chemists 68,962–964, 1986.

61. Thomas, O., Gallot, S., and Mazas, N., Ultravioletmultiwavelength absorptiometry (UVMA) for the examinationof natural waters and wastewaters. Part II. Determinationof nitrate, Fresenius Journal of Analytical Chemistry 338,238, 1990.

62. Suzuki, N. and Kuroda R., Direct simultaneousdetermination of nitrate and nitrite by ultravioletsecondderivative spectrophotometry, Analyst 112, 1077–1079,1987.

63. Wetters, J.H. and Uglum, K.L., Directspectrophotometric simultaneous determination of nitriteand nitrate in the ultraviolet, Analytical Chemistry 42,335–340,1970.

64. Drolc, A. and Vrtovšek, J., Nitrate and nitritenitrogen determination in waste water using on-line UVspectrometric method, Bioresource Technology 101,4228–4233, 2010.

65. Han, S.H., Park, Y.S., Park, S.D., Joe, K.S., and Eom,T.Y., Determination of some inorganic anions in salinewater by ion chromatography, with UV detection, AnalyticalScience and Technology 12, 99–104, 1999.

66. Miró, M., Cladera A., Estela, J.M. et. al. Sequentialinjection spectrophotometric analysis of nitrite in naturalwaters using an on-line solid-phase extraction andpreconcentration method, Analyst 125, 943–948, 2000.

67. Carrozzino, S. and Righini, F., Ion chromatographicdetermination of nutrients in sea water, Journal ofChromatography A 706, 277–280, 1995.

68. Hassan, S.S.M., Marzouk, S.A.M., and Sayour, H.E.M.,Selective potentiometric determination of nitrite ionusing a novel (4-sulphophenylazo-)1-naphtylamine membranesensor, Talanta 59, 1237, 2003.

69. Pérez-Olmos, R., Ríos, A., Fernández, J.R., Lapa, R. A.S., and Lima, J. L. F. C., Construction and evaluation ofion selective electrodes for nitrate with a summing

operational ampli�er. Application to tobacco analysis,Talanta 53, 741, 2001.

70. Lee, H.K., Song, K.J., Seo, H.R., and Jeon, S., Nitrateselective electrodes based onmeso-tetrakis[(2arylphenylurea)phenyl] porphyrins asneutral lipophilic ionophores, Talanta 62, 293, 2004.

71. Mitrakas, M.G., Alexiades, C.A., and Keramidas, V.Z.,Nitrate ion-selective electrodes based on quaternaryphosphonium salts in plasticized poly(vinylchloride) andin�uence of membrane homogeneity on their performance,Analyst 116, 361–367, 1991.

72. Asghari, A.R., Amini, M.K., Mansour, H.R., andSalavati-Niasari, M., A tetra-coordinate nickel(II) complexas neutral carrier for nitrate-selective PVC membraneelectrode, Talanta 61, 557, 2003.

73. Hogg, G., Lutze, O., and Cammann, K., Novel membranematerial for ion-selective �eld-effect transistors withextended lifetime and improved selectivity, AnalyticaChimica Acta 335, 103–109, 1996.

74. Ito, S., Baba, K., Asano, Y., Takesako, H., and Wada,H., Development of a nitrate ion-selective electrode basedon an Urushi matrix membrane and its application to thedirect measurement of nitrate-nitrogen in upland soils,Talanta 43, 1869–1881, 1996.

75. Le Goff, T., Braven, J., Ebdon, L., and Schole�eld, D.,High-performance nitrate-selective electrodes containingimmobilized amino acid betains as sensors, AnalyticalChemistry 74, 2596–2602, 2002.

76. Santos, E., Montenegro, M.C.B.S.M., Couto, C., Araύjo,A.N., Pimentel, M.F., and Da Silva V.L., Sequentialinjection analysis of chloride and nitrate in waters withimproved accuracy using potentiometric detection, Talanta63, 721, 2004.

77. Lin, P.K.T., Araύjo, A.N., Montenegro, M.C.B.S.M., andPeres-Olmos, R., New PVC nitrate-selective electrode:Application to vegetables and mineral waters, Journal ofAgricultural and Food Chemistry 53, 211, 2005.

78. Rocheleau, M.J. and Purdy, W.C., Ion-selectiveelectrode with �xed quaternary phosphonium ion-sensingspecies, Analyst 117, 177–179, 1992.

79. Bühlmann, P., Pretsch, E., and Bakker, E.,Carrier-based ion-selective electrodes and bulk optodes.Ionophores for potentiometric and optical sensors, ChemicalReviews 98, 1593–1687, 1998.

80. Markušová, J. and Fedurco, M., Vitamin B12 ascoordinating agent for the voltammetric determination ofnitrite in natural waters, Analytica Chimica Acta 248, 109,1991.

81. Lapa R.A., Lima, J.L.F.C., Barrado, E., and Vela, H,Determination of low levels of nitrates in natural watersby direct potentiometry using an ion selective electrode ofimproved sensitivity, International Journal ofEnvironmental Analytical Chemistry 66, 71, 1997.

82. Hassan, S.S.M., Sayour, H.E.M., and Al-Mehrezi, S.S., Anovel planar miniaturized potentiometric sensor for �owinjection analysis of nitrates in wastewaters, fertilizersand pharmaceuticals, Analytica Chimica Acta 581, 13–18,2007.

83. Hwang, T.L. and Cheng, H.S., Nitrate ion selectiveelectrodes based on complexes of 2,2′-bipyridine andrelated compounds as ion exchangers, Analytica ChimicaActa, 106, 341, 1979.

84. Kiang, C-H., Kuan S.S., and Gulibault,G.G., Enzymaticdetermination of nitrate: Electrochemical detection afterreduction with nitrate reductase and nitrite reductase,Analytical Chemistry 50, 1319–1322, 1978.

85. Da Silva, S., Shan, D., and Cosnier S., Improvement ofbiosensor performances for nitrate determination using anew hydrophilic poly(pyrrole-viologen) �lm, Sensors andActuators B: Chemical 103, 397–402, 2004.

86. Can. F., Ozoner, S.K., Ergenekon, P., and Erhan E.,Ampeerometric nitrate biosensor based on carbonnanotube/polypyrrole/nitrate reductase bio�lm electrode,Materials Science and Engineering: C 32, 18–23, 2012.

87. Werner, G., Kolowos, I., and Senkyr, J., Anitrate-selective electrode based onbis(triphenylphosphine) iminium salts, Talanta 36, 966,1989.

88. Ebdon, L., Braven, J., and Frampton, N.C.,Nitrate-selective electrodes with polymer membranescontaining immobilized sensors, Analyst 115, 189, 1990.

89. Hutchins, R.S. and Bachas, L.G., Nitrate-selectiveelectrode developed by electrochemically mediatedimpring/doping of polypyrrole, Analytical Chemistry 67,1654, 1995.

90. Qian, Q., Wilson, G.S., Bowman-James, K., and Girault,H., MicroITIES detection of nitrate by facilitated iontransfer, Analytical Chemistry 73,497–503, 2001.

91. Ortuño, J.A., Expósito, R., Sánchez-Pedreño, C.,Albero, M.I., and Espinosa, A., A nitrate-selectiveelectrode based on a tris(2-aminoethyl)amine triamidederivative receptor, Analytica Chimica Acta 525, 231–237,2004.

92. Asghari, A., Amini, M.K., Mansour, H.R., Niasori, M.S.,and Rajabi, M., Nitrate-selective membrane electrode basedon bis(2-hydroxyanil)acetylacetone lead(II) neutralcarrier, Analytical Sciences 19, 1121, 2003.

93. Guidelli, R., Pergolo, F., and Raspi, G., Voltammetricbehaviour of nitrite ion on platinum in neutral and weaklyacidic media, Analytical Chemistry 44, 745, 1972.

94. Newberg, J.E. and Lopez, de Haddad, M.P., Amperometricdetermination of nitrite by oxidation at a glassy carbonelectrode, Analyst, 110, 81–82, 1985.

95. Chamsi, A.Y. and Fogg, A.G., Oxidative �ow injectionamperometric determination of nitrite at anelectrochemically pretreated glassy carbon electrode,Analyst 113,1723–1727, 1988.

96. Cox, J.A. and Kulkarni, K.R., Flow injectiondetermination of nitrite by amperometric determination ata modi�ed electrode, Analyst 111, 1219–1220, 1986.

97. Barişci, J.N., Wallace, G.G., Wilke, E.A., Meaney, M.,Smyth, M.R., and Vos, J.G., The use of chemisorbedelectrocatalytic polymers for detection in �owingsolutions, Electroanalysis 1, 245–250, 1989.

98. da Silva, S.M. and Mazo, L.H., Differential pulsevoltammetric determination of nitrite with goldultramicroelectrode, Electroanalysis 10, 1200–1203, 1998.

99. Solak A.O., Gulser, P., Gokmese, E., and Gokmese, F., Anew differential pulse voltammetric method for thedetermination of nitrate at a copper plated glassy carbon

electrode, Microchimica Acta 134, 77–82, 2000.

100. Van den Berg, C.M.G. and Li, H., The determination ofnanomolar levels of nitrite in fresh and sea water bycathodic stripping voltammetry, Analytica Chimica Acta 212,31–41, 1988.

101. Guanghan, L., Hong, J., and Dandan, S., Determinationof trace nitrite by anodic stripping voltammetry, FoodChemistry 59, 583–587, 1997.

102. Davis, J., Moorcroft, M.J., Wilkins, S.J., Compton,R.G., and Cardosi, M.F., Electrochemical detection ofnitrate and nitrite at a copper modi�ed electrode, Analyst125, 737–741, 2000.

103. Krista, J., Kopanica, M., and Novotný, L.,Voltammetric determination of nitrates using silverelectrodes, Electroanalysis 12 , 199–204, 2000.

104. Navrátil, T. and Kopanica, M., Analytical applicationof silver composite electrode, Critical Reviews inAnalytical Chemistry 32, 153–166, 2002.

105. Manea, F., Remes, A., Radovan, C., Pode, R., Picken,S., and Schoonman, J., Simultaneous electrochemicaldetermination of nitrate and nitrite in aqueous solutionusing Ag-doped zeolite-expanded graphiteepoxy electrode,Talanta 83, 66–71, 2010.

106. Chang, S., Kozeniauskas, R., and Harrington, G.W.,Determination of nitrite ion using differential pulsepolarography, Analytical Chemistry 49, 2272–2275, 1977.

107. Sharma, P. and Sharma, R., Sequential tracedetermination of nitrate and nitrite in natural waters bydifferential pulse polarography, International Journal ofEnvironmental Analytical Chemistry 82, 7, 2002.

108. Holak, W., and Specchio, J.J., Determination ofnitrite and nitrate by differential pulse polarography withsimultaneous nitrogen purging, Analytical Chemistry 64,1313–1315, 1992.

109. Gao, Z., Wang, G., and Zhao, Z., Determination oftrace amounts of nitrite by single-sweep polarography,Analytica Chimica Acta 230, 105–112, 1990.

110. Yilmaz, Ü.T., and Somer, G., Determination of tracenitrite by direct and indirect methods using differential

pulse polarography and application, Journal ofElectroanalytical Chemistry 624, 59–63, 2008.

111. Ojani, R., Raoof, J.-B., and Zarei,E.,Electrocatalytic reduction of nitrite using ferricyanide;Application for its simple and selective determination,Electrochimica Acta, 52,753–759, 2006.

112. Carpenter, N.G. and Pletcher, D., Amperometric methodfor the determination of nitrate in water, AnalyticaChimica Acta 317, 287, 1995.

113. Johnson D.C. and Davenport, R.J., Determination ofnitrate and nitrite by forced-�ow liquid chromatographywith electrochemical detection, Analytical Chemistry 46,1971–1978, 1974.

114. Silva, S.M., Alves, C.R., Machado, S.A.S., Mazo, L.H.,and Avaca, L.A., Electrochemical determination of nitritesin natural waters with ultramicroelectrodes,Electroanalysis, 8, 1055–1059,1996.

115. Bertotti, M., and Pletcher, D., A study of nitriteoxidation at platinum microelectrodes, Journal of theBrazilian Chemical Society 8, 391, 1997.

116. Xing, X. and Scherson, D.A., Electrochemical oxidationof nitrite on a rotating gold disc electrode. A 2nd orderhomogenous disproportionation process, Analytical Chemistry60, 1468–1472, 1988.

117. Granger, M.C., Xu, J.S., Strojek, J.W., and Swain,G.M., Polycrystalline diamond electrodes: Basic propertiesand applications as amperometric detectors in �ow injectionanalysis and liquid chromatography, Analytica Chimica Acta397, 145–161, 1999.

118. Spataru, N., Rao,T.N., Tryk, D.A., and Fujishima, A.,Determination of nitrite and nitrogen oxides by anodicvoltammetry at conductive diamond electrodes, Journal ofthe Electrochemical Society 148, E112–E117, 2001.

119. Sunohara, S., Nishimura, K., Yahikozawa, K., Ueno, M.,Enyo, M., and Takasu, Y., Electrocatalysis oftransition-metal oxides for reduction and oxidation ofnitrite ions, Journal of Electroanalytical Chemistry 354,161–171, 1993.

120. Deore, B.A., Shiigi, H., and Nagaoka, T., Pulsedamperometric detection of underivatized amino acids using

polypyrrole modi�ed copper electrode in acidic solution,Talanta, 58, 1203–1211, 2002.

121. Wang, J. and Lu, Z., Highly stablephospholipid/cholesterol electrode coatings foramperometric monitoring of hydrophobic substances in �owingstreams, Analytical Chemistry 62, 826–829, 1990.

122. Wang, J., Wu, H., and Angnes, L., On-line monitoringof hydrophobic compounds at self-assembled monolayermodi�ed amperometric �ow dedectors, Analytical Chemistry65, 1893–1896, 1993.

123. Biagiotti, V., Valentini, F., Tamburri, E., Terranova,M.L. Moscone, D., and Palleschi, G., Synthesis andcharacterization of polymeric �lms and nanotubule nets usedto assemble selective sensors for nitrite detection indrinking water, Sensors and Actuators B: Chemical 122,236–242, 2007.

124. Zhao, K., Song, H., Zhuang, S., Dai, L., He, P., andFang, Y., Determination of nitrite with theelectrocatalytic property to the oxidation of nitrite onthe thionine modi�ed aligned carbon nanotubes,Electrochemistry Communications 9, 65–70, 2007.

125. Jiang, L., Wang, R., Li,X., Jiang, L., and Lu, G.,Electrochemical oxidation behavior of nitrite on achitosan-carboxylated multiwall carbon nanotube modi�edelectrode, Electrochemistry Communications 7, 597, 2005.

126. Li, J.-Z., Pang, X.-Y., and Yu, R.-Q., Substitutedcobalt phtalocyanine complexes as carriers fornitritesensitive electrodes, Analytica Chimica Acta 297,437–442, 1994.

127. Rocha, J.R.C., Angnes, L., Bertotti, M., Araki, K.,and Toma, H.E., Amperometric detection of nitrite andnitrate at tetraruthenated porphrin-modi�ed electrodes in acontinous-�ow assembly, Analytica Chimica Acta 452, 23–28,2002.

128. Badea, M., Amine, A., Palleschi, G., Moscone, D.,Volpe, G., and Curulli, A., New electrochemical sensorsfor detection of nitrites and nitrates, Journal ofElectroanalytical Chemistry 509, 66–72, 2001.

129. Pei, J.H. and Li, X.-Y., Electrochemical study andow-injection amperometric detection of trace NO 2 − atCuPtCl6 chemically modi�ed electrode, Talanta 51,

1107–1115, 2000.

130. Wang, S., Yin, Y., and Lin, X., Cooperative effect ofPt nanoparticles and Fe(III) in the electrocatalyticoxidation of nitrite, Electrochemistry Communications 6,259, 2004.

131. Abbasour, A. and Mehrgardi, M.A., Electrocatalyticactivity of Ce(III)-EDTA complex toward the oxidation ofnitrite ion, Talanta 67, 579–584, 2005.

132. Cheng, L. and Dong, S., Electrochemical behavior andelectrocatalytic properties of ultrathin �lms containingsilicotungstic heteropolyanion SiW12O4O4, Journal of theElectrochemical Society 147, 606– 612, 2000.

133. Kamyabi, M.A. and Aghajanloo, F., Electrocatalyticoxidation and determination of nitrite on carbon pasteelectrode modi�ed with oxovanadium(IV)-4-methyl salophen,Journal of Electroanalytical Chemistry 614, 157–165, 2008.

134. Salimi, A., Mamkhezri, H., and Mohebbi, S.,Electroless deposition of vanadium-Schiff base complexonto carbon nanotubes modi�ed glassy carbon electrode:Application to the low potential detection of iodate,periodate, bromate and nitrite, ElectrochemistryCommunications 8, 688–696, 2006.

135. Malone, M.M., Doherty, A.P., Smith, M.R., and Vos,J.G., Flow-injection amperometric determination of nitriteat a carbon-�ber electrode modi�ed with the polymer[Os(PiPy) 2 (PVP) 20 Cl]Cl, Analyst 117, 1259–1263, 1992.

136. Araki, K., Angnes, L., Azevedo, C.M.N., and Toma,H.E., Electrochemistry of a teraruthenated cobaltporphyrin and its use in modi�ed electrodes as sensors ofreducing analytes, Journal of Electroanalytical Chemistry397, 205–210, 1995.

137. Santos, W.J.R., Sousa, A.L., Luz, R.C.S., Damos, F.S.,Kubota, L.T., Tanaka, A.A., and Tanaka, S.M.C.N.,Amperometric sensor for nitrite using a glassy carbonelectrode modi�ed with alternating layers of iron(III)tetra-(N-methyl-4-pyridyl)-porphrin and cobalt(II)tetrasulfonated phtalocyanine, Talanta 70, 588–594, 2006.

138. Cox, J.A. and Kulesza., Oxidation and determination ofnitrite at modi�ed electrodes, Journal ofElectroanalytical Chemistry 175, 105–118, 1984.

139. Yang, Y.J., Yin, X., Yu. et al., Electropolymerizationof indole-3-acetic acid on glassy carbon electrode forsensitive detection of nitrite, Journal of New Materialsfor Electrochemical Systems 14, 265–269, 2011.

140. Strehlitz, B., Grundig, B., Schumacher, W., Kroneck,B.M.H., Vorlop, K.D., and Kotte, H., A nitrite sensor basedon a highly sensitive nitrite reductase mediator-coupledamperometric detection, Analytical Chemistry 68, 807–816,1996.

141. Kalimuthu, P. and John, S.A., Highly sensitive andselective amperometric determination of nitrite usingelectropolymerized �lm of functionalized thiadiazolemodi�ed glassy carbon electrode, Electrochemistry 11,1065–1068, 2009.

142. Nygaard, D.D., Electrochemical determination ofnitrite and nitrate by pneumatoamperometry, AnalyticaChimica Acta, 130, 391–394, 1981.

143. Berkels, R., Purol-Schnabel, S., and Roesen, R., A newmethod to measure nitrate/nitrite with a NO-sensitiveelectrode, Journal of Applied Physiology 90, 317–320, 2001.

144. Boo, Y.C., Tressel, S.L., and Jo, H., An improvedmethod to measure nitrate/nitrite with an NO-selectiveelectrochemical sensor, Nitric Oxide 16, 306–312, 2007.

145. Moretto, L.M., Ugo, P., Zanata, M., Guerriero, P., andMartin, C.R., Nitrate biosensor based on the ultrathin-�lmcomposite membrane concept, Analytical Chemistry 70, 2163,1998.

146. Sasso, S.V., Pierce, R.J., Walla, R., and Yacynych,A.M., Electropolymerized 1,2-diaminobenzene as a means toprevent interferences and fouling and to stabilizeimmobilized enzyme in electrochemical biosensors,Analytical Chemistry 62, 1111–1117, 1990.

147. Doherty, A.P., Forster, R.J., Smyth, M.R., and Vos,J.G., Development of a sensor for the detection of nitriteusing a glassy carbon electrode modi�ed with theelectrocatalyst [Os(bipy)2(PVP)10Cl]Cl, Analytica ChimicaActa 255, 45–52, 1991.

148. Bertotti, M. and Pletcher, D., Amperometricdetermination of nitrite via reaction with iodide usingmicroelectrodes, Analytica Chimica Acta 337, 49–55, 1997.

149. Zhao, Y.D., Zhang, W.D., Luo, Q.M., and Li, S.F.Y.,The oxidation and reduction behaviour of nitrite at carbonnanotube powder microelectrodes, Microchemical Journal 75,18198, 2003.

150. Guo, M., Chen, J., Li, J., Tao, B., and Yao, S.,Fabrication of polyaniline/carbon nanotube compositemodi�ed electrode and its electrocatalytic property to thereduction of nitrite, Analytica Chimica Acta532,71–77,2005.

151. Karousos, N., Chong, L.C., Ewen, C., Livingstone, C.,and Davis, J., Evaluation of a multifunctional indicatorfor the electroanalytical determination of nitrite,Electrochimica Acta 50, 1879–1884, 2005.

152. Tang, Q.Y., Luo, X.X., and Wen, R.M., Construction ofa heteropolyanion-containing polypyrrol/carbon nanotubemodi�ed electrode and its electrocatalytic property,Analytical Letters 38, 1445–1456, 2005.

153. Salimi, A., Noorbakhsh, A., and Ghadermarzi, M.,Amperometric detection of nitrite, iodate and periodate atglassy carbon electrode modi�ed with catalase andmulti-wall carbon nanotubes, Sensors and Actuators B:Chemical 123, 530–537, 2007.

154. Sljukic, B., Banks, C.E., Crossley, A., and Compton,R.G., Lead(IV)oxide-graphite composite electrodes:Application to sensing of ammonia, nitrite and phenols,Analytica Chimica Acta 587, 240–246, 2007.

155. Sousa, A.L., Santos, W.J.R., Luz, R.C.S., Damoe, F.S.,Kubota,L.T., Tanaka, A.A., and Tanaka, S.M.C.N.,Amperometric sensor for nitrite based on coppertetrasulphonated phtalocyanine immobilized withpolyL-lysine �lm, Talanta 75, 333–338, 2008.

156. Huang, X., Li, Y., Chen, Y., and Wang, L.,Electrochemical determination of nitrite and iodate by useof gold nanoparticles/poly(3-methylthiophene) compositescoated glassy carbon electrode, Sensors and Actuators B:Chemical 134, 780–786, 2008.

157. Wei, W., Jin, H.H., and Zhao, G.C., A reagentlessnitrite biosensor based on direct electron transfer ofhemoglobin on a room temperature ionic liquid/carbonnanotube-modi�ed electrode, Microchimica Acta 164,167–171, 2009.

158. Lin, C.-Y., Vasantha, V.S., and Ho, K.-C., Detectionof nitrite using poly(3,4-ethylenedioxythiophene) modi�edSPCEs, Sensors and Actuators B: Chemical 140, 51–57, 2009.

159. Moorcroft, M.J., Davis, J., and Compton, R.G.,Detection and determination of nitrate and nitrite: Areview, Talanta 54, 785–803, 2001.

160. Sawicki, E., Stanley, T.W., Pfaff, J., and D’Amico,A., Comparison of �fty-two spectrophotometric methods forthe determination of nitrite, Talanta 10, 641, 1963.

161. Oms, M.T., Cerda, A., and Cerda, V., Analysis ofnitrates and nitrites, In Handbook of Water Analysis, Ed.:Nollet, L., 1st Ed., CRC Press/Marcel Dekker Inc.,NewYork/Basel. 2000.

162. Griess, C.P., Bemerkugen zu der Abhandlung der HH:Wesely and Benedikt “Uber einige Azoverbindungen”,Berichte der Deutschen Chemischen Gesellschaft 12, 426–428,1879.

163. Rider, B.F. and Mellon, M.G., Colorimetricdetermination of nitrites, Industrial EngineeringChemistry, Analytical Edition 18, 96, 1946.

164. Miles, A.M., Wink, D.A., Cook, J.C., and Grisham,M.B., Determination of nitric oxide using �uoresencespectroscopy, Nitric oxide, PTA—Sources and detection ofnitric oxide; NO synthase, Methods in Enzymology 268,105–120, 1996.

165. Davis, J., McKeegan, K.J., Cardosi, M.F., and Vaughan,D.H., Evaluation of phenolic assays for the detection ofnitrite, Talanta 50, 103–112, 1999.

166. Ahmet, M.J., Stalikas, C.D., Tzouwara-Karayanni, S.M.,and Karayannis, M.I., Simultaneous spectrophotometricdetermination of nitrite and nitrate by �ow-injectionanalysis, Talanta, 43, 1009–1018, 1996.

167. Rathore, H.P.S. and Tiwari, S.K., Spectrophotometricdtermination of nitrite in polluted waters using3-nitroaniline, Analytica Chimica Acta 242, 225–228, 1991.

168. Sreekumar, N.V., Narayana, B., Hegde, P., Manjunatha,B.R., and Sarojini, B.K., Determination of nitrite bysimple diazotization method, Microchemical Journal 74,27–32, 2003.

169. Flamerz, S. and Bashir, W.A., Spectrophotometricmethod for the determination of trace levels of nitrite inwaters, Analyst 110, 1513–1515, 1985.

170. Amin, D., Determination of nitrite on using thereaction with 4-aminobenzotri�uoride and 1-naphthol,Analyst 111, 1335–1337, 1986.

171. Tu, X., Xiao, B., Xiong, J., and Chen, X., A simpleminiaturised photometrical method for rapid determinationof nitrate and nitrite in freshwater, Talanta 82, 976–983,2010.

172. Sah, R.N., Nitrate-nitrogen determination—A criticalreview, Communications in Soil Science and Plant Analysis,25, 2841, 1994.

173. Fox, Jr., J.B., Kinetics and mechanisms of the Griessreaction, Analytical Chemistry 51, 1493–1502, 1979.

174. Daniel, A., Birot, D., Lehaitre, M., and Poncin, J.,Characterization and reduction of interferences inow-injection analysis for the in-situ determination ofnitrate and nitrite in seawater, Analytica Chimica Acta308, 413–424, 1995.

175. Senra-Ferreiro, S., Pena-Pereira, F., Lavilla, I., andBendicho,C., Griess micro-assay for the determination ofnitrite by combining �bre optics-based cuvettelessUV-Vis-micro-spectrophotometry with liquid phasemicroextraction, Analytica Chimica Acta 668, 195–200, 2010.

176. Baveja, A.K., Nair, J., and Gupta, V.K.,Extraction-spectrophotometric determination ofsub-microgram amounts of nitrite using 4-nitroaniline andnaphth-1-ol, Analyst 106, 955–959, 1981.

177. Kaveeshwar, R., Cherian, L., and Gupta, V.K.,Extraction-spectrophotometric determination of nitriteusing 1-aminonaphthalene-2-sulphonic acid, Analyst 116,667–669, 1991.

178. Chaube, A., Baveja, A.K., and Gupta V.K., Extractivespectrophotometric determination of nitrite in pollutedwaters, Analytica Chimica Acta 143, 273–276, 1982.

179. Misko, T.P., Schilling, R.J., Salvemini, D., Moore,W.M., and Currie, M.G., A �uorometric assay for themeasurement of nitrite in biological samples, AnalyticalBiochemistry 214, 11–16, 1993.

180. Jie, N.Q., Si, Z.K., Yang, J.H., et al., Fluorometricdetermination of traces of nitrite with Rhodamine 6G,Microchemical Journal 55,351–356,1997.

181. Jie, N., Yang, J., and Meng, F., Fluorimetricdetermination of nitrite, Talanta 40, 1009–1011, 1993.

182. Zhan, X.Q., Li, D.H., Zheng, H., and Xu, J.G., Asensitive �uorometric method for the determination ofnitrite and nitrate in seawater by a novel red-region�uorescence dye, Analytical Letters 34, 2761–2770, 2001.

183. Biswas, S., Chowdhury, B., and Ray, B.C., A novelspectro�uorometric method for the ultra trace analysis ofnitirite and nitrate in aqueous medium and its applicationto air, water, soil and forensic samples, Talanta 64,308–312, 2004.

184. Damiani, P. and Burini, G., Fluorometric determinationof nitrite, Talanta 33, 649–652, 1986.

185. Mikuška, P. and Večeřa, Z., Simultaneous determinationof nitrite and nitrate in water by chemiluminescentow-injection analysis, Analytica Chimica Acta 495, 225–232,2003.

186. He, D.Y., Zhang, Z., Huang, Y., and Hu, Y.,Chemiluminescence micro�ow injection analysis system on achip for the determination of nitrite in food, FoodChemistry 101, 667–672, 2007.

187. Burakham, R., Oshima, M., Grudpan, K., and Motomizu,S., Simple �ow-injection system for the simultaneousdetermination of nitrite and nitrate in water samples,Talanta 64, 1259–1265, 2004.

188. Nakamura, M., Mazuka, T., and Yamashita, M.,Spectrophotometric determination of nitrite in waters with5,7 -dihydroxy-4-imino-2-oxochroman, Analytical Chemistry56, 2242–2244, 1984.

189. Motomizu, S., Rui, S.C., Oshima, M., and Toei, K.,Spectrophotometric determination of trace amounts ofnitrite based on the nitrosation reaction withN,N-bis(2-hydroxypropyl)aniline and its application to �owinjection analysis, Analyst 112, 1261, 1987.

190. Nikonorov, V.V. and Moskvin, L.N., Spectrophotometricdetermination of nitrite with 4-iodo-N,Ndimethylaniline,

Analytica Chimica Acta 306, 357–360, 1995.

191. Mir, S.A., A rapid technique for determination ofnitrate and nitric acid by acid reduction and diazotizationat elevated temperature, Analytica Chimica Acta 620,183–189, 2008.

192. De Faria, L.C. and Pasquini, C., Flow-injectiondetermination of inorganic forms of nitrogen by gasdiffusion and conductimetry, Analytica Chimica Acta 245,183–190, 1991.

193. Kazemzadeh, A. and Ensa�, A.A., Simultaneousdetermination of nitrite and nitrate in various samplesusing �ow-injection spectrophotometric detection,Microchemical Journal 69, 61–68, 2001.

194. Ensa�, A.A. and Kazemzadeh, A., Monitoring nitritewith optical sensing �lms, Microchemical Journal 72,193–199, 2002.

195. Kazemzadeh, A. and Daghighi, S., Optical nitritesensor based on chemical modi�cation of a polymer �lm,Spectrochimica Acta Part A, 61, 1871–1875, 2005.

196. Ensa�, A.A. and Amini, M., A highly selective opticalsensor for catalytic determination of ultra-trace amountsof nitrite in water and foods based on brilliant cresylblue as a sensing reagent, Sensors and Actuators B:Chemical 147, 61–66, 2010.

197. Ohmori, T., El-Deab, M.S., and Osawa, M.,Electroreduction of nitrate ion to nitrite and ammonia ona gold electrode in acidic and basic sodium and cesiumnitrate solutions, Journal of Electroanalytical Chemistry470, 46–52, 1999.

198. Zhan, X,-Q., Li, D.-H., Zheng, H., Xu,J.-G., andZhou,Y.-Q., Fluorimetric determination of nitrogen oxidesin the air by a novel red-region �uorescent reagent,Talanta 58, 855–860, 2002.

199. Syty, A. and Simmons, R.A., The determinatiom ofnitrite by ultraviolet absorption spectrometry in the gasphase, Analytica Chimica Acta 120, 163–170, 1980.

200. Andrade, R., Viana, C.O., Guadagnin, S.G., Reyes,F.G.R., and Rath, S., A �ow-injection spectrophotometricmethod for nitrate and nitrite determination through nitricoxide generation, Food Chemistry 80, 597–602, 2003.

201. Aoki, T., Fukuda, S., Hosoi, Y., and Mukai, H., Rapidow injection analysis method for successive determinationof ammonia, nitrite and nitrate in water by gas-phasechemiluminescence, Analytica Chimica Acta 349, 11–16,1997.

202. Cox, R.D. and Frank, C.W., Determination of nitrateand nitrite in blood and urine by chemiluminescence,Journal of Analytical Toxicology 6, 148–152, 1982.

203. Aoki,T. and Wakabayashi, M., Simultaneous �owinjection determination of nitrate and nitrite in water bygas-phase chemiluminescence, Analytica Chimica Acta 308,308–312, 1995.

204. Cox, R.D., Determination of nitrate and nitrite at theparts per billion level by chemiluminescence. AnalyticalChemistry 52, 332, 1980.

205. Dunham, A.J., Barkley, R.M., and Sievers, R.E.,Aqueous nitrite ion determination by selective reductionand gas phase nitric oxide chemiluminescence, AnalyticalChemistry 67, 220–224, 1995.

206. Gallignani, M., Valero, M., Ayala, C., del RosarioBrunetto, M., Sánchez, A., Burguera, J.L., and Burguera,M., Flow analysis-vapor phase generation-Fourier transforminfrared (FA-VPG-FTIR) spectrometric determination ofnitrite, Talanta 64, 1290–1298, 2004.

207. Kanda, Y. and Taira,M., Chemiluminescent method forcontinuous monitoring of nitrous acid in ambient air,Analytical Chemistry 62, 2084, 1990.

208. Kanda, Y. and Taira,M., Flow-injection analysis methodfor the determination of nitrite and nitrate in naturalwater samples using a chemiluminescence NOx monitor,Analytical Sciences 19, 695–699, 2003.

209. Nagababu, E. and Rifkind, J.M., Measurement of plasmanitrite by chemiluminescence without interference of S-,N-nitroso and nitrated species, Free Radical Biology &Medicine 42, 1146–1154, 2007.

210. Braman, R.S. and Hendrix S.A., Nanogram nitrite andnitrate determination in environmental and biologicalmaterials by vanadium (III) reduction withchemiluminescence detection. Analytical Chemistry 61,2715–2718, 1989.

211. Haghighi, B. and Tavassoli, A., Flow injectionanalysis of nitrite by gas phase molecular absorption UVspectrophotometry, Talanta 56, 137–144, 2002.

212. Daniel, W.L., Han, M.S., Lee, J.-S., and Mirkin, C.A.,Colorimetric nitrite and nitrate detection with goldnanoparticle probes and kinetic end points, Journal ofAmerican Chemical Society 131, 6362–6363, 2009.

213. Lin, Z., Xue, W., Chen, H., and Lin, J.-M.,Peroxynitrous acid-induced chemiluminescence of �uorescentcarbon dots for nitrite sensing, Analytical Chemistry 83,8245–8251, 2011.

214. Guerrero, R.S., Gomez-Benito, C.G., and Calatayud,J.M., Flow-injection analysis spectrophotometricdetermination of nitrite and nitrate in water samples byreaction with pro�avin, Talanta 43, 239–246, 1996.

215. Ianoul, A., Coleman, T., and Asher, S.A., UV resonanceRaman spectroscopic detection of nitrate and nitrite inwastewater treatment processes, Analytical Chemistry 74,1458–1461, 2002.

216. Miranda, K.M., Espey, M.G., and Wink, D.A., A rapid,simple spectrophotometric method for simultaneous detectionof nitrate and nitrite. Nitric Oxide 5, 62–71, 2001.

217. Mullin, J.B. and Riley, J.P., The spectrophotometricdetermination of nitrate in natural waters, with particularreference to sea-water, Analytica Chimica Acta 12, 464–480,1955.

218. Tarafder, P.K. and Rathore, D.P.S., Spectrophotometricdetermination of nitrite in water, Analyst 113, 1073–1076,1988.

219. Helaleh, M.I.H. and Korenaga, T., Sensitivespectrophotometric determination of nitrite in human salivaand rain water and of nitrogen dioxide in the atmosphere,Environmental Analysis 84, 53–58, 2001.

220. Gougherty J.A. and Laban G.A., Spectrophotometricdetermination of nitrite ion with 4,4′-bis(dimethylamino)thiobenzophenone, Analytical Chemistry 47, 1130–1132, 1975.

221. Ensa�, A.A. and Keyvanfard, M., Selective kineticspectrophotometric determination of nitrite in food andwater, Analytical Letters 27, 169–182, 1994.

222. Monser, L., Sadok, S., Greenway, G.M., Shah, I., andUglow, R.F., A simple simultaneous �ow injection methodbased on phosphomolybdenum chemistry for nitrate andnitrite determinations in water and �sh samples, Talanta57, 511–518, 2002.

223. Zhi-Qi, Z., Lou-Jun, G., Han-Ying, Z., and Qian-Guang,L., Catalytic simultaneous spectrophotometricdetermination of nitrite and nitrate with a �ow injectionsystem, Analytica Chimica Acta 370, 59–63, 1998.

224. Ensa�, A.A., Rezaei, B., and Naouroozi, S.,Simultaneous spectrophotometric determination of nitriteand nitrate by �ow injection analysis, Analytical Sciences20, 1749–1753, 2004.

225. Kadowaki, R., Nakano, S., and Kawashima,T., Sensitiveow injection colorimetry of nitrite by catalytic couplingof N-phenyl-p-phenylenediamine with N,N-dimethylaniline,Talanta 48, 103–107,1999.

226. De, D., Englehardt, J.D., and Kalu, E.E.,Electroreduction of nitrate and nitrite ion on a platinumgroup metal catalyst-modi�ed carbon �berelectrode-Chronoamperometry and mechanism studies, Journalof the Electrochemical Society 147, 4224, 2000.

227. Taras, M.J., Phenoldisulfonic acid method ofdetermining nitrate in water, Analytical Chemistry 22,1020, 1950.

228. Nagaraja, P., Al-Tayar, N.G.S., Shivakumar, A.,Shrestha, A.K., and Gowda, A.K., A simple and sensitivespectrophotometric method fort he determination of traceamounts of nitrite in environmental and biological samplesusing 4-amino-5-hydroxynaphtalene-2,7 disulfonic acidmonosodium salt, Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy 75, 1411–1416, 2010.

229. Ohta, T., Arai, Y., and Takitani, S., Fluorimetricdetermination of nitrite with 4-hydroxycoumarin,Analytical Chemistry 58, 3132–3135, 1986.

230. Li, H, Meininger, C.J., and Wu, G.Y., Rapiddetermination of nitrite [and nitrate] by reversed-phasehigh-performance liquid chromatography with �uorescencedetection. Journal of Chromatography 746, 199–207, 2000.

231. Axelrod, H.D. and Engel, N.A., Fluorometric

determination of sub-nanogram levels of nitrite using5-amino�uorescein, Analytical Chemistry 47, 922–924, 1975.

232. Wang, H., Yang, W., Liang, S.-C., Zhang, Z.-M., andZhang, H.-S., Spectro�uorimetric determination of nitritewith 5,6-diamino-1,3-naphthalene disulfonic acid, AnalyticaChimica Acta 419, 169–173, 2000.

233. Patton, C.J., Fischer, A.E., Campbell, W.H., andCampbell, E.R., Corn leaf nitrate reductase-A nontoxicalternative to cadmium for photometric nitratedeterminations in water samples by air-segmentedcontinuous-�ow analysis, Environmental Science andTechnology 36, 729–735, 2002.

234. Xiao, N. and Yu, C., Rapid response and highlysensitive noncross-linking colorimetric nitrite sensorusing 4-aminothiophenol modi�ed gold nanorods, AnalyticalChemistry 82, 3659–3663, 2010.

235. Cho, S-J., Sasaki, S., Ikebukuro, K., and Karube, I.,A simple nitrate sensor system using titanium trichlorideand an ammonium electrode, Sensors and Actuators B:Chemical 85, 120–125, 2002.

236. Paixão, T.R.L.C., Cardoso, J.L., and Bertotti, M.,Determination of nitrate in mineral water and sausagesamples by using a renewable in situ copper modi�edelectrode, Talanta 71, 186–191, 2007.

237. Gamboa, J.C.M., Peña, R.C., Paixăo, T.R.L.C., andBertotti, M., A renewable copper electrode as anamperometric �ow dedector for nitrate determination inmineral water and soft drink samples, Talanta 80, 581–585,2009.

238. Cox, J.A. and Brajter, A. F., Selectiveelectrocatalytic method for the determination of nitrite,Analytical Chemistry 51, 2230–2232, 1979.

239. Vogel, A.I., (5th Ed.) A Textbook of QuantitativeChemical Analysis, Longmans, London, 1989.

240. Chow, T.J. and Johnstone, M.S., Determination ofnitrate in sea water, Analytica Chimica Acta 27, 441– 446,1962.

241. Ellis, P.S., Shabani, A.M.H., Gentle, B.S., andMcKelvie, I.D., Field measurement of nitrate in marine andestuarine waters with a �ow analysis system utilizing

on-line zinc reduction, Talanta 84, 98–103, 2011.

242. Till, B.A., Weathers, L.J., and Alvarez P.J.J.,Fe(0)-supported autotrophic denitri�cation, EnvironmentalScience and Technology 32, 634, 1998.

243. Hu, H.-Y., Goto, N., and Fujie K., Effect of pH on thereduction of nitrite in water by metallic iron, WaterResearch 35, 2789–2793, 2001.

244. Fanning, J.C., The interaction of iron complexes withsmall nitrogen-containing molecules and ions, CoordinationChemistry Reviews 110, 235–273, 1991.

245. Dell’Orco, P.C., Gloyna, E.F., and Buelow, S.J.,Reactions of nitrate salts with ammonia in supercriticalwater, Industrial and Engineering Chemistry Research 36,2547, 1997.

246. Silva, L.A., Korn, M., and de Andrade J.B., In�uenceof ultrasonic waves in the reduction of nitrate to nitriteby hydrazine-Cu(II), Ultrasonics Sonochemistry 14, 275–280,2007.

247. Hendrikse, A., An automatic method for determiningnitrate and nitrite in fresh and saline waters, Analyst90, 83, 1965.

248. Beda, N. and Nedospasov, A., A spectrophotometricassay for nitrate in an excess of nitrite, Nitric Oxide13, 93–97, 2005.

249. Tatsch, E., Bochi, G.V., Pereira, R. daS., Kober, H.,Agertt, V.A., Anraku de Campos, M.M., Gomes, P., Duarte,M.M.M.F., and Moresco, R.N., A simple and inexpensiveautomated technique for measurement of serumnitrite/nitrate, Clinical Biochemistry 44, 348–350, 2011.

250. Cresser, M.S., Nitrate determination by reduction toammonia and gas-phase ultraviolet absorption spectrometry,Analyst 102, 99–103, 1977.

251. Yang, F., Troncy, E., Francœur, M., Vinet, B., Vinay,P., Czaika, G., and Blaise, G., Effects of reducingreagents and temperature on conversion of nitrite andnitrate to nitric oxide and detection of NO bychemiluminescence, Clinical Chemistry 43, 657–662, 1997.

252. Al-Wehaid, A. and Townshend, Spectrometricow-injection determination of nitrate based on reduction

with titanium(III) chloride, Analytica Chimica Acta 186,289–294, 1986.

253. Hepher, M.J., Alexander, R.H., and Dixon, J., Zincchromium(II) reduction for nitrate determination inagricultural materials by colorimetry or ion-selectiveelectrode. Journal of the Science of Food and Agriculture49, 379–383, 1989.

254. Fanning, J.C., Brooks, B.C., Hoeglund, A.B.,Pelletier, D.A., and Wadford J.A., The reduction of nitrateand nitrite ions in basic solution with sodium borohydridein the presence of copper(II) ions, Inorganica ChimicaActa, 310, 115–119, 2000.

255. Fanning, J.C., The chemical reduction of nitrate inaqueous solution, Coordination Chemistry Reviews 109,159–179, 2000.

256. Robinson, J.W. and Hsu, C.J., Spectroscopic studies ofthe chromotropic acid-nitrate reaction, Analytica ChimicaActa 44, 51, 1969.

257. Zhang, J.-Z. and Fischer C.J., A simpli�ed resorcinolmethod for direct spectrophotometric determination ofnitrate in sea water, Marine Chemistry 99, 220–226, 2006.

258. Jones M.N., Nitrate reduction by shaking with cadmium:Alternative to cadmium columns, Water Research 18,643–646, 1984.

259. Hydes, D.J. and Hill, N.C., Determination of nitratein seawater: Nitrate to nitrite reduction withcoppercadmium alloy, Estuarine, Coastal and Shelf Science21, 127–130, 1985.

260. Sastry, K.V.H., Moudgal, R.P., Mohan, J., Tyagi, J.S.,and Rao, G.S., Spectrophotometric determination of serumnitrite and nitrate by copper-cadmium alloy, AnalyticalBiochemistry 306, 79–82, 2002.

261. Nydahl, F., On the optimum conditions for thereduction of nitrate to nitrite by cadmium, Talanta 23,349–357, 1976.

262. Thabano, J.R.E., Abong’o, D., and Sawula, G.M.,Determination of nitrate by suppressed ion chromatographyafter copperised-cadmium column reduction, Journal ofChromatography A, 1045, 153–159, 2004.

263. Sawicki, C.R. and Scaringelli, F.P., Colorimetricdetermination of nitrate after hydrazine reduction tonitrite, Microchemical Journal 16, 657–672, 1971.

264. Oms, M.T., Cerdá, A., and Cerdá, V., Sequentialinjection analysis of nitrites and nitrates, AnalyticaChimica Acta 315, 321–330, 1995.

265. Zhang, Y. and Wu, L., Photochemical reduction ofnitrate to nitrite in aqueous solution and its applicationto the determination of total nitrogen in water, Analyst111,767–769,1986.

266. Carlson, R.M., Continuous �ow reduction of nitrate toammonia with antigranulocytes zinc, Analytical Chemistry58, 1590, 1986.

267. Gil-Torro, I, Garcia-Mateo, J.V., andMartinez-Calatayud, J., Flow injection biamperometricdetermination of nitrate(by photoreduction) and nitritewith the nitrite/iodide reaction, Analytica Chimica Acta366, 241–249, 1998.

268. Takeda, K. and Fujiwara,K., determination of nitratein natural waters with the photoinduced conversion ofnitrate to nitrite, Analytica Chimica Acta 276, 25–32,1993.

269. Calatayud, J.M.M., Mateo, J.V.G.G., and David, V.,Multi-insertion of small controlled volumes of solutions ina �ow assembly for determination of nitrate(photoreduction) and nitrite with pro�avin sulfate,Analyst 123,429–434, 1998.

270. Motomizu, S. and Sanada, M., Photo-induced reductionof nitrate to nitrite and its application to the sensitivedetermination of nitrate in natural waters, AnalyticaChimica Acta 308, 406–412, 1995.

271. Kodamatani, H., Yamazaki, S., Saito, K., Komatsi, Y.,and Tomiyasu, T., Rapid method for simultaneousdetermination of nitrite and nitrate in water samples usingshort-column ion-pair chromatographic separation.Photochemical reaction and chemiluminescence detection,Analytical Sciences 27, 187, 2011.

272. Granger, D.L., Taintor, R.R., Boockvar, K.S., andHibbs, J.B.Jr., Measurement of nitrate and nitrite inbiological samples using nitrate reductase and Griessreaction, Methods in Enzymology, 268, 142–151, 1996.

273. Verdon, C.P., Burton, B.A., and Prior, R.L., Samplepretreatment with nitrate reductase and glucose-6phosphatedehydrogenase quantitatively reduces nitrate while avoidinginterference by NADP + when the Griess reaction is usedto assay for nitrite, Analytical Biochemistry 224, 502–508,1995.

274. Gilliam, M.B., Sherman, J.M., Griscavage, J.M., andIgnarro, L.J., A spectrophotometric assay for nitrateusing NAPDH oxidation by Aspergillus nitrate reductase,Analytical Biochemistry 212, 359, 1993.

275. Wu, G.Y. and Brosnan, J.T., Macrophages can convertcitrulline into arinine, Biochemical Journal 281, 45–48,1992.

276. Rockett, K.A., Awburn, M.M., Rockett, E.J., Cowden,W.B., and Clark IA., Possible role of nitric oxide inmalarial immunosuppression, Parasite Immunology 16,243–249, 1994.

277. Pinto, P.C.A.G., Lima, J.L.F.C., and Saraiva,M.L.M.F.de S., Sequential injection analysis of nitrite andnitrates in human serum using nitrate reductase, ClinicaChimica Acta, 337, 69–76, 2003.

278. Dziedzic, B., Mazanowska-Gajdowicz, J., Walczewska,A., Sarniak, A., and Nowak, D., Comparison of cadmium andenzyme-catalyzed nitrate reduction for determination ofNO2/NO3 in breath condensate, Clinica Chimica Acta 335,65–74, 2003.

279. Arias-Negrete, S., Jiménez-Romero, L.A.,Solis-Martinez, M.O., Ramirez-Emiliano, J., Avila, E.E.,and Cuéllar-Mata, P., Indirect determination of nitricoxide production by reduction of nitrate with afreezethawing-resistant nitrate reductase from Escherichiacoli MC1061, Analytical Biochemistry, 328, 14–21, 2004.

280. Aoki, T., Uemura, S., Munemori, M., Continous �owmethod for simultaneous determination of nitrate andammonia in water, Environmental Science and Technology 20,515–517, 1986.

281. Sasaki, S., Ando, Y., Dejima, M., Arikawa, Y., andKarube, I., A �uorescence based sensor for ammonium andnitrate, Analytical Letters 31, 555–567, 1998.

282. Hubble, D.S. and Harper, D.M., A revised method for

nitrate analysis at low concentrations, Water Research 34,2598–2600, 2000.

283. Sakamoto, Y., Kamiya, Y., and Okuhara, T., Selectivehydrogenation of nitrate to nitrite in water over Cu-Pdbimetallic clusters supported on active carbon, Journal ofMolecular Catalysis A: Chemical 250, 80–86, 2006.

284. Prüsse, U. and Vorlop, K.-D., Supported bimetallicpalladium catalysts for water phase nitrate reduction,Journal of Molecular Catalysis A: Chemical 173, 313–328,2001.

285. Marchesini, F.A., Gutierrez, L.B., Querini, C.A., andMiró, E.E., Pt, In and Pd, In catalysts for thehydrogenation of nitrates and nitrites in water. FTIRcharacterization and reaction studies, ChemicalEngineering Journal 159, 203–211, 2010.

286. D’Arino, M., Pinna, F. and Strukul, G., Nitrate andnitrite hydrogenation with Pd and Pt/SnO 2 catalysts: Theefect of the support porosity and the role of carbondioxide in the control of selectivity, Applied CatalysisB: Environmental 53, 161–168, 2004.

287. Mikami, I., Kitayama, R., and Okuhara, T.,Hydrogenations of nitrate and nitrite in water overPt-promoted Ni catalysts, Applied Catalysis A: General297, 24–30, 2006.

288. Pintar, A., Setinc,M., and Levec, J., Hardness andsalt effects on catalytic hydrogenation of aqueous nitratesolutions, Journal of Catalysis 174, 72–87, 1998.

289. Garron, A. and Epron, F., Use of formic acid asreducing agent for application in catalytic reduction ofnitrate in water, Water Research 39, 3073–3081, 2005.

290. Ranjit, K.T., Krisnamoorthy, R., Varadarajan, T.K. andViswanathan, B., Photocatalytic reduction of nitrite onCdS, Journal of Photochemistry and Photobiology A:Chemistry 86, 185–189, 1995.

291. Ranjit, K.T. and Viswanathan, B., Photocatalyticreduction of nitrite and nitrate ions to ammonia on M/ TiO2 catalysts, Journal of Photochemistry and Photobiology A:Chemistry 108, 73–78, 1997.

292. Deganello, F., Liotta, L.F., Macaluso, A., Venezia,A.M., and Deganello, G., Catalytic reduction of nitrates

and nitrites in water solution on pumice supported Pd-Cucatalysts, Applied Catalysis B: Environmental 24, 265–273,2000.

293. Genders, J.D., Hartsough, D., and Hobbs, D.T.,Electrochemical reduction of nitrates and nitrites inalkaline nuclear waste solutions, Journal of AppliedElectrochemistry 26, 1–9, 1996.

294. Petrii, O.A. and Safonova, T.Ya., Electroreduction ofnitrate and nitrite anions on platinum metals: A modelprocess for elucidating the nature of the passivation byhydrogen adsorption, Journal of ElectroanalyticalChemistry 331, 897–912, 1992.

295. Dima, G.E., de Vooys, A.C.A., and Koper, M.T.M.,Electrocatalytic reduction of nitrate at low concentrationon coinage and transition-metal electrodes in acidsolutions, Journal of Electroanalytical Chemistry 554/555,15–23, 2003.

296. De Groot, M.T. and Kooper, M.T.M., The in�uence ofnitrate concentration and acidity on the electrocatalyticreduction of nitrate on platinum, Journal ofElectroanalytical Chemistry 562, 81–94, 2004.

297. Da Cunha, M.C.P.M., De Souza, J.P.I., and Nart, F.C.,Reaction pathways for reduction of nitrate ions onplatinum, rhodium and platinum rhodium alloy electrodes,Langmuir 16, 771–777, 2000.

298. Reddy, K.J. and Lin, J., Nitrate removal fromgroundwater using catalytic reduction, Water Research 34,995–1001, 2000.

299. Peel, J.W., Reddy, K.J., Sullivan, B.P., and Bowen,J.M., Electrocatalytic reduction of nitrate in water,Water Research 37, 2512–2519, 2003.

300. Katsounaros, I., Dortsiou, M., and Kyriacou, G.,Electrochemical reduction of nitrate and nitrite insimulated liquid nuclear wastes, Journal of HazardousMaterials, 71, 323–327, 2009.

301. Chebotareva, N. and Hyokong, T., Metallophtalocyaninecatalysed electroreduction of nitrate and nitrite ions inalkaline media, Journal of Applied Electrochemistry 27,975–981, 1997.

302. Brylev, O., Sarrazin, M., Roué, L., and Bélanger, D.,

Nitrate and nitrite electrocatalytic reduction onRh-modi�ed pyrolytic graphite electrodes, ElectrochimicaActa 52, 6237–6247, 2007.

303. Hasnat, M.A., Agui, R., Hinokuma, S., Yamaguchi, T.,and Machida, M., Different reaction routes inelectrocatalytic nitrate/nitrite reduction using anH+-conducting solid polymer electrolyte, CatalysisCommunications 10, 1132–1135, 2009.

304. Reuben, C., Galun, E., Cohen, H., Tenne, R., Kalish,R., Muraki, Y., Hashimoto, K., Fujishima, A., Butler,J.M., and Lévy-Clement, C., Ef�cient reduction of nitriteand nitrate to ammonia using thin-�lm B-doped diamondelectrodes, Journal of Electroanalytical Chemistry 396,233–239,1995.

305. Tenne, R., Patel, K., Hashimoto, K., and Fujishima,A., Ef�cient electrochemical reduction of nitrate toammonia using conductive diamond �lm electrodes, Journal ofElectroanalytical Chemistry 347, 409– 415, 1993.

306. Fogg, A.G., Scullion, S.P., and Edmonds, T.E.,Reductive reverse �ow injection amperometric determinationof nitrate at a platinum electrode after on-line reductionto nitrosyl chloride in concentrated sulfuric acid mediumcontaining chloride, Analyst 115, 599–604, 1990.

307. Nakamura, M., Rapid spectrophotometric determinationof nitrate with 4,5-dihydroxycoumarin, Analyst 106,483–487, 1981.

308. Velghe, N. and Claeys, A., Rapid spectrophotometricdetermination of nitrate with phenol, Analyst 108,1018–1022, 1983.

309. Fakhri, N.A., Rahim, S.A., and Bashir, W.A., Indole asa chromogenic reagent for traces of nitrate in aqueoussolution, International Journal of Environmental AnalyticalChemistry 16, 131–138,1983.

310. Bajic, S.J. and Jaselskis, B., Spectrophotometricdetermination of nitrate and nitrite in natural water andsea-water, Talanta 32, 115–118, 1985.

311. Tsikas, D., Simultaneous derivatization andquanti�cation of the nitric oxide metabolites nitrite andnitrate in biological �uids by gas chromatography/massspectrometry, Analytical Chemistry 72, 4064– 4072, 2000.

312. Helmke, S.M. and Duncan, M.W., Measurement of the NOmetabolites, nitrite and nitrate, in human biologicaluids by GC-MS, Journal of Chromatography B 851, 83–92,2007.

313. Schwartz, A., Modun, D., Heusser, K., et al.,Stable-isotope dilution GC-MS approach for nitritequanti�cation in human whole blood, erythrocytes, andplasma using penta�uorobenzyl bromide derivatization:Nitrite distribution in human blood, Journal ofChromatography B: Analytical Technologies in theBiomedical and Life Sciences 879, 1485–1495, 2011.

314. Tsikas, D., Schwartz, A., and Stichtenoth, D.O.,Simultaneous measurement of [ 15 N] nitrate and [ 15 N]nitrite enrichment and concentration in urine by gaschromatography mass spectrometry as penta�uorobenzylderivatives, Analytical Chemistry 82, 2585–2587, 2010.

315. Casciotti, K.L. and McIlvin, M.R., Isotopic analysisof nitrate and nitrite from reference mixtures andapplication to Eastern Tropical North Paci�c waters, MarineChemistry 107, 184–201, 2007.

316. Stefanović, Š.C., Bolanča, T., and Ćurković, L.,Simultaneous determination of six inorganic anions indrinking water by non-suppressed ion chromatography,Journal of Chromatography A 918, 325–334, 2001.

317. Tirumalesh, K., Simultaneous determination of bromideand nitrate in contaminated waters by ion chromatographyusing amperometry and absorbance detectors, Talanta 74,1428, 2008.

318. Chauret, N. and Hubert, J., Characterization ofindirect photometry for the determination of inorganicanions in natural water by ion chromatography, Journal ofChromatography A 469, 329–338, 1989.

319. Jackson, P.E. and Haddad, P.R., The occurrence andorigin of system peaks in non-suppressed ion chromatographyof inorganic anions with indirect ultraviolet absorptiondetection, Journal of Chromatography A 346, 125–137, 1985.

320. Small, H. and Miller Jr, T.E., Indirect photometricchromatography, Analytical Chemistry 54, 462–469, 1982.

321. Jenke, D.R. and Pagenkopf, G.K., Optimization of anionseparation by nonsuppressed ion chromatography, AnalyticalChemistry 56, 85–88, 1984.

322. Schmuckler, G., Jagoe, A.L., Girard, J.E., and Buell,P.E., Gluconate-borate eluent for anion chromatography:Nature of the complex and comparison with other eluents,Journal of Chromatography A 356,413–419,1986.

323. Jackson, P.E., Weigert, C., Pohl, C.A., and Saini, C.,Determination of inorganic anions in environmental waterswith a hydroxide-selective column, Journal ofChromatography A 884, 175–184, 2000.

324. Jobgen, W.S., Jobgen, S.C., Li, H., Meininger, C.J.,and Wu, G., Analysis of nitrite and nitrate in biologicalsamples using high-performance liquid chromatography,Journal of Chromatography B 851,71–82,2007.

325. Ito, K., Ariyoshi, Y., Tanabiki, F., and Sunahara, H.,Anion chromatography using octadecylsilane reversed-phasecolumns coated with cetyltrimethylammonium and itsapplication to nitrite and nitrate in seawater, AnalyticalChemistry 63, 273–276, 1991.

326. Salhi, E. and von Gunten, U., Simultaneousdetermination of bromide, bromate and nitrite in low μgl −1levels by ion chromatography without sample pretreatment,Water Research 33, 3239–3244, 1999.

327. Connolly, D. and Paull, B., Rapid determination ofnitrate and nitrite in drinking water samples usingion-interaction liquid chromatography, Analytica ChimicaActa 441, 53–62, 2001.

328. Butt, S.B., Riaz, M., and Iqbal, M.Z., Simultaneousdetermination of nitrite and nitrate by normal phaseion-pair liquid chromatography, Talanta 55, 789–797, 2001.

329. Fang., Y.-I., Ohata, H., and Honda, K., Fluorometricdeterminations of nitrite with 2,3-diaminonaphthalene byreverse phase HPLC under alkaline conditions, Journal ofPharmacological and Toxicological Methods 59, 153–155,2009.

330. Kissner, R. and Koppenol, W.H., Qualitative andquantitative determination of nirite and nitrate with ionchromatography, Methods in Enzymology 396, 61–68, 2005.

331. Ito, K., Takayama, Y., Makabe, N., Mitsui, R., andHirokawa,T., Ion chromatography for determination ofnitrite and nitrate in seawater using monolithic ODScolumns, Journal of Chromatography A 1083, 63–67, 2005.

332. Michigami, Y., Fujii, K., and Ueda, K., Effect offunctional groups on the retention behaviour of anions inion chromatography using a coated silica column, Journal ofChromatography A 664,117–122,1994.

333. Rozan, T.F. and Luther III, G.W., An anionchromatography/ultraviolet detection method to determinenitrite, nitrate and sulphide concentrations insaline(pore) waters, Marine Chemistry 77, 1–6, 2002.

334. Gennaro, M.C. and Angelino, S., Separation anddetermination of inorganic anions by reversed-phase highperformance liquid chromatography, Journal ofChromatography A 789, 181–194 , 1997.

335. Pastore, P., Lavagnini, A.B., and Magno, F., Ionchromatographic determination of nitrite in the presenceof a large amount of chloride, Journal of Chromatography A475, 331–341, 1989.

336. Marheni, P.R., Haddad and McTaggart, A.R., On-columnmatrix elimination of high levels of chloride and sulfatein non-suppressed ion chromatography, Journal ofChromatography A 546, 221–228, 1991.

337. Monaghan, J.M., Cook, K., Gara, D., and Crowther, D.,Determination of nitrite and nitrate in human serum,Journal of Chromatography A 770, 143–149, 1997.

338. Utermahlen, W.E., Mellini, D.W., and Issaq, H.J.,Solid phase extraction procedure for the clean-up of urineand gastric juice specimens for nitrite and nitrateanalysis by ion chromatography, Journal of LiquidChromatography 15, 3315–3322, 1992.

339. Morales J.A., de Graterol, L.S., and Mesa, J.,Determination of chloride, sulfate and nitrate ingroundwater samples by ion chromatography, Journal ofChromatography A 884, 185–190, 2000.

340. Buldt, A. and Karst, U, Determination of nitrite inwaters by microplate �uorescence spectroscopy and HPLCwith �uorescence detection, Analytical Chemistry 71,3003–3007, 1999.

341. Woitzik, J., Abromeit, N., and Schaefer, F.,Measurement of nitric oxide metabolites in brainmicrodialysates by a sensitive �uorometric high pressureliquid chromatography assay, Analytical Biochemistry

289,10–17, 2001.

342. Kleber, R.J. and Seaton, P.J., Determination ofsubnanomolar concentrations of nitrite in natural waters,Analytical Chemistry 67, 3261–3264, 1995.

343. Noda, H., Minemoto, M., Noda, A., Matsuyama, K.,Iguchi, S., and Kohinata,T., High-performance liquidchromatographic determination of nitrite ion by use ofhydralazine, Chemical and Pharmaceutical Bulletin 28,2541–2542, 1980.

344. Pobozy, E., Sweryda-Krawiec, B., and Trojanowicz, M.,Ion interaction chromatography with nonylamine reagent forthe determination of nitrite and nitrate in natural waters,Journal of Chromatography A 633, 305–310, 1993.

345. Sen, N.P., Baddoo, P.A., and Seaman, S.W., Rapid andsensitive determination of nitrite in foods and biologicalmaterials by �ow injection or high performance liquidchromatogaphy with chemiluminescence detection, Journal ofChromatography A 673, 77–84, 1994.

346. Jedličková, V., Paluch, Z., and Alušik, Š.,Determination of nitrate and nitrite by high-performanceliquid chromatography in human plasma, Journal ofChromatography B 780, 193–197, 2002.

347. Fukushi, K., Tada, K., Takeda, S., Wakida, S-I.,Yamane, M., Higashi, K., and Hiiro, K., Simultaneousdetermination of nitrate and nitrite ions in seawater bycapillary zone electrophoresis using arti�cial seawater asthe carrier solution, Journal of Chromatography A 838,303–311, 1999.

348. Helaleh, M.I.H. and Korenaga, T., Ion chromatographicmethod for simultaneous determination of nitrate andnitrite in human saliva, Journal of Chromatography B 744,433–437, 2000.

349. Niedzielski, P., Kurzyca, I., and Siepak, J., A newtool for inorganic nitrogen speciation study: Simultaneousdetermination of ammonium ion, nitrite and nitrate by ionchromatography with post column ammonium derivatization byNessler reagent and diode-array detection in rain watersamples, Analytica Chimica Acta 577, 220–224, 2006.

350. Jain, A., Smith, R.M., and Verma, K.K., Gaschromatographic determination of nitrite in water byprecolumn formation of 2-phenylphenol with �ame ionization

detection, Journal of Chromatography A 760, 319–325, 1997.

351. Funazo, K., Tanaka, M., and Shono, T., Determinationof nitrite at parts-per-billion levels by derivatizationand electron capture gas chromatography, AnalyticalChemistry 52, 1222–1224, 1980.

352. Sarudi, I. and Nagy, I., A gas chromatographic methodfor the determination of nitrite ions in natural waters,Talanta, 42, 1099–1102, 1995.

353. Wang, X., Masschelein, E., and Hespel, P., et al.,Simultaneous determination of nitrite and nitrate in humanplasma by on-capillary preconcentration with �eld-ampli�edsample stacking, Electrophoresis 33, 402–405, 2012.

354. Bord, N., Crétier, G., Rocca, J.-L., Bailly, C., andSouchez, J.-P., Simultaneous determination of inorganicanions and organic acids in amine solutions for sour gastreatment by capillary electrophoresis with indirect UVdetection, Journal of Chromatography A 1100, 223, 2005.

355. Oehrle, S.A., Analysis of anions in drinking water bycapillary ion electrophoresis, Journal of Chromatography A733,101, 1996.

356. Alonso, M.C.B. and Prego, R., Determination ofsilicate, simultaneously with other nutrients (nitrite,nitrate, and phosphate) in river waters by capillaryelectrophoresis, Analytica Chimica Acta 416, 21–27, 2000.

357. Guan, F., Wu, H., and Luo, Y., Sensitive and selectivemethod for direct determination of nitrite and nitrate byhigh-performance capillary electrophoresis, Journal ofChromatography A 719, 427–433, 1996.

358. Melanson, J.E. and Lucy, C.A., Ultra-rapid analysis ofnitrate and nitrite by capillary electrophoresis, Journalof Chromatography A 884, 311–316, 2000.

359. Govindaraju, K., Toporsian, M., Ward, M.E., Lloyd,D.K., Cowley, E.A., and Eidelman, D.H., Capillaryelectrophoresis analysis of nitrite and nitrate insub-microliter quantities of airway surface liquid, Journalof Chromatography B 762, 147–154, 2001.

360. Wang., P., Li, S.F.Y., and Lee, H.K., Measurement ofnitrate and chlorate in swimming pool water by capillaryzone electrophoresis, Talanta 45, 657, 1998.

361. Kubáň, P., Kubáň, P., and Kubáň, V., Capillaryelectrophoretic determination of inorganic anions in thedrainage and surface water samples, Journal ofChromatography A 848, 545–551, 1999.

362. Öztekin, N., Nutku, M.S., and Erim, F.B., Simultaneousdetermination of nitrite and nitrate in meat products andvegetables by capillary electrophoresis, Food Chemistry 76,103–106, 2002.

363. Biesaga, M., Pyrzynska, K., and Trojanowicz, M.,Porphyrins in analytical chemistry. A review, Talanta 51,209–224, 2000.

364. Buldini, P.L., Cavalli, S., and Tri�ró, A.,State-of-the art ion chromatographic determination ofinorganic ions in food, Journal of Chromatography A 789,529–548, 1997.

365. David, A.R.J., McCormack, T., and Worsfold, P.J., Asubmersible battery-powered �ow injection(FI) sensor forthe determination of nitrate in estuarine and coastalwaters, Journal of Automated Methods and Management inChemistry 21, 1–9,1999.

366. Goyal, S.S., and Hafez, A.A.R., Phosphate catalyzeddecomposition of nitrite to nitrate during freezing andthawing of solutions, Journal of Agricultural and FoodChemistry 43, 2641–2645, 1995.

367. van Standen, J.F., Makhafola, M.A., and De Waal, D.,Kinetic study of the decomposition of nitrite to nitratein acid samples using Raman spectroscopy, AppliedSpectroscopy 50, 991–994, 1996.

368. Jannasch, H.W., Johnson, K.S., and Sakamoto, C.M.,Submersible, osmotically pumped analyzers for continousdetermination of nitrate in-situ, Analytical Chemistry 66,3352–3361, 1994.

369. Elliott, C.L., Snyder, G.H., and Cisar, J.L., Amodi�ed autoanalyzer-II method fo the determination of NO3 -N in water using a hollow Cd reduction coil,Communications in Soil Science and Plant Analysis 20,1873,1989.

370. Anderson, L., Simultaneous spectrophotometricdetermination of nitrite and nitrate by �ow injectionanalysis, Analytica Chimica Acta 110, 123, 1979.

371. Maimó, J., Cladera, A., Mas, F., Forteza, R., Estela,J.M., and Cerdá, V., Automatic system for simultaneousdetermination of nitrates and nitrites in waters,International Journal of Environmental AnalyticalChemistry 35, 161, 1989.

372. Masserini Jr, R.T. and Fanning K.A., A sensor packagefor the simultaneous determination of nanomolarconcentrations of nitrite, nitrate and ammonia in seawaterby �uorescence detection, Marine Chemistry 68,323–333,2000.

373. Legnerová, Z., Solich, P., Sklenářová, H., Šatínsky`,D., and Karlíček, R., Automated simultaneous monitoring ofnitrate and nitrite in surface water by sequentialinjection analysis, Water Research 36, 2777– 2783, 2002.

374. Kazemzadeh, A. and Ensa�, A.A., Sequential �owinjection spectrophotometric determination of nitrite andnitrate in various samples, Analytica Chimica Acta 442,319–326, 2001.

375. Pettas, I.A., La�s, S.I., and Karayannis, M.I.,Reaction rate method for determination of nitrite byapplying a stopped-�ow technique, Analytica Chimica Acta376, 331–337, 1998.

376. Yue, X,-F., Zhang, Z.-Q., and Yan, H.-T., Flowinjection catalytic spectrophotometric simultaneousdetermination of nitrite and nitrate, Talanta 62, 97–101,2004.

377. Lopez Pasquali, C.E. and Gallego-Pico, A., FernandezHernando, P., Velasco, M., and Durand Alegria, J.S., Tworapid and sensitive automated methods for the determinationof nitrite and nitrate in soil samples, MicrochemicalJournal 94, 79–82, 2010.

378. Ayala, A., Leal, L.O., Ferrer, L., and Cerdà, V.,Multiparametric automated system for sulfate, nitrite andnitrate monitoring in drinking water and wastewater basedon sequential injection analysis, Microchemical Journal100, 55–60, 2012.

379. Nagashima, K., Matsumoto, M., and Suzuki, S.,Determination of nitrate and nitrite by usingsecondderivative spectrophotometry, Analytical Chemistry57, 2065–2067, 1985.

380. Su, X-L., Chen, P., Qu, X-G., Wei, W-Z., and Yao,

S-Z., A novel �ow-injection system for simultaneousdetermination of nitrate and nitrite based on the use of azinc reductor and a bulk acoustic wave impedance detector,Microchemical Journal 59, 341–350, 1998.

381. Noroozifar, M., Khorasani-Motlagh, M., Taheri, A., andHomayoonfard, M., Application of manganese(IV) dioxidemicrocolumn for determination and speciation of nitrite andnitrate using a �ow injection analysis�ame atomicabsorption spectrometry system, Talanta 71, 359–364, 2007.

382. Ruzicka, J. and Marshall G.D., Sequential injection: Anew concept for chemical sensors, process analysis andlaboratory assays, Analytica Chimica Acta, 237, 329–343,1990.

383. Cerda, A., Oms, M.T., Forteza, R., and Cerda, V.,Sequential injection sandwich technique for thesimultaneous determination of nitrate and nitrite.Analytica Chimica Acta 371, 63–71, 1998.

384. Hanson, A.K., Cabled and autonomous submersiblechemical analyzers for coastal observations, Abstracts ofPapers of the American Chemical Society 229, U152–U153,2005.

385. Dutt, J.D., Current strategies in nitrite detectionand their application to �eld analysis, Journal ofEnvironmental Monitoring 4, 465–471, 2002.

386. Petsul, P.H., Greenway, G.M., and Haswell, S.J., Thedevelopment of an on-chip micro�ow injection analysis ofnitrate with a cadmium reductor, Analytica Chimica Acta428, 155–161, 2001.

387. Wiryawan, A., Use of �ow analysis for continousmonitoring of river water quality, Laboratory Robotics andAutomation 12, 142–148, 2000.

388. Feres, M.A. and Reis, B.F., A downsized �ow set up onmulticommutation for the sequential photometricdetermination of iron(II)/iron(III) and nitrite/nitrate insurface water, Talanta 68, 422–428, 2005.

389. Patey, M.D., et al., Determination of nitrate andphosphate in seawater at nanomolar concentrations, Trendsin Analytical Chemistry 27, 169–182, 2008.

390. Moore, T.S., Mullaugh, K.M., Holyoke, R.R. et al.Marine chemical technology and sensors for marine waters:

Potentials and limits, Annual Review of Marine Science 1,91–115, 2009.

391. Beaton, A.D., Sieben, V.J., Floquet, C.F.A., Waugh,E.M., Bey, S.A.K., Ogilvie, I.R.G., Mowlem, M.C., andMorgan, H., An automated micro�uidic colourimetric sensorapplied in situ to determine nitrite concentration, Sensorsand Actuators B: Chemical 156, 1009–1014, 2011.

392. West, J., Becker, M., Tombrink, S. et al., Micro totalanalysis systems: Latest achievements, AnalyticalChemistry 80, 4403–4419, 2008.

393. Ramirez-Garcia, S, et al., Towards the development ofa fully integrated polymeric micro�uidic platform forenvironmental analysis, Talanta 77, 463–467, 2008.

394. Marle, L. and Greenway, G.M., Micro�uidic devices forenvironmental monitoring. Trends in Analytical Chemistry24, 795–802, 2005.

395. Baeza, M. del M., Nuria, I-G., Baucells, J. et al.,Micro�ow injection system based on a multicommutationtechnique for nitrite determination in wastewaters, Analyst131, 1109–1115, 2006.

396. Rainelli, A., Stratz, R., Schwizer, K., and Hauser,P.C., Miniature �ow-injection analysis manifold created bymicromilling, Talanta 61, 659–665, 2003.

12 Chapter 12 - Phosphates in AquaticSystems

Akyilmaz, E. and Yorganci, E. 2007. Construction of anamperometric pyruvate oxidase enzyme electrode fordetermination of pyruvate and phosphate. ElectrochimicaActa, 52: 7972–7977.

Alexander, P.W. and Koopetngarm, J. 1987. Flow-injectiondetermination of phosphate species in detergents with acalcium ion-selective electrode. Analytica Chimica Acta,197: 353–359.

Almeida, M.I.G.S., Segundo, M.A., Lima, J.F.L.C., andRangel, A.O.S.S. 2004. Multi-syringe �ow injection systemwith in-line microwave digestion for the determination ofphosphorus. Talanta, 64(5): 1283–1289.

Aminot, A. and Kérouel, R. 1995. Reference material fornutrients in seawater: Stability of nitrate, nitrite,ammonia and phosphate in autoclaved samples, MarineChemistry, 49: 221–232.

Aminot, A. and Kérouel, R. 1997. Assessment of heattreatment for nutrient preservation in seawater samples.Analytica Chimica Acta, 351: 299–309.

Aminot, A. and Kérouel, R. 1998. Pasteurization as analternative method for preservation of nitrate and nitritein seawater samples. Marine Chemistry, 61: 203–208.

Aminot, A. and Kérouel, R. 2001. An automatedphoto-oxidation method for the determination of dissolvedorganic phosphorus in marine and fresh water. MarineChemistry, 76(1–2): 113–126.

Anon. 1993. WHO Guidelines for Drinking-Water Quality, Vol.1, 2nd ed., World Health Organization, Geneva.

Aoyagi, M., Yasumasa, Y., and Nishida, A. 1988. Rapidspectrophotometric determination of total phosphorus inindustrial wastewaters by �ow injection analysis includinga capillary digestor. Analytica Chimica Acta, 214:229–237.

Aoyagi, M., Yasumasa, Y., and Nishida, A. 1990. Digestionmethod FIA of phosphorus and nitrogen in hydrogen peroxidesolution. Bunseki Kagaku, 39: 131–133.

APHA. 1965. Standard Methods for the Examination of Water

and Wastewater. 12th ed., American Public HealthAssociation, Washington, DC.

APHA–AWWA–WEF. 1998. Standard Methods for the Examinationof Water and Wastewater, 20th ed., American Public HealthAssociation, Washington, DC.

APHA–AWWA–WEF. 2005. Standard Methods for the Examinationof Water and Wastewater, Centennial edition, Washington,DC.

Armstrong, F.A.J., Williams, P.M., and Strickland, J.D.H.1966. Photo-oxidation of organic matter in sea water byultra-violet radiation, analytical and other applications.Nature, 211: 481–483.

Aspila, K.I., Agemian, H., and Chau, A.S.Y. 1976. Asemi-automated method for the determination of inorganic,organic and total phosphate in sediments. Analyst, 101:187–197.

Au�itsch, S., Peat, D.M.W., McKelvie, I.D., and Worsfold,P.J. 1997. Determination of dissolved reactive phosphorusin estuarine waters using a reversed �ow injectionmanifold. Analyst, 122: 1477–1480.

Avanzino, R.J. and Kennedy, V.C. 1993. Long-term frozenstorage of stream water samples for dissolvedorthophosphate, nitrate plus nitrite, and ammonia analysis.Water Resources Research, 29(10): 3357–3362.

Barciela Alonso, M.C. and Prego, R. 2000. Determination ofsilicate, simultaneously with other nutrients (nitrite,nitrate and phosphate), in river waters by capillaryelectrophoresis. Analytica Chimica Acta, 416(1): 21–27.

Benson, R.L., McKelvie, I.D., Hart, B.T., and Hamilton,I.C. 1994. Determination of total phosphorus in waters andwastewaters by on-line microwave-induced digestion and �owinjection analysis. Analytica Chimica Acta, 291(3):233–242.

Benson, R.L., McKelvie, I.D., Hart, B.T., Truong, Y.B., andHamilton, I.C. 1996a. Determination of total phosphorus inwaters and wastewaters by on-line UV/thermal induceddigestion and �ow injection analysis. Analytica ChimicaActa, 326(1–3): 29–39.

Benson, R.L., Truong, Y.B., McKelvie, I.D., and Hart, B.T.1996b. Monitoring of dissolved reactive phosphorus in

wastewaters by �ow injection analysis. Part 1. Methoddevelopment and validation. Water Research, 30(9):1959–1964.

Benson, R.L., Truong, Y.B., McKelvie, I.D., Hart, B.T.,Bryant, G.W., and Hilkmann, W.P. 1996c. Monitoring ofdissolved reactive phosphorus in wastewaters by �owinjection analysis. Part 2. On-line monitoring system.Water Research, 30(9): 1965–1971.

Berchmans, S., Issa, T.B., and Singh, P. 2012.Determination of inorganic phosphate by electroanalyticalmethods: A review. Analytica Chimica Acta, 729: 7–20.

Blaabjerg, K., Hansen-Møller, J., and Poulsen, H.D. 2010.High-performance ion chromatography method for separationand quanti�cation of inositol phosphates in diets anddigesta. Journal of Chromatography B, 878: 347–354.

Bloesch, J. and Gavrielli, J. 1984. The in�uence ofltration on particulate phosphorus analysis. Verhandlungender Internationalen Vereinigung fur Theoretische undAngewandte Limnologie, 22: 155.

Blomqvist, S., Hjellström, and Sjösten, A. 1993.Interference from arsenate, �uoride and silicate whendetermining phosphate in water by thephosphoantimonylmolybdenum blue method. InternationalJournal of Environmental Analytical Chemistry, 54(1):31–43.

Bondoux, G., Jandik, P., and Jones, W.R. 1992. New approachto the analysis of low levels of anions in water. Journalof Chromatography A, 602(1–2): 79–88.

Broberg, O. and Persson, G. 1988. Particulate and dissolvedphosphorus forms in freshwater: Composition and analysis.Hydrobiologia, 170(1): 61–90.

Broberg, O. and Pettersson, K. 1988. Analyticaldetermination of orthophosphate in water. Hydrobiologia,170: 45–59.

Camarero, L. 1994. Assay of soluble reactive phosphorus atnanomolar levels in nonsaline waters. Limnology andOceanography, 39(3): 707–711.

Carpenter, N.G., Hodgson, A.W.E., and Pletcher, D. 1997.Microelectrode procedures for the determination ofsilicate and phosphate in waters—Fundamental studies.

Electroanalysis, 9(17): 1311–1317.

Cembella, A.D., Antia, N.J., and Taylor, F.J.R. 1986. Thedetermination of total phosphorus in seawater by nitrateoxidation of the organic component. Water Research, 20(9):1197–1199.

Chalmers, R.A. and Sinclair, A.G. 1965. Analyticalapplications of β-heteropoly acids: Part I. Determinationof arsenic, germanium and silicon. Analytica Chimica Acta,33: 384–390.

Chalmers, R.A. and Sinclair, A.C. 1966. Analyticalapplications of β-heteropoly acids: Part II. The in�uenceof complexing agents on selective formation. AnalyticaChimica Acta, 34: 412–418.

Chamberlain, W. and Shapiro, J. 1969. On the biologicalsigni�cance of phosphate analysis; comparison of standardand new methods with a bioassay. Limnology andOceanography, 14: 921–927.

Chang, S.Y., Tseng, W.-L., Mallipattu, S., and Chang, H.-T.2005. Determination of small phosphorus-containingcompounds by capillary electrophoresis. Talanta, 66(2):411–421.

Chen, Q. 2004. Determination of phytic acid and inositolpentakisphosphates in foods by high-performance ionchromatography. Journal of Agricultural and Food Chemistry,52: 4604–4613.

Chen, Z., De Marco, R., and Alexander, P.W. 1997.Flow-injection potentiometric detection of phosphatesusing a metallic cobalt wire ion-selective electrode.Analytical Communications, 34: 93–95.

Chen, Q.-C. and Li, B.W. 2003. Separation of phytic acidand other related inositol phosphates by high-performanceion chromatography and its applications. Journal ofChromatography A, 1018: 41–52.

Cheng, W.-L., Sue, J.-W., Chen, W.-C., Chang, J.-L., andZen, J.-M. 2010. Activated nickel platform forelectrochemical sensing of phosphate. Analytical Chemistry,82(3): 1157–1161.

Clarkin, C.M., Minear, R.A., Kim, S., and Elwood, J.W.1992. An HPLC postcolumn reaction system forphosphorus-speci�c detection in the complete separation of

inositol phosphate congeners in aqueous samples.Environmental Science and Technology, 26(1): 199–204.

Clementson, L.A. and Wayte, S.E. 1992. The effect of frozenstorage of open-ocean seawater samples on theconcentration of dissolved phosphorus and nitrate, WaterResearch 26: 1171–1176.

Coetzee, J.F. and Gardner, C.W 1986. Determination ofsulphate, ortho-phosphate, and triphosphate ions by �owinjection analysis with the lead ion selective electrode asdetector. Analytical Chemistry, 58(3): 608–611.

Colina, M. and Gardiner, P.H.E. 1999. Simultaneousdetection of total nitrogen, phosphorus and sulphur bymeans of microwave digestion and ion chromatography.Journal of Chromatography A, 847(1–2): 285–290.

Colombini, S., Polesello, S., and Valsecchi, S. 1998. Useof column-switching ion chromatography for thesimultaneous determination of total nitrogen and phosphorusafter microwave assisted persulphate digestion. Journal ofChromatography A, 822(1): 162–166.

Conrath, N., Gründig, B., Hüwel, St., and Cammann, K. 1995.A novel enzyme sensor for the determination of inorganicphosphate. Analytica Chimica Acta, 309: 47–52.

Crouch, S.R. and Malmstadt, H.V. 1967. Mechanisticinvestigation of molybdenum blue for determination ofphosphate. Analytical Chemistry, 39(10): 1084–1089.

Dahllöf, I., Svensson, O., and Torstensson, C. 1997.Optimising the determination of nitrate and phosphate insea water with ion chromatography using experimentaldesign. Journal of Chromatography A, 771(1–2): 163–168.

Daniel, A., Birot, D., Lehaitre, M., and Poncin, J. 1995.Characterization and reduction of interferences inow-injection analysis for the in situ determination ofnitrate and nitrite in sea water. Analytica Chimica Acta,308(1–3): 413–424.

Davey, D.E., Mulcahy, D.E., and O’Connell, G.R. 1990.Flow-injection determination of phosphate with a cadmiumion-selective electrode. Talanta, 37(7): 683–687.

De Marco, R., Clarke, G., and Pejcic, B. 2007.Ion-selective electrode potentiometry in environmentalanalysis. Electroanalysis, 19(19–20): 1987–2001.

Dellien, I. and Johansson, L.A. 1981. A comment on theSwedish standard method for the determination of totalphosphorus concentration in water. Vatten, 37(4): 349–353.

Denigès, G. 1920. Réaction de coloration extrêmementsensible des phosphates et des arseniates. Sesapplications. Comptes Rendus Hebdomadaires des Séances del’Academie des Sciences, 171: 802.

Dick, W.A. and Tabatabai, M.A. 1977. Determination oforthophosphate in aqueous solutions containing labileorganic and inorganic phosphorus compounds. Journal ofEnvironmental Quality, 6(1): 82–85.

Dong, S. and Dasgupta, P.K. 1990. Automated determinationof total phosphorus in aqueous samples. Talanta, 38(2):133–137.

Dore, J.E., Houlihan, T., Hebel, D.V., Tien, G., Tupas, L.,and Karl, D.M. 1996. Freezing as a method of samplepreservation for the analysis of dissolved inorganicnutrients in seawater, Marine Chemistry 53(3–4): 173–185.

Downes, M.T., 1978. An automated determination of lowreactive phosphorus concentrations in natural waters inthe presence of arsenic, silicon and mercuric chloride.Water Research, 12(10): 743–745.

d’Urso, E.M. and Coulet, P.R. 1990. Phosphate-sensitiveelectrode: A potential sensor for environmental control.Analytica Chimica Acta, 239: 1–5.

Ellis, P.S., Lyddy-Meaney, A.J., Worsfold, P.J., andMcKelvie, I.D. 2003. Multi-re�ection photometric �ow cellfor use in �ow injection analysis of estuarine waters.Analytica Chimica Acta, 499(1–2): 81–89.

Estela, J.M. and Cerdá, V. 2005. Flow analysis techniquesfor phosphorus: An overview. Talanta, 66: 307–331.

Fishman, M.J., Schroder, L.J., and Shockley, M.W. 1986.Evaluation of methods for preservation of water samplesfor nutrients analysis. International Journal ofEnvironmental Studies, 26: 231–238.

Fitzgerald, G.P. and Faust, S.L. 1967. Effect of watersample preservation methods on the release of phosphorusfrom algae. Limnology and Oceanography, 12: 332–334.

Fogg, A.G. and Bsebsu, N.K. 1981. Differential-pulsevoltammetric determination of phosphates asmolybdovanadophosphate at a glassy carbon electrode andassessment of eluents for the �ow-injection voltammetricdetermination of phosphate, silicate, arsenate andgermanate. Analyst, 106: 1288–1295.

Fogg, A.G. and Bsebsu, N.K. 1982. Flow injectionvoltammetric determination of phosphate: Direct injectionof phosphate into molybdate reagent. Analyst, 107: 566–570.

Fogg, A.G., Cripps, G.C., and Birch, B.J. 1983. Static andow injection voltammetric determination of total phosphateand soluble silicate in commercial washing powders at aglassy carbon electrode. Analyst, 108: 1485–1489.

Frank, C. and Schroeder, F. 2007. Using sequentialinfection analysis to improve system and data reliabilityof online methods: Determination of ammonium and phosphatein coastal waters. Journal of Automated Methods andManagement in Chemistry, Article ID 49535, 6p.

Frank, C., Schroeder, F., Ebinghaus, R., and Ruck, W. 2006.Using sequential injection analysis for fast determinationof phosphate in coastal waters. Talanta, 70(3): 513–517.

Freeman, P.R., McKelvie, I.D., and Hart, B. 1990.Flow-injection technique for the determination of lowlevels of phosphorus in natural waters. Analytica ChimicaActa, 234: 409–416.

Fusheng, W., Zhongxiang, W., and Enjiang, T. 1989. Thedetermination of trace amounts of phosphate in naturalwater by �ow injection �uorimetry. Analytical Letters,22(15): 3081–3090.

Gales, M.E., Julian, E.C., and Kroner, R.C. 1966. Methodfor quantitative determination of total phosphorus inwater. Journal of the American Water Works Association, 58:1363–1368.

Ganjali, M.R., Mizani, F., and Salavati-Niasari, M. 2003.Novel monohydrogenphosphate sensor based on vanadylsalophen. Analytica Chimica Acta, 481(1): 85–90.

Ganjali, M.R., Norouzi, P., Ghom,i, M., andSalavati-Niasari, M. 2006. Highly selective and sensitivemonohydrogen phosphate membrane sensor based on molybdenumacetylacetonate. Analytica Chimica Acta, 567: 196–201.

Gardolinski, P.C.F.C., Hanrahan, G., Achterberg, E.P.,Gledhill, M., Tappin, A.D., House, W.A., and Worsfold,P.J. 2001. Comparison of sample storage protocols for thedetermination of nutrients in natural waters. WaterResearch, 35(15): 3670–3678.

Gentle, B.S., Ellis, P.S., Faber, P.A., Grace, M.R., andMcKelvie, I.D. 2010. A compact portable �ow analysissystem for the rapid determination of total phosphorus inestuarine and marine waters. Analytica Chimica Acta, 674:117–122.

Glazier, S.A. and Arnold, M.A. 1989. Progress inphosphate-selective electrode development. AnalyticalLetters, 22(5): 1075–1088.

Golimowski, J. and Golimowska, K. 1996. UV-photooxidationas pretreatment step in inorganic analysis ofenvironmental samples. Analytica Chimica Acta, 325(3):111–133.

Golterman, H.L. 1960. Studies on the cycle of elements infresh water. Acta Botanica Neerlandica, 9: 1–58.

Grace, M., Udnan, Y., McKelvie, I.D., Jakmunee, J., andGrudpan, K. 2006. On-line removal of sul�de interference inphosphate determination by �ow injection analysis.Environmental Chemistry, 3(1): 19–25.

Gray, S.M., Hanrahan, G., McKelvie, I.D., Tappin, A., Tse,F., and Worsfold, P. 2006. Flow analysis techniques forspatial and temporal measurement of nutrients in aquaticsystems. Environmental Chemistry, 3: 3–18.

Guanghan, L., Xiaogang, W., Yanhua, L., and Shenlai, Y.1999. Studies on 1:12 phosphomolybdic heteropoly anion �lmmodi�ed carbon paste electrode. Talanta, 49: 511–515.

Guo, Z.-X., Cai, Q., and Yang, Z. 2005. Determination ofglyphosate and phosphate in water by ionchromatography–inductively coupled plasma mass spectrometrydetection. Journal of Chromatography A, 1100(2): 160–167.

Hall, G.E.M., Bonham-Carter, G.F., Horowitz, A.J., Lum, K.,Lemieux, C., Quemerais, B., and Garbarino, J.R. 1996. Theeffect of using different 0.45 μm �lter membranes on‘dissolved’ element concentrations in natural waters.Applied Geochemistry, 11: 243–249.

Halliwell, D.J., McKelvie, I.D., Hart, B.T., and Dunhill,

R.H. 1996. Separation and detection of condensed phosphatesin waste waters by ion chromatography coupled with �owinjection. Analyst, 121: 1089–1093.

Hansen, E.H. and Miró, M. 2007. How �ow-injection analysis(FIA) over the past 25 years has changed our way ofperforming chemical analyses. Trends in AnalyticalChemistry, 26(1): 18–26.

Hara, H. and Kusu, S. 1992. Continuous-�ow determination ofphosphate using a lead ion-selective electrode. AnalyticaChimica Acta, 261(1–2): 411–417.

Hart, B.T., Freeman, P., McKelvie, I.D., Pearse, S., andRoss, D.G. 1991. Phosphorus spiralling in Myrtle Creek,Victoria, Australia. Verhandlungen InternationaleVereinigung für Theoretische und Angewandte Limnologie,24(3): 2065–2070.

Hassenteufel, W., Jagitsch, R., and Koczy, F.F. 1963.Impregnation of glass surface against sorption of phosphatetraces. Limnology and Oceanography, 8(2): 152–156.

Haygarth, P.M., Ashby, C.D., and Jarvis, S.C. 1995.Short-term changes in the molybdate reactive phosphorus ofstored soil waters. Journal of Environmental Quality,24(6): 1133–1140.

Heckenberg, A.L. and Haddad, P.R. 1984. Determination ofinorganic anions at parts per billion levels usingsingle-column ion chromatography without samplepreconcentration. Journal of Chromatography A, 299:301–305.

Henriksen, A. 1970. Determination of total nitrogen,phosphorus and iron in freshwater by photo-oxidation withultraviolet radiation. Analyst, 95: 601–605.

Hight, S.C., Bet-Pera, F., and Jaselskis, B. 1982.Differential pulse polarographic determination oforthophosphate in aqueous media. Talanta, 29(9): 721–724.

Hinkamp, S. and Schwedt, G. 1990. Determination of totalphosphorus in waters with amperometric detection bycoupling of �ow-injection analysis with continuousmicrowave oven digestion. Analytica Chimica Acta, 236:345–350.

Hoigné, J. and Bader, H. 1978. Ozone and hydroxylradical-initiated oxidations of organic and organometallic

trace impurities in water. In Organometallics andOrganometalloid. Occurrence and Fate in the Environment.ed. F.E. Brinckman, and J.M. Bellama. American ChemicalSociety, Washington, DC.

House, W.A., Casey, H., and Smith, S. 1986. Factorsaffecting the coprecipitation of inorganic phosphate withcalcite in hardwaters-II recirculating experimental streamsystem. Water Research, 20(7): 923–927.

Huang, Y., Mou, S.-F., Liu, K.-N., and Rivielo, J.M. 2000.Simpli�ed column-switching technology for thedetermination of traces of anions in the presence of highconcentrations of other anions. Journal of ChromatographyA, 884(1–2): 53–59.

Hüwel, S., Haalck, L., Conrath, N., and Spener, F. 1997.Maltose phosphorylase from Lactobacillus brevis:Puri�cation, characterization, and application in abiosensor for ortho-phosphate. Enzyme and MicrobialTechnology, 21: 413–420.

Jambunathan, S., Dasgupta, P.K., Wolcott, D.K., Marshall,G.D., and Olson, D.C. 1999. Optical �ber coupled lightemitting diode based absorbance detector with a re�ective�ow cell. Talanta, 50(3): 481–490.

Janse, T.A.H.M., Van der Wiel, P.F.A., and Kateman, G.1983. Experimental optimization procedures for thedetermination of phosphate by �ow-injection analysis.Analytica Chimica Acta, 155: 89–102.

Jarvie, H.P., Withers, P.J.A., and Neal, C. 2002. Review ofrobust measurement of phosphorus in river water: Sampling,storage, fractionation and sensitivity. Hydrobiology andEarth System Sciences, 6: 113–131.

Jiang, S.-J. and Houk, R.S. 1988. Inductively coupledplasma mass spectrometric detection for phosphorus andsulphur compounds separated by liquid chromatography.Spectrochimica Acta Part B: Atomic Spectroscopy, 43(4–5):405–411.

Johnson, A.H., Bouldin, D.R., and Hergert, G.W. 1975. Someobservations concerning preparation and storage of streamsamples for dissolved inorganic phosphate analysis. WaterResources Research, 11(4): 559.

Johnson, K.S. and Petty, R.L. 1982. Determination ofphosphate in seawater by �ow injection analysis with

injection of reagent. Analytical Chemistry, 54(7):1185–1187.

Johnson, K.S., Reimers, C., and DeGrandpre, M. 2000. Insitu chemical analysis. In The Future of Ocean Chemistryin the U.S. ed. L. Mayer, and E. Druffel, 89–95. UCAR,Boulder, CA.

Jolley, D., Maher, W., and Cullen, P. 1998. Rapid methodfor separating and quantifying orthophosphate andpolyphosphates: Application to sewage samples. WaterResearch, 32(3): 711–716.

Jon´ca, J., Férnandez, V.L., Thouron, D., Paulmier, A.,Graco, M., and Garçon, V. 2011. Phosphate determination inseawater: Towards an autonomous electrochemical method.Talanta, 87: 161–167.

Juday, C., Birge, E.A., Kemmerer, G.I., and Robinson, R.J.1927. Phosphorus content of lake waters of northeasternWisconsin. Transactions of the Wisconsin Academy ofSciences, Arts and Letters, XXIII: 233–248.

Kan, M., Nasu, T., and Taga, M. 1991. Fluorophotometricdetermination of phosphate after collection on a membranelter as ion pair of molybdophosphate with rhodamine 6G.Analytical Sciences, 7: 87–91.

Kaniansky, D., Zelensky, I., Hybenova, A., and Onuska, F.I.1994. Determination of chloride, nitrate, sulphate,nitrite, �uoride, and phosphate by on line coupledcapillary isotachophoresis–capillary zone electrophoresiswith conductivity detection. Analytical Chemistry, 66(23):4258–4264.

Karl, D.M. and Tien, G. 1992. Magic: A sensitive andprecise method for measuring dissolved phosphorus inaquatic environments. Limnology and Oceanography, 37:105–116.

Katsu, T. and Kayamoto, T. 1992. Potentiometricdetermination of inorganic phosphate using asalicylatesensitive membrane electrode and an alkalinephosphatase enzyme. Analytica Chimica Acta, 265(1): 1–4.

Kattner, G. 1999. Storage of dissolved inorganic nutrientsin seawater: Poisoning with mercuric chloride, MarineChemistry, 67: 61–66.

Kérouel, R. and Aminot, A. 1996. Model compounds for the

determination of organic and total phosphorus dissolved innatural waters. Analytica Chimica Acta, 318: 385–390.

Kirkwood, D.S. 1992. Stability of solutions of nutrientsalts during storage. Marine Chemistry, 38: 151–164.

Klingaman, E.D. and Nelson, D.W. 1976. Evaluations ofmethods for preserving the levels of soluble inorganicphosphorus and nitrogen in un�ltered water samples. Journalof Environmental Quality, 5: 42–46.

Kolthoff, I.M. and Miller, I.K. 1951. The chemistry ofpersulphate. I. The kinetics and mechanism of thedecomposition of the persulphate ion in aqueous medium.Journal of the American Chemical Society, 73: 3055–3059.

Kwan, R.C.H., Leung, H.F., Hon, P.Y.T., Barford, J.P., andRenneberg, R. 2005. A screen-printed biosensor usingpyruvate oxidase for rapid determination of phosphate insynthetic wastewater. Applied Microbiology andBiotechnology, 66: 377–383.

Lacy, N., Christian, G.D., and Ruzicka, J. 1990.Enhancement of �ow injection optosensing by sorbentextraction and reaction rate measurement. AnalyticalChemistry, 62(14): 1482–1490.

Lambert, D. and Maher, W. 1995. An evaluation of theef�ciency of the alkaline persulphate digestion method forthe determination of total phosphorus in turbid waters.Water Research, 29(1): 7–9.

Lambert, D., Maher, W., and Hogg, I. 1992. Changes inphosphorus fractions during storage of lake water. WaterResearch, 26(5): 645–648.

Le Goff, T., Braven, J., Ebdon, L., and Schole�eld, D.2004. Phosphate-selective electrodes containing immobilisedionophores. Analytica Chimica Acta, 510(2): 175–182.

Lee, T., Barg, E., and Lal, D. 1992. Techniques forextraction of dissolved inorganic and organic phosphorusfrom large volumes of sea water. Analytica Chimica Acta,260(1): 113–121.

Liang, Y., Yuan, D., Li, Q., and Lin, Q. 2006. Flowinjection analysis of ultratrace orthophosphate in seawaterwith solid-phase enrichment and luminol chemiluminescencedetection. Analytica Chimica Acta, 571: 184–190.

Liang, Y., Yuan, D., Li, Q., and Lin, Q. 2007. Flowinjection analysis of nanomolar level orthophosphate inseawater with solid phase enrichment and colorimetricdetection. Marine Chemistry, 103: 122–130.

Lin, X., Wu, X., Xie, Z., and Wong, K.-Y. 2006. PVC matrixmembrane sensor for �uorescent determination of phosphate.Talanta, 70(1): 32–36.

Liu, H. and Dasgupta, P.K. 1994. Dual-wavelength photometrywith light emitting diodes. Compensation of refractiveindex and turbidity effects in �ow-injection analysis.Analytica Chimica Acta, 289(3): 347–353.

Liu, J., Masuda, Y., Sekido, E., Wakida, S.-I., and Hiiro,K. 1989. Phosphate ion-sensitive coated-wire/�eldeffecttransistor electrode based on cobalt phthalocyanine withpolyvinyl(chloride) as the membrane matrix. AnalyticaChimica Acta, 224: 145–151.

Low, G.K.-C. and Matthews, R. 1990. Flow-injectiondetermination of organic contaminants in water using anultraviolet-mediated titanium dioxide �lm reactor.Analytica Chimica Acta, 231: 13–20.

Lu, Z., Liu, Y., Barreto, V., Pohl, C., Avdalovic, N.,Joyce, R., and Newton, B. 2002. Determination of anions attrace levels in power plant water samples by ionchromatography with electrolytic eluent generation andsuppression. Journal of Chromatography A, 956(1–2):129–138.

Lyddy-Meaney, A.J., Ellis, P.S., Worsfold, P.J., Butler,E.C.V., and McKelvie, I.D. 2002. A compact �ow injectionanalysis system for surface mapping of phosphate in marinewaters. Talanta, 58(6): 1043–1053.

Ma, J., Yuan, D., and Liang, Y. 2008. Sequential injectionanalysis of nanomolar soluble reactive phosphorus inseawater with HLB solid phase extraction. Marine Chemistry,111: 151–159.

Ma, J., Yuan, D., Zhang, M., and Liang, Y. 2009. Reverseow injection analysis of nanomolar soluble reactivephosphorus in seawater with a long path length liquidwaveguide capillary cell and spectrophotometric detection.Talanta, 78: 315–320.

Maher, W., Krikowa, F., Wruck, D., Louie, H., Nguyen, T.,and Huang, W.Y. 2002. Determination of total phosphorus and

nitrogen in turbid waters by oxidation with alkalinepotassium peroxodisulfate and low pressure microwavedigestion, autoclave heating or the use of closed vesselsin a hot water bath: Comparison with Kjeldahl digestion.Analytica Chimica Acta, 463(2): 283–293.

Maher, W. and Woo, L. 1998. Procedures for the storage anddigestion of natural waters for the determination oflterable reactive phosphorus, total �lterable phosphorusand total phosphorus. Analytica Chimica Acta, 375: 5–47.

Manzoori, J.L., Miyazaki, A., and Tao, H. 1990. Rapiddifferential �ow injection of phosphorus compounds inwastewater by sequential spectrophotometry and inductivelycoupled plasma atomic emission spectrometry using a vacuumultraviolet emission line. Analyst, 115: 1055–1058.

Matsunaga, T., Suzuki, T., and Tomoda, R. 1984.Photomicrobial sensors for selective determination ofphosphate. Enzyme and Microbial Technology, 6: 355- 358.

Matthews, R.W., Abdullah, M., and Low, G.K.-C. 1990.Photocatalytic oxidation for total organic carbon analysis.Analytica Chimica Acta, 233: 171–179.

McDowell, M.M., Ivey, M.M., Lee, M.E., Firpo, V.V.D.,Salmassi, T.M., Khachikian, C.S., and Foster, K.L. 2004.Detection of hypophosphite, phosphite, and orthophosphatein natural geothermal water by ion chromatography. Journalof Chromatography A, 1039(1–2): 105–111.

McKelvie, I.D. 2005. Separation, preconcentration andspeciation of organic phosphorus in environmental samples.In Organic Phosphorus in the Environment, ed. B.L. Turner,E. Frossard, and D.S. Baldwin, 1–20. CAB International,Wallingford, UK.

McKelvie, I.D., Hart, B.T., Cardwell, T.J., and Cattrall,R.W. 1989. Spectrophotometric determination of dissolvedorganic phosphorus in natural waters using in-linephoto-oxidation and �ow injection. Analyst, 114:1459–1463.

McKelvie, I.D., Peat, D.M.W., and Worsfold, P.J. 1995.Techniques for the quanti�cation and speciation ofphosphorus in natural waters. Analytical ProceedingsIncluding Analytical Communications, 32: 437–445.

McKelvie, I.D., Peat, D.M.W., Matthews, G.P., and Worsfold,P.J. 1997. Elimination of the Schlieren effect in the

determination of reactive phosphorus in estuarine waters byow-injection analysis. Analytica Chimica Acta, 351(1–3):265–271.

Meek, S.E. and Pietrzyk, D.J. 1988. Liquid chromatographicseparation of phosphorus oxoacids and other anions withpost-column indirect �uorescence detection byaluminium-morin. Analytical Chemistry, 60(14): 1397–1400.

Menzel, D.W. and Corwin, N. 1965. The measurement of totalphosphorus in seawater based on the liberation oforganically bound fractions by persulfate oxidation.Limnology and Oceanography, 10: 280–282.

Mesquita, R.B.R., Ferreira, M.T.S.O.B., Tóth, I.V.,Bordalo, A.A., McKelvie, I.D., and Rangel, A.O.S.S. 2011.Development of a �ow method for the determination ofphosphate in estuarine and freshwaters—comparison of �owcells in spectrophotometric sequential injection analysis.Analytica Chimica Acta, 701: 15–22.

Mesquita, R.B.R. and Rangel, A.O.S.S. 2009. A review onsequential injection methods for water analysis. AnalyticaChimica Acta, 648: 7–22.

Morais, I.P.A., Tóth, I.V., and Rangel, A.O.S.S. 2005. Anoverview on �ow methods for the chemiluminescencedetermination of phosphorus. Talanta, 66: 341–347.

Morse, J.W., Hunt, M., Zullic, J., Mucci, A., and Mendez,T. 1982. A comparison of techniques for preservingdissolved nutrients in open ocean seawater samples. OceanScience and Engineering, 7: 75–110.

Motomizu, S. and Li, Z.-H. 2005. Trace and ultratraceanalysis methods for the determination of phosphorus by�ow-injection techniques. Talanta, 66: 332–340.

Motomizu, S. and Oshima, M. 1987. Spectrophotometricdetermination of phosphorus as orthophosphate based onsolvent extraction of the ion associate of molybdophosphatewith malachite green using �ow injection. Analyst, 112:295–300.

Motomizu, S., Oshima, M., and Ma, L. 1997. On-site analysisfor phosphorus and nitrogen in environmental water samplesby �ow-injection spectophotometric method. AnalyticalSciences, 13: 401.

Motomizu, S., Wakimoto, T., and Tôei, K. 1983a.

Spectrophotometric determination of phosphate in riverwaters with molybdate and malachite green. Analyst, 108:361–367.

Motomizu, S., Wakimoto, T., and Tôei, K. 1983b.Determination of trace amounts of phosphate in river waterby �ow-injection analysis. Talanta, 30(5): 333–338.

Motomizu, S., Wakimoto, T., and Tôei, K. 1984. Solventextraction–spectrophotometric determination of phosphatewith molybdate and malachite green in river water andseawater. Talanta, 31: 235–240.

Mousty, C., Cosnier, S., Shan, D., and Mu, S. 2001.Trienzymatic biosensor for the determination of inorganicphosphate. Analytica Chimica Acta, 443: 1–8.

Murphy, J. and Riley, J.P. 1956. The storage of sea-watersamples for the determination of dissolved inorganicphosphate. Analytica Chimica Acta, 14: 318–319.

Murphy, J. and Riley, J.P. 1962. A modi�ed single solutionmethod for the determination of phosphorus in naturalwaters. Analytica Chimica Acta, 27: 31–36.

Nakatani, N., Kozaki, D., Masuda, W., Nakagoshi, N.,Hasebe, K., Mori, M., and Tanaka, K. 2008. Simultaneousspectrophotometric determination of phosphate and silicateions in river water by using ion-exclusion chromatographicseparation and post-column derivatization. AnalyticaChimica Acta, 619: 110–114.

Nanny, M.A. and Minear, R.A. 1997. Characterization ofsoluble unreactive phosphorus using 31 P nuclear magneticresonance spectroscopy. Marine Geology, 139: 77–94.

Nanny, M.A., Kim, S., Gadomski, J.E., and Minear, R.A.1994. Aquatic soluble unreactive phosphorus: Concentrationby ultra�ltration and reverse osmosis membranes. WaterResearch, 28(6): 1355–1365.

Nasu, T. and Kant, M. 1988. Determination of phosphate,arsenate and arsenite in natural water byotationspectrophotometry and extraction-indirect atomicabsorption spectrometry using malachite green as anion-pair reagent. Analyst, 113: 1683–1686.

Neves, M.S.A.C., Souto, M.R.S., Tóth, I.V., Victal, S.M.A.,Drumond, M.C., and Rangel, A.O.S.S. 2008.Spectrophotometric �ow system using vanadomolybdophosphate

detection chemistry and a liquid waveguide capillary cellfor the determination of phosphate with improvedsensitivity in surface and ground water samples. Talanta,77: 527–532.

O’Toole, M., Lau, K.T., Shepherd, R., Slater, C., andDiamond, D. 2007. Determination of phosphate using a highlysensitive paired emitter-detector diode photometric �owdetector. Analytica Chimica Acta, 597: 290–294.

Orton, J.H. 1923. An account of investigations into thecause or causes of the unusual mortality among oysters inEnglish oyster beds during 1920 and 1921. FisheryInvestigations, Series II 6: 199.

Osmond, F. 1887. Sur une reaction pouvant servir em dosagecolorimetrique du phosphore dans les fonts, les aciers.Bulletin de la Société Chimique de Paris, 47: 745–748.

Parra, A., Ramon, M., Alonso, J., Lemos, S.G., Vieira,E.C., and Nogueira, A.R.A. 2005. Flow injectionpotentiometric system for the simultaneous determination ofinositol phosphates and phosphate: Phosphorus nutritionalevaluation on seeds and grains. Journal of Agricultural andFood Chemistry, 53: 7644–7648.

Patey, M.D., Achterberg, E.P., Rijkenberg, M.J.A., Statham,P.J., and Mowlem, M. 2010. Interferences in the analysisof nanomolar concentrations of nitrate and phosphate inoceanic waters. Analytica Chimica Acta, 673: 109–116.

Patey, M.D., Rijkenberg, M.J.A., Statham, P.J.,Stinchcombe, M.C., Achterberg, E.P., and Mowlem, M. 2008.Determination of nitrate and phosphate in seawater atnanomolar concentrations. Trends in Analytical Chemistry,27(2): 169- 182.

Pedersen, K.M., Kümmel, M., and Søeberg, H. 1990.Monitoring and control of biological removal of phosphorusand nitrogen by �ow-injection analysers in a municipalpilot-scale waste-water treatment plant. Analytica ChimicaActa, 238: 191–199.

Petersen, W., Petschatnikov, M., Schroeder, F., andColijin, F. 2003. Proceedings of the Third InternationalConference on EuroGOOS, 3–6 December 2002, Athens, Greece,p. 235.

Pfaff, J.D. 1993. USEPA Method 300.0: Determination ofInorganic Anions by Ion Chromatography, U.S. Environmental

Protection Agency, Cincinatti, OH 45268, p. 30.

Pichet, P., Jamati, K., and Goulden, P.D. 1979.Preservation du contenu en o-phosphate d’echantillons d’eaudu �euve Saint-Laurent. Water Research 13: 1187–1191.

Preechaworapun, A., Dai, Z., Xiang, Y., Chailapakul, O.,and Wang, J. 2008. Investigation of the enzyme hydrolysisproducts of the substrates of alkaline phosphatase inelectrochemical immunosensing. Talanta, 76: 424–431.

Quintana, J.C., Idrissi, L., Palleschi, G., Albertano, P.,Amine, A., El Rhazi, E., and Moscone, D. 2004.Investigation of amperometric detection of phosphateapplication in seawater and cyanobacterial bio�lm samples.Talanta, 63: 567–574.

Rigler, F.H. 1968. Further observations inconsistent withthe hypothesis that molybdenum blue method measuresorthophosphate in lake water. Limnology and Oceanography,13: 7–13.

Rimmelin, P. and Moutin, T. 2005. Re-examination of theMAGIC method to determine low orthophosphate concentrationin seawater. Analytica Chimica Acta, 548: 174–182.

Ron Vaz, M.D., Edwards, A.C., Shand, C.A., and Cresser, M.1992. Determination of dissolved organic phosphorus in soilsolutions by an improved automated photo-oxidationprocedure. Talanta, 39(11): 1479–1487.

Rowland, A.P. and Haygarth, P.M. 1997. Determination oftotal dissolved phosphorus in soil solutions. Journal ofEnvironmental Quality, 26(2): 410–415.

Ruiz-Calero, V. and Galceran, M.T. 2005. Ion chromatographyof phosphorus species: A review. Talanta, 66: 376–410.

Schubert, F., Renneberg, R., Scheller, F.W., and Kirsten,L. 1984. Plant tissue hybrid electrode for determination ofphosphate and �uoride. Analytical Chemistry, 56(9):1677–1682.

Sjösten, A. and Blomqvist, S. 1997. In�uence of phosphateconcentration and reaction temperature when using themolybdenum blue method for determination of phosphate inwater. Water Research, 31(7): 1818–1823.

Skjemstad, J.O. and Reeve, R. 1978. The automaticdetermination of ppb levels of ammonia, nitrate plus

nitrite, and phosphate in water in the presence of addedmercury (II) chloride. Journal of Environmental Quality,7(1): 137–141.

Solórzano, L. and Sharp, J.H. 1980. Determination of totaldissolved phosphorus and particulate phosphorus in naturalwaters. Limnology and Oceanography, 25(4): 754–758.

Solórzano, L. and Strickland, J.D. 1968. Polyphosphate inseawater. Limnology and Oceanography, 13: 515–518.

Stainton, M.P. 1980. Errors in molybdenum blue methodsdetermining orthophosphate in freshwaters. CanadianJournal of Fisheries and Aquatic Science, 37(3): 472–478.

Standards Australia and Standards New Zealand,Australian/New Zealand standard ® . 1998. Waterquality-sampling. Part 1: Guidance on the design ofsampling programs, sampling techniques and the preservationand handling of samples, Standards Australia and StandardsNew Zealand.

Stephens, K. 1963. Determination of low phosphateconcentrations in lake and marine waters. Limnology andOceanography, 8: 361–362.

Stevens, R.J. and Stewart, B.M. 1982. Concentration,fractionation and characterisation of soluble organicphosphorus in river water entering lough neagh. WaterResearch, 16: 1507–1519.

Stewart, B.M., Jordan, C., and Burns, D.T. 1991. Reverseosmosis as a concentration technique for soluble organicphosphorus in fresh water. Analytica Chimica Acta, 244:269–274.

Stockner, J.G., Klut, M.E., and Cochlan, W.P. 1990. Leakylters: A warning to aquatic ecologists. Canadian Journalof Fisheries and Aquatic Science, 47(1): 16–23.

Sugawara, K. and Kanamori, S. 1961. Spectrophotometricdetermination of submicrogram quantities of orthophosphatein natural waters. Bulletin of the Chemical Society ofJapan, 34(2): 258–261.

Tarapchak, S.J. 1983. Soluble reactive phosphorusmeasurements in lake water: Evidence for molybdateenhancedhydrolysis. Journal of Environmental Quality, 12(1):105–108.

Tue-Ngeun, O., Ellis, P., McKelvie, I.D., Worsfold, P.,Jakmunee, J., and Grudpan, K. 2005. Determination ofdissolved reactive phosphorus (DRP) and dissolved organicphosphorus (DOP) in natural waters by the use of rapidsequenced reagent injection �ow analysis. Talanta, 66:453–460.

Udnan, Y., McKelvie, I.D., Grace, M.R., Jakmunee, J., andGrudpan, K. 2005. Evaluation of on-line preconcentrationand �ow-injection amperometry for phosphate determinationin fresh and marine waters. Talanta, 66(2): 461–466.

USEPA, Method 365.1. 1993. Determination of phosphorus bysemi-automated colorimetry, Revision 2.0 ed.,Environmental Monitoring Systems Laboratory, Of�ce ofResearch and Development, U.S. Environmental ProtectionAgency, Cincinnati, OH 45268.

USEPA, Method 365.3. 1978. Phosphorus, all forms(colorimetric, ascorbic acid, two reagent), Of�ce ofResearch and Development, U.S. Environmental ProtectionAgency, Cincinnati, OH 45268.

van den Hoop, M.A.G.T., and van Staden, J.J. 1997.Determination of phosphate in natural waters by capillaryelectrophoresis: In�uence of solution composition onmigration time and response. Journal of Chromatography A,770(1–2): 321–328.

van Staden, J.F. 1993. Behaviour of silver orthophosphateas the electroactive sensor of a coated tubular solidstatephosphate-selective electrode in �ow injection analysis(FIA). South African Journal of Chemistry, 46: 14–19.

Varma, A. 1991. Handbook of Inductively Coupled PlasmaAtomic Emission Spectroscopy, CRC Press, Boca Raton, FL.

Vigneswaran, S. and Ben Ain, R. (eds.). 1989. Water,Wastewater and Sludge Filtration, CRC Press, Boca Raton,FL p. 281.

Villalba, M.M., McKeegan, K.J., Vaughan, D.H., Cardosi,M.F., and Davis, J. 2009. Bioelectroanalyticaldetermination of phosphate: A review. Journal of MolecularCatalysis B: Enzymatic, 59: 1–8.

Watanabe, E., Endo, H., and Toyama, K. 1988. Determinationof phosphate ions with an enzyme sensor system.Biosensors, 3: 297–306.

Wehde, H., Petersen, W., Petschatnikov, M., Schroeder, F.,and Colijin, F. 2003. ICES Annual Science Conference,24–27 September 2003, Tallin, Estonia.

Weil-Malherbe, H. and Green, R.H. 1951. The catalyticeffect of molybdate on the hydrolysis of organic phosphatebonds. Biochemical Journal, 49(3): 286–292.

Wetzel, R.A., Anderson, C.L., Schleicher, G., and Crook, D.1979. Determination of trace level ions by ionchromatography with concentrator columns. AnalyticalChemistry, 51(9): 1532–1535.

Wetzel, R.G. 1983. Limnology. Saunders College Publishing,Philadelphia, PA, p. 753.

Williams, K.E., Haswell, S.J., Barclay, D.A., and Preston,G. 1993. Determination of total phosphate in waste watersby on-line microwave digestion incorporating colorimetricdetection. Analyst, 118: 245–248.

Wollemberg, U., Neumann, B., Riedel, K., and Scheller, F.W.1994. Enzyme and microbial sensors for phosphate, phenols,pesticides and peroxides. Freseniu’s Journal of AnalyticalChemistry, 348(8–9): 563–566.

Woo, L. and Maher, W. 1995. Determination of phosphorus inturbid waters using alkaline potassium peroxodisulphatedigestion. Analytica Chimica Acta, 315(1–2): 123–135.

Worsfold, P.J., Clinch, J.R., and Casey, H. 1987.Spectrophotometric �eld monitor for water qualityparameters. The determination of phosphate. AnalyticaChimica Acta, 197: 43–50.

Worsfold, P.J., Gimbert, L.J., Mankasingh, U., Omaka, O.N.,Hanrahan, G., Gardolinski, P.C.F.C., Haygarth, P.M.,Turner, B.L., Keith-Roach, M.J. and McKelvie, I.D. 2005.Sampling, sample treatment and quality assurance issues forthe determination of phosphorus species in natural watersand soils, Talanta 66: 273–293.

Yamane, T. 1995. The use of large sample volume injectionin �ow injection analysis and its application. Journal ofFlow Injection Analysis, 12(2): 176–184.

Yamane, T. and Saito, M. 1992. Simple approach forelimination of blank peak effects in �ow-injection analysisof samples containing trace analyte and an excess ofanother solute. Talanta, 39(3): 215–219.

Yao, T., Satomura, M., and Nakahara, T. 1994. Simultaneousdetermination of sul�te and phosphate in wine by means ofimmobilized enzyme reactions and amperometric detection ina �ow-injection system. Talanta, 41(12): 2113–2119.

Yaqoob, M., Nabi, A., and Worsfold, P.J. 2004.Determination of nanomolar concentrations of phosphate infreshwaters using �ow injection with luminolchemiluminescence detection. Analytica Chimica Acta,510(2): 213–218.

Yokoyama, Y., Danno, T., Haginoya, M., Yaso, Y., and Sato,H. 2009. Simultaneous determination of silicate andphosphate in environmental waters using pre-columnderivatization ion-pair liquid chromatography. Talanta,79: 308–313.

Yoza, N., Hirano, H., Baba, Y., and Ohashi, S. 1985.Characterization of enzymatic hydrolysis of inorganicpolyphosphates by �ow injection analysis andhigh-performance liquid chromatography. Journal ofChromatography A, 325: 385393.

Zagatto, E.A.G., Arruda, M.A.Z., Jacintho, A.O., andMattos, I.L. 1990. Compensation of the Schlieren effect inow-injection analysis by using dual-wavelengthspectrophotometry. Analytica Chimica Acta, 234: 153–160.

Zaugg, W.S. and Knox, R.J. 1966. Indirect determination ofinorganic phosphate by atomic absorption spectrophotometricdetermination of molybdenum. Analytical Chemistry, 38(12):1759–1760.

Zhang, J.-Z. and Chi, J. 2002. Automated analysis ofnanomolar concentrations of phosphate in natural waterswith liquid waveguide. Environmental Science andTechnology, 36(5): 1048–1053.

Zhou, M. and Struve, D.M. 2004. The effects ofpost-persulfate-digestion procedures on total phosphorusanalysis in water. Water Research, 38(18): 3893–3898.

Zimmermann, C.F. and Keefe, C.W. 1997. Method 365.5.Determination of orthophosphate in estuarine and coastalwaters by automated colorimetric analysis. NationalExposure Research Laboratory, Of�ce of Research andDevelopment, U.S. Environmental Protection Agency,Cincinnati, OH 45268. Section VI Cyanides, Asbestos,Metals, and Si-Compounds

13 Chapter 13 - Cyanides

1. L.N. Dene�eld, J.F. Judkins, and B.L. Weand, ProcessChemistry for Water and Wastewater Treatment,Prentice-Hall, Inc, Englewood Cliffs, NJ, 1982.

2. W.H. Fuller, Cyanide and the Environment, Vol. 1,Colorado State University, Fort Collins, CO, 1984.

3. M. Barclay, A. Hart, C.J. Knowles, J.C.L. Meeussen, andV.A. Tett, Biodegradation of metal cyanides by mixed andpure cultures of fungi. Enzyme and Microbial Technology,23(5), 1998, 321–330.

4. E.J. Serfass, R.B. Freeman, B.F. Dodge, and W. Zabban,Analytical methods for the determination of cyanides inplating wastes and in ef�uents from treatment processes.Plating, 39, 1952, 267–274.

5. R.F. Roberts and B. Jackson, The determination of smallamounts of cyanide in the presence of ferrocyanide bydistillation under reduced pressure. Analyst, 96, 1971,209–212.

6. N.W. Hanson, Official Standardized and RecommendedMethods of Analysis, 2nd ed., The Society for AnalyticalChemistry, London, 1973.

7. W. John Williams, Handbook of Anion Determination,Butterworths, London, 1979.

8. L.S. Bark and H.G. Higson, A review of the methodsavailable for the detection and determination of smallamounts of cyanide. Analyst, 88, 1963, 751–760.

9. J. Ma and P.K. Dasgupta. Recent developments in cyanidedetection: A review. Analytica Chimica Acta, 673, 2010,117–125.

10. R.I. Botto, J.I. Herschel Karchmer, and M.W. Eastwood.Spectrophotometric determination of uncomplexed cyanideand thiocyanate in wastewater with p-phenylenediamine.Analytical Chemistry, 53, 1981, 2375–2376.

11. P.L. Bailey and E. Bishop. The determination ofcyanogen chloride. Analyst, 97, 1972, 691–695.

12. P. Kaur, S. Upadhyay, and V.K. Gupta.Spectrophotometric determination of hydrogen cyanide in airand biological �uids. Analyst, 112, 1987, 1681–1683.

13. H.G. Higson and L.S. Bark, A critical examination ofthe Aldridge method for determining small amount inef�uents. Analyst, 89, 1964, 338–345.

14. J.L. Lambert, J. Ramasamy, and J.V. Paukstelis, Stablereagents for the colorimetric determination of cyanide bymodi�ed Koenig reactions. Analytical Chemistry, 47, 1975,916–918.

15. S. Nagashima, Effect of thiocyanate on thepyridine-pyrazolone method for the spectrophotometricdetermination of cyanide. Analytical Chemistry, 55, 1983,2086–2089.

16. W.R. Premasiri, R.H. Clarke, S. Londhe, and M.E.Womble, Determination of cyanide in waste water bylow-resolution surface enhanced Raman spectroscopy onsol-gel substrates. Journal of Raman Spectroscopy, 32,2001, 919–922.

17. R.H. Clarke, S. Londhe, W.R. Premasiri, and M.E.Womble, Low-resolution Raman spectroscopy: Instrumentationand applications in chemical analysis. Journal of RamanSpectroscopy, 30, 1999, 827–832.

18. K.H. Yea, S. Lee, J.B. Kyong, J. Choo, E.K. Lee, S.W.Joo, and S. Lee. Ultra-sensitive trace analysis of cyanidewater pollutant in a PDMS micro�uidic channel usingsurface-enhanced Raman spectroscopy. Analyst, 130, 2005,1009–1011.

19. R. Badugu, J.R. Lakowicz, and C.D. Geddes. Fluorescenceintensity and lifetime-based cyanide sensitive probes forphysiological safeguard. Analytica Chimica Acta, 522, 2004,9–17.

20. R. Badugu, J.R. Lakowicz, and C.D. Geddes,Cyanide-sensitive �uorescent probes. Dyes and Pigments,64, 2005, 49–55.

21. B.R. Lakowicz and J.R. Geddes, Excitation and emissionwavelength ratiometric cyanide-sensitive probes forphysiological sensing. Analytical Biochemistry, 327, 2004,82–90.

22. K.S. Lee, H.-J. Kim, G.-H. Kim, I. Shin, and J.-I.Hong. Fluorescent chemodosimeter for selective detection ofcyanide in water. Organic Letters, 10, 2008, 49–51.

23. M.T. Fernández-Argüelles, J.M. Costa-Fernández, R.Pereiro, and A. Sanz-Medel. Room temperaturephosphorimetric determination of cyanide based on tripletstate energy transfer. Analytica Chimica Acta, 491, 2003,27–35.

24. W.J. Jin, J.M. Costa-Fernández, R. Pereiro, and A.Sanz-Medel, Photoactivated luminescent CdSe quantum dots assensitive cyanide probes in aqueous solutions. AnalyticaChimica Acta, 522, 2004, 1–8.

25. P. Nagaraja, M.S.H. Humar, H.S. Yathirajan, and J.S.Prakash, Novel sensitive spectrophotometric method for thetrace determination of cyanide in industrial ef�uent.Analytical Sciences, 18, 2002, 1027–1030.

26. G. Drochioiu, I. Mangalagiu, E. Avran, K. Popa, A.C.Dirtu, and I. Druta, Cyanide reaction with ninhydrin:Elucidation of reaction and interference mechanisms.Analytical Sciences, 20, 2004, 1443–1447.

27. G. Drochioiu, Fast and highly selective determinationof cyanide with 2,2-dihydroxy-1,3-indanedione. Talanta,56(6), 2002, 1163–1165.

28. G. Drochioiu, I. Mangalagiu, and V. Tataru, Speci�cspectrophotometric determination of hydrocyanic acid inthe environment. Analyst, 125, 2000, 939–941.

29. G. Drochioiu, G. Petrache, R. Cojocaru, and M. Murariu,Actes de Colloque Franco-Roumain de Chimie Appliquee,Bacau, Roumanie, 2000, 106–109.

30. S. Amlathe and V.K. Gupta, Spectrophotometricdetermination of hydrogen cyanide in air usingphloroglucinol Fresenius. Journal of Analytical Chemistry,338, 1990, 615–617.

31. G.G. Guilbault and D.N. Kramer, Ultra sensitive,speci�c method for cyanide using p-nitrobenzaldehyde ando-dinitrobenzene. Analytical Chemistry, 38, 1966, 834–836.

32. J.A.D. Fávero and M. Tubino, Semi-quantitative“spot-test” of cyanide. Analytical Science, 19,2003,1139–1143.

33. G.J. Willekens and A. Van Den Bulcke,Spectrophotometric determination of trace amounts of freecyanide in Prussian blue. Analyst, 104, 1979, 525–530.

34. Z. Yu-Rui, W. Fu-Sheng, and Y. Fang, Indirectspectrophotometric determination of cyanide by means ofthe colour reaction of silver with cadion 2B in presence oftriton X-100. Talanta, 30, 1983, 795–797.

35. M. Blanco and S. Maspoch, Determination of cyanide by ahighly sensitive indirect spectrophotometric method.Talanta, 31, 1984, 85–87.

36. D. Cacace, H. Ashbaugh, N. Kouri, S. Bledsoe, S.Lancaster, and S. Chalk. Spectrophotometric determinationof aqueous cyanide using a revised phenolphtalin method.Analytica Chimica Acta, 589, 2007, 37–141.

37. S.S.M. Hassan, M.S.A.A. Hamza, and A.E. Kelany. A novelspectrophotometric method for batch and �ow injectiondetermination of cyanide in electroplating wastewater.Talanta, 71, 2007, 1088–1095.

38. C.M. Zvinowanda, J.O. Okonkwo, and R.C. Gurira.Improved derivatisation methods for the determination offree cyanide and cyanate in mine ef�uent. Journal ofHazardous Materials, 158, 2008, 196–201.

39. D.L. Recalde-Ruiz, E. Andrés-García, and M.E.Díaz-García, Fluorimetric �ow injection and �owthroughsensing systems for cyanide control in waste water.Analyst, 125, 2000, 2100–2105.

40. A. Ipatov, M. Ivanov, S. Makarychev-Mikhailov, V.Kolodnikov, A. Legin, and Y. Vlasov, ination of cyanideusing �ow-injection multisensor system. Talanta, 58, 2002,1071–1076.

41. E. Miralles, D. Prat, R. Compăńo, and M. Granados,On-line gas-diffusion separation and �uorimetric detectionfor the determination of acid dissociable cyanide. Analyst,123, 1998, 217–220.

42. H.S. Weinberg and S.J. Cook, Segmented �ow injection,UV digestion, and amperometric detection for thedetermination of total cyanide in wastewater treatmentplant ef�uents. Analytical Chemistry, 74, 2002, 6055–6063.

43. M.A.B. Marin, R.C. da Silva, A. Lehmkuhl, J.B. Borba daSilva, E.M. Ganzarolli, and R.R.U. de Queiróz, Sistemaautomático para determinação seqüencial de cianeto livre etotal empregando eletrodo tubular íon-seletivo de membranahomogênea. Química Nova, 23(1), 2000, 23–29.

44. A.T. Haj-Hussein, Flow injection spectrophotometricdetermination of cyanide by the phenolphthalin method.Talanta, 44, 1997, 545–551.

45. M. Hangos-Mahr, E. Pungor, and V. Kuznecov, Separationand automatic spectrophotometric determination of lowconcentrations of cyanide in water. Analytica Chimica Acta,178, 1985, 289–298.

46. R.E. Santelli, A.S. Micelli, and M. de Fatima Batistade Carvalho. Automated �ow injection method for monitoringtotal cyanide concentration in petroleum re�nery ef�uentsusing ninhydrin as color reagent. Spectroscopy Letters,39, 2006, 605–6018.

47. L. Ketterer and M. Keusgen. Amperometric sensor forcyanide utilizing cyanidase and formate dehydrogenase.Analytica Chimica Acta 673, 2010, 54–59.

48. A. Tanaka, K. Deguchi, and T. Deguchi,Spectro�uorimetric determination of cyanide and thiocyanatebased on a modi�ed König reaction in a �ow-injectionsystem. Analytica Chimica Acta, 261, 1992, 281–286.

49. E. Miralles, D. Prat, R. Compañó, and M. Granados,Assessment of different �uorimetric reactions for cyanidedetermination in �ow systems. Analyst, 122, 1997, 553–558.

50. F.J. Andrade, M.B. Tudino, and O.E. Troccoli, Flowdissolution of 1,5-diphenylcarbazide for the determinationof chromium(VI). Analyst, 121, 1996, 613–616.

51. J.F. Van Staden and L.G. Kluever, Determination ofmanganese in natural water and ef�uent streams using asolid-phase lead(IV) dioxide reactor in a �ow-injectionsystem Analytica Chimica Acta, 350, 1997, 15–20.

52. K. Kargosha and M. Noroozifar, Solid-phase sodiumbismuthate as an oxidant in �ow injection analysis:Determination of manganese in ef�uent streams. AnalyticaChimica Acta, 413, 2000, 57–61.

53. J.L. Lambert and D.J. Manzo, Spectrophotometricdetermination of cyanide ion withtris(1,10-phenanthroline)iron(II) triiodide ion associationreagent. Analytical Chemistry, 40, 1968, 1354–1355.

54. A.T. Haj-Hussein, G.D. Christian, and J. Ruzicka,Determination of cyanide by atomic absorption using a �owinjection conversion method. Analytical Chemistry, 58,

1986, 38–42.

55. A.V.L. Gomez and J.M. Calatayud, Determination ofcyanide by a �ow injection analysis-atomic absorptionspectrometric method. Analyst, 123, 1998, 2103–2108.

56. M. Noroozifar, M. Khorasani-Motlagh, and S.-N.Hosseini, Flow injection analysis–�ame atomic absorptionspectrometry system for indirect determination of cyanideusing cadmium carbonate as a new solid-phase reactor.Analytica Chimica Acta, 528, 2005, 269–273.

57. A. Abbaspour, M. Asadi, A. Ghaffarinejad, and E.Safaei, A selective modi�ed carbon paste electrode fordetermination of cyanide usingtetra-3,4-pyridinoporphyrazinatocobalt(II). Talanta, 66,2005, 931–936.

58. A. Safavi, N. Maleki, and H.R. Shahbaazi, Indirectdetermination of cyanide ion and hydrogen cyanide byadsorptive stripping voltammetry at a mercury electrode.Analytica Chimica Acta, 503, 2004, 213–221.

59. M. Keusgen, J.P. Kloock, D.-T. Knobbeb, M. Jünger, I.Krest, M. Goldbach, W. Klein, and M.J. Schöning, Directdetermination of cyanides by potentiometric biosensors.Sensors and Actuators B-Chemical, 103, 2004, 380–385.

60. M.J. Schöning, O. Glück, M. Thust, and J.G. Webster,The Measurement, Instrumentation and Sensors Handbook, CRCPress, Boca Raton and Springer-Verlag, Heidelberg, 1999.

61. C. Giuriati, S. Cavalli, A. Gorni, D. Badocco, and P.Pastore, Ion chromatographic determination of sul�de andcyanide in real matrices by using pulsed amperometricdetection on a silver electrode. Journal of ChromotographyA, 1023, 2004, 105–112.

62. D. Shan, S. Cosnier, and C. Mousty, Subnanomolarcyanide detection at polyphenol oxidase/clay biosensors.Analytical Chemistry, 76(1), 2004, 178–183.

63. A. Amine, M. Alafandy, J.-M. Kauffmann, and M.N. Pekli,cyanide determination using an amperometric biosensor basedon cytochrome oxidase inhibition. Analytical Chemistry, 67,1995, 2822–2827.

64. M. Hofton, Continuous determination of free cyanide inef�uents using silver ion selective electrode.Environmental Science and Technology, 10(3), 1976, 277–280.

65. D.R. Canterford, Simultaneous determination of cyanideand sul�de with rapid direct current polarography.Analytical Chemistry, 47, 1975, 88–92.

66. A. Mirmohseni and A. Alipour, Construction of a sensorfor the determination of cyanide in industrial ef�uents: Amethod based on quartz crystal microbalance. Sensors andActuators B-Chemical, 84, 2002, 245–251.

67. D. Shan, C. Mousty, and S. Cosnier, Subnanomolarcyanide detection at polyphenol oxidase/clay biosensors.Analytical Chemistry, 76, 2004, 178–183.

68. A. Afkhami and N. Sarlak. A novel sensing phase basedon immobilization of methyl violet on a triacetylcellulosememebrane. Sensors and Actuators B 122, 2007, 437–441.

69. A. Woznica, A. Nowak, J. Karczewski, C. Klis, and T.Bernas. Automatic biodetector of water toxicity (ABTOW) asa tool for examination of phenol and cyanide contaminatedwater. Chemosphere 81, 2010, 767–772.

70. P. Beran and S. Bruckenstein, Pneumatoamperometricdetermination of nanogram amounts of cyanide. AnalyticalChemistry, 52(8), 1980, 1183–1186.

71. Y. Liu, R.D. Rocklin, R.J. Joyce, and M.J. Doyle,Photodissociation/gas diffusion/ion chromatography systemfor determination of total and labile cyanide in waters.Analytical Chemistry, 62, 1990, 766–770.

72. M. Nonomura, Indirect determination of cyanidecompounds by ion chromatography with conductivitymeasurement. Analytical Chemistry, 59, 1987, 2073–2076.

73. S.-J. Lin, H.-L. Wu, C.-Y. Lin, S.-J. Lin, H.-L. Wu,and C.-Y. Lin, Analytica Chimica Acta, 386, 1999, 113–122.

74. M. Wronski, Preconcentration of cyanide from water byextraction with tributyltin hydroxide. Talanta, 28, 1981,255–256.

75. T.T. Christison and J.S. Rohrer. Direct determinationof free cyanide in drinking water by ion chromatographywith pulsed amperometric detection. Journal ofChromatography A, 115, 2007, 31–39.

76. S. Nagashima, Spectrophotometric determination ofcyanide with sodium isonicotinate and sodium barbiturate.

Analytica Chimica Acta, 99, 1978, 197–201.

77. P.D. Goulden, B.K. Afghan, and P. Brooksbank,Determination of nanogram quantities of simple and complexcyanides in water. Analytical Chemistry, 44, 1972,1845–1849.

78. W.R. Harris and D.C. Bomberger, Ligand displacementmethod for the determination of total cyanide. AnalyticalChemistry, 53, 1981, 2254–2258.

79. M. Mariaud and P. Levillain, Dosagespectrophotometrique des ions cyanure libres par formationdu complexe mixte bis(bathophenanthroline) dicyanoFer(II). Talanta, 34, 1987, 535–538.

80. H. Sun, Y.Y. Zhang, S.H. Si, D.R. Zhu, and Y.S. Fung,Piezoelectric quartz crystal (PQC) with photochemicallydeposited nano-sized Ag particles for determining cyanideat trace levels in water. Sensors and Actuators B, 108,2005, 925–932.

81. M. Noroozifar, M. Khorasani-Motlagh, and A. Taheri.Determination of cyanide in wastewaters using modi�edglassy carbon electrode with immobilized silverhexacyanoferrate nanoparticles on multiwall carbonnanotube. Journal of Hazardous Materials 185, 2011,255–261.

14 Chapter 14 - Asbestos in Water

1. Lowers, H. and Meeker, G. Tabulation of asbestos-relatedterminology, U.S. Geologic Survey Open-File Report 02-458,2002. Available athttp://pubs.usgs.gov/of/2002/ofr-02-458/.

2. Ross, M. and Virta, R.L. Occurrence, production and usesof asbestos, in Nolan, R.P., Langer, A.M., Ross, M.,Wicks, F.J., and Martin, R.F., eds., The Health Effects ofChrysotile Asbestos—Contribution of Science toRisk-Management Decisions: The Canadian Mineralogist,Special Publication 5, Quebec, Canada, 2001.

3. Van Gosen, B.S. The geology of asbestos in the UnitedStates and its practical applications. Environ. Eng.Geosci., 13(1), 55, 2007.

4. Webber, J.S., Covey, J.R., and King, M.V. Asbestos indrinking water supplied through grossly deteriorated A–Cpipe. J. Am. Water Works Assoc., 81(2), 80, 1989.

5. Dodson, R.F. and Hammar, S.P. Asbestos—Risk Assessment,Epidemiology, and Health Effects, Taylor & Francis Group,Boca Raton, FL, 2006.

6. Patel-Mandlik, K., and Millette, J. Accumulation ofingested asbestos �bers in rat tissues over time. Environ.Health Perspect., 53, 197, 1983.

7. Cook, P.M. Review of published studies on gutpenetration by ingested asbestos �bers. Environ. HealthPerspect., 53, 121, 1983.

8. Webber, J.S. and Covey, J.R. Asbestos in water. Crit.Rev. Environ. Control, 21(3,4), 331, 1991.

9. Kjærheim, K. et al. Cancer of the gastrointestinal tractand exposure to asbestos in drinking water amonglighthouse keepers (Norway). Cancer Causes Control, 16(5),593, 2005.

10. New York State Department of Health. Bureau ofEnvironmental and Occupational Epidemiology, Investigationof Cancer Incidence among the Woodstock Asbestos ExposureRegistry Population, available online at

11. Hasanoglu, H., Bayram, E., Hasanoglu, A., and Demirag,F. Orally ingested chrysotile asbestos affects rat lungsand pleura. Arch. Environ. Occup. Health, 63(2), 71, 2008.

12. Webber, J.S., Syrotynski, S., and King, M.V.Asbestos-contaminated drinking water: Its impact onhousehold air. Environ. Res., 46, 153, 1988.

13. Browne, M.L.,Varadarajulu, D., Lewis-Michl, E.L., andFitzgerald, E.F. Cancer incidence and asbestos in drinkingwater, Town of Woodstock, New York, 1980–1998. Environ.Res., 98(2), 224, 2005.

14. United States Environmental Protection Agency. Drinkingwater criteria document for asbestos, EPA600/X-84/199-1,1985.

15. World Health Organization. Asbestos in Drinking Water,WHO/SDE/WSH/03.04/02, 2003.

16. National Institute of Occupational Safety and Health.Asbestos and other �bers by PCM. NIOSH Method 7400, Issue2, NIOSH Manual of Analytical Methods, 4th ed., DHHS(NIOSH) Publication 94–113, Cincinnati, OH, August 16,1994.

17. International Organization for Standardization, ISO8672.

18. McCrone, W.C. Asbestos Identification, McCrone ResearchInstitute, Chicago, IL, 1987.

19. Goldstein, J. et al. Scanning Electron Microscopy andX-Ray Microanalysis (Third ed.), Kluwer Academic/Plenum,New York, 2003.

20. Williams, D.B. and Carter, C.B. Transmission ElectronMicroscopy: A Textbook for Materials Science, PlenumPress, New York, 1996.

21. Chat�eld, E.J., Dillon, M.J., and Stott, W.R.Development of improved analytical techniques fordetermination of asbestos in water samples,EPA-600/4-83-042, 1983.

22. Chat�eld, E.J. and Dillon, M.J. Analytical method fordetermination of asbestos �bers in water, EPA600/4-84-042,1984.

23. United States Environmental Protection Agency. FilterBlank Contamination in Asbestos Abatement MonitoringProcedures: Proceedings of a Peer Review Workshop,Cincinnati, OH, 1986.

24. Webber, J.S., Czuhanich, A.C., and Carhart, L.J.Performance of membrane �lters used for TEM analysis ofasbestos. J. Occup. Environ. Hyg., 4, 780, 2007.

25. Chat�eld, E.J. A rapid procedure for preparation oftransmission electron microscopy specimens frompolycarbonate �lters, in Advances in EnvironmentalMeasurement Methods for Asbestos, Beard, M.E, and Rook,H.L. (eds), ASTM STP 1342, Philadelphia, PA, 1999.

26. Brackett, K.A., Clark, P.J., and Millette, J.R. Method100.2: Determination of asbestos structures over 10 μm inlength in drinking water, EPA/600R-94/134, 1994.

27. United States Environmental Protection Agency. 40 CFRPart 763. Fed. Reg., 52(21), 41826–41905, 1987.

28. Webber, J.S. A simple technique for measuring asbestoslayer-line spacings during TEM analysis. Microscope,46(4), 197, 1998.

15 Chapter 15 - Heavy Metals, MajorMetals, Trace Elements

1. M. Rawat, M.C.Z. Moturi, and V. Subramanian. Inventorycompilation and distribution of heavy metals in wastewaterfrom small-scale industrial areas of Delhi, India. Journalof Environ ment Monitoring 5(6): 906–912, 2003.

2. J.E. Marcovecchio. The use of Micropogonias furnieri andMugil liza as biological indicators of heavy metalspollution in La Plata River estuary (Argentina). Science ofthe Total Environment 323(1–3): 219– 226, 2004.

3. N. Breward. Heavy-metal contaminated soils associatedwith drained fenland in Lancashire, England, UK, revealedby BGS Soil Geochemical Survey. Applied Geochemistry18(11): 1663–1670, 2003.

4. A.N. Jha. Genotoxicological studies in aquaticorganisms: An overview. Mutation Research— Fundamental andMolecular Mechanisms of Mutagenesis 552(1–2): 1–17, 2004.

5. J.P. Obbard. Ecotoxicological assessment of heavy metalsin sewage sludge amended soils. Applied Geochemistry16(11–12): 1405–1411, 2001.

6. M.R. Quinn, X. Feng, C.L. Folt, and C.P. Chamberlain.Analyzing trophic transfer of metals in stream food websusing nitrogen isotopes. Science of the Total Environment317(1–3): 73–89, 2003.

7. J.O. Nriagu and J.M. Pacyna. Quantitative assessment ofworldwide contamination of air, water, and soils by tracemetals. Nature 333: 134–139, 1988.

8. D.C. Adriano. Trace Elements in TerrestrialEnvironments: Biogeochemistry, Bioavailability, and Risksof Metals, 2nd edn., Springer-Verlag, New York, 2001, 880pp.

9. H. Bradl (Ed.), Heavy Metals in the Environment: Origin,Interaction, and Remediation, Elsevier, Amsterdam, 2005,439 pp.

10. J. Vidal, C. Pérez-Sirvent, M.J. Martínez-Sánchez, andM.C. Navarro. Origin and behavior of heavy metals inagricultural Calcaric Fluvisols in semiarid conditions.Geoderma 121: 257–270, 2004.

11. USEPA. Inductively coupled plasma–mass spectrometry.

Method 6020 CLP-M Version 7.0. ICP Information Newsletter18: 584–596, 1993.

12. R. Cidu. Trace elements. In: L.M.L. Nollet (Ed.),Handbook of Water Analysis, Marcel Dekker, New York, Chap.23, 2000, pp. 463–482.

13. P. Roose and U.A.T. Brinkman. Monitoring organicmicrocontaminants in the marine environ ment: Principles,programs, and progress. Trends in Analytical Chemistry 24:897–926, 2005.

14. H.V. Nürnberg and L. Mart. Voltametric methods. In:T.S. West and H.V. Nürnberg (Eds.), The Determination ofTrace Metals in Natural Waters, Blackwell Scienti�c,London, 1988, pp. 123–149.

15. K. Kremling. Determination of trace elements. In: K.Grasshoff, K. Kremling, and M. Ehrhardt (Eds.), Methods ofSeawater Analysis, Verlag Chemie, Weinheim, Germany, thirdcompletely revised and enlarged edition, 1999, pp.270–326.

16. P. Hashemi. Major metals. In: L.M.L. Nollet (Ed.),Handbook of Water Analysis, Marcel Dekker, New York, Chap.21, 2000, pp. 409–438.

17. C. Gagnon and I. Saulnier. Distribution and fate ofmetals in the dispersion plume of a major municipalef�uent. Environmental Pollution 124: 47–55, 2003.

18. I.-Y. Eom and P.K. Dasgupta. Frequency-selectiveabsorbance detection: Refractive index and turbiditycompensation with dual-wavelength measurement. Talanta 69:906–913, 2006.

19. E. González-Soto, E. Alonso-Rodríguez, and D.Prada-Rodríguez. Heavy metals. In: L.M.L. Nollet (Ed.),Handbook of Water Analysis, Marcel Dekker, New York, Chap.22, 2000, pp. 439–457.

20. E.A. Kohler, V.L. Poole, Z.J. Reicher, and R.F. Turco.Nutrient, metal, and pesticide removal during storm andnonstorm events by a constructed wetland on an urban golfcourse. Ecological Engineering 23: 285–298, 2004.

21. J.W. Harvey, J.T. Newlin, and S.L. Krupa. Modelingdecadal timescale interactions between surface water andgroundwater in the central Everglades, Florida, USA.Journal of Hydrology 320: 400–420, 2006.

22. L. Mart. Prevention of contamination and other accuracyrisks in voltammetric trace metal analysis of naturalwaters. Fresenius Zeitschrift Für Analytische Chemie 296:350–357, 1979.

23. W. Petersen, C.-D. Geisler, F. Schroeder, and H.-D.Knauth. AISIT—A new device for remote-controlled samplingof dissolved and particle-bound trace elements in surfacewaters. Journal of Sea Research 40: 179–191, 1998.

24. G. Capodaglio, C. Barbante, C. Turetta, G. Scarponi,and P. Cescon. Analytical quality control: Samplingprocedures to detect trace metals in environmentalmatrices. Mikrochimica Acta 123: 129–136, 1996.

25. Y. Moliner-Martínez, S. Meseguer-Lloret, L.A.Tortajada-Genaro, and P. Campíns-Falcó. In�uence of watersamples storage protocols in chemiluminiscence detection oftrace elements. Talanta 60: 257–268, 2003.

26. APHA—AWWA—WPCF (American Public HealthAssociation—American Water Works Association— WaterPollution Control Federation). Standard Methods for theExamination of Water and Wastewater, 20th edn., APHA,Washington, DC, 1998, 1268 pp.

27. N. Yunes, S. Moyano, S. Cerutti, J.A. Gásquez, and L.D.Martínez. On-line preconcentration and determination ofnickel in natural water samples by �owinjection-inductively coupled plasma optical emissionspectrometry (FI-ICP-OES). Talanta 59: 943–949, 2003.

28. Z.B. Alfassi and C.M. Wai. Preconcentration Techniquesfor Trace Elements, CRC Press, Washing ton, 1992, 543 pp.

29. G.E.M. Hall, G.F. Bonham-Carter, A.J. Horowitz, K. Lum,C. Lemicus, B. Quemerais, and J.R. Garbarino. The effectof using different 0.45 μm �lter membranes on “dissolved”element concentrations in natural waters. AppliedGeochemistry 11: 243–249, 1996.

30. J. Viers, B. Dupré, M. Polvé, J. Schott, J.L.Dandurand, and J.J. Braun. Chemical weathering in thedrainage basin of a tropical watershed (Nsimi-Zoetele site,Cameroon): Comparison between organic-poor andorganic-rich waters. Chemical Geology 140: 181–206, 1997.

31. J.L. Morford, S.R. Emerson, E.J. Breckel, and S.H. Kim.Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters

and sediments from a continental margin. Geochimica etCosmochimica Acta 69: 5021–5032, 2005.

32. K.O. Konhauser, M.A. Powell, W.S. Fyfe, F.J.Longstaffe, and S. Tripathy. Trace element chemistry ofmajor rivers in Orissa State, India. Environmental Geology29: 132–141, 1997.

33. B.A. Kimball, E. Kallender, and E.V. Axtmann. Effectsof colloids on metal transport in a river receiving acidmine drainage, upper Arkansas River, Colorado, USA. AppliedGeochemistry 10: 285–306, 1995.

34. J.L. Barringer, Z. Szabo, D. Schneider, W.D. Atkinson,and R.A. Gallagher. Mercury in ground water, septage,leach-�eld ef�uent, and soils in residential areas, NewJersey coastal plain. Science of the Total Environment361: 144–162, 2006.

35. H. Uchida and T. Ito. Analytical characteristics ofinductively coupled mass spectrometry assisted by addingargon to oxygen-plasma the outer gas. Analytical Sciences13: 391–396, 1997.

36. J.-Z. Zhang, C.J. Fischer, and P.B. Ortner. Laboratoryglassware as a contaminant in silicate analysis of naturalwater samples. Water Research 33: 2879–2883, 1999.

37. W. Bashir and B. Paull. Determination of trace alkalineearth metals in brines using chelation ion chromatographywith an iminodiacetic acid bonded silica column. Journal ofChromato graphy A 907: 191– 200, 2001.

38. X. Ding and S. Mou. Retention behavior of transitionmetals on a bifunctional ion-exchange column with oxalicacid as eluent. Journal of Chromatography A 920: 101–107,2001.

39. G.E. Batley. In: G.E. Batley (Ed.), Trace ElementSpeciation: Analytical Methods and Problems, CRC Press,Boca Raton, FL, 1990, pp. 1–24.

40. L.-P. Yu and X.-P. Yan. Factors affecting the stabilityof inorganic and methylmercury during sample storage.Trends in Analytical Chemistry 22: 245–253, 2003.

41. J.A.C. Broekaert and V. Siemens. Recent trends inatomic spectrometry with microwave-induced plasmas.Spectrochimica Acta Part B: Atomic Spectroscopy 59:1823–1839, 2004.

42. T. Paukert and Z. Sirotek. A study of the microwavetreatment of water samples from the Elbe River, Bohemia,Czech Republic. Chemical Geology 107: 133–144, 1993.

43. S.-Y. Hsu and H.-Y. Kao. Effects of storage conditionson chemical and physical properties of electrolyzedoxidizing water. Journal of Food Engineering 65: 465–471,2004.

44. P.Hashemi and Ä. Olin. Equilibrium and kineticproperties of a fast iminodiacetate based chelating ionexchanger and its incorporation in a FIA-ICP-AES system.Talanta 44: 1037–1041, 1997.

45. C. Harzdorf, G. Janser, D. Rinne, and M. Rogge.Application of microwave digestion to trace organoelementdetermination in water samples. Analytica Chimica Acta 374:209–214, 1998.

46. O. Acar. Determination of cadmium, copper and lead insoils, sediments and sea water samples by ETAAS using a Sc+ Pd + NH 4 NO 3 chemical modi�er. Talanta 65: 672–677,2005.

47. R.B. McCleskey, D.K. Nordstrom, and A.S. Maest.Preservation of water samples for arsenic (III/V)determinations: An evaluation of the literature and newanalytical results. Applied Geochemistry 19: 995–1009,2004.

48. S. Saracoglu, M. Soylak, and L. Elci.Separation/preconcentration of trace heavy metals in urine,sediment and dialysis concentrates by coprecipitation withsamarium hydroxide for atomic absorption spectrometry.Talanta 59: 287–293, 2003.

49. M. Soylak, S. Saracoglu, U. Divrikli, and L. Elci.Coprecipitation of heavy metals with erbium hydroxide fortheir �ame atomic absorption spectrometric determinationsin environmental samples. Talanta 66: 1098–1102, 2005.

50. J.L. Howard and W.J. Vandenbrink. Sequential extractionanalysis of heavy metals in sedi ments of variablecomposition using nitrilotriacetic acid to counteractresorption. Environ mental Pollution 106: 285–292, 1999.

51. J.O. Agbenin, C.A. De Abreu, and B. van Raij.Extraction of phytoavailable trace metals from tropicalsoils by mixed ion-exchange resin modi�ed with inorganic

and organic ligands. Science of the Total Environment 227:187–196, 1999.

52. I. Yanagimachi, N. Nashida, K. Iwasa, and H. Suzuki.Enhancement of the sensitivity of electrochemicalstripping analysis by evaporative concentration using asuper-hydrophobics. Science and Technology of AdvancedMaterials 6: 671–677, 2005.

53. T. Siqueira de Lima, P. Constante Campos, and J.C.Afonso. Metals recovery from spent hydrotreatmentcatalysts in a �uoride-bearing medium. Hydrometallurgy 80:211–219, 2005.

54. M.S. Jimenez, R. Velarte, and J.R. Castillo.Performance of different preconcentration columns used insequential injection analysis and inductively coupledplasma–mass spectrometry for multielemental determinationin seawater. Spectrochimica Acta Part B 57: 391–402, 2002.

55. S. Hirata, T. Kajiya, N. Takano, M. Aihara, K. Honda,O. Shikino, and E. Nakayama. Deter mination of tracemetals in seawater by on-line column preconcentrationinductively coupled plasma mass spectrometry using metalalkoxide glass immobilized 8-quinolinol. Analytica ChimicaActa 499: 157–165. 2003.

56. S.D. Cękiç, H. Filik, and R. Apak. Use of ano-aminobenzoic acid-functionalized XAD-4 copolymer resinfor the separation and preconcentration of heavy metal(II)ions. Analytica Chimica Acta 505: 15–24. 2004.

57. Y. Liu, X. Chang, S. Wang, Y. Guo, B. Din, and S. Meng.Solid-phase extraction and pre-concentration ofcadmium(II) in aqueous solution with Cd(II)-imprinted resin(poly-Cd(II) DAAB-VP) packed columns. Analytica ChimicaActa 519: 173–179, 2004.

58. L. Hejazi, D.E. Mohammadi, Y. Yamini, and R.G.Brereton. Solid-phase extraction and simul taneousspectrophotometric determination of trace amounts of Co,Ni, and Cu using partial least squares regression. Talanta62: 183–189, 2004.

59. S. Martínez-Barrachina and M. del Valle. Use of asolid-phase extraction disk module in a FI system for theautomated preconcentration and determination of surfactantsusing potentio metric detection. Microchemical Journal 83:48–54, 2006.

60. A.I. Zouboulis, M.X. Loukidou, and K.A. Matis.Biosorption of toxic metals from aqueous solutions bybacteria strains isolated from metal-polluted soils.Process Biochemistry 39: 909–916, 2004.

61. A. Iyer, K. Mody, and B. Jha. Biosorption of heavymetals by a marine bacterium. Marine Pollution Bulletin50: 340–343. 2005.

62. G. Naja and B. Volesky. Multi-metal biosorption in axed-bed �ow-through column. Colloids and Surfaces A:Physicochemical Engineering Aspects 281: 194–201, 2006.

63. A.H. Hawari and C.N. Mulligan. Biosorption of lead(II),cadmium(II), copper(II), and nickel(II) by anaerobicgranular biomass. Bioresource Technology 97: 692–700, 2006.

64. E.P. Achterbergand, C.M.G. van den Berg. In-lineultraviolet-digestion of natural water samples for tracemetal determination using an automated voltammetric system.Analytica Chimica Acta 291: 213–232, 1994.

65. A.R. Bowie, D.J. Whitworth, E.P. Achterberg, R. Fauzi,C. Mantoura, and P.J. Worsfold. Biogeochemistry of Fe andother trace elements (Al, Co, Ni) in the upper AtlanticOcean. Deep-Sea Research Part I: Oceanographic ResearchPapers 49: 605–636, 2002.

66. E.P. Achterberg, C.M.G. van den Berg, and C. Colombo.High-resolution monitoring of dis solved Cu and Co incoastal surface waters of the Western North Sea.Continental Shelf Research 23: 611–623, 2003.

67. V. Saenz, J. Blasco, and A. Gomez-Parra. Speciation ofheavy metals in recent sediments of three coastalecosystems in the Gulf of Cádiz, Southwest IberianPeninsula. Environmental Toxicology and Chemistry 22(12):2833–2839, 2003.

68. A.P. Mucha, M.T. Vasconcelos, and A.A. Bordalo. Spatialand seasonal variations of the macrobenthic community andmetal contamination in the Douro estuary (Portugal). MarineEnvironmental Research 60(5): 531–550, 2005.

69. M.A.H. Eltayeb and R.E. Van Grieken. Coprecipitationwith aluminium hydroxide and x-ray �uorescencedetermination of trace metals in water. Analytica ChimicaActa 268: 177–183, 1992.

70. Ü. Divrikli and L. Elçi. Determination of some trace

metals in water and sediment samples by �ame atomicabsorption spectrometry after coprecipitation with cerium(IV) hydroxide. Ana lytica Chimica Acta 452: 231–235,2002.

71. R. Agapito, S. Alves, J.L. Capelo, M.L. Gonçalves, andA.M. Mota. Sample treatment with focused ultrasound andbath sonication as a powerful tool for the evaluation ofcadmium pollution in estuarine waters. Marine Chemistry98: 286–294, 2006.

72. A. Varghese, A.M.A. Khadar, and B. Kalluraya.Simultaneous determination of titanium and molybdenum insteel samples using derivative spectrophotometry in neutralmicellar medium. Spectrochimica Acta Part A 64: 383–390,2006.

73. K.M. El-Moselhy and M.N. Gabal. Trace metals in water,sediments and marine organisms from the northern part ofthe Gulf of Suez, Red Sea. Journal of Marine Systems 46:39–46, 2004.

74. M. Haratake, K. Yasumoto, M. Ono, M. Akashi, and M.Nakayama. Synthesis of hydrophilic macroporous chelatingpolymers and their versatility in the preconcentration ofmetals in seawater samples. Analytica Chimica Acta 561:183–190, 2006.

75. V. Camel. Solid phase extraction of trace elements.Spectrochimica Acta Part B 58:1177–1233, 2003.

76. Z. Mester and R. Sturgeon. Trace element speciationusing solid phase microextraction. Spectro chimica ActaPart B 60: 1243–1269, 2005.

77. E. Guibal. Interactions of metal ions withchitosan-based sorbents: A review. Separation andPurification Technology 38: 43–74, 2004.

78. P. Hashemi, B. Noresson, and A. Olin. Properties of ahigh-capacity iminodiacetate–agarose adsorbent and itsapplication in a �ow system with on-line buffering ofacidi�ed samples for accumulation of metal ions in naturalwaters. Talanta 49: 825–835, 1999.

79. X.Z. Wu, P. Liu, Q.S. Pu, Q.Y. Sun, and Z.X. Su.Preparation of dendrimer-like polyamidoa mine immobilizedsilica gel and its application to online preconcentrationand separation palladium prior to FAAS determination.Talanta 62: 918–923, 2004.

80. P. Hashemi, J. Boroumand, and M.R. Faťhi. A dual columnsystem using agarose-based adsorbents for preconcentrationand speciation of chromium in water. Talanta 64: 578–583,2004.

81. A. Zhang, T. Asakura, and G. Uchiyama. The adsorptionmechanism of uranium(VI) from seawater on a macroporousbrous polymeric adsorbent containing amidoxime chelatingfunctional group. Reactive and Functional Polymers 57:67–76, 2003.

82. A. Karolev. Substitutional complexometric determinationof magnesium in homogeneous water–dioxan medium, based ondecomposition of MgEDTA with 8-quinolinol and titration ofreleased EDTA with calcium. Talanta 39: 1575–1579, 1992.

83. A. Chmielarz and W. Gnot. Conversion of zinc chlorideto zinc sulphate by electrodialysis—A new concept forsolving the chloride ion problem in zinc hydrometallurgy.Hydrometallurgy 61: 21–43, 2001.

84. C. Rosenstein and S. Hirsch. Chemical analysis ofplating solutions. Metal Finishing 100: 509–554, 2002.

85. D. Rapti-Caputo and C. Vaccaro. Geochemical evidencesof land�ll leachate in groundwater. Engineering Geology85: 111–121, 2006.

86. R. Greenhalgh, J.P. Riley, and M. Tungudai. Anion-exchange scheme for the determination of the majorcations in sea water. Analytica Chimica Acta 36: 439–446,1966.

87. T.M. Florence and G.E. Batley. Determination of thechemical forms of trace metals in natural waters, withspecial reference to copper, lead, cadmium, and zinc.Talanta 24: 151–158, 1977.

88. J.-I. Itoh, J. Liu, and M. Komata. Novel analyticalapplications of porphyrin to HPLC post-column �owinjection system for determination of the lanthanides.Talanta 69: 61–67, 2006.

89. S. Motomizu, K. Yoshida, and K. Toei. Determination oftrace gold by solid surface chemilu minescence analysis.Analytica Chimica Acta 261: 225–232, 1992.

90. S. Shibata. Spectro photometric determination ofbromate with o-arsanilic acid. Analytica Chimica Acta 28:

388–392, 1963.

91. V.N. Bulut, D. Arslan, D. Ozdes, M. Soylak, and M.Tufekci. Preconcentration, separation andspectrophotometric determination of aluminium(III) in watersamples and dialysis concentrates at trace levels with8-hydroxyquinoline–cobalt(II) coprecipitation system.Journal of Hazardous Materials 182: 331– 336, 2010.

92. M. Gharehbaghi and F. Shemirani. Ionic liquid-baseddispersive liquid–liquid microextraction and enhancedspectrophotometric determination of molybdenum (VI) inwater and plant leaves samples by FO-LADS. Food andChemical Toxicology 49: 423–428, 2011.

93. W. Xiaodong, Y. Qiuling, Y. Zhidong, and D. Qingwen.Determination of cadmium and copper in water and foodsamples by dispersive liquid–liquid microextractioncombined with UV–vis spectrophotometry. MicrochemicalJournal 97: 249–254, 2011.

94. J.F. van Staden and R.E. Taljaard. Determination ofcalcium in water, urine and pharmaceutical samples bysequential injection analysis. Analytica Chimica Acta 323:75–82, 1996.

95. C.A. Borges Garcia, L. Rover, and G.O. Neto.Determination of potassium ions in pharmaceut ical samplesby FIA using a potentiometric electrode based on ionophorenonactin occluded in EVA membrane. Journal ofPharmaceutical and Biomedical Analysis 31: 11–18, 2003.

96. M.-J. Chen, Y.-T. Hsieh, Y.-M. Weng, and R.Y.Y. Chiou.Flame photometric determination of salinity in processedfoods. Food Chemistry 91: 765–770, 2005.

97. O. Hernández, F. Jimenez, A.I. Jimenez, J.J. Arias, andJ. Havel. Multicomponent �ow injection based analysis withdiode array detection and partial least squaresmultivariate calibration evaluation. Rapid determinationof Ca(II) and Mg(II) in waters and dialysis liquids.Analytica Chimica Acta 320: 177–186, 1996.

98. V. Cerdá, A. Cerdá, A. Cladera, M.T. Oms, F. Mas, E.Gómez, F. Bauzá, M. Miró, R. Forteza, and J.M. Estela.Monitoring of environmental parameters by sequentialinjection analysis. Trends in Analytical Chemistry 20:407–418, 2001.

99. E. Pobožy, R. Halko, M. Krasowski, T. Wierzbicki, and

M. Trojanowicz. Flow-injection sample preconcentration forion-pair chromatography of trace metals in waters. WaterResearch 37: 2019–2026, 2003.

100. Q.Z. Bian, P. Jacob, H. Berndt, and K. Niemax. Onlineow digestion of biological and environmental samples forinductively coupled plasma-optical emission spectroscopy(ICP -OES). Analytica Chimica Acta 538: 323–329, 2005.

101. J.F. van Staden and L.G. Kluever. Determination ofmanganese in natural water and ef�uent streams using asolid-phase lead(IV) dioxide reactor in a �ow-injectionsystem. Analytica Chimica Acta 350: 15–27, 1997.

102. M. Miró, J.M. Estela, and V. Cerdá. Application ofowing stream techniques to water analysis. Part III. Metalions: Alkaline and alkaline-earth metals, elemental andharmful transition metals, and multielemental analysis.Talanta 63: 201–223, 2004.

103. S. Maity, S. Chakravarty, P. Thakur, K.K. Gupta, S.Bhattacharjee, and B.C. Roy. Evaluation and standardisationof a simple HG-AAS method for rapid speciation of As(III)and As(V) in some contaminated groundwater samples of WestBengal, India. Chemosphere 54: 1199–1206, 2004.

104. S. Pehkonen. Determination of the oxidation states ofiron in natural waters. A review. Analyst 120: 2655–2683,1995.

105. D.G. Themelis, P.D. Tzanavaras, F.S. Kika, and M.C.Sofoniou. Flow-injection manifold for the simultaneousspectrophotometric determination of Fe(II) and Fe(III)using 2,2′-dipyridyl-2 pyridylhydrazone and a single-linedouble injection approach. Fresenius Journal of AnalyticalChemistry 371: 364–368, 2001.

106. A. Safavi, H. Abdollahi, and R. Mirzajani.Simultaneous spectrophotometric determination of Fe(III),Al(III) and Cu(II) by partial least-squares calibrationmethod. Spectrochimica Acta Part A 63: 196–199, 2006.

107. S. Blain and P. Treguer. Iron(II) and iron(III)determination in sea water at the nanomolar level withselective on-line preconcentration and spectrophotometricdetermination. Analytica Chimica Acta 308: 425–435, 1995.

108. Y. Sohrin, S. Iwamoto, M. Matsui, H. Obata, E.Nakayama, K. Suzuki, N. Handa, and M. Ishii. Thedistribution of Fe in the Australian sector of the Southern

Ocean. Deep-Sea Research Part I: Oceanographic ResearchPapers 47: 55–84, 2000.

109. D.A. Weeks and K.W. Bruland. Improved method forshipboard determination of iron in seawater by �owinjection analysis. Analytica Chimica Acta 453: 21–32,2002.

110. H.L. Golterman, R.S. Clymo, and M.A.M. Ohnstad.Methods for Physical and Chemical Analysis of Freshwater,2nd edn., Blackwell Scienti�c, London, 1978, pp. 121–138.

111. D.S. de Jesus, R.J. Cassella, S.L. Costa Ferreira,A.C. Spinolla Costa, M. Souza de Carvalho, and R.E.Santelli. Polyurethane foam as a sorbent for continuous �owanalysis: Preconcentration and spectrophotometricdetermination of zinc in biological materials. AnalyticaChimica Acta 366: 263–269, 1998.

112. R.M. Rush and J.H. Yoe. Colorimetric determination ofzinc and copper with 2-carboxy-24 hydroxy-54sulfof.Analytical Chemistry 26: 1345–1351, 1954.

113. J.A. Platte and V.M. Marcy. Photometric determinationof zinc with zincon: Application to water containing heavymetals. Analytical Chemistry 31: 1226–1232, 1959.

114. J.F. van Staden and S.I. Tlowana. On-line separation,simultaneous dilution and spectrophoto metricdetermination of zinc in fertilizers with a sequentialinjection system and xylenol orange as complexing agent.Talanta 58: 1115–1122, 2002.

115. J. Ghasemi, S.H. Ahmadi, and K. Torkestani.Simultaneous determination of copper, nickel, cobalt, andzinc using zincon as a metallochromic indicator withpartial least squares. Analytica Chimica Acta 487:181–188, 2003.

116. G. Den Boef, A. Hulanicki, and D.T. Burns.Spectrophotometric and �uorimetric methods. In: T.S. Westand H.W. Nurnberg (Eds.), Blackwell Scienti�c, London,1988, pp. 123–149.

117. P. Rumori and V. Cerdá. Reversed �ow injection andsandwich sequential injection methods for thespectrophotometric determination of copper(II) withcuprizone. Analytica Chimica Acta 486: 227–235, 2003.

118. A. Asan, I. Isildak, M. Andac, and F. Yilmaz. A simple

and selective �ow-injection spectro photometricdetermination of copper(II) by usingacetyl-salicylhydroxamic acid. Talanta 60: 861–866, 2003.

119. S.W. Kang, T. Sakai, N. Ohno, and K. Ida. Simultaneousspectrophotometric determination of iron and copper inserum with2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulphopropylamino)aniline by �owinjection analysis. Analytical Chimica Acta261: 197–206, 1992.

120. L. Gao and S. Ren. Simultaneous spectrophotometricdetermination of four metals by two kinds of partial leastsquares methods. Spectrochimica Acta Part A 61: 3013–3019,2005.

121. I.Y. Kolotyrkina, L.K. Shpigun, Y.A. Zolotov, and G.I.Tsysin. Shipboard �ow injection method for thedetermination of manganese in seawater using in-valvepreconcentration and catalytic spectrophotometricdetection. Analyst 116: 707–715, 1991.

122. K. Hirayama and N. Unohara. Spectrophotometriccatalytic determination of anultratrace amount ofiron(III) in water based on the oxidation ofN,N-dimethyl-p-phenylen by hydrogen peroxide. AnalyticalChemistry 60: 2573–2580, 1988.

123. I.Y. Kolotyrkina, L.K. Shpigun, Y.A. Zolotov, and A.Malahoff. Application of �ow injection spectrophotometry tothe determination of dissolved iron in sea-water. Analyst120: 201–209, 1995.

124. C. Bosch Ojeda and F. Sánchez Rojas. Determination ofrhodium: Since the origins until today: Spectrophotometricmethods. Talanta 67: 1–19, 2005.

125. S. Prasad. Kinetic method for determination ofnanogram amounts of copper(II) by its catalytic effect onhexacynoferrate(III)–citric acid indicator reaction.Analytica Chimica Acta 540: 173–180, 2005.

126. D. Lannuzel, J. de Jong, V. Schoemann, A. Trevena,J.-L. Tison, and L. Chou. Development of a sampling and �owinjection analysis technique for iron determination in thesea ice environ ment. Analytica Chimica Acta 556: 476–483,2006.

127. S. Vink, E.A. Boyle, C.I. Measures, and J. Yuan.Automated high-resolution determination of the trace

elements iron and aluminium in the surface ocean using atowed Fish coupled to �ow injection analysis. Deep-SeaResearch Part I: Oceanographic Research Papers 47:1141–1156, 2000.

128. P.L.Croot and P. Laan. Continuous shipboarddetermination of Fe(II) in polar waters using �ow injectionanalysis with chemiluminescence detection. AnalyticaChimica Acta 466: 261–273, 2002.

129. S. Olsen, L.C.R. Pessenda, J. Ruzicka, and E.H.Hansen. Combination of �ow injection analysis with �ameatomic-absorption spectrophotometry: Determination of traceamounts of heavy metals in polluted seawater. Analyst 108:905–912, 1983.

130. Z. Fang, T. Guo, and B. Welz. Determination ofcadmium, lead, and copper in water samples by �ameatomic-absorption spectrometry with preconcentration byow-injection on-line sorbent extraction. Talanta 38:613–619, 1991.

131. P.H. Pacheco, P. Smichowski, G. Polla, and L.D.Martinez. Solid phase extraction of Co ions usingl-tyrosine immobilized on multiwall carbon nanotubes.Talanta 79: 249–253, 2009.

132. Y.L. Yu, Y. Jiang, and R.H. He. Development of aminiature analytical system in a lab-on-valve fordetermination of trace copper by bead injectionspectroscopy. Talanta 88: 352–357, 2012.

133. M. Li, D.-W. Li, Y.-T. Li, D.-K. Xu, and Y.-T. Long.Highly selective in situ metal ion determination by hybridelectrochemical “adsorption-desorption” and colorimetricmethods. Analytica Chimica Acta 701: 157–163, 2011.

134. I.A. Kovalev, L.V. Bogacheva, G.I. Tsysin, A.A.Formanovsky, and Y.A. Zolotov. FIA−FAAS system includingon-line solid phase extraction for the determination ofpalladium, platinum and rhodium in alloys and ores.Talanta 52: 39–50, 2000.

135. A.M.H. Shabani, S. Dadfarnia, and K. Dehghan. On-linepreconcentration and determination of cobalt by chelatingmicrocolumns and �ow injection atomic spectrometry. Talanta59: 719–725, 2003.

136. T. Yamane, Y. Osada, and M. Suzuki. Continuous �owsystem for the determination of trace vanadium in natural

waters utilizing in-line preconcentration/separationcoupled with cata lytic photometric detection. Talanta 45:583–589, 1998.

137. M.C. Yebra, A. García, N. Carro, A. Moreno-Cid, and L.Puig. Design of a �eld �ow precon centration system forcadmium determination in seawater by �ow-injection-atomicabsorption spectrometry. Talanta 56: 777–785, 2002.

138. P.S. Roldan, I.L. Alcantara, G.R. Castro, J.C. Rocha,C.C. Padilha, and P.M. Padilha. Determin ation of Cu, Ni,and Zn in fuel ethanol by FAAS after enrichment in columnpacked with 2-aminothiazolemodi�ed silica gel. Analyticaland Bioanalytical Chemistry 375: 574–577, 2003.

139. E.L. da Silva, E.M. Ganzarolli, and E. Carasek. Use ofNb 2 O 5 -SiO 2 in an automated on line preconcentrationsystem for determination of copper and cadmium by FAAS.Talanta 62: 727–733, 2004.

140. J.C. Rocha, E. Sargentini, L.F. Zara, A.H. Rosa, A.dos Santos, and P. Burba. Reduction of mercury(II) bytropical river humic substances (Rio Negro): A possibleprocess of the mercury cycle in Brazil. Talanta 53:551–559, 2000.

141. G.M. Sawula. On-site preconcentration and trace metalions determination in the Okavango Delta water system,Botswana. Talanta 64: 80–86, 2004.

142. M. Miró and W. Frenzel. Automated membrane-basedsampling and sample preparation exploiting �owinjectionanalysis. Trends in Analytical Chemistry 23: 624–635, 2004.

143. M. Ghaedi, A. Shokrollahi, A.H. Kianfar, A.Pourfarokhi, N. Khanjari, A.S. Mirsadeghi, and M. Soylak.Preconcentration and separation of trace amount of heavymetal ions on bis(2-hydroxy acetophenone) ethylendiimineloaded on activated carbon. Journal of Hazardous Materials162: 1408–1414, 2009.

144. V.N. Bulut, D. Ozdes, O. Bekircan, A. Gundogdu, C.Duran, and M. Soylak. Carrier element-free coprecipitation(CEFC) method for the separation, preconcentration andspeciation of chromium using an isatin derivative.Analytical Chimica Acta 632: 35–41, 2009.

145. M. Tuzen, K. O. Saygi, and M. Soylak. Solid phaseextraction of heavy metal ions in environmental samples onmultiwalled carbon nanotubes. Journal of Hazardous

Materials 152: 632–639, 2008.

146. S. Saracoglua and M. Soylak. Carrier element-freecoprecipitation (CEFC) method for separation andpre-concentration of some metal ions in natural water andsoil samples. Food and Chemical Toxicology 48: 1328–1333,2010.

147. M. Tuzen, M. Soylak, D. Citak, H. S. Ferreira, M. G.A. Korn, and M. A. Bezerra. A preconcentration system fordetermination of copper and nickel in water and foodsamples employing �ame atomic absorption spectrometry.Journal of Hazardous Materials 162: 1041–1045, 2009.

148. M. Tuzen and M. Soylak. Column solid-phase extractionof nickel and silver in environmental samples prior totheir �ame atomic absorption spectrometric determinations.Journal of Hazardous Materials 164: 1428–1432, 2009.

149. M. Soylak, Y. E. Unsal, N. Kizil, and A. Aydin.Utilization of membrane �ltration for preconcentration anddetermination of Cu(II) and Pb(II) in food, water andgeological samples by atomic absorption spectrometry. Foodand Chemical Toxicology 48: 517–521, 2010.

150. Ş. Tokalıoğlu, V. Yılmaz, Ş. Kartal, A. Delibaş, andC. Soykan. Synthesis of a novel chelating resin and itsuse for selective separation and preconcentration of sometrace metals in water samples. Journal of HazardousMaterials 169: 593–598, 2009.

151. O.M. Kalfa, Ö. Yalçınkaya, and A.R. Türker. Synthesisof nano B 2 O 3 /TiO 2 composite material as a new solidphase extractor and its application to preconcentration andseparation of cadmium. Journal of Hazardous Materials 166:455–461, 2009.

152. J. Ma, J. Zhang, X. Du, X. Lei, and J. Li. Solidi�edoating organic drop microextraction for determination oftrace amounts of zinc in water samples by �ame atomicabsorption spectrometry. Microchimica Acta 168: 153–159,2010.

153. V.A. Lemos, G. dos S. Novaes, A.L. de Carvalho, E.M.Gama, and A.G. Santos. Determination of copper inbiological samples by �ame atomic absorption spectrometryafter precipitation with Me-BTAP. Environmental Monitoringand Assessment 148: 245–253, 2009.

154. S. Tajik and M. Ali Taher. New method for

microextraction of ultra trace quantities of gold in realsamples using ultrasound-assisted emulsi�cation ofsolidi�ed �oating organic drops. Microchimica Acta 173:249–257, 2011.

155. J. W. Zhang, Y.K. Wang, X. Du, X. Lei, J-J. Ma, J-Ci,and L. Heb. Ultrasound-assisted emulsi�cation solidi�edoating organic drop microextraction for the determinationof trace cadmium in water samples by �ame atomicabsorption spectrometry. Journal of the Brazilian ChemicalSociety 22, 446–453, 2011.

156. K. Ghanemi, Y. Nikpour, O. Omidvar, and A.Maryamabadi. Sulfur-nanoparticle-based method forseparation and preconcentration of some heavy metals inmarine samples prior to �ame atomic absorptionspectrometry determination. Talanta 85: 763–769, 2011.

157. H.-M. Yu, H. Song, and M.-L. Chen. Dithizoneimmobilized silica gel on-line preconcentration of tracecopper with detection by �ame atomic absorptionspectrometry. Talanta 85: 625–630, 2011.

158. M.C. Yebra-Biurrun, and N. Carro-Mariño. Flowinjection �ame atomic absorption determination of Cu, Mnand Zn partitioning in seawater by on-line room temperaturesonolysis and minicolumn chelating resin methodology.Talanta 83: 425–430, 2010.

159. S. Candir, I. Narin, and M. Soylak. Ligandless cloudpoint extraction of Cr(III), Pb(II), Cu(II), Ni(II),Bi(III), and Cd(II) ions in environmental samples withTween 80 and �ame atomic absorption spectrometricdetermination. Talanta 77: 289–293, 2008.

160. D.O. Matthews and M.C. McGahan. Cysteine—An effectivematrix modi�er for determination of gold in biologicalsamples by electrothermal atomic absorptionspectrophotometry. Spectro chimica Acta Part B: AtomicSpectroscopy 42: 909–913, 1987.

161. P.W. Araujo, M.J. Gómez, and Z.A.B.C. Castillo. Use ofexperimental designs for estimation of optimumelectrothermal atomic absorption conditions for molybdenum.Chemometrics and Intelligent Laboratory Systems 16:203–211, 1992.

162. P. Falomir, A. Alegrõa, R. Barbera, R. Farre, and M.J.Lagarda. Direct determination of lead in human milk byelectrothermal atomic absorption spectrometry. Food

Chemistry 64: 111–113, 1999.

163. V. Bragigand, B. Berthet, J.C. Amiard, and P.S.Rainbow. Estimates of trace metal bioavailability tohumans ingesting contaminated oysters. Food and ChemicalToxicology 42: 1893–1902, 2004.

164. M.T.C. de Loos-Vollebregt and E.X. Vrouwe. Spectralphenomena in graphite furnace AAS. Spectrochimica ActaPart B 52: 1341–1349, 1997.

165. M. Felipe-Sotelo, A. Carlosena, E.Fernández-Fernández, S. Muniategui, P. López-Mahía, and D.Prada. Evaluation of two atomisation modes for directdetermination of molybdenum in complex matrices byultrasonic slurry sampling–electrothermal atomic absorptionspectro metry. Analytica Chimica Acta 524: 329–337, 2004.

166. N. Carrión, A.M. Itriago, M.A. Alvarez, and E. Eljuri.Simultaneous determination of lead, nickel, tin, andcopper in aluminium-base alloys using slurry sampling byelectrical discharge and multielement ETAAS. Talanta 61:621–632, 2003.

167. P. Ampan, J. Ruzicka, R. Atallah, G.D. Christian, J.Jakmunee, and K. Grudpan. Exploiting sequential injectionanalysis with bead injection and lab-on-valve fordetermination of lead using electrothermal atomicabsorption spectrometry. Analytica Chimica Acta 499:167–172, 2003.

168. J. Pedro, J. Stripekis, A. Bonivardi, and M. Tudino.Thermal stabilization of tellurium in mineral acidssolutions: Use of permanent modi�ers for its determinationin sulfur by GFAAS. Talanta 69: 199–203, 2006.

169. M.-S. Chan and S.-D. Huang. Direct determination ofcadmium and copper in seawater using a transversely heatedgraphite furnace atomic absorption spectrometer withZeeman-effect background corrector. Talanta 51: 373–380,2000.

170. R.M. Mofolo, D.A. Katskov, P. Tittarelli, and M.Grotti. Vaporization of indium nitrate in the graphitetube atomizer in the presence of chemical modi�ers.Spectrochimica Acta Part B 56: 375–391, 2001.

171. S. Xiao-Quan, B. Radziuk, B. Wetz, and O. Vyscocilova.Determination of manganese in river and seawater samples byelectrothermal atomic absorption spectrometry with a

tungsten atomizer. Journal of Analytical AtomicSpectrometry 8: 409–414, 1993.

172. X. Hou and B.T. Jones. Tungsten devices in analyticalatomic spectrometry. Spectrochimica Acta Part B 57:659–688, 2002.

173. B. Godlewska-Zyłkiewicz and M. Zaleska.Preconcentration of palladium in a �ow-throughelectrochemical cell for determination by graphite furnaceatomic absorption spectrometry. Analytica Chimica Acta462: 305–312, 2002.

174. J.A. Nóbrega, J. Rust, C.P. Calloway, and B.T. Jones.Use of modi�ers with metal atomizers in electrothermal AAS:A short review. Spectrochimica Acta Part B 59: 1337–1345,2004.

175. J.A. Rust, J.A. Nóbrega, C.P. Calloway Jr., and B.T.Jones. Advances with tungsten coil atomizers: Continuumsource atomic absorption and emission spectrometry.Spectrochimica Acta Part B 60: 589– 598, 2005.

176. J.Y. Cabon and A.L. Bihan. Direct determination ofzinc in seawater using electrothermal atomic absorptionspectrometry with Zeeman-effect background correction:Effects of chemical and spectral interferences. Journal ofAnalytical Atomic Spectrometry 9: 477–481, 1994.

177. R.E. Sturgeon, S.S. Berman, A. Desaulniers, and D.S.Russell. Pre-concentration of trace metals from seawaterfor determination by graphite-furnace atomic absorptionspectrometry. Talanta 27: 85–91, 1980.

178. R.R. Navarro, S. Wada, and K. Tatsumi. Heavy metalprecipitation by polycation–polyanion complex of PEI andits phosphonomethylated derivative. Journal of HazardousMaterials B 123: 203–209, 2005.

179. A. Zhang, G. Uchiyama, and T. Asakura. pH effect onthe uranium adsorption from seawater by a macroporousbrous polymeric material containing amidoxime chelatingfunctional group. Reactive and Functional Polymers 63:143–153, 2005.

180. Y. Sung, Z. Liu, and S. Huang. Automated on-linepreconcentration system for electrothermal atomicabsorption spectrometry for the determination of copper andmolybdenum in seawater. Journal of Analytical AtomicSpectrometry 12: 841–847, 1997.

181. J. Wang and E.H. Hansen. Coupling on-linepreconcentration by ion-exchange with ETAAS: A novel �owinjection approach based on the use of a renewablemicrocolumn as demonstrated for the determination of nickelin environmental and biological samples. Analytica ChimicaActa 424: 223–232, 2000.

182. W. Som-Aum, S. Liawruangrath, and E.H. Hansen. Flowinjection on-line preconcentration of low levels of Cr(VI)with detection by ETAAS: Comparison of using an opentubular PTFE knotted reactor and a column reactor packedwith PTFE beads. Analytica Chimica Acta 463: 99–109, 2002.

183. J. Wang and E.H. Hansen. Trends and perspectives ofow injection/sequential injection on-linesamplepretreatment schemes coupled to ETAAS. Trends inAnalytical Chemistry 24: 1–8, 2005.

184. G. Yang, W. Fen, C. Lei, W. Xiao, and H. Sun. Study onsolid phase extraction and graphite furnace atomicabsorption spectrometry for the determination of nickel,silver, cobalt, copper, cadmium and lead with MCI GEL CHP20Y as sorbent. Journal of Hazardous Materials 162: 44–49,2009.

185. M.S. Bidabadi, S. Dadfarnia, and A.M. Haji Shabani.Solidi�ed �oating organic drop microextraction (SFODME)for simultaneous separation/preconcentration anddetermination of cobalt and nickel by graphite furnaceatomic absorption spectrometry (GFAAS). Journal ofHazardous Materials 166: 291– 296, 2009.

186. J. Abulhassani, J. L. Manzoori, and M. Amjadi. Hollowber based-liquid phase microextraction using ionic liquidsolvent for preconcentration of lead and nickel fromenvironmental and biological samples prior to determinationby electrothermal atomic absorption spectrometry. Journalof Hazardous Materials 176: 481–486, 2010.

187. Y. Wang, X. Luo, J. Tang, X. Hu, Q. Xu, and C. Yang.Extraction and preconcentration of trace levels of cobaltusing functionalized magnetic nanoparticles in a sequentialinjection lab-on-valve system with detection byelectrothermal atomic absorption spectrometry. AnalyticaChimica Acta 713: 92–96, 2012.

188. A.E. Karatapanis, Y. Fiamegos, and C.D. Stalikas.Silica-modi�ed magnetic nanoparticles functionalized withcetylpyridinium bromide for the preconcentration of metals

after complexation with 8-hydroxyquinoline. Talanta 84:834–839, 2011.

189. J.S. Becker. Applications of inductively coupledplasma mass spectrometry and laser ablation inductivelycoupled plasma mass spectrometry in materials science.Spectrochimica Acta Part B 57: 1805–1820, 2002.

190. A.L. Rosen and G.M. Hieftje. Inductively coupledplasma mass spectrometry and electrospray massspectrometry for speciation analysis: Applications andinstrumentation. Spectrochimica Acta Part B 59: 135–146,2004.

191. J. Huang, X. Hu, J. Zhang, K. Li, Y. Yan, and X. Xu.The application of inductively coupled plasma massspectrometry in pharmaceutical and biomedical analysis.Journal of Pharmaceutical and Biomedical Analysis 40:227–234, 2006.

192. A.E. Holliday and D. Beauchemin. Spatial pro�ling ofanalyte signal intensities in inductively coupled plasmamass spectrometry. Spectrochimica Acta Part B 59: 291–311,2004.

193. M. Gäckle and D. Merten. Modeling the temporalintensity distribution in laser ablation-inductivelycoupled plasma–mass spectrometry (LA-ICP-MS) using scanningand drilling mode. Spectrochimica Acta Part B 60:1517–1530, 2005.

194. J.P. Riley and R. Chester. Introduction to MarineChemistry, Academic Press, New York, 1971, pp. 228–247.

195. N. Velitchkova, E.N. Pentcheva, and N. Daskalova.Determination of arsenic, mercury, selen ium, thallium,tin, and bismuth in environmental materials by inductivelycoupled plasma emission spectrometry. Spectrochimica ActaPart B 59: 871–882, 2004.

196. M. Krachler, J. Zheng, D. Fisher, and W. Shotyk.Analytical procedures for improved trace element detectionlimits in polar ice from Arctic Canada using ICP-SMS.Analytica Chimica Acta 530: 291–298, 2005.

197. E. Muñoz, S. Palmero, and M.A. García-García. Acontinuous �ow system design for simul taneousdetermination of heavy metals in river water samples.Talanta 57: 985–992, 2002.

198. H. Karami, M.F. Mousavi, Y. Yamini, and M. Shamsipur.On-line preconcentration and sim ultaneous determinationof heavy metal ions by inductively coupled plasma–atomicemission spectrometry. Analytica Chimica Acta 509: 89–94,2004.

199. K. Suvardhan, K.S. Kumar, L. Krishnaiah, S. PrabakharaRao, and P. Chiranjeevi. The deter mination of nickel(II)after on-line sorbent preconcentration by inductivelycoupled plasma atomic emission spectrometry using Borassusflabellifer in�orescence loaded with coniinedithiocarbamate. Journal of Hazardous Materials 112:233–238, 2004.

200. J. Yin, Z. Jiang, G. Chang, and B. Hu. Simultaneouson-line preconcentration and determin ation of tracemetals in environmental samples by �ow injection combinedwith inductively coupled plasma mass spectrometry using ananometer-sized alumina packed micro-column. AnalyticaChimica Acta 540: 333–339, 2005.

201. M. Bettinelli and S. Spezia. Determination of traceelements in sea water by ion chromato graphyinductivelycoupled plasma mass spectrometry. Journal of ChromatographyA 709: 275–281, 1995.

202. A. Ramesh, K.R. Mohan, and K. Seshaiah.Preconcentration of trace metals on Amberlite XAD 4 resincoated with dithiocarbamates and determination byinductively coupled plasma–atomic emission spectrometry insaline matrices. Talanta 57: 243–252, 2002.

203. K. Benkhedda, H. Goenaga Infante, and F.C. Adams.Inductively coupled plasma mass spec trometry for traceanalysis using �ow injection on-line preconcentration andtime-of-�ight mass analyser. TRAC— Trends in AnalyticalChemistry 21: 332–342, 2002.

204. J.A.C. Broeckaert and F. Leis. An injection method forthe sequential determination of boron and several metalsin waste-water samples by inductively-coupled plasma atomicemission spectrometry. Analytical Chimica Acta 109: 73–80,1979.

205. S. Hirata, Y. Ishida, M. Aihara, K. Honda, and O.Shikino. Determination of trace metals in seawater byon-line column preconcentration inductively coupled plasmamass spectrometry. Analytical Chimica Acta 438: 205–214,2001.

206. M.S. Di Nezio, M.E. Palomeque, and B.S. FernándezBand. A sensitive spectrophotometric method for leaddetermination by �ow injection analysis with on-linepreconcentration. Talanta 63: 405–409, 2004.

207. K. Benkhedda, H. Goenaga Infante, and F.C. Adams.Determination of total lead and lead isotope ratios innatural waters by inductively coupled plasma time-of-�ightmass spectro metry after �ow injection onlinepreconcentration. Analytica Chimica Acta 506: 137–144,2004.

208. A.G. Coedo, M.T. Dorad, I. Padilla, and F.J. Alguacil.Study of the application of air-water �ow injectioninductively coupled plasma mass spectrometry for thedetermination of calcium in steels. Journal of AnalyticalAtomic Spectrometry 11: 1037–1042, 1996.

209. S.M. Nelms, G.M. Greenway, and D. Koller. Evaluationof controlled-pore glass immobilized iminodiacetate as areagent for automated on-line matrix separation forinductively coupled plasma mass spectrometry. Journal ofAnalytical Atomic Spectrometry 11: 907–911, 1996.

210. H. Tel, Y. Alta, and M.S. Taner. Adsorptioncharacteristics and separation of Cr(III) and Cr(VI) onhydrous titanium(IV) oxide. Journal of Hazardous Materials112: 225–231, 2004.

211. W. Wang and V. Fthenakis. Kinetics study on separationof cadmium from tellurium in acidic solution media usingion-exchange resins. Journal of Hazardous Materials 125:80–88, 2005.

212. M.J. Bloxham, S.J. Hill, and P.J. Worsfold.Determination of trace metals in seawater and the on-lineremoval of matrix interferences by �ow injection withinductively coupled plasma mass spectrometric detection.Journal of Analytical Atomic Spectrometry 9: 935–941, 1994.

213. J.A. Caruso, B. Klaue, B. Michalke, and D.M. Rocke.Group assessment: Elemental speciation. Ecotoxicology andEnvironmental Safety 56: 32–44, 2003.

214. J.S. Becker. Trace and ultratrace analysis in liquidsby atomic spectrometry. TRAC—Trends in AnalyticalChemistry 24: 243–254, 2005.

215. N.G. Beck, R.P. Franks, and K.W. Bruland. Analysis forCd, Cu, Ni, Zn, and Mn in estuarine water by inductively

coupled plasma mass spectrometry coupled with an automatedow injection system. Analytica Chimica Acta 455: 11–22,2002.

216. H.-W. Liu, S.-J. Jiang, and S.-H. Liu. Determinationof cadmium, mercury and lead in seawater by electrothermalvaporization isotope dilution inductively coupled plasmamass spectrom etry. Spectrochimica Acta Part B 54:1367–1375, 1999.

217. Z.-Y. Huang, F.-R. Chen, Z.-X. Zhuang, X.-R. Wang, andF.S.C. Lee. Trace lead measurement and on-line removal ofmatrix interference in seawater by isotope dilution coupledwith �ow injection and ICP-MS. Analytica Chimica Acta 508:239–245, 2004.

218. C. Pickhardt, A.V. Izmer, M.V. Zoriy, D. Schaumlöffel,and J.S. Becker. On-line isotope dilution in laserablation inductively coupled plasma mass spectrometry usinga micro�ow nebulizer inserted in the laser ablationchamber. International Journal of Mass Spectrometry 248:136–141, 2006.

219. T. Hwang and S. Jiang. Determination of trace amountsof zinc in water samples by �ow injection isotope dilutioninductively coupled plasma mass spectrometry. Analyst 122:233–239, 1997.

220. X. Zhang, D. Chen, R. Marquardt, and J.A. Koropchak.Thermospray sample introduction to atomic spectrometry.Microchemical Journal 66: 17–53, 2000.

221. S. Hirata, T. Kajiya, M. Aihara, K. Honda, and O.Shikino. Determination of rare earth elements in seawaterby on-line column preconcentration inductively coupledplasma mass spectrom etry. Talanta 58: 1185–1194, 2002.

222. X. Zou, Y. Cui, X. Zhu, Z. Hu, and X. Chang.Preparation of morin modi�ed nanometer SiO 2 as a sorbentfor solid-phase extraction of trace heavy metals frombiological and natural water samples. Journal of Sol-GelScience and Technology 50: 35–43, 2009.

223. M. Faraji, Y. Yamini, A. Saleh, M. Rezaee, M.Ghambarian, and R. Hassani. A nanoparticle-based solidphaseextraction procedure followed by �ow injection inductivelycoupled plasma-optical emission spectrometry to determinesome heavy metal ions in water samples. Analytica ChimicaActa 659: 172–177, 2010.

224. D. Chen, B. Hu, M. He, and C. Huang. Micro-columnpreconcentration/separation using thiacalix[4] arenetetracarboxylate derivative modi�ed mesoporous TiO 2 aspacking materials on-line coupled to inductively coupledplasma optical emission spectrometry for the determinationof trace heavy metals in environmental water samples.Microchemical Journal 95: 90–95, 2010.

225. L. Ranjbar, Y. Yamini, A. Saleh, S. Seidi, and M.Faraji. Ionic liquid based dispersive liquid-liquidmicroextraction combined with ICP-OES for the determinationof trace quantities of cobalt, copper, manganese, nickeland zinc in environmental water samples. Microchimica Acta,177 (1–2): 119–127, 2012.

226. S. Baytak, F. Zereen, and Z. Arslan. Preconcentrationof trace elements from water samples on a minicolumn ofyeast (Yamadazyma spartinae) immobilized TiO 2nanoparticles for determination by ICP-AES. Talanta 84:319–323, 2011.

227. A.N. Anthemidis, G. Giakisikli, and G.A. Zachariadis.The HyperSep SCX microcartridge for on-line �ow injectioninductively coupled plasma atomic emission spectrometricdetermination of trace elements in biological andenvironmental samples. Analytical Methods 3: 2108–2114,2011.

228. B.N. Kumar, D.K. Venkata Ramana, Y. Harinath, K.Seshaiah, and M.C. Wang. Separation and preconcentration ofCd(II), Cu(II), Ni(II) and Pb(II) in water and food samplesusing amberlite XAD-2 functionalized with3-(2-nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione anddetermination by inductively coupled plasma– atomicemission spectrometry. Journal of Agricultural and FoodChemistry 59: 11352–11358, 2011.

229. D. Chen, B. Hu, and C. Huang. Chitosan modi�ed orderedmesoporous silica as microcolumn packing materials foron-line �ow injection-inductively coupled plasma opticalemission spectrometry determination of trace heavy metalsin environmental water samples. Talanta 78: 491–497, 2009.

230. A. Bagheri, M. Behbahani, M.M. Amini, O. Sadeghi, M.Taghizade, L. Baghayi, and M. Salarian. Simultaneousseparation and determination of trace amounts of Cd(II) andCu(II) in environmental samples using noveldiphenylcarbazide modi�ed nanoporous silica. Talanta 89:455–461, 2012.

231. G. Cheng, M. He, H. Peng, and B. Hu. Dithizone modi�edmagnetic nanoparticles for fast and selective solid phaseextraction of trace elements in environmental andbiological samples prior to their determination by ICP-OES.Talanta 88: 507–515, 2012.

232. Y. Yamini, M. Faraji, S. Shariati, R. Hassani, and M.Ghambarian. On-line metals preconcentration andsimultaneous determination using cloud point extraction andinductively coupled plasma optical emission spectrometry inwater samples. Analytica Chimica Acta 612: 144–151, 2008.

233. Ž. Filipović-Kovačević and L. Sipos. Voltammetricdetermination of copper in water samples digested byozone. Talanta 45: 843–850, 1998.

234. H.W. Nürnberg. Trace analytical procedures with modernvoltammetric determination methods for the investigationand monitoring of ecotoxic heavy metals in natural watersand atmospheric precipitates. Science of the TotalEnvironment 37: 9–34, 1984.

235. S.R. El-Hasani, S.M. Al-Dhaheri, M.S. El-Maazawi, andM.M. Kamal. Polarographic and voltammetric determination ofsome toxic heavy metal ions in the treated wastewater atAbu-Dhabi, UAE. Water Science and Technology 40: 67–74,1999.

236. Y. Ni and L. Jin. Simultaneous polarographicchemometric determination of lead, copper, vanadium,cadmium and nickel. Chemometrics and Intelligent LaboratorySystems 45: 105–111, 1999.

237. C.M.G. van den Berg. The electroanalytical chemistryof seawater. In: J.R. Riley and E. Chester (Eds.),Chemical Oceanography, Vol. 9, Academic Press, London,1988.

238. J.R. Donat and K.W. Bruland. Trace elements in oceans.In: P.B. Salbu and P.E. Steinnes (Eds.), Trace Elements inNatural Waters, CRC Press, Boca Raton, FL, 1995, pp.177–202.

239. F.L.L. Müller and D.R. Kester. Voltammetricdetermination of the complexation parameters of zinc inmarine and estuarine waters. Marine Chemistry 33: 71–90,1991.

240. M.J. Ellwood and C.M.G. Van den Berg. Zinc speciationin the Northeastern Atlantic Ocean. Marine Chemistry 68:

295–306, 2000.

241. C.W.K. Chow, S.D. Kolev, D.E. Davey, and D.E. Mulcahy.Determination of copper in natural waters by batch andoscillating �ow injection stripping potentiometry.Analytica Chimica Acta 330: 79–86, 1996.

242. A. Turner, M. Nimmo, and K.A. Thuresson. Speciationand sorptive behavior of nickel in an organic-rich estuary(Beaulieu, UK). Marine Chemistry 63: 105–118, 1998.

243. J.K. Kiptoo, J.C. Ngila, and G.M. Sawula. Speciationstudies of nickel and chromium in waste water from anelectroplating plant. Talanta 64: 54–59. 2004.

244. J. Labuda and M. Bučková. Selectivity of voltammetricdetermination at an ion-exchanger modi�ed electrode.Electrochemistry Communications 2: 322–324, 2000.

245. I.K. Tonle, E. Ngameni, and A. Walcarius.Preconcentration and voltammetric analysis of mercury(II)at a carbon paste electrode modi�ed with naturalsmectite-type clays grafted with organic chelating groups.Sensors and Actuators B—Chemical 110: 195–203, 2005.

246. A. Cavicchioli and I.G.R. Gutz. In-line TiO 2-assisted photodigestion of organic matter in aqueoussolution for voltammetric �ow analysis of heavy metals inwater samples. Analytica Chimica Acta 445: 127–138, 2001.

247. J.A. Jurado-González, M.D. Galindo-Riaño, and M.García-Vargas. Experimental designs in the development of anew method for the sensitive determination of cadmium inseawater by adsorptive cathodic stripping voltammetry.Analytica Chimica Acta 487: 229–241, 2003.

248. S. Daniele, C. Bragato, and M.A. Baldo. An approach tothe calibration less determination of copper and lead byanodic stripping voltammetry at thin mercury �lmmicroelectrodes. Application to well water and rain.Analytica Chimica Acta 346: 145–151, 1997.

249. D. Omanović and M. Branica. Pseudopolarography oftrace metals. Part I. The automatic ASV measurements ofreversible electrode reactions. Journal ofElectroanalytical Chemistry 543: 83–92, 2003.

250. J.F. van Staden and M.C. Matoetoe. Simultaneousdetermination of copper, lead, cadmium, and zinc usingdifferential pulse anodic stripping voltammetry in a �ow

system. Analytica Chimica Acta 411: 201–207, 2000.

251. E. Alonso, A. Santos, M. Callejón, and J.C. Jiménez.Speciation as a screening tool for the determination ofheavy metal surface water pollution in the Guadiamar riverbasin. Chemo sphere 56: 561–570, 2004.

252. J.R. Donat, K.A. Lao, and K.W. Bruland. Speciation ofdissolved copper and nickel in South San Francisco Bay: Amultimethod approach. Analytica Chimica Acta 284: 547–571,1994.

253. J. Murimboh, M.T. Lam, N.M. Hassan, and C.L.Chakrabarti. A study of Na�on-coated and uncoated thinmercury �lm-rotating disk electrodes for cadmium and leadspeciation in model solutions of fulvic acid. AnalyticaChimica Acta 423: 115–126, 2000.

254. K.C. Honeychurch and J.P. Hart. Screen-printedelectrochemical sensors for monitoring metal pollutants.TRAC—Trends in Analytical Chemistry 22: 456–469, 2003.

255. M.P. Hurst and K.W. Bruland. The use of Na�on-coatedthin mercury �lm electrodes for the determination of thedissolved copper speciation in estuarine water. AnalyticaChimica Acta 546: 68–78, 2005.

256. M.J. Schöning, B. Hüllenkremer, O. Glück, H. Lüth, andH. Emons. Voltohmmetry—A novel sensing principle for heavymetal determination in aqueous solutions. Sensors andActuators B—Chemical 76: 275–280, 2001.

257. H.-J. Kim, K.-S. Yun, E. Yoon, and J. Kwak. A directanalysis of nanomolar metal ions in environmental watersamples with Na�on-coated microelectrodes. ElectrochimicaActa 50: 205–210, 2004.

258. G. Van Dijck and F. Verbeek. Determination of lead,cadmium, zinc and manganese in copper by anodic strippingvoltammetry. Analytica Chimica Acta 54: 475–481, 1971.

259. R.J. Ohalloran. Anodic stripping voltammetry ofmanganese in seawater at a mercury �lm electrode.Analytica Chimica Acta 140: 51–57, 1982.

260. J.D. Smith and J.D. Redmond. Anodic strippingvoltammetry applied to trace metals in sea water. Journalof Electroanalytical Chemistry 33: 169–175, 1971.

261. M. Grotti, F. Soggia, M.L. Abelmoschi, P. Rivaro, E.

Magi, and R. Frache. Temporal distribution of trace metalsin Antarctic coastal waters. Marine Chemistry 76: 189–209,2001.

262. J. Knápek, J. Komárek, and P. Krásenský. Determinationof cadmium by electrothermal atomic absorptionspectrometry using electrochemical separation in amicrocell. Spectrochimica Acta Part B 60: 393–398, 2005.

263. J.S. Roitz and K.W. Bruland. Determination ofdissolved manganese(II) in coastal and estuarine waters bydifferential pulse cathodic stripping voltammetry.Analytica Chimica Acta 344: 175–183, 1997.

264. A. Trojanek and F. Opekar. Flow-through coulometricstripping analysis and the determin ation of manganese bycathodic stripping voltammetry. Analytica Chimica Acta 126:15–23, 1981.

265. M. Boye, A.P. Aldrich, C.M.G. van den Berg, J.T.M. deJong, M. Veldhuis, and H.J.W. de Baar. Horizontal gradientof the chemical speciation of iron in surface waters of thenortheast Atlantic Ocean. Marine Chemistry 80: 129–143,2003.

266. A. Safavi, M. Pakniat, and N. Maleki. Design andconstruction of a �ow system for determin ation of Cu(II)ions in water by means of a chemically modi�ed carbon pasteelectrode. Analytica Chimica Acta 335: 275–280, 1996.

267. L. Brügmann. Electrochemical speciation of tracemetals in sea water. Science of the Total Environment 37:41–60, 1984.

268. J. Lu, X. He, X. Zeng, Q. Wan, and Z. Zhang.Voltammetric determination of mercury (II) in aqueousmedia using glassy carbon electrodes modi�ed with novelcalix[4]arene. Talanta 59: 553–560, 2003.

269. C. Mousty. Sensors and biosensors based onclay-modi�ed electrodes—new trends. Applied Clay Science27: 159–177, 2004.

270. N.L. Dias Filho and D. Ribeiro do Carmo. Study of anorganically modi�ed clay: Selective adsorption of heavymetal ions and voltammetric determination of mercury(II).Talanta 68: 919–927, 2006.

271. R. Vittal, H. Gomathi, and K.-J. Kim. Bene�cial roleof surfactants in electrochemistry and in the modi�cation

of electrodes. Advances in Colloid and Interface Science119: 55–68, 2006.

272. J. Na, J. Zhou, and X. Wen. Polarography of thealkaline-earth metals. II: The adsorption wave for themagnesium-eriochrome black T complex. Talanta 32: 479–487,1985.

273. A.J. Downard, J.B. Hart, H.K.J. Powell, and S. Xu.Amperometric techniques in �ow-injection analysis:Determination of magnesium in sera and natural waters.Analytica Chimica Acta 269: 41–49, 1992.

274. I. Willner and B. Willner. Biomaterials integratedwith electronic elements: en route to bioelec tronics.Trends in Biotechnology 19: 222–230, 2001.

275. A. Morrin, R.M. Moutloali, A.J. Killard, M.R. Smyth,J. Darkwa, and E.I. Iwuo. Electrocatalytic sensor devices:(I) cyclopentadienylnickel (II) thiolato Schiff basemonolayer self-assembled on gold. Talanta 64: 30–38, 2004.

276. X. Guo, Y. Yun, V.N. Shanov, H.B. Halsall, W.R.Heineman. Determination of trace metals by anodicstripping voltammetry using a carbon nanotube towerelectrode. Electroanalysis 23: 1252–1259, 2011.

277. D.B. Nuzzio, E.R. Zettler, A. Aguilera, and L.A.Amaral-Zettler. A direct in situ �ngerprinting method foracid rock drainage using voltammetric techniques with asingle renewable gold microelectrode. Science of the TotalEnvironment 409: 1984–1989, 2011.

278. C.B. Braungardt, E.P. Achterberg, B. Axelsson, J.Buf�e, F. Graziottin, K.A. Howell, S. Illuminat, G.Scarponi, A.D. Tappin, M.L. Tercier-Waeber, and D. Turner.Analysis of dissolved metal fractions in coastal waters:An inter-comparison of �ve voltammetric in situ pro�ling(VIP) systems. Marine Chemistry 114: 47–55, 2009.

279. C. Henríquez, L.M. Laglera, M.J. Alpizar, J. Calvo, F.Arduini, and V. Cerdà. Cadmium determination in naturalwater samples with an automatic multi syringe �ow injectionsystem coupled to a �ow-through screen printe delectrode.Talanta 96: 140–146, 2012.

280. A.M. Ashra� and K. Vytřas. Stripping voltammetricdetermination of mercury(II) at antimony-coated carbonpaste electrode. Talanta 85: 2700–2702, 2011.

281. G.M.S. Alves, J.M.C.S. Magalhães, P. Salaün, C.M.G.Van den Berg, and H.M.V.M. Soares. Simultaneouselectrochemical determination of arsenic, copper, lead andmercury in unpolluted fresh waters using a vibrating goldmicrowire electrode. Analytica Chimica Acta 703: 1–7, 2011.

282. J. Santos-Echeandía. Direct simultaneous determinationof Co, Cu, Fe, Ni and V in pore waters by means ofadsorptive cathodic stripping voltammetry with mixedligands. Talanta 85: 506–512, 2011.

283. A.L. Bard and L.R. Faulkner. Electrochemical Methods,John Wiley & Sons, New York, 1980, pp. 73–81.

284. K.L. Cheng. Recent development of non-faradaicpotentiometry. Microchemical Journal 72: 269–276, 2002.

285. M.N. Abbas and E. Zahran. Novel solid-state cadmiumion-selective electrodes based on its tetraiodo- andtetrabromo-ion pairs with cetylpyridinium. Journal ofElectroanalytical Chemistry 576: 205–213, 2005.

286. Z.-Q. Li, Z.-Y. Wu, R. Yuan, M. Ying, G.-L. Shen, andR.-Q. Yu. Thiocyanate-selective PVC membrane electrodesbased on Mn(II) complex ofN,N′-bis-(4-phenylazosalicylidene) O-phenylene diamine as aneutral carrier. Electrochimica Acta 44: 2543–2548, 1999.

287. Ł. Tymecki, E. Zwierkowska, Głoąb, and R. Koncki.Strip thick-�lm silver ion-selective electrodes. Sensorsand Actuators B—Chemical 96: 482–488, 2003.

288. G. Naja, C. Mustin, B. Volesky, and J. Berthelin.Stabilization of the initial electrochemical potential fora metal-based potentiometric titration study of abiosorption process. Chemosphere 62: 163–170, 2006.

289. X. Yang, D.B. Hibbert, and P.W. Alexander. Continuousow analysis of lead (II) and mercury (II) with substituteddiazacrown ionophore membrane electrodes. Talanta 45:155–165, 1997.

290. A. Gutés, F. Céspedes, S. Alegret, and M. del Valle.Sequential injection system with higher dimensionalelectrochemical sensor signals. Part 1. Voltammetrice-tongue for the determination of oxidizable compounds.Talanta 66: 1187–1196, 2005.

291. H.M.V.M. Soares and M.T.S.D. Vasconcelos. Applicationof potentiometric stripping analysis for speciation of

copper complexes with a non-adsorbable ligand on a mercuryelectrode. Talanta 42: 621–626, 1995.

292. E. Muñoz and S. Palmero. Analysis and speciation ofarsenic by stripping potentiometry: A review. Talanta 65:613–620, 2005.

293. R.A.A. Muñoz, P.V. Oliveira, and L. Angnes.Combination of ultrasonic extraction and strippinganalysis: An effective and reliable way for thedetermination of Cu and Pb in lubricating oils. Talanta 68:850–856, 2006.

294. D. Jagner, L. Renman, and S.H. Stefansdottir.Determination of iron (III) and titanium (IV) as theirsolochrome violet RS complexes by constant-currentstripping potentiometry. Part 1. Automated single-pointcalibration method for iron (III). Analytica Chimica Acta281: 305–312, 1993.

295. J.M. Laporte, J.P. Truchot, F. Ribeyre, and A. Boudou.Combined effects of water pH and salinity on thebioaccumulation of inorganic mercury and methylmercury inthe shore crab Carcinus maenas. Marine Pollution Bulletin34: 880–893, 1997.

296. L.L. Pujol and J.A. Sanchez-Cabeza. Natural andarti�cial radioactivity in surface waters of the Ebroriver basin (Northeast Spain). Journal of EnvironmentalRadioactivity 51: 181–210, 2000.

297. J.A. Couto, J.A. Fernández, J.R. Aboal, and A.Carballeira. Active biomonitoring of element uptake withterrestrial mosses: A comparison of bulk and drydeposition. Science of the Total Environment 324: 211–222,2004.

298. S.D. Kolev, C.W.K. Chow, D.E. Davey, and D.E. Mulcahy.Oscillating �ow injection stripping potentiometry.Analytica Chimica Acta 309: 293–302, 1995.

299. A.K. Das, M. de la Guardia, and M.L. Cervera.Literature survey of on-line elemental speciation inaqueous solutions. Talanta 55: 1–28, 2001.

300. D.J. Whitworth, E.P. Achterberg, M. Nimmo, and P.J.Worsfold. Validation and in situ application of anautomated dissolved nickel monitor for estuarine studies.Analytica Chimica Acta 377: 217–228, 1998.

301. M. Št’astný and P. Lepší. Systematic and random errorsuppression in instrumentation for stripping (chrono)potentiometry. Review of Scientific Instruments 70:3439–3446, 1999.

302. X. Hou and B.T. Jones. Field instrumentation in atomicspectroscopy. Microchemical Journal 66: 115– 145, 2000.

303. R. Feeney and S.P. Kounaves. Voltammetric measurementof arsenic in natural waters. Talanta 58: 23–31, 2002.

304. C.R. Teixeira Tarley, V.S. Santos, B.E. Lobo Baêta,A.C. Pereira, and L.T. Kubota. Simultaneous determinationof zinc, cadmium and lead in environmental water samples bypotentiometric stripping analysis (PSA) using multiwalledcarbon nanotube electrode. Journal of Hazardous Materials169: 256–262, 2009.

305. A. Mimendia, A. Legin, A. Merkoçi, and M. del Valle.Use of sequential injection analysis to construct apotentiometric electronic tongue: Application to themultidetermination of heavy metals. Sensors and ActuatorsB: Chemical 146: 420–426, 2010.

306. M.C. Bruzzoniti, E. Mentasti, C. Sarzanini, M.Braglia, G. Cocito, and J. Kraus. Determination of rareearth elements by ion chromatography. Separation procedureoptimization. Analytica Chimica Acta 322: 49–54, 1996.

307. C.-Y. Huang, N.-M. Lee, S.-Y. Lin, and C.-Y. Liu.Determination of vanadium, molybdenum and tungsten incomplex matrix samples by chelation ion chromatography andon-line detection with inductively coupled plasma massspectrometry. Analytica Chimica Acta 466: 161–174, 2002.

308. J. Bermin, D. Vance, C. Archer, and P.J. Statham. Thedetermination of the isotopic composition of Cu and Zn inseawater. Chemical Geology 226: 280–297, 2006.

309. A. Haidekker and C.G. Huber. Ion chromatography onchelating stationary phases: Separation of alkali metals.Journal of Chromatography A 921: 217–226, 2001.

310. R.P. Singh, N.M. Abbas, and S.A. Smesko. Suppressedion chromatographic analysis of anions in environmentalwaters containing high salt concentrations. Journal ofChromatography A 733: 73–91, 1996.

311. A. Padarauskas, V. Olšauskaitè, and V. Paliulionytè.Simultaneous determination of inorganic anions and cations

in waters by capillary electrophoresis. Journal ofChromatography A 829: 359–365, 1998.

312. K. Ohta. Ion chromatography with indirect photometricdetection of common mono- and divalent cations using anunmodi�ed silica gel column and tyramine/oxalicacid/18-crown-6 as eluent. Analytica Chimica Acta 405:277–284, 2000.

313. R.F.C. Mantoura and E.M.S. Woodward. Conservativebehavior of riverine dissolved organic carbon in theSevern Estuary: Chemical and geochemical implications.Geochimica et Cosmochi mica Acta 47: 1293–1309, 1983.

314. X.-J. Ding, S.-F. Mou, K.N. Liu, A. Siriraks, and J.Riviello. Ion chromatography of heavy and transitionmetals by on- and postcolumn derivatizations. AnalyticaChimica Acta 407: 319–326, 2000.

315. M.J. Shaw and P.R. Haddad. The determination of tracemetal pollutants in environmental matrices using ionchromatography. Environment International 30: 403–431,2004.

316. P. Kubáň, R. Guchardi, and P.C. Hauser. Trace-metalanalysis with separation methods. TRAC—Trends inAnalytical Chemistry 24: 192–198, 2005.

317. I. Tsukahara and T. Yamamoto.Extraction-spectrophotometric determination of traces ofbismuth in lead, copper and nickel metals, and incopper-base alloys with tri-n-octylamine. Analytica ChimicaActa 64: 337–344, 1973.

318. M.-M. Hsieh and J.G. Dorsey. Accurate determination oflog k’ w in reversed—phase liquid chromatography.Implications for quantitative structure–retentionrelationships. Journal of Chromatography A 631: 63–78,1993.

319. W.T. Frankenberger Jr., H.C. Mehra, and D.T. Gjerde.Environmental applications of ion chromatography. Journalof Chromatography A 504: 211–245, 1990.

320. C. Sarzanini and M.C. Bruzzoniti. Metal speciesdetermination by ion chromatography. TRAC—Trends inAnalytical Chemistry 20: 304–310, 2001.

321. C. Sarzanini. Recent developments in ionchromatography. Journal of Chromatography A 956: 3–13,

2002.

322. V. Pacáková, P. Coufal, and K. Štulík. Capillaryelectrophoresis of inorganic cations. Journal ofChromatography A 834: 257–275, 1999.

323. F. Mouchère, M. El Haddad, C. Elfakir, and M. Dreux.Determination of inorganic cations and anions byion-exchange chromatography with evaporativelight-scattering detection. Journal of Chromatography A914: 167–173, 2001.

324. P.N. Nesterenko and P. Jones. Single-column method ofchelation ion chromatography for the analysis of tracemetals in complex samples. Journal of Chromatography A 770:129–135, 1997.

325. P. Daorattanachai, F. Unob, and A. Imyim. Multielementpreconcentration of heavy metal ions from aqueous solutionby APDC impregnated activated carbon. Talanta 67: 59–64,2005.

326. M.T. El-Ghamry and R.W. Frei. Ternary complexes in thespectrophotometric determination of trace amounts ofplatinum (IV). Talanta 16: 235–243, 1969.

327. P.N. Nesterenko and A.V. Ivanov. Detection oftransition metals during their separation in anisoconductive pH gradient. Journal of Chromatography A 671:95–99, 1994.

328. R. García-Fernández, J.I. García-Alonso, and A.Sanz-Medel. Simultaneous determination of inorganicanions, calcium and magnesium by suppressed ionchromatography. Journal of Chromatography A 1033: 127–133,2004.

329. J. Langmaier, F. Opekar, and V. Pacáková. Applicationof a metallized membrane electrode for the determination ofgaseous sulfur compounds after reductive pyrolysis. Talanta34: 453–459, 1987.

330. J. Pick, K. Tóth, E. Pungor, M. Vasák, and W. Simson.A potassium-selective silicone-rubber membrane electrodebased on a neutral carrier. Analytica Chimica Acta 64:477–480, 1973.

331. R.J. Rucki. Electrochemical detectors for �owingliquid systems. Talanta 27: 147–156, 1980.

332. U.A.T. Brinkman, G. de Vries, and R. Kuroda.Thin-layer chromatographic data for inorganic substances.Journal of Chromatography A 85: 187–520, 1973.

333. J.K. Kim, J.S. Kim, Y.G. Shul, K.W. Lee, and W.Z. Oh.Selective extraction of cesium ion with calix[4] arenecrown ether through thin sheet supported liquid membranes.Journal of Membrane Science 187: 3–11, 2001.

334. J.A. Cruz-Morales and P. Guadarrama. Synthesis,characterization, and computational model ing of cyclensubstituted with dendrimeric branches. Dendrimeric andmacrocyclic moieties working together in a collectivefashion. Journal of Molecular Structure 779: 1–10, 2005.

335. K. Oguma and R. Kuroda. Thin-layer chromatographicbehavior of a number of metal ions on deaecellulose inthiocyanic acid-organic solvent mixtures. Journal ofChromatography A 52: 339–346, 1970.

336. G. Vučkovič, N. Juranič, D.J. Radanovič, and M.B.Čelap. Effect of the central ion of octahedral transitionmetal complexes on their thin-layer chromatographic RFvalues. Journal of Chroma tography A 466: 227–232, 1989.

337. E. Pobožy, B. Głód, J. Kaniewska, and M. Trojanowicz.Determination of triorganotin com pounds by ionchromatography and capillary electrophoresis withpreconcentration using solid-phase extraction. Journal ofChromatography A 718: 329–338, 1995.

338. Z.-H. Shi and C.-G. Fu. Porphyrins as ligands fortrace metal analysis by high-performance liquidchromatography. Talanta 44: 593–604, 1997.

339. R. Nageswara Rao and V. Nagaraju. An overview of therecent trends in development of HPLC methods fordetermination of impurities in drugs. Journal ofPharmaceutical and Biomedical Analysis 33: 335–377, 2003.

340. D.J. Mackey. Metal-organic complexes in seawater—Aninvestigation of naturally occurring complexes of Cu, Zn,Fe, Mg, Ni, Cr, Mn, and Cd using high-performance liquidchromato graphy with atomic �uorescence detection. MarineChemistry 13: 169–180, 1983.

341. B. Nowack. Environmental chemistry of phosphonates.Water Research 37: 2533–2546, 2003.

342. C.B. Molina, J.A. Casas, J.A. Zazo, and J.J.

Rodríguez. A comparison of Al–Fe and Zr–Fe pillared claysfor catalytic wet peroxide oxidation. Chemical EngineeringJournal 118: 29–35, 2006.

343. A. Taboada-de la Calzada, M.C. Villa-Lojo, E.Beceiro-González, E. Alonso-Rodríguez, and D.PradaRodríguez. Determination of arsenic species inenvironmental samples: Use of the alga Chlorella vulgarisfor arsenic(III) retention. TRAC—Trends in AnalyticalChemistry 17: 167–175, 1998.

344. A.M. Carro and M.C. Mejuto. Application ofchromatographic and electrophoretic method ology to thespeciation of organomercury compounds in food analysis.Journal of Chromato graphy A 882: 283–307, 2000.

345. Z. Mester and R. Sturgeon. Trace element speciationusing solid phase microextraction. Spectro chimica ActaPart B 60: 1243–1269, 2005.

346. B.D. Öztürk, H. Filik, E. Tütem, and R. Apak.Simultaneous derivative spectrophotometric determinationof cobalt(II) and nickel(II) by dithizone withoutextraction. Talanta 53: 263–269, 2000.

347. A. Pastore, G. Federici, E. Bertini, and F. Piemonte.Analysis of glutathione: Implication in redox anddetoxi�cation. Clinica Chimica Acta 333: 19–39, 2003.

348. F. Reymond, D. Fermín, H.J. Lee, and H.H. Girault.Electrochemistry at liquid/liquid inter faces: Methodologyand potential applications. Electrochimica Acta 45:2647–2662, 2000.

349. B. López-Ruiz. Advances in the determination ofinorganic anions by ion chromatography. Journal ofChromatography A 881: 607–627, 2000.

350. K.Saitoh, Y. Shibata, and N. Suzuki. Factorsin�uencing the retention of rare earth—Tetraphenylporphinecomplexes in reversed-phase high-performance liquidchromatography. Journal of Chromatography A 542: 351–363,1991.

351. S. Srijaranai, R. Burakham, R.L. Deming, and T.Khammeng. Simplex optimization of ion-pair reversedphasehigh-performance liquid chromatographic analysis of someheavy metals. Talanta 56: 655–661, 2002.

352. M.C. Bruzzoniti, C. Mucchino, E. Tarasco, and C.

Sarzanini. On-line preconcentration, ion chromatographicseparation and spectrophotometric determination ofpalladium at trace level. Journal of Chromatography A1007: 93–100, 2003.

353. M. Dabrio, A.R. Rodríguez, G. Bordin, M.J. Bebianno,M. De Ley, I. Šestáková, M. Vašák, and M. Nordberg. Recentdevelopments in quanti�cation methods for metallothionein.Journal of Inorganic Biochemistry 88: 123–134, 2002.

354. J.S. García, C. Schmidt de Magalhães, and M.A. ZezziArruda. Trends in metal-binding and metalloproteinanalysis. Talanta 69: 1–15, 2006.

355. Q. Sun, D. Yuan, Z. Chen, M. Megharaj, and R. Naidu.Reduction of polyatomic interferences duringion-chromatographic speciation of metal ions via their EDTAcomplexes along with ICP-MS detection using an octopolereaction system. Microchimica Acta 169: 41–47, 2010.

356. F. Pena-Pereira, I. Lavilla, C. Bendicho, L. Vidal,and A. Canals. Speciation of mercury by ionic liquidbasedsingle-drop microextraction combined with high performanceliquid chromatography—photodiode array detection. Talanta78: 537–541, 2009.

357. A. Grill. Diamond-like carbon: State of the art.Diamond and Related Materials 8: 428–434, 1999.

358. S.M. Sharma and S.K. Sikka. Pressure inducedamorphization of materials. Progress in Materials Science40: 1–77, 1996.

359. G. de Armas, M. Miró, A. Cladera, J.M. Estela, and V.Cerdà. Time-based multisyringe �ow injection system for thespectro�uorimetric determination of aluminium. AnalyticaChimica Acta 455: 149–157, 2002.

360. M.J. Ruedas Rama, A. Ruiz Medina, and A. Molina Díaz.A �ow-injection renewable surface sensor for theuorimetric determination of vanadium(V) with Alizarin RedS. Talanta 66: 1333–1339, 2005.

361. D. Price, P.J. Worsfold, and R.F.C. Mantoura. Hydrogenperoxide in the marine environment: Cycling and methods ofanalysis. TRAC—Trends in Analytical Chemistry 11: 379–384,1992.

362. J. Amador-Hernández and M.D. Luque De Castro. On-linedetection for supercritical-�uid extraction. Journal of

Biochemical and Biophysical Methods 43: 329–343, 2000.

363. P. Campíns-Falcó, L.A. Tortajada-Genaro, and F.Bosch-Reig. A new �ow cell design for chemiluminiscenceanalysis. Talanta 55: 403–413, 2001.

364. A. De Lucas, J.L. Valverde, F. Dorado, A. Romero, andI. Asencio. In�uence of the ion exchanged metal (Cu, Co,Ni, and Mn) on the selective catalytic reduction of NOXover mordenite and ZSM-5. Journal of Molecular CatalysisA—Chemical 225: 47–58, 2005.

365. G. Zhang, Z. Meng, and H. Ma. A simple �ow-injectionchemiluminescence method for the determination of tracepentavalent vanadium in water samples. InternationalJournal of Environmental Analytical Chemistry, 92:366–372, 2012.

366. F. Clanet, R. Deloncle, and G. Popoff. Capteur deresine chelatante pour le prelevement la preconcentrationet la determination de metaux traces toxiques (Zn, Cd, Hg,Pb) dans les eaux. Water Research 15: 591–598, 1981.

367. I.E. De Vito, A.N. Mais, and R.A. Olsina.Determination of trace rare earth elements by X-rayuorescence spectrometry after preconcentration on a newchelating resin loaded with thorin. Talanta 49: 929–935,1999.

368. M.M. Abou-Mesalam. Sorption kinetics of copper, zinc,cadmium and nickel ions on synthe sized silicoantimonateion exchanger. Colloids and Surfaces A: Physicochemical andEngineering Aspects 225: 85–94, 2003.

369. H. Watanabe, S. Berman, and D.S. Russell.Determination of trace metals in water using X-ray�uorescence spectrometry. Talanta 19: 1363–1375, 1972.

370. N.L. Misra, K.D. Singh Mudher, V.C. Adya, B.Rajeswari, and V. Venugopal. Determination of traceelements in uranium oxide by total re�ection x-rayuorescence spectrometry. Spectro chimica Acta PartB—Atomic Spectroscopy 60: 834–840, 2005.

371. S. Woel�, M. Mages, S. Mercado, L. Villalobos, M.Ovari, and F. Encina. Determination of trace elements inplanktonic microcrustaceans using total re�ection X-rayuorescence (TXRF): First results from two Chilean lakes.Analytical and Bioanalytical Chemistry 378: 1088–1094,2004.

372. C. Fontàs, I. Queralt, and M. Hidalgo. Novel andselective procedure for Cr(VI) determination by X-rayuorescence analysis after membrane concentration.Spectrochimica Acta Part B 61: 407–413, 2006.

373. E. Marguí, J.C. Tapias, A. Casas, M. Hidalgo, and I.Queralt. Analysis of inlet and outlet industrial wastewateref�uents by means of benchtop total re�ection X-ray�uorescence spectrometry. Chemosphere 80: 263–270, 2010.

374. R. Juvonen, A. Parviainen, and K. Loukola-Ruskeeniemi.Evaluation of a total re�ection X-ray �uorescencespectrometer in the determination of arsenic and tracemetals in environmental samples. Geochemistry:Exploration, Environment, Analysis 9: 173–178, 2009.

375. E. Marguí, P. Kregsamer, M. Hidalgo, J. Tapias, I.Queralt, and C. Streli. Analytical approaches for Hgdetermination in wastewater samples by means of totalre�ection X-ray �uorescence spectrometry. Talanta 82:821–827, 2010.

376. B. Staniszewski and P. Freimann. A solid phaseextraction procedure for the simultaneous determination oftotal inorganic arsenic and trace metals in seawater:Sample preparation for total-re�ection X-ray �uorescence.Spectrochimica Acta Part B: Atomic Spectroscopy 63:1333–1337, 2008.

377. F.L. Melquiades, P.S. Parreira, M.J. Yabe, M.Z.Corazza, R. Funfas, and C.R. Appoloni. Factorial designfor Fe, Cu, Zn, Se and Pb preconcentration optimizationwith APDC and analysis with a portable X-ray �uorescencesystem. Talanta 73: 121–126, 2007.

378. W.M. Mok and C.M. Wai. Determination of arsenic andantimony in biological materials by solvent extraction andneutron activation. Talanta 35: 183–186, 1988.

379. M.J. Marqués, A. Salvador, A.E. Morales-Rubio, and M.de la Guardia. Trace element deter mination in sediments:A comparative study between neutron activation analysis(NAA) and inductively coupled plasma–mass spectrometry(ICP-MS). Microchemical Journal 65: 177–187, 2000.

380. Y. Iwata, H. Imura, and N. Suzuki. Selectivepreconcentration of rare earth elements bysubstoichiometric precipitation of calcium oxalate and itsapplication to the neutron activation analysis of

biological material. Analytica Chimica Acta 239: 115–120,1990.

381. T. Ashino, K. Takada, and K. Hirokawa. Determinationof trace amounts of selenium and tellurium in high-purityiron by electrothermal atomic absorption spectrometry afterreductive coprecipitation with palladium using ascorbicacid. Analytica Chimica Acta 297: 443–451, 1994.

382. S. Zhang, Q. Pu, P. Liu, Q. Sun, and Z. Su. Synthesisof amidinothioureido-silica gel and its application toame atomic absorption spectrometric determination ofsilver, gold and palla dium with on-line preconcentrationand separation. Analytica Chimica Acta 452: 223–230, 2002.

383. S. Chatterjee, A. Pillai, and V.K. Gupta.Spectrophotometric determination of mercury inenvironmental sample and fungicides based on its complexwith o-carboxy phenyl diazoamino p-azobenzene. Talanta 57:461–465, 2002.

384. M.S. Hosseini and H. Hashemi - Moghaddam. Sensitizedextraction and spectrophotometric determination of Hg(II)with dithizone after its �otation as ion-associate usingiodide and ferroin. Talanta 67: 555–559, 2005.

385. P.H. Quevauviller, K.J.M. Kramer, and T. Vinhas. Aprogramme to improve the quality of trace elementdeterminations in estuarine water. Marine PollutionBulletin 28: 506–511, 1994.

386. G. Kölbl. Concepts for the identi�cation anddetermination of selenium compounds in the aquaticenvironment. Marine Chemistry 48: 185–197, 1995.

387. D.M. Sánchez, R. Martín, R. Morante, J. Marín, andM.L. Munuera. Preconcentration speciation method formercury compounds in water samples using solid phaseextraction followed by reversed-phase highperformanceliquid chromatography. Talanta 52: 671–679, 2000.

388. B.C. Mondal and A.K. Das. Determination of mercuryspecies with a resin functionalized with a1,2-bis(o-aminophenylthio)ethane moiety. Analytica ChimicaActa 477: 73–80, 2003.

389. M.V. Balarama Krishna, D. Karunasagar, S.V. Rao, andJ. Arunachalam. Preconcentration and speciation ofinorganic and methyl mercury in waters using polyanilineand gold trap-CVAAS. Talanta 68: 329–335, 2005.

390. H. Bilinski, S. Kozar, M. Plavšić, Ž . Kwokal, and M.Branica. Trace metal adsorption on inorganic solid phasesunder estuarine conditions. Marine Chemistry 32: 225–233,1991.

391. R. Plaschke, G. Dal Pont, and E.C.V. Butler. Mercuryin waters of the Derwent Estuary—Sample treatment andanalysis. Marine Pollution Bulletin 34: 177–185, 1997.

392. M. Saha, S.K. Sarkar, and B. Bhattacharya.Interspeci�c variation in heavy metal body concen trationsin biota of Sunderban mangrove wetland, northeast India.Environment International 32: 203–207, 2006.

393. M. Gallignani, H. Bahsas, M.R. Brunetto, M. Burguera,J.L. Burguera, and Y.P. de Peña. A time-based �owinjection–cold vapor–atomic absorption spectrometry systemwith on-line micro wave sample pretreatment for thedetermination of inorganic and total mercury in urine.Analytica Chimica Acta 369: 57–67, 1998.

394. B.F. Reis, E. Ródenas-Torralba, J. Sancenón-Buleo, Á.Morales-Rubio, and M. de la Guardia. Multicommutation coldvapor atomic �uorescence determination of Hg in water.Talanta 60: 809–819, 2003.

395. L.-J. Shao, W.-E. Gan, and Q.-D. Su. Determination oftotal and inorganic mercury in �sh samples with on-lineoxidation coupled to atomic �uorescence spectrometry.Analytica Chimica Acta 562: 128–133, 2006.

396. E. Bulska, W. Kandler, and A. Hulanicki. Noble metalsas permanent modi�ers for the determination of mercury byelectrothermal atomic absorption spectrometry.Spectrochimica Acta Part B 51: 1263–1270, 1996.

397. R.G.M. Moreno, E. de Oliveira, J.J. Pedrotti, and P.V.Oliveira. An electrochemical �ow-cell for permanentmodi�cation of graphite tube with palladium for mercurydetermination by electrothermal atomic absorptionspectrometry. Spectrochimica Acta Part B 57: 769–778, 2002.

398. M. Tüzen. Determination of heavy metals in �sh samplesof the middle Black Sea (Turkey) by graphite furnaceatomic absorption spectrometry. Food Chemistry 80: 119–123,2003.

399. Y. Saavedra, A. González, P. Fernández, and J. Blanco.A simple optimized microwave digestion method for

multielement monitoring in mussel samples. SpectrochimicaActa Part B 59: 533–541, 2004.

400. Y. Cai. Speciation and analysis of mercury, arsenic,and selenium by atomic �uorescence spectrometry.TRAC—Trends in Analytical Chemistry 19: 62–66, 2000.

401. D.-D. Wang, F. Li, and X.-P. Yan. On-line hyphenationof �ow injection, miniaturized capillary electrophoresisand atomic �uorescence spectrometry for high-throughputspeciation analysis. Journal of Chromatography A 1117:246–249, 2006.

402. L.E. Kaercher, F. Goldschmidt, J.N.G. Paniz, E.M. deMoraes Flores, and V.L. Dressler. Determin ation ofinorganic and total mercury by vapor generation atomicabsorption spectrometry using different temperatures of themeasurement cell. Spectrochimica Acta Part B 60: 705–710,2005.

403. E.J. dos Santos, A.B. Herrmann, M.A. Vieira, V.L.A.Frescura, and A.J. Curtius. Evaluation of slurrypreparation procedures for the determination of mercury byaxial view inductively coupled plasma optical emissionspectrometry using on-line cold vapor generation. Spectrochimica Acta Part B: Atomic Spectroscopy 60: 659–665,2005.

404. I. Ipolyi, P. Massanisso, S. Sposato, P. Fodor, and R.Mo. Concentration levels of total and methylmercury inmussel samples collected along the coasts of SardiniaIsland (Italy). Analytica Chimica Acta 505: 145–151, 2004.

405. M. Resano, I. Gelaude, R. Dams, and F. Vanhaecke.Solid sampling—Electrothermal vaporiza tion/ inductivelycoupled plasma mass spectrometry for the directdetermination of Hg in different materials using isotopedilution with a gaseous phase for calibration.Spectrochimica Acta Part B 60: 319–326, 2005.

406. T.-H. Lee and S.-J. Jiang. Determination of mercurycompounds by capillary electrophoresis inductively coupledplasma mass spectrometry with microconcentric nebulization.Analytica Chimica Acta 413: 197–205, 2000.

407. J.L. Gómez-Ariza, F. Lorenzo, and T. García-Barrera.Guidelines for routine mercury speciation analysis inseafood by gas chromatography coupled to a home-modi�ed AFSdetector. Appli cation to the Andalucian coast (southSpain). Chemosphere 61: 1401–1409, 2005.

408. E. Munaf, H. Haraguchi, D. Ishii, T. Takeuchi, and M.Goto. Speciation of mercury compounds in waste water bymicrocolumn liquid chromatography using a preconcentrationcolumn with cold-vapor atomic absorption spectrometricdetection. Analytica Chimica Acta 235: 399–404, 1990.

409. T. Pérez-Corona, Y. Madrid-Albarrán, C. Cámara, and E.Beceiro. Living organisms as an alternative to hyphenatedtechniques for metal speciation. Evaluation of baker’syeast immobilized on silica gel for Hg speciation.Spectrochimica Acta Part B 53: 321–329, 1998.

410. L.C. Robles, J.C. Feo, and A.J. Aller. Selectivepreconcentration of phenyl-mercury by living Escherichiacoli and its determination by cold vapor atomic absorptionspectrometry. Analytica Chimica Acta 423: 255–263, 2000.

411. R. Herrero, P. Lodeiro, C. Rey-Castro, T. Vilariño,and M.E. Sastre de Vicente. Removal of inorganic mercuryfrom aqueous solutions by biomass of the marine macroalgaCystoseira baccata. Water Research 39: 3199–3210, 2005.

412. P. Avino, G. Capannesi, and A. Rosada. Ultra-tracenutritional and toxicological elements in Rome andFlorence drinking waters determined by instrumental neutronactivation analysis. Microchemical Journal 97: 144–153,2011.

413. A. Henriksen and R.F. Wright. Concentrations of heavymetals in small Norwegian lakes. Water Research 12:101–112, 1978.

414. Y. Nojiri, T. Kawai, A. Otsuki, and K. Fuwa.Simultaneous multielement determination of trace metals inlake waters by ICP emission spectrometry withpreconcentration and their back ground levels in Japan.Water Research 19: 503–509, 1985.

415. U.K. Marine SACs (Special Areas of Conservation)Project. http://www.ukmarinesac.org.uk/index.htm. 2001

416. M.Chen, L.Q. Ma, and W.G. Harris. Annual ProgressReport. University of Florida, Gainesville, FL, 1998.

417. L.P. Gough, R.C. Severson, and H.T. Shacklette.Element concentrations in soils and other sur�cialmaterials of Alaska. US Geological Survey ProfessionalPaper N o 1458. US Government Printing Of�ce, Washington,DC, 1988.

418. G.R. Bradford, A.C. Chang, A.L. Page, D. Bakhtar, J.A.Frampton, and H. Wright. Background concentrations of traceand major elements in California soils, Kearney FoundationSpecial Report, University of California, Riverside, CA,1996.

419. M.R. Tucker, D.H. Hardy, and C.E. Stokes. Heavy metalsin North Carolina soils: Occurrence and signi�cance. NorthCarolina Department of Agriculture and Consumer Services,Agronomic Division, Raleigh, NC, 2005, 2 pp.

420. WebElements, the periodic table on the WWW. MarkWinter [Department of Chemistry, the University ofShef�eld and WebElements Ltd., England].http://www.webelements.com/. Document served: 16 August,2011.

421. L.M.L. Nollet (Ed.), Handbook of Water Analysis, 2ndedn., Marcel Dekker, New York. 2007. 769 pp.

422. L.S. Clesceri, A.E. Greenberg, and A.D. Eaton (Eds.),Standard Methods for the Examination of Water andWastewater, 20th edn., APHA, Washington DC, 1998, 1200 pp.

423. www.perkinelmer.com.ar. 2011.

16 Chapter 16 - Determination of Siliconand Silicates

1. ASTM Standard C33, Specification for ConcreteAggregates, ASTM International, West Conshohocken, PA,2003, DOI: 10.1520/C0033-03.

2. ASTM Standard C33, Specification for ConcreteAggregates, ASTM International, West Conshohocken, PA,2006, DOI: 10.1520/C0033-03R06.

3. ASTM Standard C33, Specification for ConcreteAggregates, ASTM International, West Conshohocken, PA,2003, DOI: 10.1520/C0033-03E01.

4. Standard methods for the examination of water andwastewater, Method 4500-SiO 2 , Automated Method forMolybdate-Reactive Silica. 21st ed., American Public HealthAssociation, USA, 2005.

5. Code of Federal Regulations. Protection of Environment.Section 40, Appendix B to Part 136. De�nition andprocedure for the determination of the method detectionlimit. Revision 1.11. Revised July 1, 1990. Of�ce of theFederal Register, National Archives and Records.

6. ASTM. American Society for Testing and Materials.Standard Specifications for Reagent Water. D119377(Reapproved 1983). Annual Book of ASTM Standards, Vol.11.01. ASTM, Philadelphia, PA, 1991.

7. Technicon AutoAnalyzer II, Industrial Method No.105-71W/B; rev Jan 1976, Technicon Industrial Systems,Tarrytown, NY, 10591.

8. APHA Standard Methods, 21st ed., Method 4500-SiO 2 D,2005. ASTM D 859-05, Silica in Water. USEPA methods forchemical analysis of water and wastes, Method 370.1, 1983

9. Jeffrey, S., QC Chemist, Analytical Products Group,Inc., Edition 25, APG eNewsletter

10. Eaton, A.D., Standard Methods for the Examination ofWater and Waste Water, 20th ed., Water EnvironmentFederation, American Public Health Association, AmericanWater Works Association, 1999.

11. Xia, X.P., Beland, R., Miersch, S., Houde, D., andAboul-Enein, H.Y., Development and validation method forsilica determination by spectrophotometry in some herbs and

pharmaceutical formulations, Analytical Letters 2000,33(3), 455–463.

12. Shi, Y., Ding, L., Li, P., and Fang, G., Fast methodfor the quantitative determination of silica contents inblack liquor and pulp, Zhonghua Zhiye 2003, 24(9), 47–48.

13. Coleman, C.J., Whitaker, M.J., Young, J.E., Lascola,R., Sanders, M.A., and Wilmarth, W.R., Remotedetermination of silica in highly radioactive defense wastesalt solutions by the molybdosilicate colorimetric method.Abstracts of Papers, 223rd ACS National Meeting, April7–11, 2002, Orlando, FL.

14. Mai, L.-B., Rapid determination of silica in zincconcentrates, Guangpu Shiyanshi 2000, 17(4), 422–424 (inChinese).

15. Kamaya, M., Hikita, Y., Nagashima, K., and Namiki, H.,Spectrophotometric determination of silica in highlypuri�ed water after collection of ion associate ofmolybdosilicate with Rhodamin B, Kogyo Yosui 1999, 493,2–8 (in Japanese).

16. Suga, C., Watanabe, Y., and Taniguchi, K., Automaticspectrometer for determination of silica in spraying waterfor accelerated weathering test, Japan Kokai Tokkyo Koho1998, 6–12.

17. Kobayashi, H., Takano, S., and Fukasawa, Y.,Determination of silica in hot spring waters by gravimetryand molybdosilicic acid yellow spectrophotometry,Yamanashi-ken Eisei Kogai Kenkyusho Nenpo 1994, 38, 1–4(in Japanese).

18. Herrig, H.J., Determination of silica in boiler andfeed waters, Technische Uberwachung. 1963, 4(8), 285–286.

19. Umezaki, Y. and Shigen Gijutsu Shikenjo, K.,Colorimetric determination of silica in the presence of,large quantities of phosphate. A silicomolybdate method,Nippon Kagaku Zasshi 1961, 82, 847–851.

20. Andersson, L.H., Determination of silica. VII. Someexperiments with the gravimetric silica determinations,Arkiv foer Kemi 1962, 19(17), 223–233.

21. Misumi, S. and Tarutani, T., Colorimetric determinationof silica in the presence of large amounts of phosphate byusing reagents for decomposition of molybdophosphoric acid,

Bunseki Kagaku 1961, 10, 1113–1117.

22. Andersson, L.H., Determination of silica. III.Interference from aluminum, iron, and �uorine in thespectrophotometric determination of silica, Acta ChemicaScandinavica 1960, 14, 1571–1579.

23. Andersson, L.H., Determination of silica. II.Separation of phosphomolybdate from α-silicomolybdate,Acta Chemica Scandinavica 1959, 13, 1743–1752.

24. Novoselov, A.A. and Simolin, A.V., Colorimetricdetermination of silicates in sea water under �eldconditions, Mezhvedomstv. Sb. 1965, 1, 90–103 (in Russian).

25. Sturla, A., Determination of silica in pure water byextraction. Determination of reactive silica, AcquaIndustriale, Inquinamento 1968, 10(59), 14–17 (in Italian).

26. Ruzicka, J. and Hansen, E.H., An integrated approach ofanalytical chemistry, Analytica Chimica Acta 1975, 78,145.

27. Aldstadt, J.H., Olson, D.C., Wolcott, D.K., Marshal,G.D., and Steig, S.W., Flow and sequential injectionanalysis techniques in process analysis. In R.A. Meyers(ed.), Encyclopedia of Analytical Chemistry, Vol. 15:Applications, Theory and Instrumentation, John Wiley &Sons, New York, 2000.

28. Silica in waters, EPA Standard Method No.10-114-27-1-A; Reference No. 370.1.

29. Silicate in waters, EPA Standard Method No.10-114-27-1-B; Reference No. 370.1.

30. Silicate in brackish or seawater, EPA Standard MethodNo. 30-114-27-1-A; Reference No. 370.1.

31. Silicate in brackish or seawater, EPA Standard MethodNo. 31-114-27-1-A; Reference No. 370.1.

32. Silica (SiO 2 ) in brackish waters, EPA Standard MethodNo. 31-114-27-1-B; Reference No. 370.1.

33. Silicate in brackish water, EPA Standard Method No.31-114-27-1-D; Reference No. 370.1.

34. Sabarudin, A., Oshima, M., Ishii, N., and Motomizu, S.,Novel �ow injection-�uorometric method for the

determination of trace silicate and its application toultrapuri�ed water analysis, Talanta 2003,60(6),1277–1285.

35. Ogata, K., Soma, S., Koshiichi, I., Tanabe, S., andImanari, T., Determination of silicate by �ow injectionanalysis coupled with suppression column and solventextraction system, Bunseki Kagaku 1984, 33(12), 535–538.

36. Tsuboi, T., Nakamura, T., Yonezawa, K., Matsukura, A.,and Motomizu, S., Flow injection analysis for thedetermination of trace amounts of silica in boiler water,Journal of Flow Injection Analysis 1995, 12(1), 85–90.

37. Jones, E.A. and Pearce, C.A., The determination ofsilica in water by �ow-injection analysis, South AfricaRepublic Mintek 1986, M272, 17.

38. Thomsen, J., Johnson, K.S., and Petty, R.L.,Determination of reactive silicate in seawater by �owinjection analysis, Marine Science Institute of AnalyticalChemistry 1983, 55(14), 2378–2382.

39. Mas-Torres, F., Munoz, A., Estela, J.M., and Cerda, V.,Simultaneous spectrophotometric determination of phosphateand silicate by a stopped-�ow sequential injection method,International Journal of Environmental AnalyticalChemistry 2000, 77(3), 185–202.

40. Jacintho, A.O., Kronka, E.A.M., Zagatto, E.A.G.,Arruda, M.A.Z., and Ferreira, J.R., Sequentialdetermination of silicate and phosphate in waters byow-injection spectrophotometry, Journal of Flow InjectionAnalysis 1989, 6(1), 19–29.

41. Linares, P., Luque de Castro, M.D., and Valcarcel, M.,Fluorimetric differential-kinetic determination ofsilicate and phosphate in waters by �ow-injection analysis,Talanta 1986, 33(11), 889–893.

42. Shpigun, L.K., Kolotyrkina, I.Ya., and Zolotov, Y.A.,Experience with �ow-injection analysis in marine chemicalresearch, Analytica Chimica Acta 1992, 261, 1–2.

43. Ruzicka, J. and Marshal, G.D., Sequential injectionanalysis as a tool for on-line monitoring the sorption ofuvic acid onto modi�ed vermiculite, Analytica Chimica Acta1990, 237, 329.

44. Salah, M.S. and Magnus, U.L., A kinetic sequential

injection analysis method for silicate determination inwater samples containing phosphates, JFIA 2005, 22(1),25–29.

45. Miro, M., Estela, J.M., and Cerdia, V., Application ofow streams techniques to water analysis. Part 1. Ionicspecies: Dissolved inorganic carbon nutrients and relatedcompounds, Talanta 2003, 60, 867–886.

46. Galhardo, C.X. and Masini, J.C., Spectrophotometricdetermination of phosphate and silicate by sequentialinjection using molybdenum blue chemistry, AnalyticaChimica Acta 2000, 417(2), 191–200.

47. Mas-Torres, F., Munoz, A., Estela, J.M., and Cerda, V.,Simultaneous determination of phosphate and silicate inwaste water by sequential injection analysis, The Analyst1997, 122(10), 1033–1038.

48. Mas-Torres, F., Munoz, A., and Estela, J.M.,Simultaneous spectrophotometric determination of phosphateand silicate by a stopped-�ow sequential injection method,International Journal of Environmental AnalyticalChemistry 2000, 77(3), 185–202.

49. Pangilinan, A., McCarthy, D.A., and Walker, T.B.,Comparison of DRIFTS and FTIR for the quantitativedetermination of silica and phosphorus pentoxide in amixture, Book of Abstracts, 219th ACS National Meeting,March 26–30, 2000, San Francisco, CA, Conference; MeetingAbstract written in English.

50. Jimenez Torres, N.V. and Gonzalez Carrero, J.,Determination of silica, Informacion de Quimica Analitica1969, 23(2), 53–60; (3), 79–88.

51. Andersson, L.H., Determination of silica. VII. Someexperiments with the gravimetric silica determinations,Arkiv foer Kemi 1962, 19(20), 249–256.

52. Ruzek, J. and Linhova, R., Quantitative determinationof silica phases. I. Use of DTA in the quantitativeanalysis of silica phases, Anorganicka Chemie a Technologie1969, 13, 227–257 (in Czech).

53. Shioji, S., Kawaguchi, M., Hayashi, Y., Tokami, K., andYamamoto, H., A study of the hydroxyl determination ofsilica, Funtai Kogaku Kaishi 1998, 35(2), 98–105 (inJapanese).

54. Kanie, T., Determination of silica in high-purity waterby an ion-exchange method, Nagoya-shi Kogyo KenkyushoKenkyu Hokoku 1963, 27, 35–38 (in Japanese).

55. Schink, D.R., Determination of silica in sea waterusing solvent extraction, Analytical Chemistry 1965,37(6), 764–765.

56. Roethig, J. and Smith, G., Auto-regeneration ofanion-trap columns for improved determination of silica byion chromatography, Journal of Chromatography A 2004,1039(1–2), 23–25.

57. Krokhin, O.V., Dubovik, D.B., Ivanov, A.V., andShpigun, O.A., Determination of silica and phosphorus asmolybdenum heteropolyacids by ion-pair reversed phase HPLC,Moscow University Chemistry Bulletin 2002, 43(1), 20–24(in Russian).

58. Strambeanu, N., Conductometric determination of silicaconcentration in water at in�nite dilution, Revista deChimie (Bucharest, Romania) 2002, 53(9), 586–589.

59. Tretinnik, V.Yu., Terlikovskii, E.V., and Skorobogach,L.P., Content potentiometric determination of silica insolutions of alkali metal silicates, Glass and Ceramics1993, 50(7), 317–320 (in Russian).

60. Barbosa, A.C. and Tourinho, P.A., Determination ofsilica by alternating current polarography in a nitratemedium, Analytical Letters 1984, 17(A19), 2159–2174 (inFrench).

61. Neil, G.C., Alexia, W.E.H., and Derek, P.,Microelectrode procedures for the determination of silicateand phosphate in waters—Fundamental studies,Electroanalysis 2005, 9(17), 1311–1317.

62. Horvath-Szabo, G. and Hoeland, H., Compressibilitydetermination of silica particles by ultrasound velocityand density measurements on their suspensions, Journal ofColloid and Interface Science 1996, 177(2), 568–578.Section VII Organic Parameters

17 Chapter 17 - Main Parameters andAssays Involved with the OrganicPollution of Water

1. K. Robards, I.D. McKelvie, R.L. Benson, P.J. Worsfold,N.J. Blundell, and H. Casey. Determination of carbon,phosphorus, nitrogen and silicon species in waters. Anal.Chim. Acta, 287:147–190, 1994.

2. WQA Glossary of Terms. http://wqa.org/glossary.cfm.January 2012.

3. U.S. Environmental Protection Agency: Water monitoringand assessing (5.2 Dissolved Oxygen and Biochemical OxygenDemand), Website,http://water.epa.gov/type/rsl/monitoring/vms52.cfm.

4. J.C. Young (chair). 5210-Biochemical Oxygen Demand(BOD). In: A.D. Eaton, L.S. Clesceri, E.W. Rice, and A.E.Greenberg (Eds.), Standard Methods for the Examination ofWater and Wastewater, 21st edition, American Public HealthAssociation-American Water Works Association-WaterEnvironment Federation, Washington, USA, 2005, pp.5-2/5-13.

5. A.K. Gernaey, B. Petersen, J.-P. Ottoy, and P.Vanrolleghem. Activated sludge monitoring with combinedrespirometric-titrimetric measurements. Water. Res.,35:1280–1294, 2001.

6. N. Maximova and O. Dahl. A set up of a modern analyticallaboratory for wastewaters from pulp and paper industry.Chem. Soc. Rev., 36:1323–1349, 2007.

7. N.F. Pasto, R.J. Weld, J.M. Hay, and R. Gooneratne.Development and applications of whole cell biosensors forecotoxicity testing. Anal. Bioanal. Chem., 400:931–945,2011.

8. K. Morris, K. Catterall, H. Zhao, N. Pasco, and R. John.Ferricyanide mediated biochemical oxygendemand—Development of a rapid biochemical oxygen demandassay. Anal. Chim. Acta, 442:129–139, 2001.

9. Y. Jiang, L.L. Xiao, L. Zhao, X. Chen, X. Wang, and K.Y.Wong. Optical biosensor for the determination of BOD inseawater. Talanta, 70:97–103, 2006.

10. J.B. Webber, M. Noonan, N.F. Pasco, and J.M. Hay.Appraising bacterial strains for rapid BOD sensingan

empirical test to identify bacterial stains capable ofreliably predicting real ef�uent BODs. Appl. Microbiol.Biotechnol., 89:179–188, 2011.

11. M. Hikuma, H. Suzuki, T. Yasuda, I. Karube, and S.Suzuki. Amperometric estimation of BOD by using livingimmobilized yeasts. Eur. J. Appl. Microbiol. Biotechnol.,8:289–297, 1979.

12. K. Riedel, K.P. Lange, H.J. Stein, M. Kuhn, P. Ott, andF. Sheller. A microbial sensor for BOD. Water Res.,24:883–887, 1990.

13. T.C. Tan, F. Li, and K.G. Neoh. Measurement of BOD byinitial rate of response of a microbial sensor. Sens.Actuator B, 10:137–142, 1993.

14. C. Preininger, I. Klimant, and O.S. Wolfbeis. Opticalber sensor for biological oxygen demand. Anal. Chem.,66:1841–1846, 1994.

15. E. Praet, V. Reuter, T. Gaillard, and J.L. Vasel.Bioreactors and biomembranes for biochemical oxygen demandestimation. Trends Anal. Chem., 14:371–378, 1995.

16. Z. Yang, H. Suzuki, S. Sasaki, and I. Karube.Disposable sensor for biochemical oxygen demand. Appl.Microbiol. Biotechnol., 46:10–14, 1996.

17. Z. Qian and T.C. Tan. Response characteristics of adead-cell BOD sensor. Water Res., 32:801–807, 1998.

18. C. Chan, M. Lehmann, K. Chan, P. Chan, C. Chan, B.Gruendig, G. Kunze, and R. Renneburg. Designing anamperometric thick-�lm microbial BOD sensor. Biosens.Bioelectron., 15:343–353, 2000.

19. C. Chan, M. Lehmann, K. Tag, K.M. Lung, G. Kunze, K.Reidel, B. Gruendig, and R. Renneberg. Measurement ofbiodegradable substances using the salt-tolerant yeastArxula adeninivorans for a microbial sensor immobilisedwith poly(carbamoyl)sulfonate (PCS). Part I. Constructionand characterisation of the microbial sensor. Biosens.Bioelectron., 14:131–138, 1999.

20. K. Tag, M. Lehmann, C. Chan, R. Renneberg, K. Riedel,and G. Kunze. Measurement of biodegradable substances witha mycelia-sensor based on the salt tolerant yeast Arxulaadeninivorans LS3. Sens. Actuators B, 67:142–148, 2000.

21. A. König, T. Reul, C. Harmeling, F. Spener, M. Knoll,and C. Zaborosch. Multimicrobial sensor usingmicrostructured three-dimensional electrodes based onsilicon technology. Anal. Chem., 72:2022–2028, 2000.

22. S.P. Trosok, B.T. Driscoll, and J.H.T. Luong. Mediatedmicrobial biosensor using a novel yeast strain forwastewater BOD measurement. Appl. Microbiol. Biotechnol.,56:550–554, 2001.

23. S. Rastogi, R. Pratima, T.K. Saxena, N.K. Mehra, and R.Kumar. BOD analysis of industrial ef�uents: 5 days to 5min. Curr. Appl. Phys., 3:191–194, 2003.

24. A. Manoharan, V. Gangal, S.D. Makhijani, A. Sharma, A.Kumar, and R. Kumar. Validation of the use of microbialconsortium as standard seeding material in BODdetermination. Hydrobiologia, 430:77–86, 2000.

25. K. Catterall, K. Morris, C. Gladman, H. Zhao, N. Pasco,and R. John. The use of microorganisms with broad rangesubstrate utilisation for the ferricyanide-mediated rapiddetermination of biochemical oxygen demand. Talanta,55:1187–1194, 2001.

26. J. Jia, M. Tang, X. Chen, L. Qi, and S. Dong.Co-immobilized microbial biosensor for BOD estimationbased on sol-gel derived composite material. Biosens.Bioelectron., 18:1023–1029, 2003.

27. S. Rastogi, A. Kumar, N.K. Mehra, S.D. Makhijani, A.Manoharan, V. Gangal, and R. Kumar. Development andcharacterization of a novel immobilized microbial membranefor rapid determination of biochemical oxygen demand loadin industrial waste-waters. Biosens. Bioelectron.,18:23–29, 2003.

28. N. Pasco, K. Baronian, C. Jeffries, and J. Hay.Biochemical mediator demand ± a novel rapid alternativefor measuring biochemical oxygen demand. Appl. Microbiol.Biotechnol., 53:613–618, 2000.

29. G.-J. Chee, Y. Nomura, K. Ikebukuro, and I. Karube.Biosensor for the evaluation of biochemical oxygen demandusing photocatalytic pretreatment. Sens. Actuators B,80:15–20, 2001.

30. G.-J. Chee, Y. Nomura, and I. Karube. Biosensor for theestimation of low biochemical oxygen demand. Anal. Chim.Acta, 379:185–191, 1999.

31. J. Liu, L. Björnsson, and B. Mattiasson. Immobilisedactivated sludge based biosensor for biochemical oxygendemand measurement. Biosens. Bioelectron., 14:883–893,2000.

32. T.C. Tan and E.W.C. Lim. Thermally killed cells ofcomplex microbial culture for biosensor measurement of BODof wastewater. Sens. Actuators B, 107:546–551, 2005.

33. N.-Y. Kwok, S. Dong, W. Lo, and K.-Y. Wong. An opticalbiosensor for multi-sample determination of biochemicaloxygen demand (BOD). Sens. Actuators B, 110:289–298, 2005.

34. G.-J. Chee, Y. Nomura, K. Ikebukuro, and I. Karube.Development of photocatalytic biosensor for the evaluationof biochemical oxygen demand. Biosens. Bioelectron.,21:67–73, 2005.

35. L. Lin, L.-L. Xiao, S. Huang, L. Zhao, J.-S. Cui, X.-H.Wang, and X. Chen. Novel BOD optical �ber biosensor basedon co-immobilized microorganisms in ormosils matrix.Biosens. Bioelectron., 21:1703– 1709, 2006.

36. H.-L. Pang, N.-Y. Kwok, P.-H. Chan, C.-H. Yeung, W. Lo,and K.-Y. Wong. High-throughput determination ofbiochemical oxygen demand (BOD) by a microplate-basedbiosensor. Environ. Sci. Technol., 41:4038–4044, 2007.

37. A. Kumlanghan J. Liu, P. Thavarungkul, P. Kanatharana,and B. Mattiasson. Microbial fuel cell-based biosensor forfast analysis of biodegradable organic matter. Biosens.Bioelectron., 22:2939–2944, 2007.

38. T. Sakaguchi, Y. Morioka, M. Yamasaki, J. Iwanaga, K.Beppu, H. Maeda, Y. Morita, and E. Tamiya. Rapid andonsite BOD sensing system using luminous bacterialcells-immobilized chip. Biosens. Bioelectron.,22:1345–1350, 2007.

39. H.-L. Pang, N.-Y. Kwok, L.M.-C. Chow, C.-H. Yeung,K.-Y. Wong, X. Chen, and X. Wang. ORMOSIL oxygen sensorson polystyrene microplate for dissolved oxygen measurement.Sens. Actuators B, 123:120–126, 2007.

40. H. Nakamura, S. Kobayashi, Y. Hirata, K. Suzuki, Y.Mogi, and I. Karube. A spectrophotometric biochemicaloxygen demand determination method using2,6-dichlorophenolindophenol as the redox color indicatorand the eukaryote Saccharomyces cerevisiae. Anal. Biochem.,

369:168–174, 2007.

41. H. Nakamura, K. Suzuki, H. Ishikuro, S. Kinoshita, R.Koizumi, S. Okuma, M. Gotoh, and I. Karube. A new BODestimation method employing a double-mediator system byferricyanide and menadione using the eukaryoteSaccharomyces cerevisiae. Talanta, 72:210–216, 2007.

42. H. Nakamura, Y. Mogi, H. Hattori, Y. Kita, D. Hattori,A. Yoshimura, and I. Karube. Absorption-based highlysensitive and reproducible biochemical oxygen demandmeasurement method for seawater using salt-tolerant yeastSaccharomyces cerevisiae ARIF KD-003. Anal. Chim. Acta,620:127–133, 2008.

43. P. Dhall, A. Kumar, A. Joshi, T.K. Saxsena, A.Manoharan, S.D. Makhijani, and R. Kumar. Quick andreliable estimation of BOD load of beverage industrialwastewater by developing BOD biosensor. Sens. Actuators B,133:478–483, 2008.

44. H. Chen, T. Ye, B. Qiu, G. Chen, and X. Chen. A novelapproach based on ferricyanide-mediator immobilized in anion-exchangeable biosensing �lm for the determination ofbiochemical oxygen demand. Anal. Chim. Acta, 612:75–82,2008.

45. A. Kumlanghan, P. Kanatharana, P. Asawatreratanakul, B.Mattiasson, and P. Thavarungkul. Microbial BOD sensor formonitoring treatment of wastewater from a rubber latexindustry. Enzyme Microb. Technol., 42:483–491, 2008.

46. K.S. Seo, K.H. Choo, H.N. Chang, and J.K. Park. A �owinjection analysis system with encapsulated high-densitySaccharomyces cerevisiae cells for rapid determination ofbiochemical oxygen demand. Appl. Microbiol. Biotechnol.,83:217–223, 2009.

47. S. Velling and T. Tenno. Different calibration methodsof a microbial BOD sensor for analysis of municipalwastewaters. Sens. Actuators B, 141:233–238, 2009.

48. S. Oota, Y. Hatae, K. Amada, H. Koya, and M. Kawakami.Development of mediated BOD biosensor system of �owinjection mode for shochu distillery wastewater. Biosens.Bioelectron., 26:262–266, 2010.

49. C. Liu, C. Ma, D. Yu, J. Jia, L. Liu, B. Zhang, and S.Dong. Immobilized multi-species based biosensor for rapidbiochemical oxygen demand measurement. Biosens.

Bioelectron., 26:2074–2079, 2011.

50. V. Arlyapov, S. Kamanin, O. Ponamoreva, and A.Reshetilov. Biosensor analyzer for BOD index expresscontrol on the basis of the yeast microorganisms Candidamaltosa, Candida blankii, and Debaryomyces hansenii.Enzyme Microb. Technol., 50:215–220, 2012.

51. M. Raud, T. Tenno, E. Jõgi, and T. Kikas. Comparativestudy of semi-speci�c Aeromonas hydrophila and universalPseudomonas fluorescens biosensors for BOD measurements inmeat industry wastewaters. Enzyme Microb. Technol.,50:221–226, 2012.

52. C. Liu, H. Zhao, L. Zhong, C. Liu, J. Jia, X. Xu, L.Liu, and S. Dong. A bio�lm reactor-based approach forrapid on-line determination of biodegradable organicpollutants. Biosens. Bioelectron., 34:77–82, 2012.

53. B.E. Logan and G.A. Wagenseller. The HBOD test—A newmethod for determining biochemical oxygen-demand. WaterEnviron. Res., 65:862–868, 1993.

54. B.E. Logan and R. Patnaik. A gas chromatographic-basedheadspace biochemical oxygen demand test. Water Environ.Res., 69:206–214, 1997.

55. B. Min, D. Kohler, J. Brown, and B.E. Logan. Using anHBOD probe to measure biochemical oxygen demand ofwastewaters. Keystone Water Quality Manager, 34:24–28,2001.

56. B. Min, D. Kohler, and B.E. Logan. A simpli�ed HBODtest protocol based on oxygen measurements using a �beroptic (HBOD) probe. Water Environ. Res., 76:39–47, 2004.

57. S.K.E. Brookman. Estimation of biochemical oxygendemand in slurry and ef�uents using ultra-violetspectrophotometry. Water Res., 31:372–374, 1997.

58. D.M. Reynolds and S.R. Ahmad. Rapid and directdetermination of wastewater BOD values using a �uorescencetechnique. Water Res., 31:2012–2018, 1997.

59. D.M. Reynolds. The differentiation of biodegradable andnon-biodegradable dissolved organic matter in wastewatersusing �uorescence spectroscopy. J. Chem. Technol.Biotechnol., 77:965–972, 2002.

60. O. Sha and W.X. Ma. Spectrophometric determination of

biochemical oxygen demand in water sample by I 3 −acridine red-polyvinyl alcohol system. Asian J. Chem.,23:3576–3580, 2011.

61. F.J. Baumann. Dichromate re�ux chemical oxygendemand—Proposed method for chloride correction in highlysaline wastes. Anal. Chem., 46:1336–1338, 1974.

62. J. Hejzlar and J. Kopáček. Determination of lowchemical oxygen-demand values in water by the dichromatesemi-micro method. Analyst, 115:1463–1467, 1990.

63. R.R. Himebaugh and M.J. Smith. Semi-micro tube methodfor chemical oxygen demand. Anal. Chem., 51:1085–1087,1979.

64. A.M. Jirka and M.J. Carter. Micro semi-automatedanalysis of surface and wastewaters for chemical oxygendemand. Anal. Chem., 47:1397–1402, 1975.

65. I. Vyrides and D.C. Stuckey. A modi�ed method for thedetermination of chemical oxygen demand (COD) for sampleswith high salinity and low organics. Bioresour. Technol.,100:979–982, 2009.

66. N. Kayaalp, M.E. Ersahin, H. Ozgun, I. Koyuncu, and C.Kinaci. A new approach for chemical oxygen demand (COD)measurement at high salinity and low organic mattersamples. Environ. Sci. Pollut. R., 17:1547–1552, 2010.

67. H.L. Golterman and A.G. Wisselo. Ceriometry, a combinedmethod for chemical oxygen-demand and dissolved-oxygen(with a discussion on the precision of the Winklertechnique). Hydrobiologia, 77: 37–42, 1981.

68. S. Edwards and M. Allen. Rapid and precise method forthe determination of the chemical oxygen demand of factoryef�uent samples. Analyst, 109:671–672, 1984.

69. M. Novic, B. Pihlar, and M. Dular. Use of �ow-injectionanalysis based on iodometry for automation ofdissolved-oxygen (Winkler method) and chemical oxygendemand (dichromate method) determinations. Fresenius Z.Anal. Chem., 332:750–755, 1988.

70. C. Billings, M. Lane, A. Watson, T.P. Whitehead, and G.Thorpe. A rapid and simple chemiluminescent assay forwater-quality monitoring. Analusis, 22:27–30, 1994.

71. S. Suryani, F. Theraulaz, and O. Thomas. Deterministic

resolution of molecular absorption spectra of aqueoussolutions environmental applications. Trends Anal. Chem.,14:457–463, 1995.

72. E. Naffrechoux, C. Fachinger, and J. Suptil.Diode-array ultraviolet detector for continuous monitoringof water-quality. Anal. Chim. Acta, 270:187–193, 1992.

73. P.K. Dasgupta and K. Petersen. Kinetic approach to themeasurement of chemical oxygen demand with an automatedmicro batch analyzer. Anal. Chem., 62:395–402, 1990.

74. J. Lopes de Morais and P. Peralta Zamora. Use ofadvanced oxidation processes to improve thebiodegradability of mature land�ll leachates. J. Hazard.Mater., 123B:181–186, 2005.

75. P. Westbroek and E. Temmerman. In line measurement ofchemical oxygen demand by means of multipulse amperometryat a rotating Pt ring—Pt/PbO 2 disc electrode. Anal. Chim.Acta, 437:95–105, 2001.

76. Y. Hu and Z. Yang. A simple chemiluminescence methodfor determination of chemical oxygen demand values inwater. Talanta, 63:521–526, 2004.

77. K.-H. Lee, Y.-C. Kim, H. Suzuki, K. Ikebukuro, K.Hashimoto, and I. Karube. Disposable chemical oxygen demandsensor using a microfabricated Clark-type oxygen electrodewith a TiO 2 suspension solution. Electroanalysis,12:1334–1338, 2000.

78. S. Ai, M. Gao, Y. Yang, J. Li, and L. Jin.Electrocatalytic sensor for the determination of chemicaloxygen demand using a lead dioxide modi�ed electrode.Electroanalysis, 16:404–409, 2004.

79. S. Zhang, H. Zhao, D. Jiang, and R. John.Photoelectrochemical determination of chemical oxygendemand based on an exhaustive degradation model in athin-layer cell. Anal. Chim. Acta, 514:89–97, 2004.

80. S. Ai, J. Li, Y. Yang, M. Gao, Z. Pan, and L. Jin.Study on photocatalytic oxidation for determination ofchemical oxygen demand using a nano-TiO 2 –K 2 Cr 2 O 7system. Anal. Chim. Acta, 509:237–241, 2004.

81. D.M. Dharmadhikari, A.P. Vanerkar, and N.M. Barhate.Chemical oxygen demand using closed microwave digestionsystem. Environ. Sci. Technol., 39:6198–6201, 2005.

82. R. Ramon, F. Valero, and M. del Valle. Rapiddetermination of chemical oxygen demand using a focusedmicrowave heating system featuring temperature control.Anal. Chim. Acta, 491:99–109, 2003.

83. C.E. Domini, M. Hidalgo, F. Marken, and A. Canals.Comparison of three optimized digestion methods for rapiddetermination of chemical oxygen demand: Closed microwaves,open microwaves and ultrasound irradiation. Anal. Chim.Acta, 561:210–217, 2006.

84. A. Canals, A. Cuesta, L. Gras, and M.R. Hernandez. Newultrasound assisted chemical oxygen demand determination.Ultrason. Sonochem., 9:143–149, 2002.

85. A. Canals and M.R. Hernández. Ultrasound-assistedmethod for determination of chemical oxygen demand. Anal.Bioanal. Chem., 374:1132–1140, 2002.

86. J. Wang, K. Li, C. Yang, Y. Wang, and J. Jia.Ultrasound electrochemical determination of chemical oxygendemand using boron-doped diamond electrode. Electrochem.Commun., 18:51–54, 2012.

87. H. Yu, H. Wang, X. Quan, S. Chen, and Y. Zhang.Amperometric determination of chemical oxygen demand usingboron-doped diamond (BDD) sensor. Electrochem. Commun.,9:2280–2285, 2007.

88. J. Zhang, B. Zhou, Q. Zheng, J. Li, J. Bai, Y. Liu, andW. Cai. Photoelectrocatalytic COD determination methodusing highly ordered TiO 2 nanotube array. Water Res.,43:1986–1992, 2009.

89. H. Yao, B. Wu, H. Qu, and Y. Cheng. A high throughputchemiluminescence method for determination of chemicaloxygen demand in waters. Anal. Chim. Acta, 633:76–80, 2009.

90. Q. Mu, Y. Li, Q. Zhang, and H. Wang. TiO 2 nano�bersxed in a micro�uidic device for rapid determination ofchemical oxygen demand via photoelectrocatalysis. Sens.Actuator B, 155:804–809, 2011.

91. Z. Zhang, Y. Yuan, Y. Fang, L. Liang, H. Ding, and L.Jin. Preparation of photocatalytic nano-ZnO/TiO 2 �lm andapplication for determination of chemical oxygen demand.Talanta, 73:523–528, 2007.

92. A.C. Sousa, M.M.L.M. Lucio, O.F. Bezerra Neto, G.P.S.

Marcone, A.F.C. Pereira, E.O. Dantas, W.D. Fragoso, M.C.U.Araujo, and R.K.H. Galvão. A method for determination ofCOD in a domestic wastewater treatment plant by usingnear-infrared re�ectance spectrometry of seston. Anal.Chim. Acta, 588:231–236, 2007.

93. C.E. Domini, L. Vidal, and A. Canal. Trivalentmanganese as an environmentally friendly oxidizing reagentfor microwave- and ultrasound-assisted chemical oxygendemand determinations. Ultrason. Sonochem., 16:686–691,2009.

94. S. Zhang, L. Li, and H. Zhao. A PortablePhotoelectrochemical probe for rapid determination ofchemical oxygen demand in wastewaters. Environ. Sci.Technol., 43:7810–7815, 2009.

95. A. Zhang, M. Zhou, and Q. Zhou. A combinedphotocatalytic determination system for chemical oxygendemand with a highly oxidative reagent. Anal. Chim. Acta,686:133–143, 2011.

96. J. Houser. Semimicro determination of COD employingmicrowave digestion. Environ. Eng. Sci., 20:617–626, 2003.

97. A. Canals, M. Hidalgo, C.E. Domini, and G. Cravotto.Método y dispositivo que permite irradiar directamente biende forma simultánea, consecutiva o alternativa una muestracon radiación de microondas y/o ultrasonidos. Spanishpatent number: P200600502, March 06, 2006.

98. J. Ruzicka and E.H. Hansen. Flow injection analyses.Part I. A new concept of fast continuous �ow analysis.Anal. Chim. Acta, 78:145–157, 1975.

99. T. Korenaga. Flow-injection analysis usingpotassium-permanganate-an approach for measuring chemicaloxygen-demand in organic wastes and waters. Anal. Lett.,13:1001–1011, 1980.

100. T. Korenaga and H. Ikatsu. Continuous-�owinjection-analysis of aqueous environmental-samples forchemical oxygen-demand. Analyst, 106:653–662, 1981.

101. T. Korenaga and H. Ikatsu. The determination ofchemical oxygen demand in waste-waters with dichromate byow injection analysis. Anal. Chim. Acta, 141:301–309,1982.

102. T. Korenaga, X. Zhou, K. Okada, T. Moriwake, and S.

Shinoda. Determination of chemical oxygen demand by aow-injection method using cerium (IV) sulphate as oxidizingagent. Anal. Chim. Acta, 272:237–244, 1993.

103. J.M.H. Appleton, J.F. Tyson, and R.P. Mounce. Therapid determination of chemical oxygen demand in wastewaters and ef�uents by �ow injection analysis. Anal. Chim.Acta, 179:267–278, 1986.

104. H. Tanaka. Application of pretreatment methods usingelectrolysis-generated redox reagent for �ow analysis.Bunseki Kagaku, 47:79–91, 1998.

105. M.L. Balconi, M. Borgarello, R. Ferraroli, and F.Realini. Chemical oxygen demand determination in well andriver waters by �ow-injection analysis using a microwaveoven during the oxidation step. Anal. Chim. Acta,261:295–299, 1992.

106. A. Cuesta, J.L. Todolí, and A. Canals. Flow injectionmethod for the rapid determination of chemical oxygendemand based on microwave digestion and chromium speciationin �ame atomic absorption spectrometry. Spectrochim. ActaPart B, 51:1791–1800, 1996.

107. A. Cuesta, J.L. Todoli, J. Mora, and A. Canals. Rapiddetermination of chemical oxygen demand by asemi-automated method based on microwave sample digestion,chromium(VI) organic solvent extraction and �ame atomicabsorption spectrometry. Anal. Chim. Acta, 372:399–409,1998.

108. A.P. Beltra, J. Iniesta, L. Gras, F. Gallud, V.Montiel, A. Aldaz, and A. Canals. Development of a fullyautomatic microwave assisted chemical oxygen demand (COD)measurement device. Instrum. Sci. Technol., 31:249–259,2003.

109. D. Dan, R.C. Sandford, and P.J. Worsfold.Determination of chemical oxygen demand in fresh watersusing �ow injection with on-line UV-photocatalyticoxidation and spectrophotometric detection. Analyst,130:227–232, 2005.

110. J. Li, L. Li, L. Zheng, Y. Xian, S. Ai, and L. Jin.Amperometric determination of chemical oxygen demand withow injection analysis using F-PbO 2 modi�ed electrode.Anal. Chim. Acta, 548:199–204, 2005.

111. Y.-C. Kim, S. Sasaki, K. Yano, K. Ikebukuro, K.

Hashimoto, and I. Karube. Photocatalytic sensor for thedetermination of chemical oxygen demand using �ow injectionanalysis. Anal. Chim. Acta, 432:59–66, 2001.

112. J. Chen, J. Zhang, Y. Xian, X. Ying, M. Liu, and L.Jin. Preparation and application of TiO 2 photocatalyticsensor for chemical oxygen demand determination in waterresearch. Water Res., 39:1340–1346, 2005.

113. J. Li, L. Zheng, L. Li, G. Shi, Y. Xian, and L. Jin.Photoelectro-synergistic catalysis combined with a FIAsystem application on determination of chemical oxygendemand. Talanta, 72:1752–1756, 2007.

114. B. Li, Z. Zhang, J. Wang, and C. Xu. Chemiluminescencesystem for automatic determination of chemical oxygendemand using �ow injection analysis. Talanta, 61:651–658,2003.

115. B. Jin, Y. He, J. Shen, Z. Zhuang, X. Wang, and F.S.C.Leeb. Measurement of chemical oxygen demand (COD) innatural water samples by �ow injection ozonationchemiluminescence (FI-CL) technique. J. Environ. Monit.,6:673–678, 2004.

116. Y. Su, X. Li, H. Chen, Y. Lv, and X. Hou. Rapid,sensitive and on-line measurement of chemical oxygen demandby novel optical method based on UV photolysis andchemiluminescence. Microchem. J., 87:56–61, 2007.

117. W. Liu, Z. Zhang, and Y. Zhang. Chemiluminescencemicro-�ow system for rapid determination of chemicaloxygen demand in water. Microchim. Acta, 160:141–146, 2008.

118. H. Yu, C. Ma, X. Quan, S. Chen, and H. Zhao. Flowinjection analysis of chemical oxygen demand (COD) byusing a boron-doped diamond (BDD) electrode. Environ. Sci.Technol., 43:1935–1939, 2009.

119. C.I.C. Silvestre, C. Frigerio, J.L.M. Santos, andJ.L.F.C. Lima. Quantum dots assisted photocatalysis forthe chemiluminometric determination of chemical oxygendemand using a single interface �ow system. Anal. Chim.Acta, 699:193–197, 2011.

120. H.A.C. Montgomery and N.S. Thom. The determination oflow concentrations of organic carbon in water. Analyst,87:689–697, 1962.

121. C.E. Van Hall, J. Safranko, and V.A. Stenger. Rapid

combustion method for the determination of organicsubstances in aqueous solutions. Anal. Chem., 35:315–319,1963.

122. A.E.J. Miller, R.F.C. Mantoura, and M.R. Preston.Shipboard investigation of DOC in the northeast Atlanticusing platinum-based catalysts in a Shimadzu TOC-500 HTCOanalyzer. Mar. Chem., 41:215– 221, 1993.

123. R. Benner and J.I. Hedges. A test of the accuracy offreshwater DOC measurements by high-temperature catalyticoxidation and UV-promoted persulfate oxidation. Mar. Chem.,41:161–165, 1993.

124. R. Benner and M. Strom. A critical evaluation of theanalytical blank associated with DOC measurements byhigh-temperature catalytic oxidation. Mar. Chem.,41:153–160, 1993.

125. T. Fukushima, A. Imai, K. Matsushige, M. Aizaki, andA. Otsuki. Freshwater DOC measurements by high-temperaturecombustion: Comparison of differential (DTC-DIC) and DICpurging methods. Water Res., 30:2717–2722, 1996.

126. J.B. Christensen, D.L. Jensen, C. Gron, Z. Filip, andT.H. Christensen. Characterization of the dissolvedorganic carbon in land�ll leachate-polluted groundwater.Water Res., 32:125–135, 1998.

127. Y.S. Fung, Z. Wu, and K.L. Dao. Determination of totalorganic carbon in water by thermal combustionionchromatography. Anal. Chem., 68:2186–2190, 1996.

128. R.A. Dobbs, R.H. Wise, and R.B. Dean. Measurement ofor ganic carbon in water using the hydrogen�ame ionizationdetector. Anal. Chem., 39:1255–1258, 1967.

129. M.I. Abdullah and E. Eek. Automatic photocatalyticmethod for the determination of dissolved organic carbon(DOC) in natural waters. Water Res., 30:1813–1822, 1996.

130. P.D. Goulden and P. Brooksbank. Automateddeterminations of dissolved organic carbon in lake water.Anal. Chem., 47:1943–1946, 1975.

131. R.A. Van Steenderen and J.S. Lin. Determination ofdissolved organic carbon in water. Anal. Chem.,53:2157–2158, 1981.

132. R.T. Edwards, I.D. McKelvie, P.C. Ferret, B.T. Hart,

J.B. Bapat, and K. Koshy. Sensitive �ow-injectiontechnique for the determination of dissolved organic carbonin natural waste waters. Anal. Chim. Acta, 261:287–294,1992.

133. J.H. McKenna and P.H. Doering. Measurement ofdissolved organic carbon by wet chemical oxidation withpersulfate: In�uence of chloride concentration and reagentvolume. Mar. Chem., 48:109–114, 1995.

134. G. Low and R. Matthews. Flow-injection determinationof organic contaminants in water using anultraviolet-mediated titanium dioxide �lm reactor. Anal.Chim. Acta, 231:13–20, 1990.

135. J.H. Sharp. Marine dissolved organic carbon: Are theolder values correct? Mar. Chem., 56:265–277, 1997.

136. C.E. Van Hall, D. Barth, and V.A. Stenger. Eliminationof carbonates from aqueous solutions prior to organiccarbon determination. Anal. Chem., 37:769–771, 1965.

137. I. Gács and K. Payer. Determination of total organiccarbon in water in the form of carbamate by means of asimple denuder/electrolytic conductivity �ow cell system.Anal. Chim. Acta, 220:1–11, 1989.

138. S.A. Huber and F.H. Frimmel. Flow injection analysisof organic and inorganic carbon in the low-ppb range.Anal. Chem., 63:2122–2130, 1991.

139. S.W. Kubala, D.C. Tilotta, M.A. Busch, and K.W. Busch.Determination of total inorganic carbon in aqueous sampleswith a �ame infrared emission detector. Anal. Chem.,61:1841–1846, 1989.

140. S.E. Maestre, J. Mora, V. Hernandis, and J.L. Todolí.A system for the direct determination of the nonvolatileorganic carbon, dissolved organic carbon, and inorganiccarbon in water samples through inductively coupled plasmaatomic emission spectrometry. Anal. Chem., 75:111–117,2003.

141. R.H. Byrne, X. Liu, E.A. Kaltenbacher, and K. Sell.Spectrophotometric measurement of total inorganic carbonin aqueous solutions using a liquid core waveguide. Anal.Chim. Acta, 451:221–229, 2002.

142. L. Monser, N. Adhoum, and S. Sadok. Gas diffusion–�owinjection determination of total inorganic carbon in water

using tungsten oxide electrode. Talanta, 62:389–394, 2004.

143. M.H.C. Stoll, K. Bakker, G.H. Nobbe, and R.R. Haese.Continuous-�ow analysis of dissolved inorganic carboncontent in seawater. Anal. Chem., 73:4111–4116, 2001.

144. S. Kaltin, C. Haraldsson, and L.G. Anderson. A rapidmethod for determination of total dissolved inorganiccarbon in seawater with high accuracy and precision. Mar.Chem., 96:53–60, 2005.

145. Z. Hohercáková and F. Opekar. A contactlessconductivity detection cell for �ow injection analysis:Determination of total inorganic carbon. Anal. Chim. Acta,551:132–136, 2005.

146. USEPA Method 524.3. Measurement of Purgeable OrganicCompounds in Water by Capillary Column GasChromatography/Mass Spectrometry, 2009. Website,http://water.epa.gov/scitech/drinkingwater/labcert/upload/met524–3.pdf.

147. USEPA Method 415.1. Organic Carbon, Total (Combustionor Oxidation), 1974. Website, http://www.epa.gov/region9/qa/pdfs/415_1dqi.pdf.

148. USEPA Method 415.3. Determination of total organiccarbon and speci�c UV absorbance at 254 nm in source waterand drinking water, 2009. Website,http://www.epa.gov/microbes/m_415_3Rev1_1.pdf.

149. Ibid Ref. 4. E.W.D. Huffman (chair). 5310B:High-Temperature Combustion Method, pp. 5-21/5-23.

150. Method 9060A. Total Organic Carbon, 2004. Website,http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/9060a.pdf.

151. Water quality—Guidelines for the determination oftotal organic carbon (TOC) and dissolved organic carbon(DOC). ISO 8245:1999.

152. Ibid Ref. 4. E.W.D. Huffman (chair). 5310C:Persulfate-Ultraviolet or Heated-Persulfate OxidationMethod, pp. 5-23/5-25.

153. USEPA Method 415.2. Organic Carbon, Total (low level)(UV promoted, persulfate oxidation), 1982.

154. K. Tian and P.K. Dasgupta. A permeable membrane

capacitance sensor for ionogenic gases: Application to themeasurement of total organic carbon. Anal. Chim. Acta.,652:245–250, 2009.

155. R. Kieselbach. Continuous recording of concentrationof organic matter in waste water. Anal. Chem.,26:1312–1318, 1954.

156. W.A. Moore, F.J. Ludzack, and C.C. Ruchhoft.Determination of oxygen-consumed values of organic wastes.Anal. Chem., 23:1297–1300, 1951.

157. N.F. Schulz. Assay of certain organic materials bydichromate oxidation. Anal. Chem., 25:1762–1764, 1953.

158. N. Chitose, S. Ueta, S. Seino, and T.A. Yamamoto.Radiolysis of aqueous phenol solutions with nanoparticles.1. Phenol degradation and TOC removal in solutionscontaining TiO 2 induced by UV, γ-ray and electron beams.Chemosphere, 50:1007–1013, 2003.

159. D.L. Wyatt and T.A. Petteroe. Advanced ozone oxidationfor on-line total organic carbon (TOC). Proc. Annu. ISAAnal. Div. Symp., 33:27–38, 2000.

160. A.D. Demir, M. Horan, and S. O’Mahony. Two-stageadvanced oxidation process as an alternative to thethermal and UV persulfate oxidation for TOC analysis.Proceedings of the Annual ISA Analysis Division Symposium,51st, 2006, pp. 149–160.

161. M. Horan, A.D. Demir, S. O’Mahony, D. Horan, E.Brennan, and D. Ruzicka. Development of BioTectormulti-component analyzer for TOC, TN and TP analysisincorporated with two-stage advanced oxidation process.The Instrumentation, Systems and Automation Society, ISACalgary 2007 Show & Conference, 2007.

162. M. Horan, A.D. Demir, S. O’Mahony, D. Horan, and S.K.Kandathil. On-line TOC analysis by two stage advancedoxidation process for applications containing high levelsof salts. Proceedings of the Annual ISA Analysis DivisionSymposium 55th, 2010, pp. horan1/1-horan1/7.

163. GE Analytical Instruments. Website,

164. D. Seligson and H. Seligson. Microdetermination ofcarbon dioxide liberated by acidi�cation or oxidation.Anal. Chem., 23:1877–1878, 1951.

165. L. Campanella, T. Ferri, M.P. Sammartino, P.Sangiorgio, and G. Visco. Development of a new sensor fortotal organic carbon (TOC) determination. Sensor Rev.,22:57–61, 2002.

166. L. Campanella, G. De Angelis, and G. Visco.Chemometric investigation of the ef�ciency of differentTiO 2 -based catalysts as principal components of TOCphotochemical sensors under development. Anal. Bioanal.Chem., 376:467–475, 2003.

167. G. Visco, F. Bellanti, L. Campanella, T. Mazzella, andV. Nobili. Optimisation of a photochemical sensor fortotal organic carbon measurement. Annali di Chimica,95(3–4):185–198, 2005.

168. W.P. Pickhardt, A.N. Oemler, and J. Mitchell.Determination of total carbon in organic material by awetdry combustion method. Anal. Chem., 27:1784–1788, 1955.

169. UIC Inc. Website,http://www.uicinc.com/CarbonSystems.htm, March 2012.

170. S.-L. Fan, F. Qu, L. Zhao, and J.-M. Lin.Flow-injection analysis for the determination of totalinorganic carbon and total organic carbon in water usingthe H 2 O 2 -luminol-uranine chemiluminescent reaction.Anal. Bioanal. Chem., 386:2175–2182, 2006.

171. Shimadzu. Website,

172. Analytik Jena. Website,

173. Skalar. Website,

174. Toray Engineering Co, Ltd. Website,http://www.toray-eng.com/measuring/water/, March 2012.

175. Teledyne Tekmar. Website,http://www.teledynetekmar.com/products/TOC/index.asp, March2012.

176. O.I. Analytical. Website,http://www.oico.com/default.aspx?id=productline&PLID=15,March 2012.

177. HACH. Website, http://www.hach.com/AnatelTOC, March2012.

178. Thermo Scienti�c. Website,

179. Biotector. Website,http://www.biotector.com/index.html, March 2012.

180. G. Spyres, M. Nimmo, P.J. Worsfold, E.P. Achterberg,and A. Miller. Determination of dissolved organic carbonin seawater using high temperature catalytic oxidationtechniques. Trends Anal. Chem., 19:498–506, 2000.

181. H.L. Peters, K.E. Levine, and B.T. Jones. Aninductively coupled plasma carbon emission detector foraqueous carbohydrate separations by liquid chromatography.Anal. Chem., 73:453–457, 2001.

182. O. Emteryd, B. Anderson, and H. Wallmark.Determination of organic carbon in natural water withinductively coupled plasma/atomic emission spectrometryafter evaporation of inorganic carbon. Microchem. J.,43:87–93, 1991.

183. M. Wu and J.W. Carnahan. Direct determination ofaqueous carbon, phosphorus and sulfur using a kilowatt-plushelium microwave-induced plasma system with ultrasonicnebulization. J. Anal. At. Spectrom., 7:1249–1252, 1992.

184. J. Vogl and K.G. Heumann. Development of an ICP-IDMSmethod for dissolved organic carbon determinations and itsapplication to chromatographic fractions of heavy metalcomplexes with humic substances. Anal. Chem., 70:2038–2043,1998.

185. J. Paniz, E. Flores, V. Dressler, and A. Martins. Flowinjection turbidimetric determination of total organiccarbon with a gas-liquid transfer microreactor. Anal. Chim.Acta, 445:139–144, 2001.

186. B. Fry, E.T. Peltzer, C.S. Hopkinson, A. Nolin, and L.Redmond. Analysis of marine DOC using a dry combustionmethod. Mar. Chem., 54:191–201, 1996.

187. M.J. Alperin and C.S. Martens. Dissolved organiccarbon in marine pore waters: A comparison of threeoxidation methods. Mar. Chem., 41:135–143, 1993.

188. G. Cauwet. HTCO method for dissolved organic carbonanalysis in seawater: In�uence of catalyst on blankestimation. Mar. Chem., 47:55–64, 1994.

189. H. Ogawa and N. Ogura. Comparison of two methods formeasuring dissolved organic carbon in sea water. Nature,

356:696–698, 1992.

190. A. Miller, R. Mantoura, Y. Suzuki, and M. Preston.Preliminary study of DOC in the Tamar Estuary, UK, usingUV-persulphate and HTCO techniques. Mar. Chem., 41:223–228,1993.

191. G.R. Alken. Chloride interference in the analysis ofdissolved organic carbon by the wet oxidation method.Environ. Sci. Technol., 26:2435–2439, 1992.

192. E.T. Peltzer, B. Fry, P.H. Doering, J.H. Mckenna, B.Norrman, and U.L. Zweifel. A comparison of methods for themeasurement of dissolved organic carbon in natural waters.Mar. Chem., 54:85–96, 1996.

193. L.A. Kaplan. Comparison of three TOC methodologies. J.Am. Water Works Assoc., 92:149–156, 2000.

194. J.-F. Koprivnjak, J.G. Blanchette, R.A. Bourbonniere,T.A. Clair, A. Heyes, K.R. Lum, R. McCrea, and T.R. Moore.The underestimation of concentrations of dissolved organiccarbon in freshwaters. Water Res., 29:91–94, 1995.

195. Ibid Ref. 4. J.M. Symons (chair). 5320-DissolvedOrganic halogen (DOX), pp. 5-26/5-32.

196. Z. Huixian, Y. Sheng, X. Xu, and X. Ouyong. Formationof POX and NPOX with chlorination of fulvic acid in water:Empirical models. Water Res., 31:1536–1541, 1997.

197. L. Hureiki, J.P. Croué, and B. Legube. Chlorinationstudies of free and combined amino acids. Water Res.,28:2521–2531, 1994.

198. D.L. Berger. Screening procedure for total organichalogen. Anal. Chem., 56:2271–2272, 1984.

199. G. Sansebastiano, V. Rebizzi, E. Bellelli, F.Scíarrone, S. Reverberi, S. Saglia, A. Braccaioli, and P.Camerlengo. To tal halogenated organic (TOX) measurement inground waters treated with hypochlorite and with chlorinedioxide. Initial results of an experiment carried out inEmilia-Romagna (Italy). Water Res., 29:1207–1209, 1995.

200.

201. Ibid Ref. 4. J.M. Symons (chair). 5320B:Adsorption-Pyrolysis-Titrimetric Method, pp. 5-27/5-32.

202. S.D. Richardson. Disinfection by-products and otheremerging contaminants in drinking water. Trends Anal.Chem., 22:666–684, 2003.

203. Y. Li, X. Zhang, C. Shang, and S.W. Krasner.Evaluation and improvement of total organic bromineanalysis with respect to reductive property of activatedcarbon. Water Res., 45:1229–1237, 2011.

204. S. Echigo, X. Zhang, R.A. Minear, and M.J. Plewa.Differentiation of total brominated and chlorinatedcompounds in total organic halide measurement: A newapproach with an ion-chromatographic technique. ACS Symp.Ser., 761:330–342, 2000.

205. G. Hua and D.A. Reckhow. Determination of TOCl, TOBrand TOI in drinking water by pyrolysis and off-line ionchromatography. Anal. Bioanal. Chem., 384:495–504, 2006.

206. I. Kristiana, H. Gallard, C. Joll, and J.-P. Croué.The formation of halogen-speci�c TOX from chlorination andchloramination of natural organic matter isolates. WaterRes., 43:4177–4186, 2009.

207. Y. Li, X. Zhang, and C. Shang. Effect of reductiveproperty of activated carbon on total organic halogenanalysis. Environ. Sci. Technol., 44:2105–2111, 2010.

208.

209.

210. J.G.A. Davlin, J.A. Amaral, E.T. Krogh, and C.G. Gill.A membrane introduction �ame ionization/electron capturedetection (MIFID/ECD) system for the rapid, real-timescreening of volatile disinfection byproducts andhydrocarbon contaminants in water. Microchem. J., 88:74–81,2008.

211. D.W. Francis, P.A. Turner, and J.T. Wearing. AOXreduction of kraft bleach plant ef�uent by chemicalpretreatment pilot-scale trials. Water Res., 31:2397–2404,1997.

212. J.E. Drewes and M. Jekel. Behavior of DOC and AOXusing advanced treated wastewater for groundwater recharge.Water Res., 32:3125–3133, 1998.

213. F. Archibald, L. Roy-Arcand, and M. Méthot. Time,sunlight, and the fate of biotreated kraft mill

organochlorines (AOX) in nature. Water Res., 31:85–94,1997.

214. Y. Noma, S. Yamane, and A. Kida. Adsorbable organichalides (AOX), AOX formation potential, and PCDDs/DFs inland�ll leachate and their removal in water treatmentprocesses. J. Mater. Cycles Waste Manag., 3:126–134, 2001.

215. T. Twiehaus, S. Evers, W. Buscher, and K. Cammann.Development of an element-selective monitoring system foradsorbable organic halogens (AOX) with plasma emissionspectrometric detection for quasicontinuous waste-wateranalysis. Fresenius J. Anal. Chem., 371:614–620, 2001.

216. J. Oleksy-Frenzel, S. Wischnack, and M. Jekel.Application of ion-chromatography for the determination ofthe organic-group parameters AOCl, AOBr and AOI in water.Fresenius J. Anal. Chem., 366:89–94, 2000.

217.

218. G.V. Korshin, C.-W. Li, and M.M. Benjamin. Thedecrease of UV absorbance as an indicator of TOXformation. Water Res., 31:946–949, 1997.

219. G.V. Korshin, M.M. Benjamin, and R.S. Sletten.Adsorption of natural organic matter (NOM) on iron oxide:Effects on NOM composition and formation of organo-halidecompounds during chlorination. Water Res., 31:1643–1650,1997.

220.

221.http://www.epa.gov/region1/info/testmethods/pdfs/501_2.pdf;Ibid Ref. 4. N.E. Grams (chair). 6232B: Liquid-LiquidExtraction Gas Chromatographic Method, pp 6–41/6–46.

222. http://www.epa.gov/sam/pdfs/EPA-551.1.pdf.

223.http://www.epa.gov/region1/info/testmethods/pdfs/501_1.pdf.

224.

225.http://www.epa.gov/region1/info/testmethods/pdfs/501_3.pdf.

226. http://www.epa.gov/sam/pdfs/EPA-524.2.pdf; Ibid Ref.4. M.S. Dale (chair). 6200B: Purge and Trap

Capillary-Column Gas Chromatographic/Mass SpectrometricMethod, pp. 6-25/6-30.

227. Ibid Ref. 4. S.N. Chaudhuri (chair). 6251B: MicroLiquid-Liquid Extraction Gas Chromatographic Method, pp.6-47/6-57.

228.http://www.epa.gov/ogwdw/methods/pdfs/methods/met552_3.pdf.

229.

230. M.H. Jia, W.W. Wu, R.A. Yost, P.A. Chadik, P.W.Stacpoole, and G.N. Henderson. Simultaneous determinationof trace levels of nine haloacetic acids in biologicalsamples as their penta�uorobenzyl derivatives by gaschromatography/tandem mass spectrometry in electron capturenegative ion chemical ionization mode. Anal. Chem.,75:4065–4080, 2003.

231. R. Suedee, T. Srichana, C. Sangpagai, C. Tunthana, andP. Vanichapichat. Development of trichloroacetic acidsensor based on molecularly imprinted polymer membrane forthe screening of complex mixture of haloacetic acids indrinking water. Anal. Chim. Acta, 504:89–100, 2004.

232. S. Chellam and S.W. Krasner. Disinfection byproductsrelationships and speciation in chlorinated nano�lteredwaters. Environ. Sci. Technol., 35:3988–3999, 2001.

233. P. Kulkarni and S. Chellam. Disinfection by-productformation following chlorination of drinking water:Arti�cial neural network models and changes in speciationwith treatment. Sci. Total Environ., 408:4202–4210, 2010.

234. U. von Gunten. Ozonation of drinking water: Part II.Disinfection and by-product formation in presence ofbromide, iodide or chlorine. Water Res., 37:1469–1487,2003.

235. G. Hua and D.A. Reckhow. Comparison of disinfectionbyproduct formation from chlorine and alternativedisinfectants. Water Res., 41:1667–1678, 2007.

236. H.S. Weinberg. Modern approaches to the analysis ofdisinfection by-products in drinking water. Phil. Trans.R. Soc. A, 367:4097–4118, 2009.

237. S.D. Richardson and T.A. Ternes. Water analysis:Emerging contaminants and current issues. Anal. Chem.,

83:4614–4648, 2011.

238. F. Qin, Y.-Y. Zhao, Y. Zhao, J.M. Boyd, W. Zhou, andX.-F. Li. A toxic disinfection by-product,2,6-Dichloro-1,4-benzoquinone, identi�ed in drinking water.Angew. Chem. Int. Ed., 49:790–792, 2010.

239. Y. Zhao, F. Qin, J.M. Boyd, J. Anichina, and X.-F. Li.Characterization and determination of chloro- andbromo-benzoquinones as new chlorination disinfectionbyproducts in drinking water. Anal. Chem., 82:4599–4605,2010.

240. G. Ding and X. Zhang. A picture of polar iodinateddisinfection byproducts in drinking water by (UPLC/)ESI-tqMS. Environ. Sci. Technol., 43:9287–9293, 2009.

241. H. Zhai and X. Zhang. A new method for differentiatingadducts of common drinking water DBPs from highermolecular weight DBPs in electrospray ionization-massspectrometry analysis. Water Res., 43:2093–2100, 2009.

242. H. Shi and C. Adams. Rapid IC–ICP/MS method forsimultaneous analysis of iodoacetic acids, bromoaceticacids, bromate, and other related halogenated compounds inwater. Talanta, 79:523–527, 2009.

243. S.D. Richardson. Environmental mass spectrometry:Emerging contaminants and current issues. Anal. Chem.,84:747–778, 2012.

244.

18 Chapter 18 - Determination of OrganicNitrogen in the Aquatic Environment

Abalos, M., Bayona, J.M., Ventura, F. Development of asolid-phase microextraction GC-NPD procedure for thedetermination of free volatile amines in wastewater andsewage—Polluted waters. Analytical Chemistry 71, 1999,3531.

Abbt-Braun, G., Frimmel, F.H. Basic characterization ofreference NOM from central Europe—Similarities anddifferences. Environment International 25, 1999, 161.

Ahel, M., Evans, K. M., Fileman, T. W, Mantoura R. F.C.Determination of atrazine and simazine in estuarinesamples by high-resolution gas chromatography and nitrogenselective detection. Analytica Chemica Acta 268, 1992,195–200.

Amstrong, F.A.J., Tibbitts, S. Photochemical combustion oforganic matter in seawater for nitrogen, phosphorus andcarbon determination. Journal of the Marine BiologicalAssociation of the United Kingdom. 48, 1968, 143–152.

Amstrong, F.A.J., Willians, P.M., Strickland, J.D.H.Photoxidation of organic matter in seawater by ultra-violetradiation analytical and other application. Nature 211,1966, 481–483.

Aoki, T., Uemura, S., Munemori, M. Continuous �ow methodfor determination of total trihalomethanes in drinkingwater with membrane-separation. Environmental ScienceTechnology 20, 1986, 515.

Aoyagi, M., Yasumasa, Y., Nishida, A. Sequential injectionsystem for on-line analysis of total nitrogen withUV-mineralization. Analytical Science 5, 1989, 235–236.

Badr, E. Environmental Assessment of Biogeochemical Cyclingof Dissolved Organic Carbon (DOC) and Nitrogen (DON) inNatural Waters, PhD thesis, University of Plymouth (UK)2005, p. 241.

Badr, E.S.A., Achterberg, E.P., Tappin, A.D., Hill, S.J.,Braungardt, C.B. Determination of dissolved organicnitrogen in natural waters. TRAC—Trends in AnalyticalChemistry 22, 2003, 819.

Basson, W.D. Fresenius. Z Anal Chem 311, 1982, 23–26.

Benner, R., Biddanda, B., Black, B., McCarthy, M.Abundance, distribution, and stable carbon and nitrogenisotope compositions of marine particulate and dissolvedorganic matter isolated by tangential-�ow ultra�ltration.Marine Chemistry 57, 1997, 243.

Berman, T., Bronk, D.A. Dissolved organic nitrogen: Adynamic participant in aquatic ecosystens. AquaticMicrobial Ecology 31, 2003, 279.

Bermond, A., Ducauze, C.J. Application of atmosphericpressure microwave digestion to total Kjeldahl nitrogendetermination in pharmaceutical, agricultural and foodproducts. Analysis 19, 1991, 64–66.

Bronk, D.A. and Glibert, P.M. The fate of the missing 15Ndiffers among marine systems. Limnology Oceanography 39,1994, 189–194.

Bronk, D.A. Dynamics of DOM. In: D.A. Hansell, C.A. Carlson(Eds). Biogeochemistry of Marine Dissolved Organic Matter.Academic Press, New York, 2002, p. 153.

Bronk, D.A., Lomas, M.W., Glibert, P.M., Schukert, K.J.,Sanderson, M.P. Total dissolved nitrogen analysiscomparisons between the persulfate UV high temperatureoxidation methods. Marine Chemistry 69, 2000, 163.

Burguera, M, Burguera, J.L. Analytical spectroscopylibrary. Analytica Chimica Acta 366, 1998, 63.

Burns, D. T. Kjeldahl, the man, the method and theCarlsberg laboratory. In: Analytical Proceedings. RoyalSociety of Chemistry, pp. 210–214, ISSN 0144-557X, 1984.

Campins Falco, P., Meseguer-Lloret, S., Climent-Santamaria,T., Molins-Legua, C. A microscale Kjeldahl nitrogendetermination for environmental waters. Talanta 75, 2008,1123–1126.

Cerdà A., Oms, M.T., Forteza, R., Cerdà, V. Total nitrogendetermination by �ow injection using on-linemicrowave-assisted digestion. Analytica Chimica Acta 351,1997, 273–279.

Clifford, D.A., McGaughey, L.M. Simultaneous determinationof total nitrogen and total oxygen demand in aqueoussamples. Analytica Chemical 54, 1982, 1345–1350.

Cornell, S., Rendell, A., Jickells, T. Atmospheric inputs

of dissolved organic nitrogen to the oceans. Nature 376,1995, 243–246.

Cornell, S., Jickells, T., Thornton, C. Urea in rainwaterand atmospheric aerosol. Atmospheric Environment 32, 1998,1903–1910.

Cowie, G.L., Hedges, J.I. Sources and reactivities of aminoacids in a coastal marine environment. Limnology andOceanography 37, 1992, 703.

Curtis-Jackson, P.K., Masse, G., Gledhil, M. et al.Characterization of low molecular weight dissolved organicnitrogen by liquid chromatography−electrosprayionization−mass spectrometry. Limnology and OceanographyMethods 7, 2009, 52–63.

Dacosta, K.A., Vrbabac, J.J., Zeisel, S.H. The measurementof dimethylamine, trymethylamine N-oxide using capillarygas chromatography mass spectrometry. AnalyticalBiochemistry 187, 1990, 234.

Dafner, E, De Galan, S., Goeyens, L. Microwave digestion oforganic substance, a useful tool for dissolved organicnitrogen measurements. Water Research 33, 1999, 548.

Daughton, C.G., Jones, B.M., Skaji, R.H. Organic nitrogendetermination in oil shale retort waters. AnalyticalChemistry 57, 1985, 2326–2333.

Davidson, J., Mathieson, J., Boyne, A.W. Micro-Kjeldahlanalysis by an improved automated ammonia determinationfollowing manual digestion. Analyst 95, 1970, 181–193

Dore, J.E, Houlihan, T., Hebel, D.V., Tien, G., Tupas, L.,Karl, D.M. Re-examination of the MAGIC method to determinelow orthophosphate concentration in seawater. MarineChemistry 53, 1996, 173–185.

Ebina, J., Tsutsui, T., Shirai, T. Simultaneousdetermination of total nitrogen and total phosphorus inwater using peroxodisulphate oxidation. Water Research 17,1983, 1721–1726.

Egeberg, P.K., Eikenes, M., Gjessing, E.T. Organic nitrogendistribution in NOM size classes. EnvironmentInternational 25, 1999, 225.

d’Elia, C.F., Steudler, P.A., Corwin, N. Determination oftotal nitrogen in aqueous samples using persulfate

digestion. Limnology Oceanography 22, 1977, 760–764.

Feinberg, M.H., Ireland-Ripert, J., Mourel, R.M. The use ofsynthetic foods to optimise microwave-assisted digestionprocedures. Analytica Chimica Acta 272, 1993, 83–90.

Fitzsimons, M.F., Jemmett, A.W., Wolff, G.A. Distributionof the methylamines in a heterogeneous salt marsh througha tidal cycle. Organic Geochemistry 27, 1997, 15.

Fitzsimons, M.F., Millward, G.E., Revitt, D.M., Dawit, M.D.Desorption kinetics of ammonium and methylamines fromestuarine sediments consequences for the cycling ofnitrogen. Marine Chemistry 101, 2006, 12.

Gerard, R.H., Temminghoff, E.J.M., Van Groeningen, J.W.Isotopic analysis of dissolved organic nitrogen in soils.Analytical Chemistry 82(18), 2010, 7814–7820.

Gibb, S.W., Martoura, R.F.C., Liss, P.S. Analysis ifammonia and methylamines in natural waters by �ow injectiongas diffusion coupled to ion chromatography. AnalyticaChimica Acta 316, 1995, 291.

Ginkel, J.H., Sinnaeve, J. Determination of total nitrogenin plant material with Nessler’s reagent by continuous-�owanalysis. Analyst 105, 1980, 1199.

Golimowski, J., Golimowska, K., UV photooxidation aspretreatment step in inorganic analysis of environmentalsamples. Analytica Chimica Acta 325, 1996, 111–133.

Goto, M., Murofushi, S., Ishii, D. Determination of aminosin natural and treated waters. Bunseki Kagaku 37, 1988,47–51.

Gustafsson, L. Interferences in the determination of totalnitrogen in natural waters by photo-oxidation tonitrate−nitrite mixture. Talanta 31 1984, 979–986.

Hammer, K.D. Do soluble organic nitrogen compounds causeunusual algal blooms in seawater? Zentralbl Hyg Umweltmed194(4), 1993, 321–41.

Hara, H., Kitagawa, T, Okabe, Y. Continuous-�owdetermination of low concentrations of urea in naturalwaters using an immobilized urease enzyme reactor and anammonia gas-sensing membrane electrode detector system.Analyst 118, 1993, 1317–1320.

Henriksen, A. Determination of total nitrogen, phosphorusand iron in freshwater by photo-oxidation withultra-violet irradiation. Analyst 95, 1970, 601–608.

Hinkamp, S., Schwedt, G.Z. Continuous determination oftotal soluble nitrogen in wastewater using on-linephotooxidation and �ow injection analysis.Wasser-Abwasser-Forsch. 24, 1991, 60–65.

Jaber, A.M.Y., Mehanna, N.A., Sultan, S.M. Determination ofammonium and organic bound nitrogen by inductively coupledplasma emission spectroscopy. Talanta 78(4–5), 2009,1298–1302.

Jassie L.B., Kingston H.M., eds. Introduction to MicrowaveSample Preparation: Theory and Practice. American ChemicalSociety, Washington, DC, 1988.

Jones, V., Ruddell, C.J., Wainwright, G., Rees, H.H.,Jaffe, R., Wolff, G.A. Oone dimensional and two dimensionalpolyacrylamide gel electrophoresis: A tool for proteincharacterization in aquatic samples. Marine Chemistry 85,2004, 63.

Jorgensen, N.O.G., Jensen, R.E. Determination of dissolvedcombined amino acids using microwave assisted hydrolysisand HPLC precolumn derivatization for labeling of primaryand secondary amines. Marine Chemistry 57, 1997, 287.

Kaori, W., Sayed, B., Xi, P. et al. Conversion ef�ciencyof the high-temperature combustion technique of dissolvedorganic carbon and total dissolved nitrogen analysis.International Journal of Environmental AnalyticalChemistry 87(6), 2007, 387–399.

Keil, R.G., Kirchman, D.L. Dissolved combined amino acidsin marine waters as determined by a vapor-phase hydrolysismethod. Marine Chemistry 33, 1991, 243.

Khan, E., Awobamise, M., Jones, K. et al. Methoddevelopment for measuring biodegradable dissolved organicnitrogen in treated waste water. Conference: 81st AnnualWater-Environment-Federation Technical Exhibition andConference, Chicago, IL. Water Environment Research 81(8)2009, 779–787.

Kirk, P.L. Kjeldahl method for total nitrogen. AnalyticaChemistry 22, 1950, 354–358.

Koroleff, F. Determination of total nitrogen in natural

waters by means of persulphate oxidation. InternationalCongress for Exploration of the Sea (ICES), 1969, PosterC:8.

Kovac, N., Bajt, O., Faganeli, J., Sket, B., Orel, B. Studyof macroaggregate composition using FT-IR and 1 H-NMRspectroscopy. Marine Chemistry 78, 2002, 205.

Lara, R.J., Hubberten, U., Thomas, D.N., Baumann, M.E.M.,Kattner, G. Dissolved organic matter studies in enclosedsystems: Application of hydrophobic fractionation for theassessment of organic nitrogen dynamic. Journal of MarineSystem 13, 1997, 155.

Lee, W., Westerhoff, P. Dissolved organic nitrogenmeasurement using dialysis pretreatment. EnvironmentalScience and Technology 39, 2005, 879.

Libby, P.S., Wheeler, P.A. A wet-oxidation method fordetermination of particulate organic nitrogen on glass andO 2 μm membrane �lters. Marine Chemistry 48, 1994, 31.

Lima, J.L.F.C., Rangel, A.O.S.S., Souto, M.S.S., Fresenius,J. Investigation of chemical effects on the performance ofow-through dialysis applied to the determination of ionicspecies. Analytical Chemistry 358, 1997, 657.

Lindroth, P., Mopper, K. High performance liquidchromatographic determination of subpicomole amounts ofamino acids by recolumn �uorescence derivatization witho-phthaldialdehyde. Analytical Chemistry 51, 1979, 1667.

Lowry, J.H., Mancy, K.H. A rapid automated system for theanalysis of dissolved total organic nitrogen in aqueoussolutions. Water Research 12, 1978, 471–475.

Maie, N, Parish, K.J., Watanabe, A., Knicker, H., Benner,R., Abe, T., Kaiser, K, Jaffe, R. Chemical characteristicsof dissolved organic nitrogen in an oligotrophicsubtropical coastal ecosystem. Geochimica et CosmochimicaActa 70, 2006, 4491.

Mana, H., Spohn, U. Selective �ow injection procedures forthe determination of nitrogen containing analytes by gasdialytic �uorimetric detection of enzymatically generatedammonia. Analytica Chemica Acta 325, 1996, 93–104.

Manny, B.A., Miller, M.C., Wetzel, R.G. Ultravioletcombustion of dissolved organic nitrogen compounds in lakewaters. Limnology Oceanography 16, 1971, 71–85.

Mao, J.D., Hub, W.G., Ding, G.W., Schmidt-Rohr, K., Davies,G., Ghabbour, E.A., Xing, B.S. Suitability of differentC-13 solid-state NMR techniques in the characterization ofhumic acids. International Journal of EnvironmentalAnalytical Chemistry 82, 2002, 183.

Marrakchi, M., Dzyadevych, S.V., Namour, P., Martelet, C.,Jafferic-Renault. A novel proteinase K biosensor based oninterdigitated conductometric electrode for proteinsdetermination in rivers and swers water. Sensors andActuators B 111–112, 2005, 390.

McCarthy, M., Pratum, T., Hedges, J., Benner, R. Chemicalcomposition of dissolved organic nitrogen in the ocean.Nature 390, 1997, 150.

McKelvie, I.D., Peat, D.M., Worsfold, P.J. Analyticalperspective technique for the quanti�cation and speciationof phosphorous in natural waters. Analytical ProceedingsIncluding Analytical Communications 32, 1995, 437.

McKenzie, L.R., Young, P.N.W. Determination of ammonia-,nitrate- and organic nitrogen in water and waste waterwith an ammonia gas-sensing electrode. Analyst 100, 1975,620–628.

McLeod S. Micro-distillation unit for use in continuous �owanalyzers. Its construction and use in determination ofammonia and nitrates in soils. Analytica Chimica Acta 266,1992a, 107–112.

McLeod S. Determination of total soil and plant nitrogenusing a micro-distillation unit in a continuous �owanalyzer. Analytica Chimica Acta 266, 1992b, 113–117.

Montluçon, D.B., Lee C. Factors affecting lysine sorptionin a coastal sediment. Organic Geochemistry 32, 2001, 933.

Natasha, B., Anderson Maria, G.I., Elskens Marc et al.Nitrogen cycling retention and export in a eutrophictemperate macrotidal estuary. Marine Ecology-ProgressSeries 357, 2008, 87–99.

NAWQAM. National Water Quality monitoring Component 1000.National Water Quality and Availability Management.Bulletin 7, 2003, 4.

Nguyen, R.T., Harvey, H.R. Protein and amino acid cyclingduring phytoplankton decomposition in oxic and anoxic

waters. Organic Geochemistry 27, 1997, 115.

Nur, O.A., Nesuhi, A. Effect of complexation onphotocatalytic degradation of dissolved organic nitrogencompounds. Analytical Letters 40(15), 2007, 2949–2958.

Oleksy-Frenzel J., Jekel, M. On-line multicomponentdetermination of organic compounds in water following gelpermeation chromatographic separation. Analytica ChimicaActa 319, 1996, 165–175.

Pant, H.K., Reddy, K.R., Dieberg, F.E. Bioavailability oforganic phosphorus in a submerged aquaticvegetation-dominated treatment wetland. Journal ofEnvironmental Quality 31, 2002, 1748.

Pantoja, S., Lee, C. Amino acid remineralization andorganic matter hability in Chilean coastal sediments.Organic Geochemistry 34, 2003, 1047.

Patience, R.L., Baxby, M., Bartle; Perry, D.L., R ees,A.G.W., Rowland, S.J. The function of organic nitrogen insome recent sediments from the Peru swelling region.Organic Geochemistry 18, 1992, 161.

Pehlivanoglu-Mantas, E., Sedlak, D. Wastewater deriveddissolved organic nitrogen. Analytical methodscharacterization and effects: A review. Critical Reviews inEnvironmental Science and Technology 36, 2006, 261.

Petritis, K., Chaimbault, P., Elfakir, C., Dreux, M.Parameter optimization for the analysis of underivatizedprotein amino acids by band chromatography and ion spraytandem mass spectrometry. Journal of Chromatography A 896,2000, 253.

Pietrogrande. A., Zancato. M., Guerrato. A., Porretta, G.C.Nitrogen microdetermination in combustion-resistantnitrogen containing organic compounds. Analysis 21, 1993,353–357.

Powell, M.J., Sutton, J.N., Del Castillo, C.E., Timperman.Marine proteomics: generation of sequence tags fordissolved proteins in seawater using tandem massspectrometry. Marine Chemistry 95, 2005, 183.

Puckett, L.J. Identifying the major sources of nutrientwater pollution. Environmental Science and Technology29(9), 1995, 408–414A.

Queiroz, M.E.L.R., Wuchner, K.,R,G., Mathieu, J. Dosage desnitrosamines dans l’eau. Analusis, Paris 20, 1992, 12–18.

Raimbault, R., Pouvesle, W., Dias, F., Garcia, N., Sempere,R. Wet-oxidation and automated colorimetry forsimultaneous determination of organic carbon, nitrogen andphosphorus dissolved in seawater. Marine Chemistry 66,1999, 161.

Rodrigues J.J., Pasquini, C. Calibration methods fordetermination of ammonium and excess acid in Kjeldahldigests by �ow injection analysis. Analyst 116, 1991,841–845.

Rogora, M., Minella, M., Orru, A., Tartari, G.A. Acomparison between high-temperature catalytic oxidationand persulfate oxidation for the determination of totalnitrogen in freshwater. International Journal ofEnvironmental Analytical Chemistry 86, 2006, 1065.

Sara, C., Anders, W., Dmytro, S. et al. Modelling nitrogentransformation in waters receiving mine ef�uents. Scienceof the Total Environment 409(21), 2011, 4585–4595.

Schimitt-Kopplin, P., Junkers, J. Modern electrophoretictechniques for the characterisation of natural organicmatter. In: Wilkinson, K., Lead, J. (Eds.) EnvironmentalColloids and Particles: Behaviour, Separation andCharacterisation, Wiley, 2007. p. 277.

Searle P.L. The Berthelot or indophenol reaction and itsuse in the analytical chemistry of nitrogen. Analyst109,1984, 549–568

Seitzinger, S.P., Sanders, R.W. Contribution of dissolvedorganic nitrogen from rivers to estuarine eutrophication.Marine Ecology–Progress. Series 159, 1997, 1.

Sharp, J.H. In: Carpenter, E.G., Capone, D.G. (Eds).Nitrogen in the Marine Environment. Academic Press, NewYork, 1983, p. 1.

Sharp, J.H., Benner, R., Bennet, L., Carlson, C.A.,Fitzwater, S.E., Pelzer, E.T., Tupas, L.M. Analyses ofdissolved organic carbon in seawater: The JGOFS EQPACmethods comparison. Marine Chemistry 48, 1995, 91.

Sharp, J.H., Beuregard, A.Y., Burdige, D., Cauwet, G.,Curless, CE., Lauck, R., Nagel, K. et al. A directinstrument comparison for measurement of total dissolved

nitrogen in seawater. Marine Chemistry 84, 2004, 181.

Sharp, J.H., Rinker, K.R., Savidge, K.B., Abell, J.,Benaim, J.Y., Bronk. D., Burdige, D.J. et al. A preliminarymethods comparison for measurement of dissolved organicnitrogen in seawater. Marine Chemistry 78, 2002, 171.

Shi, H., Strode, III J.T.B., Taylor, L., Fujinari, E.M.Feasibility of supercritical �uid chromatography—Chemiluminescent nitrogen detection with open tubularcolumms. Journal of Chromatography 734, 1996, 303–310 .

Skimer, J. Microscale Chemistry. Experiments in Miniature,Royal Society of Chemistry, Cambridge, UK, 1998, 207p,ISBN: 9781870343497.

Smart M.M., Reid F.A., Jones J.R. Comparison of apersulfate of total nitrogen in freshwater samples. WaterResearch 15,1981, 919–921.

Spyres, G.,M., Nimmo, P.J., Worsfold, E.P. Achterberg, andA.E.J. Miller. Determination of dissolved organic carbonin seawater using high temperature catalytic oxidationtechniques. TrAC Trends Anal Chem 19, 2000, 498–506.

Stocchi, V., Piccoli, G., Magnani, M., Palma, F.,Biagiarelli, B., Cucchiarini, L. Analysis of amino acidsas DABS-derivatives with a sensitivity the femtomole levelusing BP-HPLC narrow-bore columns. Analytical Biochemistry178, 1989, 107.

Sun, G., Gray, K.R., Biddlestone, A.J., Allen, S.J.,Cooper, D.J. Effect of ef�uent recirculation on theperformance of a reed bed system treating agriculturalwastewater. Process Biochem. 39, 2003, 351–357.

Suzuki, S., Kogure, K., Tanoue, E. Immunochemical detectionof dissolved proteins and their source bacteria in marineenvironments. Marine Ecology—Progress Series 158, 1997, 1.

Tanoue, E., Ishii, M., Midorikawa, T. Dissolved andparticulate proteins in oceanic. Discrete Liminology andOceanography 41, 1996, 1334.

Tanoue, E., Nishiyama, S., Kamo, M. Tsugita, A. Bacterialmembranes: Possible source of a major dissolved protein inseawater. Geochimica et Cosmochimica Acta 59, 1995, 2643.

Tuschall, J.R., Brezonik, P.L. Characterization of organicnitrogen in natural waters—its molecular size, protein

content, and interactions with heavy metals. LimnologyOceanography 25, 1980, 495–504.

Urumu, T., Tadasuke, K., Akinari, H. et al. Sensitivedetermination of stable nitrogen isotopic composition oforganic nitrogen through chemical conversion into N(2) O.Rapid Communications in Mass Spectrometry 22(3), 2008,345–354.

Vandenbruwane, J., De Neve, S., Qualls, R.G., Salomez, J.,Horman. Optimization of dissolved organic nitrogen (DON)measurements in aqueous samples with high inorganicnitrogen concentration. Science of the Total Environment386, 2007, 103–113.

VernonClark, R.N., Goldberg, E.D., Bertine, K.K. Organicand inorganic characterization of marine colloids.Chemistry and Ecology 11, 1995, 69.

Walsh, T.W. Total dissolved nitrogen in seawater: Anew-high-temperature combustion method and a comparisonwith photo-oxidation. Marine Chemistry 26, 1989, 295–311.

Werterhoff, P., Wash H. Dissolved organic nitrogen indrinking water supplies: A review. Journal of Water SupplyResearch Technology AQUA 51, 2002, 415–48

Worsfold, P.J., Gimbert, L.J., Mankashingh, U., Omaka,O.N., Hanrahan, G., Gardolinski, P., Haygarth, P.M.,Turner, B.L., Keith-Roach, M.J., McKelvie, I.D. Sampling,sample treatment and quality issues for the determinationof phosphorus species in natural waters and soils. Talanta66, 2005, 273.

Worsfold, P.J., Monbet, P., Tappin, A.D., Fitzsimons, M.F.,Stiles, D.A., Mckelvie, I.D. Characterisation andquanti�cation of organic phosphorus and organic nitrogencomponents in aquatic systems: A review. Analytica ChimicaActa 624, 2008, 37–58.

Xu, B., Da-Peng Li, Wei Li, Sheng-Ji X., Yi-Li L.,Chen-Yan, H. Zhang, C.J., Nai-Yun, G. Measurements ofdissolved organic nitrogen (DON) in water samples withnano�ltration pretreatment. Water Research 44, 2010,5376–5384.

Yamada, N., Tanoue, E. The inventory and chemicalcharacterization of dissolved proteins in oceanic water.Progress in Oceanography 69, 2006, 1.

Yamashita, Y., Tanoue, E. Distribution and alteration ofamino acids in bulk DOM along a transect from bay tooceanic waters. Marine Chemistry 82, 2003, 145–160.

19 Chapter 19 - Determination of Urea inAquatic Samples

Aminot, A. and Kérouel, R. 1982. Dosage automatique del’urée dans l’eau de mer, une méthode très sensible à Ladiacétylmonoxime. Canadian Journal of Fisheries and AquaticSciences, 39:174–183.

Azizul, H.M. and Vasantha, A. 2011. Modeling ureabiodegradation in activated sludge using combinedrespirometric–titrimetric measurements. Desalination andWater Treatment, 32 (1–3):115–125.

Bharadwaj, L. 2007. Drinking water contaminants and humanhealth: Its global utilization and sustainable workpractices in Melbourne, Australia. pp. 169–188. In: V.I.Gover (ed.). Water Global Common and Global Problems.Science Publisher, En�eld, NH, 533pp.

Butler, A.R., Hussain, I., and Leitch, E. 1981. Thechemistry of the diacetyl monoxime assay of urea inbiological �uids. Clinica Chimica Acta, 112:357–360.

Butler, A.R. and Walsh, D. 1982. Colorimetric nonenzymicmethods for the determination of urea. TRAC– Trends inAnalytical Chemistry, 1:120–124.

Chunyan, H., Bick, N., and Xiaoming, Z. 2010. Sourcedetermination of residual carbamate, organophosphate, andphenyl urea pesticides in drinking and surface water byhigh-performance liquid chromatography/ tandem massspectrometry. Journal of AOAC International, 93(2):400–410.

Chunyan, P., Yongchun, Z., and Hongyan, G. 2011. A novelurea amperometric biosensor based on secretion ofcarnation petal cells modi�ed on a graphite−epoxy compositeelectrode. Analyst, 136(4):841–846.

Clark, S., Francis, P.S., Conlan, X.A., and Barnett, N.W.2007. Determination of urea high-performance liquidchromatography with �uorescence detection after automatedderivatisation with xanthydrol. Journal of ChromatographyA, 1161:207–213.

Cornell, S.E., Jickells, T.D., and Thornton, C.A. 1998.Urea in rainwater and atmospheric aerosol. AtmosphericEnvironment, 32:1903–1910.

Cosano, J.S., Calle, J.L., Pinillos, J.L., Linares, P., andLuque de Castro, M.D. 1989. Simultaneous determination of

ammonia and urea with an asymmetric mergingzones/�ow-injection con�guration. Analytica Chimica Acta,221:173–177.

Cozzi, S. 2004. A new application of the diacetyl monoximemethod to the automated determination of dissolved urea inseawater. Marine Biology, 145:843–848.

Cozzi, S. and Giani, M. 2007. Determination of organicnitrogen and urea. Chapter 14, pp. 367–392. In: L. Nollet(ed.). Handbook of Water Analysis, 2nd ed., Marcel Dekker,CRC Press, Boca Raton, FL, 784pp.

Dallet, P., Labat, E., Kummer, J.P., and Dubost, J.P. 2000.Determination of urea, allantoin and lysine pyroglutamatein cosmetic samples by hydrophilic interactionchromatography. Journal of Chromatography, B 742:447.

DeManche, J.M., Curl, H. Jr., and Coughenower, D.D. 1973.An automated analysis for urea in seawater. Limnology andOceanography, 18:686–689.

Dupont, C.L., Kristen, B.N., and Brian, P. 2010. Nickelutilization in phytoplankton assemblages from contrastingoceanic regimes. Deep-Sea Research Part I-OceanographicResearch Papers, 57(4):553–566. DOI:10.1016/j.dsr.2009.12.014

Emmet, R.T. 1969. Spectrophotometric Determination of Ureain Natural Waters with Hypochlorite and Phenol. Naval ShipResearch and Developmental Laboratory, Report No. 2663.Annapolis, Maryland.

Eppley, R.W., Renger, E.H., and Harrison, W.G. 1979.Nitrate and phytoplankton production in southernCalifórnia coastal waters. Limnology Oceanography,24(3):483–494.

Farzad, D. and Maryam, B. 2008. Urea enzymatic hydrolysisreaction: Optimization by response surface methodologybased on potentiometric measurements. Bioelectrochemistry,74(1)SI:176–182.

Fitzsimons, M.F., Millward, G.E., Revitt, D.M., and Dawit,M. D. 2006. Desorption kinetics of ammonium andmethylamines from estuarine sediments consequences for thecycling of nitrogen. Marine Chemistry, 101:12–26.

Francis, P.S., Lewis, S.W., and Lim, K.F. 2002. Analyticalmethodology for the determination of urea: Current

practice and future trends. TRAC–Trends in AnalyticalChemistry, 21:389–400.

Francis, P.S. 2006. The determination of urea in wine—Areview. Australian Journal of Grape Wine Research,12(2):97–106.

Ganong, W.F. 1995. Review of Medical Physiology. 17th ed.,781pp. Prentice-Hall Inc, San Francisco.

Goeyens, L., Kindermans, N., Abu Yusuf, M., and Elskens, M.1998. A room temperature procedure for the manualdetermination of urea in seawater. Estuarine, Coastal andShelf Science, 47:415–418.

Gunkel, K. 1987. Determination of urea in water. ActaHydrochimica et Hydrobiologica, 15:13–18.

Harrison, W.G., Head, E.J.H., Conover, R.J., Longhurst,A.R., and Sameoto, D.D. 1985. The distribution andmetabolism of urea in the Eastern Canadian Arctic. Deep SeaResearch, 32:23–42.

Hu, X., Takenaka, N., Kitano, M., Bandow, H., Maeda, Y.,and Hattori, M. 1994. Determination of trace amounts ofurea by using �ow injection with chemiluminescencedetection. Analyst, 119:1829–1833.

Hussainy, S.U. and Kumar, S. 2007. Freshwater—A scarceresource: Its global utilization and sustainable workpractices in Melbourne, Australia. pp. 41–54. In: V.I.Gover (ed.). Water Global Common and Global Problems.Science Publisher, En�eld, NH, 533pp.

Iancu V.-I., Petre, J., and Cruceru, L. 2011. Determinationof some organophosphorus insecticides and urea herbicidesfrom water by HPLC. Journal of Environmental Protection andEcology, 12(3):833–840.

Izquierdo, A., Linares, P., Luque de Castro, M.D., andValcarel, M. 1990. Simultaneous �uorimetric methods forthe determination of ammonia and urea by use of �owinjection con�gurations with dual injection valves.Analytical and Bioanalytical Chemistry, 336:490–493.

Katz, S.A. and Rechnitz, G.A. 1963. Direct potentiometricdetermination of urea after urease hydrolysis. ChimicaAnalytica (Paris), 196:248–251.

Kaufman, Z.G., Lively, J.S., and Carpenter, E.J. 1983.

Uptake of nitrogenous nutrients in a barrier islandestuary: Great South Bay. Estuarine and Coastal ShelfScience, 17(5):483–493.

Kroschwitz, I. and Howe-Grant, M. (eds.) 1995a. Kirk−OthmerEncyclopaedia of Chemical Technology. 4th ed., Suppl., pp.597–621. John Wiley and Sons Inc, New York.

Kroschwitz, I. and Howe-Grant, M. (eds.) 1995b. Kirk−OthmerEncyclopaedia of Chemical Technology. 4th ed., Vol. 2, pp.638–691. John Wiley and Sons Inc, New York.

Lachat Instruments Method Information. 2001. Urea inBrackish and Seawater. Quick Chem Method No.31-206-00-1-A.

Lambert, D.F., Shewood, J.E., and Francis, P.S. 2004. Thedetermination of urea in soil extracts and relatedsamples—A review. Australian Journal of Soil Research,42:709–717.

Le�er, D. 1996. Analytical methods for the determination ofthe urea content in milk. International Dairy FederationBulletin, 315:35–38.

Mace, K.A. and Duce, R.A. 2002. Determination of urea inatmospheric aerosols and natural waters—A cation exchangemethod. International Journal of Environmental andAnalytical Chemistry, 82:341–352.

McCarthy, J.J. 1970. A urease method for urea in seawater.Limnology and Oceanography, 15:309–313.

Mitamura, O. and Saijo, Y. 1986. Urea metabolism and itssigni�cance in the nitrogen cycle in the euphotic layer ofLake Biwa. I. In situ measurement of nitrogen assimilationand urea decomposition. Archives of Hydrobiology,107:23–25.

Mulvenna, P.F. and Savidge, G. 1992. A modi�ed manualmethod for the determination of urea in seawater usingdiacetylmonoxime reagent. Estuarine, Coastal and ShelfScience, 34:429–438.

Newell, B.S., Morgan, B., and Cundy, J. 1967. Thedetermination of urea in seawater. Journal of MarineResearch, 25:201–202.

Price, N.M. and Harrison, P.J. 1987. Comparison of methodsfor the analysis of dissolved urea in seawater. Marine

Biology, 94:307–317.

Revilla, M., Alexander, J., and Glibert, P.M. 2005. Ureaanalysis in coastal waters: Comparison of enzymatic anddirect methods. Limnology and Oceanography–Methods,3:290–299.

Ruey-an, D. and Hui-mei, S. 2010. Array-based titaniumdioxide biosensors for ratiometric determination ofglucose, glutamate and urea. Biosensors & Bioelectronics,25(6):1439–1446.

Rysgaard, S. and Rysgaard-Petersen, N. 1997. A sensitivemethod for determining nitrogen-15 isotope in urea. MarineBiology, 128:191–195.

Schmitt, A., Buttle, L., Uglow, R., Williams, K., andHaswell, S. 1993. An integrated reduction method for thedetermination of urea as ammonia in fresh water samples.Analytica Chimica Acta, 248:249–255.

Schulze, W.X. 2005. Protein analysis in dissolved organicmatter: What proteins from organic debris, soil leachateand surface water can tell us—A perspective.Biogeonciences, 2:75–86.

Stefan, H.A., Andreas, B., and Michael, A. 2011. New methodfor urea analysis in surface and tap waters withLC-OCD-OND (liquid chromatography-organic carbondetection-organic nitrogen detection). Journal of WaterSupply Research and Technology-Aqua, 60(3):159–166. DOI:10.2166/aqua.2011.016.

Strickland, J.D.H. and Parsons, T.R. 1972. A PracticalHandbook of Seawater Analysis. Fisheries Research Board ofCanada, Ottawa, Bulletin 167, 310pp.

Sullivan, D.M. and Havlin, J.L. 1991. Flow injectionanalysis of urea nitrogen in soil extracts. Soil ScienceSociety of American Journal, 55:109–113.

Taylor, A.J. and Vadgama, P. 1992. Analytical reviews inclinical biochemistry. Annals of Clinical Biochemistry,29:245–264.

Timperley, M.H., Vigor Brown, R.J., Kawashima, M., andIshigami, M. 1985. Organic nitrogen compounds inatmospheric precipitation: Their chemistry and availabilityto phytoplankton. Canadian Journal of Fisheries andAquatic Sciences, 42:1171–1177.

20 Chapter 20 - Organic Acids

Akin, E. W., Hoff, J. C., Lippy, E. C. 1982. Waterborneoutbreak control: Which disinfectant? Environ. HealthPerspect. 46: 7–12.

Albert, D. B., Martens, C. S. 1997. Determination oflow-weight organic acid concentrations in seawater andpore-water samples via HPLC. Mar. Chem. 56: 27–37.

Avery, G. B., Kieber, R. J., Witt, M., Willey, J. D. 2006.Rainwater monocarboxylic and dicarboxylic acidconcentrations in southeastern North Carolina, USA, as afunction of air-mass back-trajectory. Atmos. Environ. 40:1683–1693.

Banel, A., Wasielewska, M., Zygmunt, B. 2011a. Applicationof headspace solidphase microextraction followed by gaschromatography–mass spectrometry to determine short-chainalkane monocarboxylic acids in aqueous samples. Anal.Bioanal. Chem. 399: 3299–3303.

Banel, A., Wasielewska, M., Zwirello, M. F., Zygmunt, B.2011b. Development of a headspace–gas chromatography–�ameionization detection procedure to determine volatile fattyacids in zoo organic waste leachates. Water Sci. Technol.Chem. 63: 2873–2877.

Bernad, J. O., Damascelli, A., Núñez, O., Galceran, M. T.2011. In-line preconcentration capillary zoneelectrophoresis for the analysis of haloacetic acids inwater. Electrophoresis 32: 2123–2130.

Betts, K. 1998. Growing concern about disinfectionby-products. Environ. Sci. Technol. 32: 546–548.

Brondz, I. 2002. Development of fatty acid analysis byhigh-performance liquid chromatography, gas chromatography,and related techniques. Anal. Chim. Acta 465: 1–37.

Bylund, D., Norström, S. H., Essén, S. A., Lundström, U.2007. Analysis of low molecular mass organic acids innatural waters by ion exclusion chromatography tandem massspectrometry. J. Chromatogr. A 1176: 89–93.

Cardador, M. J., Gallego, M. 2010. Optimisation andcomparison of several microextraction/methylation methodsfor determining haloacetic acids in water using gaschromatography. Anal. Bioanal. Chem. 396: 1331–1343.

Cardador, M. J., Gallego, M. 2011. Haloacetic acids inswimming pools: Swimmer and worker exposure. Environ. Sci.Technol. 45: 5783–5790.

Cardador, M. J., Serrano, A., Gallego, M. 2008.Simultaneous liquid–liquid microextraction/methylation forthe determination of haloacetic acids in drinking waters byheadspace gas chromatograhy. J. Chromatogr. A 1209: 61–69.

Chen, C. C., Melwanki, M. B., Huang, S. D. 2006a.Liquid–liquid–liquid microextraction with automatedmovement of the acceptor and the donor phase for theextraction of phenoxyacetic acids prior to liquidchromatography detection. J. Chromatogr. A 1104: 33–39.

Chen, C. Y., Chang, S. N., Wang, G. S. 2009. Determinationof ten haloacetic acids in drinking water usinghighperformance and ultra-performance liquidchromatography–tandem mass spectrometry. J. Chromatogr.Sci. 47: 67–74.

Chen, S. F., Mowery, R. A., Castleberry, V. A., Van Walsum,G. P., Chambliss, C. K. 2006b. High-performance liquidchromatography method for simultaneous determination ofaliphatic acid, aromatic acid and neutral degradationproducts in biomass pretreatment hydrolysates. J.Chromatogr. A 1104: 54–61.

Choubert, J. M., Granger, D., Bourdon, C., Héduit, A. 2011.Biochemical acidogenic potential in domestic wastewaters:Effect of sampling and storage to characterize dailyaverage composite samples. Water Sci. Technol. 63:1396–1404.

Cortvriend, J. 2007. Establishment of a list of chemicalparameters for the revision of the drinking water directiveENV.D.2/ETU/2007/0077r, 2006.

Cozzarelli, I. M., Bekins, B. A., Eganhouse, R. P., Warren,E., Essaid, H. I. 2010. In-situ measurements of volatilearomatic hydrocarbon biodegradation rates in groundwater.J. Contam. Hydrol. 111: 48–64.

Destandau, E., Vial, J., Jardy, A., Hennion, M. C., Bonnet,D., Lancelin, P. 2005. Development and validation of areversed-phase liquid chromatography method for thequantitative determination of carboxylic acids inindustrial reaction mixtures. J. Chromatogr. A 1088: 49–56.

Ding, Y., Rogers, K. 2010. Determination of haloacetic

acids in water using solid-phase extraction/microchipcapillary electrophoresis with capacitively coupledcontactless conductivity detection. Electrophoresis 31:2602–2607.

Disinfection byproducts. 2008. Disinfection byproducts: AReference Resource. U.S. Washington, DC: EnvironmentalProtection Agency.

Duan, J., Li, W., Si, J., Mulcahy, D. 2011. Rapiddetermination of nine haloacetic acids in water usingultraperformance liquid chromatography–tandem massspectrometry in multiple reactions monitoring mode. Anal.Methods 3: 1667–1673.

Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A.E. (eds.) 2005. Standard methods for the examination ofwater & wastewater. In Disinfection By-Products: HaloaceticAcids and Trichlorophenol. 21st edition. 6/46–6/57.Washington, DC: American Public Health Association.

Emmert, G. L., Geme, G., Brown, M. A., Simone Jr., P. S.2009. A single automated instrument for monitoring totaltrihalomethane and total haloacetic acid concentrations innear real-time. Anal. Chim. Acta 656: 1–7.

Essaid, I. D., Bekins, B. A., Herkelrath, W. N., Delin, G.M. 2011. Crude oil at the Bemidji site: 25 years ofmonitoring, modeling, and understanding. Ground Water 49:706–726.

Fontanals, N., Cormack, P. A. G., Sherrington, D. C. 2008.Hypercrosslinked polymer microspheres with weakanion-exchange character. Preparation of the microspheresand their applications in pH-tuneable, selectiveextractions of analytes from complex environmental samples.J. Chromatogr. A 1215: 21–29.

Ford, Q. L., Burns, J. M., Ferry, J. L. 2007. Aqueousin-situ derivatization of carboxylic acids by an ioniccarbodiimide and 2,2,2-tri�uoroethylamine forelectron-capture detection. J. Chromatogr. A 1145:241–245.

Geng, X., Zhang, S., Wang, Q., Zhao, Z. K. 2008.Determination of organic acids in the presence of inorganicanions by ion chromatography with suppressed conductivitydetection. J. Chromatogr. A. 1192: 187–190.

Guidelines for drinking-water quality. 2006. World Health

Organization. http://www.who.int/water_ sanitation_health/dwq/gdwq0506.pdf (accessed February 24, 2012).

Hallmann, C., Van Aarssen, B. G. K., Grice, K. 2008.Relative ef�ciency of free fatty acid butyl esteri�cation.Choice of catalyst and derivatization procedure. J.Chromatogr. A 1198–1199: 14–20.

Huang, W. J., Fang, G. C., Wang, C. C. 2005. Thedetermination and fate of disinfection by-products fromozonation of polluted raw water. Sci. Total Environ. 345:261–272.

Husek, P. 1998. Chloroformates in gas chromatography asgeneral purpose derivatizing agents. J. Chromatogr. A 717:57–91.

Hutchinson, J. P., Macka, M., Avdalovic, N., Haddad, P. R.2006. On-line preconcentration of organic anions incapillary electrophoresis by solid-phase extraction usinglatex-coated monolithic stationary phases. J. Chromatogr.A 1106: 43–51.

Jurado-Sánchez, B., Ballesteros, E., Gallego, M. 2010.Determination of carboxylic acids in water by gaschromatography using several detectors after �owpreconcentration. J. Chromatogr. A 1217: 7440–7447.

Käkölä, J., Alén, R. 2006. A fast method for determininglow-molecular-mass aliphatic carboxylic acids byhigh-performance liquid chromatography–atmospheric pressurechemical ionization mass spectrometry. J. Sep. Sci. 29:1996–2003.

Kallio, M., Jussila, M., Rissanen, T., Anttila, P.,Hartonen, K., Reissell, A., Vreuls, R., Adahchour, M.,Hyötyläinen, T. 2006. Comprehensive two-dimensional gaschromatography coupled to time-of-�ight mass spectrometryin the identi�cation of organic compounds in atmosphericaerosols from coniferous forest. J. Chromatogr. A 1125:234–243.

Kawamura, K., Watanabe, T. 2004. Determination of stablecarbon isotopic compositions of low molecular weightdicarboxylic acids and ketocarboxylic acids in atmosphericaerosol and snow samples. Anal. Chem. 76: 5762–5768.

Kippenberger, M., Winterhalter, R., Moortgat, G. K. 2008.Determination of higher carboxylic acids in snow samplesusing solid-phase extraction and LC/MS-TOF. Anal. Bioanal.

Chem. 392: 1459–1470.

King, W. D., Dodds, L., Allen, A. C., Armson, B. A., Fell,D., Nimrod, C. 2005. Haloacetic acids in drinking waterand risk for stillbirth. Occup. Environ. Med. 62: 124–127.

Klamp�, C. W. 2007. Determination of organic acids by CEand CEC methods. Electrophoresis 28: 3362–3378.

Kokkonen, R., Sirén, H., Kauliomäki, S., Rovio, S.,Luamanperä, K. 2004. On-line monitoring of water-solubleions in pulp and paper machine waters by capillaryelectrophoresis. J. Chromatogr. A 1032: 243–252.

Kou, D., Wang, X., Mitra, S. 2004. Supported liquidmembrane microextraction with high-performance liquidchromatography-UV detection for monitoring trace haloaceticacids in water. J. Chromatogr. A 1055: 63–69.

Kouremenos, K. A., Harynuk, J. J., Winniford, W. L.,Morrison, P. D., Marriott, P. J. 2010. One-pot microwavederivatization of target compounds relevant to metabolomicswith comprenhensive two-dimensional gas chromatography. J.Chromatogr. B 878: 1761–1770.

Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor,S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D.,Thruston Jr., A. D. 2006. Occurrence of a new generation ofdisinfection by-products. Environ. Sci. Technol. 40:7175–7185.

Kulkarni, S., Shearrow, A. M., Malik A. 2007. Sol–gelimmobilized short-chain poly(ethylene glycol) coating forcapillary microextraction of underivatized polar analytes.J. Chromatogr. A 1174: 50–62.

Kuo, C. H. 1998. Improved application of ionchromatographic determination of carboxylic acids inozonated drinking waters. J. Chromatogr. A 804: 265–272.

Lambropoulou, D. A., Konstantinou I. K., Albanis T. A.2007. Recent developments in headspace microextractiontechniques for the analysis of environmental contaminantsin different matrices. J. Chromatogr. A 1152: 70–96.

Lau, B. P. Y., Becalski, A. 2008. Determination ofiodoacetic acid using liquid chromatography/electrospraytandem mass spectrometry. Rapid Commun. Mass Spectrom. 22:1787–1791.

Lou, D. W., Lee, X., Pawliszyn, J. 2008. Extraction offormic and acetic acids from aqueous solution by dynamicheadspace-needle trap extraction temperature and pHoptimization. J. Chromatogr. A. 1201: 228–234.

Loughrin, J. H. 2006. Comparison of solid phasemicroextraction and stir bar sorptive extraction for thequanti�cation of malodors in wastewater. J. Agric. FoodChem. 54: 3237–3241.

Ma, Y. C., Chiang, C. Y. 2005. Evaluation of the effects ofvarious gas chromatographic parameters on haloacetic acidsdisinfection by-products analysis. J. Chromatogr. A 1076:216–219.

Meylan, S., Hammes, F., Traber, J., Salhi, E., Von Gunten,U., Pronk, W. 2007. Permeability of low molecular weightorganic acids through nano�ltration membranes. Water Res.41: 3968–3976.

Ni, H. G., Zeng, H., Zeng, E. Y. 2011. Sampling andanalytical framework for routine environmental monitoringof organic pollutants. Trends Anal. Chem. 30: 1549–1559.

Pals, J. A., Ang, J. K., Wagner, E. D., Plewa, M. J. 2011.Biological mechanism for the toxicity of haloacetic aciddrinking water disinfection byproducts. Environ. Sci.Technol. 45: 5791–5797.

Paull, B., Barron, L. 2004. Using ion chromatography tomonitor haloacetic acids in drinking water: A review ofcurrent technologies. J. Chromatogr. A 1046: 1–9.

Peters, R., Hellenbrand, J., Mengerink, Y., Van der Wal,Sj. 2004. On-line determination of carboxylic acids,aldehydes and ketones by high performance liquidchromatography diode array detection atmospheric pressurechemical ionization mass spectrometry after derivatizationwith 2-nitrophenylhydrazine. J. Chromatogr. A 1031: 35–50.

Pietrogrande, M. C., Bacco, D., Mercuriali, M. 2010. GC–MSanalysis of low molecular weight dicarboxylic acids inatmospheric aerosol: Comparison between silylation andesteri�cation derivatization procedures. Anal. Bioanal.Chem. 396: 877–885.

Plewa, M. J., Kargalioglu, Y., Vankerk, D., Minear, R. A.,Wagner, E. D. 2002. Mammalian cell cytotoxicity andgenotoxicity analysis of drinking water disinfectionby-products. Environ. Mol. Mutagen. 40: 134–142.

Ramos, L., Ramos, J. J., Brinkman, U. A. T. 2005.Miniaturization in sample treatment for environmentalanalysis. Anal. Bioanal. Chem. 381: 119–140.

Ranaivo, P. L., Henson, C. M., Simone Jr., P. S., Emmert,G. L. 2011. Analysis of haloacetic acids in drinking waterusing post-column reaction-ion chromatography with on-lineinternal standardization. Anal. Methods 3: 2873–2880.

Richardson, S. D. 2010. Environmental mass spectrometry:Emerging contaminants and current issues. Anal. Chem. 82:4742–4774.

Richardson, S. D., Fasano, F., Ellington, J. J., Crumley,F. G., Buettner, K. M., Evans, J. J., Blount, B. C. et al.2008. Occurrence and mammalian cell toxicity of iodinateddisinfection byproducts in drinking water. Environ. Sci.Technol. 42: 8330–8338.

Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny,R., DeMarini, D. M. 2007. Occurrence, genotoxity, andcarcinogenicity of regulated and emerging disinfectionby-products in drinking water: A review and roadmap forresearch. Mutat. Res. 636: 178–242.

Risticevic, S., Niri, V. H., Vuckovic, D., Pawliszyn, J.2009. Recent developments in solid-phase microextraction.Anal. Bioanal. Chem. 393: 781–795.

Rompa, M., Kremer, E., Zygmunt, B. 2003. Derivatization ingas chromatographic determination of acidic herbicides inaqueous environmental samples. Anal. Bioanal. Chem. 377:590–599.

Saraji, M., Bidgoli, A. A. H. 2009. Single-dropmicroextration with in-microvial derivatization for thedetermination of haloacetic acids in water sample by gaschromatography-mass spectrometry. J. Chromatogr. A 1216:1059–1066.

Sarrion, M. N., Santos, F. J., Galcerán, M. T. 2002.In-situ derivatization/solid-phase microextraction for thedetermination of haloacetic acids in water. Anal. Chem. 72:4865–4873.

Schummer, C., Delhomme, O., Appenzeller, B. M. R., Wenning,R., Millet, M. 2009. Comparison of MTBSTFA and BSTFA inderivatization reactions of polar compounds prior to GC–MSanalysis. Talanta 77: 1473–1482.

Sebök, A., Vasanits-Zsigrai, A., Helenkár, A., Záray, Gy.,Molnár-Perl, I. 2009. Multiresidue analysis of pollutantsas their trimethylsilyl derivatives, by gaschromatography–mass spectrometry. J. Chromatogr. A 1216:2288–2301.

Shi, H., Adams, C. 2009. Rapid IC-ICP/MS method forsimultaneous analysis of iodoacetic acids, bromoaceticacids, bromate, and other related halogenated compounds inwater. Talanta 79: 523–527.

Siles, J. A., Martín, M. D. L. A., Martín, A., Raposo, F.,Borja, R. 2007. Anaerobic digestion of wastewater derivedfrom the pressing of orange peel generated in orange juiceproduction. J. Agric. Food Chem. 55: 1905–1914.

Simone Jr., P. S., Ranaivo, P. L., Geme, G., Brown, M. A.,Emmert, G. L. 2009. On-line monitoring of nine haloaceticacid species at the μg/l level using post-columnreaction-ion chromatography with nicotinamide �uorescence.Anal. Chim. Acta 654: 133–140.

Sirén, H., Luamamperä, K., Työppönen, T., Rovio, S.,Vastamäki, P., Savolahti, P. 2004. Process control and druganalysis with an on-line capillary electrophoresis system.J. Biochem. Biophys. Methods 60: 295–307.

Sobolevsky, T. G., Revelsky, A. I., Revelsky, I. A.,Miller, B., Oriedo, V. 2004. Simultaneous determination offatty, dicarboxylic and amino acids based on derivatizationwith isobutyl chloroformate followed by gaschromatography–positive ion chemical ionization massspectrometry. J. Chromatogr. B 800: 101–107.

Stalikas, C. D., Fiamegos, Y. C. 2008. Microextractioncombined with derivatization. Trends Anal. Chem. 27:533–542.

Tate, C. H., Arnold, K. F. 1992. Health and aestheticsaspects of water quality. In Water Quality and Treatment.A Handbook of Community Water Supplies, ed. Pontius, F. W.New York: AWWA, McGraw.

Tedetti, M., Kawamura, K., Charrière, B., Chevalier, N.,Sempéré, R. 2006. Determination of low molecular weightdicarboxylic and ketocarboxylic acids in seawater samples.Anal. Chem. 78: 6012–6018.

Tsai, Y. I., Hsieh, L. Y., Kuo, S. C., Chen, C. L., Wu, P.

L. 2011. Seasonal and rainfall-type variations in inorganicions and dicarboxylic acids and acidity of wet depositionsamples collected from subtropical East Asia. Atmos.Environ. 45: 3535–3547.

Tsai, Y. I., Hsieh, L. Y., Weng, T. H., Ma, Y. C., Kuo, S.C. 2008. A novel method for determination of low molecularweight dicarboxylic acids in background atmospheric aerosolusing ion chromatography. Anal. Chim. Acta 626: 78–88.

U.S.EPA Method 552.1. Determination of haloacetic acids anddalapon in drinking water by ion-exchange liquid–solidextraction and gas chromatography with an electron capturedetector. Environmental Monitoring Systems LaboratoryOf�ce of Research and Development, U.S. EnvironmentalProtection Agency. Cincinnati, OH, 1992.

U.S.EPA Method 552.2. Determination of haloacetic acids anddalapon in drinking water by liquid–liquid extraction,derivatization and gas chromatography with electron capturedetection. Environmental Monitoring Systems LaboratoryOf�ce of Research and Development, U.S. EnvironmentalProtection Agency. Cincinnati, OH, 1995.

Uansiri, S., Kanchanamayoon, W. 2010. Separation of ninehaloacetic acids in water samples by ion chromatography. J.Appl. Sci. 10: 75–78.

Uchiyama, S., Matsushima, E., Aoyagi, S., Ando, M. 2004.Simultaneous determination of C 1 –C 4 carboxylic acidsand aldehydes using 2,4-dinitrophenylhydrazine impregnatedsilica gel and high performance liquid chromatography.Anal. Chem. 76: 5849–5854.

Valto, P., Knuutinen, J., Alén, R. 2011. Direct injectionanalysis of fatty and resin acids in papermaking processwaters by HPLC/MS. J. Sep. Sci. 34: 925–930.

Van Pinxteren, D., Herrmann, H. 2007. Determination offunctionalized carboxylic acids in atmospheric particlesand cloud water using capillary electrophoresis/massspectrometry. J. Chromatogr. A 1171: 112–123.

Varanusupakul, P., Vora-adisak, N., Pulpoka, B. 2007.In-situ derivatization and hollow �ber membranemicroextraction for gas chromatographic determination ofhaloacetic acids in water. Anal. Chim. Acta 598: 82–86.

Vincenti, M., Biazzi, S., Ghiglione, N., Valsania, M. C.,Richardson, S. D. 2005. Comparison of highly-�uorinated

chloroformates as direct aqueous sample derivatizing agentsfor hydrophilic analytes and drinking water disinfectionby products. J. Am. Soc. Mass. Spectrom. 16: 803–813.

Vincenti, M., Fasano, F., Valsania, M. C., Guarda, P.,Richardson, S. D. 2010. Application of the novel5-chloro2,2,3,3,4,4,5,5-octa�uoro-1-pentyl chloroformatederivatizing agent for the direct determination of highlypolar water disinfection byproducts. Anal. Bioanal. Chem.397: 43–54.

Wang, X., Kou, D., Mitra, S. 2005b. Continuous, on-linemonitoring of haloacetic acids via membrane extraction. J.Chromatogr. A 1089: 39–44.

Wang, X., Saridara, C., Mitra, S. 2005a. Micro�uidicsupported liquid membrane extraction. Anal. Chim. Acta543: 92–98.

Wang, Y. H., Wong, P. K. 2005. Determination ofdichloroacetic acid and trichloroacetic acid in drinkingwater by acidic methanol esteri�cation and headspace gaschromatography. Water Res. 39: 1844–1848.

Wells, M. J. M. 2003. Principles on extraction and theextraction of semivolatiles organics from liquids. InPreparation Techniques in Analytical Chemistry, ed. Mitra,S. pp. 37–13. New Jersey: John Wiley & Sons, Inc.

Wen, Y., Wang, Y., Feng, Y. Q. 2007. A simple and rapidmethod for simultaneous determination of benzoic andsorbic acids in food using in-tube solid-phasemicroextraction coupled with high-performance liquidchromatography. Anal. Bioanal. Chem. 388: 1779–1787.

Woo, Y. T., Lai, D., McLain, J. L., Manibusan, M. K.,Dellarco, V. 2002. Use of mechanism based structureactivity relationships analysis in carcinogenic potentialranking for drinking water disinfection by-products.Environ. Health Perspect. 110: 75–87.

Xie, Y. 2000. Disinfection by-product analysis in drinkingwater. Am. Lab. 32: 50–54.

Xu, G., Lee, X., Lv, Y. 2009. Urban and rural observationsof carboxylic acids in rainwater in Southwest of China:The impact of urbanization. J. Atmos. Chem. 62: 249–260.

Xu, L., Basheer, C., Lee, H. K. 2007b. Developments insingle-drop microextraction. J. Chromatogr. A 1152:

184–192.

Xu, Y., Wang, W., Li, S. F. Y. 2007a. Simultaneousdetermination of low-molecular-weight organic acids andchlorinated acid herbicides in environmental water by aportable CE system with contactless conductivitydetection. Electrophoresis 28: 1530–1539.

Yeh, M. K., Lin, S. L., Leong M. I., Huang S. D., Fuh, M.R. 2011. Determination of phenoxyacetic acids andchlorophenols in aqueous samples by dynamicliquid–liquid–liquid microextraction with ion-pair liquidchromatography. Anal. Sci. 27: 49–54.

Zhu, T., Li, S., Row, K. H. 2011. Molecularly imprintedmonolithic material for the extraction of three organicacids from Salicornia herbacea L. J. Appl. Polym. Sci. 121:1691–1696.

Zuo, Y., Zhang, K., Wu, J., Men, B., He, M. 2011.Determination of o-phthalic acid in snow and itsphotochemical degradation by capillary gas chromatographycoupled with �ame ionization and mass spectrometricdetection. Chemosphere 83: 1014–1019.

21 Chapter 21 - Determination of VolatileOrganic Compounds in Water

1. Slack, G. C., Snow, N. H., and Kou, D. 2003. Extractionof volatile organic compounds from solids and liquids. InSample Preparation Techniques in Analytical Chemistry. 1sted. Mitra, S.(Ed.) John Wiley & Sons: Hoboken, NJ, 2003,pp.183–226.

2. ASTM test Method D3960—90.2006.

3. Dewulf, J., Van Langenhove, H., Wittmann, G. 2002.Analysis of volatile organic compounds using gaschromatography. TrAC Trends in Analytical Chemistry21(9–10): 637–646.

4. Directive 2004/42/CE of the European parliament and ofthe council of 21 April 2004 on the limitation ofemissions of volatile organic compounds due to the use oforganic solvents in certain paints and varnishes andvehicle re�nishing products and amending Directive199/13/EC, 2012 Http://Eur-Lex.Europa.Eu/LexUriServ/LexUriServ.Do?Uri =OJ:L:2004:143:0087:0087:EN:PDF.

5. Safarova, V. I., Sapelnikova, S. V., Djazhenko, E. V.,Teplova, G. I., Shajdulina, G. F., Kudasheva, F. K. 2004.Gas chromatography-mass spectrometry with headspace for theanalysis of volatile organic compounds in waste water.Journal of Chromatography B 800(1–2): 325–330.

6. Nikolaou, A. D., Gol�nopoulos, S. K., Kostopoulou, M.N., Kolokythas, G. A., Lekkas, T. D. 2002. Determinationof volatile organic compounds in surface waters and treatedwastewater in Greece. Water Research 36(11): 2883–2890.

7. Nawrocki, J., Dabrowska, A., Borcz, A. 2002.Investigation of carbonyl compounds in bottled waters fromPoland. Water Research 36(19): 4893–4901.

8. Skjevrak, I., Due, A., Gjerstad, K. O., Herikstad, H.2003. Volatile organic components migrating from plasticpipes (HDPE, PEX and PVC) into drinking water. WaterResearch 37(8): 1912–1920.

9. Cancho, B., Ventura, F., Galceran, M. T. 2001.Determination of aldehydes in drinking water usingpenta�uorobenzylhydroxylamine derivatization andsolid-phase microextraction. Journal of Chromatography A943(1): 1–13.

10. Nobuo, O., Kikuo, S., Masahiko, T., Satoru, Y.,Shigeki, D., Arnd, H., Andreas, H. 2001. Determination oftrace amounts of off-�avor compounds in drinking water bystir bar sorptive extraction and thermal desorption GC-MS.Analyst 126(10): 1652–1657.

11. Benanou, D., Acobas, F., de Roubin, M. R., David, F.,Sandra, P. 2003. Analysis of off-�avors in the aquaticenvironment by stir bar sorptive extraction-thermaldesorption-capillary GC/MS/olfactometry. Analytical andBioanalytical Chemistry 376(1): 69–77.

12. Bao, M., Mascini, M., Grif�ni, O., Burrini, D.,Santianni, D., Barbieri, K. 1999. Headspace solid-phasemicroextraction for the determination of trace levels oftaste and odor compounds in water samples. Analyst 124(4):459–466.

13. Lin, T. F., Wong, J. Y.,Kao, H. P. 2002. Correlation ofmusty odor and 2-MIB in two drinking water treatment plantsin South Taiwan. The Science of the Total Environment289(1–3): 225–235.

14. Nakamura, S., Nakamura, N., Ito, S. 2001. Determinationof 2-methylisoborneol and geosmin in water by gaschromatography-mass spectrometry using stir bar sorptiveextraction. Journal of Separation Science (JSS) (FormerlyJournal of High Resolution Chromatography) 24(8): 674–677.

15. Aelion, C. M. 1996. Impact of aquifer sediment grainsize on petroleum hydrocarbon distribution andbiodegradation. Journal of Contaminant Hydrology 22(1–2):109–121.

16. Squillace, P. J., Zogorski, J. S., Wilber, W. G.,Price, C. V. 1996. A preliminary assessment of theoccurrence and possible sources of MTBE in groundwater inthe United States, 1993–1994. Environmental Science andTechnology 30(5): 1721–1730.

17. Katsumata, P. T., Kastenberg, W. E. 1996. Fate andtransport of methanol fuel from spills and leaks.Hazardous Waste & Hazardous Materials 13(4): 485–498.

18. Borden, R. C., Kao, C. M. 1992. Evaluation ofgroundwater extraction for remediation ofpetroleumcontaminated aquifers. Water Environment Research64(1): 28–36.

19. Stubin, A. I., Bronan, T. M., Poter, K. D., Jiménez,L.,Lochan, H. 1996. Organic priority pollutants in NewYork City municipal waste waters: 1989–1993. Water Environ.Res. 68(6): 1037–1044.

20. Gregory, A. J., López-Ávila, V., Ronald, A. H. 1978.Organic compounds in an industrial wastewater: A case ofstudy of their environmental impact. Environ. Sci. Technol.12: 88–96.

21. LaBranche, D. F., Collins, M. R. 1996. Strippingvolatile organic compounds and petroleum hydrocarbons fromwater. Water Environment Research 68(3): 348–358.

22. Walden, T., Spence, L. 1997. Risk-based BTEX screeningcriteria for a groundwater irrigation scenario. Human andEcological Risk Assessment 3(4): 699–722.

23. Schmidt, T. C. 2003. Analysis of methyl tert-butylether (MTBE) and tert-butyl alcohol (TBA) in ground andsurface water. TrAC Trends in Analytical Chemistry 22(10):776–784.

24. Richardson, S. D., Ternes, T. A. 2005. Water analysis:Emerging contaminants and current issues. Anal. Chem.77(12): 3807–3838.

25. Deeb, R. S., Chu, K.-H., Shih, T., Linder, S., Suffet,I., Kavanaugh, M. C., Alvarez-Cohen, L. 2003. MTBE andother oxigenates: Enviromental sources, analysis, occurenceand treatment. Environmental Engineering Science 20(5):433–447.

26. 1993. Guidelines for Drinking-Water Quality. 2nd ed.,Vol. 1. Recommendations. World Health Organization,Genova.

27. International Union of Toxicology, 2012Http://Www.Iutox.Org/.

28. International Neurotoxicology Association, 2012Http://Www.Neurotoxicology.Org/.

29. Federation of the European Toxicologist and EuropeanSocieties of Toxicology, 2012 Http://Www. Eurotox.Com/.

30. International Programme on Chemical Safety (IPCSINCHEM), 2012 Http://Www.Inchem.Org/.

31. United States National Library of Medicine, 2012

Http://Toxnet.Nlm.Nih.Gov/.

32. International Agency for Research on Cancer, 2012Http://Www.Iarc.Fr/.

33. European Chemical Bureau, 2012 Http://Ecb.Jrc.It/.

34. World Health Organization, 2012 Http://Www.Who.Int/En/.

35. World Health Organization, 2012Http://Www.Cepis.Ops-Oms.Org/Sde/Ops-Sde/Bvsdeeng.Shtml.

36. United States Environmental Protection Agency, 2012Http://Www.Epa.Gov/.

37. European Chemical Agency, 2012Http://Echa.Europa.Eu/Web/Guest/Information-on-Chemicals/Cl-Inventory-Database.

38. CCL 2 List and Regulatory Determinations, 2012Http://Water.Epa.Gov/Scitech/Drinkingwater/Dws/Ccl/Ccl2.Cfm.

39. Richardson, S. D., Ternes, T. A. 2011. Water analysis:Emerging contaminants and current issues. AnalyticalChemistry 83(12): 4614–4648.

40. CCL 1 List and Regulatory Determinations, 2012Http://Water.Epa.Gov/Scitech/Drinkingwater/Dws/Ccl/Ccl1.Cfm.

41. Contaminant Candidate List 3 - CCL, 2012Http://Water.Epa.Gov/Scitech/Drinkingwater/Dws/Ccl/Ccl3.Cfm.

42. United States Environmental Protection Agency, 2012Http://Www.Epa.Gov/Safewater/Mcl.Html#9.

43. Common Position (EC) No 13/98 of 19 December 1997Of�cial Journalof the European Communities. 26.03. 1998.

44. Directive 76/464/EEC—Water pollution by discharges ofcertain dangerous substances. Http://Ec.Europa.Eu/Environment/Water/Water-Dangersub/76_464.Htm,

45. Directive 2000/60/EC of the European Parliament and ofthe Council establishing a framework for the Communityaction in the �eld of water policy, 2012Http://Eur-Lex.Europa.Eu/LexUriServ/LexUriServ.Do?Uri=CELEX:32000L0060:EN:NOT.

46. Directive 2008/105/EC of the European Parliament and ofthe Council of 16 December 2008, 2012Http://Eur-Lex.Europa.Eu/LexUriServ/LexUriServ.Do?Uri =OJ:L:2008:348:0084:0097:EN:PDF.

47. Domini, C. E., Hristozov, D., Almagro, B., Román, I.P., Prats, S., Canals, A. 2006. Sample preparation forchromatographic analysis of environmental samples. InChromatographic Analysis of the Environment, 3rd ed.,Nollet, L.M.L. (Ed.), CRC Press/Taylor & Francis: BocaRaton, London, New York, pp. 31–131.

48. Mitra, S., Brukh, R. 2003. Sample preparation: Ananalytical perspective. In Sample Preparation Techniquesin Analytical Chemistry, 1st ed., Mitra, S. (Ed.), JohnWiley & Sons: Hoboken, NJ, pp. 183–226.

49. EPA Method 502.2 Volatile organic compounds in water bypurge and trap capillary column gas chromaography withphotoionization and electrolytic conductivity detectors inseries. Revision 2.0.1989

50. Inomata, Y., Matsunaga, K., Murai, Y., Osada, K.,Iwasaka, Y. 1999. Simultaneous measurement of volatilesulfur compounds using ascorbic acid for oxidant removaland gas chromatography-�ame photometric detection. Journalof Chromatography A 864(1): 111–119.

51. Urbansky, E. T. 1999. Ascorbic acid treatment to reduceresidual halogen-based oxidants prior to the determinationof halogenated disinfection byproducts in potable water.Journal of Environmental Monitoring 1(5): 471–476.

52. Urbansky, E. T., Freeman, D. M., Rubio, F. J. 2000.Ascorbic acid reduction of residual active chlorine inpotable water prior to halocarboxylate determination.Journal of Environmental Monitoring 2(3): 253–256.

53. Ragunathan, N., Krock, K. A., Klawun, C., Sasaki, T.A., Wilkins, C. L. 1999. Gas chromatography withspectroscopic detectors. Journal of Chromatography A856(1–2): 349–397.

54. Vekey, K. 2001. Mass spectrometry and mass-selectivedetection in chromatography. Journal of Chromatography A921(2): 227–236.

55. Hübschmann, H.-J. 2001. Handbook of GC/MS. Fundamentalsand Applications, John Wiley & Sons: Wendelsheim.

56. Dewulf, J., Van Langenhove, H., Huybrechts, T. 2006.Developments in the analysis of volatile halogenatedcompounds. TrAC Trends in Analytical Chemistry 25(4):300–309.

57. English, Christopher. Optimizing the analysis ofvolatile organic compounds, 2006 Http://Www.Restek.Com/Fantasia/PdfCache/59887a.Pdf.

58. Turner, S. M., Malin, G., Bagander, L. E., Leck, C.1990. Interlaboratory calibration and sample analysis ofdimethyl sulphide in water. Marine Chemistry 29: 47–62.

59. Huybrechts, T., Dewulf, J., Moerman, O.,Van Langenhove,H. 2000. Evaluation of purge-and-traphigh-resolution gaschromatography-mass spectrometry for the determination of27 volatile organic compounds in marine water at the ngl-1 concentration level. Journal of Chromatography A893(2): 367–382.

60. Nilsson, T., Ferrari, R., Facchetti, S. 1997.Inter-laboratory studies for the validation of solid-phasemicroextraction for the quantitative analysis of volatileorganic compounds in aqueous samples. Analytica ChimicaActa 356(2–3): 113–123.

61. EPA Method 8021-B Aromatic and halogenated volatiles bygas chromatography using photoionization and/orelectrolytic conductivity detectors. Revision 2.1996.

62. EPA Method 601. Purgeable halocarbons.2006.

63. EPA Method 8010-B Halogenated volatile organic by gaschromatography. Revision 2.1994

64. EPA Method 602. Purgable aromatics.2006.

65. EPA Method 8020 A. Aromatic volatile organic by gaschromatography. Revision 1.1994.

66. EPA Method 524.2 Measurement of purgeable organiccompounds in water by capillary column gaschromatography/mass spectrometry. Revision 4.1.1992.

67. EPA Method 624. Purgables.2006.

68. EPA Method 8240B Volatile organic compounds by gaschromatography mass spectrometry. Revision 2.0.1994.

69. EPA Method 8260. Volatile organic compounds by gaschromatography mass spectrometry. Revision 2.0.1996.

70. EPA Method 504.1 1,2-dibromomethane (ECB),1,2-dibromo-3-chloro-propane (DBCP), and1,2,3-trichloropropane (123TCP) in water by microextractionand gas chromatography.1993.

71. EPA Method 8011 1,2-dibromoethane and1,2-dibromo-3-chloropropane by microextraction and gaschromatography. Revision 0.1992.

72. EPA Method 603. Acrolein and acrylonitrile.2006.

73. EPA Method 8015-B Non-halogenated organics usingGC-FID. Revision 2.1996.

74. EPA Method 551.1 Determination of chlorinationdisinfection byproducts and chlorinated solvents indrinking water by liquid–liquid extraction and gaschromatography with electron-capture detection. Revision1.1995.

75. EPA Method 552.0 Determination of haloacetic acids indrinking water by liquid-liquid extraction,derivatization, and gas chromatography with electroncapture detection.1990.

76. EPA Method 552.1 Determination of haloacetic acids anddalapon in drinking water by ion-exchange liquid−solidextraction, and gas chromatography with an electron capturedetection. Revision 1.0.1992.

77. EPA Method 552.2 Determination of haloacetic acids anddalapon in drinking water by liquid–liquid extraction,derivatization and gas chromatography with electron capturedetection. Revision 1.0.1995.

78. EPA Method 552.3 Determination of haloacetic acids anddalapon in drinking water by liquid–liquid microextraction,derivatization and gas chromatography with electron capturedetection. Revision 1.0.2003.

79. EPA Method 556.1 Determination of carbynil compounds indrinking water by fast gas chromatography. Revision1.0.1999.

80. EPA Method 8032-A. Acrylamide by gas chromatography.Revision 1.1996.

81. EPA Method 1624B. Volatile organic compounds by isotopedilution GC-MS.2006.

82. EPA Method 8265. Volatile organic compounds in water,soil, soil gas and air by direct sampling ion trap massspectrometry (DSITMS).2002.

83. 2005. Standard Method 6040-B Closed-loop stripping, gaschromatography/mass spectrometry. 21st.

84. 2006. Standard Method 6040-C Purge and trap. 21st.

85. 2005. Standard Method 6200. Volatile organic compounds.21st.

86. 2005. Standard Method 6040-D Solid-phasemicroextraction. 21st.

87. 2005. Standard Method 6232. Trihalomethanes andchlorinated organic solvents. 21st.

88. 2005. Standard Method 6231. 1,2-Dibromomethane (EDB)and 1,2-dibromo-3-chloropropane (DBCP). 21st.

89. 2005. Standard Method 6251. Disinfection by-products:Haloacetic acids and trichlorophenol. 21st.

90. 2005. Standard nethod 6252. Disinfection by-products:Aldehydes (Proposed). 21st.

91. Snow, N. H. 2002. Head-space analysis in modern gaschromatography. TrAC Trends in Analytical Chemistry21(9–10): 608–617.

92. Kolb, B. 1996. Quantitative trace analysis of volatileorganic compounds in air, water and soil using equilibriumheadspace gas chromatography. LC-GC 14(1): 44–54.

93. Ohno, H., Aoyama, J., Kishimoto, H. 1992. Simultaneousdetermination of volatile organic compounds by head spacegas-chromatographic analysis with dual detection. Jpn. J.Toxicol. Health 38: 84–92.

94. Denaro, M., Giammarioli, S., Milana, M. R., Mosca, M.,Marcoaldi, R. 1991. Analysis of volatile substances inbottled minerals waters. I. Determination of benzene.Rapporti ISTISIAN: 34–46.

95. Yazdi, A. S., Assadi, H. 2004. Determination of traceof methyl tert-butyl ether in water using liquid drop

headspace sampling and GC. Chromatographia 60(11–12):699–702.

96. Przyjazny, A., Kokosa, J. M. 2002. Analyticalcharacteristics of the determination of benzene, toluene,ethylbenzene and xylenes in water by headspace solventmicroextraction. Journal of Chromatography A 977(2):143–153.

97. Bahramifar, N., Yamini, Y., Shariati-Feizabadi, S.,Shamsipur, M. 2004. Trace analysis of methyl tertbutylether in water samples using headspace solventmicroextraction and gas chromatography-�ame ionizationdetection. Journal of Chromatography A 1042(1–2): 211–217.

98. Deng, C., Yao, N., Li, N., Zhang, X. 2005. Headspacesingle drop microextraction with in-drop derivatization foraldehyde analysis. J. Sep. Scie. 28(17): 2301–2305.

99. Hala, E., Pick, J., Fried, V., Vilim, O. 1967.Vapor–Liquid Equilibrium, 2nd ed., Vol. 117, PergamonPress: Oxford.

100. Kolb, B., Ettre, L. S. 1998. Static headspace–GasChromatography. Theory and Practice, John Wiley & Sons:New York.

101. Vitenberg, A. G., Ioffe, B. V., Borisov, V. N. 1974.Application of phase equilibria to gas chromatographictrace analysis. Chromatographia 7: 610–619.

102. Mackay, D., Yeun, A. T. K. 1983. Mass transfercoef�cient correlations for volatilization of organicsolutes from water. Environ. Sci. Technol. 17: 211–217.

103. Ettre, L. S., Welter, C., Kolb, B. 1993. Determinationof gas−liquid partition coef�cients by automaticequilibrium headspace-gas chromatography utilizing thephase ratio variation method. Chromatographia 35(1–2):73–84.

104. Ettre, L. S., Kolb, B. 1991. Headspace-gaschromatography: The in�uence of sample volume on analyticalresults. Chromatographia 32(1–2): 5–12.

105. Kolb, B. 1976. Application of an automated headspaceprocedure for trace analysis by gas chromatography. J.Chromatogr. 122: 553–568.

106. Bassette, R., Oezeris, S., Whitnah, C. H. 1962.

Gas-chromatographic analysis of head space gas of diluteaqueous solutions. Anal.Chem. 34: 1540–1543.

107. Hachenberg, H., Schmidt, A. P. 1977. GasChromatographic Headspace Analysis, John Wiley & Sons:London.

108. Grecsek, H. Analysis of fuel oxygenates by U.S. EPAMethod 8260B using headspace trap with GC/MS, 2005

109. Grif�th, H. Measuring environmental volatile organiccompounds by U.S. EPA method 8260B with headspace trapGC/MS, 2004

110. Snow, Miles S. The determination of2,4,6-trichloroanisole in wine using headspace trap withGC/MS, 2005

111. Takahashi, Y., Onodera, S., Morita, M., Terao, Y.2003. A problem in the determination of trihalomethane byheadspace-gas chromatography/mass spectrometry. J. HealthSci. 49(1): 1–7.

112. Bellar, A. T., Lichtenberg, J. J. Semi-automatedhead-space analysis of drinking waters and industrialwaters for purgeable volatile organic compounds. In: C. E.Van Hall, ed. Measurement of Organic Pollutants in Waterand Wastewater. STP 686, American Soc. Testing andMaterials, Philadelphia.

113. Page, B. D., Conacher, H. B. S., Salminen, J., Nixon,G. R., Riedel, G., Mori, B., Gagnon, J. 1993. Survey ofbottled drinking water sold in Canada. Part II. Selectedvolatile organic compounds. J. Assoc. Off. Anal. Chem.Int. 76: 26–31.

114. Hazard, S. A., Brown, J. L., Bertz, W. R. 1991.Extraction and analysis of hydrocarbons associated withleaking underground storage tanks. LC-GC 9: 40–42.

115. Barnung, T. N., Grahl-Nielsen, O. 1989. Determinationof benzenes and naphthalenes in water by purge and trapisolation and capillary column chromatography. J.Chromatogr. 466: 271–278.

116. Bertsch, W., Anderson, E., Holzer, G. 1975. Traceanalysis of organic volatiles in water by gaschromatography-mass spectrometry with glass capillarycolumns. J. Chromatogr. 112: 701–718.

117. Woollfenden, E., Barbeiro, J. 1992. Purge and trapanalysis of volatile organic compounds (VOCs) in water.Int. Lab. 22: 25–30.

118. López-Avila, V., Wood, R., Flanagan, M., Scott, R.1987. Determination of volatile priority pollutants inwater by purge and trap and capillary column gaschromatography/mass spectrometry. J. Chromatogr. Sci. 25:286–291.

119. Duffy, M., Driscoll, J. N., Pappas, S., Sanford, W.1988. Analysis of ppb levels of organics in water by meansof purge-and-trap, capillary gas chromatography andselective detectors. J. Chromatogr. 441: 73–80.

120. Yan, X., Carney, K. R., Overton, E. B. 1992.Application of purge-and-trap method for fast, convenienteld anaysis of water and soil samples. J. Chromatogr. Sci.30: 491–496.

121. Biziuk, M., Polkowska, Z., Gorko, D., Janick, W.,Namiesnik, J. 1995. Determination of volatile organiccompounds in water intakes and trap water by purge and trapand direct aqueous injection-electron capture detectiontechniques. Chemia Analityczna (Warsaw) 40(3): 299–307.

122. Perkin Elmer. 1994. Analysis of volatile organiccompounds (VOCs) in water by USEPA Method 624 using aprogrammable split/splitless injector. Application NoteGCA-63. Apl. Note GCA-63: 8–12.

123. Eganhouse, R. P., Dorsey, T. F., Phinney, C. S.,Wastcott, A. M. 1993. Determination of C 6 , to C 10aromatic hydrocarbons in water by purge and trap capillarygas chromatography. J. Chromatogr. 628: 81–92.

124. Kristiansen, N. K., Lundanes, E., Froshaug, M.,Utkilen, H. 1992. Determination and identi�cation ofvolatile organic compounds in drinking water producedoffshore. Chemosphere 25: 1631–1642.

125. Nguyen, D. K., Bruchet, A., Arpino, P. 1994.High-resolution capillary GC-MS analysis oflow-molecular-weight organic compounds in municipal wastewater. J. High Res. Chromatogr. 17: 153–159.

126. Supelco 1994. Improved purge-trap-GC analysis ofvolatiles in drink-ing water by USEPA Method 524.2.: 12.

127. Vickers, A. K., Wright, L. M. 1993. An automated GC/MS

system for the analysis of volatile and semivolatileorganic compounds in water. J. Automatic Chem. 15: 133–139.

128. Ho, J. S., Hodakievic, P., Bellar, T. A. 1989. A fullyautomated purge-and-trap system for analyzing volatileorganics in drinking water. Am. Lab. July: 40–51.

129. Stain, V. B., Naraung, R. S. 1990. Simpli�ed methodfor the determination of volatile compounds in eggs usingheadspace analysis with photoionization detector. Arch.Environ. Contam. Toxicol. 19: 593–596.

130. Hurts, R. E. 1974. A method of collecting andconcentrating headspace volatiles for gas chromatographicanalysis. Analyst 99: 302–305.

131. Esteban, R. E., Martínez-Castro, I., Sanz, J. 1993.Evaluation and optimization of the automatic thermaldesorption method in the gas chromatographic determinationof plant volatile compounds. J. Chromatogr. 657: 155–164.

132. Cinwei, Y., Kenneth, R. C., Overton, E. B. 1992.Application of purge and trap method to fast and convenienteld analysis of water and soil samples. J. Chromatogr. Sci.30: 491–496.

133. Schnable, J. G., Dussert, B., Suffet, I. H., Herzt, C.D. 1990. Comparison of quarter-hourly on-line dynamichead-space analysis to purge-and-trap analysis of varyingvolatile organic compounds in drinking water sources. J.Chromatogr. 513: 47–54.

134. Schnable, J. G., Capangpangan, M. B., Suffet, I. H.1991. Continuous automatic monitoring of volatile organiccompounds in aquesous streams by a modi�ed purge and trapsystem. J. Chromatogr. 549: 335–344.

135. Robinson, A. B., Partridge, D., Turner, M., Teranishi,R., Pauling, L. 1973. An apparatus for the quantitativeanalysis of volatile compounds in urine. J. Chromatogr. 85:19–29.

136. Hammers, W. E., Bosman, H. F. P. M. 1986. Quantitativeanalysis of a dynamic headspace analysis technique fornon-polar pollutants in aqueous samples at the ng/Kg level.J. Chromatogr. 360: 425–432.

137. Lin, D. P., Falkenberg, C., Payne, D. A., Thakkar, J.,Tang, C.,Elly, C. 1993. Kinetics of purging for thepriority volatile organic compounds in water. Anal. Chem.

65: 999–1002.

138. Ruiz-Bevia, F., Fernandez-Torres, M. J.,Blasco-Alemany, M. P. 2009. Purge ef�ciency in thedetermination of trihalomethanes in water bypurge-and-trap gas chromatography. Anal. Chim. Acta 632(2):304–314.

139. EPA Method 5035 Closed-system purge and trap andextraction for volatile organics in soil and wastesamples. 1996.

140. Bianchi, A., Varney, M. S., Philips, I. 1989. Modi�edanalytical technique for the determination of traceorganics in water using dynamic headspace and gaschromatography mass spectrometry. J. Chromatogr. 467:111–128.

141. Abeel, S. M., Vickers, A. K., Decker, D. 1994. Trendsin purge and trap. J. Chromatogr. Sci. 32: 328–338.

142. Westendorf, R. 1992. Managing water in purge and trapGC/MS. Environ. Lab. Aug-Sep: 36–39.

143. Pankow, J. F. 1991. Technique for removing water frommoist headspace and purge gas containing volatile organiccompounds. Application in the purge with whole-columncryotrapping (PIWGC) method. Environ. Sci. Technol. 25:123–126.

144. Janicki, W., Wolska, L., Wardencki, W., Namiesnik, T.1993. Simple device for permeation removal of water vaporfrom purge gases in the determination of volatile organiccompounds in aqueous samples. J. Chromatogr. A 654:279–285.

145. Kostianinen, R. 1994. Effect of operating parametersin purge-and-trap GC-MS of polar and non-polar organiccompounds. Chromatographia 38: 709–714.

146. Rose, M. E., Colby, B. N. 1979. Reduction in samplefoaming in purge and trap gas chromatography/ massspectrometry analyses. Anal. Chem. 51: 2176–2180.

147. Erickson, M. D., Alsup, M. K., Hyldburg, P. A. S.1981. Foam prevention in purge and trap analysis. Anal.Chem. 53: 1265–1269.

148. Grob, K. 1973. Organic substances in potable water andits precursor. Part I. Method for their determination by

gas-liquid chromatography. J. Chromatogr. 84: 255–273.

149. Clark, R. G., Cronin, D. A. 1975. The use of activatedcharcoal for the concentration and analysis of headspacevapors containing food aroma volatiles. J. Sci. Food Agric.26(11): 1615–1624.

150. Mehran, M. T., Nickelsen, M. G., Gokar, N., Cooper, W.T. 1990. Improvement in the purge and trap technique forthe rapid analysis of volatile organic pollutants in water.J. High Res. Chromatogr. 13: 429–433.

151. Takeuchi, R., Uemo, H., Naito, K., Fuijiki, Y. 1995.Simpli�ed determination of volatile organic compounds inwater with use of active carbon. Bunseki Kagaku 44:651–657.

152. Marchand, M., Termonia, M., Caprais, J. C., Wybaw, M.1994. Purge-and-trap GC-MS analysis of volatile organiccompounds from the Guayamas Basin hydrothermal site (gullof California). Analusis 22: 326–331.

153. Driss, M. R., Bouguerra, M. L. 1991. Analysis ofvolatile organic compounds in water by purge and trap andgas chromatographic techniques. Operational parametersoptimization of the purge step. Int. J. Environ. Anal.Chem. 45: 193–204.

154. Ventura, K., Dostal, M.,Churacek, J. 1993. Retentioncharacteristics of some volatile compounds on Tenax GP. J.Chromatogr. 642: 379–382.

155. Buszka, P. M., Rose, D. L., Ozuna, G. B., Groschen, G.Z. 1995. Determination of nanogram per liter concentrationof volatile organic compounds in water by capillary gaschromatography and selected ion monitoring massspectrometry and its use to de�ne ground water �owdirections in Edwards Aquifer, Texas. Anal. Chem. 67:3659–3669.

156. Lewis, M. J., Williams, A. A. 1980. Potentialartifacts from using porous polymers for collecting aromacomponents. J. Sci. Food Agric. 31: 1017–1026.

157. MacLeod, G., Ames, J. M. 1986. Comparative assessmentof the artifact background on thermal desorption of TenaxGC and Tenax TA. J. Chromatogr. 335: 393–398.

158. 1984. Guidelines establishing test procedures foranalysis of pollutants under the Clean Water Act, �nal

rule and interin �nal rule and proposed rule. Method 624,Purgeable.U.S Environmental Protection Agency, 40 CFR Part136. Fed. Regist: 141–152.

159. Li, Q. L., Yuan, D. X., Lin, Q. M. 2004. Evaluation ofmulti-walled carbon nanotubes as an adsorbent for trappingvolatile organic compounds from environmental samples. J.Chromatogr. A 1026(1–2): 283–288.

160. Kessels, H., Hoogerwerf, W., Lips, J. 1992. Thedetermination of volatile organic compounds from EPAmethod 524.2 using purge-and-trap capillary gaschromatography, ECD and FID. J. Chromatogr. Sci. 30:247–255.

161. Gamble, A. 1991. Concentrating volatile organics forgas chromatography. Lab. Equip. 29: 31–35.

162. Jursik, T., Stransky, K., Ubik, K. 1991. Trappingsystem for trace organic substances. J. Chromatogr. 586:315–322.

163. Pankow, J. F. 1981. Cold-trapping of volatile organiccompounds on fused-silica capillary columns. HRC&CC 4:156–163.

164. Riedel, K., Ruppert, T., Conze, C., Scherer, G.,Adlkofer, F. 1996. Determination of benzene and alkylatedbenzenes in ambient and exhaled air by microwave desorptioncoupled with gas-chromatographymass spectrometry. J.Chromatogr. A 719(2): 383–389.

165. Oruña-Concha, M. J., López-Hernández, J.,Simal-Lozano, J., Simal-Gándara, J., González-Castro, M.J., De la Cruz-García, C. 1998. Determination of volatilecomponents in gresh, frozen and Freeze-dried Padrón-typepeppers by gas chromatography-mass spectrometry usingdynamic headspace sampling and microwave desorption. J.Chromatogr. Sci. 36(12): 583–588.

166. Rodríguez-Bernaldo De Quirós, A. I., López-Hernández,J., González-Castro, M. J., De la Cruz-García, C.,Simal-Lozano, J. 2000. Comparison of volatile components inraw and cooked green beans by GC-MS using dynamicheadspace sampling and microwave desorption. Eur. Food Res.Technol. 210(3): 226–230.

167. Rodríguez-Bernaldo De Quirós, A. I., López-Hernández,J., González-Castro, M. J., De la CruzGarcía, C.,Simal-Lozano, J. 2001. Comparison of volatile components in

fresh and canned sea urchin (Paracentrotus lividus,Lamarck) gonads by GC-MS using dynamic headspace samplingand microwave desorption. Eur. Food Res. Technol. 212(6):643–647.

168. Almarcha, M., Rovira, J. 1994. Aplicaciones a ladesorción térmica mediante microondas guiadas en elanálisis alimentario. Técnicas De Laboratorio194(Septiembre): 699–703.

169. Alonso, M., Cerdan, L., Godayol, A., Anticó, E.,Sanchez, J. M. 2011. Headspace needle-trap analysis ofpriority volatile organic compounds from aqueous samples:Application to the analysis of natural and waste waters.Journal of Chromatography A 1218(45): 8131–8139.

170. Prikryl, P., Kubinec, R., Jurdáková, H., Ševcýk, J.,Ostrovský, I., Soják, L., Berezkin, V. 2006. Comparison ofneedle concentrator with SPME for GC determination ofbenzene, toluene, ethylbenzene, and xylenes in aqueoussamples. Chromatographia 64(1–2): 65–70.

171. Gol�nopoulos, S. K., Lekkas, T. D., Nikolaou, A. D.2001. Comparison of methods for determination of volatileorganic compounds in drinking water. Chemosphere 45(3):275–284.

172. Nikolaou, A. D., Lekkas, T. D., Gol�nopoulos, S. K.,Kostopoulou, M. N. 2002. Application of differentanalytical methods for determination of volatilechlorination by-products in drinking water. Talanta 56(4):717–726.

173. Deng, X., Liang, G., Chen, J., Qi, M., Xie, P. 2011.Simultaneous determination of eight common odors innatural water body using automatic purge and trap coupledto gas chromatography with mass spectrometry. J.Chromatogr. A 1218(24): 3791–3798.

174. Barco-Bonilla, N., Plaza-Bolaños, P.,Fernández-Moreno, J. L., Romero-González, R., GarridoFrenich, A., Martínez Vidal, J. L. 2011. Determination of19 volatile organic compounds in wastewater ef�uents fromdifferent treatments by purge and trap followed bygas-chromatography coupled to mass spectrometry. Anal.Bioanal. Chem. 400(10): 3537–3546.

175. Laaks, J., Jochmann, M. A., Schilling, B., Schmidt, T.C. 2010. In-tube extraction of volatile organic compoundsfrom aqueous samples: An economical alternative to purge

and trap enrichment. Anal. Chem. 82(18): 7641–7648.

176. Kujawinski, D. M., Stephan, M., Jochmann, M. A.,Krajenke, K., Haas, J., Schmidt, T. C. 2010. Stable carbonand hydrogen isotope analysis of methyl tert-butyl etherand tert-amyl methyl ether by purge and trap-gaschromatography-isotope ratio mass spectrometry: Methodevaluation and application. J. Environ. Monit. 12(1):347–354.

177. Abua, I. 2010. Measurement of volatile organiccompounds in bottled and tap waters by purge and trapGCGÇôMS: Are drinking water types different? J. Food Comp.Anal. 23(1): 70–77.

178. Selyanchyn, R., Korposh, S., Matsui, T., Matsui, H.,Lee, S. W. 2010. Purge and trap sampling coupled to curiepoint thermal desorption for the detection of parts pertrillion 2,4,6-trichloroanisole in water. Chromatographia71(3): 317–321.

179. Massolo, S., Rivaro, P., Frache, R. 2009. Simultaneousdetermination of CFC-11, CFC-12 and CFC-113 in seawatersamples using a purge and trap gas-chromatographic system.Talanta 80(2): 959–966.

180. Liu, H. W., Liu, Y. T., Wu, B. Z., Nian, H. C., Chen,H. J., Chiu, K. H., Lo, J. G. 2009. Process samplingmodule coupled with purge and trap GC-FID for in situauto-monitoring of volatile organic compounds inwastewater. Talanta 80(2): 903–908.

181. Lara-Gonzalo, A., Sánchez-Uría, J. E., Segovia-García,E., Sanz-Medel, A. 2008. Critical comparison of automatedpurge and trap and solid-phase microextraction for routinedetermination of volatile organic compounds in drinkingwaters by GC-MS. Talanta 74(5): 1455–1462.

182. Brown, M. A., Miller, S., Emmert, G. L. 2007. On-linepurge and trap gas chromatography for monitoring oftrihalomethanes in drinking water distribution systems.Anal. Chim. Acta 592(2): 154–161.

183. Cheng, X., Peterkin, E., Narangajavana, K. 2007.Wastewater analysis for volatile organic sul�des usingpurge-and-trap with gas chromatography/mass spectrometer.Water Environ. Res. 79(4): 442–446.

184. Salemi, A., Lacorte, S., Bagheri, H., Barcelò, D.2006. Automated trace determination of earthy-musty

odorous compounds in water samples by on-linepurge-and-trap-gas chromatography-mass spectrometry. J.Chromatogr. A 1136(2): 170–175.

185. Culea, M., Cozar, O., Ristoiu, D. 2006. Methodsvalidation for the determination of trihalomethanes indrinking water. J. Mass Spectrom. 41(12): 1594–1597.

186. Bianchi, F., Careri, M., Marengo, E., Musci, M. 2002.Use of experimental design for the purge-and-trapgaschromatography-mass spectrometry determination of methyltert.-butyl ether, tert.-butyl alcohol and BTEX ingroundwater at trace level. J. Chromatogr. A 975(1):113–121.

187. Zoccolillo, L., Amendola, L., Cafaro, C., Insogna, S.2005. Improved analysis of volatile halogenatedhydrocarbons in water by purge-and-trap with gaschromatography and mass spectrometric detection.J. Chromatogr. A 1077(2): 181–187.

188. Martínez, E., Lacorte, S., Llobet, I., Viana, P.,Barceló, D. 2002. Multicomponent analysis of volatileorganic compounds in water by automated purge and trapcoupled to gas chromatography-mass spectrometry. J.Chromatogr. A 959(1–2): 181–190.

189. Kuivinen, J., Johnsson, H. 1999. Determination oftrihalomethanes and some chlorinated solvents in drinkingwater by headspace technique with capillary columngas-chromatography. Water Res. 33(5): 1201–1208.

190. Lavagnini, I., Favaro, G., Magno, F. 2004. Non-linearand non-constant variance calibration curves in analysisof volatile organic compounds for testing of water by thepurge-and-trap method coupled with gas chromatography/massspectrometry. Rapid Commun. Mass Spectrom. 18(12):1383–1391.

191. Yang, K. L., Lai, C. H., Wang, J. L. 2004.Construction and validation of an automated spray-and-trapgas chromatograph for the determination of volatileorganic compounds in aqueous samples. J. Chromatogr. A1027(1–2): 41–48.

192. Pawliszyn, Janusz 2000. Solid-phase microextraction inenvironmental analysis.Environment: Water and Waste 4:3363–3396.

193. Baltusen, E., Cramers, C., Sandra, P. 2002. Sortive

sample preparation—a review. Anal. Bioanal. Chem.373(1–2): 3–22.

194. Belardi, R., Pawliszyn, J. 1989. The application ofchemically modi�ed fused silica �bers in the extraction oforganics from water matrix samples and their rapid transferto capillary columns. Water Pollution Res. J. Canada 24:179–185.

195. Arthur, C. L., Pawliszyn, J. 1990. Solid phasemicroextraction with thermal desorption using fused silicaoptical �bers. Anal. Chem. 62(19): 2145–2148.

196. Pawliszyn, J., Liu, S. 1987. Sample introduction forcapillary gas chromatography with laser desorption andoptical �bers. Anal. Chem. 59(10): 1475–1478.

197. Lord, H., Pawliszyn, J. 2000. Evolution of solid phasemicroextraction technology. J. Chromatogr. A 885(1–2):153–193.

198. Pawliszyn, J. 1997. Solid-Phase Microextraction.Theory and Practice, John Wiley & Sons: New York.

199. Wells, Martha J. M. 2003. Principles of extraction andthe extraction of semivolatile organics from liquids.First(2): 37–138.

200. Louch, D., Motlagh, S., Pawliszyn, J. 1992. Dynamicsof organic compound extraction from water usingliquid-coated fused silica �bers. Anal.Chem. 64(10):1187–1199.

201. Ulrich, S. 2000. Solid phase microextraction inbiomedical analysis. J. Chromatogr. A 902(1): 167–194.

202. Kurán, P., Soják, L. 1996. Environmental analysis ofvolatile organic compounds in water and sediment by gaschromatography. J. Chromatogr. A 733(1–2): 119–141.

203. Zhang, Z., Pawliszyn, J. 1993. Headspace solid phasemicroextraction. Anal. Chem. 65(14): 1843–1852.

204. Beltrán, J., López, F. J., Hernández, F. 2000.Solid-phase microextraction in pesticide residue analysis.J. Chromatogr. A 885(1–2): 389–404.

205. Motlagh, S., Pawliszyn, J. 1993. On-line monitoring ofowing samples using solid phase microextraction-gaschromatography. Anal. Chim. Acta 284(2): 265–273.

206. Chai, M., Pawliszyn, J. 1995. Analysis ofenvironmental air samples by solid-phase microextractionand gas chromatography/ion trap mass spectrometry.Environ. Sci. Technol. 29(3): 693–701.

207. Alpendurada, M. F. 2000. Solid-phase microextraction:A promising technique for sample preparation inenvironmental analysis. J. Chromatogr. A 889(1–2): 3–14.

208. Page, B. D., Lacroix, G. 1997. Application ofsolid-phase microextraction to the headspace gaschromatographic analysis of semi-volatile organochlorinecontaminants in aqueous matrices. J. Chromatogr. A757(1–2): 173–182.

209. Martos, P. A., Pawliszyn, J. 1998. Sampling andderivatization of formaldehyde using solid-phasemicroextraction with on-�ber derivatization. Anal. Chem.70(11): 2311–2320.

210. Sarrión, M. N., Santos, F. J., Galceran, M. T. 2000.In situ derivatization/solid-phase microextraction for thedetermination of haloacetic acids in water. Anal. Chem.72(20): 4865–4873.

211. Sarrión, M. N., Santos, F. J., Galceran, M. T. 1999.Solid-phase microextraction coupled with gaschromatography-ion trap mass spectrometry for the analysisof haloacetic acids in water. J. Chromatogr. A 859(2):159–171.

212. Liu, J., Li, N., Jiang, G., Liu, J., Jönsson, J. A.,Wen, M. 2005. Disposable ionic liquid coating for headspacesolid-phase microextraction of benzene, toluene,ethylbenzene, and xylenes in paints followed by gaschromatography-�ame ionization detection. J. Chromatogr. A1066: 27–32.

213. Okayo, P., Snow, N. H. 1997. Optimizing solid-phasemicroextraction-gas chromatographic injections. LC-GC15(12): 1130–1136.

214. Pelusio, F., Nilsson, T., Mortarella, L., Tilio, R.,Larsen, B., Facchetti, S., Madsen, J. 1995. Headspacesolid phase microextraction analysis of volatile organicsulfur compounds in black and white truf�e aroma. J.Agric. Food Chem. 43(8): 2138–2143.

215. Prosen, H., Zupancic-Kralj, L. 1999. Solid-phase

microextracion. TrAC: Trends in Analytical Chemistry18(4): 272–282.

216. Baltusen, E., Sandra, P., David, F., Cramers, C. 1999.Stir bar sorptive extraction (SBSE), a novel extractiontechnique for aqueous samples: Theory and principles. J.Microcolumn Separation 11(10): 737–747.

217. Bicchi, C., Cordero, C., Liberto, E., Rubiolo, P.,Sgorbini, B., David, F., Sandra, P. 2005. Dual-phasetwisters: A new approach to headspace sorptive extractionand stir bar sorptive extraction. J. Chromatogr. A1094(1–2): 9–16.

218. Baltusen, E., Sandra, P., David, F., Janssen, H.-G.,Cramers, C. 1999. Study into the equilibrium mechanismbetween water and PDMS for very apolar solutes: Adsorptionor sortion? Anal. Chem. 71(22): 5213–5216.

219. Loughrin, J. H. 2006. Comparison of solid-phasemicroextraction and stir bar sorptive extraction for thequanti�cation of malodors in wastewater. J. Agric FoodChem. 54(9): 3237–3241.

220. Marin, J., Zalacain, A., De Miguel, C., Alonso, G. L.,Salinas, M. R. 2005. Stir bar sorptive extraction for thedetermination of volatile compounds in oak-aged wines. J.Chromatogr. A 1098(1–2): 1–6.

221. Demyttenaere, J. C. R., Sanchez Martinez, J. I.,Verhe, R., Sandra, P., De Kimpe, N. 2003. Analysis ofvolatiles of malt whisky by solid-phase microextraction andstir bar sorptive extraction. J. Chromatogr. A 985(1–2):221–232.

222. David, F., Tienpont, B., Sandra, P. 2003. Stir-barsorptive extraction of trace organic compounds fromaqueous matrices. LCGC Europe 17(7): 2–7.

223. He, Y., Wang, Y., Lee, H. K. 2000. Trace analysis often chlorinated benzenes in water by headspace solid-phasemicroextraction. J. Chromatogr. A 874(1): 149–154.

224. Cervera, M. I., Beltran, J., Lopez, F. J., Hernandez,F. 2011. Determination of volatile organic compounds inwater by headspace solid-phase microextraction gaschromatography coupled to tandem mass spectrometry withtriple quadrupole analyzer. Anal. Chim. Acta 704(1GÇô2):87–97.

225. Kristiana, I., Heitz, A., Joll, C., Sathasivan, A.2010. Analysis of polysul�des in drinking waterdistribution systems using headspace solid-phasemicroextraction and gas chromatographyGÇômass spectrometry.J. Chromatogr. A 1217(38): 5995–6001.

226. Dias Guimarães, A., Carvalho, J. J., GonÇalves, C.,Alpendurada, M. d. F. 2008. Simultaneous analysis of 23priority volatile compounds in water by solid-phasemicroextraction–gas chromatography–mass spectrometry andestimation of the method’s uncertainty. Int. J. Environ.Anal. Chem. 88(3): 155–164.

227. Matisová, E., Medved’ová, M., Vraniková, J., Simon, P.2002. Optimisation of solid-phase microextraction ofvolatiles. J. Chromatogr. A 960(1–2): 159–164.

228. Nakamura, S., Daishima, S. 2005. Simultaneousdetermination of 22 volatile organic compounds,methyl-tert-butyl ether, 1,4-dioxane, 2-methylisoborneoland geosmin in water by headspace solid phasemicroextraction-gas chromatography-mass spectrometry. Anal.Chim. Acta 548(1–2): 79–85.

229. Arambarri, I., Lasa, M., Garcia, R., Millan, E. 2004.Determination of fuel dialkyl ethers and BTEX in waterusing headspace solid-phase microextraction and gaschromatography-�ame ionization detection. J. Chromatogr. A1033(2): 193–203.

230. Almeida, C. M. M., Vilas Boas, L. 2004. Analysis ofBTEX and other substituted benzenes in water usingheadspace SPME-GC-FID: Method validation. J. Environ.Monit. 6(1): 80–88.

231. Piazza, F., Barbieri, A., Saverio Violante, F., Roda,A. 2001. A rapid and sensitive method for methyltert-butyl ether analysis in water samples by use of solidphase microextraction and gas chromatographymassspectrometry. Chemosphere 44(4): 539–544.

232. Matisová, E., Sedláková, J., Slezácková, M., Welsch,T. 1999. Solid-phase microextraction of volatile polarcompounds in water. J. High Resol. Chromatogr. 22(2):109–115.

233. Jonsson, J. A., Mathiasson, L. 2001. Membraneextraction in analytical chemistry. J. Sep. Sci. 24(7):495–507.

234. Jonsson, J. A., Mathiasson, L. 1999. Liquid membraneextraction in analytical sample preparation: I.Principles. TrAC Trends in Analytical Chemistry 18(5):318–325.

235. Jonsson, J. A., Mathiasson, L. 1999. Liquid membraneextraction in analytical sample preparation: II.Applications. TrAC Trends in Analytical Chemistry 18(5):325–334.

236. Jonsson, J. A., Mathiasson, L. 2000. Membrane-basedtechniques for sample enrichment. J. Chromatogr. A 902(1):205–225.

237. Hauser, B., Popp, P. 2001. Combining membraneextraction with mobile gas chromatography for the �eldanalysis of volatile organic compounds in contaminatedwaters. J. Chromatogr. A 909(1): 3–12.

238. Luo, Y. Z., Adams, M., Pawliszyn, J. 1997. Aqueoussample direct extraction and analysis by membraneextraction with a sorbent interface. The Analyst 122(12):1461–1469.

239. Luo, Y. Z., Pawliszyn, J. 2000. Membrane extractionwith a sorbent interface for headspace monitoring ofaqueous samples using a cap sampling device. Anal. Chem.72(5): 1058–1063.

240. Guo, X., Mitra, S. 1998. Development of pulseintroduction membrane extraction for analysis of volatileorganic compounds in individual aqueous samples, and forcontinuous on-line monitoring. J. Chromatogr. A 826(1):39–47.

241. Matz, G., Kibelka, G., Dahl, J., Lennemann, F. 1999.Experimental study on solvent-less sample preparationmethods: Membrane extraction with a sorbent interface,thermal membrane desorption application andpurge-and-trap. J. Chromatogr. A 830(2): 365–376.

242. Matz, G., Loogk, M., Lennemann, F. 1998. On-line gaschromatography-mass spectrometry for process monitoringusing solvent-free sample preparation. J. Chromatogr. A819(1–2): 51–60.

243. Ketola, R. A., Kotiaho, T., Cisper, M. E., Allen, T.M. 2002. Environmental applications of membraneintroduction mass spectrometry. J. Mass Spectrom. 37(5):457–476.

244. Bauer, S., Solyom, D. 1994. Determination of volatileorganic compounds at the parts per trillion leven incomplex aqueous matrices using membrane introduction massspectrometry. Anal. Chem. 66(24): 4422–4431.

245. Soni, M., Bauer, S., Amy, J. W., Wong, P., Cooks, R.G. 1995. Direct determination of organic compounds inwater at parts-per-quadrillion levels by membraneintroduction mass spectrometry. Anal. Chem. 67(8):1409–1412.

246. Virkki, V. T., Katola, R. A., Ojala, M., Kotiaho, T.,Komppa, V. 1995. On-site enviromental analysis by membraneinlet mass spectrometry. Anal. Chem. 67(8): 1421–1425.

247. Alexander, M., Boscaini, E., Lindenger, W., Mark, T.2003. Membrane introduction proton-transfer reaction massspectrometry. Int. J. Mass Spectrom. 223–224: 763–770.

248. Boscaini, E., Alexander, M. L., Prazeller, P., Mark,T. D. 2004. Membrane inlet proton transfer reaction massspectrometry (MI-PTRMS) for direct measurements of VOCs inwater. Int. J. Mass Spectrom. 239(2–3): 171–177.

249. Shoemaker, J. A., Bellart, T. A., Eichelberguer, J.W., Budde, W. L. 1993. Determination of polar volatileorganic compounds in water by membrane permeate and trapGC-MS. J. Chromatogr. Sci. 31(7): 279–284.

250. Guo, X., Mitra, S. 1998. Development of pulseintroduction membrane extraction for analysis of volatileorganic compounds in individual aqueous samples, and forcontinuous on-line monitoring. J. Chromatogr. A 826(1):39–47.

251. Liu, H., Dasgupta, P. K. 1996. Analytical chemistry ina drop. Solvent extraction in a microdrop. Anal. Chem.68(11): 1817–1821.

252. Kristenson, E. M., Kamminga, D. A., Catalina, M. I.,Espiga, C., Vreuls, R. J. J., Brinkman, U. A. T. 2002.Role of the retaining precolumn in large-volume on-columninjections of volatiles to gas chromatography. J.Chromatogr. A 975(1): 95–104.

253. Vreuls, R. J. J., Romijn, E., Brinkman, U. A. Th.1998. In-Vial Liquid-Liquid Extraction with subsequentlarge-volume on -column injection into GC-MS for thedetermination of anilines in tap, surface, adn wastewater.

J. Microc. Sep. 10(7): 581–588.

254. Zhang, L., Hu, R., Yang, Z. 2006. Routine analysis ofoff-�avor compounds in water at sub-part-pertrillion levelby large-volume injection GC/MS with programmabletemperature vaporizing inlet. Water Res. 40(4): 699–709.

255. Jeannot, M. A., Cantwell, F. F. 1996. Solventmicroextraction into a single drop. Anal. Chem. 68(13):2236–2240.

256. Psillakis, E., Kalogerakis, N. 2002. Developements insingle-drop microextraction. TrAC Trends in AnalyticalChemistry 21(1): 53–63.

257. Psillakis, E., Kalogerakis, N. 2001. Application ofsolvent microextraction to the analysis of nitroaromaticexplosives in water samples. J. Chromatogr. A 907(1–2):211–219.

258. Huddleston, J. G., Willauer, H. D., Swatloski, R. P.,Visser, A. E., Rogers, R. D. 1998. Room temperature ionicliquids as novel media for ‘clean’ liquid-liquidextraction. Chem. Commun. 1998: 1765–1766.

259. Peng, J., Liu, J., Jiang, G., Tai, C., Huang, M. 2005.Ionic liquid for high temperature headspace liquidphasemicroextraction of chlorinated anilines in environmentalwater samples. J. Chromatogr. A 1072: 3–6.

260. Liu, J., Chi, Y., Jiang, G. 2005. Screening theextractability of some typical environmental pollutants byionic liquids in liquid-phase microextraction. J. Sep Sci.28(1): 87–91.

261. Vidal, L., Psillakis, E., Domini, C. E., Grane, N.,Marken, F., Canals, A. 2007. An ionic liquid as a solventfor headspace single drop microextraction of chlorobenzenesfrom water samples. Anal. Chim. Acta 584(1): 189–195.

262. Wang, Y., Kwok, Y. C., He, Y., Lee, H. K. 1998.Application of dynamic liquid-phase microextraction to theanalysis of chlorobenzenes in water by using a conventionalmicrosyringe. Anal. Chem. 70(21): 4610–4614.

263. Kaykhaii, M., Nazari, S., Chamsaz, M. 2005.Determination of aliphatic amines in water by gaschromatography using headspace solvent microextraction.Talanta 65(1): 223–228.

264. Tankeviviute, A., Kazlauskas, R., Vickackaite, V.2001. Headspace extraction of alcohols into a single drop.The Analyst 126(10): 1674–1677.

265. Vidal, L., Canals, A., Kalogerakis, N., Psikillakis,E. 2005. Headspace single drop microextraction for theanalysis of chlorobenzenes in water samples. J. Chromatogr.A 1089(1): 25–30.

266. Chisvert, A., Román, I. P., Vidal, L., Canals, A.2009. Simple and commercial readily-available approach forthe direct use of ionic liquid-based single-dropmicroextraction prior to gas chromatography: Determinationof chlorobenzenes in real water samples as model analyticalapplication. J. Chromatogr. A 1216(9): 1290–1295.

267. Li, N., Deng, C., Yao, N., Shen, X., Zhang, X. 2005.Determination of acetone, hexanal and heptanal in bloodsamples by derivatization with penta�uorobenzylhydroxylamine followed by headspace single dropmicroextraction and gas chromatography-mass spectrometry.Anal. Chim. Acta 540(2): 317–323.

268. Li, N., Deng, C., Yin, X., Yao, N., Shen, X., Zhang,X. 2005. Gas-Chromatography-mass spectrometric analysis ofhexanal and heptanal in human blood by headspacesingle-drop microextraction with droplet derivatization.Anal. Biochem. 342(2): 318–326.

269. Saraji, M., Bakhshi, M. 2005. Determination of phenolsin water samples by single-drop microextraction followed byin-syringe derivatization and gas chromatography-massspectrometric detection. J. Chromatogr. A 1098(1): 30–36.

270. Buszewski, B., Ligor, T. 2002. Single-drop extractionversus solid-phase microextraction for the analysis ofVOCs in water. LC-GC Europe 15(2): 2–6.

271. Pedersen-Bjergaard, S., Rasmussen, K. E. 1999.Liquid-liquid-liquid microextracion for sample preparationof biological �uids prior to capillary electrophoresis.Anal. Chem. 71(14): 2650–2656.

272. Theis, A. L., Waldack, A. J., Hansen, S. M., Jeannot,M. A. 2001. Headspace solvent microextraction. Anal. Chem.73(23): 5651–5654.

273. Aguilera-Herrador, E., Lucena, R., Cárdenas, S.,Valcárcel, M. 2008. Direct coupling of ionic liquid basedsingle-drop microextraction and GC/MS. Anal. Chem. 80:

793–800.

274. Psillakis, E., Kalogerakis, N. 2003. Developments inliquid-phase microextraction. TrAC Trends in AnalyticalChemistry 22(9): 565–574.

275. Rasmussen, K. E., Pedersen-Bjergaard, S. 2004.Developments in hollow �bre-based, liquid-phasemicroextraction. TrAC Trends in Analytical Chemistry 23(1):1–10.

276. Hou, Li., Lee, K. 2004. Determination of pesticides insoil by liquid-phase microextration and gaschromatography-mass spectrometry. Journal of ChromatographyA 1038(1–2): 3742.

277. Ho, T. S., Pedersen-Bjergaard, S., Rasmussen, K. E.2002. Recovery, enrichment and selectivity in liquid-phasemicroextraction: Comparison with conventional liquid-liquidextraction. J. Chromatogr. A 963(1–2): 3–17.

278. Borén, H., Grinvall, A., Palmborg, J., Sävenhed, R.,Wigilius, B. 1985. Optimization of the open strippingsystem for the analysis of trace organics in water. J.Chromatogr. 348: 67–78.

279. Skrabakova, S., Matisova, E., Novak, I., Berek, D.1994. Use of a novel carbon sorbent for the desorption oforganic compounds from water. J. Chromatogr. A 665(1):27–32.

280. Kristiansen, N. K., Lundanes, E., Froshaug, M.,Bechner, G. 1993. Evaluation of the open-loop strippingtechnique used for the determination of volatile organiccompounds in water. Anal. Chim. Acta. 280(1): 111–117.

281. Jiang, X., Lee, H. K. 2004. Solvent barmicroextraction. Anal. Chem. 76(18): 5591–5596.

282. Rezaee, M., Assadi, Y., Milani Hosseini, M. R.,Aghaee, E., Ahmadi, F., Berijani, S. 2006. Determinationof organic compounds in water using dispersiveliquidGÇôliquid microextraction. J. Chromatogr. A1116(1GÇô2): 1–9.

283. Rezaee, M., Yamini, Y., Faraji, M. 2010. Evolution ofdispersive liquidGÇôliquid microextraction method. J.Chromatogr. A 1217(16): 2342–2357.

284. Rezaee, M., Yamini, Y., Mashayekhi, H. A., Naeeni, M.

H., Jubari, M. B. 2011. Trace analysis of methyltert-butyl ether in water samples using newultrasound-assisted dispersive liquid-liquidmicroextraction and gas chromatography-�ame ionizationdetection. J. Chinese Chem. Soc. 58(3): 332–339.

285. Cortada, C., Vidal, L., Canals, A. 2011. Determinationof geosmin and 2-methylisoborneol in water and winesamples by ultrasound-assisted dispersive liquidGÇôliquidmicroextraction coupled to gas chromatographyGÇômassspectrometry. J. Chromatogr. A 1218(1): 17–22.

286. Yiantzi, E., Psillakis, E., Tyrovola, K., Kalogerakis,N. 2010. Vortex-assisted liquidGÇôliquid microextraction ofoctylphenol, nonylphenol and bisphenol-A. Talanta 80(5):2057–2062.

287. Papadopoulou, A., Román, I. P., Canals, A., Tyrovola,K., Psillakis, E. 2011. Fast screening of per�uorooctanesulfonate in water using vortex-assisted liquidGÇôliquidmicroextraction coupled to liquid chromatographyGÇômassspectrometry. Anal. Chim. Acta 691(1–2): 56–61.

288. Khalili Zanjani, M. R., Yamini, Y., Shariati, S.,Jonsson, J. A. 2007. A new liquid-phase microextractionmethod based on solidi�cation of �oating organic drop.Anal. Chim. Acta 585(2): 286–293.

289. Leong, M. I., Huang, S. D. 2008. Dispersiveliquid-liquid microextraction method based on solidi�cationof �oating organic drop combined with gas chromatographywith electron-capture or mass spectrometry detection. J.Chromatogr. A 1211(1GÇô2): 8–12.

290. Kamarei, F., Ebrahimzadeh, H., Yamini, Y. 2010.Optimization of temperature-controlled ionic liquiddispersive liquid phase microextraction combined with highperformance liquid chromatography for analysis ofchlorobenzenes in water samples. Talanta 83(1): 36–41.

291. Zhao, R. s., Lao, W. j., Xu, X. b. 2004. Headspaceliquid-phase microextraction of trihalomethanes indrinking water and their gas chromatographic determination.Talanta 62(4): 751–756.

292. Bagheri, H., Salemi, A. 2006. Headspace solventmicroextraction as a simple and highly sensitive samplepretreatment technique for ultra trace determination ofgeosmin in aquatic media. J. Sep. Sci. 29(1): 57–65.

293. Ghasemi, E., Sillanpää, M., Naja�, N. M. 2011.Headspace hollow �ber protected liquid-phasemicroextraction combined with gas chromatography-massspectroscopy for speciation and determination of volatileorganic compounds of selenium in environmental andbiological samples. J. Chromatogr. A 1218(3): 380–386.

294. Sarafraz-Yazdi, A., Amiri, A. H., Es’haghi, Z. 2008.BTEX determination in water matrices using HF-LPME withgas chromatography-�ame ionization detector. Chemosphere71(4): 671–676.

295. Saraji, M. 2005. Dynamic headspace liquid-phasemicroextraction of alcohols. J. Chromatogr. A 1062(1):15–21.

296. Wang, J. X., Jiang, D. Q., Yan, X. P. 2006.Determination of substituted benzenes in water samples byber-in-tube liquid phase microextraction coupled with gaschromatography. Talanta 68(3): 945–950.

297. Li, Y., Zhang, T., Liang, P. 2005. Application ofcontinuous-�ow liquid-phase microextraction to theanalysis of volatile halohydrocarbons in water. Anal. Chim.Acta 536(1–2): 245–249.

298. Aguilera-Herrador, E., Lucena, R., Cárdenas, S.,Valcárcel, M. 2008. Ionic liquid-based single-dropmicroextraction/gas chromatographic/mass spectrometricdetermination of benzene, toluene, ethylbenzene and xyleneisomers in waters. J. Chromatogr. A 1201(1): 106–111.

299. Vickackaite, V., Pusvaskiene, E. 2009.Dispersion-solidi�cation liquid-liquid microextraction forvolatile aromatic hydrocarbons determination: Comparisonwith liquid phase microextraction based on thesolidi�cation of a �oating drop. J. Sep. Sci. 32(20):3512–3520.

300. Hao-Yu, Shen, Ping, Lu, Ming-Min, Huai, Sheng-Dong,Pan, Yun, Zhang. 2011. Determination of trichlorobenzenesand 2,4,6-trichlorophenol in wastewater of machining bydispersive liquid-liquid microextraction—gaschromatography/mass spectrometry. Bioinformatics andBiomedical Engineering, (ICBBE) 2011 5th InternationalConference on, 1–4.

301. Ye, Q., Zheng, D., Liu, L., Hong, L. 2011. Rapidanalysis of aldehydes by simultaneous microextraction andderivatization followed by GC-MS. J. Sep. Sci. 34(13):

1607–1612.

302. Karimi, M., Sereshti, H., Samadi, S., Parastar, H.2010. Optimization of dispersive liquid-liquidmicroextraction and improvement of detection limit ofmethyl tert-butyl ether in water with the aid ofchemometrics. J. Chromatogr. A 1217(45): 7017–7023.

303. Assadi, Y., Ahmadi, F., Hossieni, M. 2010.Determination of BTEX compounds by dispersive liquidliquidmicroextraction with GCGÇôFID. Chromatographia 71(11):1137–1141.

304. Kozani, R. R., Assadi, Y., Shemirani, F., Hosseini, M.R. M., Jamali, M. R. 2007. Part-per-trillion determinationof chlorobenzenes in water using dispersive liquid-liquidmicroextraction combined gas chromatographyGÇôelectroncapture detection. Talanta 72(2): 387–393.

305. Rahnama Kozani, R., Assadi, Y., Shemirani, F., MilaniHosseini, M., Jamali, M. 2007. Determination oftrihalomethanes in drinking water by dispersiveliquid-liquid microextraction then gas chromatography withelectron-capture detection. Chromatographia 66(1): 81–86.Section VIII Phenolic and Humic Compounds

22 Chapter 22 - Determination of PhenolicCompounds in Water

1. L. Marcheterre, G.G. Choudry, and G.R.B. Webster.Environmental photochemistry of herbicides. Rev. Environ.Contam. Toxicol. 103:61–126, 1988.

2. S. Lacorte and D. Barcelo. Rapid degradation offenitrothion in estuarine waters. Environ. Sci. Technol.28:1159–1163, 1994.

3. T. Kishino and K. Kobayashi. Acute toxicity andstructure-activity relationships of chlorophenols in �sh.Water Res. 30:387–392, 1996.

4. T. Kishino and K. Kobayashi. Studies on the mechanism oftoxicity of chlorophenols found in �sh throughquantitative structure-activity relationships. Water Res.30:393–399, 1996.

5. A.D. Baldwin and J.K. Debowski. Determination of phenolsby HPLC down to PPT levels. Chromatographia 26:186–190,1988.

6. Sampling and analysis procedure for screening ofindustrial ef�uents for priority pollutants, USEnvironmental Agency, Environment Monitoring and SupportLaboratory, Cincinnati, OH, 1977.

7. Drinking Water Directive 80/778/EEC. Commission of theEuropean Communities, Brussels, 1980.

8. Drinking Water Directive 76/160/EEC. Commission of theEuropean Communities, Brussels, 1975.

9. Method for organic chemical analysis of municipal andindustrial waste, Method 625: Base/neutral and acids, EPA,1998.

10. Gutés, F. Céspedes, S. Alegret, and M. Del Valle.Determination of phenolic compounds by a polyphenoloxidase amperometric biosensor and arti�cial neural networkanalysis. Biosens. Bioelectron. 20:1668– 1673, 2005.

11. K.I. Abe and K. Tanaka. Fe 3+ and UV-enhancedozonation of chlorophenolic compounds in aqueous medium.Chemosphere 35:2837–2847, 1997.

12. M. Pera-Titus, V. Garcia-Molina, M.A. Baños, J.Giménez, and S. Esplugas. Degradation of chlorophenols by

means of advanced oxidation processes: A general review.Appl. Catal. B: Environ. 47:219–256, 2004.

13. Of�cial Journal of the E.C. No. L.194/26, 1975.

14. 40 CFR, Part 136, Methods of organic chemical analysisof municipal and industrial wastewater (revised as of July1, 1995), Federal Register, U.S. GPO, Washington, DC.

15. A.D. Eaton, L.S. Clesceri, and A.E. Greenberg (eds.).Standard Methods for the Examination of Water andWastewater, 19th ed. American Public Health Association,Washington, DC, 1995.

16. EPA 530/SW-846, Test Methods for Evaluating SolidWaste: Physical/Chemical Methods, 3rd ed., 4 vols.November 1986, U.S. GPO, Washington, DC (�nal update I,July 1992, �nal update II, September 1994, �nal updateIIA, August 1993, Final update IIB and proposed update III,January 1995).

17. EPA 821/R-93-017, Analytical methods for thedetermination of pollutants in pulp and paper industrywastewater. National Technical Information Service,Spring�eld, VA, October 1993.

18. International Standards Organization, Geneva,Switzerland.

19. J.W. Munch, Method 528. Determination of phenols indrinking water by solid-phase extraction and capillarycolumn gas chromatography/mass spectrometry (GC/MS)Revision 1.0, April 2000.

20. EPA/600/R-95/131, Methods for the determination oforganic compounds in drinking water—Supplement III,National Technical Information Service, Spring�eld, VA,August 1995.

21. Annual Book of ASTM Standards, Section 11. AmericanSociety for Testing and Materials, Philadelphia, 1997.

22. EPA/600/4-79-02, Methods for chemical analysis of waterand wastes, National Technical Information Service,Spring�eld, VA, Revised, 1993.

23. C. Elvira-Cozar, E. Cano-Faura, L. Pdrez-Arribas, M.E.Leon-Gonzalez, and L.M. Polo-Dfez. Trace prioritypollutant phenols enrichment from water by ionchromatography. Chromatographia 40:91–95, 1995.

24. J. Ruana, I. Urbe, and F. Borrull. Determination ofphenols at the ng/l level in drinking and river waters byliquid chromatography with UV and electrochemicaldetection. J. Chromatogr. A 655:217–226, 1993.

25. O. Busto, J.C. Olucha, and F. Borrull. Optimization ofisocratic mobile phase composition for HPLC analysis ofeleven substituted phenols. Chromatographia 32:566–572,1991.

26. D. Martínez, E. Pocurull, R.M. Marcé, F. Borrull, andM. Calull. Separation of eleven priority phenols bycapillary zone electrophoresis with ultraviolet detection.J. Chromatogr. A 734:367–373, 1996.

27. J. Frébortová and V. Tatarkovicová. Trace enrichment ofchlorinated phenols from drinking water on chemicallybonded sorbents for high-performance liquid chromatography.Analyst 119:1519–1523, 1994.

28. E. Pocurull, R.M. Marce, and F. Borrull. Improvement ofon-line solid-phase extraction for determining phenoliccompounds in water. Chromatographia 41:521–526, 1995.

29. D. Puig and D. Barcelo. Off-line and on-linesolid-phase extraction followed by liquid chromatographyfor the determination of priority phenols in naturalwaters. Chromatographia 40:435–444, 1995.

30. M.T. Galceran and O. Jáuregui. Determination of phenolsin sea water by liquid chromatography with electrochemicaldetection after enrichment by using solid-phase extractioncartridges and disks. Anal. Chim. Acta 304:75–84, 1995.

31. E. Pocurull, G. Sánchez, F. Borrull, and R.M. Marcé.Automated on-line trace enrichment and determination ofphenolic compounds in environmental waters byhigh-performance liquid chromatography. J. Chromatogr. A696:31–39, 1995.

32. E. Nieminen and R. Heikkila. Simultaneous determinationof phenol, cresols and xylenols in workplace air, using apolystyrene—divinylbenzene column and electrochemicaldetection. J. Chromatogr. A 360:271–278, 1986.

33. G. Marko-Varga and D. Barceló. Liquid chromatographicretention and separation of phenols and related aromaticcompounds on reversed phase columns. Chromatographia34:146–154, 1992.

34. A.D. Dimou, T.M. Sakellarides, F.K. Vosniakos, N.Giannoulis, E. Leneti, and T. Albanis. Determination ofphenolic compounds in the marine environment of ThermaikosGulf, Northern Greece. Int. J. Environ. Anal. Chem.86(1–2):119–130, 2006.

35. P.A. Realini. Determination of priority pollutantphenols in water by HPLC. J. Chromatogr. Sci. 19:124– 129,1981.

36. F.P. Bigley and R.L. Grob. Determination of phenols inwater and wastewater by post-column reaction detectionhigh-performance liquid chromatography. J. Chromatogr.350:407–416, 1985.

37. P.A. Alarcon, B. Bustos, M.D.C. Andres, and L.M. Polo.Determination of priority pollutant phenols by isocraticHPLC. Chromatographia 24:613–616, 1987.

38. S.K. Ratanathanawongs and S.R. Crouch. Development of aselective post-column detector for phenols separated byhigh-performance liquid chromatography. Anal. Chim. Acta192:277–287, 1987.

39. L.J. Nagels, W.L. Creten, and L. Van Haverbeke.Determination limits in high-performance liquidchromatography of plant phenolic compounds with anultraviolet detector. Anal. Chim. Acta 173:185–192, 1985.

40. N. Masqué, E. Pocurull, R.M. Marcé, and F. Borrull.Determination of eleven priority EPA phenolics at ng L −1levels by on-line solid-phase extraction and liquidchromatography with UV and electrochemical detection.Chromatographia 47:176–182, 1998.

41. E. Pocurull, R.M. Marcé and F. Borrull. Determinationof phenolic compounds in natural waters by liquidchromatography with ultraviolet and electrochemicaldetection after on-line trace enrichment. J. Chromatogr. A738:1–9, 1996.

42. N. Masqué, M. Galiá, R.M. Marcé, and F. Borrull. Newchemically modi�ed polymeric resin for solidphaseextraction of pesticides and phenolic compounds from water.J. Chromatogr. A 803:147–155, 1998.

43. I. Rodriguez, M.H. Bollain, M.C. Mejuto, and R.J. Cela.Evaluation of two solid-phase extraction procedures for thepreconcentration of chlorophenols in drinking water. J.

Chromatogr. A 786:285–292, 1997.

44. C. Aguilar, F. Borrull, and R.M. Marcé. Determinationof pesticides by on-line trace enrichmentreversed-phaseliquid chromatography-diode-array detection and con�rmationby particle-beam mass spectrometry. Chromatographia43:592–598, 1996.

45. E. Pocurull, M. Calull, R.M. Marcé, and F. Borrull.Determination of phenolic compounds at low μg 1−1 levelsby various solid-phase extractions followed by liquidchromatography and diode-array detection. J. Chromatogr. A719:105–112, 1996.

46. M.W.F. Nielen, U.A.Th. Brinkman, and R.W. Frel.Industrial wastewater analysis by liquid chromatographywith precolumn technology and diode-array detection. Anal.Chem. 57:806–810, 1985.

47. E. Pocurull, R.M. Marcé, and F. Borrull. Improvement ofon-line solid-phase extraction for determining phenoliccompounds in water. Chromatographia 41:521–526, 1995.

48. E.R. Brouwer and U.A.Th. Brinkman. Determination ofphenolic compounds in surface water using on-line liquidchromatographic precolumn-based column-switchingtechniques. J. Chromatogr. A 678:223–231, 1994.

49. A.C. Hogenboom, I. Jagt, J.J. Vreuls, and U.A.Th.Brinkman. On-line trace level determination of polarorganic microcontaminants in water using variouspre-column–analytical column liquid chromatographictechniques with ultraviolet absorbance and massspectrometric detection. Analyst 122:1371–1378, 1997.

50. N. Sharma, A. Jain, V.K. Singh, and K.K. Verma.Solid-phase extraction combined with headspacesingle-drop microextraction of chlorophenols as theirmethyl ethers and analysis by high-performance liquidchromatography–diode array detection. Talanta83(3):994–999, 2011.

51. M.K. Yeh, S.L. Lin, M.I. Leong, S.D. Hunag, and M.R.Fuh. Determination of phenoxyacetic acids andchlorophenols in aqueous samples by dynamicliquid–liquid–liquid microextraction with ion-pair liquidchromatography. Anal. Sci. 27(1):49–54, 2011.

52. C.Y. Lin and S.D. Hunag. Application ofliquid–liquid–liquid microextraction and ion-pair liquid

chromatography coupled with photodiode array detection forthe determination of chlorophenols in water.J. Chromatogr. A 1193(1–2):79–84, 2008.

53. R.E. Shoup and G.S. Mayer. Determination ofenvironmental phenols by liquidchromatography/electrochemistry. Anal. Chem. 54:1163–1169,1982.

54. E. Niemen and P. Heikkila. Simultaneous determinationof phenol, cresols and xylenols in work-place air, using apolystyrene-divinylbenzene column and electrochemicaldetection. J. Chromatogr. 360:271– 278, 1986.

55. E.C.V. Butler and G. Dal Pont. Liquidchromatography—electrochemistry procedure for thedetermination of chlorophenolic compounds in pulp millef�uents and receiving waters. J. Chromatogr. A 609:113–123, 1992.

56. G.A. Junk, J.J. Richard, M.D. Grieser, D. Witiak, J.L.Witiak, M.D. Arguello, R. Vick, H.J. Evec, J.S. Fritz, andG.V. Calder. Use of macroreticular resins in the analysisof water for trace organic contaminants. J. Chromatogr.99:745–762, 1974.

57. A. Tateda and J.S. Fritz. Mini-column procedure forconcentrating organic contaminants from water. J.Chromatogr. A 152:329–340, 1978.

58. T.R. Steinheimer and M.G. Ondrus. Determination ofselected azaarenes in water by bonded-phase extraction andliquid chromatography. Anal. Chem. 58:1839–1844, 1986.

59. N. Cardellicchio, S. Cavalli, V. Piangerelli, S.Giandomenico, and P. Ragano. Determination of phenols inenvironmental samples by liquidchromatography–electrochemistry. Fresenius J. Anal. Chem.358:749–754, 1997.

60. J. Lehotay, M. Baloghova, and S. Hatrik. HPLC methodfor determination of phenol in river and wastewater. J.Liq. Chromatogr. 16:999, 1993.

61. A. Hagen, J. Mattusch, and G. Werner. Flow-ratevariated HPLC-/EC-determination of phenols. Fresenius J.Anal. Chem. 339:26–29, 1991.

62. B. Paterson, C.E. Cowie, and P.E. Jackson.Determination of phenols in environmental waters using

liquid chromatography with electrochemical detection. J.Chromatogr. A 731:95–102, 1996.

63. D. Puig and D. Barceló. Determination of polar priorityphenols at parts per trillion levels in water usingon-line liquid-solid extraction followed by liquidchromatography with coulimetric detection J. Chromatogr. A778:313–319, 1997.

64. G. Achill, G.P. Cellerino, G. Melzi d’Eril, and S.Bird. Simultaneous determination of 27 phenols andherbicides in water by high-performance liquidchromatography with multielectrode electrochemicaldetection. J. Chromatogr. A 697:357–362, 1995.

65. M. Knutsson, G. Nilvé, L. Mathiasson, and J.Å. Jönsson.Supported liquid membranes for sampling and samplepreparation of pesticides in water. J. Chromatogr. A754:197–205, 1996.

66. D. Marinez, E. Pocurull, R.M. Marcé, F. Borrull, and M.Calull. Comparative study of the use of highperformanceliquid chromatography and capillary electrophoresis fordetermination of phenolic compounds in water samples.Chromatographia 43:619–624, 1996.

67. O. Jhregui and M.T. Galceran. Determination of phenolsin water by on-line solid-phase disk extraction and liquidchromatography with electrochemical detection. Anal. Chim.Acta 340:191–199, 1997.

68. D. Puig and D. Barceló. Determination of phenoliccompounds in water and waste water. Trends Anal. Chem.15:362–375, 1996.

69. F. Ortega, E. Dominguez, E. Burestedt, J. Emnéus, L.Gorton, and G. Marko-Varga. Phenol oxidasebased biosensorsas selective detection units in column liquidchromatography for the determination of phenoliccompounds. J. Chromatogr. A 675:65–78, 1994.

70. J. Wang, F. Lu, S.A. Kane, Y.-K. Choi, M.R. Smyth, andK. Rogers. Hydrocarbon pasting liquids for improvedtyrosinase-based carbon-paste phenol biosensors.Electroanalysis 9:1102–1106, 1997.

71. O. Fiehn and M. Jekel. Analysis of phenolic compoundsin industrial wastewater with high-performance liquidchromatography and post-column reaction detection. J.Chromatogr. A 769:189–200, 1997.

72. W.J. Lnadzettel, K.J. Hargis, J.B. Caboot, K.L. Adkins,T.G. Strein, H. Veening, and H.-D. Becker. Highperformanceliquid chromatographic separation and detection of phenolsusing 2-(9-anthrylethyl) chloroformate as a �uorophoricderivatizing reagent. J. Chromatogr. A 718:45–51, 1995.

73. P.J.M. Kwakman, D.A. Kamminga, and U.A.Th. Brinkman.Sensitive liquid chromatographic determination of alkyl-,nitro- and chlorophenols by precolumn derivatization withdansyl chloride, postcolumn photolysis and peroxyoxalatechemiluminescence detection. J. Chromatogr. A 553:345–356,1991.

74. C. de Ruiter, J.F. Bohle, G.J. de Jong, U.A.Th.Brinkman, and R.W. Frei. Enhanced �uorescence detection ofdansyl derivatives of phenolic compounds using a postcolumnphotochemical reactor and application to chlorophenols inriver water. Anal. Chem. 60:666–670, 1988.

75. G. Blo, F. Dondi, A. Betti, and C. Bighi. Determinationof phenols in water samples as 4-aminoantipyrinederivatives by high-performance liquid chromatography. J.Chromatogr. A 257:69–79, 1983.

76. F.P. Bigley and R.L. Grob. Determination of phenols inwater and wastewater by post-column reaction detectionhigh-performance liquid chromatography. J. Chromatogr. A350:407–416, 1985.

77. F.E.O. Suliman, S.S. Al-Kindi, S.M.Z. Al-Kindy, andH.A.J. Al-Lawati. Analysis of phenols in water byhigh-performance liquid chromatography usingcoumarin-6-sulfonyl chloride as a �uorogenic precolumnlabel. J. Chromatogr. A 1101(1–2):179–184, 2006.

78. A. Farran, J.L. Cortina, and J. de Pablo. On-linecontinuous-�ow extraction system in liqud chromatographywith ultraviolet and mass spectrometric detection for thedetermination of selected organic pollutants. Anal. Chim.Acta 234:119–126, 1990.

79. D. Barceló. A review of liquid chromatography inenvironmental pesticide analysis. Chromatographia25:928–936, 1988.

80. D. Puig, I. Silgoner, M. Grasserbauer, and D. Barceló.Part-per-trillion level determination of priority methyl-,nitro-, and chlorophenols in river water samples byautomated on-line liquid/solid extraction followed by

liquid chromatography/mass spectrometry using atmosphericpressure chemical ionization and ion spray interfaces.Anal. Chem. 69:2756–2761 1997.

81. O. Jáuregui, E. Moyano, and M.T. Galceran. Liquidchromatography-atmospheric pressure ionization massspectrometry for the determination of chloro- andnitrophenolic compounds in tap water and sea water. J.Chromatogr. A 787:79–89, 1997.

82. C. Crescenzi, A. Di Corcia, S. Marchese, and R.Samperi. Determination of acidic pesticides in water by abenchtop electrospray liquid chromatography massspectrometer. Anal. Chem. 67:1968–1975, 1995.

83. M.C. Jin, Y.Q. Yan, X.H. Chen, and J.W. Shi.Simultaneous determination of 3 trace monochlorophenols inwater by ion chromatography–atmospheric pressure chemicalionization mass spectrometry. Chin. J. Anal. Chem.34(9):1223–1226, 2006.

84. M.C. Jin and Y.W. Yang. Simultaneous determination ofnine trace mono- and di-chlorophenols in water by ionchromatography atmospheric pressure chemical ionizationmass spectrometry. Anal. Chim. Acta 566(2):193–199, 2006.

85. M.C. Jin, X.H. Chen, and B.X. Pan. Simultaneousdetermination of 19 chlorophenols in water by liquidchromatography–mass spectrometry with solid-phaseextraction. J. Liq. Chromatogr. Relat. Technol.29(9):1369–1380, 2006.

86. P. Mussmann, K. Levsen, and W. Radeck.Gas-chromatographic determination of phenols in aqueoussamples after solid phase extraction. Fresenius J. Anal.Chem. 348:654–659, 1994.

87. L. Wennrich, J. Efer, and W. Engewald. Gaschromatographic trace analysis of underivatizednitrophenols. Chromatographia 41:361–366, 1995.

88. H.-B. Lee, L.-D. Weng, and A.S.Y. Chau. Chemicalderivatization analysis of pesticide residues. IX.Analysis of phenol and 21 chlorinated phenols in naturalwaters by formation of penta�uorobenzyl ether derivatives.J. Assoc. Off. Anal. Chem. 67:1086–1091, 1984.

89. R.A. Booth and J.N. Lester. A method for the analysisof phenol and monochlorinated and brominated phenols fromcomplex aqueous samples. J. Chromatogr. Sci. 32:259–264,

1994.

90. R.T. Coutts, E.E. Hargesheimer, and F.M. Pasutto. Gaschromatographic analysis of trace phenols by directacetylation in aqueous solution. J. Chromatogr. A179:291–299, 1979.

91. K. Abrahamsson and T.M. Xie. Direct determination oftrace amounts of chlorophenols in fresh water, waste waterand sea water. J. Chromatogr. A 279:199–208, 1983.

92. L.L. Lamparski, T.J. Nestrick, and R.H. Stehl.Determination of part-per-trillion concentrations of2,3,7,8-tetrachlorodibenzo-p-dioxin in �sh. Anal. Chem.51:1453–1458,1979.

93. A.J.H. Louter, P.A. Jones, J.D. Jorritsma, J.J. Vreuls,and U.A.Th. Brinkman. Automated derivatization for on-linesolid-phase extraction-gas chromatography; phenoliccompounds. J. High Res. Chromatogr. 20:363–368, 1997.

94. M.A. Crespin, E. Ballesteros, M. Gallego, and M.Valcárcel. Automatic preconcentration of chlorophenols andgas chromatographic determination with electron capturedetection. Chromatographia 43:633– 639, 1996.

95. Y. Hoshika and G. Muto. Sensitive gas chromatographicdetermination of phenols as bromophenols using electroncapture detection. J. Chromatogr. A 179:105–111, 1979.

96. M.L. Bao, F. Pantini, K. Barbieri, D. Burrini, and O.Grif�ni. Direct acetylation followed by solidphase diskextraction and GC-ITDMS for the determination of tracephenols in water. Chromatographia 42:227–233, 1996.

97. T. Heberer and H.-J. Stan. Detection of more than 50substituted phenols as their t-butyldimethylsilylderivatives using gas chromatography-mass spectrometry.Anal. Chim. Acta 341:21–34, 1997.

98. J. Cheung and R.J. Wells. Analysis of phenoliccompounds in ef�uent by solid-phase extraction and gaschromatography-mass spectrometry with direct on-columnbenzylation: Sensitive negative ion chemical ionisationgas chromatography-mass spectrometry detection of phenylbenzyl ethers. J. Chromatogr. A 771:203–211, 1997.

99. I. Rodriguez, M.H. Bollaín, C.M. García, and R. Cela.Analysis of structural isomers of polychlorinated phenolsin water by liquid-nitrogen-trapping gas

chromatography-Fourier transform infrared spectroscopy. J.Chromatogr. A 733:405–416, 1996.

100. I. Rodriguez, M.C. Mejuto, M.H. Bollaín, and R. Cela.Evaluation of two solid-phase extraction procedures for thepreconcentration of chlorophenols in drinking water. J.Chromatogr. A 786:285–292, 1997.

101. Y.J. Yu, S. Zhong, G.Y. Su, H.L. Liu, X.L. Dai, R.J.Wang, H.X. Cai, and H.X. Yu. Trace analysis of phenoliccompounds in water by in situ acetylation coupled withpurge and trap-GC/MS. Anal. Methods 4(7):2156–2161, 2012.

102. L. Elci, N. Kolbe, S.G. Elci, and J.T. Anderson. Solidphase extractive preconcentration coupled to gaschromatography–atomic emission detection for thedetermination of chlorophenols in water samples. Talanta85(1):551–555, 2011.

103. M.A. Hossain, F. Yerasmin, S.M.M. Rahman, M.S. Rana,and K.J. Faterma. Determination of phenol in the BangsaiRiver water of Bangladesh by gas chromatography–massspectrometry. J. Water Chem. Technol. 33(2):91–96, 2011.

104. A. Kovacs, A. Kende, M. Mortl, G. Volk, T. Riker, andK. Torkos. Determination of phenols and chlorophenols astrimethylsilyl derivatives using gas chromatography–massspectrometry. J. Chromatogr. A 1194(1):139–142, 2008.

105. A. Daneshfar and T. Khezeli. Extraction of phenoliccompounds from environmental water samples usingoil-in-water emulsions. Microchim. Acta 167(3–4):211–216,2009.

106. D. Marinez, E. Pocurull, R.M. Marcé, F. Borrull, andM. Calull. Separation of eleven priority phenols bycapillary zone electrophoresis with ultraviolet detection.J. Chromatogr. A 734:367–373, 1996.

107. M.I. Turnes, M.C. Mejuto, and R. Cela. Determinationof pentachlorophenol in water samples by capillary zoneelectrophoresis. J. Chromatogr. A 733:395–404, 1996.

108. C.-Y. Tsai and G.-R. Her. Capillary zoneelectrophoresis/electrospray mass spectrometry of priorityphenols. J. Chromatogr. A 743:315–321, 1996.

109. Y.-C. Chao and C.-W. Whang. Capillary zoneelectrophoresis of eleven priority phenols with indirect�uorescence detection. J. Chromatogr. A 663:229–237, 1994.

110. C.P. Ong, C.L. Ng, N.C. Chong, H.K. Lee, and S.F.Y.Li. Retention of eleven priority phenols using micellarelectrokinetic chromatography. J. Chromatogr A.516:263–270, 1990.

111. M. van Bruijnsvoort, S.K. Sanghi, H. Poppe, and W.Th.Kok. Determination of chlorophenols by micellarelectrokinetic chromatography with electrochemicaldetection. J. Chromatogr. A 757:203–213, 1997.

112. P.W. Stege, L.L. Sombra, G.A. Messina, L.D. Martinez,and M.F. Silva. Environmental monitoring of phenolicpollutants in water by cloud point extraction prior tomicellar electrokinetic chromatography. Anal. Bioanal.Chem. 394(2):567–573, 2009.

113. T.A. Berger and J.F. Deye. Separation of phenols bypacked column supercritical �uid chromatography. J.Chromatogr. Sci. 29:54–59, 1991.

114. H. Faraji, M. Saber-Tehrani, A. Mirzaie, and S.Waqif-Husain. Application of liquid–liquidmicroextraction–high-performance thin-layer chromatographyfor preconcentration and determination of phenoliccompounds in aqueous samples. JPC-J. Planar Chromatogr.Mod. TLC. 24(3):214–217, 2011.

115. G.N. Fu, Y.Z. He, F. Han, and W.E. Gan. Electrokineticow analysis system for the determination of phenols inwater by online liquid–liquid–liquid microextraction. Chin.J. Anal. Chem. 36(10):1415–1418, 2008.

116. Y. Wang, K.-M. Wang, G. Shen, and R.-Q. Yu. Aselective optical chemical sensor for o-nitrophenol basedon �uorescence quenching of curcumin. Talanta 44:1319–1327,1997.

117. J. Kochana, A. Gala, A. Parczewski, and J. Adamski .Titania sol–gel-derived tyrosinase-based amperometricbiosensor for determination of phenolic compounds in watersamples. Examination of interference effects. Anal.Bioanal. Chem. 391(4):1275–1281, 2008.

118. C.S. Hottenstein, S.W. Jourdan, M.C. Hayes, F.M.Rubio, D.P. Herzog, and T.S. Lawruk. Determination ofpentachlorophenol in water and soil by a magneticparticle-based enzyme immunoassay. Environ. Sci. Technol.29:2754–2758, 1995.

119. Q.X. Li, M.S. Zhao, S.J. Gee, M.J. Kurth, J.N. Seiber,and B.D. Hammock. Development of enzymelinked immunosorbentassays for 4-nitrophenol and substituted 4-nitrophenols. J.Agric. Food Chem. 39:1685–1692, 1991.

120. P.M. Krämer, Q.X. Li, and B.D. Hammock. Integration ofliquid chromatography with immunoassay: An approachcombining the strength of both methods. J. Assoc. Off.Anal. Chem. 77:1275–1287, 1994.

121. E. Morita and E. Nakamura . Solid-phase extraction ofantipyrine dye for spectrophotometric determination ofphenolic compounds in water. Anal. Sci. 27(5):489–492,2011.

122. E. Morita and E. Nakamura. Determination of phenoliccompounds in waste water by 4-aminoantipyrinespectrophotometry after methyl benzoate extraction. BunsekiKagaku 59(10):917–920, 2010.

123. M.S. Di Nezio, M.F. Pstonesi, W.D. Fragoso, M.J.C.Pontes, H.C. Goicoechea, M.C.U. Araujo, and B.S.F. Band.Successive projections algorithm improving the multivariatesimultaneous direct spectrophotometric determination of �vephenolic compounds in seawater. Microchem. J.85(2):194–200, 2007.

124. D. Shan, J. Zhang, H.G. Xue, Y.C. Zhang, S. Cosnier,and S.N. Ding. Polycrystalline bismuth oxide �lms fordevelopment of amperometric biosensor for phenoliccompounds. Biosens. Bioelectron. 24(12):3671– 3676, 2009.

125. R. Sparrapan, M.N. Eberlin, and R.M. Alberici.Quanti�cation of trace phenolic compounds in water bytrap-and-release membrane introduction mass spectrometryafter acetylation. Rapid Commun. Mass Spectrom.22(24):4105–4108, 2008.

126. P. de Morais, T. Stoichev, M.C.P. Basto, and M.T.S.D.Vasconcelos. Extraction and preconcentration determinationof chlorophenols in environmental and food samples. Talanta89:1–11, 2012.

127. F.I. Onuska. and K.A. Terry. Supercritical �uidextraction of PCBs in tandem with high resolution gaschromatography in environmental analysis J. High Res.Chromatogr. 12:527–531, 1989.

128. C.J. Koester and R.E. Clement. Analysis of drinkingwater for trace organics. Crit. Rev. Anal. Chem. 24:263,

1993.

129. G. Lamprecht and J.F.K. Huber. Ultra-trace analysis ofphenols in water using high-performance liquidchromatography with on-line reaction detection. J.Chromatogr. A 667:47–57, 1994.

130. J. Czuczwa, C. Leuenberger, J. Tremp, and W. Giger.Determination of trace levels of phenol and cresols in rainby continuous liquid-liquid extraction and high-performanceliquid chromatography. J. Chromatogr. 403:233–241, 1987.

131. E. Ballesteros, M. Gallego, and M. Valcarcel.Automatic gas chromatographic determination ofN-methylcarbamates in milk with electron capture detection.Anal. Chem. 65:1773–1778, 1993.

132. I. Harrison, R.U. Leader, J.J.W. Higgo, and J.C.Tjell. Determination of organic pollutants in small samplesof groundwaters by liquid-liquid extraction and capillarygas chromatography. J. Chromatogr. A 688:181–188, 1994.

133. H. Faraji, M.S. Tehrani, and S.W. Husain.Preconcentration of phenolic compounds in water samples bynovel liquid–liquid microextraction and determination bygas chromatography–mass spectrometry. J. Chromatogr. A1216(49):8569–8574, 2009.

134. G.A. Junk and J.J. Richard. Organics in water: Solidphase extraction on a small scale. Anal. Chem. 60:451–454,1988.

135. D.F. Hagen, C.G. Markell, and G.A. Schmitt. Membraneapproach to solid-phase extractions. Anal. Chim. Acta236:157–164, 1990.

136. A. Bacaloni, G. Goretti, A. Laganà, B.M. Petronio, andM. Rotatori. Sorption capacities of graphitized carbonblack in determination of chlorinate pesticides traces inwater. Anal. Chem. 52:2033–2036, 1980.

137. C. Borra, A. Di Corcia, M. Marchetti, and R. Samperi.Evaluation of graphitized carbon black cartridges forrapid organic trace enrichment from water: Application topriority pollutant phenols. Anal. Chem. 58:2048–2052,1986.

138. J.J. Sun and J.S. Fritz. Chemically modi�ed resins forsolid-phase extraction. J. Chromatogr A. 590:197– 202,1992.

139. V. Piangerelli, F. Nerini, and S. Cavalli. Phenolsdetermination in water samples by SPE using ketoderivatizedpoly(styrene-divinylbenzene) copolymer and HPLC withamperometric detection. Ann. Chim. 83:331–343, 1993.

140. A. Di Corcia, S. Marchese, R. Samperi, G. Cecchini,and L. Cirilli. Determination of phenol pollutants in waterat trace levels: Extraction by a reversible graphitizedcarbon black cartridge. J. AOAC Int. 77:446–453, 1994.

141. M.T. Galceran and O. Jauregui. Determination ofphenols in sea water by liquid chromatography withelectrochemical detection after enrichment by usingsolid-phase extraction cartridges and disks. Anal. Chim.Acta 304:75–84, 1995.

142. A. Kraut-Vass and J. Thoma. Performance of anextraction disk in synthetic organic chemical analysisusing gas chromatography—mass spectrometry. J. Chromatogr.538:233–240, 1991.

143. L. Schmidt, J.J. Sun, J.S. Fritz, D.F. Hagen, C.G.Markell, and E.E. Wisted. Solid-phase extraction ofphenols using membranes loaded with modi�ed polymericresins. J. Chromatogr. 641:57–61, 1993.

144. I. Liska. J. Chromatogr. A 655:163, 1993.

145. V. Pichon, M. Charpak, and M.-C. Hennion. Multiresidueanalysis of pesticides using new laminar extraction disksand liquid chromatography and application to the Frenchpriority list. J. Chromatogr. A 795:83–92, 1998.

146. P. Trippel, W. Maasfeld, and A. Kettrup. Traceenrichment and HPLC analysis of chlorophenols inenvironmental samples, using precolumn samplepreconcentration and electrochemical detection. Int. J.Environ. Anal. Chem. 23:97, 1985.

147. M.-C. Hennion and V. Coquart. Comparison ofreversed-phase extraction sorbents for the on-line traceenrichment of polar organic compounds in environmentalaqueous samples. J. Chromatogr. A 642:211– 214, 1993.

148. C.E. Werkhoven-Goewie, W.M. Boon, A.J.J. Praat, R.W.Frei, U.A.Th. Brinkman, and C. Little. Preconcentrationand LC analysis of chlorophenols, using astyrene-divinyl-benzene copolymeric sorbent andphotochemical reaction detection. Chromatographia 16:53–59,

1982.

149. P. Subra, M.-C. Hennion, and R. Rosset. Recovery oforganic compounds from large-volume aqueous samples usingon-line liquid chromatographic preconcentration techniques.J. Chromatogr. 456:121– 141, 1988.

150. D. Puig and D. Barcelo. Comparative study of on-linesolid phase extraction followed by UV and electrochemicaldetection in liquid chromatography for the determination ofpriority phenols in river water samples. Anal. Chim. Acta311:63–69, 1995.

151. I. Liska, E.R. Brouwer, A.G.L. Ostheimer, H. Lingeman,U.A.Th. Brinkman, R.B. Geerdink, and W.H. Mulder. Rapidscreening of a large group of polar pesticides in riverwater by on-line trace enrichment and column liquidchromatography. Int. J. Environ. Anal. Chem. 47:267, 1992.

152. V. Coquart and M.-C. Hennion. Trace-leveldetermination of polar phenolic compounds in aqueoussamples by high-performance liquid chromatography andon-line preconcentration on porous graphitic carbon. J.Chromatogr. 600:195–201, 1992.

153. Y. Fan, Y. Qi Feng, and S. Lu Da. On-line selectivesolid-phase extraction of 4-nitrophenol withβ-cyclodextrin bonded silica. Anal. Chim. Acta 484:145–153,2003.

154. H. Bagheri and A. Mohammadi. Pyrrole-based conductivepolymer as the solid-phase extraction medium for thepreconcentration of environmental pollutants in watersamples followed by gas chromatography with �ameionization and mass spectrometry detection. J. Chromatogr.A 1015:23–30, 2003.

155. H. Bagheri and M. Saraji. New polymeric sorbent forthe solid-phase extraction of chlorophenols from watersamples followed by gas chromatography–electron-capturedetection. J. Chromatogr. A 910:87– 93, 2001.

156. K. Haupt. Molecularly imprinted polymers inanalyticalchemistry. Analyst 126:747–756, 2001.

157. E. Caro, N. Masue, R.M. Marce, F. Bornull, P.A.G.Cormack, and D.C. Sherrington. Non-covalent andsemi-covalent molecularly imprinted polymers for selectiveon-line solid-phase extraction of 4-nitrophenol from watersamples. J. Chromatogr. A 963:169–178, 2002.

158. E. Caro, R.M. Marcé, P.A.G. Cormack, D.C. Sherrington,and F. Borrulla. On-line solid-phase extraction withmolecularly imprinted polymers to selectively extractsubstituted 4-chlorophenols and 4-nitrophenol from water.J. Chromatogr. A 995:233–238, 2003.

159. G. Sirvent, M. Hidalgo, and V. Salvado. Evaluation ofa new solid-phase cartridge for the preconcentration ofphenolic compounds in water. J. Sep. Sci. 27:613–618, 2004.

160. H. Faraji, S.W. Husain, and M. Helalizadeh.Determination of phenolic compounds in environmental watersamples after solid-phase extraction withβ-cyclodextrin-bonded silica particles coupled with anovel liquid-phase microextraction followed by gaschromatography-mass spectrometry. J. Sep. Sci.35(1):107–113, 2012.

161. J.A. Padilla-Sanchez, P. Plaza-Bolanos, R.Romero-Gonzalez, N. Barco-Bonilla, J.L. Martinez-Vidal,and A. Garrido-Frenic. Simultaneous analysis ofchlorophenols, alkylphenols, nitrophenols and cresols inwastewater ef�uents, using solid phase extraction andfurther determination by gas chromatography– tandem massspectrometry. Talanta 85(5):2397–2404, 2011.

162. A.H. El-Sheikh, R.W. Al-Quse, and M.I. El-BarghouthiF.S. Al-Masri. Derivatization of 2-chlorophenol with4-amino-antipyrine: A novel method for improving theselectivity of molecularly imprinted solid phaseextraction of 2-chlorophenol from water. Talanta83(2):667–673, 2010.

163. N. Fontanals, R.M. Marce, P.A.G. Cormack, D.C.Sherrington, and F. Borrull. Monodisperse, hypercrosslinkedpolymer microspheres as tailor-made sorbents for highlyef�cient solid-phase extractions of polar pollutants fromwater samples. J. Chromatogr. A 1191(1–2):118–124, 2008.

164. J.D. Li, X.L. Zhao, Y.L. Shi, Y.Q. Cai, S.F. Mou, andG.B. Jiang. Mixed hemimicelles solid-phase extraction basedon cetyltrimethylammonium bromide-coated nanomagnets Fe 3 O4 for the determination of chlorophenols in environmentalwater samples coupled with liquidchromatography/spectrophotometry detection. J. Chromatogr.A 1180(1–2):24–31, 2008.

165. P.P. Qi, J.C. Wang, J. Jin, F. Su, and J.P. Chen.2,4-Dimethylphenol imprinted polymers as a solidphase

extraction sorbent for class-selective extraction ofphenolic compounds from environmental water. Talanta81(4–5):1630–1635, 2010.

166. Q.Z. Feng, L.X. Zhao, and J.M. Lin. Molecularlyimprinted polymer as microsolid phase extraction combinedwith high performance liquid chromatography to determinephenolic compounds in environmental water samples. Anal.Chim. Acta 650(1):70–76, 2009.

167. Q.Z. Feng, L.X. Zhao, W. Yan, J.M. Lin, and Z.X.Zheng. Molecularly imprinted solid-phase extractioncombined with high performance liquid chromatography foranalysis of phenolic compounds from environmental watersamples. J. Hazard. Mater. 167(1–3):282–288, 2009.

168. C.L. Arthur and J. Pawliszyn. Solid phasemicroextraction with thermal desorption using fused silicaoptical �bers. Anal. Chem. 62:2145–2148, 1990.

169. D. Louch, S. Motlagh, and J. Pawliszyn. Dynamics oforganic compound extraction from water using liquid-coatedfused silica �bers. Anal. Chem. 64:1187–1199, 1992.

170. C.L. Arthur, D.W. Potter, K.D. Buchholz, S. Motlagh,and J. Pawliszyn. Solid-phase microextraction for thedirect analysis of water: Theory and practice. LC–GC10:656–661, 1992.

171. Z. Zang, M.J. Yang, and J. Pawliszyn. Solid-phasemicroextraction. A solvent-free alternative for samplepreparation. Anal. Chem. 66:844A–853A, 1994.

172. A.A. Boyd-Boland, M. Chai, Y.Z. Luo, Z. Zhang, M.J.Yang, J. Pawliszyn, and T. Gorecki. New solventfree samplepreparation techniques. Environ. Sci. Technol.28:569A–574A, 1994.

173. R. Doong, S. Chang, and Y. Sun. Solid-phasemicroextraction for determining the distribution of sixteenUS Environmental Protection Agency polycyclic aromatichydrocarbons in water samples. J. Chromatogr. A879:177–188, 2000.

174. L. Malleret, J. Dugay, A. Bruchet, and M.C. Hennion.Simultaneous determination of “earthy-musty” odoroushaloanisoles and their corresponding halophenols in watersamples using solid-phase microextraction coupled to gaschromatography with electron-capture detection. J.Chromatogr. A 999:135–144, 2003; C.L. Arthur and J.

Pawliszyn. Anal. Chem. 62:2145, 1990.

175. A.J. Matich, D.D. Rowan, and N.H. Banks. Solid phasemicroextraction for quantitative headspace sampling ofapple volatiles. Anal. Chem. 68:4114–4118, 1996.

176. R. Eisert and J. Pawliszyn. Automated in-tubesolid-phase microextraction coupled to high-performanceliquid chromatography. Anal. Chem. 69:3140–3147, 1997.

177. J.C. Wu and J. Pawliszyn. Preparation and applicationsof polypyrrole �lms in solid-phase microextraction. J.Chromatogr. A 909:37–52, 2001.

178. C.W. Whang and J. Pawliszyn. Solid phasemicroextraction coupled to capillary electrophoresis. Anal.Commn. 35:353–356, 1998.

179. M.W.J. van Hout, V. Jas, H.A.G. Niederlander, R.A. deZeeuw, and G.J. de Jong. Non-equilibrium solidphasemicroextraction coupled directly to ion-trap massspectrometry for rapid analysis of biological samples.Analyst 127:355–359, 2002.

180. M. Möder, S. Schrader, U. Franck, and P. Popp.Determination of phenolic compounds in waste water bysolid-phase micro extraction. Fresenius J. Anal. Chem.357:326–332, 1997.

181. P. Barták and L. Cáp. Determination of phenols bysolid-phase microextraction. J. Chromatogr. A 767:171–175,1997.

182. K.D. Buchholz and J. Pawliszyn. Optimization ofsolid-phase microextraction conditions for determination ofphenols. Anal. Chem. 66:160–167, 1994.

183. Z. Takáts and K. Torkos. Determination ofchlorobenzenes in environmental samples using solid phasemicroextraction, thermal desorption and analysis by gaschromatography coupled to FID, ECD, MSD, IRD detectors.Chromatographia 48:74–80, 1998.

184. R. Eisert, K. Levsen, and G. Wünsch. Element-selectivedetection of pesticides by gas chromatography— atomicemission detection and solid-phase microextraction. J.Chromatogr A. 683:175–183, 1994.

185. P. Popp, K. Kalbitz, and G. Oppermann. Application ofsolid-phase microextraction and gas chromatography with

electron-capture and mass spectrometric detection for thedetermination of hexachlorocyclohexanes in soil solutions.J. Chromatogr. 687:133–140, 1994.

186. K.D. Buchholz and J. Pawliszyn. Determination ofphenols by solid-phase microextraction and gaschromatographic analysis. Environ. Sci. Technol.27:2844–2848, 1993.

187. A. Peñalver, E. Pocurull, F. Borrull, and R.M. Marce.Solid-phase microextraction coupled to highperformanceliquid chromatography to determine phenolic compounds inwater samples. J. Chromatogr. A 953:79–87, 2002.

188. H. Bagheri, A. Mir, and E. Babanezhad. Anal. Chim.Acta 532:89–95, 2005.

189. F. Zhou, X. Li, and Z. Zenga. Determination ofphenolic compounds in wastewater samples using a novelber by solid-phase microextraction coupled to gaschromatography. Anal. Chim. Acta 538:63–70, 2005.

190. M.N. Eberlin and R.C. da Silva. Faster and simplerdetermination of chlorophenols in water by �berintroduction mass spectrometry. Anal. Chim. Acta 620(1–2),97–102, 2008.

191. N. Alizadeh, H. Zarabadipour, and A. Mohammadi.Headspace solid-phase microextraction using anelectrochemically deposited dodecylsulfate-dopedpolypyrrole �lm to determine phenolic compounds in water.Anal. Chim. Acta 605(2):159–165, 2007.

192. C.M. Santana, M.E.T. Padron, Z.S. Ferrera, and J.J.S.Rodriguez. Development of a solid-phase microextractionmethod with micellar desorption for the determination ofchlorophenols in water samples—Comparison with conventionalsolid-phase microextraction method. J. Chromatogr. A1140(1–2):

13–20, 2007.

193. H. Liu and P.K. Dasgupta. Analytical chemistry in adrop. Solvent extraction in a microdrop. Anal. Chem.68:1817–1821, 1996.

194. M.A. Jeannot and F.F. Cantwell. Solventmicroextraction into a single drop. Anal. Chem.68:2236–2240, 1996.

195. M.A. Jeannot and F.F. Cantwell. Mass transfercharacteristics of solvent extraction into a single drop atthe tip of a syringe needle. Anal. Chem. 69:235–239, 1997.

196. Y. He and H.K. Lee. Liquid-phase microextraction in asingle drop of organic solvent by using a conventionalmicrosyringe. Anal. Chem. 69:4634–4640, 1997.

197. Y. Wang, Y.C. Kwok, Y. He, and H.K. Lee. Applicationof dynamic liquid-phase microextraction to the analysis ofchlorobenzenes in water by using a conventionalmicrosyringe. Anal. Chem. 70:4610–4614, 1998.

198. M. Ma and F.F. Cantwell. Solvent microextraction withsimultaneous back-extraction for sample cleanup andpreconcentration: Quantitative extraction. Anal. Chem. 70:3912–3919, 1998.

199. L.S. de Jager and A.R.J. Andrews. Solventmicroextraction of chlorinated pesticides. Chromatographia50:733–738, 1999.

200. M. Ma and F.F. Cantwell. Solvent microextraction withsimultaneous back-extraction for sample cleanup andpreconcentration: Preconcentration into a single microdrop.Anal. Chem. 71:388–393, 1999.

201. W. Liu and H.K. Lee. Continuous-�ow microextractionexceeding 1000-Fold concentration of dilute analytes.Anal. Chem. 72:4462–4467, 2000.

202. L.S. de Jager and A.R.J. Andrews. Development of ascreening method for cocaine and cocaine metabolites inurine using solvent microextraction in conjunction with gaschromatography. J. Chromatogr. A 911:97–105, 2001.

203. S. Pedersen-Bjergaard and K.E. Rasmussen.Liquid−liquid−liquid microextraction for sample preparationof biological �uids prior to capillary electrophoresis.Anal. Chem. 71:2650–2656, 1999.

204. S. Pedersen-Bjergaard and K.E. Rasmussen. Liquid-phasemicroextraction and capillary electrophoresis of acidicdrugs. Electrophoresis 21:579–585, 2000.

205. K.E. Rasmussen, S. Pedersen-Bjergaard, M. Krogh, H.Grefslie Ugland, and T. Grønhaug. Development of a simplein-vial liquid-phase microextraction device for druganalysis compatible with capillary gas chromatography,capillary electrophoresis and high-performance liquid

chromatography. J. Chromatogr. A 873:3–11, 2000.

206. E. Psillakis and N. Kalogerakis. Developments insingle-drop microextraction. Trends Anal. Chem. 21:54–64,2002.

207. L. Zhao and H.K. Lee. Determination of phenols inwater using liquid phase microextraction with backextraction combined with high-performance liquidchromatography. J. Chromatogr. A 931:95–105, 2001.

208. M. Saraji and M. Bakhshi. Determination of phenols inwater using liquid phase microextraction with backextraction combined with high-performance liquidchromatography. J. Chromatogr. A 1098:30–36, 2005.

209. K.E. Rasmussen and S. Pedersen-Bjergaard. Developmentsin hollow �bre-based, liquid-phase microextraction. TrendsAnal. Chem. 23:1–10, 2004.

210. J. Liu, J.Å. Jönsson, and P. Mayer. Equilibriumsampling through membranes of freely dissolvedchlorophenols in water samples with hollow �ber supportedliquid membrane. Anal. Chem. 77:4800–4809, 2005.

211. T. Berhanu, J. Liu, R. Romero, N. Megersa, and J.Å.Jönsson. Determination of trace levels of dinitrophenoliccompounds in environmental water samples using hollow �bersupported liquid membrane extraction and high performanceliquid chromatography. J. Chromatogr. A 1103:1–8, 2006.

212. X.M. Chen, T.Z. Zhang, P. Linag, and Y.L. Li.Application of continuous-�ow liquid phase microextractionto the analysis of phenolic compounds in wastewatersamples. Microchim. Acta 155(3–4):415–420 2006.

213. J.Å. Jönsson and L. Mathiasson. Liquid membraneextraction in analytical sample preparation: I.Principles. Trends Anal. Chem. 18:318–325, 1999.

214. M. Knutsson, G. Nilvé, L. Mathiasson, and J.Å.Jönsson. Supported liquid membranes for sampling andsample preparation of pesticides in water. J. Chromatogr. A754:197–205, 1996.

215. L. Chimuka, M.M. Nindi, M.E.M. ElNour, H. Frank, andC. Velasco. Temperature-dependence ofsupported-liquid-membrane extraction. J. High Res.Chromatogr. 22:417–420, 1999.

216. Y.D. Feng, Z.Q. Tan, and J.F. Liu. Development of astatic and exhaustive extraction procedure for �eldpassive preconcentration of chlorophenols in environmentalwaters with hollow �ber-supported liquid memebrane. J.Sep. Sci. 34(8):965–970, 2011.

217. J.F. Peng, J.F. Liu, X.L. Hu, and G.B. Jiang. Directdetermination of chlorophenols in environmental watersamples by hollow �ber supported ionic liquid membraneextraction coupled with high-performance liquidchromatography. J. Chromatogr. A 1139(2):165–170, 2007.

218. V. Janda, K.D. Bartle, and A.A. Clifford.Supercritical �uid extraction in environmental analysis. J.Chromatogr. A 642:283–299, 1993.

219. J.S. Ho, P.H. Tang, J.W. Eichelberger, and W.L. Budde.Liquid-solid disk extraction followed by SFE andGC-ion-trap MS for the determination of trace organicpollutants in water. J. Chromatogr. Sci. 33:1–8, 1995.

220. K.-K. Chee, M.-K. Wong, and H.-K. Lee. Membranesolid-phase extraction with closed vessel microwaveelution for the determination of phenolic compounds inaqueous matrices. Mikrochim. Acta 126:97–104, 1997.

221. X.J. Huang, N.N. Qiu, and D.X. Yuan. Direct enrichmentof phenols in lake and seawater by stir bar sorptiveextraction based on poly(vinylpyridine–ethylenedimethylacrylate) monolithic material and liquidchromatographic analysis. J. Chromatogr. A 1194(1),134–138, 2008.

222. A. Sarafraz-Yazdi, F. Mofazzeli, and Z. Es’haghi.Determination of chlorophenols in environmental watersamples using directly suspended dropletliquid–liquid–liquid phase microextraction prior tohighperformance liquid chromatography. Int. J. Environ.Anal. Chem. 90(14–15):1108–1118, 2010.

223. W. Du, F.Q. Zhao, and B.Z. Zeng. Novel multiwalledcarbon nanotubes–polyaniline composite �lm coated platinumwire for headspace solid-phase microextraction and gaschromatographic determination of phenolic compounds. J.Chromatogr. A 1216(18):3751–3757, 2009.

224. X.J. Huang, N.N. Qiu, and D.X. Yuan. Development andvalidation of stir bar sorptive extraction of polarphenols in water followed by HPLC separation inpoly(vinylpyrrolidone–divinylbenzene) monolith. J. Sep.

Sci. 32(9):1407–1414, 2009.

225. Y.C. Fan, Z.L. Hu, M.L. Chen, T.C. Shen, and Y. Zhu.Analysis of phenolic compounds by ionic liquid basedliquid–liquid extraction coupled with high performanceliquid chromatography. Chin. J. Anal. Chem.36(9):1157–1161, 2008.

226. W.H. Pan, H. Xu, Y.F. Cui, D.D. Song, and Y.Q. Feng.Improved liquid–liquid–liquid microextraction method andits application to analysis of four phenolic compounds inwater samples. J. Chromatogr. A 1203(1):7–12, 2008.

227. J.P. Chen and J. Pawliszyn. Solid phasemicroextraction coupled to high-performance liquidchromatography. Anal. Chem. 67:2530–2533, 1995.

23 Chapter 23 - Characterization of HumicMatter

1. VanLoon, G.W. and Duffy, S.J., Organic matter in water,in Environmental Chemistry: A Global Perspective, 2ndedition, Oxford University Press, New York, 2005, Chapter12.

2. Frimmel, F.H., Development in aquatic humic chemistry,Agronomie, 20, 451, 2000.

3. Peuravuori, J. and Pihlaja, K., Preliminary study oflake dissolved organic matter in light of nanoscalesupramolecular assembly, Environ. Sci. Technol., 38, 5958,2004.

4. Peuravuori, J., NMR spectroscopy study of freshwaterhumic material in light of supramolecular assembly,Environ. Sci. Technol., 39, 5541, 2005.

5. Filella M., Freshwaters: Which NOM matters? Environ.Chem. Lett., 7, 21–35, 2009.

6. Zsolnay, Á., Dissolved organic matter: Artefacts,de�nitions, and functions, Geoderma, 113, 187, 2003.

7. Guo, L. et al., Heterogeneity of natural organic matterfrom the Chena River, Alaska, Water Res., 37, 1015, 2003.

8. Chow, A.T. et al., Filter pore size selection forcharacterizing dissolved organic carbon and trihalomethaneprecursors from soils, Water Res., 39, 1255, 2005.

9. Morrison, M.A. and Benoit, G., Investigation ofconventional membrane and tangential �ow ultra�ltration.Artifacts and their application to the characterization offreshwater colloids, Environ. Sci. Technol., 38, 6817,2004.

10. Hoffmann, S.R. et al., A critical evaluation oftangential �ow ultra�ltration for trace metal studies infreshwater systems. 1. Organic carbon, Environ. Sci.Technol., 34, 3420, 2000.

11. Howe, K.J. and Clark, M.M., Fouling of micro�ltrationand ultra�ltration membranes by natural waters, Environ.Sci. Technol., 36, 3571, 2002.

12. Guéguen, C., Belin, C., and Dominik, J., Organiccolloid separation in contrasting aquatic environments

with tangential �ow �ltration. Water Res., 36, 1677, 2002.

13. Lee, S. et al., Determination of mass transportcharacteristics for natural organic matter (NOM) inultra�ltration (UF) and nano�ltration (NF) membranes, WaterSci. Technol. Water Suppl., 2, 151, 2002.

14. Li, L. et al., Characterization of humic acidsfractionated by ultra�ltration, Org. Geochem., 35, 1025,2004.

15. Peuravuori, J. et al., Comparative study forseparation of aquatic humic-type organic constituents byDAX-8, PVP and DEAE sorbing solids and tangentialultra�ltration: Elemental composition, size-exclusionchromatography, UV–Vis and FT–IR, Talanta, 65, 408, 2005.

16. Siouf�, A.-M., Instruments and techniques, in Nollet,L.M.L. (ed.), Handbook of Water Analysis, 1st edition,Marcel Dekker, New York, 2000, Chapter 37.

17. St-Jean, G., Automated quantitative and isotopic (13C)analysis of dissolved inorganic carbon and dissolvedorganic carbon in continuous �ow using a total organiccarbon analyser, Rapid Commun. Mass Spectrom., 17, 419,2003.

18. Chen, W. et al., A mechanistic study of thehigh-temperature oxidation of organic matter in a carbonanalyzer, Mar. Chem., 78, 185, 2002.

19. Tue-Ngeun, O. et al., Determination of dissolvedinorganic carbon (DIC) and dissolved organic carbon (DOC)in freshwaters by sequential injection spectrophotometrywith online UV photooxidation, Anal. Chim. Acta, 554, 17,2005.

20. Peuravuori, J. and Pihlaja, K., Humic substances inwater, in Nollet, L.M.L. (ed.), Handbook of WaterAnalysis, 1st edition, Marcel Dekker, New York, 2000,Chapter 20.

21. O′Loughlin, E. and Chin, Y.-P., Effect of detectorwavelength on the determination of the molecular weight ofhumic substances by high-pressure size exclusionchromatography, Water Res., 35, 333, 2001.

22. Wang, G.-S. and Hsieh, S.-T., Monitoring naturalorganic matter in water with scanning spectrophotometer,Environ. Int., 26, 205, 2001.

23. Karan�l, T., Schlautman, M.A., and Erdogan, I., Surveyof DOC and UV measurement practices with implications forSUVA determination, JAWWA, 94, 68, 2002.

24. Leenheer, J.A. and Croué, J.-P., Characterizing aquaticdissolved organic matter, Environ. Sci. Technol., 37 (1),18A, 2003.

25. Weishaar, J.L. et al., Evaluation of speci�cultraviolet absorbance as an indicator of the chemicalcomposition and reactivity of dissolved organic carbon,Environ. Sci. Technol., 37, 4702, 2003.

26. Basu, O.D. and Huck, P.M., Integrated bio�lter-immersedmembrane system for the treatment of humic waters, WaterRes., 38, 655, 2004.

27. Egeberg, P.K., Christy, A.A., and Eikenes, M., Themolecular size of natural organic matter (NOM) determinedby diffusivimetry and seven other methods, Water Res., 36,925, 2002.

28. Uyguner, C.S. and Bekbolet, M., Evaluation of humicacid photocatalytic degradation by UV–Vis and �uorescencespectroscopy, Catal. Today, 101, 267, 2005.

29. Uyguner, C.S. and Bekbolet, M., Implementation ofspectroscopic parameters for practical monitoring ofnatural organic matter, Desalination, 176, 47, 2005.

30. Uyguner, C.S. and Bekbolet, M., A comparative study onthe photocatalytic degradation of humic substances ofvarious origins, Desalination, 176, 167, 2005.

31. Giani, M., Rampazzo, F., and Berto, D., Humic acidscontribution to sedimentary organic matter on a shallowcontinental shelf (Northern Adriatic Sea), Estuar., Coast.Shelf Sci., 90 (2), 103–110, 2010.

32. Moreda-Piñeiro, A., Bermejo-Barrera, A., andBermejo-Barrera, P., New trends involving the use ofultrasound energy for the extraction of humic substancesfrom marine sediments. Anal. Chim. Acta, 524, 97–107,2004.

33. Moreda-Piñeiro, A., Seco-Gesto, E.M., Bermejo-Barrera,A., and Bermejo-Barrera, P., Characterization of surfacemarine sediments from Ria de Arousa estuary according toextractable humic matter content. Chemosphere, 64 (5),

866–873, 2006.

34. McDonald, S. et al., Analytical chemistry of freshwaterhumic substances, Anal. Chim. Acta, 527, 105, 2004.

35. Peuravuori, J., Partition coef�cients of pyrene to lakeaquatic humic matter determined by �uorescence quenchingand solubility enhancement, Anal. Chim. Acta, 429, 65,2001.

36. Ohno, T., Fluorescence inner-�ltering correction fordetermining the humi�cation index of dissolved organicmatter, Environ. Sci. Technol., 36, 742, 2000.

37. Peuravuori, J., Koivikko, R., and Pihlaja, K.,Characterization, differentiation and classi�cation ofaquatic humic matter separated with different sorbents:Synchronous scanning �uorescence spectroscopy, Water Res.,36, 4552, 2002.

38. Chen, J. et al., Fluorescence spectroscopic studies ofnatural organic matter fractions, Chemosphere, 50, 639,2003.

39. Alberts, J.J. and Takács, M., Total luminescencespectra of IHSS standard and reference fulvic acids, humicacids and natural organic matter: Comparison of aquatic andterrestrial source terms, Org. Geochem., 35, 243, 2004.

40. McKnight, D.M. et al., Spectro�uorometriccharacterization of dissolved organic matter for indicationof precursor organic material and aromaticity, Limnol.Oceanogr., 46, 38, 2001.

41. Hall, G.J., Clow, K., and Kenny, J., Estuarialngerprinting through multidimensional �uorescence andmultivariate analysis, Environ. Sci. Technol., 39, 7560,2005.

42. Antunes, M.C.G. and da Silva, J.C.G., Multivariatecurve resolution analysis excitation–emission matrices ofuorescence of humic substances, Anal. Chim. Acta, 546, 52,2005.

43. Hong, H. et al., Absorption and �uorescence ofchromophoric dissolved organic matter in the Pearl RiverEstuary, South China, Mar. Chem., 97, 78, 2005.

44. Peiris, R.H., Budman, H., Moresoli, C., and Legge,R.L., Identi�cation of humic acid-like and fulviclike

natural organic matter in river water using �uorescencemicroscopy. Water Sci. Technol., 63 (10), 2427–2433, 2011.

45. Mueller, K.K., Fortin, C., and Campbell, P.G.C.,Spatial variation in the optical properties of dissolvedorganic matter (DOM) in lakes on the Canadian PrecambrianShield and links to watershed characteristics. Aquat.Geochem., 18 (1), 21–44, 2012.

46. Qu, J.Y., Chen, H., Lu, C., Wang, Z.H., and Lin, J.M.,Online solid phase extraction of humic acid fromenvironmental water and monitoring with �ow-throughchemiluminescence. Analyst, 137 (8), 1824– 1830, 2012.

47. Janoš, P., Separation methods in the chemistry of humicsubstances, J. Chrom. A., 983, 1, 2003.

48. Croué, J.-P., Isolation of humic and nonhumic NOMfractions: Structural characterization, Environ. Monit.Assess., 92, 193, 2004.

49. Kennedy, M.D. et al., Natural organic matter (NOM)fouling of ultra�ltration membranes: Fractionation of NOMin surface water and characterisation by LC–OCD,Desalination, 178, 73, 2005.

50. Peuravuori, J., Binding of pyrene on lake aquatic humicmatter: The role of structural descriptors, Anal. Chim.Acta, 429, 75, 2001.

51. Sierra, M.M.D., Giovanela, M., Parlanti, E., andSoriano-Sierra, E.J., 3D-�uorescence spectroscopicanalysis of HPLC fractionated estuarine fulvic and humicacids. J. Braz. Chem. Soc., 17 (1), 113–124, 2006.

52. Zhou, Q., Cabaniss, S.E., and Maurice, P.A.,Considerations in the use of high-pressure size exclusionchromatography (HPSEC) for determining molecular weights ofaquatic humic substances, Water Res., 34, 3505, 2000.

53. Piccolo, A. et al., Reduced heterogeneity of a lignitehumic acid by preparative HPSEC following interaction withan organic acid: Characterization of size separates byPyr–GC–MS and 1 H-NMR$ spectroscopy, Environ. Sci.Technol., 36, 76, 2002.

54. Her, N. et al., Variations of molecular weightestimation by HP-size exclusion chromatography with UVAversus online DOC detection, J. Environ. Sci. Technol., 36,3393, 2002.

55. Allpike, B.P. et al., Size exclusion chromatography tocharacterize DOC removal in drinking water treatment,Environ. Sci. Technol., 39, 2334, 2005.

56. Tsuda, K., Mori, H., Asakawa, D., Yanagi, Y., Kodama,H., Nagao, S., Yonebayashi, K., and Fujitake, N.,Characterization and grouping of aquatic fulvic acidsisolated from clear-water rivers and lakes in Japan. WaterRes., 44 (13), 3837–3846, 2010.

57. Fujitake, N., Tsuda, K., Aso, S., Kodama, H., Maruo,M., and Yonebayashi, K., Seasonal characteristics ofsurface water fulvic acids from Lake Biwa and Lake Tankaiin Japan. Limnology, 13 (1), 45–53, 2012.

58. Duarte, R.M.B.O. and Duarte, A.C., Optimizingsize-exclusion chromatographic conditions using a compositeobjective function and chemometric tools: Application tonatural organic matter pro�ling. Anal. Chim. Acta, 688(1), 90–98, 2011.

59. Yan, M.Q., Korshin, G., Wang, D.S., and Cai, Z.X.,Characterization of dissolved organic matter usinghigh-performance liquid chromatography (HPLC)–sizeexclusion chromatography (SEC) with a multiple wavelengthabsorbance detector. Chemosphere, 87 (8), 879–885, 2012.

60. Huber, S.A., Balz, A., Abert, M., and Pronk, W.,Characterization of aquatic humic and nonhumic matter withsize-exclusion chromatography–organic carbondetection–organic nitrogen detection (LC–OCD– OND), WaterRes., 45 (2), 879–885, 2011.

61. Omori, Y., Hama, T., Ishii, M., and Saito, S., Verticalchange in the composition of marine humic-like �uorescentdissolved organic matter in the subtropical western NorthPaci�c and its relation to photoreactivity, Mar. Chem., 124(1–4), 38–47, 2011. Section IX Residues of Pesticides

24 Chapter 24 - Determination ofPesticides in Water

Abirama Sundari, P. L., Palaniappan, S. P., Manisankar, P.2010. Enhanced sensing of carbendazim, a fungicide onfunctionalized multiwalled carbon nanotube modi�ed glassycarbon electrode and its determination in real samples.Anal. Lett. 43: 1457−1470.

Ahmed, S., Rasul, M. G., Brown, R., Hashib, M. A. 2011.In�uence of parameters on the heterogeneous photocatalyticdegradation of pesticides and phenolic contaminants inwastewater: A short review. J. Environ. Manage. 92:311–330.

Ahmadi, F., Assadi, Y., Milani Hosseini, S. M. R., Rezaee,M. 2006. Determination of organophosphorus pesticides inwater samples by single drop microextraction and gaschromatography-�ame photometric detector. J. Chromatogr. A1101: 307–312.

Arduini, F., Ricci, F., Tuta, C. S., Moscone, D., Amine,A., Palleschi, G. 2006. Detection of carbamic andorganophosphorus pesticides in water samples usingcholinesterase biosensor based on Prussian Bluemodi�edscreen-printed electrode. Anal. Chim. Acta 580: 155−162.

Aulakh, J. S., Malik, A. K., Mahajan, R. K. 2005. Solidphase microextraction-high pressure liquid chromatographicdetermination of nabam, thiram and azamethiphos in watersamples with UV detection. Preliminary data. Talanta 66:266–270.

Ballesteros, E. 2006. Chromatographic determination ofcarbamate pesticides in environmental samples. InChromatographic Analysis of the Environment, ed. L. M. L.Nollet, pp. 889–934. New York: CRC Press.

Ballesteros, E., Gallego, M., Valcárcel, M. 1993. Automaticdetermination of N-methylcarbamate pesticides by using aliquid–liquid extractor derivatization module coupledon-line to a gas chromatograph equipped with a �ameionization detector. J. Chromatogr. 633: 169–176.

Ballesteros, E., García Sanchez, A., Ramos Martos, N. 2006.Simultaneous multidetermination of residues of pesticidesand polycyclic aromatic hydrocarbons in olive andolive-pomace oils by gas chromatography/ tandem massspectrometry. J. Chromatogr. A 1111: 89–96.

Ballesteros, E., Parrado, M. J. 2004. Continuoussolid-phase extraction and gas chromatographicdetermination of organophosphorus pesticides in naturaland drinking waters. J. Chromatogr. A 1029: 267–273.

Band, P. R., Abanto, Z., Bert, J., Lang, B., Fang, R.,Gallagher, R. P. Le, N. D. 2011. Prostate cancer risk andexposure to pesticides in British Columbia farmers.Prostate 71: 168–183.

Barco-Bonilla, N., Romero-González, R., Plaza-Bolaños, P.,Garrido Frenich, A., Martínez Vidal, J. L. 2010. Analysisand study of the distribution of polar and non-polarpesticides in wastewater ef�uents from modern andconventional treatments. J. Chromatogr. A 1217: 7817–7825.

Basheer, C., Balaji, G., Chua, S. H., Valiyaveettil, S.,Lee, H. K. 2011. Novel on-site sample preparation approachwith a portable agitator using functional polymer-coatedmulti-�bers for the microextraction of organophosphoruspesticides in seawater. J. Chromatogr. A 1218: 654−661.

Belmonte Vega, A., Garrido Frenich, A., Martinez Vidal, J.L. 2005. Monitoring of pesticides in agricultural waterand soil samples from Andalusia by liquid chromatographycoupled to mass spectrometry. Anal. Chim. Acta 538:117–127.

Botitsi H. V., Garbis, S. D., Economou, A., Tsipi, D. F.2011. Current mass spectrometry strategies for the analysisof pesticides and their metabolites in food and watermatrices. Mass Spectrom. Rev. 30: 907–939.

Brena, B. M., Arellano, L., Rufo, C., Last, M. S., Montaño,J., Cerni, E. E., González-Sapienza, G., Last, J. A. 2005.ELISA as an affordable methodology for monitoringgroundwater contamination by pesticides low-incomecountries. Environ. Sci. Technol. 39: 3896–3903.

Brix, R., Bahi, N., Lopez de Alda, M. J., Farré, M.,Fernandez, J. M., Barceló, D. 2009. Identi�cation ofdisinfection by-products of selected triazines in drinkingwater by LC-Q-TOF-MS/MS and evaluation of their toxicity.J. Mass Spectrom. 44: 330–337.

Brun, E. M., Garcés-García, M., Bañuls, M. J., Gabaldón, J.A., Puchades, R., Maquieira, A. 2005. Evaluation of anovel malathion immunoassay for groundwater and surfacewater analysis. Environ. Sci. Technol. 39: 2786−2794.

Cahill, M. G., Caprioli, G., Stack, M., Vittori, S., James,K. J. 2011. Semi-automatic liquid chromatographymassspectrometry (LC-MS/MS) method for basic pesticides inwastewater ef�uents. Anal. Bioanal. Chem. 400: 587–594.

Campíns-Falcó, P., Verdú-Andrés, J., Sevillano-Cabeza, A.,Herráez-Hernández, R., Molins-Legua, C., Moliner-Martínez,Y. 2010. In-tube solid-phase microextraction coupled by invalve mode to capillary LC-DAD: Improving detectability tomultiresidue organic pollutants analysis in several wholewaters. J. Chromatogr. A 1217: 2695−2702.

Cappiello, A., Pierini, E., Palma, P. 2011. An SPE methodfor the concurrent extraction of organochlorine andphenoxy acid pesticides in river water. Chromatographia 73:691–699.

Carabias-Martínez, R., Garcia-Hermida, U.,Rodríguez-Gonzalo, E., Ruano-Miguel, L. 2005. Behaviour ofcarbamate pesticides in gas chromatography and theirdetermination with solid-phase extraction and solid-phasemicroextraction as preconcentration steps. J. Sep. Sci.,28: 2130–2138.

Casida, J. E. 2009. Pest toxicology: The primary mechanismsof pesticide action. Chem. Res. Toxicol. 22: 609–619.

Chang, Q., Feng, T., Song, S., Zhou, X., Wang, C., Wang, Z.2010. Analysis of eight pyrethroids in water samples byliquid–liquid microextraction based on solidi�cation ofoating organic droplet combined with gas chromatography.Microchim. Acta 171: 241–247.

Chauhan, N., Shekhar Pundir, C. 2011. An amperométricobiosensor base don acetylcholinesterase immobilized ontoiron oxide particles/multi-walled carbon nanotubes modi�edgold electrode for measurement of organophosphorusinsecticides. Anal. Chim. Acta 701: 66–74.

Chen, P. S., Huang, S. P., Fuh, M. R., Huang, S. D. 2009.Determination of organochlorine pesticides in water usingdynamic hook-type liquid phase microextraction. Anal. Chim.Acta 647: 177–181.

Chen, Z., Stewart, P. A., Davies, S., Giller, R., Krailo,M., Davis, M., Robison, L., Shu, X. O. 2005. Parentaloccupational exposure to pesticide and childhood germ-celltumors. Am. J. Epidemiol. 162: 858–867.

Chicharro, M., Moreno, M., Bermejo, E., Ongay, S.,

Zapardiel, A. 2005. Determination of amitrole and urazolein water samples by capillary zone electrophoresis usingsimultaneous UV and amperometrical detection. J.Chromatogr. A 1099: 191−197.

Chicharro, M., Zapardiel, A, Bermejo, E., Sánchez, A.,González, R., 2004. Multiresidue analysis of pesticides inenvironmental waters by capillary electrophoresis usingsimultaneous UV and electrochemical detection.Electroanalysis 16: 311–318.

Corsini, E., Liesivuori, J., Vergieva, T., Van Loveren, H.,Colosio, C. 2008. Effects of pesticide exposure on thehuman immune system. Hum. Exp. Toxicol. 27: 671–680.

Crawford, C. G. 2004. Sampling strategies for estimatingacute and chronic exposures of pesticides in streams. J.Am. Water Resour. Assoc. 40: 485–502.

Crespo-Corral, E., Santos-Delgado, M. J., Polo-Díez, L. M.,Soria, A. C. 2008. Determination of carbamate, phenylureaand phenoxy acid herbicide residues by gas chromatographyafter potassium ter-butoxide/ dimethyl sulphoxide/ethyiodide derivatization reaction. J. Chromatogr. A 1209:22–28.

Crew, A., Lonsdale, D., Byrd, N., Pittson, R., Hart, J. P.2011. A screen-printed, amperometric biosensor arrayincorporated into a novel automated system for thesimultaneous determination of organophosphate pesticides.Biosens. Bioelectron. 26: 2847−2851.

Damalas, C. A., Eleftherohorinos, I. G. 2011. Pesticideexposure, safety issues, and risk assessment indicators.Int. J. Environ. Res. Public Health 8: 1402–1419.

David, F., Sandra, P. 2007. Stir bar sorptive extractionfor trace analysis. J. Chromatogr. A 1152: 54 − 69.

De Souza Pinheiro, A., De Andrade J. B. 2009. Development,validation and application of a SDME/GC-FID methodologyfor the multiresidue determination of organophosphate andpyrethroid pesticides in water. Talanta 79: 1354–1359.

Dong, C., Zeng, Z., Yang, M. 2005. Determination oforganochlorine pesticides and their derivations in waterafter HS-SPME using polymethylphenylvinylsiloxane-coated�ber by GC-ECD, Water Res. 39: 4204–4210.

Dos Santos, L. B. O., Silva, M. S. P., Masini, J. C 2005.

Developing a sequential injection-square wave voltammetry(SI-SWV) method for determination of atrazine using ahanging mercury drop electrode. Anal. Chim. Acta 528,21–27.

Duan, C., Shen, Z., Wu, D., Guan, Y. 2011. Recentdevelopments in solid-phase microextraction for on-sitesampling and sample preparation. Trends Anal. Chem. 30:1568−1574.

Dujakovic, N., Grujic, S., Radisic, M., Vasiljevic, T.,Lausevic, M. 2010. Determination of pesticides in surfaceand ground waters by liquidchromatography-electrospray-tandem mass spectrometry. Anal.Chim. Acta 678: 63–72.

Economic European Communities. 1998. Council Directive98/83/EC of 3 November 1998 on the quality of waterintended for human consumption. Off. J. Eur. Commun.5/12/1998, L 330/32–L 330/54.

Economic European Communities. 2006. Directive 2006/118/ECof 12 December 2006 on the protection of groundwateragainst pollution and deterioration. Off. J. Eur. Commun. L372/19–L 372/31.

Economic European Communities. 2008. Directive 2008/105/ECof 16 December 2008 on environmental quality standards inthe �eld of water policy. Off. J. Eur. Commun. L 348/84–L348/97.

El-Shahawi, M. S., Hamza, A., Bashammakh, A. S., Al-Sibaai,A. A., Al-Saggaf, W. T. 2011. Analysis of some selectedpersistent organic chlorinated pesticides in marine waterand food stuffs by differential pulsecathodic strippingvoltammetry. Electroanalysis 23: 1175–1185.

Farajzadeh, M. A., Bahram, M., Reza Vardast, M., Bamorowat,M. 2011. Dispersive liquid–liquid microextraction for theanalysis of three organophosphorus pesticides in realsamples by high performance liquidchromatography-ultraviolet detection and its optimizationby experimental design. Microchim. Acta 172: 465–470.

Farias Ribeiro, W., Guimaraes Selva, T. M., Campelo Lopes,I., Coelcho, E. C. S., Guimaraes Lemos, S., Caxico deAbreu, F., Do Nascimiento, V. B., Ugulino de Araújo, M. C.2011. Electroanalytical determination of carbendazim bysquare wave adsorptive stripping voltammetry with amultiwalled carbon nanotubes modi�ed electrode. Anal.

Methods 3: 1202–1206.

Feo, M. L., Ginebreda, A., Eljarrat, E., Barceló, D. 2010.Presence of pyrethroid pesticides in water and sediments ofEbro River Delta. J. Hydrol. 393: 156–162.

Ferrer, I., Thurman, E. M. 2007. Multi-residue for theanalysis of 101 pesticides and their degradates in foodand water samples by liquid chromatography/time-of-�ightmass spectrometry. J. Chromatogr. A 1175: 24–37.

García-Ruiz, C., Álvarez-Llamas, G., Puerta, A., Blanco,E., Sanz-Medel, A., Marina, M. L. 2005. Enantiomericseparation of organophosphorus pesticides by capillaryelectrophoresis. Application to the determination ofmalathion in water samples after preconcentratioin byoff-line solid-phase extraction. Anal. Chim. Acta 543:77−83.

Garrido Frenich, A., Romero-González, R., Martínez Vidal,J. L., Martínez Ocaña, R., Baquero Feria, P. 2011.Comparison of solid phase microextraction and hollow �berliquid phase microextraction for the determination ofpesticides in aqueous samples by gas chromatography triplequadrupole tandem mass spectrometry. Anal. Bioanal. Chem.399: 2043–2059.

George, J., Shukla, Y. 2011. Pesticides and cancer:Insights into toxicoproteomic-based �ndings. J. Proteomics74: 2713–2722.

Gilden, R. C., Huf�ng, K., Sattler, B. 2010. Pesticides andhealth risks. JOGNN 39: 103–110.

Giordano, A., Richter, P., Ahumada, I. 2011. Determinationof pesticides in river water using rotating disk sorptiveextraction and gas chromatography-mass spectrometry.Talanta 85: 2425−2429.

Grossi, P., Olivares, I. R. B., De Freitas, D. R., Lanças,F. M. 2008. A novel HS-SBSE system coupled with gaschromatography and mass spectrometry for the analysis oforganochlorine pesticides in water samples. J. Sep. Sci.31: 3630 − 3637.

Halámek, J., Pribyl, J., Makower, A., Skalábal, P.,Scheller, F. W. 2005. Sensitive detection oforganophosphates in river water by means of a piezoelectricbiosensor. Anal. Bioanal. Chem. 382: 1904−1911.

Hayama, T., Yoshida, H., Todoroki, K., Nohta, H.,Yamaguchi, M. 2008. Determination of polar organophosphoruspesticides in water samples by hydrophilic interactionliquid chromatography with tandem mass spectrometry. RapidCommun. Mass Spectrom. 22: 2203–2210.

He, L., Luo, X., Xie, H., Wang, C., Jiang, X., Lu, K. 2009.Ionic liquid-based dispersive liquid–liquid microextractionfollowed high-performance liquid chromatography for thedetermination of organophosphorus pesticides in watersample. Anal. Chim. Acta 655: 52–59.

Henriques Alves, A. C., Pontes, M. M., Conçalves, B.,Serrano Bernardo, M. M., Mendes, B. S. 2011. Validateddispersive liquid–liquid microextraction for analysis oforganophosphorus pesticides in water. J. Sep. Sci. 34:1326–1332.

Hernández, F., Ibáñez, M., Pozo, O. J., Sancho, J. V. 2008.Investigating the presence of pesticide transformationproducts in water by using liquid chromatography-massspectrometry with different mass analyzers. J. MassSpectrom. 43: 173–184.

Hernández, F., Ibáñez, M., Sancho, J. V., Pozo, O. J. 2004.Comparison of different mass spectrometric techniquescombined with liquid chromatography for con�rmation ofpesticides in environmental water based on the use ofidenti�cation points. Anal. Chem. 76: 4349–4357.

Hernández, F., Portolés, T., Pitarch, E., López, F. J.2011. Gas chromatography coupled to high-resolutiontimeof-�ight mass spectrometry to analyze trace-levelorganic compounds in the environment, food safety andtoxicology. Trends Anal. Chem. 30: 388–400.

Hernández-Borges, J., García-Montelongo, F. J., Cifuentes,A., Rodríguez-Delgado, M. A. 2005. Determination ofherbicides in mineral and stagnant waters at ng/L levelsusing capillary electrophoresis and UV detection combinedwith solid-phase extraction and sample stacking. J.Chromatogr. A 1070: 171–177.

Herrera-Herrera, A. V., Asensio-Ramos, M.,Hernandez-Borges, J., Rodriguez-Delgado, M.A. 2010.Dispersive liquid–liquid microextraction for determinationof organic analytes. Trends Anal. Chem. 29: 728–751.

Huertas-Pérez, M. F., García-Campaña, A. M. 2008.Determination of N-methylcarbamate pesticides in water and

vegetable samples by HPLC with post-columnchemiluminiscence detection using the luminol reaction.Anal. Chim. Acta 630: 194–204.

IARC Working Group. 1991. Occupational exposures inspraying and application of insecticides. IARC Monogr.Eval. Carcinog. Risk Chem. Hum. 53: 45–92.

ISO 5667/3. 2003. Water quality—Sampling—Part 3: Guidanceon the preservation and handling of samples.

Ivanov, A. N., Younusov, R. R., Evtugyn, G. A., Arduini,F., Moscone, D., Palleschi, G. 2011. Acetylcholinesterasebiosensor based on single-walled carbon nanotubes-Cophtalocyanine for organophosphorus pesticide detection.Talanta 85: 216−221.

Jeannot, M. A., Cantwell, F. F. 1996. Solventmicroextraction into a single drop. Anal. Chem. 68:2236–2240.

Jia, C., Zhu, X., Wang, J., Zhao, E., He, M., Chen, L., Yu,P. 2010. Extraction of pesticides in water samples usingvortex-assisted liquid–liquid microextraction. J.Chromatogr. A 1217: 5868–5871.

Jokanovic, M., Kosanovic, M. 2010. Neurotoxic effects inpatients poisoned with organophosphorus pesticides.Environ. Toxicol. Pharmacol. 29: 195–201.

Kampioti, A. A., Borba Da Cunha, A. C. B., López De Alda,M., Barceló, D. 2005. Fully automated multianalytedetermination of different classes of pesticides, atpicogram per litre levels in water, by on-line solid-phaseextraction-liquid chromatography-electrospray-tandem massspectrometry. Anal. Bioanal. Chem. 382: 1815–1825.

Karabelas, A. J., Plakas K. V., Solomou, E. S., Drossou,V., Sarigiannis, D. A. 2009. Impact of European legislationon marketed pesticides—A view from the standpoint of healthimpact assessment studies. Environ. Int. 35: 1096–1107.

Katsumata, H., Kojima, H., Kaneco, S., Suzuki, T., Ohta, K.2010. Preconcentration of atrazine and simazine withmultiwalled carbon nanotubes as solid-phase extractiondisk. Microchem. J. 96: 348–351.

Kim, Y. A., Lee, E. H., Kim, K. O., Lee, Y. T., Hammock, B.D., Lee, Y. S. 2011. Competitive immunocromatographic assayfor the detection of the organophosphorus pesticide

chlorpyrifos. Anal. Chim. Acta 693: 106–113.

Kumar Ponnusamy, V., Jen, J. F. 2011. A novel nanosheetscoated stainless steel �ber for microwave assistedheadspace solid phase microextraction of organochlorinepesticides in aqueous samples followed by gaschromatography with electron capture detection. J.Chromatogr. A 1218: 6861−6868.

Kuster, M., López de Alba, M., Barceló, D. 2009. Liquidchromatography-tandem mass spectrometry analysis andregulatory issues of polar pesticides in natural andtreated waters. J. Chromatogr. A 1216: 520–529.

Konstantinou, I. K., Hela, D. G., Lambropoulou, D. A.,Albanis, T. A. 2008. Monitoring of pesticides in theenvironment. In Analysis of Pesticides in Food andEnvironmental Samples, ed. J. L. Tadeo, pp. 319–357. BocaRaton: CRC Press.

Lacorte, S., Quintana, J., Tauler, R., Ventura, F.,Tovar-Sánchez, A., Duarte, C. M. 2009. Ultra-tracedetermination of persistent organic pollutant in Artic iceusing stir bar sorptive extraction and gas chromatographycoupled to mass spectrometry. J. Chromatogr. A. 1216:8581−8589.

Lambropoulou, D. A, Albanis, T. A. 2005. Application ofhollow �ber liquid phase microextraction for thedetermination of insecticides in water. J. Chromatogr. A,1072: 55–61.

Lambropoulou, D. A, Albanis, T. A. 2007. Liquid-phasemicro-extraction techniques in pesticide residue analysis.J. Biochem. Biophys. Methods 70: 195–228.

Leclerc Tcheumi, H., Kenfack Tonle, I., Ngameni, E.,Walcarius, A. 2010. Electrochemical analysis ofmethyparathion pesticide by a Gemini surfactant-intercaledclay-modi�ed electrode. Talanta 81: 972–979.

Li, H. P., Lin, C. H., Jen J. F. 2009. Analysis of aqueouspyrethroid residuals by one-step microwave-assistedheadspace solid-phase microextraction and gaschromatography with electron capture detection. Talanta79: 466−471.

Lissalde, S., Mazzella, N., Fauvelle, V., Delmas, F.,Mazellier, P., Legube, B. 2011. Liquid chromatographycoupled with tandem mass spectrometry method for

thirty-three pesticides in natural water and comparison ofperformance between classical solid phase extraction andpassive sampling approaches. J. Chromatogr. A 1218:1492–1502.

Liu, H., Dasgupta, P. K. 1996. Analytical chemistry in adrop. Solvent extraction in a microdrop. Anal. Chem. 68:1817–1821.

López-Blanco, C., Gómez-Álvarez, S., Rey-Garrote, M.,Cancho-Grande, B., Simal-Gándara, J. 2005. Determinationof carbamates and organophosphorus pesticides by SDME-GC innatural water. Anal. Bioanal. Chem. 383, 557–561.

López-Blanco, C., Gómez-Álvarez, S., Rey-Garrote, M.,Cancho-Grande, B., Simal-Gándara, J. 2006. Determinationof pesticides by solid phase extraction followed by gaschromatography with nitrogenphosphorus detection in naturalwater and comparation with solvent drop microextraction.Anal. Bioanal. Chem. 384, 1002–1006.

López Malo, D., Martínez Calatayud, J. 2008. Photo-inducedchemiluminiscence determination of the pesticide buminafosby a multicommutation �ow-analysis assembly. Talanta 77:561–565.

Lu, L. A., Ma, Y. S., Kumar M., Lin, J. G. 2011.Photochemical degradation of carbofuran and elucidation ofremoval mechanism. Chem. Eng. J. 166: 150–156.

Lüthje, K. Hyötyläinen T., Riekkola, M. L. 2004. On-linecoupling of microporous membrane liquid–liquid extractionand gas chromatography in the analysis of organicpollutants in water. Anal. Bioanal. Chem. 378: 1991–1998.

Mak, S. K., Shan, G., Lee, H. J., Watanabe, T., Stoutamire,D. W., Gee, S. J., Hammock, B. D. 2005. Development of aclass selective immunoassay for the type II pyrethroidinsecticides. Anal. Chim. Acta 534: 109−120.

Maloschik, E., Ernst, A., Hegedüs, G., Darvas, B., Székázs,A. 2007. Monitoring water-polluting pesticides in Hungary.Microchem. J. 85: 88–97.

Marín, J. M., Gracia-Lor, E., Sancho, J. V., López, F. J.,Hernández, F. 2009. Application of ultra-high-pressureliquid chromatography-tandem mass spectrometry to thedetermination of multi-class pesticides in environmentaland wastewater samples. J. Chromatogr. A 1216: 1410–1420.

Mauriz, E., Calle, A., Abad, A., Montoya, A., Hildebrandt,A., Barceló, D., Lechuga, L. M. 2006. Determination ofcarbaryl in natural water samples by a surface plasmonresonance �ow-through immunosensor. Biosens. Bioelectron.21: 2126−2136.

Mills, G. A., Grenwood, R., Vrana, B., Allan I. J., Ocelka,T. 2011. Measurement of environmental pollutants usingpassive sampling devices—A commentary on the current stateof the art. J. Environ Monit. 13: 2979–2982.

Min, G., Wang, S., Zhu, H., Fang, G., Zhang, Y. 2008.Multi-walled carbon nanotubes as solid-phase extractionadsorbents for determination of atrazine and its principalmetabolites in water and soil samples by gaschromatography-mass spectrometry. Sci. Total Environ. 396:79–85.

Mmualefe, L. C., Torto, N., Huntsman-Mapila, P., Mbongwe,B. 2009. Headspace solid phase microextraction in thedetermination of pesticides in water samples the OkavangoDelta with gas chromatography-electron capture detectionand time-of-�ight mass spectrometry. Microchem. J. 91:239−244.

Mohammadi, A., Ameli, A., Alizadeh, N. 2009. Headspacesolid-phase microextraction using a dodecylsulfatedopedpolypyrrole �lm coupled to ion mobility spectrometry forthe simultaneous determination of atrazine and ametryn insoil and water samples. Talanta 78: 1107−1114.

Morozova, V. S., Levashova, A. I., Eremin, S. A. 2005.Determination of pesticides by enzyme immunoassays. J.Anal. Chem. 60: 202–217.

Ni, Y, Qiu, P., Kokot, S. 2005. Simultaneous voltammetricdetermination of four carbamate pesticides with the use ofchemometrics. Anal. Chim. Acta 537: 321–330.

Ochiai, N., Ieda, T., Sasamoto, K., Takazawa, Y.,Hashimoto, S., Fushimi, A., Tanabe, K. 2011. Stir barsorptive extraction and comprehensive two-dimensional gaschromatography coupled to high-resolution time-of-�ightmass spectrometry for ultra-trace analysis oforganochlorine pesticides in river water. J. Chomatogr. A1218: 6851−6860.

Ozcan, S., Tor, A., Aydin, M. E. 2009. Application ofultrasound-assisted emulsi�cation-microextraction for theanalysis of organochlorine pesticides in waters. Water Res.

43: 4269–4277.

Pedersen-Bjergaard, S., Rasmussen, K. E. 1999.Liquid–liquid–liquid microextraction for sample preparationof biological �uids prior to capillary electrophoresis.Anal. Chem. 71: 2650–2656.

Pérez-Ruiz, T., Martínez-Lozano, C., Sanz, A., Bravo, E.2005. Determination of organophosphorus pesticides inwater, vegetables and grain by automated SPE and MEKC.Chromatographia 61: 493–498.

Petrovic, M., Farré, M., Lopez del Alda, M., Perez, S.,Postigo, C., Kock, M., Radjenovic, J., Gros, M., Barcelo,D. 2010. Recent trend in the liquid chromatography-massspectrometry analysis of organic contaminants inenvironmental samples. J. Chromatogr. A 1217: 4004−4017.

Pinto, M. I., Sontag, G., Bernardino, R. J., Noronha, J. P.2010. Pesticide in water and the performance of theliquid-phase microextraction based techniques. A review.Microchem. J. 96: 225–237.

Pitarch, E., Portolés, T., Marín, J. M., Ibáñez, M.,Albarrán, F., Hernández, F. 2010. Analytical strategy basedon the use of liquid chromatography and gas chromatographywith triple-quadrupole and time-of-�ight MS analyzers forinvestigating organic contaminants in wastewater. Anal.Bioanal. Chem. 397: 2763–2776.

Pragst, F. 2007. Application of solid-phase microextractionin analytical toxicology. Anal. Bioanal. Chem. 388:1393−1414.

Prieto, A., Basauri, O., Rodil, R., Usobiaga, A.,Fernández, L. A., Etxebarria, N., Zuloaga, O. 2010.Stir-bar sorptive extraction: A view on methodoptimisation, novel applications, limitations and potentialsolutions. J. Chromatogr. A 1217: 2642−2666.

Qian, G., Wang, L., Wu, Y., Zhang, Q., Sun, Q., Liu, Y.,Liu, F. 2009. A monoclonal antibody-based sensitiveenzyme-linked immunosorbent assay (ELISA) for the analysisof the organophosphorus pesticides chlorpyrifos-methyl inreal samples. Food Chem. 117: 364–370.

Ramautar, R., Somsen, G. W., De Jong, G. J. 2010. Recentdevelopments in coupled SPE-CE. Electrophoresis 31: 44–54.

Ravelo-Pérez, L., M., Hernández-Borges, J., Cifuentes, A.,

Rodríguez-Delgado, M. A. 2007. MEKC combined with SPE andsample stacking for multiple analysis of pesticides inwater samples at the ng/L level. Electrophoresis 28:1805−1814.

Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Alghaee,E., Ahmadi, F., Berijani, S. 2006. Determination oforganic compounds in water using dispersive liquid–liquidmicroextraction. J. Chromatogr. A 1116: 1–9.

Rezg, R., Mornagui, B., El-Fazaa, S., Ghardi, N. 2010.Organophosphorus pesticides as food chain contaminants andtype 2 diabetes: A review. Trends Food Sci. Technol. 21:345–357.

Risticevic, S., Niri, V. H. Vuckovic, D., Pawliszyn, J.2009. Recent developments in solid-phase microextraction.Anal. Bioanal. Chem. 393: 781–795.

Rodríguez, I., Rubí, E., González, R., Quintana, J. B.,Cela, R. 2005. On-�bre silylation following solid-phasemicroextraction for the determination of acidic herbicidesin water samples by gas chromatography. Anal. Chim. Acta537: 259–266.

Rodríguez-Gonzalo, E., Domínguez-Álvarez, J., Ruano-Miguel,L., Carabias-Martínez, R. 2008. In-capillarypreconcentration of pirimicarb and carbendazim with amonolithic polymeric sorbent prior to separation by CZE.Electrophoresis 29: 4066−4077.

Sakamoto, M., Tsutsumi, T. 2004. Applicability of headspacesolid-phase microextraction to the determination ofmulti-class pesticides in waters. J. Chromatogr. A 1028:63–74.

Sampedro, M. C., Goicolea, M. A., Unceta, N.,Sánchez-Ortega, A., Barrio, R. J. 2009. Sequential stir barextraction, thermal desorption and retention time lockedGC-MS determination of pesticides in water. J. Sep. Sci.32: 3449−3456.

Sánchez-Ortega, A., Sampedro, M. C., Unceta, N., Goicolea,M. A., Barrio, R. J. 2005. Solid-phase microextractioncoupled with high performance liquid chromatography usingon-line diode-array and electrochemical detection for thedetermination of fenitrothion and its main metabolites inenvironmental water samples. J. Chromatogr. A 1094: 70–76.

Sankararamakrishnan, N., Kumar Sharma, A., Sanghi, R. 2005.

Organochlorine and organophosphorus pesticides residues inground water and surface waters of Kanpur, Uttar Pradesh,India. Environ. Int. 31: 113–120.

Santalad, A., Zhou, L., Shang, F., Fitzpatrick, D.,Burakham, R., Srijaranai, S., Glennon, J. D., Luong, J. H.T. 2010. Micellar electrokinetic chromatography withamperometric detection and off-line solid-phase extractionfor analysis of carbamate insecticides. J. Chromatogr. A1217: 5288–5297.

Sauret-Szczepanski, N., Mirabel, P., Wortham, H. 2006.Development of an SPME-GC-MS/MS method for thedetermination of pesticides in rainwater: Laboratory and�eld experiments. Environ. Pollut. 139: 133–142.

Scheyer, A., Briand, O., Morville, S., Mirabel, P., Millet,M. 2007. Analysis of trace levels of pesticides inrainwater by SPME and GC-tandem mass spectrometry afterderivatisation with PFFBr. Anal. Bioanal. Chem. 387:359−368.

Sethunathan, N., Megharaj, M., Chen, Z. L., Williams, B.D., Lewis, G., Naidu, R. 2004. Algal degradation of aknown endocrine disrupting insecticide, α-endosulfan, andits metabolite, endosulfan sulfate, in liquid medium andsoil. J. Agric. Food Chem. 52: 3030–3035.

Shukla, G., Kumar, A., Bhanti, M., Joseph, P. E., Taneja,A. 2006. Organochlorine pesticide contamination of groundwater in the city of Hyderabad. Environ. Int., 32: 244–247.

Singer, H., Jaus, S., Hanke, I., Lück, A., Hollender, J.,Alder, A. C. 2010. Determination of biocides and pesticidesby on-line solid phase extraction coupled with massspectrometry and their behaviour in wastewater and surfacewater. Environ. Pollut. 158: 3054–3064.

Souza, A. G., Amorin, L. C. A., Cardeal, Z. L. 2010.Studies of the analysis of pesticide degradation inenvironmental samples. Curr. Anal. Chem. 6: 237–248.

Suhara, H., Adachi, A., Kamei, I., Maekawa, N. 2011.Degradation of chlorinated pesticide DDT bylitterdecomposing basidiomycetes. Biodegradation 22:1075–1086.

Swanton, C. J., Marshhadi, H. R., Solomon, K. R., A�, M.M., Duke, S. O. 2011. Similarities between the discoveryand regulation of pharmaceuticals and pesticides: In

support of a better understanding of the risks and bene�tsof each. Pest. Manag. Sci. 67: 790–797.

Tahboub, Y. R., Zaater, M. F., Al-Talla Z. A. 2005.Determination of the limits of identi�cation andquantitation of selected organochlorine andorganophosphorus pesticides residues in surface water byfull-scan gas chromatography/mass spectrometry. J.Chromatogr. A 1098: 150–155.

Tankiewicz, M., Fenik, J., Biziuk, M. 2010.Determination oforganophosphorus and organonitrogen pesticides in watersamples. Trends Anal. Chem. 29: 1050–1063.

Tankiewicz, M., Fenik, J., Biziuk, M. 2011. Solventless andsolvent-minimized sample preparation techniques fordetermining currently used pesticides in water samples: Areview. Talanta 86: 8–22.

Thomatou, A. A., Zacharias, I., Hela, D., Konstantinou, I.2011. Passive sampling of selected pesticides in aquaticenvironment using polar organic chemical integrativesamplers. Environ. Sci. Pollut. Res. 18: 1222–1233.

Tomlin, C. 1994. The Pesticide Manual, 10th edn. SurreyHill: British Crops Protection Council.

Toyo’oka, T. 1999. Modern Derivatization Methods forSeparation Sciences. Chichester: John Wiley and Sons.

Tuzimski, T. 2008. Application of SPE-HPLC-DAD andSPE-TLC-DAD to the determination of pesticides in realwater samples. J. Sep. Sci. 31: 3537–3542.

US Environment Protection Agency. 1990. National PesticideSurvey. Phase I Report PB-91-125765. Spring�eld, VA:National Technical Information Service.

US Environment Protection Agency. 1992. National PesticideSurvey. Phase II Report EPA 570/9-91-020. Spring�eld, VA:National Technical Information Service.

US Environment Protection Agency, 2004. Of�ce of pesticideprograms, health effects division, science informationmanagement branch. Chemical evaluated for carcinogenicpotential.

Varenne A., Descroix, S. 2008. Recent strategies to improveresolution in capillary electrophoresis—A review. Anal.Chim. Acta 628: 9−23.

Vichapong, J., Burakham, R., Srijaranai, S., Grudpan, K.2011. Room temperature imidazolium ionic liquid: A solventfor extraction of carbamates prior to liquidchromatographic analysis. Talanta 84: 1253–1258.

Wei, S. Y. Leong, M. I., Li, Y., Huang S. D. 2011.Development of liquid phase microextraction based onmanual shaking and ultrasound-assisted emulsi�cation methodfor analysis of organochlorine pesticides in aqueoussamples. J. Chromatogr. A 1218: 9142–9148.

WHO. 1990. Public Health Impact of Pesticides used inAgriculture. Geneva: World Health Organization.

WHO. 2010. International Code of Conduct on theDistribution and Use of Pesticides: Guidelines for theRegistration of Pesticides. Rome: World HealthOrganization.

Whithford, F. 2002. The Complete Book of PesticideManagement. Science, Regulations, Stewardship, andCommunication. New York: Wiley-Interscience.

Wu, J., Ee, K. H., Lee, H. K. 2005. Automated dynamicliquid–liquid–liquid microextraction followed byhigh-performance liquid chromatography-ultravioletdetection for the determination of phenoxy acid herbicidesin environmental waters. J. Chromatogr. A 1082: 121–127.

Wu, J., Lu, J., Wilson, C., Lin, Y., Lu, H. 2010a.Effective liquid–liquid extraction method for analysis ofpyrethroid and phenylpyrazole pesticides in emulsion-pronesurface water samples. J. Chromatogr. A 1217: 6327–6333.

Wu, C., Liu, N., Wu, Q., Wang, C., Wang, Z. 2010b.Application of ultrasound-assisted surfactant-enhancedemulsi�cation microextraction for the determination of someorganophosphorus pesticides in water samples. Anal. Chim.Acta 679: 56–62.

Wu, Q., Zhao, G., Feng, C., Wang, C., Whang, Z. 2011.Preparation of a graphene-based magnetic nanocomposite forthe extraction of carbamate pesticides from environmentalwater samples. J. Chromatogr. A 1218: 7936–7942.

Xu, L., Basheer, C., Lee, H. K. 2007. Developments insingle-drop microextraction. J. Chromatogr. A 1152:184–192.

Xu, Z. L., Wang, Q., Lei, H. T., Eremin, S. A., Shen, Y.D., Wang, H., Beier, R. C., Yang, J. Y., Maksimova, K. A.,Sun, Y. M. 2011a. A simple, rapid and high-throughputuorescence polarization immunoassay for simultaneousdetection of organophosphorus pesticides in vegetable andenvironmental water samples. Anal. Chim. Acta 708:123–129.

Xu, Z. L., Zeng, D. P., Yang, J. Y., Shen, Y. D., Beier, R.C., Lei, H. T., Wang, H., Sun, Y. M. 2011b. Monoclonalantibody-based broad-speci�city immunoassay for monitoringorganophosphorus pesticides in environmental water samples.J. Environ. Monit. 13: 3040–3048.

Yan, H., Liu, B., Du, J., Yang, G., Row, K. H. 2010.Ultrasound-assisted dispersive liquid–liquidmicroextraction for the determination of six pyrethroids inriver water. J. Chromatogr. A 1217: 5152–5157.

Yu, Z. G., Liu, B., Jiang, Z. H., Zhang, G. L. 2009.Simultaneous determination of herbicide mefenacet and itsmetabolites residues in river water by solid phaseextraction and rapid resolution liquid chromatographymassspectrometry with pre-column derivatization. J. Chromatogr.A 1216: 3090–3097.

Zacharis, C. K., Tzanavaras, P. D., Roubos, K., Dhima, K.2010. Solvent-based de-emulsi�cation liquid– liquidmicroextraction combined with gas chromatography-massspectrometry for determination of trace organochlorinepesticides in environmental water samples. J. Chromatogr. A1217: 5896–5900.

Zhang, W., Wu, P., Li, C. 2006. Study of automated massspectral deconvolution and identi�cation system (AMDIS) inpesticide residue analysis. Rapid Commun. Mass Spectrom.20: 1563–1568.

Zhao, X., Hwang, H. M. 2009. A study of the degradation oforganophosphorus pesticides in river waters and theidenti�cation of their degradation products bychromatography coupled with mass spectrometry. Arch.Environ. Contam. Toxicol. 56: 646–653.

Zhao, Z., Zhang, L., Wu, J., Jin, M., Fan, X. 2011.Evaluation of dispersive liquid–liquid microextractioncoupled with gas chromatography-microelectron capturedetection (GC-μECD) for the determination oforganochlorine pesticides in water. Anal. Sci. 27: 547–553.

Zhou, Q., Zhang, X., Xie, G. 2011a. Preconcentration anddetermination of pyrethroid insecticides in water withionic liquid dispersive liquid-phase microextraction incombination with high performance liquid chromatography.Anal. Methods 3: 356–361.

Zhou, Q., Huang, Y., Xiao, J., Xie, G. 2011b. Micro-solidphase equilibrium extraction with highly ordered TiO 2nanotubes arrays: A new approach for the enrichment andmeasurement of organochlorine pesticides at trace level inenvironmental water samples. Anal. Bioanal. Chem. 400:205–212.

25 Chapter 25 - Analysis of Herbicide andFungicide Residues in Waters

Aga, D.S. and Thurman, E.M. 2001. Formation and transportof the sulfonic acid metabolites of alachlor andmetolachlor in soil. Environ. Sci. Technol. 35:2455–2460.

Alvarez, D.A., Petty, J.D., and Huckins, J.N. 2004.Development of a passive, in situ, integrative sampler forhydrophilic organic contaminants in aquatic environments.Environ. Toxicol. Chem. 23:1640–1648.

Amini, N., Shariatgorji, M., Crescenzi, C., and Thorsen, G.2010. Screening and quanti�cation of pesticides in waterusing a dual-function graphitized carbon black disk. Anal.Chem. 82:290–296.

Arancibia, J.A., Delfa, G.M., Boschetti, C.E., Escandar,G.M., and Olivieri, A.C. 2005. Application of partialleast-squares spectrophotometric-multivariate calibrationto the determination of 2-sec-butyl-4,6-dinitrophenol(dinoseb) and 2,6-dinitro-p-cresol in industrial and watersamples containing hydrocarbons. Anal. Chim. Acta553:141–147.

Auersperger, P., Lah, K,. Kus, J., and Marsel, J. 2005.High precision procedure for determination of selectedherbicides and their degradation products in drinking waterby solid-phase extraction and gas chromatography–massspectrometry. J. Chromatogr. A 1088:234–241.

Aulagnier, F., Poissant, L., Brunet, D. et al. 2008.Pesticides measured in air and precipitation in the YamaskaBasin (Québec): Occurrence and concentrations in 2004. Sci.Total Environ. 394:338–348.

Ayano, E., Okada, Y., Sakamoto, C. et al. 2005. Analysis ofherbicides in water using temperature-responsivechromatography and an aqueous mobile phase. J. Chromatogr.A 1069:281–285.

Bach, M., Letzel, M., Kaul, U. et al. 2010. Measurementand modelling of bentazone in the river Main (Germany)originating from point and non-point sources. Wat. Res.44:3725–3733.

Bagheri, H. and Khalilian, F. 2005. Immersed solventmicroextraction and gas chromatography–mass spectrometricdetection of s-triazine herbicides in aquatic media. Anal.Chim. Acta 537:81–87.

Ballesteros-Gomez, A., Sicilia, M.D., and Rubio, S. 2010.Supramolecular solvents in the extraction of organiccompounds. A review. Anal. Chem. Acta 677:108–130.

Baltussen, E., Sandra, P., David, F., and Cramers, C.A.1999. Stir bar sorptive extraction (SBSE), a novelextraction technique for aqueous samples: Theory andprinciples. J. Microcol. Sep. 11:737–747.

Barahona, F., Turiel, E., and Martín-Esteban, A. 2011.Supported liquid membrane-protected molecularly imprintedbre for solid-phase microextraction of thiabendazole. Anal.Chim. Acta 694:83–89.

Baran, N., Mouvet, C., and Negrel, Ph. 2007. Hydrodynamicand geochemical constraints on pesticide concentrations inthe groundwater of an agricultural catchment (Brevilles,France). Env. Poll. 148:729–738.

Barcelo, D. and Alpendurada, M.F. 1996. A review of simplestorage and preservation of polar pesticides in watersamples. Chromatographia 42:704–712.

Barcelo, D., House, W.A., Maier, E.A., and Griepink, B.1994. Preparation, stability studies of freeze-dried watercontaining pesticides. Int. J. Environ. Anal. Chem.57:237–254.

Bassarab, P., Williams, D., Dean, J.R., Ludkin, E., andPerry, J.J. 2011. Determination of quaternary ammoniumcompounds in seawater samples bysolid-phase extraction andliquid chromatography–mass spectrometry. J. Chromatogr. A1218:673–677.

Bastide, J., Cambon, J.P., Breton, F., Piletsky, S.A., andRouillon, R. 2005. The use of molecularly imprintedpolymers for extraction of sulfonyl urea herbicides. Anal.Chim. Acta 542:97–103.

Battaglin, W.A., Kolpin, D.W., Scribner, E.A., Kuivila,K.M., and Sandstrom, M.W. 2005. Glyphosate, otherherbicides, and transformation products in Midwesternstreams, 2002. J. Am. Water Resour. Assoc. 41:323–332.

Battaglin, W.S., Thurman, E.M., Kalkhoff, S.J., and Porter,S.D. 2003. Herbicides and transformation products insurface waters of the Midwestern United States. J. Am.Water Resourc. Assoc. (JAWRA) 39: 743–756.

Baugros, J.P., Giroud, B., Dessalces, G.,Grenier-Loustalot, M.F., and Cren-Olive, C. 2008.Multiresidue analytical methods for the ultra-tracequanti�cation of 33 priority substances present in the listof REACH in real water samples. Anal. Chim. Acta607:191–203.

Beceiro-Gonzalez, E., Concha-Grana, E., Guimaraes, A.,Goncalves, C., Muniategui-Lorenzo, S., and Alpendurada,M.F. 2007. Optimisation and validation of a solid-phasemicroextraction method for simultaneous determination ofdifferent types of pesticides in water by gaschromatography–mass spectrometry. J. Chromatogr. A1141:165–173.

Benotti, M.J., Trenholm, R.A., Vanderford, B.J., Holady,J.C., Stanford, B.D., and Snyder, S.A. 2009.Pharmaceuticals and endocrine disrupting compounds in U.S.drinking waters. Environ. Sci. Technol. 43:597–603.

Bercovici, M., Kaigala, G.V., Backhouse, C.J., andSantiago, J.G. 2010. Fluorescent carrier ampholytes assayfor portable, label-free detection of chemical toxins intap water. Anal. Chem. 82:1858–1866.

Berhanu, T., Liu, J., Romero, R., Megersa, N., and Jonsson,J.A. 2006. Determination of trace levels of dinitrophenoliccompounds in environmental water samples using hollow �bersupported liquid membrane extraction and high performanceliquid chromatography. J. Chromatogr. A 1103:1–8.

Bester, K. and Lamani, X. 2010. Determination of biocidesas well as some biocide metabolites from facade run-offwaters by solid phase extraction and high performanceliquid chromatographic separation and tandem massspectrometry detection. J. Chromatogr. A 1217:5204–5214.

Blanset, D.L., Zhang, J., and Robson, M.G. 2007.Probabilistic estimates of lifetime daily doses fromconsumption of drinking water containing trace levels ofN,N-diethyl-meta-toluamide (DEET), triclosan, oracetaminophen and the associated risk to human health. Hum.Ecol. Risk Assess. 13:615–631.

Bonvin, F., Rutler, R., Chevre, N., Halder, J., and Kohn,T. 2011. Spatial and temporal presence of awastewaterderived micropollutant plume in lake Geneva.Environ. Sci. Technol. 45:4702–4709.

Boonjob, W., Miro, M., Segundo, M.A., and Cerda, V. 2011.

Flow-through dispersed carbon nano�ber-basedmicrosolid-phase extraction coupled to liquidchromatography for automatic determination of trace levelsof priority environmental pollutants. Anal. Chem.83:5237–5244.

Boonjob, W., Yu, Y., Miro, M., Segundo, M.A., Wang, J., andCerda, V. 2010. Online hyphenation of multimodal microsolidphase extraction involving renewable molecularly imprintedand reversed-phase sorbents to liquid chromatography forautomatic multiresidue assays. Anal. Chem. 82:3052–3060.

Boti, V.I., Sakkas, V.A., and Albanis, T.A. 2007.Measurement uncertainty arising from trueness of theanalysis of two endocrine disruptors and their metabolitesin environmental samples Part II. Solid-phase extractionfrom environmental natural waters. J. Chromatogr. A1146:148–156.

Bratkowska, D., Marce, R.M., Cormack, P.A.G., Borrull, F.,and Fontanals, N. 2011. Development and application of apolar coating for stir bar sorptive extraction of emergingpollutants from environmental water samples. Anal. Chim.Acta 706:135–142.

Breton, F., Euzet, P., Piletsky, S.A., Giardi, M.T., andRouillon, R. 2006. Integration of photosynthetic biosensorwith molecularly imprinted polymer-based solid phaseextraction cartridge. Anal. Chim. Acta 569:50–57.

Bruzzoniti, M.C., Sarzanini, C., Costantino, G., and Fungi,M. 2006. Determination of herbicides by solid phaseextraction gas chromatography–mass spectrometry in drinkingwaters. Anal. Chim. Acta 578:241–249.

Buttiglieri, G., Peschka, M., Fromel, T. et al. 2009.Environmental occurrence and degradation of the herbiciden-chloridazon. Water Res. 43:2865–2873.

Caldas, S.S., Costa, F.P., and Primel E.G. 2010. Validationof method for determination of different classes ofpesticides in aqueous samples by dispersive liquid–liquidmicroextraction with liquid chromatography– tandem massspectrometric detection. Anal. Chim. Acta 665:55–62.

Cao, Y., Lu, Y., Long, S., Hong, J., and Sheng, G. 2005.Development of an ELISA for the detection of bromoxynil inwater. Environ. Int. 31:33–42.

Capel, P. and Capelli, K. 2011. Widely Used Herbicide

Commonly Found in Rain and Streams in the MississippiRiver Basin. United States Geological Survey. Reston, VA.

Cappiello, A., Famiglini, G., Palma, P., Pierini, E.,Termopoli, V., and Trufelli, H. 2008. Overcoming matrixeffects in liquid chromatography-mass spectrometry. Anal.Chem. 80:9343–9348.

Carabias-Martinez, R., Rodrıguez-Gonzalo, E., andHerrero-Hernandez, E. 2005. Determination of triazines anddealkylated and hydroxylated metabolites in river waterusing a propazine-imprinted polymer. J. Chromatogr. A1085:199–206.

Carabias-Martinez, R., Rodrıguez-Gonzalo, E., Miranda-Cruz,E., Domınguez-Alvarez, J., and HernandezMendez, J. 2006.Comparison of a non-aqueous capillary electrophoresismethod with high performance liquid chromatography for thedetermination of herbicides and metabolites in watersamples. J. Chromatogr. A 1122:194–201.

Cessna, A.J., Donald, D.B., Bailey, J., Waiser, M., andHeadley, J.V. 2006. Persistence of the sulfonylureaherbicides thifen sulfuronmethyl, ethametsulfuron-methyland metsulfuron-methyl in farm dugouts. J. Environ. Qual.35:2395–2401.

Chafer-Pericas, C., Herraez-Hernandez, R., andCampıns-Falco, P. 2006. On-�bre solid-phase microextractioncoupled to conventional liquid chromatography versusin-tube solid-phase microextraction coupled to capillaryliquid chromatography for the screening analysis oftriazines in water samples. J. Chromatogr. A 1125:159–171.

Chary, N.S., Herrera, S., Gomez, M.J., and Fernandez-Alba,A.R. 2012. Parts per trillion level determination ofedocrine disrupting chlorinated compounds in river wáterand wastewater ef�uent by stir bar sorptive extractionfollowed by gas chromatography-triple quadrupole massspectrometry. Anal. Bioanal. Chem. 404:1993–2006.

Chaves, A., Shea, D., and Danehower, D. 2008. Analysis ofchlorothalonil and degradation products in soil and waterby GC/MS and LC/MS. Chemosphere 71:629–638.

Cheng, J., Xia, Y., Zhou, Y., Guo, F., and Chen, G. 2011.Application of an ultrasound-assisted surfactantenhancedemulsi�cation microextraction method for the analysis ofdiethofencarb and pyrimethanil fungicides in water andfruit juice samples. Anal. Chim. Acta 701:86–91.

Chicharro, M., Moreno, M., Bermejo, E., Ongay, S., andZapardiel, A. 2005. Determination of amitrole and urazolein water samples by capillary zone electrophoresis usingsimultaneous UV and amperometrical detection. J.Chromatogr. A 1099:191–197.

Commission Regulation. 2005. (EC) No 1048/2005, of 13 June2005 amending Regulation (EC) No 2032/2003 on the secondphase of the 10-year work programme referred to in Article16(2) of Directive 98/8/EC of the European Parliament andof the Council concerning the placing of biocidal productson the market. Off. J. Eur. Commun. L 178, 9.7.200.5.

Corbera, M., Hidalgo, M., Salvado, V., and Wieczorek, P.P.2005. Determination of glyphosate and aminomethylphosphonicacid in natural water using the capillary electrophoresiscombined with enrichment step. Anal. Chim. Acta 540:3–7.

Correa, R.A. and Escander, G.M. 2006. A new analyticalapplication of nylon-induced room-temperaturephosphorescence: Determination of thiabendazole in watersamples. Anal. Chim. Acta 571:58–65.

Cortada, C., Vidal, L., Pastor, R., Santiago, N., andCanals. A. 2009. Determination of organo chlorinepesticides in water samples by dispersive liquid–liquidmicroextraction coupled to gas chromatography–massspectrometry. Anal. Chim. Acta 649:218–221.

Council Directive 91/414/EEC of 15 July 1991 concerning theplacing of plant protection products on the market. Off.J. Eur. Commun. L 230/1,19.8.1991. Consolidated versionobtained from http://eur-lex.

Coupe, R.H., Kalkhoff, S.J., Capel, P.D., and Gregoire, C.2012. Fate and transport of glyphosate andaminomethylphosphonic acid in surfacewaters of agriculturalbasins. Pest. Manage. Sci. 68:16–30.

Crespo-Corral, E., Santos-Delgado, M.J., Polo-Diez, L.M.,and Soria, A.C. 2008. Determination of carbamate,phenylurea and phenoxy acid herbicide residues by gaschromatography after potassium tert-butoxide/ dimethylsulphoxide/ethyliodide derivatization reaction. J.Chromatogr. A 1209:22–28.

Dagnac, T., Bristeau, S., Jeannot, R., Mouvet, C., andBaran, N. 2005. Determination of chloroacetanilides,triazines and phenylureas and some of their metabolites in

soils by pressurised liquid extraction, GC–MS/ MS, LC–MSand LC–MS/MS. J. Chromatogr. A 1067:225–233.

Dalluge, J., Vreuls, R.J.J., van Iperen, D.J., van Rijn,M.Th., and Brinkman, A. 2002. Resistively heatedgaschromatography coupled to quadrupole mass spectrometry.J. Sep. Sci. 25:608–614.

D’Archivio, A.A., Ruggieri, F., Mazzeo, P., and Tettamanti,E. 2007. Modelling of retention of pesticides inreversed-phase high-performance liquid chromatography:Quantitative structure-retention relationships based onsolute quantum-chemical descriptors and experimental(solvatochromic and spin-probe) mobile phase descriptors.Anal. Chim. Acta 593:140–151.

David, F. and Sandra, P. 2007. Stir bar sorptive extractionfor trace analysis. J. Chromatogr. A 1152:54–69.

De la Cruz, N., Gimenez, J., Esplugas, S., Grandjean, D.,de Alencastro, L.F., and Pulgarın, C. 2012. Degradation of32 emergent contaminants by UV and neutral photo-fenton indomestic wastewater ef�uent previously treated byactivated sludge. Water Res. 46:1947–1957.

De Souza, D. and Machado, S.A.S. 2005. Electrochemicaldetection of the herbicide paraquat in natural water andcitric fruit juices using microelectrodes. Anal. Chim. Acta546:85–91.

Degenhardt, D., Cessna, A.J., Raina, R., Pennock, D.J., andFarenhorst, A. 2010. Trace level determination of selectedsulfonylurea herbicides in wetland sediment by liquidchromatography electrospray tandem mass spectrometry. J.Environ. Sci. Health Part B 45:11–24.

Diaz, L., Llorca-Porcel, J., and Valor, I. 2008. Ultratrace determination of 31 pesticides in water samples bydirect injection–rapid resolution liquidchromatography-electrospray tandem mass spectrometry. Anal.Chim. Acta 624:90–96.

Dijkman, E., Mooibroek, D., Hoogerbrugge, R. et al. 2001.Study of matrix effects on the direct trace analysis ofacidic pesticides in water using various liquidchromatographic modes coupled to tandem mass spectrometricdetection. J. Chromatogr. A 926:113–125.

Djozan, D. and Ebrahimi, B. 2008. Preparation of new solidphase micro extraction �ber on the basis of

atrazine-molecular imprinted polymer: Application for GCand GC/MS screening of triazine herbicides in water, riceand onion. Anal. Chim. Acta 616:152–159.

Djozan, D., Mahkam, M., and Ebrahimi, B. 2009. Preparationand binding study of solid-phase microextraction �ber onthe basis of ametryn-imprinted polymer application to theselective extraction of persistent triazine herbicides intap water, rice, maize and onion. J. Chromatogr. A1216:2211–2219.

Du Preez, L.H., Jansen van Rensburg, P.J., Jooste, A.M.et al. 2005. Seasonal exposures to triazine and otherpesticides in surface waters in the western Highveldcorn-production region in South Africa. Environ. Poll.135:131–141.

Dujakovic, N., Grujic, S., Radisic, M., Vasiljevic, T., andLausevic, M. 2010. Determination of pesticides in surfaceand ground waters by liquidchromatography–electrospray–tandem mass spectrometry. Anal.Chim. Acta 678:63–72.

El-Sheikh, A.E., Insisi, A.A., and Sweileh, J.A. 2007.Effect of oxidation and dimensions of multi-walled carbonnanotubes on solid phase extraction and enrichment of somepesticides from environmental waters prior to theirsimultaneous determination by high performance liquidchromatography. J. Chromatogr. A 1164:25–32.

Ercegovich, C.D. 1971. In Analysis of Pesticide Residues.American Chemical Society, Washington, DC, pp. 162–177.

Erney, D.R., Gillespie, A.M., Gilvydis, D.M., and Poole,C.F. 1993. Explanation of the matrix-inducedchromatographic response enhancement of organophosphoruspesticides during open tubular column gas chromatographywith splitless or hot on-column injection and �amephotometric detection. J. Chromatogr. A 638:57–63.

Errampalli, D. 2003. Effect of �udioxonil on germinationand growth of Penicillium expansum and decay in apple cvs.Empire and Gala. Crop Protect. 23:811–817.

European Commission. 2000. Directive 2000/60/EC of theEuropean Parliament and of the Council of 23 October 2000establishing a framework for Community action in the �eldof water policy. Off. J. Eur. Commun. L 327. 22.12. 2000.

European Commission. 2001. Decision 2455/2001/EC of 20

November 2001 establishing a list of priority substancesin the �eld of water policy. Off. J. Eur. Commun. L 331.15.12.2001.

European Commission Directive. 2008. 2008/105/EC of theEuropean Parliament and of the council of 16 December 2008on environmental quality standards in the �eld of waterpolicy, amending and subsequently repealing CouncilDirectives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC,86/280/EEC and amending Directive 2000/60/EC of theEuropean Parliament and of the Council. p. 84–97.

Eurostat. 2002. The use of plant production products in theEuropean Union-Data 1992–1999, Of�ce for of�cialpublication of European Communities.http://epp.eurostat.ec.europa.eu

Fang, G., Chen, J., Wang, J., He, J., and Wang, S. 2010.N-Methylimidazolium ionic liquid-functionalized silica asa sorbent for selective solid-phase extraction of 12sulfonylurea herbicides in environmental water and soilsamples. J. Chromatogr. A 1217:1567–1574.

Faria, A.M., Maldaner, L. Santana, C.C., Jardim, I.C.S.F.,and Collins, C.H. 2007. Poly(methyltetradecylsiloxane)immobilized onto silica for extraction of multiclasspesticides from surface waters. Anal. Chem. Acta582:34–40.

Fatta, D., Canna-Michaelidou, St., Michael, C. et al. 2007.Organochlorine and organophosphoric insecticides,herbicides and heavy metals residue in industrialwastewaters in Cyprus. J. Hazard. Mater. 145:169–179.

Ferrer, I. and Barcelo, D. 1996. Determination andstability in freeze-dried water samples by automatedon-line solid-phase extraction followed by liquidchromatography with diode-array-detection. J. Chromatogr. A737:93–99.

Ferrer, I. and Thurman, E.M. 2007. Multi-residue method forthe analysis of 101 pesticides and their degradates infood and water samples by liquidchromatography/time-of-�ight mass spectrometry. J.Chromatogr. A 1175:24–37.

Filipe, O.M.S., Vidal, M.M., Duarte, A.C., and Santos,E.B.H. 2007. A solid-phase extraction procedure for thecleanup of thiram from aqueous solutions containing highconcentrations of humic substances. Talanta 72:1235–1238.

Focazio, M.J., Kolpin, D.W., Barnes, K.K. et al. 2008. Anational reconnaissance for pharmaceuticals and otherorganic wastewater contaminants in the United States—IIuntreated drinking water sources. Sci. Total Environ.402:201–216.

Freitas Le, L.L., Sant Anna, E.S., Suchara, E.A., Benato,V.S., and Carasek, E. 2012. Pendimethalin in surfacewaters of rivers in the proximity of irrigated paddy �eldsby solid phase microextraction and gas chromatography. Int.J. Environ. Anal. Chem. 92:313–323.

Fries. E. 2011. Determination of benzothiazole in untreatedwastewater using polar-phase stir bar sorptive extractionand gas chromatography–mass spectrometry. Anal. Chim. Acta689:65–68.

Gatidou, G., Kotrikla, A., Thomaidis, N.S., and Lekkas,T.D. 2005. Determination of the antifouling boosterbiocides irgarol 1051 and diuron and their metabolites inseawater by high performance liquid chromatography–diodearray detector. Anal. Chim. Acta 528:89–99.

Gervais, G., Brosillon, S., Laplanche, A., and Helen, C.2008. Ultra-pressure liquid chromatography–electrospraytandem mass spectrometry for multiresidue determination ofpesticides in water. J. Chromatogr. A 1202:163–172.

Gilliom, R.J., Barbash, J.E., Crawford, C.G. et al. 2006.The Quality of Our Nation’s Waters—Pesticides in theNations Streams and Ground Water, 1992–2001. Circular 1291.U.S. Geological Survey, Reston, VA. 172.

Gomez, M.J., Aguera, A., Mezcua, M., Hurtado, J., Mocholi,F., and Fernandez-Alba, A.R. 2007. Simultaneous analysisof neutral and acidic pharmaceuticals as well as relatedcompounds by gas chromatography–tandem mass spectrometry inwastewater. Talanta 73:314–320.

Gomez, M.J., Gomez-Ramos, M.M., Aguera, A. Mezcua, M.Herrera, S. and Fernandez-Alba, A.R. 2009. A new gaschromatography/mass spectrometry method for thesimultaneous analysis of target and nontarget organiccontaminants in waters. J. Chromatogr. A 1216:4071–4082.

Gomez, M.J., Herrera, S., Sole, D., Garcia-Calvo, E., andFernandez-Alba, A.R. 2011. Automatic searching andevaluation of priority and emerging contaminants inwastewater and river water by stir bar sorptive extraction

followed by comprehensive two dimensional gaschromatography-time-of-�ight mass spectrometry. Anal. Chem.83:2638–2647.

Gomez, M.J., Herrera, S., Sole, D., Garcia-Calvo, E., andFernandez-Alba, A.R. 2012. Spatio-temporal evaluation oforganic contaminants and their transformation productsalong a river basin affected by urban, agricultural andindustrial pollution. Sci. Total Environ. 420:134–145.

Grob, K. and Grob, G. 1983. Capillary columns with verythick coatings. J. High Resolu. Chromatogr. 6:133–139.

Grube, A., Donaldson, D., Kiely, T., and Wu, L. 2011.Pesticide Industry sales and usages: 2006 and 2007 marketestimates. Biological and Economic Analysis Division,Office of Chemical Safety and Pollution Prevention. U.S.Environmental Protection Agency Washington, DC.

Guan, G., Wang, S., Zhou, H. et al. 2011. Molecularlyimprinted poly pyrrole nanonecklaces for detection ofherbicide through molecular recognition-amplifying currentresponse. Anal. Chim. Acta 702:239–246.

Guitart, C. and Readman, J.W. 2010. Critical evaluation ofthe determination of pharmaceuticals, personal careproducts, phenolic endocrine disrupters and faecal steroidsby GC/MS and PTV-GC/MS in environmental waters. Anal. Chim.Acta 658:32–40.

Gunold, R., Schafer, R.B., Paschke, A., Schuurmann, G., andLiess, M. 2008. Calibration of the Chemcatcher_ passivesampler for monitoring selected polar and semi-polarpesticides in surface water. Environ. Poll. 155:52–60.

Guo, L., Deng, Q., Fang, G., Gao, W., and Shuo, W. 2011.Preparation and evaluation of molecularly imprinted ionicliquids polymer assorbent for on-line solid-phaseextraction of chlorsulfuron in environmental watersamples. J. Chromatogr. A 1218:6271–6277.

Guzzella, L., Pozzoni, F., and Giuliano, G. 2006. Herbicidecontamination of sur�cial groundwater in Northern Italy.Environ. Poll. 142:344–353.

Hajslova, J. and Zrostlikova, J. 2003. Matrix effects in(ultra) trace analysis residues in food and bioticmatrices. J. Chromatogr. A 1000:181–197.

Hayama, T., Yada, K., Onimaru, S., Yoshida, H., Todoroki,

K., Nohta, H., and Yamaguchi, M. 2007. Simpli�ed methodfor determination of polycarbamate fungicide in watersamples by liquid chromatography with tandem massspectrometry following derivatization with dimethylsulphate. J. Chromatogr. A 1141:251–258.

Hennion, M.C. 1999. Solid-phase extraction: Methoddevelopment, sorbents and coupling with liquidchromatography. J. Chromatogr. A 856:3–54.

Hennion, M.C. 2000. Graphitized carbons for solid phaseextraction. J. Chromatogr. A 885:73–95.

Hennion, M.C. and Barcelo, D. 1998. Strengths andLimitations of immunoassays for effective and ef�cient usefor pesticide analysis in water samples: A review. Anal.Chim. Acta 362:3–34.

Hennion, M.C. and Pichon, V. 2003. Immuno-based samplepreparation for trace analysis. J. Chromatogr A1000:29–52.

Hernandez, F., Portoles, T., Pitarch, E., and Lopez F-J.2007. Target and non target screening of organicmicropollutants in water by solid-phase microextractioncombined with gas chromatography/high-resolutiontime-of-�ight mass spectrometry. Anal. Chem. 79:9494–9504.

Hernandez, F., Pozo, O.J., Sancho, J.V., Barreda, M., andPitarch, E. 2006. Multiresidue liquid chromatography tandemmass spectrometry determination of 52 non gaschromatography-amenable pesticides and metabolites indifferent food commodities. J. Chromatogr. A 1109:242–252.

Hernandez-Borges, J., Garcıa-Montelongo, F.J., Cifuentes,A., and Rodrıguez-Delgado, M.A. 2005. Determination ofherbicides in mineral and stagnant waters at ng/L levelsusing capillary electrophoresis and UV detection combinedwith solid-phase extraction and sample stacking. J.Chromatogr. A 1070:171–177.

Hildebrandt, A., Guillamon, M., Lacorte, S., Tauler, R.,and Barcelo, D. 2008. Impact of pesticides used inagriculture and vineyards to surface and groundwaterquality (North Spain). Water Res. 42:3315–3326.

Hladik, M.L., Bouwer, E.J., and Roberts, A.L. 2008. Neutraldegradates of chloroacetamide herbicides: Occurrence indrinking water and removal during conventional watertreatment. Water Res. 42:4905–4914.

Hong, S. and Lemley, A.T. 1998. Gas chromatographic–massspectrometric determination of alachlor and itsdegradation products by direct aqueous injection. J.Chromatogr. A 822:253–261.

House, W.A. 1994. Sampling techniques for organicsubstances in surface waters. Int. J. Environ. Anal. Chem.57:207–214.

Hsu, C.C. and Whang, C.W. 2009. Microscale solid phaseextraction of glyphosate and aminomethylphosphonic acid inwater and guava fruit extract using alumina-coated ironoxide nanoparticles followed by capillary electrophoresisand electrochemiluminescence detection. J. Chromatogr. A1216:8575–8580.

Hua, W., Bennett, E.R., and Letcher, R.J. 2006. Ozonetreatment and the depletion of detectable pharmaceuticalsand atrazine herbicide in drinking water sourced from theupper Detroit River, Ontario, Canada. Water Res.40:2259–2266.

Hu, Y., Wang, Y., Hu, Y., and Li, G. 2009.Liquid–liquid–solid microextraction based onmembrane-protected molecularly imprinted polymer �ber fortrace analysis of triazines in complex aqueous samples. J.Chromatogr. A 1216:8304–8311.

Hu, Y., Zheng, Y., Zhu, F., and Li, G. 2007. Sol–gel coatedpolydimethylsiloxane/β-cyclodextrin as novel stationaryphase for stir bar sorptive extraction and its applicationto analysis of estrogens and bisphenol A. J. Chromatogr. A1148:16–22.

Ibanez, M., Pozo, O.J., Sancho, J.V., Lopez, F.J., andHernandez, F. 2005. Residue determination of glyphosate,glufosinate and aminomethylphosphonic acid in water andsoil samples by liquid chromatography coupled toelectrospray tandem mass spectrometry. J. Chromatogr. A1081:145–155.

Ibanez, M., Pozo, O.J., Sancho, J.V., Lopez, F.J., andHernandez, F. 2006. Re-evaluation of glyphosatedetermination in water by liquid chromatography coupled toelectrospray tandem mass spectrometry. J. Chromatogr. A1134:51–55.

Inam, R., Gulerman, E.Z., and Sarigul, T. 2006.Determination of tri�umizole by differential pulse

polarography in formulation, soil and natural watersamples. Anal. Chim. Acta 579:117–123.

Ismail, B.S., Sameni, M., and Halimah, M., 2011. Evaluationof herbicide pollution in the kerian rice�elds of Perak,Malaysia. World Appl. Sci. J. 15:5–13.

Jeannot, R. 1994. Preservation techniques for analysis oforganic compounds in water samples— A review. Int. J.Environ. Anal. Chem. 57:231–236.

Jensen, G.G., Bjorklund, E., Simonsen, A., andHalling-Sørensen, B. 2009. Determination of2,6-dichlorobenzamide and its degradation products in watersamples using solid-phase extraction followed by liquidchromatography–tandem mass spectrometry. J. Chromatogr. A1216:5199–5206.

Jiang, H., Adams, C., Graziano, N., Roberson, A., Mcguire,M., and Khiari, D. 2006. Occurrence and removal ofchloro-s-triazines in water treatment plants. Environ. Sci.Technol. 40:3609–3616.

Kahle, M., Buerge, I.J., Hauser, A., Muller, M.D., andPoiger, T. 2008. Azole fungicides: Occurrence and fate inwastewater and surface. Waters Environ. Sci. Technol.42:7193–7200.

Kalkhoff, S.J., Lee, K.E., Porter, S.D., Terrio, P.J., andThurman, E.M. 2003. Herbicides and herbicide degradationproducts in upper Midwest agricultural streams duringAugust base-�ow conditions. J. Environ. Qual.32:1025–1035.

Karabelas, A.J., Plakas, K.V., Solomou, E.S., Drossou, V.,and Sarigiannis, D.A. 2009. Impact of European legislationon marketed pesticides—A view from the stand point ofhealth impact assessment studies. Environ. Int.35:1096–1107.

Katsumata, H., Kaneco, S., Suzuki, T., and Ohta, K. 2006.Determination of atrazine and simazine in water samples byhigh-performance liquid chromatography afterpreconcentration with heat-treated diatomaceous earth.Anal. Chim. Acta 577:214–219.

Kaur, J., Boro, R.C., Wangoo, N., Singh, K.R., and Suri,C.R. 2008. Direct hapten coated immunoassay format for thedetection of atrazine and 2,4-dichlorophenoxyacetic acidherbicides. Anal. Chim. Acta 607:92–99.

Kellogg, R.L., Nehring, R., Grube, A., Goss, D.W., andPlotkin, S. 2000. Environmental indicators of pesticideleaching and runoff from farm �elds. United StatesDepartment of Agriculture Natural Resources ConservationService.

Kennedy, K., Schroeder, T., Shaw, M. et al. 2011. Longterm monitoring of photosystem II herbicides— Correlationwith remotely sensed freshwater extent to monitor changesin the quality of water entering the Great Barrier Reef,Australia. Mar. Pollut. Bull.doi:10.1016/j.marpolbul.2011.10.029.

Kingston, J.K., Greenwood, R., Mills, G.A., Morrison, G.M.,and Persson, L.B. 2000. Development of a novel passivesampling system for the time averaged measurement of arange of organic pollutants in aquatic environments. J.Environ. Monitor 2:487–495.

Kirchner, M., Matisova, E., Hrouzkova, S., and de Zeeuw, J.2005. Possibilities and limitations of quadrupole massspectrometric detector in fast gas chromatography. J.Chromatogr. A 1090:126–132.

Konstantinou, I.K., Hela, D.G., and Albanis, T.A. 2006. Thestate of pesticide pollution in freshwater resources(rivers and lakes) of Greece. Part I. Review on occurrenceand levels. Environ. Poll. 141:555–570.

Lacorte, S. and Fernandez-Alba, A.R. 2006. Time of �ightmass spectrometry applied to the Liquid chromatographicanalysis of pesticides in water and food. Mass Spec. Rev.25:866–880.

Lam, K.H., Cai, Z., Wai, H.Y. et al. 2005. Identi�cation ofa new Irgarol-1051 related s-triazine species in coastalwaters. Environ. Poll. 136:221–230.

Lambert, J.P., Mullett, W.M., Kwong, E., and Lubda, D.2005. Stir bar sorptive extraction based on restrictedaccess material for the direct extraction of caffeine andmetabolites in biological �uids. J. Chromatogr. A1075:43–49.

Lambropoulou, D.A. and Albanis, T.A. 2007. Liquid phasemicroextraction techniques in pesticide residue analysis.J. Biochem. Biophys. Methods 70:195–228.

Leon, V.M., Alvarez, B., Cobollo, M.A., Munoz, S., and

Valor, I. 2003. Analysis of 35 priority semivolatilecompounds in water by stir bar sorptive extraction–thermaldesorption–gas chromatography–mass spectrometry: I. Methodoptimisation. J. Chromatogr. A 999:91–101.

Leon, V.M., Llorca-Porcel, J., Alvarez, B., Cobollo, M.A.,Munoz, S., and Valor, I. 2006. Analysis of 35 prioritysemivolatile compounds in water by stir bar sorptiveextraction–thermal desorption–gas chromatography–massspectrometry Part II: Method validation. Anal. Chim. Acta558:261–266.

Leong, M.I. and Huang, S.D. 2008. Dispersive liquid-liquidmicroextraction method based on solidi�cation of �oatingorganic drop combined with gas chromatography withelectron-capture or mass spectrometry detection. J.Chromatogr. A 1211:8–12.

Leon-Gonzalez, M.E. and Perez-Arribas, L.V. 2000.Chemically modi�ed polymeric sorbents for samplepreconcentration. J. Chromatogr. A 902:3–16.

Leu, C., Singer, H., Stamm, C., Muller, S.R., andSchwarzenbach, R.P. 2004. Variability of herbicide lossesfrom 13 �elds to surface water with in a small catchmentafter a controlled herbicide application. Environ. Sci.Technol. 38:3835–3841.

Lezamiz, J. and Jonsson, J. A. 2007. Development of asimple hollow �bre supported liquid membrane extractionmethod to extract and preconcentrate dinitrophenols inenvironmental samples at ng L −1 level by liquidchromatography. J. Chromatogr. A 1152:226–233.

Li, Y., George, J.E., and McCarty, C.L. 2007. Online insitu analysis of selected semi-volatile organic compoundsin water by automated microscale solid-phase extractionwith large-volume injection/gas chromatography/massspectrometry. J. Chromatogr. A 1176:223–230.

Li, Y.N., Wu, H.L., Qing, X.D. et al. 2010. Quantitativeanalysis of triazine herbicides in environmental samplesby using high performance liquid chromatography and diodearray detection combined with second-order calibrationbased on an alternating penalty trilinear decompositionalgorithm. Anal. Chim. Acta 678:26–33.

Lin, S.L., and Fuh, M.R. 2010. Orthogonal arrayoptimization of ultrasound-assistedemulsi�cation–microextraction for the determination of

chlorinated phenoxyacetic acids in river water. J.Chromatogr. A 1217:3467–3472.

Liu, W.M., Hu, Y., Zhao, J., Xu, Y., and Guan, Y. 2005.Determination of organo phosphorus pesticides in cucumberand potato by stir bar sorptive extraction. J. Chromatogr.A 1095:1–7.

Liu, J.F., Torang, L., Mayer, P., and Jonsson, J.A. 2007.Passive extraction and clean-up of phenoxy acid herbicidesin samples from a groundwater plume using hollow �bersupported liquid membranes. J. Chromatogr. A 1160:56–63.

Liu, W.M., Wang, H., and Guan, Y. 2004. Preparation of stirbars for sorptive extraction using sol-gel technology. J.Chromatogr. A 1045:15–22.

Liu, D., Wang, P., Zhou, W., Gu, X., Chen, Z., and Zhou, Z.2006. Direct chiral resolution and its application to thedetermination of fungicide benalaxyl in soil and water byhigh-performance liquid chromatography. Anal. Chim. Acta555:210–216.

Llorent-Martinez, E.J., Ortega-Barrales, P., Fernandez-deCordova, M.L., and Ruiz-Medina, A. 2011. Trends inow-based analytical methods applied to pesticide detection:A review. Anal. Chim. Acta 684:30–39.

Loos, R., Gawlik, B.M., Locoro, G., Rimaviciute, E.,Contini, S., and Bidoglio, G. 2009. EU-wide survey ofpolar organic persistent pollutants in European riverwaters. Env. Poll. 157:561–568.

Loos, R., Locoro, G., Comero, S. et al. 2010a. Pan-Europeansurvey on the occurrence of selected polar organicpersistent pollutants in ground water. Wat. Res.44:4115–4126.

Loos, R., Locoro, G., and Contini, S. 2010b. Occurrence ofpolar organic contaminants in the dissolved water phase ofthe Danube River and its major tributaries using SPE-LC-MS2analysis. Wat. Res. 44:2325–2335.

Lopez Paz, J.L. and Catala-Icardo, M. 2008. Flowinjection-photoinduced-chemiluminescence determination ofziram and zineb. Anal. Chim. Acta 625:173–179.

Losito, I., Amorisco, A., Carbonara, T., Lo�ego, S., andPalmisano, F. 2006. Simultaneous determination of phenyl-and sulfonyl-urea herbicides in river water at

sub-parts-per-billion level by on-line preconcentration andliquid chromatography–tandem mass spectrometry. Anal. Chim.Acta 575:89–96.

Maleki, N., Absalan, G., Safavi, A., and Farjami, E. 2007.Ultra trace adsorptive stripping voltammetric determinationof atrazine in soil and water using mercury �lm electrode.Anal. Chim. Acta 581:37–41.

Mandemaker, A.J., Elmsly, T.A., and Dixon, E.M. 2009.Seeking a postharvest fungicide for the USA market for lateseason ‘Hass’ Avacado fruit. New Zealand Avocado Growers’Association Annual Research Report. 6:91–96.

Mansilha, C., Melo, A., Rebelo, H. et al. 2010.Quanti�cation of endocrine disruptors and pesticides inwater by gas chromatography–tandem mass spectrometry.Method validation using weighted linear regressionschemes. J. Chromatogr. A 1217:6681–6691.

Marin, J.M., Gracia-Lor, E., Sancho, J.V., Lopez, F.J., andHernandez, F. 2009. Application of ultra-high-pressureliquid chromatography–tandem mass spectrometry to thedetermination of multi-class pesticides in environmentaland wastewater samples. Study of matrix effects. J.Chromatogr. A 1216:1410–1420.

Marin, J.M., Sancho, J.V., Pozo, O.J., Lopez, F.J., andHernandez, F. 2006. Quanti�cation and con�rmation ofanionic, cationic and neutral pesticides and transformationproducts in water by on-line solid phase extraction–liquidchromatography–tandem mass spectrometry. J. Chromatogr. A1133:204–214.

Martin-Esteben, A., Fernandez, P., and Camara, C. 1997.Immunosorbents: A new tool for pesticide sampling handlingin environmental analysis. Fresenius J. Anal. Chem.357:927–933.

Martinez Vidal, J.L., Plaza-Bolanos, P., Romero-Gonzalez,R., and Garrido Frenich, A. 2009. Determination ofpesticide transformation products: A review of extractionand detection methods. J. Chromatogr. A 1216:6767–6788.

Matamoros, V., Jover, E., and Bayona, J.M. 2010.Part-per-trillion determination of pharmaceuticals,pesticides, and related organic contaminants in river waterby solid-phase extraction followed by comprehensivetwo-dimensional gas chromatography time-of-�ight massspectrometry. Anal. Chem. 82:699–706.

Matuszewski, B.K., Constanzer, M.L., and Chavez-Eng, C.M.2003. Strategies for the assessment of matrix effect inquantitative bioanalytical methods based on HPLC-MS/MS.Anal. Chem. 75:3019–30.

Meneses, E.S., Arguelho, M.L.P.M., and Alves, J.P.H. 2005.Electroreduction of the antifouling agent TCMTB and itselectroanalytical determination in tannery wastewaters.Talanta 67:682–685.

Melwanki, M.B. and Fuh, M.R. 2008. Partitioned dispersiveliquid–liquid microextraction. An approach for polarorganic compounds extraction from aqueous samples. J.Chromatogr. A 1207:24–28.

Michel, M., Chimuka, L., Cukrowskac, E., Wieczorekd, P.,and Buszewski, B. 2009. In�uence of temperature on masstransfer in an incomplete trapping single hollow �bresupported liquid membrane extraction of triazolefungicides. Anal. Chim. Acta 632:86–92.

Min, G., Wang, S., Zhu, H., Fang, G., and Zhang, Y. 2008.Multi-walled carbon nanotubes as solid-phase extractionadsorbents for determination of atrazine and its principalmetabolites in water and soil samples by gaschromatography-mass spectrometry. Sci. Total Environ.398:79–85.

Mol, H.G.J., Janssen, H.G.M., Cramers, C.A., Vreuls, J.J.,and Brinkman, U.A.T. 1995. Trace level analysis ofmicropollutamts in aqueous samples using gas chromatographywith on-line sample enrichment and large volume injection.J. Chromatogr. A 703:277–307.

Moral, A., Caballo, C., Sicilia, M.D., and Rubio, S. 2012.Highly ef�cient microextraction of chlorophenoxy acidherbicides in natural waters using a decanoic acid-basednanostructured solvent prior to their quantitation byliquid chromatography–mass spectrometry. Anal. Chim. Acta709:59–65.

Moral, A., Sicilia, M.D., Rubio, S., and Perez-Bendito, D.2006. Sodium dodecyl sulphate-coated alumina for theextraction/preconcentration of benzimidazolic fungicidesfrom natural waters prior to their quanti�cation by liquidchromatography/�uorimetry. Anal. Chim. Acta 569:132–138.

Mughari, A.R., Vazquez, P.P., and Galera, M.M. 2007.Analysis of phenylurea and propanil herbicides by

solidphase microextraction and liquid chromatographycombined with post-column photo chemically induceduorimetry derivatization and �uorescence detection. Anal.Chim. Acta 593:157–163.

Muller, A., Flottmann, D., Schulz, W., Seitz, W., andWeber, W.H. 2007. Alternative validation of a LC-MS/MS-multi-method for pesticides in drinking water. Clean35:329–338.

Muller, A., Flottmann, D., Schulz, W., Seitz, W., andWeber, W.H. 2008. Assessment of robustness for an LC–MS–MSmulti-method by response-surface methodology, and itssensitivity. Anal. Bioanal. Chem. 390:1317–1326.

Munoz, I., Bueno, M.J.M., Aguera, A., and Fernandez-Alba,A.R. 2010. Environmental and human health risk assessmentof organic micro-pollutants occurring in a Spanish marine�sh farm. Env. Poll. 158:1809–1816.

Murray, K.E., Thomas, S.M., and Bodour, A.A. 2010.Prioritizing research for trace pollutants and emergingcontaminantsin the freshwater environment. Environ. Poll.158:3462–3471.

Nagaraju, D. and Huang, S.D. 2007. Determination oftriazine herbicides in aqueous samples by dispersiveliquid– liquid microextraction with gas chromatography–iontrap mass spectrometry. J. Chromatogr. A 1161:89–97.

Nanita, S.C., Pentz, A.M., and Bramble, F.Q. 2009a.High-throughput pesticide residue quantitative analysisachieved by tandem mass spectrometry with automated �owinjection. Anal. Chem. 81:3134–3142.

Nanita, S.C., Pentz, A.M., Grant, J., Vogl, E., Devine,T.J., and Henze, R.M. 2009b. Mass spectrometric assessmentand analytical methods for quantitation of the newherbicide aminocyclopyrachlor and its methyl analogue insoil and water. Anal. Chem. 81:797–808.

Neng, N.R., Silva, A.R.M., and Nogueira, J.M.F. 2010.Adsorptive micro-extraction techniques— Novel analyticaltools for trace levels of polar solutes in aqueous media.J. Chromatogr. A 1217:7303–7310.

Nie, Y.Y. and Kleine-Benne, E. 2011. Using three types oftwister phases for stir bar sorptive extraction of whisky,wine and fruit juice. GERSTEL GmbH and Co.KG. Germany.http://www.gerstel.com An-3–13.

Niessen, W.M.A., Manini, P., and Andreoli, R. 2006. Matrixeffects in quantitative pesticide analysis using liquidchromatography-mass spectrometry. Mass Spec. Rev.25:881889.

Nodler, K., Licha, T., Bester, K., and Sauter, M. 2010.Development of a multi-residue analytical method, based onliquid chromatography–tandem mass spectrometry, for thesimultaneous determination of 46 microcontaminants inaqueous samples. J. Chromatogr. A 1217:6511–6521.

Noppe, H., Ghekiere, An., Verslycke, T. et al. 2007.Distribution and ecotoxicity of chlorotriazines in theScheldt Estuary (B-Nl). Env. Poll. 147:668–676.

Nyoni, H., Chimuka, L., Vrana, B., and Cukrowska, E. 2011.Membrane assisted passive sampler for triazine compoundsin water bodies—Characterization of environmentalconditions and �eld performance. Anal. Chim. Acta694:75–82.

Pacioni, N.L., Occello, V.N.S., Lazzarotto, M., and Veglia,A.V. 2008. Spectro�uorimetric determination ofbenzoimidazolic pesticides: Effect of p-sulfonatocalixareneand cyclodextrins. Anal. Chim. Acta 624:133–140.

Pappas, E.A. and Huang, C. 2008. Predicting atrazine levelsin water utility intake water for MCL compliance. Environ.Sci. Technol. 42:7064–7068.

Pareja, L., Martinez-Bueno, M.J., Cesio, V., Heinzen, H.,and Fernandez-Alba, A.R. 2011. Trace analysis ofpesticides in paddy �eld water by direct injection usingliquid chromatography–quadrupole-linear ion trap-massspectrometry. J. Chromatogr. A 1218:4790–4798.

Passeport, E., Guenne, A., Culhaoglu, T., Moreau, S.,Bouye, J.M., and Tournebize, J. 2010. Design of experimentsand detailed uncertainty analysis to develop and validate asolid-phase microextraction/gas chromatography–massspectrometry method for the simultaneous analysis of 16pesticides in water. J. Chromatogr. A 1217:5317–5327.

Perez-Ruiz, T., Martınez-Lozano, C., and Garcıa, M.D. 2007.Determination of propoxur in environmental samples byautomated solid-phase extraction followed by �ow-injectionanalysis with tris(2,2-bipyridyl) ruthenium(II)chemiluminescence detection. Anal. Chim. Acta 584:275–280.

Peruzzo, P.J., Porta, A.A., and Ronco, A.E. 2008. Levels ofglyphosate in surface waters, sediments and soilsassociated with direct sowing soybean cultivation in northpampasic region of Argentina. Env. Poll. 156:61–66.

Petrovic, M., Eljarrat, E., Lopez de Alda, M.J., andBarcelo, D. 2004. Endocrine disrupting compounds and otheremerging contaminants in the environment: A survey on newmonitoring strategies and occurrence data. Anal. Bioanal.Chem. 378:549–562.

Pichon, V., Bouzige, M., Miege, C., and Hennion, M.C. 1999.Immunosorbents: Natural molecular recognition materialsfor sample preparation of complex environmental matrices.Trends Anal. Chem. 18:219–235.

Piccirilli, G.N. and Escander, G.M. 2007. A novelow-through �uorescence optosensor for the determination ofthiabendazole. Anal. Chim. Acta 601:196–203.

Piccirilli, G.N. and Escander, G.M. 2009. Flow injectionanalysis with on-line nylon powder extraction forroom-temperature phosphorescence determination ofthiabendazole. Anal. Chim. Acta 646:90–96.

Pico, Y., Rodrıguez, R., and Manes, J. 2003. Capillaryelectrophoresis for the determination of pesticideresidues. Trends Anal. Chem. 22:133–151.

Piriyapittaya, M., Jayanta, S., Mitra, S., andLeepipatpiboon, N. 2008. Micro-scale membrane extraction ofglyphosate and aminomethylphosphonic acid in water followedby high-performance liquid chromatography and post-columnderivatization with �uorescence detector. J. Chromatogr. A1189:483–492.

Pitarch, E., Medina, C., Portoles, T., Lopez, F.J., andHernandez, F. 2007. Determination of priority organicmicro-pollutants in water by gas chromatography coupled totriple quadrupole mass spectrometry. Anal. Chim. Acta583:246–258.

Planas, C., Puig, A., Rivera, J., and Caixach, J. 2006.Analysis of pesticides and metabolites in Spanish surfacewaters byisotope dilution gas chromatography/massspectrometry with previous automated solid-phaseextraction. Estimation of the uncertainty of the analyticalresults. J. Chromatogr. A 1131:242–252.

Polati, S., Bottaro, M., Frascarolo, P., Gosetti, F.,

Gianotti, V., and Gennaro, M.C. 2006. HPLC-UV and HPLC-MSin multiresidue determination of amidosulfuron,azimsulfuron, nicosulfuron, rimsulfuron, thifensulfuronmethyl tribenuron methyl and azoxystrobin in surfacewaters. Anal. Chim. Acta 579:146–151.

Poole, C.F. 2007. Matrix-induced response enhancement inpecticide residue analysis by gas chromatography. J.Chromatogr. A 1158:241–250.

Porazzi, M., Martinez, P., Fanelli, R., and Benfenati, E.2005. GC–MS analysis of dichlobenil and its metabolites ingroundwater. Talanta 68:146–154.

Portoles, T., Pitarch, E., Lopez, F.J., and Hernandez, F.2011. Development and validation of a rapid and wide-scopequalitative screening method for detection andidenti�cation of organic pollutants in natural water andwastewater by gas chromatography time-of-�ight massspectrometry. J. Chromatogr. A 1218:303–315.

Prieto, A., Zuloaga, O., Usobiaga, A., Etxebarria, N., andFernandez, L.A. 2007. Development of a stir bar sorptiveextraction and thermal desorption gas chromatography-massspectrometry method for the simultaneous determination ofseveral persistent organic pollutants in wáter samples. J.Chromatogr. A 1174:40–49.

Psillakis, E. and Kalogerakis, N. 2002. Developments insingle drop microextraction. Trends Anal. Chem. 21:54–64.

Pulido-To�no, P., Barrero-Moreno, J.M., and Perez-Conde,M.C. 2006. Analysis of isoproturon at trace level by solidphase competitive �uoro immunosensing after enrichment in asol–gel immunosorbent. Anal. Chim. Acta 562:122–127.

Qian, K., Tang, T., Shi, T., Wang, F., Li, J., and Cao. Y.2009. Residue determination of glyphosate in environmentalwater samples with high-performance liquid chromatographyand UV detection after derivatization with4-chloro-3,5-dinitrobenzotri�uoride. Anal. Chim. Acta635:222–226.

Quesada-Molina, C., Garcıa-Campana, A.M., del Olmo-Iruela,L., and del Olmo, M. 2007. Large volume sample stacking incapillary zone electrophoresis for the monitoring of thedegradation products of metribuzin in environmentalsamples. J. Chromatogr. A 1164:320–328.

Quintana, J.B., Rodil, R., Muniategui-Lorenzo, S.,

Lopez-Mahıa, P., and Prada-Rodrıguez. D. 2007.Multiresidue analysis of acidic and polar organiccontaminants in water samples by stir-bar sorptiveextraction–liquid desorption–gas chromatography–massspectrometry. J. Chromatogr. A 1174:27–39.

Raina, R. and Etter, M.L. 2010. Liquid chromatography withpost-column reagent addition of ammonia in methanolcoupled to negative ion electrospray ionization tandem massspectrometry for determination of phenoxyacid herbicidesand their degradation products in surface water. Anal.Chem. Insights 5:1–14.

Ranz, A., Eberl, A., Maier, E., and Lankmayr, E. 2008.Microwave-assisted derivatization of acidic herbicides forgas chromatography–mass spectrometry. J. Chromatogr. A1192:282–288.

Rasmussen, K.E. and Pedersen-Bjergaard, S. 2004.Developments in hollow �ber-based liquid phasemicroextraction. Trends Anal. Chem. 23:1–10.

Ravelo-Perez, L.M., Herrera-Herrera, A.V.,Hernandez-Borges, J., and Rodriguez-Delgado, M.A. 2010.Carbon nanotubes: Solid phase extraction. J. Chromatogr. A1217:2618–2641.

Regueiro, J., Llompart, M., Garcia-Jares, C.,Garcia-Monteagudo, J.C., and Cela, R. 2008.Ultrasound-assisted emulsi�cation-microextraction ofemergent contaminants and pesticides in environmentalwaters. J. Chromatogr. A 1190:27–38.

Rocha, C., Pappas, E.A., and Huang, C. 2008. Determinationof trace triazine and chloroacetamide herbicides intile-fed drainage ditch water using solid-phasemicroextraction coupled with GC-MS. Env. Poll.152:239–244.

Rodil, R., Quintana, J.B., Lopez-Mahia, P.,Muniategui-Lorenzo, S., and Prada-Rodriguez, D. 2009.Multiresidue analytical method for the determination ofemerging pollutants in water by solid-phase extraction andliquid chromatography–tandem mass spectrometry. J.Chromatogr. A 1216:2958–2969.

Rodriguez, I., Rubı, E., Gonzalez, R., Quintana, J.B., andCela, R. 2005. On-�bre silylation following solidphasemicroextraction for the determination of acidic herbicidesin water samples by gas chromatography. Anal. Chim. Acta

537:259–266.

Rodriguez-Cuesta, M.J., Boque, R., Rius, F.X., MartinezVidal, J.L., and Garrido Frenich, A. 2005. Development andvalidation of a method for determining pesticides ingroundwater from complex overlapped HPLC signals andmultivariate curve resolution. Chemometr. Intell. Lab.77:251–260.

Rowsell, V.F., Tangney, P., Hunt, C., and Voulvoulis, N.2010. Estimating levels of micropollutants in municipalwastewaters. Wat. Air Soil Poll. 206:357–368.

Ruiz, F.J., Rubio, S., and Perez-Bendito, D. 2006.Tetrabutylammonium-induced coacervation in vesicularsolutions of alkyl carboxylic acids for the extraction oforganic compounds. Anal. Chem. 78:7229–7239.

Sambe, H., Hoshina, K., and Haginaka, J. 2007. Molecularlyimprinted polymers for triazine herbicides prepared bymulti-step swelling and polymerization method. Theirapplication to the determination of methylthiotriazineherbicides in river water. J. Chromatogr. A 1152:130–137.

Sanagi, M.M., Abbas, H.H., Ibrahim, W.A.W., andAboul-Enien, H.Y. 2012. Dispersive liquid–liquidmicroextraction method based on solidi�cation of �oatingorganic droplet for the determination of triazineherbicides in water and sugarcane samples. Food Chem.133:557–562.

Sanchez-Bayo, F., Hyne, R.V., and Desseille, K.L. 2010. Anamperometric method for the detection of amitrole,glyphosate and its aminomethyl-phosphonic acid metabolitein environmental waters using passive samplers. Anal.Chim. Acta 675:125–131.

Sanchez-Ortega, A., Unceta, N., Gomez-Caballero, A.,Sampedro, M.C., Akesolo, U., Goicolea, M.A., and Barrio,R.J. 2009. Sensitive determination of triazines inunderground waters using stir bar sorptive extractiondirectly coupled to automated thermal desorption and gaschromatography–mass spectrometry. Anal. Chim. Acta641:110–116.

Sanchez-Rodriguez, A., Sosa-Ferrera, Z., Santana-del Pino,A., and Santana-Rodriguez, J.J. 2011. Probabilistic riskassessment of common booster biocides in surface waters ofthe harbours of Gran Canaria (Spain). Mar. Pollut. Bull.62:985–991.

Saraji, M. and Farajmand, B. 2008. Application ofsingle-drop microextraction combined with in-microbialderivatization for determination of acidic herbicides inwater samples by gas chromatography–mass spectrometry. J.Chromatogr. A 1178:17–23.

Sauret-Szczepanski, N., Mirabel, P., and Wortham, H. 2006.Development of an SPME-GC-MS/MS method for thedetermination of pesticides in rain water: Laboratory and�eld experiments. Env. Poll. 139:133–142.

Schafer, R.S., Paschke, A., Vrana, B., Mueller, R., andLiess, M. 2008. Performance of the Chemcatchers passivesampler when used to monitor 10 polar and semi-polarpesticides in 16 Central European streams, and comparisonwith two other sampling methods. Wat. Res. 42:2707–2717.

Schafer, R.B., Pettigrove, V., Rose, G. et al. 2011a.Effects of pesticides monitored with three sampling methodsin 24 sites on macroinvertebrates and microorganisms.Environ. Sci. Technol. 45:1665–1672.

Schafer, R.B., van den Brink, P.J., and Liess, M. 2011b.Impacts of pesticides on freshwater ecosystems. InEcological Impacts of Toxic Chemicals, Sanchez-Bayo, F.,van den Brink, P., Mann, R.M., Eds.; Bentham: Bussum, theNetherlands.

Scheyer, A., Briand, O., Morville, S., Mirabel, P., andMillet, M. 2007. Analysis of trace levels of pesticides inrainwater by SPME and GC-tandem mass spectrometry afterderivatisation with PFFBr. Anal. Bioanal. Chem.387:359–368.

Schriks, M., Heringa, M.B., van der Kooi, M.M.E., de Voogt,P., and van Wezel, A.P. 2010. Toxicological relevance ofemerging contaminants for drinking water quality. Wat. Res.44:461–476.

See, H.H., Sanagi, M.M., Ibrahim, W.A.W., and Naim, A.A.2010. Determination of triazine herbicides usingmembrane-protected carbon nanotubes solid phase membranetip extraction prior to micro-liquid chromatography. J.Chromatogr. A 1217:1767–1772.

Serodio, P., Cabral, M.S., and Nogueira, J.M.F. 2007. Useof experimental design in the optimization of stir barsorptive extraction for the determination of polybrominateddiphenyl ethers in environmental matrices. J Chromatogr A

1141:259–270.

Shahsavari, A.A., Khodaei, K., Asadian, F., Ahmadi, F., andZamanzadeh, S.M. 2012. Ground water pesticides residue inthe southwest of Iran-Shushtar plain. Environ. Earth Sci.65:231–239.

Shin, K.S., Kim, Y.H., and Min, J.A. 2006. Miniaturizeduorescence detection chip for capillary electrophoresisimmunoassay of agricultural herbicide atrazine. Anal. Chim.Acta 573–574:164–171.

Singer, H., Jaus, S., Hanke, I., Luck, A., Hollender, J.,and Alder, A.C. 2010. Determination of biocides andpesticides by on-line solid phase extraction coupled withmass spectrometry and their behaviour in wastewater andsurface water. Env. Poll. 158:3054–3064.

Smith, G.A., Pepich, B.V., and Munch, D.J. 2008.Preservation and analytical procedures for the analysis ofchloro-s-triazines and their chlorodegradate products indrinking waters using direct injection liquidchromatography tandem mass spectrometry. J. Chromatogr. A1202:138–144.

Springer, V.H. and Lista, A.G. 2010. A simple and fastmethod for chlorsulfuron and mersulfuron methyldetermination in water samples using multiwalledcarbonnanotubes (MWCNTs) and capillary electrophoresis.Talanta 83:126–129.

Stamatis, N., Hela, D., and Konstantinou, I. 2010.Occurrence and removal of fungicides in municipal sewagetreatment plant. J. Hazard. Mater. 175:829–835.

Stocka, J., Tankiewicz, M., Biziuk, M., and Namiesnik, J.2011. Green aspects of techniques for the determination ofcurrently used pesticides in environmental samples. Int. J.Mol. Sci. 12:7785–7805.

Tadeo, J.L. 2008. Analysis of Pesticides in Food andEnvironmental Samples. CRC Press, Boca Raton, FL.

Takagai, Y. and Hinze, W.L. 2009. Cloud point extractionwith surfactant derivatization as an enrichment step priorto gas chromatographic or gas chromatography-massspectrometric analysis. Anal. Chem. 81:7113–7122.

Tang, T., Qian, K., Shi, T., Wang, F., Li, J., and Cao, Y.2010. Determination of triazole fungicides in environmental

water samples by high performance liquid chromatographywith cloud point extraction using polyethylene glycol 600monooleate. Anal.Chim. Acta 680:26–31.

Taxvig, C., Vinggaard, A.M., Hass, U., Axelstad, M.,Metzdorff, S., and Nellemann, C. 2008. Endocrinedisruptingproperties in vivo of widely used azole fungicides. Int. J.Androl. 31:170–177.

Taylor, P.J. 2005. Matrix effects: The Achilles heel ofquantitative high-performance liquidchromatographyelectrospray-tandem mass spectrometry. Clin.Biochem. 38:328–334.

Thurman, E.M. and Aga, D.S. 2001. Detection of pesticidesand pesticide metabolites using the cross reactivity ofenzyme immunoassays. J. AOAC Int. 84:162–167.

Trajkovska, S., Mbaye, M., Gaye Saye, M.D., Aaron, J.J.,Chevreuil, M., and Blanchoud, H. 2009. Toxicological studyof pesticides in air and precipitations of Paris by meansof a bioluminescence method. Anal. Bioanal. Chem.394:1099–1106.

Tran, A.T.K., Hyne, R.V., and Doble, P. 2007. Calibrationof a passive sampling device for time-integrated samplingof hydrophilic herbicides in aquatic environments. Environ.Toxicol. Chem. 26:435–443.

Tsai, W.C. and Huang, S.D. 2009. Dispersiveliquid–liquid–liquid microextraction combined with liquidchromatography for the determination of chlorophenoxy acidherbicides in aqueous samples. J. Chromatogr. A1216:7846–7850.

Turiel, E., Tadeo, J.L., and Martin-Esteban, A. 2007.Molecularly imprinted polymeric �bers for solid-phasemicroextraction. Anal. Chem. 79:3099–3104.

USEPA (United States Environmental Protection Agency).2009. National primary Drinking water regulation. EPA816F-09–004.

USEPA. 1996. Method 1669, Sampling Ambient water for tracemetals at EPA water quality criteria levels. Of�ce ofWater Engineering Analysis Division, USEPA, Washington, DC.

Vega, A.B., Frenich, A.G., and Vidal, J.L.M. 2005.Monitoring of pesticides in agricultural water and soilsamples from Andalusia by liquid chromatography coupled to

mass spectrometry. Anal. Chim. Acta 538:117–127.

Verliefde, A., Cornelissen, E., Amy, G., Van der Bruggen,B., and Van Dijk, H. 2007. Priority organic micropollutantsin water sources in Flanders and the Netherlands andassessment of removal possibilities with nano�ltration.Env. Poll. 146:281–289.

Vidal, L., Chisvert, A., Canals, A. et al. 2008. Chemicallysurface-modi�ed carbon nanoparticle carrier for phenolicpollutants: Extraction and electrochemical determination ofbenzophenone-3 and triclosan. Anal. Chim. Acta 616:28–35.

Vrana, B., Allan, I.J., Greenwood, R. et al. 2005. Passivesampling techniques for monitoring pollutants in water.Trends Anal. Chem. 24:845–868.

Vrana, B., Mills, G.A., Dominiak, E., and Greenwood, R.2006. Calibration ofthe Chemcatcher ® passive sampler forthe monitoring of priority organic pollutants in water.Environ. Poll. 142:333–343.

Vryzas, Z., Vassiliou, G., Alexoudis, C., andPapadopoulou-Mourkidou, E. 2009. Spatial and temporaldistribution of pesticide residues in surface waters innorth eastern Greece. Wat. Res. 43:1–10.

Wang, C., Wu, Q., Wu, C., and Wang, Z. 2011. Application ofdispersion–solidi�cation liquid–liquid microextraction forthe determination of triazole fungicides in environmentalwater samples by high-performance liquid chromatography.J. Hazard. Mater. 185:71–76.

Ware, G. and Whitacre, D. 2008. Chapter 1 Overview: Namesand characteristics of pesticides. In The Pesticide Book.6th Ed. http://www.pesticidebook.com/A Meister Publication.USA.

WHO (World Health Organization). 1990. Public Health Impactof Pesticides Used in Agriculture. Geneva, pp. 128.

Wittmer, I.K., Bader, H.P., Scheidegger, R. et al. 2010.Signi�cance of urban and agricultural land use for biocideand pesticide dynamics in surface waters. Wat. Res.44:2850–2862.

Woudneh, M.B., Sekela, M., Tuominen, T., and Gledhill, M.2006a. Acidic herbicides in surface waters of lower Fraservalley, British Columbia, Canada. J. Chromatogr. A1139:121–129.

Woudneh, M.B., Sekela, M., Tuominen, T., and Gledhill, M.2006b. Isotope dilution high-resolution gaschromatography/high-resolution mass spectrometry method foranalysis of selected acidic herbicides in surface water. J.Chromatogr. A 1133:293–299.

Woudneh, M.B., Sekela, M., Tuominen, T., and Gledhill, M.2007. Acidic herbicides in surface waters of Lower FraserValley, British Columbia, Canada. J. Chromatogr. A1139:121–129.

Wu, J., Huey Ee, K., Lee, and H.K. 2005. Automated dynamicliquid–liquid–liquid microextraction followed byhigh-performance liquid chromatography-ultravioletdetection for the determination of phenoxy acid herbicidesin environmental waters. J. Chromatogr. A. 1082:121–127.

Wu, J. and Lee, H.K. 2006. Injection port derivatizationfollowing ion-pair hollow �ber-protected liquid-phasemicroextraction for determining acidic herbicides by gaschromatography/mass spectrometry. Anal. Chem.78:7292:7301.

Wu, Q., Li, Y., Wang, C. et al. 2009. Dispersiveliquid–liquid microextraction combined with highperformance liquid chromatography–�uorescence detectionfor the determination of carbendazim and thiabendazole inenvironmental samples. Anal. Chim. Acta 638:139–145.

Xia, Y., Cheng, M., Guo, F., Wang, X., and Cheng, J. 2012.In-syringe demulsi�ed dispersive liquid–liquidmicroextraction and high performance liquidchromatography–mass spectrometry for the determination oftrace fungicides in environmental water samples. Anal.Chim. Acta 724:47–53.

Xiao-Huan, Z., Qiu-Hua, W., Mei-Yue, Z., Guo-Hong, X., andZhi, W. 2009. Developments of dispersive liquid–liquidmicroextraction technique. Chin. J. Anal. Chem. 37:161–168.

Xie, Z., Ebinghaus, E., Floser, G., Caba, A., and Ruck, W.2008. Occurrence and distribution of triclosan in theGerman Bight (North Sea). Env. Poll. 156:1190–1195.

Xu, X., Yang, H., Wang, L., Han, B., Wang, X., and Lee,F.S.N. 2007. Analysis of chloroacetanilide herbicides inwater samples by solid-phase microextraction coupled withgas chromatography–mass spectrometry. Anal. Chim. Acta591:87–96.

Yang, L., Zhao, X., and Zhou, J. 2010. Selective enrichmentand determination of nicosulfuron in water and soil by astir bar based on molecularly imprinted polymer coatings.Anal. Chim. Acta 670:72–77.

Yu, L.J. and Wells, M.J.M. 2007. Establishing thefeasibility of coupled solid-phase extraction–solid-phasederivatization for acidic herbicides. J. Chromatogr. A1143:16–25.

Yu, Z.G., Liu, B., Jiang, Z.H., and Zhang, G.L. 2009.Simultaneous determination of herbicide mefenacet and itsmetabolites residues in river water by solid phaseextraction and rapid resolution liquid chromatography-massspectrometry with pre-column derivatization. J. Chromatogr.A 1216:3090–3097.

Zacco, E., Pividori, M.I., and Alegret, S. 2006.Electrochemical magneto immunosensing strategy for thedetection of pesticides residues. Anal. Chem. 78:1780–1788.

Zarpon, L., Abate, G., dos Santos, L.B.O., and Masini, J.C.2006. Montmorillonite as an adsorbent for extraction andconcentration of atrazine, propazine, deethylatrazine,deisopropylatrazine and hydroxyatrazine. Anal. Chim. Acta579:81–87.

Zgheib, S., Moilleron, R., and Chebbo, G. 2012. Prioritypollutants in urban stormwater: Part 1 Case of separatestorm sewers. Wat. Res. 46:6683–6692.

Zhang, X., Martens, D., Kramer, P.M., Kettrup, A.A., andLiang, X. 2006a. Development and application of a sol–gelimmunosorbent-based method for the determination ofisoproturon in surface water. J. Chromatogr. A 1102:84–90.

Zhang, X., Martens, D., Kramer, P.M., Kettrup, A.A., andLiang, X. 2006b. On-line immunoaf�nity columnliquidchromatography–tandem mass spectrometry method for traceanalysis of diuron in wastewater treatment plant ef�uentsample. J. Chromatogr. A 1133:112–118.

Zhao, G., Song, S., Wang, C., Wu, Q., and Wang, Z. 2011.Determination of triazine herbicides in environmental watersamples by high-performance liquid chromatography usinggraphene-coated magnetic nanoparticles as adsorbent. Anal.Chim. Acta 708:155–159.

Zhou, Q., Wang, W., and Xiao, J. 2006. Preconcentration and

determination of nicosulfuron, thifensulfuronmethyl andmetsulfuron-methyl in water samples using carbon nanotubespacked cartridge in combination with high performanceliquid chromatography. Anal. Chim. Acta 559:200–206.

Zhou, Q., Xiao, J., and Ding, Y. 2007. Sensitivedetermination of fungicides and prometryn in environmentalwater samples using multi walled carbon nanotubessolid-phase extraction cartridge. Anal. Chim. Acta602:223–228.

Zhu, X., Cai, J., Yang, J., Su, Q., and Gao, Y. 2006. Filmscoated with molecular imprinted polymers for the selectivestir bar sorption extraction of monocrotophos.J.Chromatogr. A 1131:37–44.

Zhu, J., Chen, W., Lu, Y., and Cheng. G. 2008. Developmentof an immune chromatographic assay for the rapid detectionof bromoxynil in water. Env. Poll. 156:136–142. Section X

Residues of PCBs, PCDDs, PCDFS, and PAHs

26 Chapter 26 - Analysis of PCBs in Waters

Abdel-Rehim, M. 2003. AstraZeneca application. Syringe forsolid phase microextraction, Report Current PatentsGazette, week 0310, WO 03019149, p.77, 2003.

Abdel-Rehim, M. 2004. New trend in sample preparation:On-line microextraction in packed syringe for liquid andgas chromatography applications I. determination of localanaesthetics in human plasma samples using gaschromatography-mass spectrometry. Journal of ChromatographyB: Analytical Technologies in the Biomedical and LifeSciences, 801(2): 317–321.

Abdel-Rehim, M., Altun, Z., Blomberg, L. 2004.Microextraction in packed syringe (MEPS) for liquid andgas chromatographic applications. Part II—Determination ofropivacaine and its metabolites in human plasma samplesusing MEPS with liquid chromatography/tandem massspectrometry. Journal of Mass Spectrometry, 39(12):1488–1493.

Ahmed, F.E. 2003. Analysis of polychlorinated biphenyls infood products. Trends in Analytical Chemistry, 22:170–185.

Allan, I.J., Booij, K., Paschke, A. et al. 2009. Fieldperformance of seven passive sampling devices formonitoring of hydrophobic substances. Environmental Scienceand Technology, 43(14): 5383–5390.

Almeida, C., Serodio, P., Florencio, M.H. et al. 2007. Newstrategies to screen for endocrine-disrupting chemicals inthe portuguese marine environment utilizing large volumeinjection-capillary gas chromatography-mass spectrometrycombined with retention time locking libraries(LVI-GC-MS-RTL). Analytical and Bioanalytical Chemistry,387(7): 2569–2583.

Baltussen, E., Cramers, C.A., Sandra, P.J.F. 2002. Sorptivesample preparation—A review. Analytical and BioanalyticalChemistry, 373(1–2): 3–22.

Barri, T., Jönsson, J. 2008. Advances and developments inmembrane extraction for gas chromatography: Techniques andapplications. Journal of Chromatography A, 1186(1–2):16–38.

Basheer, C., Lee, H.K. 2004. Analysis of endocrinedisrupting alkylphenols, chlorophenols and bisphenol-A

using hollow �ber-protected liquid-phase microextractioncoupled with injection port-derivatization gaschromatography–mass spectrometry. Journal of ChromatographyA, 1057(1–2): 163–169.

Basheer, C., Vetrichelvan, M., Valiyaveettil, S. et al.2007. On-site polymer-coated hollow �ber membranemicroextraction and gas chromatography-mass spectrometry ofpolychlorinated biphenyls and polybrominated diphenylethers. Journal of Chromatography A, 1139(2): 157–164.

Berrojalbiz, N., Dachs, J., Del Vento, S. et al. 2011.Persistent organic pollutants in mediterranean seawaterand processes affecting their accumulation in plankton.Environmental Science and Technology, 45(10): 4315–4322.

Bogdal, C., Scheringer, M., Schmid, P. et al. 2010. Levels,uxes and time trends of persistent organic pollutants inlake thun, switzerland: Combining trace analysis andmultimedia modeling. The Science of the Total Environment,408(17): 3654–3663.

Borisov, S.M., Wolfbeis, O.S. 2008. Optical biosensors.Chemical Reviews, 108: 423–461.

Bordajandi LR, Ramos L, González MJ. 2005. Chiralcomprehensive two-dimensional gas chromatography withelectron-capture detection applied to the analysis ofchiral polychlorinated biphenyls in food samples. Journalof Chromatography A, 1078: 128–135.

Breivik, K., Sweetman, A., Pacyna, J.M. et al. 2007.Towards a global historical emission inventory for selectedPCB congeners—A mass balance approach 3. an update. TheScience of the Total Environment, 377: 296–307.

Bucheli, T.D., Brändli, R.C. 2006. Two-dimensional gaschromatography coupled to triple quadrupole massspectrometry for the unambiguous determination ofatropisomeric polychlorinated biphenyls in environmentalsamples. Journal of Chromatography A, 1110(1–2): 156–164.

Carvalho, F.P., Villenueve, J.P., Cattini, C. et al. 2009.Pesticide and PCB residues in the aquatic ecosystems oflaguna de terminos, a protected area of the coast ofcampeche, mexico. Chemosphere, 74(7): 988–995.

Cocco, E., Guignard, C., Hoffmann, L., Bohn, T. 2011. Rapidanalysis of polychlorinated biphenyls in �sh bypressurised liquid extraction with in-cell cleanup and

GC–MS. International Journal of Environmental AnalyticalChemistry, 91(4): 333–347.

Cunliffe, A.M., Williams, P.T. 2006. Isomeric analysis ofPCDD/PCDF in waste incinerator �y ash by GC–MS/ MS.Chemosphere, 62(11): 1846–1855.

Dai, L., Cheng, J., Matsadiq, G., Liu, L. et al. 2010.Dispersive liquid-liquid microextraction based on thesolidi�cation of �oating organic droplet for thedetermination of polychlorinated biphenyls in aqueoussamples. Analytica Chimica Acta, 674(2): 201–205.

D’Archivio, A.A., Incani, A., Ruggieri, F. 2011. Retentionmodelling of polychlorinated biphenyls in comprehensivetwo-dimensional gas chromatography. Analytical andBioanalytical Chemistry, 399(2): 903–913.

Dasgupta, S., Banerjee, K., Utture, S. et al. 2011.Extraction of pesticides, dioxin-like PCBs and PAHs inwater based commodities using liquid-liquidmicroextraction and analysis by gas chromatography-massspectrometry. Journal of Chromatography A, 1218(38):6780–6791.

De Boer, J., Law, R.J. 2003. Developments in the use ofchromatographic techniques in marine laboratories for thedetermination of halogenated contaminants and polycyclicaromatic hydrocarbons. Journal of Chromatography A, 1000:223–251.

de Voogt, P., Th Brinkman, U.A. 1989. Production,properties and usage of polychlorinated biphenyls. InHalogenated Biphenyls, Terphenyls, Naphtalenes,Dibenzodioxins and Related Products. Topics inEnvironmental Health., eds. R. D. Kimbrough, A. A. Jensen,3–45. Amsterdam: Elsevier.

de Vos, J., Dixon, R., Vermeulen, G. et al. 2011.Comprehensive two-dimensional gas chromatography time ofight mass spectrometry (GC × GC–TOFMS) for environmentalforensic investigations in developing countries.Chemosphere, 82(9): 1230–1239.

De Wit, C.A., Muir, D. 2010. Levels and trends of newcontaminants, temporal trends of legacy contaminants andeffects of contaminants in the Artic: Preface. The Scienceof the Total Environment, 408: 2825–2853.

Derouiche, A., Driss, M.R., Morizur, J. et al. 2007.

Simultaneous analysis of polychlorinated biphenyls andorganochlorine pesticides in water by headspace solid-phasemicroextraction with gas chromatographytandem massspectrometry. Journal of Chromatography A, 1138(1–2):231–243.

Ding, G., Li, X., Liu, H. et al. 2008. Determination ofdioxin like polychlorinated biphenyl residues in milkusing isotope dilution gas chromatographyion trap tandemmass spectrometry. Chinese Journal of Chromatography (SePu), 26(1): 29–34.

Djedjibegovic, J., Marjanovic, A., Sober, M. et al. 2010.Levels of persistent organic pollutants in the neretvariver (Bosnia and Herzegovina) determined by deployment ofsemipermeable membrane devices (SPMD). Journal ofEnvironmental Science and Health—Part B Pesticides, FoodContaminants, and Agricultural Wastes, 45(2): 128–136.

Eisler, R. Polychlorinated Biphenyl Hazards to Fish,Wildlife and Invertebrates: A Synoptic Review. Laurel MD20708: US Fish and Wildlife Service, 1986.

Eljarrat, E., Martínez, M.A., Sanz, P. et al. 2008.Distribution and biological impact of dioxin-like compoundsin risk zones along the Ebro river basin (Spain).Chemosphere, 71(6): 1156–1161.

Erikson, L. 1997. Analytical Chemistry of PCBs. 2nd ed.Boca Raton, USA: Lewis Publ.

Etxebarria, N., Navarro, P., Prieto, A. et al. 2012. Newextraction methods for the determination of organicpollutants in environmental water samples. In EnvironmentalChemistry for a Sustainable World., eds. E. Lichtfouse, J.Schwarzbauer, and D. Robert. Vol. 2, 171–235. Heidelberg:Springer.

Etxebarria, N., Zuloaga, O., Olivares, M. et al. 2009.Retention-time locked methods in gas chromatography.Journal of Chromatography A, 1216: 1624–1629.

Fernandez, A.E., Ferrera, Z.S., Rodriguez, J.J.S. 1998.Determination of polychlorinated biphenyls by liquidchromatography following cloud-point extraction. AnalyticaChimica Acta, 358: 145–155.

Fontanals, N., Barri, T., Bergström, S. et al. 2006.Determination of polybrominated diphenyl ethers at tracelevels in environmental waters using hollow-�ber

microporous membrane liquid–liquid extraction and gaschromatography–mass spectrometry. Journal of ChromatographyA, 1133(1–2): 41–48.

Font, G., Manes, J., Molto, J. et al. 1996. Currentdevelopments in the analysis of water pollution bypolychlorinated biphenyls. Journal of Chromatography A,733: 449–471.

Frame, G. 1997. A collaborative study of 209 PCB congenersand 6 Aroclors on 20 different HRGC columns 2.Semi-quantitative Aroclor congener distributions. 2.Semi-quantitative Aroclor congener distributions.Fresenius Journal of Analytical Chemistry, 357: 701–713.

Fuoco, R., A. Ceccarini. 2000. Methods for thedetermination of polychlorobiphenyls (PCBs) in water. InHandbook of Water Analysis. Vol. 102, 655. New York: MarcelDekker Inc.

Fuoco, R., Giannarelli, S., Wei, Y. et al. 2009. Persistentorganic pollutants (POPs) at Ross Sea (Antarctica).Microchemical Journal, 92(1): 44–48.

García-Flor, N., Dachs, J., Bayona et al. 2009. Surfacewaters are a source of polychlorinated biphenyls to thecoastal atmosphere of the north-western mediterranean sea.Chemosphere, 75(9): 1144–1152.

García-Flor, N., Guitart, C., Bodineau, L. et al. 2005.Comparison of sampling devices for the determination ofpolychlorinated biphenyls in the sea surface microlayer.Marine Environmental Research, 59(3): 255–275.

Garcia-Ruiz, C., Martin-Biosca, Y., Grego, A.L. et al.2001. Rapid enantiomeric separation of polychlorinatedbiphenyls by electrokinetic chromatography using mixturesof neutral and charged cyclodextrin derivatives. Journal ofChromatography A, 910: 157–164.

Gasperi, J., Garnaud, S., Rocher, V. et al. 2009. Prioritypollutants in surface waters and settleable particleswithin a densely urbanised area: Case study of Paris(France). Science of the Total Environment, 407(8):2900–2908.

Greenwood, R., Mills, G., Vrana, B. 2007. Passive samplingtechniques in environmental monitoring. In ComprehensiveAnalytical Chemistry, eds. R. Greenwood, G. Mills and B.Vrana. Vol. 48. Amsterdam, Netherlands: Elsevier.

Grimalt, J.O., Fernández, P., Quiroz, R. 2009. Input oforganochlorine compounds by snow to European high mountainlakes. Freshwater Biology, 54(12): 2533–2542.

Gruenwedd, D.W., Whitakea, J.R. 1987. Food Analysis:Principles and Techniques; Marcel Dekker: New York.

Gschwend, P.M., Macfarlane, J.K., Reible, D.D. et al. 2011.Comparison of polymeric samplers for accurately assessingPCBs in pore waters. Environmental Toxicology andChemistry, 30(6): 1288–1296.

Guo, L., Zhang, B., Xiao, K. et al. 2009. Levels anddistributions of polychlorinated biphenyls in sewage sludgeof urban wastewater treatment plants. Journal ofEnvironmental Sciences, 21(4): 468–473.

Harju, M., Danielsson, C., Haglund, P. 2003. Comprehensivetwo-dimensional gas chromatography of the 209polychlorinated biphenyls. Journal of Chromatography A,1019: 111–126.

He, T., Versteeg, L.A.M., Mulder, M.H.V., Wessling, M.2004. Composite hollow �ber membranes for organicsolvent-based liquid–liquid extraction. Journal of MembraneScience, 234(1–2): 1–10.

Herbert, P., Morais, S., Paíga, P. et al. 2006. Analysis ofPCBs in soils and sediments by microwave-assistedextraction, headspace-SPME and high resolution gaschromatography with ion-trap tandem mass spectrometry.International Journal of Environmental AnalyticalChemistry, 86(6): 391–400.

Hoh, E., Mastovska, K., Lehotay, S.J. 2007. Optimization ofseparation and detection conditions for comprehensivetwo-dimensional gas chromatography-time-of-�ight massspectrometry analysis of polychlorinated dibenzo-p-dioxinsand dibenzofurans. Journal of Chromatography A, 1145(1–2):210–221.

Hong, Y., Chunhong, Z., Xiaoxiong, Z. 2009. Investigationof pollution characteristics of polychlorinated biphenylsin the typical drinking water sources in Jiangsu province,China. Environmental Monitoring and Assessment, 158(1–4):573–579.

Hornbuckle, K. C., Carlson D. L., Swackhamer D. L. et al.2006. Polychlorinated biphenyls in the Great Lakes. In

Persistent Pollutants in the Great Lakes., ed. R. A. Hites.Vol. 5, Part N, 13–70. Berlin: Springer-Verlag.

Howell, N.L., Rifai, H.S., Koenig, L. 2011. Comparativedistribution, sourcing, and chemical behavior of PCDD/Fsand PCBs in an estuary environment. Chemosphere, 83(6):873–881.

Huckins, J.N., Perry, J., Lebo, J.A. et al. 2002.Development of permeability/performance reference compoundapproach for in situ calibration of semipermeable membranedevices. Environmental Science and Technology, 36: 85–91.

Huckins, J.N., Petty, J.D., Booij, K. 2006. Monitors ofOrganic Chemicals in the Environment. SemipermeableMembrane Devices, USA: Springer.

Jagerdeo, E., Abdel-Rehim, M. 2009. Screening of cocaineand its metabolites in human urine samples by directanalysis in real-time source coupled to time-of-�ight massspectrometry after online preconcentration utilizingmicroextraction by packed sorbent. Journal of the AmericanSociety for Mass Spectrometry, 20(5): 891–899.

Jiang, Y., Wang, X., Zhu, K., Wu, M., Sheng, G., Fu, J.2011. Polychlorinated biphenyls contamination in urbansoil of shanghai: Level, compositional pro�les and sourceidenti�cation. Chemosphere, 83(6): 767–773.

Jönsson, J.Å., Mathiasson, L. 2001. Membrane extraction inanalytical chemistry. Journal of Separation Science,24(7): 495–507.

Jönsson, J.Å., Mathiasson, L. 2000. Membrane-basedtechniques for sample enrichment. Journal ofChromatography A, 902(1): 205–225.

Josefsson, S., Karlsson, O.M., Malmaeus, J.M. et al. 2011.Structure-related distribution of PCDD/Fs, PCBs and HCB ina river-sea system. Chemosphere, 83(2): 85–94.

Jotaki, T., Fukata, H., Mori, C. 2011. Con�rmation ofpolychlorinated biphenyl (PCB) distribution in the bloodand veri�cation of simple quantitative method for PCBsbased on speci�c congeners. Chemosphere, 82(1): 107–113.

Kemmochi, Y., Tsutsumi, K., Nakazawa, H. 2003. Enhancedmass resolution tandem mass spectrometry method for2,3,7,8-tetrachlorodibenzo-p-dioxin detection with ion trapmass spectrometry using high damping gas pressure Journal

of Chromatography A, 1016: 249–256.

Koci, V., Ocelka, T., Dragoun, D. et al. 2007.Concentration of organochlorine pollutants in surfacewaters of the central european biosphere reservekrivoklatsko. Environmental Science and Pollution ResearchInternational, 14(2): 94–101.

Kojima, H., Takeuchi, S., Tsutsumi, T. et al. 2011.Determination of dioxin concentrations in �sh and seafoodsamples using a highly sensitive reporter cell line,DR-EcoScreen cells. Chemosphere, 83(6): 753–759.

Kou, D., Wang, X., Mitra, S. 2004. Supported liquidmembrane microextraction with high-performance liquidchromatography–UV detection for monitoring trace haloaceticacids in water. Journal of Chromatography A, 1055(1–2):63–69.

Kurosawa, S., Park, J.W., Aizawa, H. et al. 2006. Quartzcrystal microbalance immunosensors for environmentalmonitoring. Biosensors & Bioelectronics, 22: 473–481.

Lacorte, S., Quintana, J., Tauler, R. et al. 2009.Ultra-trace determination of persistent organic pollutantsin arctic ice using stir bar sorptive extraction and gaschromatography coupled to mass spectrometry. Journal ofChromatography A, 1216(49): 8581–8589.

Li, N., Wania, F., Lei, Y.D. et al. 2003. A comprehensiveand critical compilation, evaluation, and selection ofPhysical–Chemical property data for selectedpolychlorinated biphenyls Journal of Physical and ChemicalReference Data, 32: 1545–1590.

Li, G., Zhang, L., Zhang, Z. 2008. Determination ofpolychlorinated biphenyls in water using dynamic hollowber liquid-phase microextraction and gaschromatography-mass spectrometry. Journal ofChromatography A, 1204(1): 119–122.

Li, J., Zhao, Y., Wu, Y. 2005. Determination ofpolycholorinated biphenyls in �sh by gas chromatography-iontrap tandem mass spectrometry. Fenxi Huaxue, 33(9):1223–1226.

Liu, P.Y., Zheng, M.H., Zhang, B., Xu, X.B. 2000. Mechanismof PCBs formation from the pyrolysis of chlorobenzenes.Chemosphere, 23: 1–3.

Liu, L., Cheng, J., Matsadiq, G., Li, J.-K. 2011. Novelpolymer monolith microextraction using a poly-(methylmethacrylate-co-ethylene dimethacrylate) monolith and itsapplication to the determination of polychlorinatedbiphenyls in water samples. Chemosphere, 83(10): 1307–1312.

Lohman, R., Breivik, K., Dachs, J. et al. 2007. Global fateof POPs: Current and future research directions.Environmental Pollution, 150: 150–165.

Lysiak-Pastuszak, E., M. Kryseel. 2004. ChemicalMeasurements in the Baltic Sea: Guidelines on QualityAssurance. ICES techniques in marine environmentalsciences. Vol. 35. Copenhagen, Denmark.

Majid, A., Argue, S., Sparks, B. 2002. Removal of Aroclor1016 from contaminated soil by solvent extraction soilagglomeration process. Environmental Science andTechnology, 1: 59–64.

Manodori, L., Gambaro, A., Piazza, R. et al. 2006. PCBs andPAHs in sea-surface microlayer and sub-surface watersamples of the Venice lagoon (Italy). Marine PollutionBulletin, 52(2): 184–192.

Maruya, K.A., Zeng, E.Y., Tsukada, D. et al. 2009. Apassive sampler based on solid-phase microextraction forquantifying hydrophobic organic contaminants in sedimentpore water. Environmental Toxicology and Chemistry, 28(4):733–740.

Mascini, M. 2001. Af�nity electrochemical biosensors forpollution control. Pure and Applied Chemistry, 73: 23–30.

Matysik, S., Matysik, F. 2009. Microextraction by packedsorbent coupled with gas chromatography—Mass spectrometry:Application to the determination of metabolites ofmonoterpenes in small volumes of human urine. MicrochimicaActa, 166(1): 109–114.

Minomo, K., Ohtsuka, N., Nojiri, K. et al. 2011. Asimpli�ed determination method of dioxin toxic equivalent(TEQ) by single GC/MS measurement of �ve indicativecongeners. Analytical Sciences, 27(4): 421–426.

Mitra, S. (Ed). 2003. Sample Preparation Techniques inAnalytical Chemistry. New Jersey: John Wiley & Sons.

Morales-Cid, G., Gebefugi, I., Kanawati, B. et al. 2009.Automated microextraction sample preparation coupled

on-line to FT-ICR-MS: Application to desalting andconcentration of river and marine dissolved organicmatter. Analytical and Bioanalytical Chemistry, 395(3):797–807.

Moreno Cordero, B., Pérez Pavón, J.L., García Pinto, C. et al. 2000. Analytical applications of membrane extractionin chromatography and electrophoresis. Journal ofChromatography A, 902(1): 195–204.

Moret, I., Gambaro, A., Piazza, R. et al. 2005.Determination of polychlorobiphenyl congeners (PCBs) in thesurface water of the Venice lagoon. Marine PollutionBulletin, 50(2): 167–174.

Muir, D., Sverko, E. 2006. Analytical methods for PCBs andorganochlorine pesticides in environmental monitoring andsurveillance: A critical appraisal. Analytical andBioanalytical Chemistry, 9386: 769–789.

Nie, X., Lan, C., Wei, T. et al. 2005. Distribution ofpolychlorinated biphenyls in the water, sediment and �shfrom the Pearl river estuary, China. Marine PollutionBulletin, 50(5): 537–546.

Norli, H.R., Christiansen, A., Deribe, E. 2011. Applicationof QuEChERS method for extraction of selected persistentorganic pollutants in �sh tissue and analysis by gaschromatography mass spectrometry. Journal ofChromatography A, 1218(41): 7234–7241.

Ochiai, N., Ieda, T., Sasamoto, K. et al. 2011. Stir barsorptive extraction and comprehensive two-dimensional gaschromatography coupled to high-resolution time-of-�ightmass spectrometry for ultra-trace analysis oforganochlorine pesticides in river water. Journal ofChromatography A, 1218(39): 6851–6860.

Oliveira, T., Santacroce, G., Coleates, R. et al. 2011.Concentrations of polychlorinated biphenyls in water fromUS lake Ontario tributaries between 2004 and 2008.Chemosphere, 82(9): 1314–1320.

Ozcan, S. 2011. Analyses of polychlorinated biphenyls inwaters and wastewaters using vortex-assisted liquid-liquidmicroextraction and gas chromatography-mass spectrometry.Journal of Separation Science, 34(5): 574–584.

Ozcan, S., Tor, A., Aydin, M.E. 2009. Determination ofselected polychlorinated biphenyls in water samples by

ultrasound-assisted emulsi�cation-microextraction and gaschromatography-mass-selective detection. Analytica ChimicaActa, 647(2): 182–188.

Palmer, P.M., Wilson, L.R., Casey, A.C. et al. 2011.Occurrence of PCBs in raw and �nished drinking water atseven public water systems along the Hudson river.Environmental Monitoring and Assessment, 175(1–4):487–499.

Park, H.M., Hong, S.M., Agustin-Camacho et al. 2009.Pressurized liquid extraction for the simultaneousanalysis of polychlorinated biphenyls and polybrominateddiphenyl ethers from soil by GC-TOF-MS detection. Journalof Chromatographic Science, 47(8): 681–688.

Pena-Pereira, F., Lavilla, I., Bendicho, C. 2010.Liquid-phase microextraction techniques within theframework of green chemistry. Trends in AnalyticalChemistry, 29(7): 617–628.

Pérez-Carrera, E., León, V.M.L., Parra, A.G. et al. 2007.Simultaneous determination of pesticides, polycyclicaromatic hydrocarbons and polychlorinated biphenyls inseawater and interstitial marine water samples, using stirbar sorptive extraction–thermal desorption–gaschromatography–mass spectrometry. Journal ofChromatography A, 1170(1–2): 82–90.

Pitarch, E., Portolés, T., Marín, J.M. et al. 2010.Analytical strategy based on the use of liquidchromatography and gas chromatography withtriple-quadrupole and time-of-�ight MS analyzers forinvestigating organic contaminants in wastewater.Analytical and Bioanalytical Chemistry, 397(7): 2763–2776.

Pitarch, E., Medina, C., Portolés, T. et al. 2007.Determination of priority organic micro-pollutants in waterby gas chromatography coupled to triple quadrupole massspectrometry. Analytica Chimica Acta, 583(2): 246–258.

Polkowska, Z., Cichala-Kamrowska, K., Ruman, M. et al.2011. Organic pollution in surface waters from theFuglebekken basin in Svalbard, Norwegian arctic. Sensors,11(9): 8910–8929.

Popek, E. M. 2003. Sampling and Analysis of EnvironmentalChemical Pollutants: A Complete Guide. San Diego, USA:Academic Press.

Popp, P., Keil, P., Montero, L. et al. 2005. Optimizedmethod for the determination of 25 polychlorinatedbiphenyls in water samples using stir bar sorptiveextraction followed by thermodesorption-gaschromatography/mass spectrometry. Journal of ChromatographyA, 1071(1–2): 155–162.

Portoles, T., Pitarch, E., Lopez, F.J. et al. 2011.Development and validation of a rapid and wide-scopequalitative screening method for detection andidenti�cation of organic pollutants in natural water andwastewater by gas chromatography time-of-�ight massspectrometry. Journal of Chromatography A, 1218(2):303–315.

Prieto, A., Basauri, O., Rodil, R. et al. 2010. Stir-barsorptive extraction: A view on method optimisation, novelapplications, limitations and potential solutions. Journalof Chromatography A, 1217(16): 2642–2666.

Prieto, A., Schrader, S., Moeder, M. 2010. Determination oforganic priority pollutants and emerging compounds inwastewater and snow samples using multiresidue protocols onthe basis of microextraction by packed sorbents coupled tolarge volume injection gas chromatography-mass spectrometryanalysis. Journal of Chromatography A, 1217(38):6002–6011.

Prieto, A., Telleria, O., Etxebarria, N. et al. 2008.Simultaneous preconcentration of a wide variety of organicpollutants in water samples. comparison of stir barsorptive extraction and membrane-assisted solventextraction. Journal of Chromatography A, 1214(1–2): 1–10.

Prieto, A., Zuloaga, O., Usobiaga, A. et al. 2007.Development of a stir bar sorptive extraction and thermaldesorption-gas chromatography-mass spectrometry method forthe simultaneous determination of several persistentorganic pollutants in water samples. Journal ofChromatography A, 1174(1-2): 40-49.

Pietrograndi, M., Penvenuti, A., Previato, S., Dondi, F.2000. HPLC analysis of PCBs on porous graphitic carbon:Retention behavior and gradient elution Chromatographia,52: 425–432.

Psillakis, E., Kalogerakis, N. 2003. Developments inliquid-phase microextraction. TrAC Trends in AnalyticalChemistry, 22(9): 565–574.

Quiroz, R., Popp, P., Barra, R. 2009. Analysis of PCBlevels in snow from the Aconcagua mountain (southernAndes) using the stir bar sorptive extraction.Environmental Chemistry Letters, 7(3): 283–288.

Reiner, E.J., Clement, R.E., Okey, A.B. et al. 2006.Advances in analytical techniques for polychlorinateddibenzo-p-dioxins, polychlorinated dibenzofurans anddioxin-like PCBs. Analytical and Bioanalytical Chemistry,386: 791–806.

Rezaee, M., Assadi, Y., Milani Hosseini, M. et al. 2006.Determination of organic compounds in water usingdispersive liquid-liquid microextraction. Journal ofChromatography A, 1116(1–2): 1–9.

Rezaei, F., Bidari, A., Birjandi, A.P. et al. 2008.Development of a dispersive liquid-liquid microextractionmethod for the determination of polychlorinated biphenylsin water. Journal of Hazardous Materials, 158(2–3):621–627.

Rissato, S.R., Galhiane, M.S., Ximenes, V.F. et al. 2006.Organochlorine pesticides and polychlorinated biphenyls insoil and water samples in the northeastern part of AãoPaulo state, Brazil. Chemosphere, 65(11): 1949–1958.

Roach, A.C., Muller, R., Komarova, T. et al. 2009. UsingSPMDs to monitor water column concentrations of PCDDs,PCDFs and dioxin-like PCBs in Port Jackson (Sydneyharbour), Australia. Chemosphere, 75(9): 1243–1251.

Rothweiler, B., Berset, J.D. 1999. High sensitivity ofortho-substituted polychlorobiphenyls in negative ion massspectrometry (NCI–MS): A comparison with El–MS and ECD forthe determination of regulatory PCBs in soils.Chemosphere, 38: 1517–1532.

Ruiz-Fernández, A.C., Sprovieri, M., Piazza, R. et al.2012. 210Pb-derived history of PAH and PCB accumulation insediments of a tropical inner lagoon (Las Matas, Gulf ofMexico) near a major oil re�nery. Geochimica EtCosmochimica Acta, 82(0): 136–153.

Sánchez-Avila, J., Fernandez-Sanjuan, M., Vicente, J.et al. 2011. Development of a multi-residue method for thedetermination of organic micropollutants in water, sedimentand mussels using gas chromatographytandem massspectrometry. Journal of Chromatography A, 1218(38):6799–6811.

Said, R., Hassan, Z., Hassan, M. et al. 2008. Rapid andsensitive method for determination of cyclophosphamide inpatients plasma samples utilizing microextraction by packedsorbent online with liquid chromatography-tandem massspectrometry (MEPS-LC-MS/MS). Journal of LiquidChromatography & Related Technologies, 31(5): 683–694.

Sánchez-Avila, J., Quintana, J., Ventura, F. et al. 2010.Stir bar sorptive extraction-thermal desorption-gaschromatography–mass spectrometry: An effective tool fordetermining persistent organic pollutants and nonylphenolin coastal waters in compliance with existing directives.Marine Pollution Bulletin, 60(1): 103–112.

Sarafraz-Yazdi, A., Amiri, A. 2010. Liquid-phasemicroextraction. Trends in Analytical Chemistry, 29(1):1–14.

Schellin, M., Popp, P. 2003. Membrane-assisted solventextraction of polychlorinated biphenyls in river water andother matrices combined with large volume injection-gaschromatography-mass spectrometric detection. Journal ofChromatography A, 1020(2): 153–160.

Schringer, M. 2009. Long-range transport of organicchemicals in the environment. Environmental Toxicology andChemistry, 28: 677–690.

Schurek, J., Pulkrabova, J., Hajslova, J. et al. 2008.Application potential of microextraction in packed syringecoupled with gas chromatography time-of-�ight massspectrometry in analysis of brominated �ame retardants inwaste water. Organohalogen Compounds, 70: 2143–2146.

Shiu, W.Y., Ma, K.C. 2000. Temperature dependence ofPhysical–Chemical properties of selected chemicals ofenvironmental interest. II. chlorobenzenes, polychlorinatedbiphenyls, polychlorinated dibenzo-p-dioxins, anddibenzofurans. Journal of Physical and Chemical ReferenceData, 29: 387–462.

Storr-Hansen, E. 1991. Comparative analysis of thirtypolychlorinated biphenyl congeners on two capillary columnsof different polarity with non-linear multi-levelcalibration Journal of Chromatography A, 558: 375–391.

Takeuchi, S., Iida, M., Yabushita, H. et al. 2008. In vitroscreening for aryl hydrocarbon receptor agonistic activityin 200 pesticides using a highly sensitive reporter cell

line, DR-EcoScreen cells, and in vivo mouse livercytochrome P450–1A induction by propanil, diuron andlinuron. Chemosphere, 74(1): 155–165.

Tanabe, S. 1988. PCB problems in the future: Foresight fromcurrent knowledge. Environmental Pollution, 50: 5–28.

Turrio-Baldassarri, L., Abballe, A., Casella, M. et al.2005. Analysis of 60 PCB congeners in drinkable watersamples at 10–50 pg/l level. Microchemical Journal,79(1–2): 193–199.

UNEP 2007. Guidance on the Global Monitoring Plan forPersistent Organic Pollutants. Preliminary Version.Secretariat of Stockholm Convention on Persistent OrganicPollutants. Geneva, Switzerland.

US EPA 1994, Method 1613: Tetra- through Octa-ChlorinatedDioxins and Furans by Isotope Dilution HRGC/ HRMS.Available from:http://www.accustandard.com/asi/pdfs/epa_methods/1613.pdf(accessed 16/04/2012).

US EPA 1996. PCBs: Cancer Dose-Response Assessment andApplication to Environmental Mixtures. Washington, DC:National Center for Environmental Assessment, Of�ce ofResearch and Development, U.S. Environmental ProtectionAgency.

US EPA 1999, Method 1668 revision A: Chlorinated bipheniylcongeners in water, soil, sediment and tissue by HRGC/HRMS.Available from:http://www.accustandard.com/asi/pdfs/epa_methods/1668a.pdf(accessed 16/04/2012).

van Leeuwen, S.P.J., de Boer, J. 2008. Advances in the gaschromatographic determination of persistent organicpollutants in the aquatic environment. Journal ofChromatography A, 1186(1–2): 161–182.

van Wouwe, N., Windal, I., Vanderperren, H. et al. 2004.Validation of the CALUX bioassay for PCDD/F analyses inhuman blood plasma and comparison with GC-HRMS. Talanta,63: 1157–1167.

Verenitch, S.S., deBruyn, A.M.H., Ikonomou, M.G. et al.2007. Ion-trap tandem mass spectrometry-based analyticalmethodology for the determination of polychlorinatedbiphenyls in �sh and shell�sh. performance comparisonagainst electron-capture detection and high-resolution mass

spectrometry detection. Journal of Chromatography A,1142(2): 199–208.

Vondracek, J., Machala, M., Minksova, K. et al. 2001.Monitoring river sediments contaminated predominantly withpolyaromatic hydrocarbons by chemical and in vitro bioassaytechniques. Environmental and Toxicological Chemistry, 20:1499–1506.

Vrana, B., Mills, G.A., Allan, I.J. et al. 2005. Passivesampling techniques for monitoring pollutants in water.Trends in Analytical Chemistry, 24: 845–868.

Wang, J., Yonhong, B., P�ster, G. et al. 2009a.Determination of PAH, PCB and OCP in water from the threegorges reservoir accumulated by semipermeable membranedevices (SPMD) Chemosphere, 75: 85–91.

Wang, Y., Li, Y., Zhang, J. et al. 2009b. A noveluorinated polyaniline-based solid-phase microextractioncoupled with gas chromatography for quantitativedetermination of polychlorinated biphenyls in watersamples. Analytica Chimica Acta, 646(1–2): 78–84.

Yamini, Y., Reimann, C.T., Vatanara, A. et al. 2006.Extraction and preconcentration of salbutamol andterbutaline from aqueous samples using hollow �bersupported liquid membrane containing anionic carrier.Journal of Chromatography A, 1124(1–2): 57–67.

Zaater, M., Tahboub, Y., Qasrawy, S. 2005. Monitoring ofpolychlorinated biphenyls in surface water using liquidextraction, GC/MS, and GC/ECD. Analytical Letters, 38(13):2231–2245.

Zhang, C. 2007. Fundamentals of Environmental Sampling andAnalysis. New Jersey, USA: John Wiley & Sons.

Zhang, Z., Ohiozebau, E., Rhind, S.M. 2011. Simultaneousextraction and clean-up of polybrominated diphenyl ethersand polychlorinated biphenyls from sheep liver tissue byselective pressurized liquid extraction and analysis bygas chromatography-mass spectrometry. Journal ofChromatography A, 1218(8): 1203–1209.

Zorita, S., Barri, T., Mathiasson, L. 2007. A novelhollow-�bre microporous membrane liquid–liquid extractionfor determination of free 4-isobutylacetophenoneconcentration at ultra trace level in environmentalaqueous samples. Journal of Chromatography A, 1157(1–2):

30–37.

Zorita, S., Westbom, R., Thoerneby, L., Bjoerklund, E.,Mathiasson, L. 2006. Development of a combined solid-phaseextraction-supercritical �uid extraction procedure for thedetermination of polychlorinated biphenyls in wastewater.Analytical Sciences, 22(11): 1455–1459.

27 Chapter 27 - PCDDs and PCDFs

Aberg, A., Macleod, M., and Wiberg, K. 2008.Physical–chemical property data for dibenzo-p-dioxin (DD),dibenzofuran (DF), and chlorinated DD/Fs: A critical reviewand recommended values. Journal of Physical and ChemicalReference Data, 37, 1997–2008.

Adams, R. G., Lohmann, R., Fernandez, L. A., Macfarlane, J.K., and Gschwend, P. M. 2007. Polyethylene devices:Passive samplers for measuring dissolved hydrophobicorganic compounds in aquatic environments. EnvironmentalScience & Technology, 41, 1317–1323.

Addeck, A., Croes, K., Van Langenhove, K., Denison, M.,Elskens, M., and Baeyens, W. 2012. Dioxin analysis inwater by using a passive sampler and CALUX bioassay.Talanta, 88, 73–78.

Ambidge, P. F., Cox, E. A., Creaser, C. S. et al. 1990.Acceptance criteria for analytical data on polychlorinateddibenzo-para-dioxins and polychlorinated dibenzofurans.Chemosphere, 21, 999–1006.

Antunes, P., Viana, P., Vinhas, T., Capelo, J. L., Rivera,J., and Gaspar, E. M. S. M. 2008. Optimization ofpressurized liquid extraction (PLE) of dioxin-furans anddioxin-like PCBs from environmental samples. Talanta, 75,916–925.

Bjorklund, E., Sporring, S., Wiberg, K., Haglund, P., andVon Hillist, C. 2006. New strategies for extraction andclean-up of persistent organic pollutants from food andfeed samples using selective pressurized liquidextraction. Trac-Trends in Analytical Chemistry, 25,318–325.

Braune, B. M., Outridge, P. M., Fisk, A. T. et al. 2005.Persistent organic pollutants and mercury in marine biotaof the Canadian Arctic: An overview of spatial and temporaltrends. Science of the Total Environment, 351–352, 4–56.

Broman, D., Naf, C., Rolff, C., and Zebuhr, Y. 1991.Occurrence and dynamics of polychlorinateddibenzopara-dioxins and dibenzofurans and polycyclicaromatic-hydrocarbons in the mixed surface-layer of remotecoastal and offshore waters of the Baltic. EnvironmentalScience & Technology, 25, 1850–1864.

Castro-Jiménez, J., Eisenreich, S. J., Ghiani, M. et al.

2010. Atmospheric occurrence and deposition ofpolychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs) in the open Mediterranean Sea. EnvironmentalScience and Technology, 44, 5456–5463.

Charlestra, L., Courtemanch, D. L., Amirbahman, A., andPatterson, H. 2008. Semipermeable membrane device (SPMD)for monitoring PCDD and PCDF levels from a paper millef�uent in the Androscoggin River, Maine, USA.Chemosphere, 72, 1171–1180.

Chen, J. A., Luo, J. H., Qiu, Z. Q. et al. 2008.PCDDs/PCDFs and PCBs in water samples from the three gorgereservoir. Chemosphere, 70, 1545–1551.

Chi, K. H., Lin, C. Y., Yang, C. F. O. et al. 2010. PCDD/Fmeasurement at a high-altitude station in central Taiwan:Evaluation of long-range transport of PCDD/Fs during theSoutheast Asia biomass burning event. EnvironmentalScience & Technology, 44, 2954–2960.

Choi, J. W., Lee, J. H., Moon, B. S., and Baek, K. H. 2007.Semi-automated disk-type solid-phase extraction method forpolychlorinated dibenzo-p-dioxins and dibenzofurans inaqueous samples and its application to natural water.Journal of Chromatography A, 1157, 17–22.

Choi, J. W., Lee, J. H., Moon, B. S., and Kannan, K. 2008.Simpli�cation and validation of a large volumepolyurethane foam sampler for the analysis of persistenthydrophobic compounds in drinking water. Journal ofEnvironmental Monitoring, 10, 961–965.

Chou, I. C., Lee, W. J., Wang, L. C., Chang-Chien, G. P.,Lee, W. S., and Lee, H. 2008. Validation of the CALUXbioassay as a screening and semi-quantitative method forPCDD/F levels in cow’s milk. Journal of HazardousMaterials, 154, 1166–1172.

Cohen, M. D., Draxler, R. R., and Artz, R. 2002. Modelingthe atmospheric transport and deposition of PCDD/F to thegreat lakes. Environmental Science and Technology, 36,4831–4845.

Cornelissen, G., Broman, D., and Næs, K. 2010. Freelydissolved PCDD/F concentrations in the Frierfjord, Norway:Comparing equilibrium passive sampling with “active” watersampling. Journal of Soils and Sediments, 10, 162–171.

Cornelissen, G., Wiberg, K., Broman, D. et al. 2008.

Freely dissolved concentrations and sediment–wateractivity ratios of PCDD/Fs and PCBs in the open Baltic Sea.Environmental Science & Technology, 42, 8733–8739.

Croes, K., Van Langenhove, K., Elskens, M. et al. 2011.Analysis of PCDD/Fs and dioxin-like PCBs in atmosphericdeposition samples from the Flemish measurement network:Optimization and validation of a new CALUX bioassaymethod. Chemosphere, 82, 718–724.

Danielsson, C., Wiberg, K., Korytár, P., Bergek, S.,Brinkman, U. A., and Haglund, P. 2005. Trace analysis ofpolychlorinated dibenzo-p-dioxin, dibenzofurams and WHOpolychlorinated biphenyls in food using comprehensivetwo-dimensional gas chromatography with electron-capturedetection. Journal of Chromatography A, 1086, 61.

De Vos, J., Gorst-Allman, P., and Rohwer, E. 2011.Establishing an alternative method for the quantitativeanalysis of polychlorinated dibenzo-p-dioxins andpolychlorinated dibenzofurans by comprehensivetwo dimensional gas chromatography–time-of-�ight massspectrometry for developing countries. Journal ofChromatography A, 1218, 3282–3290.

EC 2001. Council Regulation (EC) No 2375/2001 of 29November 2001 amending Commission Regulation (EC) No466/2001 setting maximum levels for certain contaminants infoodstuffs. Official Journal of the European Communities,6.12.2001, L321/1-5.

EC 2006. Commission Regulation (EC) No 199/2006 of 3February 2006 amending Regulation (EC) No 466/2001 settingmaximum levels for certain contaminants in foodstuffs asregards dioxins and dioxinlike PCBs. Official Journal ofthe European Communities, 4.2.2006, L32/34-38.

EN 1996. EN 1948–1 Stationary sourceemissions—Determination of the mass concentration of PCDDs/PCDFs—Part 1: Sampling.

Fishman, V. N., Martin, G. D., and Lamparski, L. L. 2007.Comparison of a variety of gas chromatographic columnswith different polarities for the separation of chlorinateddibenzo-p-dioxins and dibenzofurans by high-resolutionmass spectrometry. Journal of Chromatography A, 1139,285–300.

Focant, J. F., Reiner, E. J., Macpherson, K. et al. 2004a.Measurement of PCDDs, PCDFs, and non-ortho-PCBs by

comprehensive two-dimensional gas chromatography-isotopedilution time-of-�ight mass spectrometry (GC × GC-IDTOFMS).Talanta, 63, 1231–1240.

Focant, J. F., Pirard, C., and De Pauw, E. 2004b. Automatedsample preparation-fractionation for the measurement ofdioxins and related compounds in biological matrices: Areview. Talanta, 63, 1101–1113.

Friedman, C. L., Cantwell, M. G., and Lohmann, R. 2012.Passive sampling provides evidence for Newark Bay as asource of polychlorinated dibenzo-p-dioxins and furans tothe New York/New Jersey, USA, atmosphere. EnvironmentalToxicology and Chemistry, 31, 253–261.

Guerzoni, S., Rossini, P., Sarretta, A., Raccanelli, S.,Ferrari, G., and Molinaroli, E. 2007. POPs in the Lagoonof Venice: Budgets and pathways. Chemosphere, 67,1776–1785.

Haglund, P., Korytár, P., Danielsson, C. et al. 2008. GC ×GC-ECD: A promising method for the determination ofdioxins and dioxin-like PCBs in food and feed. Analyticaland Bioanalytical Chemistry, 390, 1815–1827.

Hoh, E., Lehotay, S. J., Mastovska, K., and Huwe, J. K.2008. Evaluation of automated direct sample introductionwith comprehensive two-dimensional gaschromatography/time-of-�ight mass spectrometry for thescreening analysis of dioxins in �sh oil. Journal ofChromatography A, 1201, 69–77.

Hoh, E., Mastovska, K., and Lehotay, S. J. 2007.Optimization of separation and detection conditions forcomprehensive two-dimensional gaschromatography-time-of-�ight mass spectrometry analysis ofpolychlorinated dibenzo-p-dioxins and dibenzofurans.Journal of Chromatography A, 1145, 210–221.

IARC 1997. Monographs on the Evaluation of CarcinogenicRisks to Humans. Polychloritated Dibenzo-ParaDioxins andDibenzofurans. Lyon, France: IARC.

Ishaq, R., Persson, N. J., Zebuhr, Y., Broman, D., andNaes, K. 2009. PCNs, PCDD/Fs, and non-orthoPCBs, in waterand bottom sediments from the industrialized NorwegianGrenlandsfjords. Environmental Science & Technology, 43,3442–3447.

Josefsson, S., Karlsson, O. M., Malmaeus, J. M.,

Cornelissen, G., and Wiberg, K. 2011. Structure-relateddistribution of PCDD/Fs, PCBs and HCB in a river-seasystem. Chemosphere, 83, 85–94.

Joung, K. E., Chung, Y. H., and Sheen, Y. Y. 2007.DRE-CALUX bioassay in comparison with HRGC/MS formeasurement of toxic equivalence in environmental samples.Science of the Total Environment, 372, 657–667.

Kakimoto, H., Oka, H., Miyata, Y., Yonezawa, Y., Niikawa,A., Kyudo, H. et al. 2006. Homologue and isomerdistribution of dioxins observed in water samples collectedfrom Kahokugata Lagoon and in�owing rivers, Japan. WaterResearch, 40, 1929–1940.

Kanematsu, M., Shimizu, Y., Sato, K. et al. 2009a. Originsand transport of aquatic dioxins in the Japanesewatershed: Soil contamination, land use, and soil runoffevents. Environmental Science & Technology, 43, 4260–4266.

Kanematsu, M., Shimizu, Y., Sato, K. et al. 2009b. Massloading and partitioning of dioxins in irrigation runofffrom Japanese paddy �elds: Combination usage of the CALUXassay with HRGC/HRMS. Chemosphere, 76, 860–866.

Karl, H., Bladt, A., Rottler, H., Ludwigs, R., and Mathar,W. 2010. Temporal trends of PCDD, PCDF and PCB levels inmuscle meat of herring from different �shing grounds of theBaltic Sea and actual data of different �sh species fromthe Western Baltic Sea. Chemosphere, 78, 106–112.

Kiguchi, O., Saitoh, K., and Ogawa, N. 2007. Simultaneousextraction of polychlorinated dibenzo-p-dioxins,polychlorinated dibenzofurans and coplanar polychlorinatedbiphenyls from contaminated soil using pressurized liquidextraction. Journal of Chromatography A, 1144, 262–268.

Kim, H. K., Masaki, H., Matsumura, T., Kamei, T., andMagara, Y. 2002. Removal ef�ciency and homologue patternsof dioxins in drinking water treatment. Water Research, 36,4861–4869.

Kishida, M., Maekawa, T., and Bandow, H. 2010. Effect ofextraction temperature on pressurized liquid extraction ofpolychlorinated dibenzo-p-dioxins, polychlorinateddibenzofurans, and dioxin-like polychlorinated biphenylsfrom a sediment sample using polar and non-polar solvents.Analytica Chimica Acta, 659, 186–193.

Liu, Y. L., Peng, P. A., Li, X. M., Zhang, S. K., and Ren,

M. 2008. Polychlorinated dibenzo-p-dioxins anddibenzofurans (PCDD/Fs) in water and suspended particulatematter from the Xijiang River, China. Journal of HazardousMaterials, 152, 40–47.

Magara, Y., Aizawa, T., Ando, M., et al. 1999.Determination of low dioxin and PCB’s concentration inambient water using large volume “in situ”pre-concentration system. Organohalogen Compounds, 40,205–210.

Malavia, J., Abalos, M., Santos, F. J., Abad, E., Rivera,J., and Galceran, M. T. 2007. Ion-trap tandem massspectrometry for the analysis of polychlorinateddibenzo-p-dioxins, dibenzofurans, and dioxin-likepolychlorinated biphenyls in food. Journal of Agriculturaland Food Chemistry, 55, 10531–10539.

Malavia, J., Santos, F. J., and Galceran, M. T. 2008.Comparison of gas chromatography-ion-trap tandem massspectrometry systems for the determination ofpolychlorinated dibenzo-p-dioxins, dibenzofurans anddioxin-like polychlorinated biphenyls. Journal ofChromatography A, 1186, 302–311.

Minomo, K., Ohtsuka, N., Hosono, S., Nojiri, K., andKawamura, K. 2011. Seasonal change of PCDDs/ PCDFs/DL-PCBsin the water of Ayase River, Japan: Pollution sources andtheir contributions to TEQ. Chemosphere, 85, 188–194.

Namieśnik, J., Zabiegała, B., Kot-Wasik, A., Partyka, M.,and Wasik, A. 2005. Passive sampling and/or extractiontechniques in environmental analysis: A review. AnalBioanal Chem 381, 279–301.

NATO/CCMS 1998. International Toxicity Equivalency Factors(I-TEF)Mmethod ofRrisk Assessments for Complex Mixture ofDioxin and related compounds. Brussels: North AtlanticTreaty Organization, Committee on the Challenges of ModernSociety, North Atlantic Treaty Organization.

Onwudili, J. A., Hajizadeh, Y., Zainal, S., Upton, J., andWilliams, P. T. 2011. Application of low-temperatureCP-Sil 88 column for the isomeric analysis of toxic2378-substituted PCDD/Fs in incinerator �yash and sewagesludge using a triple quadrupole GC-MS/MS. Talanta, 87,143–151.

Persson, Y., Shchukarev, A., Oberg, L., and Tysklind, M.2008. Dioxins, chlorophenols and other chlorinated organic

pollutants in colloidal and water fractions of groundwaterfrom a contaminated sawmill site. Environmental Scienceand Pollution Research, 15, 463–471.

Peterson, A. C., Mcalister, G. C., Quarmby, S. T.,Griep-Raming, J., and Coon, J. J. 2010. Development andcharacterization of a GC-enabled QLT-orbitrap forhigh-resolution and high-mass accuracy GC/MS. AnalyticalChemistry, 82, 8618–8628.

Reiner, E. J. 2010. The analysis of dioxins and relatedcompounds. Mass Spectrometry Reviews, 29, 526–559.

RIVO. 2005. DIFFERENCE project [Online].

Roach, A. C., Muller, R., Komarova, T., Symons, R.,Stevenson, G. J., and Mueller, J. F. 2009. Using SPMDs tomonitor water column concentrations of PCDDs, PCDFs anddioxin-like PCBs in Port Jackson (Sydney Harbour),Australia. Chemosphere, 75, 1243–1251.

Schrock, M., Dindal, A., and Billets, S. 2009. Evaluationof alternative approaches for screening contaminatedsediments and soils for polychlorinated dibenzo-p-dioxinsand polychlorinated dibenzofurans. Journal ofEnvironmental Management, 90, 1289–1295.

Shunji, H., Yoshikatsu, T., Akihiro, F. et al. 2008.Quanti�cation of polychlorinated dibenzo-p-dioxins anddibenzofurans by direct injection of sample extract intothe comprehensive multidimensional gaschromatograph/high-resolution time-of-�ight massspectrometer. Journal of Chromatography A, 1178, 187–198.

Skoog, D. A., Holler, F. J., and Nieman, T. A. 1998.Principles of Instrumental Analysis, Philadelphia, PA,Saunders College Publishing.

Smith, L. M., Stalling, D. L., and Johnson, J. L. 1984.Determination of part-per-trillion levels ofpolychlorinated dibenzofurans and dioxins in environmentalsamples. Analitycal Chemistry, 56, 1830–1842.

Stuer-Lauridsen, F. 2005. Review of passive accumulationdevices for monitoring organic micropollutants in theaquatic environment. Environmental Pollution, 163, 503–524.

Suarez, M. P., Rifai, H. S., Palachek, R., Dean, K., andKoenig, L. 2006. Distribution of polychlorinateddibenzo-p-dioxins and dibenzofurans in suspended sediments,

dissolved phase and bottom sediment in the Houston ShipChannel. Chemosphere, 62, 417–429.

Thuan, N. T., Tsai, C. L., Weng, Y. M., Lee, T. Y., andChang, M. B. 2011. Analysis of polychlorinateddibenzop-dioxins and furans in various aqueous samples inTaiwan. Chemosphere, 83, 760–766.

Tondeur, Y., and Hart, J. 2009. Ultratrace extraction ofpersistent organic pollutants. Trac-Trends in AnalyticalChemistry, 28, 1137–1147.

Turrio-Baldassarri, L., Abate, V., Alivernini, S. et al.2007. A study on PCB, PCDD/PCDF industrial contamination ina mixed urban-agricultural area signi�cantly affecting thefood chain and the human exposure. Part I: Soil and feed.Chemosphere, 67, 1822–1830.

Turrio-Baldassarri, L., Alivernini, S., Carasi, S. et al.2009. PCB, PCDD and PCDF contamination of food of animalorigin as the effect of soil pollution and the cause ofhuman exposure in Brescia. Chemosphere, 76, 278–285.

USEPA 1994. Method 1613, Tetra-through octa-chlorinateddioxins and furans by isotope dilution HRGC/ HRMS (RevisionB). EPA Number 821B94005. Available at:http://nepis.epa.gov/Exe/ZyPURL. cgi?Dockey=20002GR6.txt.

USEPA 1997. Special report on environmental endocrinedisruption: An effects assessment and analysis.Washington, DC, 630/R-96/012.

USEPA 2000. Method 3545A. Pressurized �uid extraction(PFE). Available at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3545a.pdf.

USEPA 2008. Method 4435. Method for toxic equivalents(Teqs) determinations for dioxin-like chemical activitywith the Calux ® bioassay. Available at:http://www.epa.gov/osw/hazard/testmethods/pdfs/4435.pdf.

Van Den Berg, M., Birnbaum, L., Bosveld, A. T. et al.1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs,PCDFs for humans and wildlife. Environmental HealthPerspectives, 106, 775–792.

Van Den Berg, M., Birnbaum, L. S., Denison, M. et al. 2006.The 2005 World Health Organization reevaluation of humanand mammalian toxic equivalency factors for dioxins anddioxin-like compounds. Toxicological Science, 93, 223–241.

Van Leeuwen, R. F. X., Feeley, M., Dieter Schrenk, D.,Larsen, J. C., Farland, W., and Younes, M. 2000. Dioxins:WHOÕs tolerable daily intake (TDI) revisited. Chemosphere,40, 1095–1101.

Van Leeuwen, S. P. J., and De Boer, J. 2008. Advances inthe gas chromatographic determination of persistentorganic pollutants in the aquatic environment. Journal ofChromatography A, 1186, 161–182.

Van Leeuwen, S. P. J., Goeyens, L., Van Loco, J. et al.2005. Dioxins in Food and Feed—Reference Methods and NewCertified Reference Materials (DIFFERENCE).RIVO-Netherlands Institute for Fisheries Research, reportn° CO22/05, Ymuiden, the Netherlands.

Vrana, B., Mills, G. A., Allan, I. J. et al. 2005. Passivesampling techniques for monitoring pollutants in water.Trac-Trends in Analytical Chemistry, 24, 845–868.

Wilken, M., Martin, G. D., Hescott, T. L. et al. 2008.Interlaboratory comparison of the determination ofchlorinated dibenzo-p-dioxins and dibenzofurans accordingto regulatory methods EN 1948 and EPA 1613b. Chemosphere,73, S2–S6.

28 Chapter 28 - Polynuclear AromaticHydrocarbons

1. Yang, Y., Distribution of polynuclear aromatichydrocarbons (PAHs) in the soil of Tokushima, Japan. WaterAir Soil Poll., 138, 51, 2002.

2. Anyakora, C.A. et al., Determination of polynucleararomatic hydrocarbons in marine samples of Siokolo FishingSettlement. J. Chromatogr. A, 1073, 323, 2005.

3. Buco, S. et al., Analysis of polycyclic aromatichydrocarbons in contaminated soil by Curie point pyrolysiscoupled to gas chromatography-mass spectrometry, analternative to conventional methods. J. Chromatogr. A,1026, 223, 2004.

4. Koyano, M. et al., Effect of �sh (mackerel pike)broiling on polycyclic aromatic hydrocarbon contaminationof suspended particulate matter in indoor air. J. HealthSci., 47(5), 452, 2001.

5. Mottier, P., Parisod, V. Turesky, R.J., QuantitativeDetermination of polycyclic aromatic hydrocarbons inbarbecued meat sausages by gas chromatography coupled tomass spectrometry. J. Agric. Food Chem., 48, 1160, 2000.

6. Nieva-Cano, M.J., Rubio-Barroso, S. Santos-Delgado,M.J., Determination of PAH in food samples by HPLC withuorimetric detection following sonication extractionwithout clean-up. Analyst, 126, 1326, 2001.

7. Simko, P., Determination of polycyclic aromatichydrocarbons in smoked meat products and smoke �avouringfood additives. J. Chromatogr. B, 770, 3, 2002.

8. Yun, T., Tianling, Z. Xinhong, W., PAH contamination andPAH-degrading bacteria in Xiamen Western Sea. Chem. Spec.Bioavailab., 14, 25, 2003.

9. Anyakora, C. Coker, H. Assessment of PAHs contaminationthreat on groundwater: A case study of the Niger Deltaregion of Nigeria. Int. J. Risk Assess. Manage., 13(2),150, 2009.

10. Anyakora, C., Mohsen, A. Coker, H., Application PAHs inchemical �ngerprinting: The Niger delta case study. Iran.J. Chem. Chem. Eng., 8(1), 65, 2011.

11. Grova, N. et al., Detection of polycyclic aromatic

hydrocarbon level in milk collected near potentialcontamination sources. J. Agric. Food Chem., 50, 4640,2002.

12. King, S. et al., Screening method for polycyclicaromatic hydrocarbons in soil using hollow �ber membranesolvent microextraction. J. Chromatogr. A, 982, 201, 2002.

13. Guillen, M.D., Sopelana, P. Partearroyo, M.A.,Polycyclic aromatic hydrocarbons in commercial liquidsmoke �avorings of different compositions by gaschromatography-mass spectrometry. J. Agric. Food Chem.,48, 126, 2000.

14. ATSDR, Toxicological pro�le for polycyclic aromatichydrocarbons (PAH), US Department of Health and HumanServices, Public health service, agency for toxicsubstances and disease registry, Atlanta, GA 1995.

15. IPCS, Selected Non-Heterocyclic Polycyclic AromaticHydrocarbons, Environmental Health Criteria 202.International Programme on Chemical Safety, World HealthOrganization, Geneva 1998.

16. Odiete, W.O., Hydrocarbon pollution, in EnvironmentalPhysiology of Animals and Pollution. Diversi�ed ResourcesLtd. Lagos, Nigeria, vol. 1, pp. 180–192.

17. EUHCP, Polycyclic aromatic hydrocarbons—Occurrence infood, dietary exposures and health effect, European UnionHealth and Consumer Product Directorate General, 2002.

18. De Jong, W.H. et al., Detection of immunotoxicity ofbenzo[a]pyrene in a subacute toxicity study after oralexposure in rats. Toxicol. Sci., 50, 214, 1999.

19. Gladen, B.C. et al., Polycyclic aromatic hydrocarbonsin placenta. Hum. Exper. Toxicol., 19, 597, 2000.

20. Vassilev, Z.P., Robson, M.G. Klotz J.B., Associationsof polycyclic organic matter in outdoor air with decreasedbirth weight: A pilot cross-sectional analysis. J. Toxicol.Environ. Health, 64, 595, 2001.

21. Dejmek et al., Air pollution and pregnancy outcome, inTeplice Program: Impact of Air Pollution on Human Health,Šrám, R.J., Ed., Academia, Prague, pp. 127–137.

22. Miller, M.L. et al., The tumour promoter TPA enhancesbenzo[a]pyrene and benzo[a]pyrene diolepoxide mutagenesis

in big blue mouse skin. Environ. Mol. Mutagen., 35, 19,2000.

23. Hainaut, P. Pfeifer, G.P., Patterns of p53 G—>Ttransversions in lung cancers re�ect the primary mutagenicsignature of DNA-damage by tobacco smoke. Carcinogenesis,22, 367, 2001.

24. Martson, C.P. et al, Effect of complex environmentalmixture from coal tar containing polycyclic aromatichydrocarbons (PAH) on tumor initiation, PAH-DNA binding andmetabolic activation of carcinogenic PAH in mouseepidermis. Carcinogenesis, 22(7), 1077, 2001.

25. Melikkian, A.A. et al., Identi�cation of benzo(a)pyrenemetabolites in cervical mucus and DNA adducts in cervicaltissues in humans by gas chromatography-mass spectrometry,Cancer Lett., 146, 127, 1999.

26. Anyakora, C.A. et al., A screen for benzo[a]pyrene, acarcinogen, in the water samples from the Niger Deltaregion using GC-MS. Nig. J. Hosp. Med., 14, 288, 2004.

27. Kyrtopoulos, S.A. et al., Biomarkers of genotoxicity ofurban air pollution. Overview and descriptive data from amolecular epidemiology study on populations exposed tomoderate-to-low levels of polycyclic aromatic hydrocarbons:The AULIS project. Mutat. Res., 496, 207, 2001.

28. Tang, D. et al., Association between carcinogen-DNAadducts in white blood cells and lung cancer risk in thephysicians health study. Cancer Res., 61, 6708, 2001.

29. Nieva-Cano, M.J., Rubio-Barroso, S., Santos-Delgado,M.J., Determination of PAHs in food samples by HPLC withuorimetric detection following sonication extractionwithout clean-up. Analyst, 126, 1326, 2001.

30. Pensado, L. et al., Strategic sample composition in thescreening of polycyclic aromatic hydrocarbons in drinkingwater samples using liquid chromatography with �uorimetricdetection. J. Chromatogr. A, 1056, 121, 2004.

31. Pino V., Ayala, J.H., Afonso, A.M., Gonzalez, V.,Determination of polycyclic aromatic hydrocarbons inseawater by high-performance liquid chromatography withuorescence detection following micellemediatedpreconcentration. J. Chromatogr. A, 949, 291, 2002.

32. Doong, R., Chang, S., Sun, Y., Solid-phase

microextraction for determining the distribution of sixteenUS Environmental Protection Agency polycyclic aromatichydrocarbons in water samples. J. Chromatogr. A, 879(2),177, 2000.

33. Merino, F., Rubio, S., Perez-Bendito, D., Acid-inducedcloud point extraction and preconcentration of polycyclicaromatic hydrocarbons from environmental solid samples. J.Chromatogr. A, 962(1), 1, 2002.

34. Dalluge, J., Roose, P., Brinkman, U.A.Th., Evaluationof a high-resolution time-of-�ight mass spectrometer forthe gas chromatographic determination of selectedenvironmental contaminants. J. Chromatogr. A, 970, 213,2002.

35. de Boer, J. Law, R.J., Developments in the use ofchromatographic techniques in marine laboratories for thedetermination of halogenated contaminants and polycyclicaromatic hydrocarbons. J. Chromatogr. A, 1000, 223, 2003.

36. Viguri, J., Verde, J., Irabien, A., Environmentalassessment of polycyclic aromatic hydro carbons (PAHs) insurface sediments of the Santander Bay, NorthernSpain.Chemosphere, 48(2), 157, 2002.

37. Jánská M., Tomaniová M., Hajšlová J., Kocourek V.,Optimisation of procedure for determination of polycyclicaromatic hydrocarbons and their derivatives in �sh tissue:Estimation of measurements uncertainty. Food Addit.Contam., 23, 309, 2006.

38. Marce, R.M., Borrull, F., Solid-phase extraction ofpolycyclic aromatic compounds. J. Chromatogr. A, 885(1–2),273, 2000.

39. Marvin, C., 2007. Fractionation and clean-up methodsfor the analysis of polycyclic aromatic hydrocarbons, in:Anyakora C., (Ed.), Environmental Impact of PolynuclearAromatic Hydrocarbons. Research Signpost, Kerala, India,pp. 251–276.

40. Delaunay, N., Pichon, V., Hennion, M.C., Immunoaf�nitysolid-phase extraction for the trace-analysis oflow-molecular-mass analytes in complex sample matrices., J.Chromatogr. B, 745(1), 15, 2000.

41. Miege, C., Bouzige, M., Nicol, S., Dugay, J., Pichon,V., Hennion, M.C., Selective immunoclean-up followed byliquid or gas chromatography for the monitoring of

polycyclic aromatic hydrocarbons in urban waste water andsewage sludges used for soil amendment. J. Chromatogr. A,859(1), 29, 1999.

42. Bouzige, M., Pichon, V., Hennion, M.C., Class selectiveimmunosorbent for the trace level determination ofpolycyclic aromatic hydrocarbons in complex sample matricesused in off-line procedure or online coupled with liquidchromatography/�uorescence and diode array detections inseries. Environ. Sci. Technol. 33, 1916, 1999.

43. Kuo, C.T., Chen, H.W., Lin, S.T., Trace determinationof nitrated polycyclic aromatic hydrocarbons using liquidchromatography with on-line electrochemical reduction anduorescence detection. Anal. Chim. Acta, 482(2), 219,2003.

44. Ciganek, M., Neca, J., Adamec, V., Janosek, J.,Machala, M., A combined chemical and bioassay analysis oftraf�c-emitted polycyclic aromatic hydrocarbons. Sci. TotalEnviron., 334, 141, 2004.

45. Tran, T., Amador-Munoz, O., Purcaro, G., Marriott,P.J., 2007. Gas chromatography analysis of polyaromatichydrocarbons, in: Anyakora C. (Ed.), Environmental Impactof Polynuclear Aromatic Hydrocarbons. Research Signpost,Kerala, India, pp. 331–378.

46. Anyakora, C., 2007. Chemistry of polycyclic aromatichydrocarbon, in: Anyakora C. (Ed.), Environmental Impactof Polynuclear Aromatic Hydrocarbons. Research Signpost,Kerala, India, pp. 1–24.

47. Anyakora, C. Coker, H., Determination of PAHs inselected water bodies in the Niger Delta. Afr.J. Biotechnol., 5(21), 2024, 2006.

48. Dabrowski, L. et al., Some aspects of the analysis ofenvironmental pollutants in sediments using pressurizedliquid extraction and gas chromatography–mass spectrometry.J. Sep. Sci. 25, 290, 2002.

49. Poster, D.L., Schantz, M.M., Sander, L.C. Wise, S.A.,Analysis of polycyclic aromatic hydrocarbons (PAHs) inenvironmental samples: A critical review of gaschromatographic (GC) methods. Anal. Bioanal. Chem.,386(4), 859, 2006.

50. Naikwadi, K.P. Wadgaonkar, P.P., New naphthalenecontaining side-chain liquid crystalline polysiloxane

stationary phases for high-resolution gas chromatography.J. Chromatogr. A, 811, 97, 1998.

51. Frysinger, G.S., Gaines, R.B., Reddy, C.M., GC XGC—Anew analytical tool for environment forensics. Environ.Forensics, 3, 27, 2002.

52. Schubert, P., Schantz, M.M., Sander, L.C., Wise, S.A.,Determination of polycyclic aromatic hydrocarbons withmolecular weight 300 and 302 in environmental-matrixstandard reference materials by gas chromatography/massspectrometry. Anal. Chem., 75(2), 234, 2003.

53. Amador-Munoz, O., Marriott, P.J., Quanti�cation incomprehensive two-dimensional gas chromatography and amodel of quanti�cation based on selected summed modulatedpeaks. J. Chromatogr. A, 1184, 323, 2008.

54. Sander, L.C., Wise, S.A., In�uence of stationary phasechemistry on shape recognition in liquid chromatography.Anal. Chem., 67, 3284, 1995.

55. Brindle, R., Albert, K., Stationary phases withchemically bonded �uorene ligands: A new approach forenvironmental analysis of pi-electron containing solutes.J. Chromatogr. A, 757, 3, 1997.

56. Gonzalez, V., Afonso, A.M., Ayala, J.H., 2007. Analysisof PAHs with HPLC., in: Anyakora C. (Ed.), EnvironmentalImpact of Polynuclear Aromatic Hydrocarbons. ResearchSignpost, Kerala, India, pp. 295–330.

57. Letzel, T., Pöschl, U., Wissiack, R., Rosenberg, E.,Grasserbauer, M., Niessner, R., Phenyl-modi�edreversed-phase liquid chromatography coupled to atmosphericpressure chemical ionization mass spectrometry: A universalmethod for the analysis of partially oxidized aromatichydrocarbons. Anal. Chem., 73(7), 1634, 2001.

58. Chen, S., Meyerhoff, M., Shape-selective retention ofpolycyclic aromatic hydrocarbons onmetalloprotoporphyrin–silica phases: Effect of metal ioncenter and porphyrin coverage. Anal. Chem., 70(13), 2523,1998.

59. Saito, Y., Nojiri, M., Shimizu, Y., Jinno, K., Liquidchromatographic retention behavior of polycyclic aromatichydrocarbons on newly-synthesized chitosan stationaryphases cross-linked with long aliphatic chains. J. Liq.Chromatogr. Relat. Technol., 25, 2767, 2002.

60. Li, J., Hu, Y., Carr, P.W., Fast separations atelevated temperatures on polybutadiene-coated zirconiareversed-phase material. Anal. Chem., 69(19), 3884, 1997.

61. Braun, J.M., Ines, W.L., Characterization of insitu-generated ionene micellar mimetic stationary phasefor liquid chromatography. Anal. Lett., 33, 2983, 2000.

62. Brown, J.N., Peake, B.M., Determination ofcolloidally-associated polycyclic aromatic hydrocarbons(PAHs) in fresh water using C18 solid phase extractiondisks. Anal. Chim. Acta, 486, 159, 2003.

63. Telli-Karakoc, F., Tolun, L., Henkelmann, B., Klimm,C., Okay, O., Schramm, K.W., Polycyclic aromatichydrocarbons (PAHs) and polychlorinatedbiphenyls (PCBs)distributions in the Bay of Marmara Sea: Izmit Bay.Environ. Pollut., 119, 383, 2002.

64. Kondo, T., Yang, Y., Lamm, L., Separation of polar andnon-polar analytes using dimethyl sulfoxidemodi�edsubcritical water. Anal. Chim. Acta, 460(2), 185, 2000.

65. Kuusimäki, L., Peltonen, Y., Kyyro, E., Mutanen, P.,Peltonen, K., Savela, K., Exposure of garbage truckdrivers and maintenance personnel at a waste handlingcentre to polycyclic aromatic hydrocarbons derived fromdiesel exhaust. J. Environ. Monit., 4, 722, 2002.

66. Kishikawa, N., Wada, M., Kuroda, N., Akiyama, S.,Nakashima, K., Determination of polycyclic aromatichydrocarbons in milk samples by high-performance liquidchromatography with �uorescence detection. J. Chromatogr.B, 789, 257, 2003.

67. Jones, A. Yang, Y., Separation of nonpolar analytesusing methanol-water mixtures at elevated temperatures.Anal. Chim. Acta, 485, 51, 2003.

68. Chen, B.H., Wang, C.Y., Chiu, C.P. Evaluation ofanalysis of polycyclic aromatic hydrocarbons in meatproducts by liquid chromatography. J. Agric. Food Chem.,44(8), 2244, 1996.

69. Chen, Y. et al., Emission factors for carbonaceousparticles and polycyclic aromatic hydrocarbons fromresidential coal combustion in China. Environ. Sci.Technol., 39(6), 1861, 2005.

70. Fernández-Pérez, V., Luque de Castro, M.D., Micelleformation for improvement of continuous subcritical waterextraction of polycyclic aromatic hydrocarbons in soilprior to high-performance liquid chromatography–�uorescencedetection. J. Chromatogr. A, 902(2), 357, 2000.

71. McGowin, A.E., Adom, K.K., Obubuafo, A.K., Screening ofcompost for PAHs and pesticides using static subcriticalwater extraction. Chemosphere, 45, 857, 2000.

72. Okuda, T. et al., Polycyclic aromatic hydrocarbons(PAHs) in the aerosol in Beijing, China, measured byaminopropylsilane chemically-bonded stationary-phase columnchromatography and HPLC/�uorescence detection. Chemosphere,65, 427, 2006.

73. Sun, F., Littlejohn, D., Gibson, M.D., Ultrasonicationextraction and solid phase extraction clean-up fordetermination of US EPA 16 priority pollutant polycyclicaromatic hydrocarbons in soils by reversedphase liquidchromatography with ultraviolet absorption detection. Anal.Chim. Acta, 364(1–3), 1, 1998.

74. Tolun, L., Martens, D., Okay, O.S., Schramm, K.W.,Polycyclic aromatic hydrocarbon contamination in coastalsediments of the Izmit Bay (Marmara Sea): Case studiesbefore and after the Izmit earthquake. Environ. Int.,32(6), 758, 2006.

75. Pandit, G.G., Srivastava, P.K., Mohan, A.M., Monitoringof indoor volatile organic compounds and polycyclicaromatic hydrocarbons arising from kerosene cooking fuel.Sci. Tot. Environ., 279(1), 159, 2001.

76. Librando, V., Hutzinger, O., Tringali, G., Aresta M.,2004. Supercritical �uid extraction of polycyclic aromatichydrocarbons from marine sediments and soil samples.Chemosphere, 54(8), 1189, 2004.

77. Forry, S.P., Wightman. M., Electrogeneratedchemiluminescence detection in reversed-phase liquidchromatography. Anal. Chem., 74(3), 528, 2002.

78. Marvin, C.H., Smith, R.W., Bryant, D.W., McCarry, B.E.,Analysis of high-molecular-mass polycyclic aromatichydrocarbons in environmental samples using liquidchromatography–atmospheric pressure chemical ionizationmass spectrometry J. Chromatogr. A., 863(1), 13, 1999.

79. Copper, C.L., Analysis of intermediates from polycyclic

aromatic hydrocarbon biodegradation. J. Sep. Sci., 26(18),1683, 2003.

80. Belin, G.K., Erim, F.B., Gülaçar, F.O., Capillaryelectrokinetic separation of polycyclic aromatichydrocarbons using cetylpyridinium bromide. Polycycl.Aromat. Compd., 24, 343, 2004.

81. Yang, L. et al., Gold nanoparticle-modi�ed etchedcapillaries for open-tubular capillaryelectrochromatography. Anal. Chem., 77, 1840, 2005.

82. Hu, C., Chiu, T., Hsieh, M., Chang, H., 2007.Separation and stacking of polycyclic aromatic hydrocarbonby micellar electrokinetic chromatography, in: Anyakora C.(Ed.), Environmental Impact of Polynuclear AromaticHydrocarbons, Research Signpost, Kerala, pp. 379–401.

83. Karavan, G. Erim, F.B., Separation of polynucleararomatic hydrocarbons with sodium dodecylbenzenesulphate inelectrokinetic chromatography. J. Chromatogr. A, 949, 301,2002.

84. Belin, G.K., Erim, F.B., Gülaçar, F.O., 2006. Effect ofcetyltrimethylammonium bromide on the migration ofpolyaromatic hydrocarbons in capillary electrokineticchromatography. Talanta, 69, 596, 2006.

85. Muijselaar, P.G., Verhelst, H.B., Claessens, H.A.,Cramers, C.A., Separation of hydrophobic compounds byelectrokinetic chromatography with tetra-alkylammoniumions. J. Chromatogr. A, 764(2), 323, 1997.

86. Koch, J.T. et al., Hydrophobic interactionelectrokinetic chromatography for the separation ofpolycyclic aromatic hydrocarbons using non-aqueousmatrices. J. Chromatogr. A, 914, 223, 2001.

87. Wang, G., Geng, L., Two-dimensional �uorescencecorrelation in capillary electrophoresis for peakresolution and species identi�cation. Anal. Chem., 72(19),4531, 2000.

88. Akbay, C., Shamsi, S.A., Warner, I.M.,Cyclodextrin-modi�ed electrokinetic chromatography:Separation of twelve mono-methylbenz[a]anthracene isomers.J. Chromatogr. A, 910(1), 147, 2001.

89. Ding, W., Fritz, J.S., Separation of neutral compoundsand basic drugs by capillary electrophoresis in acidic

solution using laurylpoly(oxyethylene) sulfate as anadditive. Anal. Chem., 70(9), 1859, 1998.

90. Smith, C.J., Grainger, J., Patterson Jr., D.G.,Separation of polycyclic aromatic hydrocarbon metabolitesby γ-cyclodextrin-modi�ed micellar electrokineticchromatography with laser-induced �uorescence detection.J. Chromatogr. A, 803(1–2), 241, 1998.

91. Heaton, D.M. et al., Rapid separation of polycyclicaromatic hydrocarbons by packed column supercritical �uidchromatography. Chromatographia, 39, 607, 1994.

92. Bernal, J.L. et al., Determination of polycyclicaromatic hydrocarbons in waters by use of supercriticaluid chromatography coupled on-line to solid-phaseextraction with disks, J. Chromatogr. A, 778, 321, 1997.

93. Lesellier, E., Extraction and analysis of polycyclicaromatic hydrocarbons (PAHs) by solid phasemicroextraction/supercritical �uid chromatography(SPME/SFC). Analusis, 27, 363, 1999. Section XI Surfactantsand Petroleum Hydrocarbon Analysis

29 Chapter 29 - Surfactants

Abrar S. and Trathnigg B. 2010. Separation of nonionicsurfactants according to functionality by hydrophilicinteraction chromatography and comprehensivetwo-dimensional liquid chromatography. J. Chromatogr. A1217: 8222–8229.

Barco M., Planas C., Palacios O., Ventura F., River J., andCaixach J. 2003. Simultaneous quantitative analysis ofanionic, cationic, and nonionic surfactants in water byelectrospray ionization mass spectrometry with �owinjection analysis. Anal. Chem. 75: 5129–5136.

Bernabé-Zafón V., Torres-Lapasió J.R., Ortega-Gadea S.,Simó-Alfonso E.F., and Ramis-Ramos G. 2005. Capillaryelectrophoresis enhanced by automatic two-way backgroundcorrection using cubic smoothing splines and multivariatedata analysis applied to the characterisation of mixturesof surfactants. J. Chromatogr. A 1065: 301–313.

Cantero M., Rubio, S., and Pérez-Bendito D. 2005.Determination of nonionic polyethoxylated surfactants inwastewater and river water by mixed hemimicelle extractionand liquid chromatography–ion trap mass spectrometry. J.Chromatogr. A 1067: 161–170.

Céspedes R., Lacorte S., Ginebreda A., and Barceló D. 2008.Occurrence and fate of alkylphenols and alkylphenolethoxylates in sewage treatment plants and impact onreceiving waters along the Ter river. Environ. Pollut.153: 384–392.

Clara M., Scharf S., Scheffknecht C., and Gans O. 2007.Occurrence of selected surfactants in untreated andtreated water. Water Res. 41: 4339–4348.

Eganhouse R.P., Pontolillo J., Gaines R.B. et al. 2009.Isomer-speci�c determination of 4-nonylphenols usingcomprehensive two-dimensional gaschromatography/time-of-�ight mass spectrometry. Environ.Sci. Technol. 43: 9306–9313.

Frömel T. and Knepper T.P. 2008. Mass spectrometry as anindispensable tool for studies of biodegradation ofsurfactants. Trends Anal. Chem. 27: 1091–1106.

Gómez V., Ferreres L., Pocurull E., and Borrull F. 2011.Determination of nonionic and anionic surfactants inenvironmental water matrices. Talanta 84: 859–866.

González S., Petrovic M., and Barceló D. 2007a. Advancedliquid chromatography–mass spectrometry (LC– MS) methodsapplied to wastewater removal and the fate of surfactantsin the environment. Trends Anal. Chem. 26: 116–124.

González S., Petrovic M., and Barceló D. 2007b. Removal ofa broad range of surfactants from municipal wastewater.Comparison between membrane bioreactor and conventionalactivated sludge treatment. Chemosphere 67: 335–343.

Guan Z., Huang Y., and Wang W. 2008. Carboxyl modi�edmultiwalled carbon nanotubes as solid-phase extractionadsorbents combined with high-performance liquidchromatography for analysis of linear alkylbenzenesulfonates. Anal. Chim. Acta 627: 225–231.

Hu Y.-Y., He Y.-Z., Qian L.-L., and Wang L. 2005. Onlineion pair solid-phase extraction of electrokineticmulticommutation for determination of trace anionsurfactants in pond water. Anal. Chim. Acta 536: 251–257.

Hu J. and Yu J. 2010. An LC–MS–MS method for thedetermination of per�uorinated surfactants in environmentalmatrices. Chromatographia 72: 411–416.

Khaled E., Mohamed G.G., and Awad T. 2008. Disposalscreen-printed carbon paste electrodes for thepotentiometric titration of surfactants. Sens. Actuator135: 74–80.

Lara-Martín P.A., Gómez-Parra A., and González-Mazo E.2006. Development of a method for the simultaneous analysisof anionic and nonionic surfactants and their carboxylatedmetabolites in environmental samples by mixed-mode liquidchromatography–mass spectrometry. J. Chromatogr. A 1137:188–197.

Lara-Martín P.A., Gómez-Parra A., and González-Mazo E.2008. Reactivity and fate of synthetic surfactants inaquatic environments. Trends Anal. Chem. 27: 684–695.

Lara-Martín P.A., González-Mazo E., and Brownawell B.J.2011. Multiresidue method for the analysis of syntheticsurfactants and their degradation metabolites in aquaticsystems by liquid chromatography–timeof-�ight–massspectrometry. J. Chromatog. A 1218: 4799–4807.

Lavorante A.F., Morales-Rubio A., de la Guardia M., andReis B.F. 2007. A multicommmuted stop-�ow system employing

LEDs-based photometer for the sequential determination ofanionic and cationic surfactants in water. Anal. Chim.Acta 600: 58–65.

Levine L.H., Garland J.L., and Johnson J.V. 2005.Simultaneous quanti�cation of polydispersed anionic,amphoteric and nonionic surfactants in simulated wastewatersamples using C 18 high-performance liquidchromatography–quadrupole ion-trap mass spectrometry. J.Chromatogr. A 1062: 217–225.

Lian J., Liu J.X., and Wei Y.S. 2009. Fate of nonylphenolpolyethoxylates and their metabolites in four Beijingwastewater treatment plants. Sci. Total Environ. 407:4261–4268.

Lizondo-Sabater J., Martínez-Máñez R., Sancenón F., SeguíM.J., and Soto J. 2008. Ion-selective electrodes foranionic surfactants using a cyclam derivative as ionophore.Talanta 75: 317–325.

Loos R., Wollgast J., Huber T., and Hanke G. 2007. Polarherbicides, pharmaceutical products,per�uorooctanesulfonate (PFOS), per�uorooctanoate (PFOA),and nonylphenol and its carboxylates and ethoxylates insurface and tap waters around Lake Maggiore in NorthernItaly. Anal. Bioanal. Chem. 387: 1469–1478.

Luque N., Rubio S., and Pérez-Bendito D. 2007. Use ofcoacervates for the on-site extraction/preservation ofpolycyclic aromatic hydrocarbons and benzalkoniumsurfactants. Anal. Chim. Acta 584: 181–188.

Madunic-Cacic D., Sak-Bosnar M., Samardzic M., and GabaricZ. 2009. Determination of anionic surfactants inindustrial ef�uents using a new highly sensitivesurfactant-selective sensor. Sensor Lett. 7: 50–58.

Martínez-Barrachina S. and del Valle M. 2006. Use of asolid-phase extraction disk module in a FI system for theautomated preconcentration and determination of surfactantsusing potentiometric detection. Microchem. J. 83: 48–54.

Murakami M., Kuroda K., Sato N., Fukushi T., Takizawa S.,and Takada H. 2009. Groundwater pollution by per�uorinatedsurfactants in Tokyo. Environ. Sci. Technol. 43: 3480–3486.

Norton D., Zheng J., Danielson N.D., and Shamsi S.A. 2005.Capillary electrochromatography–mass spectrometry ofzwitterionic surfactants. Anal. Chem. 77: 6874–6886.

Norton D. and Shamsi S.A. 2007. Capillaryelectrochromatography–mass spectrometry of nonionicsurfactants. Anal. Chem. 79: 9459–9470.

Núñez L., Wiedmer S.K., Parshintsev J. et al. 2009.Determination of nonylphenol and nonylphenol ethoxylatesin wastewater using MEKC. J. Sep. Sci. 32: 2109–2116.

Passos M.L.C., Saraiva M.L.M.F.S., and Lima J.F.C. 2005.Application of sequential analysis to the determination ofcationic surfactants based on the sensitizedmolybdenum–bromopyrogallol red reaction. Anal. Sci. 21:1509–1514.

Pedraza A., Sicilia M.D., Rubio S., and Pérez-Bendito D.2007. Assessment of the surfactant–dye binding degreemethod as an alternative to the methylene blue method forthe determination of anionic surfactants in aqueousenvironmental samples. Anal. Chim. Acta 588: 252–260.

Peng X.-T., Shi Z.-G., and Feng Y.-Q. 2011. Rapid andhigh-throughput determination of cationic surfactants inenvironmental water samples by automated online polymermonolith microextraction coupled to high performanceliquid chromatography–mass spectrometry. J. Chromatogr. A1218: 3588–3594.

Quiñones O. and Snyder S.A. 2009. Occurrence ofper�uoroalkyl carboxylates and sulfonates in drinking waterutilities and related waters from the United States.Environ. Sci. Technol. 43: 9089–9095.

Richardson S. and Ternes T.A. 2011. Water analysis:Emerging contaminants and current issues. Anal. Chem. 83:4614–4648.

Rico-Rico A., Droge S.T.J., Widmer D., and Hermenss J.L.M.2009. Freely dissolved concentrations of anionicsurfactants in seawater solutions; optimization of thenondepletive solid-phase microextraction method andapplication to linear alkylbenzene sulfonates. J.Chromatogr. A 1216: 2996–3002.

Sánchez J. and del Valle M. 2005. Determination of anionicsurfactants employing potentiometric sensors—A review.Crit. Rev. Anal. Chem. 35: 15–29.

Sánchez-Martínez M.L., Aguilar-Caballos M.P., Eremin S.A.,and González-Hens A. 2007. Low-wavelength �uorescence

polarization immunoassay for surfactant determination.Talanta 72: 243–248.

Schröder H.F. and Meesters R.J.W. 2005. Stability ofuorinated surfactants in advanced oxidation processes— Afollow up of degradation products using �ow injection–massspectrometry, liquid chromatography– mass spectrometry andliquid chromatography–multiple stage mass spectrometry. J.Chromatogr. A 1082: 110–119.

Shrivas K. and Wu H.-F. 2007. A rapid, sensitive andeffective quantitative method for simultaneousdetermination of cationic surfactant mixtures from riverand municipal wastewater by direct combination ofsingledrop microextraction with AP–MALDI mass spectrometry.J. Mass Spectrom. 42: 1637–1644.

Shrivas K. and Wu H.-F. 2008. Oxidized multiwalled carbonnanotubes for quantitative determination of cationicsurfactants in water samples using atmospheric pressurematrix-assisted laser desorption/ionization massspectrometry. Anal. Chim. Acta 628: 198–203.

Stenholm A., Homlström S., Hjärthag S., and Lind O. 2009.Development of a high-performance liquidchromatography–�uorescence detection method for analyzingnonylphenol/dinonylphenol–polyethoxylatebased phosphateesters. J. Chromatogr. A 1216: 6974–6977.

Uzoukwu B.A. and Nollet L.M.L. 2000. Analysis ofsurfactants. Handbook of Water Analysis, ed., L.M.L.Nollet, pp. 767–783. New York: Marcel Dekker.

Waldhoff H. and Spilker R. 2005. Handbook of Detergents.New York: Marcel Dekker.

Wangkarn S., Soisungnoen P., Rayanakorn M., and Grudpan K.2005. Determination of linear alkylbenzene sulfonates inwater samples by liquid chromatography–UV detection andcon�rmation by liquid chromatography–mass spectrometry.Talanta 67: 686–695.

Weremiuk A.M., Gerstmann S., and Frank H. 2006.Quantitative determination of per�uorinated surfactants inwater by LC–ESI–MS/MS. J. Sep. Sci. 29: 2251–2255.

Yokoyama Y., Okabe T., Kubo H., and Sato H. 2005.Spectrophotometric determination of polyoxyethylenenonionic surfactants in groundwaters using triple-stagesolid-phase extraction followed by an improved ferric

thiocyanate complexation method. Microchim. Acta 149:287–293.

Yokoyama Y., Kubo H., and Sato H. 2008. Highly sensitivespectrophotometric determination of cationic surfactantsin groundwaters as their Cu(II)-TPPS aggregates preceded bysolid-phase extraction. Talanta 77: 667–672.

Zgola-Grzeskowiak A., Grzeskowiak T., Rydlichowski R., andLukaszewski Z. 2009. Determination of nonylphenol andshort-chained nonylphenol ethoxylates in drain water froman agricultural area. Chemosphere 75: 513–518.

Zhang R., Nakajima H., Soh N. et al. 2007. Sequentialinjection chemiluminiscence immunoassay for nonionicsurfactants by using magnetic microbeads. Anal. Chim. Acta600: 105–113.

30 Chapter 30 - Petroleum HydrocarbonAnalysis

1. Boehm, P. D., Dougles, G. S., Burns, W. A., Mankiewicz,P. J., Page, D. S., and Bence, E. 1997. Application ofpetroleum hydrocarbon chemical �ngerprinting and allocationtechniques after the Exxon Valdez oil spill. MarinePollution Bulletin 34(8): 599–613.

2. Bernabeu, A. M., Rey, D., Rubio, B., Vilas, F.,Domínguez, C., Bayona, J. M., and Albaigés, J. 2009.Assessment of cleanup needs of oiled sandy beaches: Lessonsfrom the Prestige oil spill. Environmental Science &Technology 43(7): 2470–2475.

3. Fernández-Varela, R., Andrade, J. M., Muniategui, S.,Prada, D., and Ramírez-Villalobos, F. 2009. The comparisonof two heavy fuel oils in composition and weatheringpattern, based on IR, GC-FID and GC-MS analyses:Application to the Prestige wreackage. Water Research43(4): 1015–1026.

4. Wang, Z. and Fingas, M. 2006. Oil and petroleum productngerprinting analysis by gas chromatographic techniques. InChromatographic Analysis of the Environment, Third Edition;Nollet, L. M. L., Ed.; CRC Press/Taylor & Francis: BocaRaton, London, New York, pp. 1027–1101.

5. Wardlaw, G. D., Arey, J. S., Reddy, C. M., Nelson, R.K., Ventura, G. T., and Valentine, D. L. 2008.Disentangling oil weathering at a marine seep using GCxGC:Broad metabolic speci�city accompanies subsurfacepetroleum biodegradation. Environmental Science &Technology 42(19): 7166–7173.

6. Bauer, S. J., Ehgartner, B. L., and Neal, J. T. 1997.Geotechnical studies associated with decommisioning thestrategic petroleum reserve facility at Weeks Island,Louisiana: A case history. International Journal of RockMechanics and Mining Sciences 34(3–4): 25.

7. Autin, W. J. 2002. Landscape evolution of the FiveIslands of south Louisiana: Scienti�c policy and salt domeutilization and management. Geomorphology 47(2–4): 227–244.

8. Fredrich, J. T., Fossum, A. F., and Hickman, R. J. 2007.Mineralogy of deepwater Gulf of Mexico salt formations andimplications for constitutive behavior. Journal ofPetroleum Science and Engineering 57(3–4): 354–374.

9. Schubert, F., Diamond, L. W., and Tóth, T. M. 2007.Fluid-inclusion evidence of petroleum migration through aburied metamorphic dome in the Pannonian Basin, Hungary.Chemical Geology 244(3–4): 357–381.

10. Todd, G. D., Chessin, R. L., and Colman, J. 1999.ATSDR: Toxicological pro�le for total petroleumhydrocarbons (TPH). Atlanta, U.S. Department of Health andHuman Services.

11. Brassingtona, K. J., Hougha, R. L., Patonb, G. I.,Semplec, K. T., Risdond, G. C., Crossleye, J., Hayf, I.,Askarig, K., and Pollarda, S. J. T. 2007. Weatheredhydrocarbon wastes: A risk management primer. CriticalReviews in Environmental Science and Technology 37(3):199–232.

12. Fingas, M. F. Ed. 2011. Introduction to oil chemicalanalysis. In Oil Spill Science and Technology: Prevention,Response, and Cleanup, Elsevier/Gulf Professional Pub.:Burlington, MA, pp. 87–109.

13. Indiana Department of Environmental Management. 2006.Total petroleum hydrocarbons. In RISC Technical Guide,15th June 2006 (revised 14th June 2010); pp. 8-1–8-15.

14. Wang, Z., Fingas, M., and Page, D. S. 1999. Oil spillidenti�cation. Journal of Chromatography A 843(1– 2):369–411.

15. AlSalka, Y., Karabet, F., and Hashem, S. 2011.Evaluation of electrochemical processes for the removal ofseveral target aromatic hydrocarbons from petroleumcontaminated water. Journal of Environmental Monitoring13(3): 605–613.

16. Liang, S. H., Kao, C. M., Kuo, Y. C., and Chen, K. F.2011. Application of persulfate-releasing barrier toremediate MTBE and benzene contaminated groundwater.Journal of Hazardous Materials 185(2–3): 1162–1168.

17. Schoenmakers, P. J., Oomen, J. L. M. M., Blomberg, J.,Genuit, W., and van Velzen, G. 2000. Comparison ofcomprehensive two-dimensional gas chromatography and gaschromatography–mass spectrometry for the characterizationof complex hydrocarbon mixtures. Journal of ChromatographyA 892(1–2): 29–46.

18. Herod, A. A. 2010. Limitations of mass spectrometricmethods for the characterization of polydisperse

materials. Rapid Communications in Mass Spectrometry24(17): 2507–2519.

19. Wang, Z. and Fingas, M. 1997. Developments in theanalysis of petroleum hydrocarbons in oils, petroleumproducts and oil-spill-related environmental samples by gaschromatography. Journal of Chromatography A 774(1–2):51–78.

20. Daling, P. S., Faksness, L. G., Hansen, A. B., andStout, S. A. 2002. Improved and standardized methodologyfor oil spill �ngerprinting. Environmental Forensics3(3–4): 263–278.

21. Wang, Z., Yang, C., Yang, Z., Sun, J., Hollebone, B.,Brown, C., and Landriault, M. 2011. Forensic �ngerprintingand source identi�cation of the 2009 Sarnia (Ontario) oilspill. Journal of Environmental Monitoring 13(11):3004–3017.

22. Christensen, J. H., Tomasi, G., and Hansen, A. B. 2005.Chemical �ngerprinting of petroleum biomarkers using timewarping and PCA. Environmental Science & Technology 39(1):255–260.

23. Abbas, O., Rebufa, C., Dupuy, N., Permanyer, A., andKister, J. 2008. Assessing petroleum oils biodegradation bychemometric analysis of spectroscopic data. Talanta 75(4):857–871.

24. Dellavedove, P., Vitelli, M., Ferraro, V., Di Toro, M.,and Santoro, M. 2006. Application of enhanced large volumeinjection; an approach to the analysis of petroleumhydrocarbons in water. Chromatographia 63(1/2): 73–76.

25. Wang, Z. and Fingas, M. F. 2003. Development of oilhydrocarbon �ngerprinting and identi�cation techniques.Marine Pollution Bulletin 47: 423–452.

26. CEN/TR 15522-2. 2006. Oil spill identi�cation.Waterborne petroleum and petroleum products. Part 2:Analytical methodology and interpretation of results. CEN,Technical Report TC/BT TF 120 WI CSS27003.

27. Fernández-Varela, R., Andrade, J. M., Muniategui, S.,Prada, D., and Ramírez-Villalobos, F. 2008. Identi�cationof fuel samples from the Prestige wreckage by patternrecognition methods. Marine Pollution Bulletin 56(2):335–347.

28. Faksness, L. G., Daling, P. S., and Hansen, A. B. 2002.CEN/BT/TF 120 Oil Spill Identi�cation Summary Report:Round Robin Test Series B. SINTEF Report STF66 A02038.SINTEF Report STF66 A02038.

29. Christensen, J. H. and Tomasi, G. 2007. Practicalaspects of chemometrics for oil spill �ngerprinting.Journal of Chromatography A 1169(1–2): 1–22.

30. EPA Method 3510. C. Separatoty funnel liquid−liquidextraction. Revision 3.1996.

31. Massachusetts Department of Environmental ProtectionMethod for the determination of extractable petroleumhydrocarbons (EPH). 2004.

32. Saravanabhavan, G., Helferty, A., Hodson, P. V., andBrown, R. S. 2007. A multi-dimensional high performanceliquid chromatographic method for �ngerprinting polycyclicaromatic hydrocarbons and their alkyl-homologs in theheavy gas oil fraction of Alaskan North Slope crude.Journal of Chromatography A 1156(1–2): 124–133.

33. Barman, B. N., Cebolla, V. L., and Membrado, L. 2000.Chromatographic techniques for petroleum and relatedproducts. Critical Reviews in Analytical Chemistry 30(2–3):75–120.

34. Kamínski, M., Kartanowicz, R., Gilgenast, E., andNamieśnik, J. 2005. High-performance liquid chromatographyin group-type separation and technical or process analyticsof petroleum products. Critical Reviews in AnalyticalChemistry 35(3): 193–216.

35. English, C. 2006. Optimizing the analysis of volatileorganic compounds. http://www.restek.com/fantasia/pdfcache/59887a.pdf.

36. Ruiz, M. D., Bustamante, I. T., Dago, A., Hernández,N., Núñez, A. C., and Porro, D. 2010. A multivariatecalibration approach for determination of petroleumhydrocarbons in water by means of IR spectroscopy. Journalof Chemometrics 24(7–8): 444–447.

37. prEn 14039:2004:E. 2004. Characterization ofwaste-determination of hydrocarbon content in the range ofC10 to C40 by gas chromatography. European Committee forStandardization, Brussels.

38. Szekeres, Z., Eke, Z., Rikker, T., and Torkos, K. 2009.

Analysis of hydrocarbon contamination withmembrane-assisted solvent extraction: Comparison ofagitation and sonication methods. Journal ofChromatography A 1216(41): 6964–6969.

39. EPA Method 602. Purgable aromatics. 2006.

40. EPA Method 8015-B Non-halogenated organics usingGC-FID. Revision 2. 1996.

41. EPA Method 8020 A. Aromatic volatile organic by gaschromatography. Revision 1. 1994.

42. Katsumata, P. T. and Kastenberg, W. E. 1996. Fate andtransport of methanol fuel from spills and leaks.Hazardous Waste & Hazardous Materials 13(4): 485–498.

43. Wang, Z., Li, K., Fingas, M., Sigouin, L., and Ménard,L. 2002. Characterization and source identi�cation ofhydrocarbons in water samples using multiple analyticaltechniques. Journal of Chromatography A 971(1–2): 173–184.

44. Bianchi, F., Careri, M., Marengo, E., and Musci, M.2002. Use of experimental design for the purge-andtrap-gaschromatography-mass spectrometry determination of methyltert.-butyl ether, tert.-butyl alcohol and BTEX ingroundwater at trace level. Journal of Chromatography A975(1): 113–121.

45. Aguilera-Herrador, E., Lucena, R., Cárdenas, S., andValcárcel, M. 2008. Direct coupling of ionic liquid basedsingle-drop microextraction and GC/MS. Analytical Chemistry80: 793–800.

46. Zwank, L., Schmidt, T. C., Haderlein, S. B., and Berg,M. 2002. Simultaneous determination of fuel oxygenates andBTEX using direct aqueous injection gas chromatography massspectrometry (DAI-GC/ MS). Environmental Science &Technology 36(9): 2054–2059.

47. Farhadian, M., Duchez, D., Vachelard, C., and Larroche,C. 2008. Monoaromatics removal from polluted water throughbioreactors—A review. Water Research 42(6–7): 1325–1341.

48. Bercaru, O., Ricci, M., Ulberth, F., Brunori, C.,Morabito, R., Ipolyi, I., Sahuquillo, A., and Rosenberg, E.2009. Challenges in preparing water-matrix referencematerials for PAHs and pesticides: Examples from SWIFT-WFDpro�ciency-testing schemes. TrAC Trends in AnalyticalChemistry 28(9): 1073–1081.

49. Poster, D., Schantz, M., Sander, L., and Wise, S. 2006.Analysis of polycyclic aromatic hydrocarbons (PAHs) inenvironmental samples: A critical review of gaschromatographic (GC) methods. Analytical and BioanalyticalChemistry 386(4): 859–881.

50. Ballesteros-Gómez, A., Rubio, S., and Pérez-Bendito, D.2008. Determination of priority carcinogenic polycyclicaromatic hydrocarbons in wastewater and surface water bycoacervative extraction and liquidchromatography−�uorimetry. Journal of Chromatography A1203(2): 168–176.

51. Wang, Z., Hollebone, B. P., Fingas, M., Fieldhouse, B.,Sigouin, L., Landriault, M., Smith, P., Noonan, J., andThouin, G. 2002. Development of a Composition Database forSelected Multicomponent Oil. USEPA Report No. 600-R03-072.

52. Pfannkuche, J., Lubecki, L., Schmidt, H., Kowalewska,G., and Kronfeldt, H. D. 2012. The use of surface-enhancedRaman scattering (SERS) for detection of PAHs in the Gulfof Gdańsk (Baltic Sea). Marine Pollution Bulletin 64(3):614–626.

53. Tobiszewski, M. and Namieśnik, J. 2012. PAH diagnosticratios for the identi�cation of pollution emission sources.Environmental Pollution 162: 110–119.

54. Tobiszewski, M., Tsakovski, S., Simeonov, V., andNamieśnik, J. 2010. Surface water quality assessment bythe use of combination of multivariate statisticalclassi�cation and expert information. Chemosphere 80(7):740–746.

55. Yunker, M. B., Macdonald, R. W., Vingarzan, R.,Mitchell, R. H., Goyette, D., and Sylvestre, S. 2002. PAHsin the Fraser River basin: A critical appraisal of PAHratios as indicators of PAH source and composition. OrganicGeochemistry 33(4): 489–515.

56. Fang, M. D., Hsieh, P. C., Ko, F. C., Baker, J. E., andLee, C. L. 2007. Sources and distribution of polycyclicaromatic hydrocarbons in the sediments of Kaoping river andsubmarine canyon system, Taiwan. Marine Pollution Bulletin54(8): 1179–1189.

57. Wang, L., Yang, Z., Niu, J., and Wang, J. 2009.Characterization, ecological risk assessment and sourcediagnostics of polycyclic aromatic hydrocarbons in water

column of the Yellow River Delta, one of the most plentybiodiversity zones in the world. Journal of HazardousMaterials 169(1–3): 460–465.

58. Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y.,Ternes, T. A., and Hofmann, T. 2008. Characterization andsource identi�cation of polycyclic aromatic hydrocarbons(PAHs) in river bank soils. Chemosphere 72(10): 1594–1601.

59. Jiang, J. J., Lee, C. L., Fang, M. D., and Liu, J. T.2009. Polycyclic aromatic hydrocarbons in coastalsediments of southwest Taiwan: An appraisal of diagnosticratios in source recognition. Marine Pollution Bulletin58(5): 752–760.

60. Budzinski, H., Jones, I., Bellocq, J., Piérard, C., andGarrigues, P. 1997. Evaluation of sediment contamination bypolycyclic aromatic hydrocarbons in the Gironde estuary.Marine Chemistry 58(1–2): 85–97.

61. Zhang, L., Dong, L., Ren, L., Shi, S., Zhou, L., Zhang,T., Huang, Y. 2012. Concentration and source identi�cationof polycyclic aromatic hydrocarbons and phthalic acidesters in the surface water of the Yangtze River Delta,China. Journal of Environmental Sciences 24(2): 335–342.

62. Ravindra, K., Sokhi, R., Van Grieken, R. 2008.Atmospheric polycyclic aromatic hydrocarbons: Sourceattribution, emission factors and regulation. AtmosphericEnvironment 42(13): 2895–2921.

63. Katsoyiannis, A., Terzi, E., Cai, Q. Y. 2007. On theuse of PAH molecular diagnostic ratios in sewage sludge forthe understanding of the PAH sources. Is this useappropriate? Chemosphere 69(8): 1337–1339.

64. Schmidt, T. C. 2003. Analysis of methyl tert-butylether (MTBE) and tert-butyl alcohol (TBA) in ground andsurface water. TrAC Trends in Analytical Chemistry 22(10):776–784.

65. Richardson, S. D. and Ternes, T. A. 2005. Wateranalysis: Emerging contaminants and current issues. Anal.Chem. 77(12): 3807–3838.

66. Deeb, R. S., Chu, K.-H., Shih, T., Linder, S., Suffet,I., Kavanaugh, M. C., Alvarez-Cohen, L. 2003. MTBE andother oxigenates: Environmental sources, analysis,occurrence and treatment. Environmental EngineeringScience 20(5): 433–447.

67. Oro, N. E., and Lucy, C. A. 2011. High performanceliquid chromatographic separations of gas oil samples andtheir hydrotreated products using commercial normal phases.Journal of Chromatography A 1218(43): 7788–7795.

68. Kerambrun, E., Le Floch, S., Sanchez, W., Thomas Guyon,H., Meziane, T., Henry, F., Amara, R. 2012. Responses ofjuvenile sea bass, Dicentrarchus labrax, exposed to acuteconcentrations of crude oil, as assessed by molecular andphysiological biomarkers. Chemosphere 87(7): 692–702.

69. Wang, Z., Stout, S. A., Fingas, M. 2006. Forensicngerprinting of biomarkers for oil spill characterizationand source identi�cation. Environmental Forensic 7:105–146. Prentice Hall, Englewood Cliffs, NJ.

70. Peters, K. E. and Moldowan, J. W. 1993. The BiomarkerGuide: Interpreting Molecular Fossils in Petroleum andAncient Sediments. Prentice Hall, Englewood Cliffs, NJ.

71. Wenger, L., Davis, C., Isaksen, G. 2002. Multiplecontrols on petroleum biodegradation and impact on oilquality. SPE Reservoir Evaluation and Engineering 5:375–383.

72. Mao, D., Lookman, R., Weghe, H. V. D., Weltens, R.,Vanermen, G., Brucker, N. D., Diels, L. 2009. CombiningHPLC-GCXGC, GCXGC/ToF-MS, and selected ecotoxicity assaysfor detailed monitoring of petroleum hydrocarbondegradation in soil and leaching water. EnvironmentalScience & Technology 43(20): 7651–7657.

73. Blumberg, L. and Klee, M. S. 2010. A critical look atthe de�nition of multidimensional separations. Journal ofChromatography A 1217(1): 99–103.

74. Marriott, P. and Shellie, R. 2002. Principles andapplications of comprehensive two-dimensional gaschromatography. TrAC Trends in Analytical Chemistry 21(9 +10): 573–583.

75. Ryan, D., Morrison, P., Marriott, P. 2005.Orthogonality considerations in comprehensive two-dimensional gas chromatography. Journal of Chromatography A1071(1–2): 47–53.

76. Liu, J., Khaing Oo, M. K., Reddy, K., Gianchandani, Y.B., Schultz, J. C., Appel, H. M., Fan, X. 2012. Adaptivetwo-dimensional microgas chromatography. Analytical

Chemistry 84(9): 4214–4220.

77. Adahchour, M., Beens, J., Vreuls, R. J. J., Brinkman,U. A. T. 2006. Recent developments in comprehensivetwo-dimensional gas chromatography (GC × GC): I.Introduction and instrumental set-up. TrAC Trends inAnalytical Chemistry 25(5): 438–454.

78. Marriott, P. J., Chin, S. T., Maikhunthod, B., Schmarr,H. G., Bieri, S. 2012. Multidimensional gas chromatography.TrAC Trends in Analytical Chemistry 34: 1–21.

79. Nizio, K. D., McGinitie, T. M., Harynuk, J. J. 2012.Comprehensive multidimensional separations for theanalysis of petroleum. Journal of Chromatography A 1255:12–23.

80. Bertoncini, F., Vendeuvre, C., Thiébaut, D. 2005.Interest and applications of multidimensional gaschromatography for trace analysis in the petroleumindustry. Oil & Gas Science and Technology–Rev.IFP 60:937–950.

81. Blomberg, J., Schoenmakers, P. J., Beens, J., Tijssen,R. 1997. Comprehensive two-dimensional gas chromatography(GC × GC) and its applicability to the characterization ofcomplex (petrochemical) mixtures. Journal of HighResolution Chromatography 20(10): 539–544.

82. Seeley, J. V., Bates, C. T., McCurry, J. D., Seeley, S.K. 2012. Stationary phase selection and comprehensivetwo-dimensional gas chromatographic analysis of tracebiodiesel in petroleum-based fuel. Journal ofChromatography A 1226: 103–109.

83. Lo Coco, F., Gasparini, G., Lanuzza, F. 2007.Multidimensional gas chromatographic determination ofnaphthenes, paraf�ns, ole�ns, and aromatics in reformedgasolines. Journal of Separation Science 30(14):2305–2310.

84. Tran, T. C., Logan, G. A., Grosjean, E., Ryan, D.,Marriott, P. J. 2010. Use of comprehensive two-dimensionalgas chromatography/time-of-�ight mass spectrometry for thecharacterization of biodegradation and unresolved complexmixtures in petroleum. Geochimica Et Cosmochimica Acta74(22): 6468–6484.

85. Mao, D., Van De Weghe, H., Diels, L., De Brucker, N.,Lookman, R., Vanermen, G. 2008. Highperformance liquid

chromatography fractionation using a silver-modi�ed columnfollowed by twodimensional comprehensive gas chromatographyfor detailed group-type characterization of oils and oilpollutions. Journal of Chromatography A 1179(1): 33–40.

86. Mao, D., Lookman, R., Van De Weghe, H., Vanermen, G.,De Brucker, N., Diels, L. 2009. Aqueous solubilitycalculation for petroleum mixtures in soil usingcomprehensive two-dimensional gas chromatography analysisdata. Journal of Chromatography A 1216(14): 2873–2880.

87. Mao, D., Lookman, R., Weghe, H. V. D., Weltens, R.,Vanermen, G., Brucker, N. D., Diels, L. 2009. Estimationof ecotoxicity of petroleum hydrocarbon mixtures in soilbased on HPLC-GCxGC analysis. Chemosphere 77(11):1508–1513.

88. Zorzetti, B. and Harynuk, J. 2011. Using GC × GC-FIDpro�les to estimate the age of weathered gasoline samples.Analytical and Bioanalytical Chemistry 401(8): 2423–2431.

89. Mahé, L., Dutriez, T., Courtiade, M., Thiébaut, D.,Dulot, H., Bertoncini, F. 2011. Global approach for theselection of high temperature comprehensive two-dimensionalgas chromatography experimental conditions andquantitative analysis in regards to sulfur-containingcompounds in heavy petroleum cuts. Journal ofChromatography A 1218(3): 534–544.

90. Fernández-Varela, R., Andrade, J. M., Muniategui, S.,Prada, D. 2010. Comparing the weathering patterns of sixoils using 3-way generalized Procrustes rotation andmatrix-augmentation principal components. Analytica ChimicaActa 683(1): 84–91.

91. Sun, P., Bao, M., Li, G., Wang, X., Zhao, Y., Zhou, Q.,Cao, L. 2009. Fingerprinting and source identi�cation of anoil spill in China Bohai Sea by gas chromatography-�ameionization detection and gas chromatography-massspectrometry coupled with multi-statistical analyses.Journal of Chromatography A 1216(5): 830–836.

92. Balabin, R. M., Sa�eva, R. Z., Lomakina, E. I. 2010.Gasoline classi�cation using near infrared (NIR)spectroscopy data: Comparison of multivariate techniques.Analytica Chimica Acta 671(1–2): 27–35.

93. Gómez-Carracedo, M. P., Fernández-Varela, R., Ballabio,D., Andrade, J. M. 2012. Screening oil spills by mid-IRspectroscopy and supervised pattern recognition techniques.

Chemometrics and Intelligent Laboratory Systems 114:132–142.

94. Khanmohammadi, M., Garmarudi, A. B., Garmarudi, A. B.,de la Guardia, M. 2012. Characterization ofpetroleum-based products by infrared spectroscopy andchemometrics. TrAC Trends in Analytical Chemistry 35:135–149. Section XII EDCs and Residues of Plastics

31 Chapter 31 - Endocrine-DisruptingChemicals, Pharmaceuticals, and PersonalCare Products

Arthur, C.L., Pawliszyn, J. 1990. Solid phasemicroextraction with thermal desorption using fused silicaoptical �bers. Anal. Chem. 62: 2145–2148.

Bagheri, H., Piri-Moghadam, H., Naderi, M. 2012. Towardsgreater mechanical, thermal and chemical stability insolid-phase microextraction. Trends Anal. Chem. 34:126–138.

Barnes, K.K., Kolpin, D.W., Furlong, E.T., Zaugg, S.D.,Meyer, M.T., Barber, L.B. 2008. A national reconnaissanceof pharmaceuticals and other organic wastewatercontaminants in the United States groundwater. Sci. TotalEnviron. 402: 192–200.

Bendz, D., Paxeus, N.A., Ginn, T.R., Loge, F.J. 2005.Occurrence and fate of pharmaceutically active compounds inthe environment, a case study: Hoje River in Sweden. J.Hazard. Mater. 122: 195–204.

Benotti, M.J., Trenholm, R.A., Vanderford, B.J., Holady,J.C., Stanford, B.D., Snyder, S.A. 2009. Pharmaceuticalsand endocrine disrupting compounds in U.S. drinking water.Environ. Sci. Technol. 43: 597–603.

Bratkowska, D., Marcé, R.M., Cormack, P.A.G., Borrull, F.,Fontanals, N. 2011. Development and application of a polarcoating for stir bar sorptive extraction of emergingpollutants from environmental water samples. Anal. Chim.Acta 706: 135–142.

Brausch, J.M., Rand, G.M. 2011. A review of personal careproducts in the aquatic environment: Environmentalconcentrations and toxicity. Chemosphere 82: 1518–1532.

Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H.,Mawhinney, D.B. 2006. Occurrence of antibiotics inhospital, residential, and dairy ef�uent, municipalwastewater, and the Rio Grande in New Mexico. Sci. TotalEnviron. 366: 772–783.

Buchberger, W. 2011. Current approaches to trace analysisof pharmaceuticals and personal care products in theenvironment. J. Chromatogr. A 1218: 603–618.

Bueno, M.J.M., Aguera, A., Hernando, M.D., Gomez, M.J.,

Fernandez-Alba, A.R. 2009. Evaluation of various liquidchromatography–quadrupole-linear ion trap mass spectrometryoperation modes applied to the analysis of organicpollutants in wastewaters. J. Chromatogr. A 1216:5995–6002.

Burkhardt-Holm, P. 2010. Endocrine disruptors and waterquality: A state-of-the-art review. Int. J. Water Res.Develop. 26: 477–493.

Caliman, F.A., Gavrilescu, M. 2009. Pharmaceuticals,personal care products and endocrine disrupting agents inthe environment—A review. Clean Soil, Air, Water 37:277–303.

Calisto, V., Bahlmann, A., Schneider, R. J., Esteves, V. I.2011. Application of an ELISA to the quanti�cation ofcarbamazepine in ground, surface and wastewaters andvalidation with LC–MS/MS. Chemosphere 84: 1708–1715.

Campbell, C.G., Borglin, S.E., Green, F.B., Grayson, A.,Wozei, E., Stringfellow, W.T. 2006. Biologically directedenvironmental monitoring, fate, and transport of estrogenicendocrine disrupting compounds in water: A review.Chemosphere 65: 1265–1280.

Castiglioni, S., Bagnati, R., Calamari, D., Fanelli, R.,Zuccato, E. 2005. A multiresidue analytical method usingsolid-phase extraction and high-pressure chromatographytandem mass spectrometry to measure pharmaceuticals ofdifferent therapeutic classes in urban wastewaters. J.Chromatogr. A 1092: 206–215.

Castiglioni, S., Pomati, F., Miller, K. et al. 2008. Novelhomologs of the multiple resistance regulator marA inantibiotic-contaminated environments. Water Res. 42:4271–4280.

Chang, H.-S., Choo, K.-H., Lee, B., Choi, S. 2009. Themethods of identi�cation, analysis, and removal ofendocrine disrupting compounds (EDCs) in water. J. HazardMater. 172: 1–12.

Chen, Y., Guo, Z., Wang, X., Qiu, C.H. 2008. Samplepreparation. J Chromatogr. A 1184: 191–219.

Chimuka, L., Cukrowska, E., Michel, M., Buszewski, B. 2011.Advances in sample preparation using membrane-basedliquid-phase microextraction techniques. Trends Anal. Chem.30: 1781–1792.

Choi, K., Kim, Y., Park, J. et al. 2008. Seasonalvariations of several pharmaceutical residues in surfacewater and sewage treatment plants of Han River, Korea.Sci. Total Environ. 405: 120–128.

Damstra, T., Barlow, S., Bergman, A., Kavlock, R., Van derKraak, G. 2002. Global Assessment of theStateof-the-Science of Endocrine Disruptors. WHOpublication no. WHO/PCS/EDC/02.2. World HealthOrganization, Geneva, Switzerland.

Daughton, C.G., Ternes, T.A. 1999. Pharmaceuticals andpersonal care products in the environment: Agents ofsubtle changes? Environ. Health Perspect. 107: 907–938.

Diaz-Cruz, M.S., Galán, M.J.G., Barceló, D. 2008. Highlysensitive simultaneous determination of sulfonamideantibiotics and one metabolite in environmental waters byliquid chromatography–quadrupole linear ion trap–massspectrometry. J. Chromatogr. A 1193: 50–59.

EG, 1993. Richtlinie 93/39/EWG des Rates vom 14 Juni 1993zur Anderung der Richtlinien 65/65/EWG, 75/318/EWG und75/319/EWG betreffend Arzneimittel. Amtsblatt derEuropaischen Cemeinschaften Nr.L.214/22 vom 24.08.93

EPA:

EU: Council Directive 76/768/EEC of July 27, 1976 on theapproximation of the laws of the member states relating tocosmetic products. Off J L262: 169–200.

EU: Council Directive 93/35/EEC of June 14, 1993 amendingfor the sixth time Directive 76/768/EEC on theapproximation of the laws of the member states relating tocosmetic products. Off J L151: 32–37.

European Commission, 2001. Communication from theCommission to the Council and the European Parliament onthe Implementation of the Community Strategy for EndocrineDisruptors—A Range of Substances Suspected of Interferingwith the Hormone Systems of Humans and Wildlife, COM(2001), 262 �nal, Brussels, June 14, 2001.

Fatta, D., Achilleos, A., Nikolaou, A., Meriç, S. 2007.Analytical methods for tracing pharmaceutical residues inwater and wastewater. Trends Anal. Chem. 26: 515–533.

Fatta-Kassinos, D., Bester, K., Kümmerer, K. 2010.

Xenobiotics in the urban water cycle. Mass Flows,Environmental Processes, Mitigation and TreatmentStrategies, 1st edition, XIV, pp. 507. London, New York.Springer Science+Business Media B.V.

Fatta-Kassinos, D., Meric, S., Nikolaou, A. 2011.Pharmaceutical residues in environmental waters andwastewater: Current state of knowledge and future research.Anal. Bioanal. Chem. 399: 251–275.

Feitosa-Felizzola, J., Chiron, S. 2009. Occurrence anddistribution of selected antibiotics in a smallMediterranean stream (Arc River, Southern France). J.Hydrol. 364: 50–57.

Fent, K. 2008. Effects of pharmaceuticals on aquaticorganisms. In: Kümmerer, K. (ed.), Pharmaceuticals in theEnvironment. Sources, Fate, Effects and Risks. 3rd edition.Berlin, Heidelberg: Springer-Verlag, pp. 175–203.

Gabet, V., Miège, C., Bados, P., Coquery, M. 2007. Analysisof estrogens in environmental matrices. Trends Anal. Chem.26: 1113–1131.

García-López, M., Rodríguez, I., Cela, R. 2008. Evaluationof liquid–liquid microextraction using polypropylenemicroporous membranes for the determination oforganophosphorus �ame retardants and plasticizers in watersamples. Anal. Chim. Acta 625: 145–153.

Gómez, M.J., Gómez-Ramos, M.M., Agüera, A., Mezcua, M.,Herrera, S., Fernández-Alba, A.R. 2009. A new gaschromatography/mass spectrometry method for thesimultaneous analysis of target and non-target organiccontaminants in waters. J. Chromatogr. A 1216: 4071–4082.

Gomez, M.J., Petrovic, M., Fernandez-Alba, A.R., Barcelo,D. 2006. Determination of pharmaceuticals of varioustherapeutic classes by solid-phase extraction and liquidchromatography–tandem mass spectrometry analysis inhospital ef�uent wastewaters. J. Chromatogr. A 1114:224–233.

Grabic, R., Jurcikova, J., Tomsejova, S. et al. 2010.Passive sampling methods for monitoring endocrinedisruptors in the Svratka and Svitava Rivers in the CzechRepublic. Environ. Toxicol. Chem. 29: 550–555.

Grujic, S., Vasiljevic, T., Lausevic, M. 2009.Determination of multiple pharmaceutical classes in surface

and ground waters by liquid chromatography–ion trap–tandemmass spectrometry. J. Chromatogr. A 1216: 4989–5000.

Gulkowska, A., He, Y., So, M.K. et al. 2007. Theoccurrence of selected antibiotics in Hong Kong coastalwaters. Mar. Pollut. Bull. 54: 1287–1306.

Hao, C., Zhao, X., Yang, P. 2007. GC–MS and HPLC–MSanalysis of bioactive pharmaceuticals and personalcareproducts in environmental matrices. Trends Anal. Chem. 26:569–580.

Heberer, T. 2002. Occurrence, fate, and removal ofpharmaceutical residues in the aquatic environment: Areview of recent research data. Toxicol. Lett. 131: 5–17.

Hecker, M., Hollert, H., Cooper, R. et al. 2007. The OEDCvalidation program of the H295R steroidogenesis assay forthe identi�cation of in vitro inhibitors and inducers oftestosterone and estradiol production. Phase 2:Interlaboratory pre-validation studies. Environ. Sci.Pollut. Res. 14: 23–30.

Hignite, D. Azarnoff, L. 1977. Drugs and drug metabolitesas environmental contaminants: Chlorophenoxyisobutyrate andsalicylic acid in sewage water ef�uent. Life Sci. 20:337–342.

Hirsch, R., Ternes, T.A., Haberer, K., Mehlich, A.,Ballwanz, F., Kratz, K.L. 1998. Determination ofantibiotics in different water compartments via liquidchromatography–electrospray tandem mass spectrometry. J.Chromatogr. A 815: 213–223.

Holtge, S., Kreuzig, R. 2007. Laboratory testing ofsulfamethoxazole and its metabolite acetyl sulfamethoxazolein soil. Clean-Soil Air Water 35: 104–110.

Huerta-Fontela, M., Galceran, M.T., Ventura, F. 2010. Fastliquid chromatography–quadrupole-linear ion trap massspectrometry for the analysis of pharmaceuticals andhormones in water resources. J. Chromatogr. A 1217:4212–4222.

Karthikeyan, K.G., Meyer, M.T. 2006. Occurrence ofantibiotics in wastewater treatment facilities in Wiscosin,USA. Sci. Total Environ. 361: 196–207.

Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J. 2008.Multiresidue methods for the analysis of pharmaceuticals,

personal care products and illicit drugs in surface waterand wastewater by solid-phase extraction and ultraperformance liquid chromatography–electrospray tandem massspectrometry. Anal. Bioanal. Chem. 391: 1293–1308.

Khanal, S.K., Xie, B., Thompson, M.L., Sung, S., Ong,S.-K., Van Leeuwen, J. 2006. Fate, transport andbiodegradation of natural estrogens in the environment andengineered systems. Environ. Sci. Technol. 40: 6537–6546.

Khetan, S.K., Collins, T.J. 2007. Human pharmaceuticals inthe aquatic environment: A challenge to green chemistry.Chem. Rev. 107: 2319–2364.

Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J., Snyder,S.A. 2007. Occurrence and removal of pharmaceuticals andendocrine disruptors in South Korean surface, drinking, andwaste waters. Water Res. 41: 1013–1021.

Kim, J.-W., Ishibashi, H., Yamauchi, R. et al. 2009a. Acutetoxicity of pharmaceutical and personal are products onfreshwater crustacean (Thamnocephalus platyurus) and �sh(Oryzias latipes). J. Toxicol. Sci. 34: 227–232.

Kim, J.-W., Jang, H.-S., Kim, J.-G. et al. 2009b.Occurrence of pharmaceutical and personal care products(PPCPs) in surface water from Mankyung River, South Korea.J. Health Sci. 55: 249–258.

Kolpin, D.W., Furlong, E.T., Meyer, M.T. et al. 2002.Pharmaceuticals, hormones, and other organic wastewatercontaminants in U.S. streams, 1999–2000: A nationalreconnaissance. Environ. Sci. Technol. 36: 1202–1211.

Konstantinou, I., Hela, D., Lambropoulou, D., Albanis, T.2008. Monitoring of pesticides in the environment. In:Tadeo, J. L., (ed.), Analysis of Pesticides in Food andEnvironmental Samples. CRC Press/Taylor & Francis Group,Boca Raton/London/New York, pp. 319–358.

Kosma, C. I., Lambropoulou, D. A., Albanis, T. A. 2010.Occurrence and removal of PPCPs in municipal and hospitalwastewaters in Greece. J. Hazard. Mater. 179: 804–817.

Kot-Wasik, A., Zabiegała, B., Urbanowicz, M., Dominiak, E.,Wasik, A. 2007. Namieénik J., Advances in passive samplingin environmental studies. Anal. Chim. Acta 602: 141–163.

Koutsouba, V., Heberer, T., Fuhrmann, B., Schmidt-Baumler,K., Tsipi, D., Hiskia, A. 2003. Determination of polar

pharmaceuticals in sewage water of Greece by gaschromatography–mass spectrometry. Chemosphere 51: 69–75.

Kumar, A., Xagoraraki, I. 2010. Pharmaceuticals, personalcare products and endocrine-disrupting chemicals in U.S.surface and �nished drinking waters: A proposed rankingsystem. Sci. Total Environ. 408: 5972–5989.

Kümmerer, K. 2004. Pharmaceuticals in the Environment:Sources, Fate, Effects and Risks, 2nd ed., Springer,Berlin Heidelberg, New York.

Kümmerer, K. 2009a. Antibiotics in the aquaticenvironment—A review—Part I. Chemosphere 75: 417–434.

Kümmerer, K. 2009b. Antibiotics in the aquaticenvironment—A review—Part II. Chemosphere 75: 435–441.

LaFleur, A.D., Schug, K.A. 2011. A review of separationmethods for the determination of estrogens andplastics-derived estrogen mimics from aqueous systems.Anal. Chim. Acta 696: 6–26.

Lajeunesse, A., Gagnon, C., Sauve, S. 2008. Determinationof basic antidepressants and their N-desmethyl metabolitesin raw sewage and wastewater using solid phase extractionand liquid chromatography– tandem mass. Anal. Chem. 80:5325–5333.

Lambropoulou, D.A. 2010. An overview of modern extractiontechniques for the determination of organic pollutants inenvironmental matrices: A review. Curr. Org. Chem. 14:2247–2267.

Lambropoulou, D.A., Albanis, T.A. 2007. Liquid-phasemicroextraction techniques in pesticide residue analysis.J. Biochem. Biophys. Methods 70: 195–228.

Lambropoulou, D.A., Konstantinou, I.K., Albanis, T.A. 2007.Recent developments in headspace microextractiontechniques for the analysis of environmental contaminantsin different matrices. J. Chromatogr. A 1152: 70–96.

Larsson, D.G.J., Adolfsson-Erici, M., Parkkonen, J. et al.1999. Ethinylestradiol—An undesired �sh contraceptive?Aquat. Toxicol. 45: 91–97.

Larsson, D.G, de Pedro, C., Paxeus, N. 2007. Ef�uent fromdrug manufactures contains extremely high levels ofpharmaceuticals. J. Hazard Mat. 30: 751–755.

Lee, H.-B., Peart, T.E., Svoboda, M.L. 2005. Determinationof endocrine-disrupting phenols, acidic pharmaceuticals,and personal-care products in sewage by solid-phaseextraction and gas chromatography–mass spectrometry. J.Chromatogr. A 1094: 122–129.

Li, Y., Wei, G., Hu, J., Liu, X., Zhao, X., Wang, X. 2008.Dispersive liquid–liquid microextraction followed byreversed phase-high performance liquid chromatography forthe determination of polybrominated diphenyl ethers attrace levels in land�ll leachate and environmental watersamples. Anal. Chim. Acta 6: 96–103.

Liang, P., Xu, J., Li, Q. 2008. Application of dispersiveliquid–liquid microextraction and high-performance liquidchromatography for the determination of three phthalateesters in water samples. Anal. Chim. Acta 609: 53–58.

Lin, A.Y., Yu, T., Lin, C. 2008. Pharmaceuticalcontamination in residential, industrial, and agriculturalwaste streams: Risk to aqueous environments in Taiwan.Chemosphere 74: 131–141.

Lin, A.Y.-C., Tsai, Y.-T. 2009. Occurrence ofpharmaceuticals in Taiwan’s surface waters: Impact of wastestreams from hospitals and pharmaceutical productionfacilities. Sci. Total Environ. 407: 3793–3802.

Lin, A.Y.-C., Yu, T.-H., Lateef, S.K. 2009. Removal ofpharmaceuticals in secondary wastewater treatmentprocesses in Taiwan. J. Hazard. Mater. 167: 1163–1169.

Lindberg, R.H., Wennberg, P., Johansson, M.I., Tysklind,M., Andersson, B.A.V. 2005. Screening of human antibioticsubstances and determination of weekly mass �ows in �vesewage treatment plants in Sweden. Environ. Sci. Technol.39: 3421–3429.

López-Darias, J., Germán-Hernández, M., Pino, V., Afonso,A.M. 2010. Dispersive liquid–liquid microextraction versussingle-drop microextraction for the determination ofseveral endocrine-disrupting phenols from seawaters.Talanta 80: 1611–1618.

López-Serna, R., Petrovic´, M., Barceló, D. 2011.Development of a fast instrumental method for the analysisof pharmaceuticals in environmental and wastewaters basedon ultra high performance liquid chromatography(UHPLC)–tandem mass spectrometry (MS/MS). Chemosphere 85:

1390–1399.

Lucena, R. 2012. Extraction and stirring integratedtechniques: Examples and recent advances. Anal. Bioanal.Chem. 403: 2213–2223.

Ma, J., Lu, W., Chen, L. 2012. Recent advances indispersive liquid–liquid microextraction for organiccompounds analysis in environmental water: A review. Curr.Anal. Chem. 8: 78–90.

Makarov, A., Denisov, E., Kholomeev, A. et al. 2006.Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal. Chem. 78: 2113–2120.

Martínez, N.A., Schneider, R.J., Messina, G.A., Raba, J.2010. Modi�ed paramagnetic beads in a micro�uidic systemfor the determination of ethinylestradiol (EE2) in riverwater samples. Biosens. Bioelectron. 25(6): 1376–1381.

Matsui, Y., Ozu, T., Inoue, T., Matsushita, T. 2008.Occurrence of a veterinary antibiotic in streams in a smallcatchment area with livestock farms. Desalination 226:215–221.

McLachlan, J. A., Simpson, E., Martin, M. 2006. Endocrinedisrupters and female reproductive health. Best Prac. Res.Clin. Endocrin. Metab. 20: 63–75.

Miège, C., Budzinski, H., Jacquet, R., Soulier, C., Pelte,T., Coquery, M. 2012. Polar organic chemical integrativesampler (POCIS): Application for monitoring organicmicropollutants in wastewater ef�uent and surface water.J. Environ. Monitor. 14: 26–635.

Moldovan, Z. 2006. Occurrences of pharmaceutical andpersonal care products as micropollutants in rivers fromRomania. Chemosphere 64: 1808–1817.

Mompelat, S., Le Bot, B., Thomas, O. 2009. Occurrence andfate of pharmaceutical products and by-products, fromresource to drinking water. Environ. Intern. 35: 803–814.

Nageswara Rao, R., Venkateswarlu, N., Narsimha, R. 2008.Determination of antibiotics in aquatic environment bysolid-phase extraction followed by liquid chromatography.J. Chromatogr. A 1187: 151–164.

Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., Takada,H. 2006. Pharmaceutical chemicals and endocrine disrupters

in municipal wastewater in Tokyo and their removal duringactivated sludge treatment. Water Res. 40: 3297–3303.

Negreira, N., Rodríguez, I., Ramil, M., Rubí, E., Cela, R.2009a. Solid-phase extraction followed by liquidchromatography–tandem mass spectrometry for thedetermination of hydroxylated benzophenone UV absorbers inenvironmental water samples. Anal. Chim. Acta 654: 162–170.

Negreira, N., Rodríguez, I., Ramil, M., Rubí, E., Cela, R.2009b. Sensitive determination of salicylate andbenzophenone type UV �lters in water samples usingsolid-phase microextraction, derivatization and gaschromatography tandem mass spectrometry. Anal. Chim. Acta638: 36–44.

Nerín, C., Salafranca, J., Aznar, M., Batlle, R. 2009.Critical review on recent developments in solventlesstechniques for extraction of analytes. Anal. Bioanal. Chem.393: 809–833.

Ni, H.-G., Zeng, H., Zeng, E.Y. 2011. Sampling andanalytical framework for routine environmental monitoringof organic pollutants. Trends Anal. Chem. 30: 1549–1559.

Nikolaou, A., Meric, S., Fatta, D. 2007. Occurrencepatterns of pharmaceuticals in water and wastewaterenvironments. Anal. Bioanal. Chem. 387:1225–1234.

Pailler, J.-Y., P�ster, K.L., Hoffmann, L., Guignard, C.2009. Solid phase extraction coupled to liquidchromatography–tandem mass spectrometry analysis ofsulfonamides, tetracyclines, analgesics and hormones insurface water and wastewater in Luxembourg. Sci. TotalEnviron. 407: 4736–4743.

Paleologos, E.K., Giokas, D.L., Karayannis, M.I. 2005.Micelle-mediated separation and cloud-point extraction.Trends Anal. Chem. 24: 426–436.

Pedrouzo, M., Borrull, F., Pocurull, E., Marcé, R.M. 2011.Presence of pharmaceuticals and hormones in waters fromsewage treatment plants. Water Air Soil Pollut. 217:267–281.

Pedrouzo, M., Borrull, F., Marcé, R.M., Pocurull, E. 2009.Ultrahigh-performance liquid chromatography– tandem massspectrometry for determining the presence of elevenpersonal care products in surface and wastewaters. J.Chromatogr. A 1216: 6994–7000.

Pena, A., Chmielova, D., Lino, C.M., Solich, P. 2007.Determination of �uorquinolone antibiotics in surfacewaters from Mondego River by high performance liquidchromatography using amonolithic column. J. Sep. Sci. 30:2924–2928.

Pérez, S., Barceló, D. 2007. Application of advanced MStechniques to analysis and identi�cation of human andmicrobial metabolites of pharmaceuticals in the aquaticenvironment. Trends Anal. Chem. 26:494–514.

Perret, D., Gentili, A., Marchese, S., Greco, A., Curini,R. 2006. Sulphonamide residues in Italian surface anddrinking waters: A small scale reconnaissance.Chromatographia 63: 225–232.

Petrovic, M., Eljarrat, E., Lopez De Alda, M.J., Barceló,D. 2004. Endocrine disrupting compounds and other emergingcontaminants in the environment: A survey on new monitoringstrategies and occurrence data. Anal. Bioanal. Chem. 378:549–562.

Petrovic´, M., Gonzalez, S., Barceló, D. 2003. Analysis andremoval of emerging contaminants in wastewater anddrinking water. Trends Anal. Chem. 22: 685–696.

Phillips, P.J, Smith, S.G., Kolpin, D.W. et al. 2010.Pharmaceutical formulation facilities as sources of opioidsand other pharmaceuticals to wastewater-treatment plantef�uents. Environ. Sci. Technol. 44: 4910–4916.

Qiao, T., Yu, Z., Zhang, X., Au, D.W.T. 2011. Occurrenceand fate of pharmaceuticals and personal care products indrinking water in southern China. J. Environ. Monit. 13:3097–3103.

Quintana, J.B., Miro, M., Estela, J.M., Cerdà, V. 2006.Automated online renewable solid-phase extraction– liquidchromatography exploiting multisyringe �ow injection–beadinjection lab-on-valve analysis. Anal. Chem. 78:2832–2840.

Radjenovic, J., Petrovic´, M., Barceló, D., Petrovic´, M.2007. Advanced mass spectrometric methods applied to thestudy of fate and removal of pharmaceuticals in wastewatertreatment. Trends Anal. Chem. 26: 1132–1144.

Rezaei, F., Bidari, A., Birjandi, A., Hosseini, M.R.M.,Assadi, Y. 2008. Development of a dispersive liquid–

liquid microextraction method for the determination ofpolychlorinated biphenyls in water. J. Hazard Mater. 158:621–627.

Roberts, P.H., Thomas, K.V., 2006. The occurrence ofselected pharmaceuticals in wastewater ef�uent and surfacewaters of the lower Tyne catchment. Sci. Total Environ.356: 143–153.

Rodil, R., Moeder, M. 2008. Development of a method for thedetermination of UV �lters in water samples using stir barsorptive extraction and thermal desorption–gaschromatography–mass spectrometry. J. Chromatogr. A 1179:81–88.

Rozet, E., Marini, R.D., Ziemons, E. et al. 2011. Totalerror and uncertainty: Friends or foes? Trends Anal. Chem.30: 797–806.

Sammartino, M.P., Bellanti, F., Castrucci, M., Ruiu, D.,Visco, G., Zoccarato, T. 2008. Ecopharmacology:Deliberated or casual dispersion of pharmaceuticalprinciples, phytosanitary, personal health care andveterinary products in environment needs a multivariateanalysis or expert systems for the control, the measureand the remediation. Microchem. J. 88: 201–209.

Santos, L.H. Araújo, A.N., Fachini, A., Pena, A.,Delerue-Matos, C., Montenegro, M.C.B.S.M. 2010.Ecotoxicological aspects related to the presence of PhACsin the aquatic environment. J. Hazard Mater. 175: 45–95.

Schwabe, U., Paffrath, D., (eds.). 2009.Arzneiverordnungs-Report. Springer Medizin Verlag,Heidelberg.

Schwesig, D., Schwesig, D., Borchers, U. et al. 2011. Aharmonized European framework for method validation tosupport research on emerging pollutants. Trends Anal. Chem.30: 1233–1242.

Seethapathy, S., Górecki, T., Li, X. 2008. Passive samplingin environmental analysis. J. Chromatogr. A 1184: 234–253.

Seifrtova, M., Pena, A., Lino, C.M., Solich, P. 2008.Determination of �uoroquinolone antibiotics in hospitaland municipal wastewaters in Coimbra by liquidchromatography with a monolithic column and �uorescencedetection. Anal. Bioanal. Chem. 391: 799–805.

Snyder, S.A. et al. 2009. State of Knowledge of EndocrineDisruptors and Pharmaceuticals in Drinking Water, WaterIntelligence, IWA Publishing, USA.

Söderström, H., Lindberg, R.H., Fick, J. 2009. Strategiesfor monitoring the emerging polar organic contaminants inwater with emphasis on integrative passive sampling. J.Chromatogr. A 1216: 623–630.

Spongberg, A.L., Witter, J.D., Acuna, J. et al. 2011.Reconnaissance of selected PPCP compounds in Costa Ricansurface waters. Water. Res. 45: 6709–6717.

Sun, L., Yong, W., Chu, X., Lin, J-M. 2009. Simultaneousdetermination of 15 steroidal oral contraceptives in waterusing solid-phase disk extraction followed by highperformance liquid chromatography–tandem massspectrometry. J. Chromatogr. A 1216: 5416–5423.

Snyder, S.A., Trenholm, R.A., Snyder, E.M., Bruce, G.M.,Pleus, R.C., Hemming, J.D.C. 2008. Toxicological Relevanceof EDCs and Pharmaceuticals in Drinking Water. Denver,Colorado: AWWARF.

Tabak, H.H., Bunch, R.L. 1970. Steroid hormones as waterpollutants. I. Metabolism of natural and syntheticovulation-inhibiting hormones by microorganisms ofactivated sludge and primary settled sewage. Dev. Ind.Microbiol. 11: 367–376.

Tamtam, F., Mercier, F., Bot, B.L. 2008. Occurrence andfate of antibiotics in the Seine River in varioushydrological conditions. Sci. Total Environ. 393: 84–95.

Tao, Y., Liu, J.-F., Hu, X.-L., Li, H.-C., Wang, T., Jiang,G.-B. 2009. Hollow �ber supported ionic liquid membranemicroextraction for determination of sulfonamides inenvironmental water samples by high-performance liquidchromatography. J. Chromatogr. A 1216: 6259–6266.

Tarcomnicu, I., van Nuijs, A.L.N., Simons, W. et al. 2011.Simultaneous determination of 15 top-prescribedpharmaceuticals and their metabolites in in�uent wastewaterby reversed-phase liquid chromatography coupled to tandemmass spectrometry. Talanta 83: 795–803.

Tauxe-Wuersch, V., De Alencastro, L.F., Grandjean, D.,Tarradellas, J. 2005. Occurrence of several acidic drugsin sewage treatment plants in Switzerland and riskassessment. Water Res. 39: 1761–1772.

Ternes, T.A., Joss, A., Siegrist, H., 2004. Scrutinizingpharmaceuticals and personal care products in wastewatertreatment. Environ. Sci. Technol. 38: 392A–399A.

Tomšíková, H., Aufartová, J., Solich, P., Nováková, L.,Sosa-Ferrera, Z., Santana-Rodríguez, J.J. 2012.Highsensitivity analysis of female-steroid hormones inenvironmental samples. Trends Anal. Chem. 34: 35–58.

U.S. EPA (U.S. Environmental Protection Agency). 1997.Special report on environmental endocrine disruption: Aneffects assessment and analysis. Washington, DC: Of�ce ofResearch and Development.

U.S. EPA (U.S. Environmental Protection Agency). 2007.Draft information collection request (ICR): Tier 1screening of certain chemicals under the endocrinedisruptor screening program (EDSP). Available:

Valcárcel, Y., González Alonso, S., Rodríguez-Gil, J.L.,Gil, A., Catalá, M. 2011. Detection of pharmaceuticallyactive compounds in the rivers and tap water of the MadridRegion (Spain) and potential ecotoxicological risk.Chemosphere 84: 1336–1348.

Vasskog, T., Berger, U., Samuelsen, P.-J., Kallenborn, R.,Jensen, E. 2006. Selective serotonin reuptake inhibitors insewage in�uents and ef�uents from Tromso, Norway. J.Chromatogr. A 1115: 187–195.

Vera-Candioti, L. Gil García, M.D., Martínez Galera, M.,Goicoechea, H.C. 2008. Chemometric assisted solidphasemicroextraction for the determination of anti-in�ammatoryand antiepileptic drugs in river water by liquidchromatography–diode array detection. J. Chromatogr. A1211: 22–32.

Verenitch, S.S., Lowe, C.J., Mazumder, A. 2006.Determination of acidic drugs and caffeine in municipalwastewaters and receiving waters by gas chromatography–iontrap tandem mass spectrometry. J. Chromatogr. A 1116:193–203.

Vieno, N.M., Tuhkanen, T., Kronberg, L. 2005. Seasonalvariation in the occurrence of pharmaceuticals in ef�uentsfrom a sewage treatment plant and in the recipient water.Environ Sci Technol. 9: 8220–8226.

Vieno, N.M., Tuhkanen, T., Kronberg, L. 2006. Analysis of

neutral and basic pharmaceuticals in sewage treatmentplants and in recipient rivers using solid phase extractionand liquid chromatography–tandem mass spectrometrydetection. J. Chromatogr. A 1134: 101–111.

Vieno, N.M., Tuhkanen, T., Kronberg, L. 2007. Eliminationof pharmaceuticals in sewage treatment plants in Finland.Water Res. 41: 1001–1012.

Vulliet, E., Wiest, L., Baudot, R., Grenier-Loustalot,M.-F. 2008. Multiresidue analysis of steroids at sub-ng/Llevels in surface and groundwaters using liquidchromatography coupled to tandem mass spectrometry. J.Chromatogr. A 1210: 84–91.

Wang, L. Cai, Y.-Q., He, B. et al. 2006. Determination ofestrogens in water by HPLC–UV using cloud pointextraction. Talanta 70: 47–51.

Watkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D.2009. The occurrence of antibiotics in an urban watershed:From wastewater to drinking water. Sci. Total Environ. 40:2711–2723.

WHO (World Health Organization). 2002. Global Assessment ofthe State-of-the-Science of Endocrine Disruptors. Geneva.

Xu, W.-H., Zhang, G., Zou, S.-C., Li, X.-D., Liu, Y.-C.2007. Determination of selected antibiotics in theVictoria Harbour and the Pearl River, South China usinghigh performance liquid chromatography– electrosprayionization tandem mass spectrometry. Environ. Pollut. 145:672–679.

Zhao, J.-L., Ying, G.-G., Wang, L. et al. 2009.Determination of phenolic endocrine disrupting chemicalsand acidic pharmaceuticals in surface water of the PearlRivers in South China by gas chromatography– negativechemical ionization–mass spectrometry. Sci. Total Environ.407: 962–974.

Zuccato, E., Castiglioni, S., Fanelli, R. 2005.Identi�cation of the pharmaceuticals for human usecontaminating the Italian aquatic environment. J. Hazard.Mater. 122: 205–209.

Zuehlke, S., Duennbier, U., Heberer, T. 2005. Determinationof estrogenic steroids in surface water and wastewater byliquid chromatography–electrospray tandem massspectrometry. J. Sep. Sci. 28: 52–58.

32 Chapter 32 - Residues of Plastics

(CSTEE). Scienti�c Committee on Toxicity Ecotoxicity andthe Environment Opinion on the results of the riskassessment of acrylamide. Report version: October 2000carried out in the framework of Council Regulation (EEC)793/93 on the evaluation and control of the risks ofexisting substances. Opinion expressed at the 22nd CSTEEplenary meeting, Brussels, 6/7 March 2001.

Aeppli, C., Berg, M., Hofstetter, T. B., Kipfer, R.,Schwarzenbach, R. P. 2008. Simultaneous quanti�cation ofpolar and non-polar volatile organic compounds in watersamples by direct aqueous injection-gas chromatography/massspectrometry. J Chromatogr A. 1181: 116–124.

AgPU, 2006. Plasticizers Market Data—Compiled by theArbeitsgemeinschaft PVC und Umwelt e.V. http://www.

Ahmad, M., Bajahlan, A. S. 2007. Leaching of styrene andother aromatic compounds in drinking water from PSbottles. J Environ Sci (China). 19:421–426.

Al-Mudhaf, H. F., Alshari�, F. A., Abu-Shady, A.-S. I.2009. A survey of organic contaminants in household andbottled drinking waters in Kuwait. Sci. Total Environ. 407:1658–1668.

Alpmann, A., Morlock, G. 2008. Rapid and sensitivedetermination of acrylamide in drinking water by planarchromatography and �uorescence detection afterderivatization with dansul�nic acid. J. Sep. Sci. 31:71–77.

Al-Saleh, I., Shinwari, N., Alsabbaheen, A. 2011. Phalatesresidues in bottled waters, J. Toxicol. Sci. 36: 469–478.

Amiridou, D., Voutsa, D. 2010. Alkylphenols and phthalatesin bottled waters. J. Hazard. Mater. 185:281–286.

APME 2006. An Analysis of Plastics Production, Demand andRecovery in Europe. Brussels: Association of PlasticsManufacturers.

Asimakopoulos, A. G., Thomaidis, N. S., Koupparis, M. A.2012. Recent trends in biomonitoring of bisphenol A,4-t-octylphenol, and 4-nonylphenol. Toxicol Lett. 210:141–154.

ATSDR (Agency for Toxic Substances and Disease Registry),

1992. Toxicological pro�le for styrene[M]. U.S. Departmentof Health and Human Services, Public Health Service,Atlanta, GA. 140.

Bach, C., Dauchy, X., Chagnon, M-C., Etienne, S. 2012.Chemical compounds and toxicological assessments ofdrinking water stored in polyethylene terephthalate (PET)bottles: A source of controversy reviewed. Water Res. 46:571–583.

Baugros, J-B., Giroud, B., Dessalces, G.,Grenier-Loustalot, M.-F., Cren-Olivé, C. 2008. Multiresidueanalytical methods for the ultra-trace quanti�cation of 33priority substances present in the list of REACH in realwater samples. Anal. Chim. Acta 607: 191–203.

Besaratinia, A., Pfeifer, G. P. 2007. A review ofmechanisms of acrylamide carcinogenicity. Carcinogenesis.28: 519–528.

Bi, E., Liu, Y., He, J., Wang, Z., Liu, F. 2012. Screeningof emerging volatile organic contaminants in shallowgroundwater in East China. Ground Wat Monitor Remed. 32:53–58.

Bjorklund, K., Palm-Cousins, A., Stromvall, A-M.,Malmqvist, P.-A. 2009. Phthalates and nonylphenols inurban runoff: Occurrence, distribution and area emissionfactors. Sci. Total Environ. 407: 4665–4672.

Boffetta, P., Matisane, L., Mundt, K. A., Dell, L. D. 2003.Meta-analysis of studies of occupational exposure to vinylchloride in relation to cancer mortality. Scand. J. WorkEnviron. Health. 29: 220–229.

Bolgar, M., Hubball, J., Groeger, J., Meronek, S. 2008.Handbook for the Chemical Analysis of Plastic and PolymerAdditives. Boca Raton, FL: CRC Press.

Bono-Blay, F., Guart, A., de la Fuente, B., Pedemonte, M.,Pastor, M. C., Borrell, A., Lacorte, S. 2012. Survey ofphthalates, alkylphenols, bisphenol A and herbicides inSpanish source waters intended for bottling. Environ. Sci.Pollut. Res. 19: 3339–3349.

Bruzzoniti, M. C., Andrensek, S., Novic, M., Perrachon, D.,Sarzanini, C. 2004. Determination of epichlorohydrin bysul�te derivatization and ion chromatography:Characterization of the sul�te derivatives by ionchromatography-mass spectrometry. J. Chromatogr. A.

1034(1–2): 243–247.

Calafat, A. M., Needham, L. L. 2009. What additionalfactors beyond state-of-the-art analytical methods areneeded for optimal generation and interpretation ofbiomonitoring data? Environ. Health Perspect. 117:1481–1485.

Cao, X.-L. 2008. Dtermination of phthalates and adipate inbottled water by headspace solid-phase microextraction andgas chromatography/mass spectrometry. J. Chromatogr. A1178: 231–238.

Cao, X.-L. 2010. Phthalate esters in foods: Sources,occurrence, and analytical methods. Compr Rev Food Sci F.9: 21–43.

Cardogan, D., 2007. The Current Plasticizer Situation inEurope. Presentation at Phthalates and New Plasticisersfor PVC Conference. Copenhagen, Denmark, September 2007.http://www.pvc.dk/Billeder/

Carere, A. 2006. Genotoxicity and carcinogenicity ofacrylamide: A critical review. Annali dell’IstitutoSuperiore di Sanita. 42: 144–155.

Casajuana, N., Lacorte, S. 2003. Presence and release ofphthalic esters and other endocrine disrupting compounds indrinking water. Chromatographia 57: 649–655.

Castle, L., Eriksson, S. 2005. Analytical methods used tomeasure acrylamide concentrations in foods. J. AOAC Int.88: 274–284.

Cavalli S, Polesello S, Saccani G. 2004. Determination ofacrylamide in drinking water by large-volume directinjection and ion exclusion chromatography-massspectrometry. J. Chromatogr. A. 1039: 155–159.

Cespedes R., Lacorte, S., Ginebreda, A., Barcelo, D. 2006.Chemical monitoring and occurrence of alkylphenols,alkyphenol ethoxylates, alcohol ethoxylates, phthalates andbenzothiazoles in sewage treatment plants and receivingwaters along the Ter river basin (Catalonia, N.E. Spain).Anal. Bioanal. Chem. 385: 992–1000.

Charvet, R., Cun, C., Leroy, P. 2000. Vinyl chlorideanalysis with solid phase microextraction (SPME)/GC/MSapplied to analysis in materials and aqueous samples.Analysis 28: 980–987.

Chary, N. S., Fernandez-Alba, A. R. 2012. Determination ofvolatile organic compounds in drinking and environmentalwaters. Trends Anal. Chem. 32: 60–75.

ChemIDplus. 2009. ChemIDplus Advanced. National Library ofMedicine. http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp and select Registry Number andsearch on CAS number. Last accessed: 5/09.

ChemSources. 2009. Chem Sources—Chemical Search. ChemicalSources International.http://www.chemsources.com/chemonline.html and search onepichlorohydrin. Last accessed: 5/19/09.

Chen, F., Ying, G.-G., Kong, L.-X., Wang, L., Zhao, J.-L.,Zhou, L.-J., Zhang, L.-J. 2011. Distribution andaccumulation of endocrine-disrupting chemicals andpharmaceuticals in wastewater irrigated soils in Hebei,China. Environ. Pollut. 159: 1490–1498.

Chen, W-L., Wang, G-S., Gwo, J-C., Chen, C-Y. 2012.Ultra-high performance liquid chromatography/tandem massspectrometry determination of feminizing chemicals in riverwater, sediment and tissue pretreated using disk-typesolid-phase extraction and matrix solid-phase dispersion.Talanta 89: 237–245.

Chen, X., Wang, C., Tan, X., Wang, J. 2011. Determinationof bisphenol A in water via inhibition of silvernanoparticles-enhanced chemiluminescence. Anal. Chim. Acta689: 92–96.

Chu, S., Metcalfe, C.D. 2007. Analysis of acrylamide inwater using a coevaporation preparative step and isotopedilution liquid chromatography tandem mass spectrometry.Anal. Chem. 79: 5093–5096.

Chubatyi, N. D., Pagnotti, V. S., Bentzley, C. M., McEwen,C. N. 2012. High sensitivity steroid analysis using liquidchromatography/solvent-assisted inlet ionization massspectrometry. Rapid Commun Mass Spectrom. 26: 887–892.

Clara, M., Windhofer, G., Hartl, W.et al. 2010. Occurrenceof phthalates in surface runoff, untreated and treatedwastewater and fate during wastewater treatment.Chemosphere 78: 1078–1084.

Claus, A., Carle, R., Schieber, A. 2008. Acrylamide incereal products: A review. J. Cer. Sci. 47: 118–133.

Cosmetic Ingredient Review 2009. Cosmetic ingredientsreview reports through June 2010—Reference table

Council Directive 98/83/EC. Off. J. European CommunitiesNovember 3, 1998; L330: 32.

Cousins, I. T., Staples, C. A., Klecka, G. M., Mackay, D.2002. A multimedia assessment of the environmental fate ofbisphenol A. Hum. Ecol. Risk Assess. 8: 1107–1135.

Dargnat, C., Blanchard, M., Chevreuil, M., Teil, M. J.2009. Occurrence of phthalate esters in the Seine RiverEstuary (France). Hydrol. Process. 23: 1192–1201.

Dargnat, C., Teil, M-J., Chevreuil, M., Blanchard, M. 2009.Phthalate removal throughout wastewater treatment plant.Case study of Marne Aval station (France). Sci. TotalEnviron., 407: 1235–1244.

David, F., Sandra, P., Tienpont, B., Vanwalleghem, F.,2003. In: Staples, C. A. (Ed.), The Handbook ofEnvironmental Chemistry. Part Q. Phthalate Esters, Vol. 3.Springer, Berlin, p. 9.

Deblonde, T., Cossu-Leguille, C., Hartemann, P. 2011.Emerging pollutants in wastewater: A review of theliterature. Int J Hyg. Environ. Health 214: 442–448.

Dekant, W., Völkel, W. 2008. Human exposure to bisphenol Aby biomonitoring: Methods, results and assessment ofenvironmental exposures. Toxicol. Appl. Pharmacol. 228:114–134.

DFG-Deutsche Forschungsgemeinschaft, List of MAK and BATValues 2011. Wiley-VCH, Weinheim, Germany, 2011.

Doll, R. 1988. Effects of exposure to vinyl chloride: Anassessment of the evidence. Scand. J. Work Environ.Health. 14: 61–78.

Dorn, P. B., Chou, C-S., Gentempo, J. J. 1987. Degradationof bisphenol A in natural waters. Chemosphere. 16:1501–1507.

Dow Chemical Company. 2007. Product Safety Assessment:Vinyl Chloride Monomer. http://www.dow.com/productsafety/�nder/vcm.htm

Dowty, B. J., Laseter, J. L., Storet, J. 1976.

Transplacental migration and accumulation in blood ofvolatile organic constituents. Pediatr. Res., 10: 696–701.

Earls A. O, Axford I. P, Braybrook J. H. 2003. Gaschromatography–mass spectrometry determination of themigration of phthalate plasticisers from polyvinyl chloridetoys and childcare articles. J. Chromatogr. A 983:237–246.

ECHA (European Chemicals Agency) 2010. www.echa.europa.euAccessed 30 March 2010.

EFSA (European Food Safety Authority). 2008. Toxicokineticsof bisphenol A—Scienti�c opinion of the panel on foodadditives, �avourings, processing aids and materials incontact with food (AFC). Available at:http://www.efsa.europa.eu/en/scdocs/scdoc/759.htm.July2008.

EFSA (European Food Safety Authority). 2010a. Scienti�copinion on bisphenol A: Evaluation of a studyinvestigating its neurodevelopmental toxicity, review ofrecent scienti�c literature on its toxicity and advice onthe Danish risk assessment of Bisphenol A of the EFSA Panelon Food Contact Materials, Enzymes, Flavourings andProcessing Aids (CEF) on request from the EuropeanCommission, Questions No. EFSA-Q-2009-00864.

EFSA (European Food Safety Authority). 2010b. Statisticalre-analysis of the Biel maze data of the Stump et al.(2010) study: “Developmental neurotoxicity study of dietarybisphenol A in Sprague–Dawley rats”. Question No.EFSA-Q-2010-01142. Adopted: 30 September 2010. EFSA J8:1836, 1–67. Available at: http://www.efsa.europa.eu/fr/efsajournal/pub/1836.htm. September 2010.

EFSA-Q-2010-01023 and EFSA-Q-2010-00709, adapted on 23rdSeptember 2010. EFSA J 8:1829, 1–116. Available at:http://www.efsa.europa.eu/en/scdocs/scdoc/1829.htm.September 2010.

EPA, Drinking Water Contaminants, U.S. EnvironmentalProtection Agency, EPA 816-F-09-0004, May 2009.

EPCEU (2008) Directive 2008/105/EC of the EuropeanParliament and of the Council of 16 December 2008 onenvironmental quality standards in the �eld of waterpolicy, amending and subsequently repealing CouncilDirectives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC,86/280/EEC and amending Directive 2000/60/EC of theEuropean Parliament and of the Council. The European

Parliament and the Council of the European Union, Of�cialJournal of the European Union L348/84– 93, Brussels.

Epichlorohydrin (ECH) 2012. World Market Outlook andForecast up to 2017. http://mcgroup.co.uk/researches/epichlorohydrin-ech.

EU, 2003. European Union Risk Assessment Report.BisphenolA, CASNo: 80-05-7. Institute for Health andConsumer Protection, European Chemicals Bureau, EuropeanCommission Joint Research Centre, 3rd Priority List,Luxembourg: Of�ce for Of�cial Publications of the EuropeanCommunities.

EuPC 2011. Plastics—the Facts 2011. An analysis of Europeanplastics production, demand and recovery for 2010.Available at:

European Commission, Directive 2009/54/EC of the EuropeanParliament and of the Council of 18 June 2009 on theexploitation and marketing of natural mineral waters(Recast). Off. J. L 164, 26-6-2009, 0045–0058.

European Commission, Directive 80/777/EEC on theapproximation of the laws of the Member States relating tothe exploitation and marketing of natural mineral waters.Off. J. L 229, 30-8-1980, 0001–0010.

European Commission, Directive 96/70/EC of the EuropeanParliament and of the Council of 28 June 1996 amendingCouncil Directive 80/777/EEC on the approximation of thelaws of the Member States relating to the exploitation andmarketing of natural mineral waters. Off. J. L 299,23-11-1996, 0026–0088.

European Commission. 2001. Commission Regulation (EC) No466/2001 of 8 March 2001 setting maximum levels forcertain contaminants in foodstuffs. Official Journal of theEuropean Communities, L77, 1–13.

Exon, J. H. 2006. A review of the toxicology of acrylamide.J Toxicol. Environ. Health. 9: 397–412.

Fankhauser-Noti A, Grob K. 2007. Blank problems in traceanalysis of diethylhexyl and dibutyl phthalate:Investigation of the sources, tips and tricks. Anal. Chim.Acta 582:353–360.

Fatta, D., Michael, C., Canna-Michaelidou, St.,Christodoulidou, M., Kythreotou, N., Vasquez, M. 2007.

Pesticides, volatile and semivolatile organic compounds inthe inland surface waters of Cyprus. Desalination 215:223–236.

Fauser, P., Vikelsψe, J., Sψrensen, P. B., Carlsen, L.2003. Phthalates, nonylphenols and LAS in an alternatelyoperated wastewater treatment plant—fate modelling based onmeasured concentrations in wastewater and sludge. WaterRes. 37(6): 1288–1295.

Friedman, M. 2003 Chemistry, biochemistry, and safety ofacrylamide. A review. J. Agr. Food Chem. 51: 4504–4526.

Fromme, H., Küchler, T., Otto, T., Pilz, K., Müller, J.,Wenzel, A. 2002. Occurrence of phthalates and bisphenol Aand F in the environment. Water Res. 36: 1429.

Gaca, J., Wejnerowska, G. 2006. Determination ofepichlorohydrin in water and sewage samples. Talanta 70:1044–1050.

Giri, A. K. 1997. Genetic toxicology of epichlorohydrin: Areview. Mut. Res. Rev. 386: 25–38.

Gong, J., Ran, Y., Chen, D. Y., Yang, Y., Ma, X. X. 2009.Occurrence and environmental risk of endocrine-disruptingchemicals in surface waters of the Pearl River, SouthChina. Environ. Monit. Assess. 156: 199–210.

Guart, A., Bono-Blay, F., Borrell, A., Lacorte, S. 2011.Migration of plasticizer phthalates, bisphenol A andalkylphenols from plastic containers and evaluation of riskfood additives and contaminants—Part A chemistry,analysis, control. Exposure and Risk Assessment 28:676–685.

Guimarães, A. D., Carvalho, J. J., Gonçalves, C.,Alpendurada, M. D. F. 2008. Simultaneous analysis of 23priority volatile compounds in water by solid-phasemicroextraction-gas chromatography-mass spectrometry andestimation of the method’s uncertainty. Int. J. Environ.Anal. Chem. 88:151–164.

Guo, L., Dong, H. 2009. Trace determination of phthalateesters in river water by solvent sublation followed byhigh-performance liquid chromatography-ultravioletdetection. Int. J. Environ. Anal. Chem. 89:357–365.

Halden, R. U. 2010. Plastics and health risks. Annu RevPubl Health. 31: 179–194.

Harris, C. A., Henttu, P., Parker, M. G. et al. 1997. Theestrogenic activity of phthalate esters in vitro. Environ.Health Persp. 105: 802–811.

Harvilchuck, J. A., Carlson, G. P. 2006. Comparison ofstyrene and its metabolites styrene oxide and 4-vinylphenolon cytotoxicity and glutathione depletion in Clara cells ofmice and rats. Toxicology 227: 165–172.

He, J., Lv, R., Zhan, H., Wang, H., Cheng, J., Lu, K.,Wang, F. 2010. Preparation and evaluation of molecularlyimprinted solid-phase micro-extraction �bers for selectiveextraction of phthalates in an aqueous sample. Anal. Chim.Acta 674:53–58.

Hengstler, J. G., Foth, H., Gebel, T.et al. 2011. Criticalevaluation of key evidence on the human health hazards ofexposure to bisphenol A. Crit Rev Toxicol. 41: 263–291.

Howard, P. H. (Ed.), 1989. Handbook of Environmental Fateand Exposure Data for Organic Chemicals, vol. I: LargeProduction and Priority Pollutants. Lewis Publishers, BocaRaton, FL.

HSDB. 2009. Hazardous Substances Data Bank. NationalLibrary of Medicine.http://toxnet.nlm.nih.gov/cgibin/sis/htmlgen?HSDB andsearch on CAS number. Last accessed: 5/19/09.

IARC—International Agency for Research on Cancer.Re-evaluation of some organic chemicals, hydrazine andhydrogen peroxide, vol. 71, Monographs on the valuation ofcarcinogenic risk to humans 1999; 603. Available:

IARC Monographs on the Evaluation of Carcinogenic Risks toHumans, vol. 60: Some Industrial Chemicals InternationalAgency for Research on Cancer, Lyon, France, 1994, 321 pp.

IARC Monographs on the Evaluation of Carcinogenic Risks toHumans, vol. 82: Some Industrial Chemicals InternationalAgency for Research on Cancer, Lyon, France, 2002, 437 pp.

International Agency for Research on Cancer (IARC). OverallEvaluations of Carcinogenicity: An Updating of IARCMonographs, vols. 1–42. Lyon: IARC; 1987. IARC monographson the evaluation of the carcinogenic risk of chemicals tohumans, suppl 7.

Jiao, Y., Ding, L., Fu, S., Zhu, S., Li, H., Wang, L. 2012.

Determination of bisphenol A, bisphenol F and theirdiglycidyl ethers in environmental water by solid phaseextraction using magnetic multiwalled carbon nanotubesfollowed by GC-MS/MS. Anal. Methods, 4: 291–298.

Joel, F. R. 1995. Polymer Science & Technology:Introduction to Polymer Science, Prentice Hall PTR Inc.,Upper Saddle River, New Jersey, pp. 4–9.

Kang, J. H., Kondo, F. 2002a. Effects of bacterial countsand temperature on the biodegradation of bisphenol A inriver water. Chemosphere, 49, 493–498.

Kang, J. H., Aasi, D., Katayama, Y. 2007. Bisphenol A inthe aquatic environment and its endocrine disruptiveeffects on aquatic organisms. Crit. Rev. Toxicol., 37,607–625.

Kang, J. H., Kondo, F. 2002b. Bisphenol A degradation bybacteria isolated from river water. Arch. Environ. Contam.Toxicol., 43, 265–

Kawata, K., Ibaraki, T., Tanabe, A.et al. 2001. Gaschromatographic-mass spectrometric determination ofhydrophilic compounds in environmental water by solid-phaseextraction with activated carbon �ber felt. J. Chromatogr.A 911: 75–83.

Khan, S. J., Weinberg, H. S., Bedford, E. C. 2006.Aqueous-phase aminolysis: Approach for the analysis ofepoxides in water. Anal. Chem. 78: 2608–2616.

Kim, K.-H., Pandey, S.K., Sohn, J.R. 2011. The sensitivityof gas chromatography-headspace solid phasemicroextraction in relationship with relative volatility ofvolatile organic compounds. Anal. Lett. 44: 2457–2465.

Klecka, G. M., Gonsior, S. J., West, R. J., Goodwin, P. A.,Markham, D. A. 2001. Biodegradation of bisphenol A inaquatic environments: River die-away. Environ. Toxicol.Chem., 20, 2725–2735.

Kleywegt, S., Pileggi, V., Yang, P.et al. 2011.Pharmaceuticals, hormones and bisphenol A in untreatedsource and �nished drinking water in Ontario,Canada—Occurrence and treatment ef�ciency. Sci. TotalEnviron. 409: 1481–1488.

LaFleur, A. D., Schug, K. A. 2011. A review of separationmethods for the determination of estrogens and

plastics-derived estrogen mimics from aqueous systems.Anal. Chim. Acta 696: 6–26.

Lasa, M., Garcia, R., Millán, E. A. 2006. Convenient methodfor epichlorohydrin determination in water usingheadspace-solid-phase microextraction and gaschromatography. J. Chromatogr. Sci. 44: 438–443.

Leivadara, S. V, Nikolaou, A. D, Lekkas, T. D. 2008.Determination of organic compounds in bottled waters. FoodChem. 108:277–286.

Li, J., Cai, Y., Shi, Y., Mou, S., Jiang, G. 2008. Analysisof phthalates via HPLC-UV in environmental water samplesafter concentration by solid-phase extraction using ionicliquid mixed hemimicelles. Talanta 74:498–504.

Li, W., Duan. J. 2011. Detection of phthalates in waterusing ultra performance liquid chromatography-electrosprayionization tandem mass spectrometry MRM mode–‘ghost peaks’and measurement methodology. Anal. Methods, 3: 314–321.

Li, X., Ying, G-G., Su, H-C., Yang, X-B., Wang, L. 2010.Simultaneous determination and assessment of 4-nonylphenol,bisphenol A and triclosan in tap water, bottled water andbaby bottles. Environ. Intern. 36: 557–562.

Li, X., Zhong, M., Xu, S., Sun, C. 2006. Determination ofphthalates in water samples using polyaniline-basedsolid-phase microextraction coupled with gaschromatography. J. Chromatogr. A 1135: 101–108.

Li, Z., Huang, D. Fu, C., Wei, B., Yu, W., Deng, C. ZhangX. 2011. Preparation of magnetic core mesoporous shellmicrospheres with C18-modi�ed interior pore-walls for fastextraction and analysis of phthalates in water samples. J.Chromatogr. A, 1218: 6232–6239.

Licea Perez, H., Osterman-Golkar, S. 2003. A sensitive gaschromatographic-tandem mass spectrometric method fordetection of alkylating agents in water: Application toacrylamide in drinking water, coffee and snuff. Analyst.128: 1033–1036.

Liu, L., Zhou, H. 2011. Investigation and assessment ofvolatile organic compounds in water sources in China.Environ. Monit. Asses. 173: 825–836.

Lucentini, L., Ferretti, E., Veschetti, E., Sibio, V.,Citti, G., Ottaviani, M. 2005. Static headspace and

purgeand-trap gas chromatography for epichlorohydrindetermination in drinking water. Microchem. J. 80: 89–98.

Ma, X., Li, Q., Yuan, D. 2011. Determination ofendocrine-disrupting compounds in water by carbon nanotubessolid-phase microextraction �ber coupled online with highperformance liquid chromatography. Talanta 85: 2212–2217.

Marín, J. M., Pozo, Ó. J., Sancho, J. V., Pitarch, E.,López, F. J., Hernández, F. 2006. Study of differentatmospheric–pressure interfaces for LC-MS/MS determinationof acrylamide in water at sub-ppb levels. J. Mass Spec.41: 1041–1048.

Martí, N., Aguado, D., Segovia-Martínez, L., Bouzas, A.,Seco, 2011. Occurrence of priority pollutants in WWTPef�uents and Mediterranean coastal waters of Spain. MarinePollut. Bull. 62: 615–625.

McKee, R., Butala, J., David, R., Gan, G., 2004. NTP centerfor the evaluation of risks to human reproduction reportson phthalates: Addressing the data gaps. Reprod. Toxicol.18, 1–22.

Medeiros Vinci, R., Mestdagh, F., De Meulenaer, B. 2012.Acrylamide formation in fried potato products— Present andfuture, a critical review on mitigation strategies. FoodChem. 133: 1138–1154.

Method 8316. 1994. Acrylamide, Acrylonitrile and Acroleinby High Performance Liquid Chromatography. USEnvironmental Protection Agency, Cincinnati, OH, USA.

Michael, L. C., Pellizzari, E. D. 1988. Development andevaluation of a procedure for determining volatileorganics in water. Environ. Sci. Tech. 22: 565–570.

Moreira, M., Aquino, S., Coutrim, M., Silva, J., Afonso, R.2011. Determination of endocrine-disrupting compounds inwaters from Rio das Velhas, Brazil, by liquidchromatography/high resolution mass spectrometry(ESI-LC-IT-TOF/MS). Environ. Technol.. 32: 1409–1417.

Morgan, M. 2006. Phenol/acetone—facts, �gures and future.The 4th ICIS WorldPhenol/Acetone Conference, Prague, June6–7, 2006. Available online at:http://www.icis.com/v2/chemicals/9075165/bisphenol-a/uses.html2006

Morse P. M. 2011. “Phthalates face murky future,” Chem.

Eng. News. 89: 28–31.

Muncke, J. 2009. Exposure to endocrine disrupting compoundsvia the food chain: Is packaging a relevant source? Sci.Total Environ. 407: 4549–4559.

Newhook, R and Caldwell, I. 1993. Exposure to styrene inthe general Canadian population. IARC Sci Publ 127: 27–33.

Norrgren, L., Blom, A., Andersson, P. L., B¨orjeson, H.,Larsson, D. G. J., Olsson, P. E. 1999. Effects of potentialxenooestrogens (DEHP, nonylphenol and PCB) on sexualdifferentiation in juvenile Atlantic salmon (Salmo salar).Aquat. Ecosyst. Health Manage. 2: 311–317.

Oehlmann J, Oetken M, Schulte-Oehlmann U. 2008. A criticalevaluation of the environmental risk assessment forplasticizers in the freshwater environment in Europe, withspecial emphasis on bisphenol A and endocrine disruption.Environ. Res. 108: 140–149.

Peijnenburg, W., Struijs, J. 2006. Occurrence of phthalateesters in the environment of the Netherlands. Ecotoxicol.Environ. Saf. 63: 204–215.

Peterson, D. R., Staples, C. A. 2003. Degradation ofphthalate esters in the environment. In: Staples CA, ed.The Handbook of Environmental Chemistry. Phthalate Esters,3Q. Berlin: Springer; 2003. pp. 85–124.

Phillips, D. H., Thomas, A. O., Forde, K. et al. 2007. Fateand transport of volatile organic compounds in glacialtill and groundwater at an industrial site in NorthernIreland. Environ. Geol. 52: 1117–1131.

Reynolds, T. 2002. Acrylamide and cancer: Tunnel leak inSweden prompted studies. J. Natl. Cancer Inst. 94:876–878.

Rezaee, M., Yamini, Y., Shariati, S., Esra�li, A.,Shamsipur, M. 2009. Dispersive liquid–liquidmicroextraction combined with high-performance liquidchromatography–UV detection as a very simple, rapid andsensitive method for the determination of bisphenol A inwater samples. J. Chromatogr. A 1216: 1511–1514.

Ripollés, C., Marín, J. M., López, F. J., Sancho, J. V.,Hernández, F. 2009. Determination of sub-ppbepichlorohydrin levels in water by on-line solid-phaseextraction liquid chromatography/tandem mass spectrometry.

Rapid Commun. Mass Spectrom. 23: 1841–1848.

Rodriguez-Mozaz, S., Lopez de Alda, M. J., Barceló, D.2007. Advantages and limitations of on-line solid phaseextraction coupled to liquid chromatography-massspectrometry technologies versus biosensors for monitoringof emerging contaminants in water. J. Chromatogr. A. 1152:97–115.

Salgueiro-González, N., Concha-Grana, E., Turnes-Carou, I.,Muniategui-Lorenzo, S., Lσpez-Mahνa, P., Prada-Rodrνguez,D. 2012. Determination of alkylphenols and bisphenol A inseawater samples by dispersive liquid–liquidmicroextraction and liquid chromatography tandem massspectrometry for compliance with environmental qualitystandards (Directive 2008/105/EC) J. Chromatogr. A, 1223:1–8.

Sanchez-Avila, J., Bonet, J., Velasco, G., Lacorte, S.2009. Determination and occurrence of phthalates,alkylphenols, bisphenol A, PBDEs, PCBs, and PAHs in anindustrial sewage grid discharging to a MunicipalWastewater Treatment Plant. Sci. Total Environ. 407:4157–4167.

Sanchez-Avila, J., Fernandez-Sanjuan, M., Vicente, J.,Lacorte S. 2011. Development of a multi-residue method forthe determination of organic micropollutants in water,sediment and mussels using gas chromatography–tandem massspectrometry. J. Chromatogr. A, 1218: 6799–6811.

Saravanabhavan, G., Murray, J. 2012. Human biologicalmonitoring of diisononyl phthalate and diisodecylphthalate: A review. J. Environ. Public Health. 2012, art.no. 810501

Sarzanini, C., Bruzzoniti, M. C., Mentasti, E. 2000.Determination of epichlorohydrin by ion chromatography. J.Chromatogr A. 884: 251–259.

Serodio, P., Nogueira, J. M. F. 2006. Considerations onultra-trace analysis of phthalates in drinking water.Water Res. 40: 2572–2582.

Sha, C., Yi-Sheng, Z., Shui-Yuan, C., Tian, Q., Hao, S.2011. Development of an ionic liquid-based dispersiveliquid-liquid micro-extraction method for the determinationof phthalate esters in water samples. J. Sep. Sci. 34:1503–1507.

Shipp, A., Lawrence, G., Gentry, R.et al. 2006. Acrylamide:Review of toxicity data and dose–response analyses forcancer and noncancer effects. Critical Rev. Toxicol. 36:481–608.

Silva, F. C., De Carvalho, C. R., Cardeal, Z. D. L. 2000.Solid-phase microextraction method for the quantitativeanalysis of styrene in water. J. Chromatogr. Sci. 38:315–318.

SNFA-Swedish National Food Administration, Informationabout Acrylamide in Food, 24 April 2002, http://www.slv.se.

Sodré, F., Pescara, I., Montagner, C., Jardim, W. 2010.Assessing selected estrogens and xenoestrogens inBrazilian surface waters by liquid chromatography–tandemmass spectrometry. Microchem. J. 96: 92–98.

Squillace, P. J., Moran, M. J., Price, C. V. 2004. VOCs inshallow groundwater in new residential/commercial areas ofthe United States. Environ. Sci. Technol. 38: 5327–5338.

SRI 2007 Chemical economics handbook reportepichlorohydrin. Available at: http://www.sriconsulting.com

Staples, C. A., Peterson, D. R., Parkerton, T. F. et al.1997. The environmental fate of phthalate esters: Aliterature review. Chemosphere 35: 667–749.

Staples, C. A., Weeks, J., Hall, J. F., Naylor, C. G.,1998. Evaluation of aquatic toxicity and bioaccumulation ofC8- and C9-alkylphenol ethoxylates. Environ. Toxicol. Chem.17, 2470–2480.

Staples, C. A., Woodburn, K., Caspers, N., Hall, A. T.,Klecka, G. M., 2002. A weight of evidence approach to theaquatic hazard assessment of bisphenol A. Hum. Ecol. RiskAssess. 8: 1083–1105.

Stern, B. R., Lagos, G. 2008. Are there health risks fromthe migration of chemical substances from plastic pipesinto drinking water? A review. Hum. Ecol. Risk Assess. 14:753–779.

Sultan C, Balaguer P, Terouanne B, Georget V, Paris F,Jeandel C, Lumbroso S, Nicolas JC. 2001. Environmentalxenoestrogens, antiandrogens and disorders of male sexualdifferentiation. Mol. Cell. Endocrinol. 178: 99–105.

Sung, J. H., Lee, Y. J., Park, H. J. 2008. New method fordetermination of epichlorohydrin in epoxy-coated cans byoxolane derivatization and gas chromatography-massspectrometry. J. Chromatogr. A 1201: 100–105.

Swan, S. H, Main, K. M, Liu, F. et al. 2005. Decrease inanogenital distance among male infants with prenatalphthalate exposure. (Research: Children’s Health). Environ.Health Persp. 113: 1056–1061.

Tanigawa, T., Watabe, Y., Kubo, T., Hosoya, K. 2011.Determination of bisphenol A with effective pretreatmentmedium using automated column-switching HPLC with�uorescence detection. J. Sep. Sci. 34: 2840–2846.

Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S.,Törnqvist, M. 2000. Acrylamide: A cooking carcinogen?Chem. Res. Toxicol. 13: 517–522.

Teil, M.-J., Blanchard, M., Dargnat, C., Larcher-Tiphagne,K., Chevreuil M. 2007. Occurrence of phthalate diesters inrivers of the Paris district (France) Hydrol. Process. 21:2515–2525.

Tekkeli, S. E. K., Önal, C., Önal, A. 2012. A review ofcurrent methods for the determination of acrylamide infood products. Food Anal. Meth. 5: 29–39.

Thompson, R. C., Swan, S. H., Moore, C. J. and vom Saal, F.S. 2009 “Our plastic age” Philos. Trans. R. Soc. B. 364,1973–1976.

Tienpont, B., David, F., Dewulf, E., Sandra, P. 2005.Pitfalls and solutions for the trace determination ofphthalates in water samples. Chromatographia 61: 365–370.

Tomšíková, H., Aufartová, J., Solich, P., Nováková, L.,Sosa-Ferrera, Z., Santana-Rodríguez, J. J. 2012.Highsensitivity analysis of female-steroid hormones inenvironmental samples. Trends Anal. Chem. 34: 35–57.

Tyler, C. R, Jobling, S. R, Sumpter, J. P. 1998. Endocrinedisruption in wildlife: A critical review of the evidence.Crit. Rev. Toxicol. 28: 319–361.

United States Environmental Protection Agency, Of�ce ofWater, Fact Sheet, last revised 26 Nov. 2002. Internetaddress: http://www.epa.gov./OGWDW/dwh/c-voc/epichlor.html.

US Environmental Protection Agency (EPA) 1994 Chemical

Summary for Acrylamide. Of�ce of Toxic Substances,Washington DC.

US Environmental Protection Agency. Available:http://www.epa.gov/iris/subst/0050.htm; http://www.epa.gov/safewater/contaminants/dw_contamfs/epichlor.html.

US Environmental Protection Agency. National PrimaryDrinking Water Regulations: Cincinnati, OH, 2002.www.epa.gov/safewater/mcl.html

US EPA 1998. Drinking Water and Health, National PrimaryDrinking Water Regulations, Technical Fact-sheet on: vinylchloride.

van Wezel, A. P., van Vlaardingen, P., Posthumus, R. et al.2000. Environmental risk limits for two phthalates, withspecial emphasis on endocrine disruptive properties.Ecotoxicol. Environ. Safe. 46: 305–321.

Vandenberg, L. N., Chahoud, I., Heindel, J. J.,Padmanabhan, V., Paumgartten, F. J. R., Schoenfelder, G.2010. Urinary, circulating, and tissue biomonitoringstudies indicate widespread exposure to bisphenol A.Environ. Health Persp. 118: 1055–1070.

Wang, L., Gao, X., Guo, J., Ye P. 2001. Determination offour phthalate esters in surface water by solidphaseextraction and simpli�ed mobile phase HPLC. 5thInternational Conference on Bioinformatics and BiomedicalEngineering.

Wenzl, T., Anklam, E. 2007. European Union database ofacrylamide levels in food: Update and critical review ofdata collection. Food Additives Contam. 24 (SUPPL. 1):5–12.

WHO—World Health Organization. 2004. Vinyl Chloride inDrinking-water. Background document for development of WHOGuidelines for Drinking-water Quality.

WHO—World Health Organization. 1996. Guidelines forDrinking-Water Quality, 2nd ed. Vol. 2, Health Criteriaand Other Supporting Information, Geneva: World HealthOrganization.

WHO (World Health Organization) 2008. Guidelines forDrinking-Water Quality, 3rd ed., Geneva: World HealthOrganization.

Willhite, C. C., Ball, G. L., McLellan, C. J. 2008.Derivation of a oral reference dose—Bisphenol a anddrinking-water equivalent concentration. J. Toxicol.Environ. Health B 11:69–146.

Wong, Y. Q., Zheng, C. K. C., Bouwman, J. S.et al. 2012.Bisphenol A (BPA) in China: A review of sources,environmental levels, and potential human health impactsHuang. Environ. Int. 42: 91–99.

World Packaging Organisation (WPO). 2008. Market statisticsand future trends in global packaging. Brazil: FormatoDesign-Brazil. Available from: http://www.worldpackaging.org/

Wu, Z., Liu, H., Wang, C., Zhang, D., Liang, Y. 2011.Occurrence of phthalate esters in the groundwater ofJianghan plain in Winter, China, pp. 1641–1644.

Xe Q., Yin, X. Y., Wu, S. Y., Wang, M., Wen, Z. Y., Gu, Z.Z. 2010. Determination of phthalate esters in watersamples using nylon nano�bers mat-based solid-phaseextraction coupled to liquid chromatography. Microchim.Acta 168:267–275.

Yamamoto, K., Fukushima, M., Kakutani, N., Tsuruho, K.2001. Contamination of vinyl chloride in shallow urbanrivers in Osaka, Japan. Water Res. 35:561–566.

Zeng, F., Cui, K., Xie, Z. et al. 2008. Occurrence ofphthalate esters in water and sediment of urban lakes in asubtropical city, Guangzhou, South China. Environ. Intern.34:372–380.

Zhang, H., Chen. X., Jiang, X. 2011. Determination ofphthalate esters in water samples by ionic liquidcoldinduced aggregation dispersive liquid–liquidmicroextraction coupled with high-performance liquidchromatography. Anal. Chim. Acta 689:137–142.

Zhang, Y., Ren, Y., Zhang, Y. 2009. New researchdevelopments on acrylamide: Anal chem, formation mechanism,and mitigation recipes. Chem. Rev. 109: 4375–4397.

Zhang, Z., Feng, Y., Gao, P., Wang, C., Ren, N. 2011.Occurrence and removal ef�ciencies of eight EDCs andestrogenicity in a STP. J. Environ. Monit., 13: 1366.

Zhao, R.-S., Wang, X., Yuan, J.-P. 2010. Highly sensitivedetermination of tetrabromobisphenol A and bisphenol A in

environmental water samples by solid-phase extraction andliquid chromatography-tandem mass spectrometry. J. Sep.Sci. 33: 1652–1657.

Zhou, Q., Gao, Y., Xie, G. 2011. Determination of bisphenolA, 4-n-nonylphenol, and 4-tert-octylphenol bytemperature-controlled ionic liquid dispersive liquid-phasemicroextraction combined with high performance liquidchromatography-�uorescence detector. Talanta 85: 1598–1602.