Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for...

22
ORIGINAL PAPER Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for adakite and magmas from the MASH Zone Chao Yuan Min Sun Wenjiao Xiao Simon Wilde Xianhua Li Xiaohan Liu Xiaoping Long Xiaoping Xia Kai Ye Jiliang Li Received: 15 November 2007 / Accepted: 1 June 2008 / Published online: 25 June 2008 Ó Springer-Verlag 2008 Abstract A garnet-bearing tonalitic porphyry from the Achiq Kol area, northeast Tibetan Plateau has been dated by SHRIMP U-Pb zircon techniques and gives a Late Triassic age of 213 ± 3 Ma. The porphyry contains phenocrysts of Ca-rich, Mn-poor garnet (CaO [ 5 wt%; MnO \ 3 wt%), Al-rich hornblende (Al 2 O 3 * 15.9 wt%), plagioclase and quartz, and pressure estimates for horn- blende enclosing the garnet phenocrysts yield values of 8– 10 kbar, indicating a minimum pressure for the garnet. The rock has SiO 2 of 60–63 wt%, low MgO ( \ 2.0 wt%), K 2 O ( \ 1.3 wt%), but high Al 2 O 3 ( [ 17 wt%) contents, and is metaluminous to slightly peraluminous (ACNK = 0.89– 1.05). The rock samples are enriched in LILE and LREE but depleted in Nb and Ti, showing typical features of subduction-related magmas. The relatively high Sr/Y (*38) ratios and low HREE (Yb \ 0.8 ppm) contents suggest that garnet is a residual phase, while suppressed crystallization of plagioclase and lack of negative Eu anomalies indicate a high water fugacity in the magma. Nd–Sr isotope compositions of the rock (eNd T =-1.38 to -2.33; 87 Sr/ 86 Sr i = 0.7065–0.7067) suggest that both mantle- and crust-derived materials were involved in the petrogenesis, which is consistent with the reverse compo- sitional zoning of plagioclase, interpreted to indicate magma mixing. Both garnet phenocrysts and their ilmenite inclusions contain low MgO contents which, in combina- tion with the oxygen isotope composition of garnet separates (+6.23%), suggests that these minerals formed in a lower crust-derived felsic melt probably in the MASH zone. Although the rock samples are similar to adakitic rocks in many aspects, their moderate Sr contents ( \ 260 ppm) and La/Yb ratios (mostly 16–21) are signifi- cantly lower than those of adakitic rocks. Because of high partition coefficients for Sr and LREE, fractionation of apatite at an early stage in the evolution of the magma may have effectively decreased both Sr and LREE in the residual melt. It is suggested that extensive crystallization of apatite as an early phase may prevent some arc magmas from evolving into adakitic rocks even under high water fugacity. Keywords Garnet Á Adakite Á MASH Zone Á Kunlun Á Tibetan Plateau Introduction Convergent plate boundaries, also known as the ‘‘subduction factory’’, are very important for crustal growth and material recycling (Tatsumi and Eggins 1995; Stern 2002). Arc magmas, as a product of subduction, retain important clues of the energy and material transfer between mantle and crust, and the crust-mantle transition zone commonly plays a crucial role in crust-mantle interactions. Due to negative C. Yuan (&) Á X. Li Á X. Long Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China e-mail: [email protected] M. Sun Á X. Xia Department of Earth Sciences, The University of Hong Kong, Pokflam Road, Hong Kong, China W. Xiao Á X. Liu Á K. Ye Á J. Li State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China S. Wilde Department of Applied Geology, Curtin University of Technology, Perth, Australia 123 Int J Earth Sci (Geol Rundsch) (2009) 98:1489–1510 DOI 10.1007/s00531-008-0335-y

Transcript of Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for...

ORIGINAL PAPER

Garnet-bearing tonalitic porphyry from East Kunlun NortheastTibetan Plateau implications for adakite and magmasfrom the MASH Zone

Chao Yuan AElig Min Sun AElig Wenjiao Xiao AElig Simon Wilde AEligXianhua Li AElig Xiaohan Liu AElig Xiaoping Long AEligXiaoping Xia AElig Kai Ye AElig Jiliang Li

Received 15 November 2007 Accepted 1 June 2008 Published online 25 June 2008

Springer-Verlag 2008

Abstract A garnet-bearing tonalitic porphyry from the

Achiq Kol area northeast Tibetan Plateau has been dated

by SHRIMP U-Pb zircon techniques and gives a Late

Triassic age of 213 plusmn 3 Ma The porphyry contains

phenocrysts of Ca-rich Mn-poor garnet (CaO [ 5 wt

MnO 3 wt) Al-rich hornblende (Al2O3 159 wt)

plagioclase and quartz and pressure estimates for horn-

blende enclosing the garnet phenocrysts yield values of 8ndash

10 kbar indicating a minimum pressure for the garnet The

rock has SiO2 of 60ndash63 wt low MgO (20 wt) K2O

(13 wt) but high Al2O3 ([17 wt) contents and is

metaluminous to slightly peraluminous (ACNK = 089ndash

105) The rock samples are enriched in LILE and LREE

but depleted in Nb and Ti showing typical features of

subduction-related magmas The relatively high SrY

(38) ratios and low HREE (Yb 08 ppm) contents

suggest that garnet is a residual phase while suppressed

crystallization of plagioclase and lack of negative Eu

anomalies indicate a high water fugacity in the magma

NdndashSr isotope compositions of the rock (eNdT = -138 to

-233 87Sr86Sri = 07065ndash07067) suggest that both

mantle- and crust-derived materials were involved in the

petrogenesis which is consistent with the reverse compo-

sitional zoning of plagioclase interpreted to indicate

magma mixing Both garnet phenocrysts and their ilmenite

inclusions contain low MgO contents which in combina-

tion with the oxygen isotope composition of garnet

separates (+623) suggests that these minerals formed

in a lower crust-derived felsic melt probably in the MASH

zone Although the rock samples are similar to adakitic

rocks in many aspects their moderate Sr contents

(260 ppm) and LaYb ratios (mostly 16ndash21) are signifi-

cantly lower than those of adakitic rocks Because of high

partition coefficients for Sr and LREE fractionation of

apatite at an early stage in the evolution of the magma may

have effectively decreased both Sr and LREE in the

residual melt It is suggested that extensive crystallization

of apatite as an early phase may prevent some arc magmas

from evolving into adakitic rocks even under high water

fugacity

Keywords Garnet Adakite MASH Zone Kunlun Tibetan Plateau

Introduction

Convergent plate boundaries also known as the lsquolsquosubduction

factoryrsquorsquo are very important for crustal growth and material

recycling (Tatsumi and Eggins 1995 Stern 2002) Arc

magmas as a product of subduction retain important clues

of the energy and material transfer between mantle and crust

and the crust-mantle transition zone commonly plays a

crucial role in crust-mantle interactions Due to negative

C Yuan (amp) X Li X Long

Key Laboratory of Isotope Geochronology and Geochemistry

Guangzhou Institute of Geochemistry Chinese Academy

of Sciences Guangzhou 510640 China

e-mail yuanchaogigaccn

M Sun X Xia

Department of Earth Sciences The University of Hong Kong

Pokflam Road Hong Kong China

W Xiao X Liu K Ye J Li

State Key Laboratory of Lithospheric Evolution

Institute of Geology and Geophysics Chinese Academy

of Sciences Beijing 100029 China

S Wilde

Department of Applied Geology Curtin University

of Technology Perth Australia

123

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

DOI 101007s00531-008-0335-y

buoyancy mantle-derived magma commonly pools at the

crust-mantle transition zone and interacts with crustal

materials causing extensive mixing assimilation storage

and homogenization (MASH) (Hildreth and Moorbath 1988

Dufek and Bergantz 2005 Annen et al 2006 Lee et al 2006

Tassara 2006 Berger et al 2007) In active continental

margin and mature arc systems the MASH zone is generally

at a depth corresponding to the garnet stability field (ca

30 km) and mostly around the crust-mantle transition zone

Differentiation of primary magma in the MASH zone will

leave garnet pyroxenite cumulates which may subsequently

sink into the mantle by delamination and cause mantle het-

erogeneity (van Sestrenen et al 2001 Anderson 2006 Behn

and Kelemen 2006) A largely neglected and perhaps equally

important aspect is residual melt from the MASH zone

Recently a high pressure differentiation regime for arc

magmas in the garnet stability field has been invoked to

explain the occurrence of adakites with normal geothermal

gradients (eg Macpherson et al 2006 Richards and Ker-

rich 2007 Roderıguez et al 2007) If these authors are

correct the question arises why only a small amount of arc

magma can finally evolve into adakite in normal subduction

zones or alternatively what happened to those non-adakitic

arc magmas during their differentiation The MASH zone

therefore becomes a key factor for understanding magmatic

evolution and crustal growth Fossil arc sections and mafic-

ultramafic xenoliths have been investigated to understand the

magmatic and geochemical processes in the MASH zone but

these samples generally represent restites or cumulates of

magma (Hermann et al 1997 Greene et al 2006 Berger

et al 2007 Garrido et al 2006 Bryant et al 2007) and

samples of residual melt from the MASH zone are still rare

Although scarse worldwide garnet-bearing metalumi-

nous intrusions have been found in some subduction-

related environments eg Northland New Zealand

northern Pannonian Basin in eastern-central Europe and

Setouchi Volcanic Belt in Japan (Day et al 1992 Harangi

et al 2001 Nitoi et al 2002 Bandres et al 2004

Kawabata and Takafuji 2005) In contrast with those in

S-type granitic plutons garnet in metaluminous intrusions

is characterized by Ca-rich Mn-poor almandine and

generally forms under relatively high pressure conditions

mostly corresponding to the depth of the crust-mantle

transition zone (Day et al 1992 Green 1992) Rapid

ascent of the garnet-bearing magma under an extensional

regime and with high volatile content effectively prevents

garnet crystals from being dissolved during subsequent

re-equilibrium under low pressure conditions (Day et al

1992 Harangi et al 2001) Therefore garnet-bearing

metaluminous rocks may represent intact melt from the

base of the crust and provide a rare opportunity to eval-

uate magmatic and geochemical processes in the MASH

zone

This paper reports SHRIMP U-Pb zircon results and

geochemical data for a garnet-bearing tonalite porphyry

from East Kunlun at the northeastern margin of the

Tibetan Plateau The geochemical results together with

petrographic observations and mineral analyses also shed

light on the genesis of adakitic rocks in general

Geological background

The Tibetan Plateau is comprised of micro-continental and

arc-derived blocks and at least five suture zones have been

identified in the plateau indicating a multiple orogenic

history (Chang et al 1986 Dewey et al 1988 Pan et al

1996 Matte et al 1996 Sobel and Arnaud 1999 Yin and

Harrison 2000 Xiao et al 2002a b Cowgill et al 2003

Gehrels et al 2003a b Schwab et al 2004 Yuan et al

2005) The Kunlun Mountain range extends for more than

2500 km along the northern margin of the Tibetan Plateau

and records the earliest collage history of the plateau

(Fig 1) It is cut by the Altyn Fault which divides the

Kunlun Mountains into West and East sections The East

Kunlun consists of three sub-parallel branches ie Qim-

antag in the north Burhanbudashan-Animaqingshan in the

middle and Kokoxilishan in the south (Fig 1) Previous

work has revealed that the East Kunlun has undergone at

least two orogenies that are closely related to the con-

sumption of the Proto-Tethys (Neoproterozoic to Early

Devonian) and Paleo-Tethys (Carboniferous to Jurassic)

oceans respectively (Sengor 1987 Pan et al 1996 Bian

et al 2004) Ordovician and Carboniferous dismembered

ophiolites have been recognized in the East Kunlun (Jiang

1992 Yang et al 1999 Wang et al 1999 Lan et al 2000

Bian et al 2004) and two episodes of magmatism have

also been identified one in the early Paleozoic (Caledo-

nian) and the other in the Late Paleozoic to early Mesozoic

(Indosinian) (Pan et al 1996 Sobel and Arnaud 1999

Cowgill et al 2003 Gehrels et al 2003a b Liu et al

2005) Precambrian basement mainly outcrops in the east

part of the East Kunlun (east of 92E) and is dominated by

mid- to late-Proterozoic gneissic rocks (Wang et al 2004

Chen et al 2006) Tectonically the East Kunlun can be

subdivided into three belts by the E-W trending South

Qimantag Fault and Mid Kunlun Fault along the Burhan-

budashan (Jiang 1992) (Fig 1) The northern belt is

characterized by thick Paleozoic (Ordovician to early

Carboniferous) clastic and carbonate sediments interlay-

ered with mafic volcanic rocks (Li et al 2000 Pan et al

2002) The middle belt is characterized by widespread

Neoproterozoic and Late Mesozoic granitic magmatism

Precambrian rocks in this belt exhibit progressively weaker

metamorphism from bottom to top ie from gneiss schist

to weakly metamorphosed carbonate and clastic rocks

1490 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

(Jiang 1992) South of the Mid Kunlun Fault the southern

belt is dominated by Precambrian to Jurassic clastic and

carbonate rocks In addition Lower Carboniferous strata

here contain a thick ([3000 m) mafic to intermediate

volcanic sequence which has been interpreted as having

being produced in a subduction environment (Wu et al

2005) Of the major faults in the East Kunlun the Mid

Kunlun Fault was considered to be a suture zone and the

most important geological boundary separating the middle

and south Kunlun belts (Jiang 1992) The area underwent

continuous tectonism during the Late Paleozoic and Early

Mesozoic and this was a key period in the geological

evolution of the East Kunlun (Luo et al 1999) of which

the Late Triassic to Jurassic was the most critical period

encompassing the change from compressional to exten-

sional regimes as evidenced by mantle-derived magmatism

and hypabyssal intrusions (Qian et al 2000 Luo et al

2002) The final closure of Paleo-Tethys occurred in the

Jurassic (Sengor 1987 Dewey et al 1988 Yin and Harri-

son 2000) with a soft collision proposed to explain the lack

of significant crustal thickening in the East Kunlun (Yin

and Zhang 1997) After this period the East Kunlun was

relatively stable until the Cenozoic when K-rich volcanism

was extensive in the northern Tibetan Plateau (Jiang 1992

Deng 1998 Yang et al 2002)

An unusual garnet-bearing tonalitic porphyry is located

to the west of Achiq Kol in the Kumkuri area a Cenozoic

basin bounded by the Altyn Fault and Kunlun and Qim-

antag mountain ranges (Figs 1 2) The basin is mostly

filled with Neogene and Quaternary sediments and

Paleozoic strata are only locally exposed being dominated

by Carboniferous to Permian carbonate interlayered with

clastic sediments and volcanic rocks (CIGMR 1988) The

garnet-bearing tonalitic porphyry is a small undeformed

subvolcanic stock intruding Permian limestone at the

northern margin of Burhanbudashan with an outcrop of ca

8 km2 (Fig 2)

Rock description and petrography

The garnet-bearing tonalitic porphyry is homogeneous and

no enclaves were found The rock has a porphyritic texture

with garnet hornblende plagioclase and quartz set in a

cryptocrystalline matrix Garnet is generally less than

2 mm in size though some reaches 10 mm in diameter

(Fig 3a) Most garnet is isolated although some occurs as

aggregates (Fig 3bndashd) Garnet is commonly surrounded by

plagioclase or hornblende indicating its early crystalliza-

tion (Fig 3b c) Under the microscope garnet crystals

Fig 1 Geological map of Eastern Kunlun (modified from CIGMR 1988) Inset tectonic map of the Himalayan-Tian Shan region South

Qimantag fault ` Mid Kunlun fault acute South Kunlun fault

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1491

123

are generally euhedral with concentric zoning Although

enveloped in both plagioclase and hornblende garnet has

sharp boundaries without any reaction rim Small mineral

inclusions are common in the garnet and these are domi-

nantly needle-like apatite and ilmenite with local zircon

Unlike examples from Northland New Zealand and the

northern Pannonian Basin eastern-central Europe (Day

et al 1992 Harangi et al 2001) augite hornblende and

plagioclase inclusions are not present in the garnet Horn-

blende is the major mafic mineral in the rock with

rhomboid shape and is locally replaced by chlorite

(Fig 3e f) Plagioclase is euhedral and many grains are

altered to kaolin and only a few have survived alteration

and exhibit concentric zoning (Fig 3g) Quartz is rare and

generally anhedral indicative of relatively late crystalli-

zation (Fig 3h) The occurrence of quartz and lack of

pyroxene and biotite make the garnet-bearing tonalitic

porphyry distinct from similar rocks described from New

Zealand Europe and Japan Thin section observation sug-

gests that the minerals in the rock are phenocrysts

crystallized from magma and no garnet xenocrysts were

found

Analytical methods

Zircon grains were separated from a sample of garnet

tonalite using conventional density and magnetic tech-

niques Representative zircon grains were hand-picked

under a binocular microscope and were cast with pieces of

the CZ3 standard in an epoxy mount that was ground to

expose the grain centers U-Th-Pb isotopic compositions

were analyzed using the WA Consortium SHRIMP II ion

microprobe at Curtin University of Technology following

the analytical procedures of Williams (1998) Sri Lankan

gem zircon standard (CZ3) (206Pb238U = 00914 equiva-

lent to an age of 564 Ma) was used as the standard and the

U and Th decay constants recommended by Steiger and

Jager (1977) were adopted for age calculation Measured238U206Pb ratios and reported ages have been corrected

using the measured 204Pb (Compston et al 1984) The

analytical data were reduced and calculated using the Krill

program of PD Kinny (Curtin University) and then plotted

using the IsoplotEx 246 program (Ludwig 2001) Uncer-

tainties on individual analyses are reported at the 1r level

and mean ages for pooled 206Pb238U results are quoted at

the 95 confidence level (2r) Detailed analytical data are

given in Table 1 and the concordia plots are presented in

Fig 4

Major element composition of the phenocrysts was

analyzed using a Cameca SX-51 electron microprobe at the

Institute of Geology and Geophysics Chinese Academy of

Sciences The acceleration voltage and beam current were

set at 15 kv and 20 nA respectively Detailed analytical

procedure has been described in Liu and Ye (2004) and

both natural and synthetic minerals were used for standard

calibration The analytical errors at 1r for Na Mg Al Si

K Na Ca Ti Cr Mn Fe and Ni are generally better than

012 Major oxides of selected whole-rock samples were

determined with a Rigaku ZSX100e X-ray fluorescence

spectrometer on fused glass disks at the Guangzhou

Institute of Geochemistry Chinese Academy of Sciences

(GIGCAS) with analytical uncertainties between 1 and 5

Trace elements were analyzed using a Perkin-Elmer Sciex

ELAN 6000 ICP-MS following the procedures described

by Li (1997) About 50 mg of powdered sample was

digested with mixed HNO3 + HF acid in steel-bomb coated

Teflon beakers in order to assure complete dissolution of the

refractory minerals Rh was used as an internal standard to

monitor signal drift and the USGS rock standards GSP-1

G-2 W-2 and AGV-1 and the Chinese national rock stan-

dards GSR-1 and GSR-3 were analyzed in order to calibrate

element concentrations of the unknown samples Analytical

uncertainties were generally better than 5

Sr and Nd isotopic analyses were performed on a

Finnigan MAT-262 at the Institute of Geology and Geo-

physics Chinese Academy of Sciences following the

procedures described by Zhang et al (2002) Cation col-

umns were used to separate Sr and rare earth elements

(REEs) and the REE fraction was further separated with

HDEHP-coated Kef columns to obtain Nd Measured87Sr86Sr and 143Nd144Nd ratios were normalized to86Sr88Sr = 01194 and 146Nd144Nd = 07219 respec-

tively The reported 87Sr86Sr and 143Nd144Nd ratios were

respectively adjusted to the NBS SRM 987 standard87Sr86Sr = 071025 and the Shin Etsu JNdi-1 standard143Nd144Nd = 0512115 Oxygen was extracted from a

garnet separate using the standard BrF5 technique (Taylor

Fig 2 Geological map of the Achiq Kol area East Kunlun

1492 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

and Epstein 1962) Before analysis powders were dried at

110C for 2 h to release adsorbed water Isotope analyses

were performed on a MAT-252 mass spectrometer The

18O16O ratio is expressed by the conventional d18O nota-

tion in permil relative to V-SMOW The analytical error of

d18O values is plusmn01

Fig 3 Photographs of rock

specimen and major minerals in

the garnet-bearing tonalitic

porphyry East Kunlun (a) Rock

specimen with garnet crystals

(b) Garnet with apatite

inclusions enclosed in

kaolinized plagioclase

(PPL 940) c Garnet enclosed

in chloritized hornblende

(PPL 940) d Garnet aggregate

showing concentric zoning and

ilmenite inclusion (PPL 940)

e Chloritized hornblende

showing idiomorphic crystal

form (PPL 940) f Fresh

hornblende phenocryst with

120 cleavages (PPL 940)

g Plagioclase phenocryst with

reverse zoning (PPL 940)

h Partly resorbed anhedral

quartz phenocryst in fine-

grained matrix (PPL 940)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1493

123

Geochronology

Zircon grains from the garnet-bearing tonalite porphyry

are euhedral and transparent and generally colorless or

light brown Most grains exhibit concentric oscillatory

zoning and no inherited zircon cores were observed

Eleven zircons were analyzed for U-Pb isotopic com-

position and the results are listed in Table 1 The zircons

show a wide range of U (337ndash1329 ppm) and Th (26ndash

308 ppm) contents Except for three grains with rela-

tively low ThU ratios (ca 007) most zircons have

moderate ThU ratios (018ndash033) which together with

their internal concentric zoning indicate a magmatic

origin These analyses form a coherent group with a

weighted mean 206Pb238U age of 213 plusmn 3 Ma (Fig 4)

This age is interpreted as the crystallization age of the

rock

Geochemical results

Mineral compositions

Garnet

Representative compositions of garnet in the tonalite por-

phyry are listed in Table 2 All garnets have a relatively

homogeneous composition consisting mainly of almandine

(56ndash76 mol) and grossular (24ndash30 mol) with minor

pyrope (9ndash18 mol) and spessartine (1ndash7 mol) compo-

nents Although the garnets generally show compositional

zoning (Fig 3andashc) there is no regular compositional varia-

tion within the grains As revealed in Table 2 some garnet

shows an increase in MgO MnO andor CaO towards the

rim whereas others show the reverse trend These features

are similar to those of garnet phenocrysts in the northern

Pannonian Basin eastern-central Europe and Setouchi

Japan (Harangi et al 2001 Kawabata and Takafuji 2005)

The compositional variation of garnet can be illustrated with

a profile analysis on a single garnet crystal (Fig 5) The

components of garnet generally keep relatively constant in

the central part of the crystal except for grossular showing a

weak fluctuation although a significant increase in alman-

dine and a decrease in grossular can be observed in the rim

while pyrope and spessartine exhibit only weak variation

Hornblende

Compositions of representative hornblende crystals are

given in Table 3 Hornblende in the garnet-bearing tona-

litic porphyry has relatively homogeneous composition

In comparison with those from garnet-bearing andesite

from Northland New Zealand (Day et al 1992) horn-

blende in this study is characterized by relatively low

MgO (881ndash101 wt) TiO2 (088ndash187 wt) and CaO

Table 1 SHRIMP zircon UndashPb results for the garnet-bearing tonalitic porphyry East Kunlun

Spot

name

U

ppm

Th

ppm

ThU 207Pb206Pb err 207Pb 235U err 206Pb238U Error () Error

correlation

Age (Ma)

206Pb238U 1r 207Pb206Pb 1r

L1211 440 30 007 00466 421 02114 435 00329 107 025 209 2 30 101

L1221 398 31 008 00486 433 02248 447 00336 108 024 213 2 127 102

L1231 939 308 033 00499 185 02383 209 00347 099 047 220 2 188 43

L1241 369 26 007 00495 283 02259 303 00331 107 035 210 2 169 66

L1251 453 80 018 00484 381 02181 396 00327 106 027 208 2 117 90

L1261 337 79 024 00477 522 02140 533 00325 110 021 206 2 85 124

L1271 1146 235 021 00502 141 02311 172 00334 098 057 212 2 202 33

L1281 837 156 019 00475 192 02220 216 00339 099 046 215 2 73 46

L1291 1329 264 020 00491 154 02284 182 00337 097 053 214 2 153 36

L12101 793 192 024 00498 205 02350 228 00342 100 044 217 2 186 48

L12111 1142 275 024 00485 175 02276 201 00340 098 049 216 2 126 41

290290

270270

250250

230230

190190

170170

150150

00220022

00260026

00300030

00340034

00380038

00420042

00460046

014014 018018 022022 026026 030030 034034

207207PbPb 235235UU

20

62

06 P

b

Pb

23

82

38UU

Weighted mean Pb U age = 213 3 Ma206 238

( 37)n 11 MSWD= =

Fig 4 SHRIMP zircon UndashPb concordia diagrams for the garnet-

bearing tonalitic Porphyry East Kunlun

1494 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

Rep

rese

nta

tive

maj

or

elem

ent

com

posi

tion

of

gar

net

inth

egar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

G-1

2a1

G-1

2a2

G-1

2a-

3G

-12c-

1G

-12c-

3G

-a-3

G-a

-2

Core

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Rim

SiO

2378

5384

8383

3379

1378

6381

3383

6383

2381

7381

4380

2381

377

9384

0383

3379

8

TiO

206

203

001

001

904

605

102

002

902

702

904

103

202

802

203

501

0

Al 2

O3

205

5214

6216

5213

2212

0212

8214

6210

3211

8210

3210

3210

9211

8217

6211

9213

5

Cr 2

O3

ndashndash

ndashndash

ndash00

400

1ndash

ndashndash

ndash00

100

3ndash

ndashndash

Fe 2

O3

06

000

4ndash

00

6ndash

ndashndash

04

003

002

701

700

801

400

002

101

5

MgO

25

143

340

234

628

731

733

442

242

539

936

937

242

840

536

235

1

CaO

62

463

358

960

377

878

059

561

671

461

669

258

352

773

268

770

5

MnO

25

515

724

421

922

517

622

217

814

817

915

118

219

816

917

829

6

FeO

297

7281

4282

0292

9278

2278

0293

5277

4271

6278

7280

0287

5290

8275

5280

4270

5

NiO

00

3ndash

ndashndash

ndashndash

00

2ndash

00

100

200

200

100

300

500

200

6

Na 2

O00

300

300

400

400

400

200

300

200

300

100

100

200

300

600

3

K2O

ndashndash

ndashndash

ndashndash

00

1ndash

ndash00

1ndash

ndash00

2ndash

ndash00

3

Tota

l1007

51006

91006

71004

91002

71005

11009

5999

4999

8996

2997

7997

41000

91010

81004

81002

8

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

60

083

60

154

60

097

59

908

59

890

59

997

60

253

60

385

60

070

60

369

60

167

60

37

59

781

59

829

60

257

59

954

Ti

00

743

00

351

00

117

00

221

00

551

00

600

00

234

00

341

00

315

00

349

00

486

00

386

00

329

00

256

00

414

00

122

Al

38

447

39

543

39

998

39

710

39

528

39

465

39

721

39

059

39

288

39

222

39

226

39

384

39

492

39

966

39

253

39

716

Cr

ndashndash

00

006

ndashndash

00

046

00

012

ndashndash

ndashndash

00

018

00

032

ndashndash

ndash

Fe

00

720

00

043

ndash00

077

ndash00

000

ndash00

476

00

353

00

322

00

200

00

09

00

171

00

252

00

176

Mg

05

938

10

094

09

405

08

154

06

770

07

429

07

827

09

915

09

975

09

422

08

697

08

778

10

091

09

416

08

476

08

264

Ca

10

610

10

600

09

886

10

203

13

187

13

151

10

010

10

396

12

039

10

445

11

727

09

899

08

940

12

221

11

574

11

926

Mn

03

429

02

085

03

237

02

929

03

009

02

352

02

959

02

375

01

968

02

399

02

026

02

442

02

647

02

236

02

372

03

958

Fe

39

530

36

789

36

974

38

715

36

804

36

583

38

552

36

557

35

744

36

893

37

063

38

097

38

474

35

905

36

859

35

709

Ni

00

043

ndashndash

00

004

ndashndash

00

026

ndash00

015

00

026

00

026

00

017

00

041

00

064

00

026

00

079

Na

00

096

00

088

00

128

00

113

00

112

00

049

00

090

00

057

00

098

00

031

00

031

00

063

00

078

00

182

00

098

Kndash

ndashndash

ndashndash

ndash00

018

ndashndash

00

027

ndashndash

00

032

ndash00

008

00

050

Tota

l159

639

159

746

159

848

160

034

159

851

159

672

159

701

159

506

159

823

159

573

159

649

159

513

160

09

159

971

159

672

160

052

Uv

ndashndash

00

1ndash

ndash01

200

3ndash

ndashndash

ndash00

500

8ndash

ndashndash

Ad

29

606

401

805

208

309

103

617

313

713

512

508

209

203

912

706

2

Gr

142

5168

6163

2163

208

205

9162

8155

3185

4160

1180

6155

3135

8198

5179

2192

Py

100

5170

1158

3136

2113

9125

6132

2167

9167

5159

8146

9148

8168

3157

9143

6138

2

Sp

58

135

154

548

950

639

850

040

233

140

734

241

444

137

540

266

2

Al

669

3619

8622

1646

7619

2618

4651

1619

2600

4625

8625

8645

9641

7602

2624

4597

3

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1495

123

Tab

le2

conti

nued

Sam

ple

G-a

-1G

-c-5

G-c

-3G

-c-1

G-5

a-1

G-5

a-2

Core

Man

tle

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

SiO

2384

5378

6379

5379

5386

4382

6386

1389

9384

4380

2373

0382

0376

0381

5376

4379

8

TiO

207

901

601

605

805

601

902

602

502

401

600

802

302

001

804

501

9

Al 2

O3

211

3214

3212

8215

7212

9215

3215

6219

8217

0220

2215

7217

1217

6216

0215

6215

5

Cr 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

00

4ndash

ndashndash

Fe 2

O3

01

9ndash

01

7ndash

01

2ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

MgO

31

436

236

326

626

537

742

045

038

142

741

341

336

742

832

038

2

CaO

107

463

458

9112

5114

164

069

973

159

762

365

662

064

160

175

064

8

MnO

11

318

019

904

004

716

118

013

918

518

916

516

317

618

117

616

0

FeO

254

9289

3293

1262

5256

8286

2272

0267

1287

4281

1279

5286

5287

0287

0286

2287

7

NiO

00

3ndash

00

100

2ndash

00

5ndash

ndash00

2ndash

ndashndash

00

2ndash

ndash00

1

Na 2

O00

100

500

500

500

500

800

500

300

200

100

500

200

200

3ndash

00

3

K2O

ndash00

4ndash

00

500

300

4ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Tota

l1011

01002

31004

31007

81008

91005

51006

71011

61007

91006

9992

91007

71001

71007

61007

41004

4

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

59

863

59

849

59

956

59

405

60

213

60

104

60

256

60

259

60

175

59

503

59

345

59

814

00

241

59

790

59

310

59

797

Ti

00

931

00

187

00

19

00

686

00

654

00

22

00

300

00

290

00

282

00

188

00

097

00

269

40

530

00

218

00

534

00

230

Al

38

777

39

925

39

617

39

799

39

105

39

861

39

661

40

036

40

032

40

611

40

439

40

057

00

046

39

895

40

042

39

992

Cr

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

Fe

00

222

ndash00

198

ndash00

143

ndashndash

ndashndash

ndashndash

ndash08

645

ndashndash

ndash

Mg

07

276

08

529

08

544

06

197

06

151

08

825

09

771

10

359

08

880

09

951

09

782

09

632

10

845

09

993

07

522

08

953

Ca

17

911

10

739

09

973

18

873

19

051

10

771

11

679

12

107

10

010

10

448

11

182

10

408

02

353

10

087

12

669

10

937

Mn

01

491

02

404

02

662

00

535

00

622

02

137

02

380

01

815

02

457

02

506

02

226

02

159

37

928

02

401

02

342

02

137

Fe

33

184

38

247

38

72

34

361

33

469

37

592

35

496

34

522

37

628

36

789

37

190

37

515

00

028

37

613

37

710

37

875

Ni

00

037

ndash00

007

00

028

ndash00

068

ndashndash

00

029

ndash00

006

ndash00

054

ndashndash

00

015

Na

00

030

00

153

00

148

00

153

00

143

00

253

00

140

00

091

00

067

00

018

00

144

00

066

ndash00

098

00

009

00

085

Kndash

00

089

00

006

00

098

00

057

00

08

ndashndash

ndashndash

ndashndash

160

084

ndashndash

ndash

Tota

l159

722

160

122

160

023

160

136

159

609

159

912

159

683

159

478

159

56

160

012

160

41

159

922

ndash160

094

160

139

160

02

Uv

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

01

2ndash

ndashndash

Ad

19

702

807

810

413

603

304

604

404

302

801

404

103

603

308

03

5

Gr

272

9174

9157

1299

6303

1176

4189

9199

1163

170

6183

168

174

7162

8198

1177

2

Py

122

7142

6142

9104

1104

4149

1165

2176

7151

167

162

2161

7145

166

6125

5149

8

Sp

25

140

244

509

010

636

140

230

941

842

136

936

339

540

039

135

8

Al

559

6639

5647

7577

568

2635

1600

1588

8639

9617

5616

5629

9636

1627

3629

3633

7

1496 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

buoyancy mantle-derived magma commonly pools at the

crust-mantle transition zone and interacts with crustal

materials causing extensive mixing assimilation storage

and homogenization (MASH) (Hildreth and Moorbath 1988

Dufek and Bergantz 2005 Annen et al 2006 Lee et al 2006

Tassara 2006 Berger et al 2007) In active continental

margin and mature arc systems the MASH zone is generally

at a depth corresponding to the garnet stability field (ca

30 km) and mostly around the crust-mantle transition zone

Differentiation of primary magma in the MASH zone will

leave garnet pyroxenite cumulates which may subsequently

sink into the mantle by delamination and cause mantle het-

erogeneity (van Sestrenen et al 2001 Anderson 2006 Behn

and Kelemen 2006) A largely neglected and perhaps equally

important aspect is residual melt from the MASH zone

Recently a high pressure differentiation regime for arc

magmas in the garnet stability field has been invoked to

explain the occurrence of adakites with normal geothermal

gradients (eg Macpherson et al 2006 Richards and Ker-

rich 2007 Roderıguez et al 2007) If these authors are

correct the question arises why only a small amount of arc

magma can finally evolve into adakite in normal subduction

zones or alternatively what happened to those non-adakitic

arc magmas during their differentiation The MASH zone

therefore becomes a key factor for understanding magmatic

evolution and crustal growth Fossil arc sections and mafic-

ultramafic xenoliths have been investigated to understand the

magmatic and geochemical processes in the MASH zone but

these samples generally represent restites or cumulates of

magma (Hermann et al 1997 Greene et al 2006 Berger

et al 2007 Garrido et al 2006 Bryant et al 2007) and

samples of residual melt from the MASH zone are still rare

Although scarse worldwide garnet-bearing metalumi-

nous intrusions have been found in some subduction-

related environments eg Northland New Zealand

northern Pannonian Basin in eastern-central Europe and

Setouchi Volcanic Belt in Japan (Day et al 1992 Harangi

et al 2001 Nitoi et al 2002 Bandres et al 2004

Kawabata and Takafuji 2005) In contrast with those in

S-type granitic plutons garnet in metaluminous intrusions

is characterized by Ca-rich Mn-poor almandine and

generally forms under relatively high pressure conditions

mostly corresponding to the depth of the crust-mantle

transition zone (Day et al 1992 Green 1992) Rapid

ascent of the garnet-bearing magma under an extensional

regime and with high volatile content effectively prevents

garnet crystals from being dissolved during subsequent

re-equilibrium under low pressure conditions (Day et al

1992 Harangi et al 2001) Therefore garnet-bearing

metaluminous rocks may represent intact melt from the

base of the crust and provide a rare opportunity to eval-

uate magmatic and geochemical processes in the MASH

zone

This paper reports SHRIMP U-Pb zircon results and

geochemical data for a garnet-bearing tonalite porphyry

from East Kunlun at the northeastern margin of the

Tibetan Plateau The geochemical results together with

petrographic observations and mineral analyses also shed

light on the genesis of adakitic rocks in general

Geological background

The Tibetan Plateau is comprised of micro-continental and

arc-derived blocks and at least five suture zones have been

identified in the plateau indicating a multiple orogenic

history (Chang et al 1986 Dewey et al 1988 Pan et al

1996 Matte et al 1996 Sobel and Arnaud 1999 Yin and

Harrison 2000 Xiao et al 2002a b Cowgill et al 2003

Gehrels et al 2003a b Schwab et al 2004 Yuan et al

2005) The Kunlun Mountain range extends for more than

2500 km along the northern margin of the Tibetan Plateau

and records the earliest collage history of the plateau

(Fig 1) It is cut by the Altyn Fault which divides the

Kunlun Mountains into West and East sections The East

Kunlun consists of three sub-parallel branches ie Qim-

antag in the north Burhanbudashan-Animaqingshan in the

middle and Kokoxilishan in the south (Fig 1) Previous

work has revealed that the East Kunlun has undergone at

least two orogenies that are closely related to the con-

sumption of the Proto-Tethys (Neoproterozoic to Early

Devonian) and Paleo-Tethys (Carboniferous to Jurassic)

oceans respectively (Sengor 1987 Pan et al 1996 Bian

et al 2004) Ordovician and Carboniferous dismembered

ophiolites have been recognized in the East Kunlun (Jiang

1992 Yang et al 1999 Wang et al 1999 Lan et al 2000

Bian et al 2004) and two episodes of magmatism have

also been identified one in the early Paleozoic (Caledo-

nian) and the other in the Late Paleozoic to early Mesozoic

(Indosinian) (Pan et al 1996 Sobel and Arnaud 1999

Cowgill et al 2003 Gehrels et al 2003a b Liu et al

2005) Precambrian basement mainly outcrops in the east

part of the East Kunlun (east of 92E) and is dominated by

mid- to late-Proterozoic gneissic rocks (Wang et al 2004

Chen et al 2006) Tectonically the East Kunlun can be

subdivided into three belts by the E-W trending South

Qimantag Fault and Mid Kunlun Fault along the Burhan-

budashan (Jiang 1992) (Fig 1) The northern belt is

characterized by thick Paleozoic (Ordovician to early

Carboniferous) clastic and carbonate sediments interlay-

ered with mafic volcanic rocks (Li et al 2000 Pan et al

2002) The middle belt is characterized by widespread

Neoproterozoic and Late Mesozoic granitic magmatism

Precambrian rocks in this belt exhibit progressively weaker

metamorphism from bottom to top ie from gneiss schist

to weakly metamorphosed carbonate and clastic rocks

1490 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

(Jiang 1992) South of the Mid Kunlun Fault the southern

belt is dominated by Precambrian to Jurassic clastic and

carbonate rocks In addition Lower Carboniferous strata

here contain a thick ([3000 m) mafic to intermediate

volcanic sequence which has been interpreted as having

being produced in a subduction environment (Wu et al

2005) Of the major faults in the East Kunlun the Mid

Kunlun Fault was considered to be a suture zone and the

most important geological boundary separating the middle

and south Kunlun belts (Jiang 1992) The area underwent

continuous tectonism during the Late Paleozoic and Early

Mesozoic and this was a key period in the geological

evolution of the East Kunlun (Luo et al 1999) of which

the Late Triassic to Jurassic was the most critical period

encompassing the change from compressional to exten-

sional regimes as evidenced by mantle-derived magmatism

and hypabyssal intrusions (Qian et al 2000 Luo et al

2002) The final closure of Paleo-Tethys occurred in the

Jurassic (Sengor 1987 Dewey et al 1988 Yin and Harri-

son 2000) with a soft collision proposed to explain the lack

of significant crustal thickening in the East Kunlun (Yin

and Zhang 1997) After this period the East Kunlun was

relatively stable until the Cenozoic when K-rich volcanism

was extensive in the northern Tibetan Plateau (Jiang 1992

Deng 1998 Yang et al 2002)

An unusual garnet-bearing tonalitic porphyry is located

to the west of Achiq Kol in the Kumkuri area a Cenozoic

basin bounded by the Altyn Fault and Kunlun and Qim-

antag mountain ranges (Figs 1 2) The basin is mostly

filled with Neogene and Quaternary sediments and

Paleozoic strata are only locally exposed being dominated

by Carboniferous to Permian carbonate interlayered with

clastic sediments and volcanic rocks (CIGMR 1988) The

garnet-bearing tonalitic porphyry is a small undeformed

subvolcanic stock intruding Permian limestone at the

northern margin of Burhanbudashan with an outcrop of ca

8 km2 (Fig 2)

Rock description and petrography

The garnet-bearing tonalitic porphyry is homogeneous and

no enclaves were found The rock has a porphyritic texture

with garnet hornblende plagioclase and quartz set in a

cryptocrystalline matrix Garnet is generally less than

2 mm in size though some reaches 10 mm in diameter

(Fig 3a) Most garnet is isolated although some occurs as

aggregates (Fig 3bndashd) Garnet is commonly surrounded by

plagioclase or hornblende indicating its early crystalliza-

tion (Fig 3b c) Under the microscope garnet crystals

Fig 1 Geological map of Eastern Kunlun (modified from CIGMR 1988) Inset tectonic map of the Himalayan-Tian Shan region South

Qimantag fault ` Mid Kunlun fault acute South Kunlun fault

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1491

123

are generally euhedral with concentric zoning Although

enveloped in both plagioclase and hornblende garnet has

sharp boundaries without any reaction rim Small mineral

inclusions are common in the garnet and these are domi-

nantly needle-like apatite and ilmenite with local zircon

Unlike examples from Northland New Zealand and the

northern Pannonian Basin eastern-central Europe (Day

et al 1992 Harangi et al 2001) augite hornblende and

plagioclase inclusions are not present in the garnet Horn-

blende is the major mafic mineral in the rock with

rhomboid shape and is locally replaced by chlorite

(Fig 3e f) Plagioclase is euhedral and many grains are

altered to kaolin and only a few have survived alteration

and exhibit concentric zoning (Fig 3g) Quartz is rare and

generally anhedral indicative of relatively late crystalli-

zation (Fig 3h) The occurrence of quartz and lack of

pyroxene and biotite make the garnet-bearing tonalitic

porphyry distinct from similar rocks described from New

Zealand Europe and Japan Thin section observation sug-

gests that the minerals in the rock are phenocrysts

crystallized from magma and no garnet xenocrysts were

found

Analytical methods

Zircon grains were separated from a sample of garnet

tonalite using conventional density and magnetic tech-

niques Representative zircon grains were hand-picked

under a binocular microscope and were cast with pieces of

the CZ3 standard in an epoxy mount that was ground to

expose the grain centers U-Th-Pb isotopic compositions

were analyzed using the WA Consortium SHRIMP II ion

microprobe at Curtin University of Technology following

the analytical procedures of Williams (1998) Sri Lankan

gem zircon standard (CZ3) (206Pb238U = 00914 equiva-

lent to an age of 564 Ma) was used as the standard and the

U and Th decay constants recommended by Steiger and

Jager (1977) were adopted for age calculation Measured238U206Pb ratios and reported ages have been corrected

using the measured 204Pb (Compston et al 1984) The

analytical data were reduced and calculated using the Krill

program of PD Kinny (Curtin University) and then plotted

using the IsoplotEx 246 program (Ludwig 2001) Uncer-

tainties on individual analyses are reported at the 1r level

and mean ages for pooled 206Pb238U results are quoted at

the 95 confidence level (2r) Detailed analytical data are

given in Table 1 and the concordia plots are presented in

Fig 4

Major element composition of the phenocrysts was

analyzed using a Cameca SX-51 electron microprobe at the

Institute of Geology and Geophysics Chinese Academy of

Sciences The acceleration voltage and beam current were

set at 15 kv and 20 nA respectively Detailed analytical

procedure has been described in Liu and Ye (2004) and

both natural and synthetic minerals were used for standard

calibration The analytical errors at 1r for Na Mg Al Si

K Na Ca Ti Cr Mn Fe and Ni are generally better than

012 Major oxides of selected whole-rock samples were

determined with a Rigaku ZSX100e X-ray fluorescence

spectrometer on fused glass disks at the Guangzhou

Institute of Geochemistry Chinese Academy of Sciences

(GIGCAS) with analytical uncertainties between 1 and 5

Trace elements were analyzed using a Perkin-Elmer Sciex

ELAN 6000 ICP-MS following the procedures described

by Li (1997) About 50 mg of powdered sample was

digested with mixed HNO3 + HF acid in steel-bomb coated

Teflon beakers in order to assure complete dissolution of the

refractory minerals Rh was used as an internal standard to

monitor signal drift and the USGS rock standards GSP-1

G-2 W-2 and AGV-1 and the Chinese national rock stan-

dards GSR-1 and GSR-3 were analyzed in order to calibrate

element concentrations of the unknown samples Analytical

uncertainties were generally better than 5

Sr and Nd isotopic analyses were performed on a

Finnigan MAT-262 at the Institute of Geology and Geo-

physics Chinese Academy of Sciences following the

procedures described by Zhang et al (2002) Cation col-

umns were used to separate Sr and rare earth elements

(REEs) and the REE fraction was further separated with

HDEHP-coated Kef columns to obtain Nd Measured87Sr86Sr and 143Nd144Nd ratios were normalized to86Sr88Sr = 01194 and 146Nd144Nd = 07219 respec-

tively The reported 87Sr86Sr and 143Nd144Nd ratios were

respectively adjusted to the NBS SRM 987 standard87Sr86Sr = 071025 and the Shin Etsu JNdi-1 standard143Nd144Nd = 0512115 Oxygen was extracted from a

garnet separate using the standard BrF5 technique (Taylor

Fig 2 Geological map of the Achiq Kol area East Kunlun

1492 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

and Epstein 1962) Before analysis powders were dried at

110C for 2 h to release adsorbed water Isotope analyses

were performed on a MAT-252 mass spectrometer The

18O16O ratio is expressed by the conventional d18O nota-

tion in permil relative to V-SMOW The analytical error of

d18O values is plusmn01

Fig 3 Photographs of rock

specimen and major minerals in

the garnet-bearing tonalitic

porphyry East Kunlun (a) Rock

specimen with garnet crystals

(b) Garnet with apatite

inclusions enclosed in

kaolinized plagioclase

(PPL 940) c Garnet enclosed

in chloritized hornblende

(PPL 940) d Garnet aggregate

showing concentric zoning and

ilmenite inclusion (PPL 940)

e Chloritized hornblende

showing idiomorphic crystal

form (PPL 940) f Fresh

hornblende phenocryst with

120 cleavages (PPL 940)

g Plagioclase phenocryst with

reverse zoning (PPL 940)

h Partly resorbed anhedral

quartz phenocryst in fine-

grained matrix (PPL 940)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1493

123

Geochronology

Zircon grains from the garnet-bearing tonalite porphyry

are euhedral and transparent and generally colorless or

light brown Most grains exhibit concentric oscillatory

zoning and no inherited zircon cores were observed

Eleven zircons were analyzed for U-Pb isotopic com-

position and the results are listed in Table 1 The zircons

show a wide range of U (337ndash1329 ppm) and Th (26ndash

308 ppm) contents Except for three grains with rela-

tively low ThU ratios (ca 007) most zircons have

moderate ThU ratios (018ndash033) which together with

their internal concentric zoning indicate a magmatic

origin These analyses form a coherent group with a

weighted mean 206Pb238U age of 213 plusmn 3 Ma (Fig 4)

This age is interpreted as the crystallization age of the

rock

Geochemical results

Mineral compositions

Garnet

Representative compositions of garnet in the tonalite por-

phyry are listed in Table 2 All garnets have a relatively

homogeneous composition consisting mainly of almandine

(56ndash76 mol) and grossular (24ndash30 mol) with minor

pyrope (9ndash18 mol) and spessartine (1ndash7 mol) compo-

nents Although the garnets generally show compositional

zoning (Fig 3andashc) there is no regular compositional varia-

tion within the grains As revealed in Table 2 some garnet

shows an increase in MgO MnO andor CaO towards the

rim whereas others show the reverse trend These features

are similar to those of garnet phenocrysts in the northern

Pannonian Basin eastern-central Europe and Setouchi

Japan (Harangi et al 2001 Kawabata and Takafuji 2005)

The compositional variation of garnet can be illustrated with

a profile analysis on a single garnet crystal (Fig 5) The

components of garnet generally keep relatively constant in

the central part of the crystal except for grossular showing a

weak fluctuation although a significant increase in alman-

dine and a decrease in grossular can be observed in the rim

while pyrope and spessartine exhibit only weak variation

Hornblende

Compositions of representative hornblende crystals are

given in Table 3 Hornblende in the garnet-bearing tona-

litic porphyry has relatively homogeneous composition

In comparison with those from garnet-bearing andesite

from Northland New Zealand (Day et al 1992) horn-

blende in this study is characterized by relatively low

MgO (881ndash101 wt) TiO2 (088ndash187 wt) and CaO

Table 1 SHRIMP zircon UndashPb results for the garnet-bearing tonalitic porphyry East Kunlun

Spot

name

U

ppm

Th

ppm

ThU 207Pb206Pb err 207Pb 235U err 206Pb238U Error () Error

correlation

Age (Ma)

206Pb238U 1r 207Pb206Pb 1r

L1211 440 30 007 00466 421 02114 435 00329 107 025 209 2 30 101

L1221 398 31 008 00486 433 02248 447 00336 108 024 213 2 127 102

L1231 939 308 033 00499 185 02383 209 00347 099 047 220 2 188 43

L1241 369 26 007 00495 283 02259 303 00331 107 035 210 2 169 66

L1251 453 80 018 00484 381 02181 396 00327 106 027 208 2 117 90

L1261 337 79 024 00477 522 02140 533 00325 110 021 206 2 85 124

L1271 1146 235 021 00502 141 02311 172 00334 098 057 212 2 202 33

L1281 837 156 019 00475 192 02220 216 00339 099 046 215 2 73 46

L1291 1329 264 020 00491 154 02284 182 00337 097 053 214 2 153 36

L12101 793 192 024 00498 205 02350 228 00342 100 044 217 2 186 48

L12111 1142 275 024 00485 175 02276 201 00340 098 049 216 2 126 41

290290

270270

250250

230230

190190

170170

150150

00220022

00260026

00300030

00340034

00380038

00420042

00460046

014014 018018 022022 026026 030030 034034

207207PbPb 235235UU

20

62

06 P

b

Pb

23

82

38UU

Weighted mean Pb U age = 213 3 Ma206 238

( 37)n 11 MSWD= =

Fig 4 SHRIMP zircon UndashPb concordia diagrams for the garnet-

bearing tonalitic Porphyry East Kunlun

1494 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

Rep

rese

nta

tive

maj

or

elem

ent

com

posi

tion

of

gar

net

inth

egar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

G-1

2a1

G-1

2a2

G-1

2a-

3G

-12c-

1G

-12c-

3G

-a-3

G-a

-2

Core

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Rim

SiO

2378

5384

8383

3379

1378

6381

3383

6383

2381

7381

4380

2381

377

9384

0383

3379

8

TiO

206

203

001

001

904

605

102

002

902

702

904

103

202

802

203

501

0

Al 2

O3

205

5214

6216

5213

2212

0212

8214

6210

3211

8210

3210

3210

9211

8217

6211

9213

5

Cr 2

O3

ndashndash

ndashndash

ndash00

400

1ndash

ndashndash

ndash00

100

3ndash

ndashndash

Fe 2

O3

06

000

4ndash

00

6ndash

ndashndash

04

003

002

701

700

801

400

002

101

5

MgO

25

143

340

234

628

731

733

442

242

539

936

937

242

840

536

235

1

CaO

62

463

358

960

377

878

059

561

671

461

669

258

352

773

268

770

5

MnO

25

515

724

421

922

517

622

217

814

817

915

118

219

816

917

829

6

FeO

297

7281

4282

0292

9278

2278

0293

5277

4271

6278

7280

0287

5290

8275

5280

4270

5

NiO

00

3ndash

ndashndash

ndashndash

00

2ndash

00

100

200

200

100

300

500

200

6

Na 2

O00

300

300

400

400

400

200

300

200

300

100

100

200

300

600

3

K2O

ndashndash

ndashndash

ndashndash

00

1ndash

ndash00

1ndash

ndash00

2ndash

ndash00

3

Tota

l1007

51006

91006

71004

91002

71005

11009

5999

4999

8996

2997

7997

41000

91010

81004

81002

8

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

60

083

60

154

60

097

59

908

59

890

59

997

60

253

60

385

60

070

60

369

60

167

60

37

59

781

59

829

60

257

59

954

Ti

00

743

00

351

00

117

00

221

00

551

00

600

00

234

00

341

00

315

00

349

00

486

00

386

00

329

00

256

00

414

00

122

Al

38

447

39

543

39

998

39

710

39

528

39

465

39

721

39

059

39

288

39

222

39

226

39

384

39

492

39

966

39

253

39

716

Cr

ndashndash

00

006

ndashndash

00

046

00

012

ndashndash

ndashndash

00

018

00

032

ndashndash

ndash

Fe

00

720

00

043

ndash00

077

ndash00

000

ndash00

476

00

353

00

322

00

200

00

09

00

171

00

252

00

176

Mg

05

938

10

094

09

405

08

154

06

770

07

429

07

827

09

915

09

975

09

422

08

697

08

778

10

091

09

416

08

476

08

264

Ca

10

610

10

600

09

886

10

203

13

187

13

151

10

010

10

396

12

039

10

445

11

727

09

899

08

940

12

221

11

574

11

926

Mn

03

429

02

085

03

237

02

929

03

009

02

352

02

959

02

375

01

968

02

399

02

026

02

442

02

647

02

236

02

372

03

958

Fe

39

530

36

789

36

974

38

715

36

804

36

583

38

552

36

557

35

744

36

893

37

063

38

097

38

474

35

905

36

859

35

709

Ni

00

043

ndashndash

00

004

ndashndash

00

026

ndash00

015

00

026

00

026

00

017

00

041

00

064

00

026

00

079

Na

00

096

00

088

00

128

00

113

00

112

00

049

00

090

00

057

00

098

00

031

00

031

00

063

00

078

00

182

00

098

Kndash

ndashndash

ndashndash

ndash00

018

ndashndash

00

027

ndashndash

00

032

ndash00

008

00

050

Tota

l159

639

159

746

159

848

160

034

159

851

159

672

159

701

159

506

159

823

159

573

159

649

159

513

160

09

159

971

159

672

160

052

Uv

ndashndash

00

1ndash

ndash01

200

3ndash

ndashndash

ndash00

500

8ndash

ndashndash

Ad

29

606

401

805

208

309

103

617

313

713

512

508

209

203

912

706

2

Gr

142

5168

6163

2163

208

205

9162

8155

3185

4160

1180

6155

3135

8198

5179

2192

Py

100

5170

1158

3136

2113

9125

6132

2167

9167

5159

8146

9148

8168

3157

9143

6138

2

Sp

58

135

154

548

950

639

850

040

233

140

734

241

444

137

540

266

2

Al

669

3619

8622

1646

7619

2618

4651

1619

2600

4625

8625

8645

9641

7602

2624

4597

3

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1495

123

Tab

le2

conti

nued

Sam

ple

G-a

-1G

-c-5

G-c

-3G

-c-1

G-5

a-1

G-5

a-2

Core

Man

tle

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

SiO

2384

5378

6379

5379

5386

4382

6386

1389

9384

4380

2373

0382

0376

0381

5376

4379

8

TiO

207

901

601

605

805

601

902

602

502

401

600

802

302

001

804

501

9

Al 2

O3

211

3214

3212

8215

7212

9215

3215

6219

8217

0220

2215

7217

1217

6216

0215

6215

5

Cr 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

00

4ndash

ndashndash

Fe 2

O3

01

9ndash

01

7ndash

01

2ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

MgO

31

436

236

326

626

537

742

045

038

142

741

341

336

742

832

038

2

CaO

107

463

458

9112

5114

164

069

973

159

762

365

662

064

160

175

064

8

MnO

11

318

019

904

004

716

118

013

918

518

916

516

317

618

117

616

0

FeO

254

9289

3293

1262

5256

8286

2272

0267

1287

4281

1279

5286

5287

0287

0286

2287

7

NiO

00

3ndash

00

100

2ndash

00

5ndash

ndash00

2ndash

ndashndash

00

2ndash

ndash00

1

Na 2

O00

100

500

500

500

500

800

500

300

200

100

500

200

200

3ndash

00

3

K2O

ndash00

4ndash

00

500

300

4ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Tota

l1011

01002

31004

31007

81008

91005

51006

71011

61007

91006

9992

91007

71001

71007

61007

41004

4

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

59

863

59

849

59

956

59

405

60

213

60

104

60

256

60

259

60

175

59

503

59

345

59

814

00

241

59

790

59

310

59

797

Ti

00

931

00

187

00

19

00

686

00

654

00

22

00

300

00

290

00

282

00

188

00

097

00

269

40

530

00

218

00

534

00

230

Al

38

777

39

925

39

617

39

799

39

105

39

861

39

661

40

036

40

032

40

611

40

439

40

057

00

046

39

895

40

042

39

992

Cr

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

Fe

00

222

ndash00

198

ndash00

143

ndashndash

ndashndash

ndashndash

ndash08

645

ndashndash

ndash

Mg

07

276

08

529

08

544

06

197

06

151

08

825

09

771

10

359

08

880

09

951

09

782

09

632

10

845

09

993

07

522

08

953

Ca

17

911

10

739

09

973

18

873

19

051

10

771

11

679

12

107

10

010

10

448

11

182

10

408

02

353

10

087

12

669

10

937

Mn

01

491

02

404

02

662

00

535

00

622

02

137

02

380

01

815

02

457

02

506

02

226

02

159

37

928

02

401

02

342

02

137

Fe

33

184

38

247

38

72

34

361

33

469

37

592

35

496

34

522

37

628

36

789

37

190

37

515

00

028

37

613

37

710

37

875

Ni

00

037

ndash00

007

00

028

ndash00

068

ndashndash

00

029

ndash00

006

ndash00

054

ndashndash

00

015

Na

00

030

00

153

00

148

00

153

00

143

00

253

00

140

00

091

00

067

00

018

00

144

00

066

ndash00

098

00

009

00

085

Kndash

00

089

00

006

00

098

00

057

00

08

ndashndash

ndashndash

ndashndash

160

084

ndashndash

ndash

Tota

l159

722

160

122

160

023

160

136

159

609

159

912

159

683

159

478

159

56

160

012

160

41

159

922

ndash160

094

160

139

160

02

Uv

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

01

2ndash

ndashndash

Ad

19

702

807

810

413

603

304

604

404

302

801

404

103

603

308

03

5

Gr

272

9174

9157

1299

6303

1176

4189

9199

1163

170

6183

168

174

7162

8198

1177

2

Py

122

7142

6142

9104

1104

4149

1165

2176

7151

167

162

2161

7145

166

6125

5149

8

Sp

25

140

244

509

010

636

140

230

941

842

136

936

339

540

039

135

8

Al

559

6639

5647

7577

568

2635

1600

1588

8639

9617

5616

5629

9636

1627

3629

3633

7

1496 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

(Jiang 1992) South of the Mid Kunlun Fault the southern

belt is dominated by Precambrian to Jurassic clastic and

carbonate rocks In addition Lower Carboniferous strata

here contain a thick ([3000 m) mafic to intermediate

volcanic sequence which has been interpreted as having

being produced in a subduction environment (Wu et al

2005) Of the major faults in the East Kunlun the Mid

Kunlun Fault was considered to be a suture zone and the

most important geological boundary separating the middle

and south Kunlun belts (Jiang 1992) The area underwent

continuous tectonism during the Late Paleozoic and Early

Mesozoic and this was a key period in the geological

evolution of the East Kunlun (Luo et al 1999) of which

the Late Triassic to Jurassic was the most critical period

encompassing the change from compressional to exten-

sional regimes as evidenced by mantle-derived magmatism

and hypabyssal intrusions (Qian et al 2000 Luo et al

2002) The final closure of Paleo-Tethys occurred in the

Jurassic (Sengor 1987 Dewey et al 1988 Yin and Harri-

son 2000) with a soft collision proposed to explain the lack

of significant crustal thickening in the East Kunlun (Yin

and Zhang 1997) After this period the East Kunlun was

relatively stable until the Cenozoic when K-rich volcanism

was extensive in the northern Tibetan Plateau (Jiang 1992

Deng 1998 Yang et al 2002)

An unusual garnet-bearing tonalitic porphyry is located

to the west of Achiq Kol in the Kumkuri area a Cenozoic

basin bounded by the Altyn Fault and Kunlun and Qim-

antag mountain ranges (Figs 1 2) The basin is mostly

filled with Neogene and Quaternary sediments and

Paleozoic strata are only locally exposed being dominated

by Carboniferous to Permian carbonate interlayered with

clastic sediments and volcanic rocks (CIGMR 1988) The

garnet-bearing tonalitic porphyry is a small undeformed

subvolcanic stock intruding Permian limestone at the

northern margin of Burhanbudashan with an outcrop of ca

8 km2 (Fig 2)

Rock description and petrography

The garnet-bearing tonalitic porphyry is homogeneous and

no enclaves were found The rock has a porphyritic texture

with garnet hornblende plagioclase and quartz set in a

cryptocrystalline matrix Garnet is generally less than

2 mm in size though some reaches 10 mm in diameter

(Fig 3a) Most garnet is isolated although some occurs as

aggregates (Fig 3bndashd) Garnet is commonly surrounded by

plagioclase or hornblende indicating its early crystalliza-

tion (Fig 3b c) Under the microscope garnet crystals

Fig 1 Geological map of Eastern Kunlun (modified from CIGMR 1988) Inset tectonic map of the Himalayan-Tian Shan region South

Qimantag fault ` Mid Kunlun fault acute South Kunlun fault

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1491

123

are generally euhedral with concentric zoning Although

enveloped in both plagioclase and hornblende garnet has

sharp boundaries without any reaction rim Small mineral

inclusions are common in the garnet and these are domi-

nantly needle-like apatite and ilmenite with local zircon

Unlike examples from Northland New Zealand and the

northern Pannonian Basin eastern-central Europe (Day

et al 1992 Harangi et al 2001) augite hornblende and

plagioclase inclusions are not present in the garnet Horn-

blende is the major mafic mineral in the rock with

rhomboid shape and is locally replaced by chlorite

(Fig 3e f) Plagioclase is euhedral and many grains are

altered to kaolin and only a few have survived alteration

and exhibit concentric zoning (Fig 3g) Quartz is rare and

generally anhedral indicative of relatively late crystalli-

zation (Fig 3h) The occurrence of quartz and lack of

pyroxene and biotite make the garnet-bearing tonalitic

porphyry distinct from similar rocks described from New

Zealand Europe and Japan Thin section observation sug-

gests that the minerals in the rock are phenocrysts

crystallized from magma and no garnet xenocrysts were

found

Analytical methods

Zircon grains were separated from a sample of garnet

tonalite using conventional density and magnetic tech-

niques Representative zircon grains were hand-picked

under a binocular microscope and were cast with pieces of

the CZ3 standard in an epoxy mount that was ground to

expose the grain centers U-Th-Pb isotopic compositions

were analyzed using the WA Consortium SHRIMP II ion

microprobe at Curtin University of Technology following

the analytical procedures of Williams (1998) Sri Lankan

gem zircon standard (CZ3) (206Pb238U = 00914 equiva-

lent to an age of 564 Ma) was used as the standard and the

U and Th decay constants recommended by Steiger and

Jager (1977) were adopted for age calculation Measured238U206Pb ratios and reported ages have been corrected

using the measured 204Pb (Compston et al 1984) The

analytical data were reduced and calculated using the Krill

program of PD Kinny (Curtin University) and then plotted

using the IsoplotEx 246 program (Ludwig 2001) Uncer-

tainties on individual analyses are reported at the 1r level

and mean ages for pooled 206Pb238U results are quoted at

the 95 confidence level (2r) Detailed analytical data are

given in Table 1 and the concordia plots are presented in

Fig 4

Major element composition of the phenocrysts was

analyzed using a Cameca SX-51 electron microprobe at the

Institute of Geology and Geophysics Chinese Academy of

Sciences The acceleration voltage and beam current were

set at 15 kv and 20 nA respectively Detailed analytical

procedure has been described in Liu and Ye (2004) and

both natural and synthetic minerals were used for standard

calibration The analytical errors at 1r for Na Mg Al Si

K Na Ca Ti Cr Mn Fe and Ni are generally better than

012 Major oxides of selected whole-rock samples were

determined with a Rigaku ZSX100e X-ray fluorescence

spectrometer on fused glass disks at the Guangzhou

Institute of Geochemistry Chinese Academy of Sciences

(GIGCAS) with analytical uncertainties between 1 and 5

Trace elements were analyzed using a Perkin-Elmer Sciex

ELAN 6000 ICP-MS following the procedures described

by Li (1997) About 50 mg of powdered sample was

digested with mixed HNO3 + HF acid in steel-bomb coated

Teflon beakers in order to assure complete dissolution of the

refractory minerals Rh was used as an internal standard to

monitor signal drift and the USGS rock standards GSP-1

G-2 W-2 and AGV-1 and the Chinese national rock stan-

dards GSR-1 and GSR-3 were analyzed in order to calibrate

element concentrations of the unknown samples Analytical

uncertainties were generally better than 5

Sr and Nd isotopic analyses were performed on a

Finnigan MAT-262 at the Institute of Geology and Geo-

physics Chinese Academy of Sciences following the

procedures described by Zhang et al (2002) Cation col-

umns were used to separate Sr and rare earth elements

(REEs) and the REE fraction was further separated with

HDEHP-coated Kef columns to obtain Nd Measured87Sr86Sr and 143Nd144Nd ratios were normalized to86Sr88Sr = 01194 and 146Nd144Nd = 07219 respec-

tively The reported 87Sr86Sr and 143Nd144Nd ratios were

respectively adjusted to the NBS SRM 987 standard87Sr86Sr = 071025 and the Shin Etsu JNdi-1 standard143Nd144Nd = 0512115 Oxygen was extracted from a

garnet separate using the standard BrF5 technique (Taylor

Fig 2 Geological map of the Achiq Kol area East Kunlun

1492 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

and Epstein 1962) Before analysis powders were dried at

110C for 2 h to release adsorbed water Isotope analyses

were performed on a MAT-252 mass spectrometer The

18O16O ratio is expressed by the conventional d18O nota-

tion in permil relative to V-SMOW The analytical error of

d18O values is plusmn01

Fig 3 Photographs of rock

specimen and major minerals in

the garnet-bearing tonalitic

porphyry East Kunlun (a) Rock

specimen with garnet crystals

(b) Garnet with apatite

inclusions enclosed in

kaolinized plagioclase

(PPL 940) c Garnet enclosed

in chloritized hornblende

(PPL 940) d Garnet aggregate

showing concentric zoning and

ilmenite inclusion (PPL 940)

e Chloritized hornblende

showing idiomorphic crystal

form (PPL 940) f Fresh

hornblende phenocryst with

120 cleavages (PPL 940)

g Plagioclase phenocryst with

reverse zoning (PPL 940)

h Partly resorbed anhedral

quartz phenocryst in fine-

grained matrix (PPL 940)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1493

123

Geochronology

Zircon grains from the garnet-bearing tonalite porphyry

are euhedral and transparent and generally colorless or

light brown Most grains exhibit concentric oscillatory

zoning and no inherited zircon cores were observed

Eleven zircons were analyzed for U-Pb isotopic com-

position and the results are listed in Table 1 The zircons

show a wide range of U (337ndash1329 ppm) and Th (26ndash

308 ppm) contents Except for three grains with rela-

tively low ThU ratios (ca 007) most zircons have

moderate ThU ratios (018ndash033) which together with

their internal concentric zoning indicate a magmatic

origin These analyses form a coherent group with a

weighted mean 206Pb238U age of 213 plusmn 3 Ma (Fig 4)

This age is interpreted as the crystallization age of the

rock

Geochemical results

Mineral compositions

Garnet

Representative compositions of garnet in the tonalite por-

phyry are listed in Table 2 All garnets have a relatively

homogeneous composition consisting mainly of almandine

(56ndash76 mol) and grossular (24ndash30 mol) with minor

pyrope (9ndash18 mol) and spessartine (1ndash7 mol) compo-

nents Although the garnets generally show compositional

zoning (Fig 3andashc) there is no regular compositional varia-

tion within the grains As revealed in Table 2 some garnet

shows an increase in MgO MnO andor CaO towards the

rim whereas others show the reverse trend These features

are similar to those of garnet phenocrysts in the northern

Pannonian Basin eastern-central Europe and Setouchi

Japan (Harangi et al 2001 Kawabata and Takafuji 2005)

The compositional variation of garnet can be illustrated with

a profile analysis on a single garnet crystal (Fig 5) The

components of garnet generally keep relatively constant in

the central part of the crystal except for grossular showing a

weak fluctuation although a significant increase in alman-

dine and a decrease in grossular can be observed in the rim

while pyrope and spessartine exhibit only weak variation

Hornblende

Compositions of representative hornblende crystals are

given in Table 3 Hornblende in the garnet-bearing tona-

litic porphyry has relatively homogeneous composition

In comparison with those from garnet-bearing andesite

from Northland New Zealand (Day et al 1992) horn-

blende in this study is characterized by relatively low

MgO (881ndash101 wt) TiO2 (088ndash187 wt) and CaO

Table 1 SHRIMP zircon UndashPb results for the garnet-bearing tonalitic porphyry East Kunlun

Spot

name

U

ppm

Th

ppm

ThU 207Pb206Pb err 207Pb 235U err 206Pb238U Error () Error

correlation

Age (Ma)

206Pb238U 1r 207Pb206Pb 1r

L1211 440 30 007 00466 421 02114 435 00329 107 025 209 2 30 101

L1221 398 31 008 00486 433 02248 447 00336 108 024 213 2 127 102

L1231 939 308 033 00499 185 02383 209 00347 099 047 220 2 188 43

L1241 369 26 007 00495 283 02259 303 00331 107 035 210 2 169 66

L1251 453 80 018 00484 381 02181 396 00327 106 027 208 2 117 90

L1261 337 79 024 00477 522 02140 533 00325 110 021 206 2 85 124

L1271 1146 235 021 00502 141 02311 172 00334 098 057 212 2 202 33

L1281 837 156 019 00475 192 02220 216 00339 099 046 215 2 73 46

L1291 1329 264 020 00491 154 02284 182 00337 097 053 214 2 153 36

L12101 793 192 024 00498 205 02350 228 00342 100 044 217 2 186 48

L12111 1142 275 024 00485 175 02276 201 00340 098 049 216 2 126 41

290290

270270

250250

230230

190190

170170

150150

00220022

00260026

00300030

00340034

00380038

00420042

00460046

014014 018018 022022 026026 030030 034034

207207PbPb 235235UU

20

62

06 P

b

Pb

23

82

38UU

Weighted mean Pb U age = 213 3 Ma206 238

( 37)n 11 MSWD= =

Fig 4 SHRIMP zircon UndashPb concordia diagrams for the garnet-

bearing tonalitic Porphyry East Kunlun

1494 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

Rep

rese

nta

tive

maj

or

elem

ent

com

posi

tion

of

gar

net

inth

egar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

G-1

2a1

G-1

2a2

G-1

2a-

3G

-12c-

1G

-12c-

3G

-a-3

G-a

-2

Core

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Rim

SiO

2378

5384

8383

3379

1378

6381

3383

6383

2381

7381

4380

2381

377

9384

0383

3379

8

TiO

206

203

001

001

904

605

102

002

902

702

904

103

202

802

203

501

0

Al 2

O3

205

5214

6216

5213

2212

0212

8214

6210

3211

8210

3210

3210

9211

8217

6211

9213

5

Cr 2

O3

ndashndash

ndashndash

ndash00

400

1ndash

ndashndash

ndash00

100

3ndash

ndashndash

Fe 2

O3

06

000

4ndash

00

6ndash

ndashndash

04

003

002

701

700

801

400

002

101

5

MgO

25

143

340

234

628

731

733

442

242

539

936

937

242

840

536

235

1

CaO

62

463

358

960

377

878

059

561

671

461

669

258

352

773

268

770

5

MnO

25

515

724

421

922

517

622

217

814

817

915

118

219

816

917

829

6

FeO

297

7281

4282

0292

9278

2278

0293

5277

4271

6278

7280

0287

5290

8275

5280

4270

5

NiO

00

3ndash

ndashndash

ndashndash

00

2ndash

00

100

200

200

100

300

500

200

6

Na 2

O00

300

300

400

400

400

200

300

200

300

100

100

200

300

600

3

K2O

ndashndash

ndashndash

ndashndash

00

1ndash

ndash00

1ndash

ndash00

2ndash

ndash00

3

Tota

l1007

51006

91006

71004

91002

71005

11009

5999

4999

8996

2997

7997

41000

91010

81004

81002

8

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

60

083

60

154

60

097

59

908

59

890

59

997

60

253

60

385

60

070

60

369

60

167

60

37

59

781

59

829

60

257

59

954

Ti

00

743

00

351

00

117

00

221

00

551

00

600

00

234

00

341

00

315

00

349

00

486

00

386

00

329

00

256

00

414

00

122

Al

38

447

39

543

39

998

39

710

39

528

39

465

39

721

39

059

39

288

39

222

39

226

39

384

39

492

39

966

39

253

39

716

Cr

ndashndash

00

006

ndashndash

00

046

00

012

ndashndash

ndashndash

00

018

00

032

ndashndash

ndash

Fe

00

720

00

043

ndash00

077

ndash00

000

ndash00

476

00

353

00

322

00

200

00

09

00

171

00

252

00

176

Mg

05

938

10

094

09

405

08

154

06

770

07

429

07

827

09

915

09

975

09

422

08

697

08

778

10

091

09

416

08

476

08

264

Ca

10

610

10

600

09

886

10

203

13

187

13

151

10

010

10

396

12

039

10

445

11

727

09

899

08

940

12

221

11

574

11

926

Mn

03

429

02

085

03

237

02

929

03

009

02

352

02

959

02

375

01

968

02

399

02

026

02

442

02

647

02

236

02

372

03

958

Fe

39

530

36

789

36

974

38

715

36

804

36

583

38

552

36

557

35

744

36

893

37

063

38

097

38

474

35

905

36

859

35

709

Ni

00

043

ndashndash

00

004

ndashndash

00

026

ndash00

015

00

026

00

026

00

017

00

041

00

064

00

026

00

079

Na

00

096

00

088

00

128

00

113

00

112

00

049

00

090

00

057

00

098

00

031

00

031

00

063

00

078

00

182

00

098

Kndash

ndashndash

ndashndash

ndash00

018

ndashndash

00

027

ndashndash

00

032

ndash00

008

00

050

Tota

l159

639

159

746

159

848

160

034

159

851

159

672

159

701

159

506

159

823

159

573

159

649

159

513

160

09

159

971

159

672

160

052

Uv

ndashndash

00

1ndash

ndash01

200

3ndash

ndashndash

ndash00

500

8ndash

ndashndash

Ad

29

606

401

805

208

309

103

617

313

713

512

508

209

203

912

706

2

Gr

142

5168

6163

2163

208

205

9162

8155

3185

4160

1180

6155

3135

8198

5179

2192

Py

100

5170

1158

3136

2113

9125

6132

2167

9167

5159

8146

9148

8168

3157

9143

6138

2

Sp

58

135

154

548

950

639

850

040

233

140

734

241

444

137

540

266

2

Al

669

3619

8622

1646

7619

2618

4651

1619

2600

4625

8625

8645

9641

7602

2624

4597

3

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1495

123

Tab

le2

conti

nued

Sam

ple

G-a

-1G

-c-5

G-c

-3G

-c-1

G-5

a-1

G-5

a-2

Core

Man

tle

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

SiO

2384

5378

6379

5379

5386

4382

6386

1389

9384

4380

2373

0382

0376

0381

5376

4379

8

TiO

207

901

601

605

805

601

902

602

502

401

600

802

302

001

804

501

9

Al 2

O3

211

3214

3212

8215

7212

9215

3215

6219

8217

0220

2215

7217

1217

6216

0215

6215

5

Cr 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

00

4ndash

ndashndash

Fe 2

O3

01

9ndash

01

7ndash

01

2ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

MgO

31

436

236

326

626

537

742

045

038

142

741

341

336

742

832

038

2

CaO

107

463

458

9112

5114

164

069

973

159

762

365

662

064

160

175

064

8

MnO

11

318

019

904

004

716

118

013

918

518

916

516

317

618

117

616

0

FeO

254

9289

3293

1262

5256

8286

2272

0267

1287

4281

1279

5286

5287

0287

0286

2287

7

NiO

00

3ndash

00

100

2ndash

00

5ndash

ndash00

2ndash

ndashndash

00

2ndash

ndash00

1

Na 2

O00

100

500

500

500

500

800

500

300

200

100

500

200

200

3ndash

00

3

K2O

ndash00

4ndash

00

500

300

4ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Tota

l1011

01002

31004

31007

81008

91005

51006

71011

61007

91006

9992

91007

71001

71007

61007

41004

4

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

59

863

59

849

59

956

59

405

60

213

60

104

60

256

60

259

60

175

59

503

59

345

59

814

00

241

59

790

59

310

59

797

Ti

00

931

00

187

00

19

00

686

00

654

00

22

00

300

00

290

00

282

00

188

00

097

00

269

40

530

00

218

00

534

00

230

Al

38

777

39

925

39

617

39

799

39

105

39

861

39

661

40

036

40

032

40

611

40

439

40

057

00

046

39

895

40

042

39

992

Cr

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

Fe

00

222

ndash00

198

ndash00

143

ndashndash

ndashndash

ndashndash

ndash08

645

ndashndash

ndash

Mg

07

276

08

529

08

544

06

197

06

151

08

825

09

771

10

359

08

880

09

951

09

782

09

632

10

845

09

993

07

522

08

953

Ca

17

911

10

739

09

973

18

873

19

051

10

771

11

679

12

107

10

010

10

448

11

182

10

408

02

353

10

087

12

669

10

937

Mn

01

491

02

404

02

662

00

535

00

622

02

137

02

380

01

815

02

457

02

506

02

226

02

159

37

928

02

401

02

342

02

137

Fe

33

184

38

247

38

72

34

361

33

469

37

592

35

496

34

522

37

628

36

789

37

190

37

515

00

028

37

613

37

710

37

875

Ni

00

037

ndash00

007

00

028

ndash00

068

ndashndash

00

029

ndash00

006

ndash00

054

ndashndash

00

015

Na

00

030

00

153

00

148

00

153

00

143

00

253

00

140

00

091

00

067

00

018

00

144

00

066

ndash00

098

00

009

00

085

Kndash

00

089

00

006

00

098

00

057

00

08

ndashndash

ndashndash

ndashndash

160

084

ndashndash

ndash

Tota

l159

722

160

122

160

023

160

136

159

609

159

912

159

683

159

478

159

56

160

012

160

41

159

922

ndash160

094

160

139

160

02

Uv

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

01

2ndash

ndashndash

Ad

19

702

807

810

413

603

304

604

404

302

801

404

103

603

308

03

5

Gr

272

9174

9157

1299

6303

1176

4189

9199

1163

170

6183

168

174

7162

8198

1177

2

Py

122

7142

6142

9104

1104

4149

1165

2176

7151

167

162

2161

7145

166

6125

5149

8

Sp

25

140

244

509

010

636

140

230

941

842

136

936

339

540

039

135

8

Al

559

6639

5647

7577

568

2635

1600

1588

8639

9617

5616

5629

9636

1627

3629

3633

7

1496 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

are generally euhedral with concentric zoning Although

enveloped in both plagioclase and hornblende garnet has

sharp boundaries without any reaction rim Small mineral

inclusions are common in the garnet and these are domi-

nantly needle-like apatite and ilmenite with local zircon

Unlike examples from Northland New Zealand and the

northern Pannonian Basin eastern-central Europe (Day

et al 1992 Harangi et al 2001) augite hornblende and

plagioclase inclusions are not present in the garnet Horn-

blende is the major mafic mineral in the rock with

rhomboid shape and is locally replaced by chlorite

(Fig 3e f) Plagioclase is euhedral and many grains are

altered to kaolin and only a few have survived alteration

and exhibit concentric zoning (Fig 3g) Quartz is rare and

generally anhedral indicative of relatively late crystalli-

zation (Fig 3h) The occurrence of quartz and lack of

pyroxene and biotite make the garnet-bearing tonalitic

porphyry distinct from similar rocks described from New

Zealand Europe and Japan Thin section observation sug-

gests that the minerals in the rock are phenocrysts

crystallized from magma and no garnet xenocrysts were

found

Analytical methods

Zircon grains were separated from a sample of garnet

tonalite using conventional density and magnetic tech-

niques Representative zircon grains were hand-picked

under a binocular microscope and were cast with pieces of

the CZ3 standard in an epoxy mount that was ground to

expose the grain centers U-Th-Pb isotopic compositions

were analyzed using the WA Consortium SHRIMP II ion

microprobe at Curtin University of Technology following

the analytical procedures of Williams (1998) Sri Lankan

gem zircon standard (CZ3) (206Pb238U = 00914 equiva-

lent to an age of 564 Ma) was used as the standard and the

U and Th decay constants recommended by Steiger and

Jager (1977) were adopted for age calculation Measured238U206Pb ratios and reported ages have been corrected

using the measured 204Pb (Compston et al 1984) The

analytical data were reduced and calculated using the Krill

program of PD Kinny (Curtin University) and then plotted

using the IsoplotEx 246 program (Ludwig 2001) Uncer-

tainties on individual analyses are reported at the 1r level

and mean ages for pooled 206Pb238U results are quoted at

the 95 confidence level (2r) Detailed analytical data are

given in Table 1 and the concordia plots are presented in

Fig 4

Major element composition of the phenocrysts was

analyzed using a Cameca SX-51 electron microprobe at the

Institute of Geology and Geophysics Chinese Academy of

Sciences The acceleration voltage and beam current were

set at 15 kv and 20 nA respectively Detailed analytical

procedure has been described in Liu and Ye (2004) and

both natural and synthetic minerals were used for standard

calibration The analytical errors at 1r for Na Mg Al Si

K Na Ca Ti Cr Mn Fe and Ni are generally better than

012 Major oxides of selected whole-rock samples were

determined with a Rigaku ZSX100e X-ray fluorescence

spectrometer on fused glass disks at the Guangzhou

Institute of Geochemistry Chinese Academy of Sciences

(GIGCAS) with analytical uncertainties between 1 and 5

Trace elements were analyzed using a Perkin-Elmer Sciex

ELAN 6000 ICP-MS following the procedures described

by Li (1997) About 50 mg of powdered sample was

digested with mixed HNO3 + HF acid in steel-bomb coated

Teflon beakers in order to assure complete dissolution of the

refractory minerals Rh was used as an internal standard to

monitor signal drift and the USGS rock standards GSP-1

G-2 W-2 and AGV-1 and the Chinese national rock stan-

dards GSR-1 and GSR-3 were analyzed in order to calibrate

element concentrations of the unknown samples Analytical

uncertainties were generally better than 5

Sr and Nd isotopic analyses were performed on a

Finnigan MAT-262 at the Institute of Geology and Geo-

physics Chinese Academy of Sciences following the

procedures described by Zhang et al (2002) Cation col-

umns were used to separate Sr and rare earth elements

(REEs) and the REE fraction was further separated with

HDEHP-coated Kef columns to obtain Nd Measured87Sr86Sr and 143Nd144Nd ratios were normalized to86Sr88Sr = 01194 and 146Nd144Nd = 07219 respec-

tively The reported 87Sr86Sr and 143Nd144Nd ratios were

respectively adjusted to the NBS SRM 987 standard87Sr86Sr = 071025 and the Shin Etsu JNdi-1 standard143Nd144Nd = 0512115 Oxygen was extracted from a

garnet separate using the standard BrF5 technique (Taylor

Fig 2 Geological map of the Achiq Kol area East Kunlun

1492 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

and Epstein 1962) Before analysis powders were dried at

110C for 2 h to release adsorbed water Isotope analyses

were performed on a MAT-252 mass spectrometer The

18O16O ratio is expressed by the conventional d18O nota-

tion in permil relative to V-SMOW The analytical error of

d18O values is plusmn01

Fig 3 Photographs of rock

specimen and major minerals in

the garnet-bearing tonalitic

porphyry East Kunlun (a) Rock

specimen with garnet crystals

(b) Garnet with apatite

inclusions enclosed in

kaolinized plagioclase

(PPL 940) c Garnet enclosed

in chloritized hornblende

(PPL 940) d Garnet aggregate

showing concentric zoning and

ilmenite inclusion (PPL 940)

e Chloritized hornblende

showing idiomorphic crystal

form (PPL 940) f Fresh

hornblende phenocryst with

120 cleavages (PPL 940)

g Plagioclase phenocryst with

reverse zoning (PPL 940)

h Partly resorbed anhedral

quartz phenocryst in fine-

grained matrix (PPL 940)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1493

123

Geochronology

Zircon grains from the garnet-bearing tonalite porphyry

are euhedral and transparent and generally colorless or

light brown Most grains exhibit concentric oscillatory

zoning and no inherited zircon cores were observed

Eleven zircons were analyzed for U-Pb isotopic com-

position and the results are listed in Table 1 The zircons

show a wide range of U (337ndash1329 ppm) and Th (26ndash

308 ppm) contents Except for three grains with rela-

tively low ThU ratios (ca 007) most zircons have

moderate ThU ratios (018ndash033) which together with

their internal concentric zoning indicate a magmatic

origin These analyses form a coherent group with a

weighted mean 206Pb238U age of 213 plusmn 3 Ma (Fig 4)

This age is interpreted as the crystallization age of the

rock

Geochemical results

Mineral compositions

Garnet

Representative compositions of garnet in the tonalite por-

phyry are listed in Table 2 All garnets have a relatively

homogeneous composition consisting mainly of almandine

(56ndash76 mol) and grossular (24ndash30 mol) with minor

pyrope (9ndash18 mol) and spessartine (1ndash7 mol) compo-

nents Although the garnets generally show compositional

zoning (Fig 3andashc) there is no regular compositional varia-

tion within the grains As revealed in Table 2 some garnet

shows an increase in MgO MnO andor CaO towards the

rim whereas others show the reverse trend These features

are similar to those of garnet phenocrysts in the northern

Pannonian Basin eastern-central Europe and Setouchi

Japan (Harangi et al 2001 Kawabata and Takafuji 2005)

The compositional variation of garnet can be illustrated with

a profile analysis on a single garnet crystal (Fig 5) The

components of garnet generally keep relatively constant in

the central part of the crystal except for grossular showing a

weak fluctuation although a significant increase in alman-

dine and a decrease in grossular can be observed in the rim

while pyrope and spessartine exhibit only weak variation

Hornblende

Compositions of representative hornblende crystals are

given in Table 3 Hornblende in the garnet-bearing tona-

litic porphyry has relatively homogeneous composition

In comparison with those from garnet-bearing andesite

from Northland New Zealand (Day et al 1992) horn-

blende in this study is characterized by relatively low

MgO (881ndash101 wt) TiO2 (088ndash187 wt) and CaO

Table 1 SHRIMP zircon UndashPb results for the garnet-bearing tonalitic porphyry East Kunlun

Spot

name

U

ppm

Th

ppm

ThU 207Pb206Pb err 207Pb 235U err 206Pb238U Error () Error

correlation

Age (Ma)

206Pb238U 1r 207Pb206Pb 1r

L1211 440 30 007 00466 421 02114 435 00329 107 025 209 2 30 101

L1221 398 31 008 00486 433 02248 447 00336 108 024 213 2 127 102

L1231 939 308 033 00499 185 02383 209 00347 099 047 220 2 188 43

L1241 369 26 007 00495 283 02259 303 00331 107 035 210 2 169 66

L1251 453 80 018 00484 381 02181 396 00327 106 027 208 2 117 90

L1261 337 79 024 00477 522 02140 533 00325 110 021 206 2 85 124

L1271 1146 235 021 00502 141 02311 172 00334 098 057 212 2 202 33

L1281 837 156 019 00475 192 02220 216 00339 099 046 215 2 73 46

L1291 1329 264 020 00491 154 02284 182 00337 097 053 214 2 153 36

L12101 793 192 024 00498 205 02350 228 00342 100 044 217 2 186 48

L12111 1142 275 024 00485 175 02276 201 00340 098 049 216 2 126 41

290290

270270

250250

230230

190190

170170

150150

00220022

00260026

00300030

00340034

00380038

00420042

00460046

014014 018018 022022 026026 030030 034034

207207PbPb 235235UU

20

62

06 P

b

Pb

23

82

38UU

Weighted mean Pb U age = 213 3 Ma206 238

( 37)n 11 MSWD= =

Fig 4 SHRIMP zircon UndashPb concordia diagrams for the garnet-

bearing tonalitic Porphyry East Kunlun

1494 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

Rep

rese

nta

tive

maj

or

elem

ent

com

posi

tion

of

gar

net

inth

egar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

G-1

2a1

G-1

2a2

G-1

2a-

3G

-12c-

1G

-12c-

3G

-a-3

G-a

-2

Core

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Rim

SiO

2378

5384

8383

3379

1378

6381

3383

6383

2381

7381

4380

2381

377

9384

0383

3379

8

TiO

206

203

001

001

904

605

102

002

902

702

904

103

202

802

203

501

0

Al 2

O3

205

5214

6216

5213

2212

0212

8214

6210

3211

8210

3210

3210

9211

8217

6211

9213

5

Cr 2

O3

ndashndash

ndashndash

ndash00

400

1ndash

ndashndash

ndash00

100

3ndash

ndashndash

Fe 2

O3

06

000

4ndash

00

6ndash

ndashndash

04

003

002

701

700

801

400

002

101

5

MgO

25

143

340

234

628

731

733

442

242

539

936

937

242

840

536

235

1

CaO

62

463

358

960

377

878

059

561

671

461

669

258

352

773

268

770

5

MnO

25

515

724

421

922

517

622

217

814

817

915

118

219

816

917

829

6

FeO

297

7281

4282

0292

9278

2278

0293

5277

4271

6278

7280

0287

5290

8275

5280

4270

5

NiO

00

3ndash

ndashndash

ndashndash

00

2ndash

00

100

200

200

100

300

500

200

6

Na 2

O00

300

300

400

400

400

200

300

200

300

100

100

200

300

600

3

K2O

ndashndash

ndashndash

ndashndash

00

1ndash

ndash00

1ndash

ndash00

2ndash

ndash00

3

Tota

l1007

51006

91006

71004

91002

71005

11009

5999

4999

8996

2997

7997

41000

91010

81004

81002

8

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

60

083

60

154

60

097

59

908

59

890

59

997

60

253

60

385

60

070

60

369

60

167

60

37

59

781

59

829

60

257

59

954

Ti

00

743

00

351

00

117

00

221

00

551

00

600

00

234

00

341

00

315

00

349

00

486

00

386

00

329

00

256

00

414

00

122

Al

38

447

39

543

39

998

39

710

39

528

39

465

39

721

39

059

39

288

39

222

39

226

39

384

39

492

39

966

39

253

39

716

Cr

ndashndash

00

006

ndashndash

00

046

00

012

ndashndash

ndashndash

00

018

00

032

ndashndash

ndash

Fe

00

720

00

043

ndash00

077

ndash00

000

ndash00

476

00

353

00

322

00

200

00

09

00

171

00

252

00

176

Mg

05

938

10

094

09

405

08

154

06

770

07

429

07

827

09

915

09

975

09

422

08

697

08

778

10

091

09

416

08

476

08

264

Ca

10

610

10

600

09

886

10

203

13

187

13

151

10

010

10

396

12

039

10

445

11

727

09

899

08

940

12

221

11

574

11

926

Mn

03

429

02

085

03

237

02

929

03

009

02

352

02

959

02

375

01

968

02

399

02

026

02

442

02

647

02

236

02

372

03

958

Fe

39

530

36

789

36

974

38

715

36

804

36

583

38

552

36

557

35

744

36

893

37

063

38

097

38

474

35

905

36

859

35

709

Ni

00

043

ndashndash

00

004

ndashndash

00

026

ndash00

015

00

026

00

026

00

017

00

041

00

064

00

026

00

079

Na

00

096

00

088

00

128

00

113

00

112

00

049

00

090

00

057

00

098

00

031

00

031

00

063

00

078

00

182

00

098

Kndash

ndashndash

ndashndash

ndash00

018

ndashndash

00

027

ndashndash

00

032

ndash00

008

00

050

Tota

l159

639

159

746

159

848

160

034

159

851

159

672

159

701

159

506

159

823

159

573

159

649

159

513

160

09

159

971

159

672

160

052

Uv

ndashndash

00

1ndash

ndash01

200

3ndash

ndashndash

ndash00

500

8ndash

ndashndash

Ad

29

606

401

805

208

309

103

617

313

713

512

508

209

203

912

706

2

Gr

142

5168

6163

2163

208

205

9162

8155

3185

4160

1180

6155

3135

8198

5179

2192

Py

100

5170

1158

3136

2113

9125

6132

2167

9167

5159

8146

9148

8168

3157

9143

6138

2

Sp

58

135

154

548

950

639

850

040

233

140

734

241

444

137

540

266

2

Al

669

3619

8622

1646

7619

2618

4651

1619

2600

4625

8625

8645

9641

7602

2624

4597

3

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1495

123

Tab

le2

conti

nued

Sam

ple

G-a

-1G

-c-5

G-c

-3G

-c-1

G-5

a-1

G-5

a-2

Core

Man

tle

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

SiO

2384

5378

6379

5379

5386

4382

6386

1389

9384

4380

2373

0382

0376

0381

5376

4379

8

TiO

207

901

601

605

805

601

902

602

502

401

600

802

302

001

804

501

9

Al 2

O3

211

3214

3212

8215

7212

9215

3215

6219

8217

0220

2215

7217

1217

6216

0215

6215

5

Cr 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

00

4ndash

ndashndash

Fe 2

O3

01

9ndash

01

7ndash

01

2ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

MgO

31

436

236

326

626

537

742

045

038

142

741

341

336

742

832

038

2

CaO

107

463

458

9112

5114

164

069

973

159

762

365

662

064

160

175

064

8

MnO

11

318

019

904

004

716

118

013

918

518

916

516

317

618

117

616

0

FeO

254

9289

3293

1262

5256

8286

2272

0267

1287

4281

1279

5286

5287

0287

0286

2287

7

NiO

00

3ndash

00

100

2ndash

00

5ndash

ndash00

2ndash

ndashndash

00

2ndash

ndash00

1

Na 2

O00

100

500

500

500

500

800

500

300

200

100

500

200

200

3ndash

00

3

K2O

ndash00

4ndash

00

500

300

4ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Tota

l1011

01002

31004

31007

81008

91005

51006

71011

61007

91006

9992

91007

71001

71007

61007

41004

4

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

59

863

59

849

59

956

59

405

60

213

60

104

60

256

60

259

60

175

59

503

59

345

59

814

00

241

59

790

59

310

59

797

Ti

00

931

00

187

00

19

00

686

00

654

00

22

00

300

00

290

00

282

00

188

00

097

00

269

40

530

00

218

00

534

00

230

Al

38

777

39

925

39

617

39

799

39

105

39

861

39

661

40

036

40

032

40

611

40

439

40

057

00

046

39

895

40

042

39

992

Cr

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

Fe

00

222

ndash00

198

ndash00

143

ndashndash

ndashndash

ndashndash

ndash08

645

ndashndash

ndash

Mg

07

276

08

529

08

544

06

197

06

151

08

825

09

771

10

359

08

880

09

951

09

782

09

632

10

845

09

993

07

522

08

953

Ca

17

911

10

739

09

973

18

873

19

051

10

771

11

679

12

107

10

010

10

448

11

182

10

408

02

353

10

087

12

669

10

937

Mn

01

491

02

404

02

662

00

535

00

622

02

137

02

380

01

815

02

457

02

506

02

226

02

159

37

928

02

401

02

342

02

137

Fe

33

184

38

247

38

72

34

361

33

469

37

592

35

496

34

522

37

628

36

789

37

190

37

515

00

028

37

613

37

710

37

875

Ni

00

037

ndash00

007

00

028

ndash00

068

ndashndash

00

029

ndash00

006

ndash00

054

ndashndash

00

015

Na

00

030

00

153

00

148

00

153

00

143

00

253

00

140

00

091

00

067

00

018

00

144

00

066

ndash00

098

00

009

00

085

Kndash

00

089

00

006

00

098

00

057

00

08

ndashndash

ndashndash

ndashndash

160

084

ndashndash

ndash

Tota

l159

722

160

122

160

023

160

136

159

609

159

912

159

683

159

478

159

56

160

012

160

41

159

922

ndash160

094

160

139

160

02

Uv

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

01

2ndash

ndashndash

Ad

19

702

807

810

413

603

304

604

404

302

801

404

103

603

308

03

5

Gr

272

9174

9157

1299

6303

1176

4189

9199

1163

170

6183

168

174

7162

8198

1177

2

Py

122

7142

6142

9104

1104

4149

1165

2176

7151

167

162

2161

7145

166

6125

5149

8

Sp

25

140

244

509

010

636

140

230

941

842

136

936

339

540

039

135

8

Al

559

6639

5647

7577

568

2635

1600

1588

8639

9617

5616

5629

9636

1627

3629

3633

7

1496 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

and Epstein 1962) Before analysis powders were dried at

110C for 2 h to release adsorbed water Isotope analyses

were performed on a MAT-252 mass spectrometer The

18O16O ratio is expressed by the conventional d18O nota-

tion in permil relative to V-SMOW The analytical error of

d18O values is plusmn01

Fig 3 Photographs of rock

specimen and major minerals in

the garnet-bearing tonalitic

porphyry East Kunlun (a) Rock

specimen with garnet crystals

(b) Garnet with apatite

inclusions enclosed in

kaolinized plagioclase

(PPL 940) c Garnet enclosed

in chloritized hornblende

(PPL 940) d Garnet aggregate

showing concentric zoning and

ilmenite inclusion (PPL 940)

e Chloritized hornblende

showing idiomorphic crystal

form (PPL 940) f Fresh

hornblende phenocryst with

120 cleavages (PPL 940)

g Plagioclase phenocryst with

reverse zoning (PPL 940)

h Partly resorbed anhedral

quartz phenocryst in fine-

grained matrix (PPL 940)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1493

123

Geochronology

Zircon grains from the garnet-bearing tonalite porphyry

are euhedral and transparent and generally colorless or

light brown Most grains exhibit concentric oscillatory

zoning and no inherited zircon cores were observed

Eleven zircons were analyzed for U-Pb isotopic com-

position and the results are listed in Table 1 The zircons

show a wide range of U (337ndash1329 ppm) and Th (26ndash

308 ppm) contents Except for three grains with rela-

tively low ThU ratios (ca 007) most zircons have

moderate ThU ratios (018ndash033) which together with

their internal concentric zoning indicate a magmatic

origin These analyses form a coherent group with a

weighted mean 206Pb238U age of 213 plusmn 3 Ma (Fig 4)

This age is interpreted as the crystallization age of the

rock

Geochemical results

Mineral compositions

Garnet

Representative compositions of garnet in the tonalite por-

phyry are listed in Table 2 All garnets have a relatively

homogeneous composition consisting mainly of almandine

(56ndash76 mol) and grossular (24ndash30 mol) with minor

pyrope (9ndash18 mol) and spessartine (1ndash7 mol) compo-

nents Although the garnets generally show compositional

zoning (Fig 3andashc) there is no regular compositional varia-

tion within the grains As revealed in Table 2 some garnet

shows an increase in MgO MnO andor CaO towards the

rim whereas others show the reverse trend These features

are similar to those of garnet phenocrysts in the northern

Pannonian Basin eastern-central Europe and Setouchi

Japan (Harangi et al 2001 Kawabata and Takafuji 2005)

The compositional variation of garnet can be illustrated with

a profile analysis on a single garnet crystal (Fig 5) The

components of garnet generally keep relatively constant in

the central part of the crystal except for grossular showing a

weak fluctuation although a significant increase in alman-

dine and a decrease in grossular can be observed in the rim

while pyrope and spessartine exhibit only weak variation

Hornblende

Compositions of representative hornblende crystals are

given in Table 3 Hornblende in the garnet-bearing tona-

litic porphyry has relatively homogeneous composition

In comparison with those from garnet-bearing andesite

from Northland New Zealand (Day et al 1992) horn-

blende in this study is characterized by relatively low

MgO (881ndash101 wt) TiO2 (088ndash187 wt) and CaO

Table 1 SHRIMP zircon UndashPb results for the garnet-bearing tonalitic porphyry East Kunlun

Spot

name

U

ppm

Th

ppm

ThU 207Pb206Pb err 207Pb 235U err 206Pb238U Error () Error

correlation

Age (Ma)

206Pb238U 1r 207Pb206Pb 1r

L1211 440 30 007 00466 421 02114 435 00329 107 025 209 2 30 101

L1221 398 31 008 00486 433 02248 447 00336 108 024 213 2 127 102

L1231 939 308 033 00499 185 02383 209 00347 099 047 220 2 188 43

L1241 369 26 007 00495 283 02259 303 00331 107 035 210 2 169 66

L1251 453 80 018 00484 381 02181 396 00327 106 027 208 2 117 90

L1261 337 79 024 00477 522 02140 533 00325 110 021 206 2 85 124

L1271 1146 235 021 00502 141 02311 172 00334 098 057 212 2 202 33

L1281 837 156 019 00475 192 02220 216 00339 099 046 215 2 73 46

L1291 1329 264 020 00491 154 02284 182 00337 097 053 214 2 153 36

L12101 793 192 024 00498 205 02350 228 00342 100 044 217 2 186 48

L12111 1142 275 024 00485 175 02276 201 00340 098 049 216 2 126 41

290290

270270

250250

230230

190190

170170

150150

00220022

00260026

00300030

00340034

00380038

00420042

00460046

014014 018018 022022 026026 030030 034034

207207PbPb 235235UU

20

62

06 P

b

Pb

23

82

38UU

Weighted mean Pb U age = 213 3 Ma206 238

( 37)n 11 MSWD= =

Fig 4 SHRIMP zircon UndashPb concordia diagrams for the garnet-

bearing tonalitic Porphyry East Kunlun

1494 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

Rep

rese

nta

tive

maj

or

elem

ent

com

posi

tion

of

gar

net

inth

egar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

G-1

2a1

G-1

2a2

G-1

2a-

3G

-12c-

1G

-12c-

3G

-a-3

G-a

-2

Core

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Rim

SiO

2378

5384

8383

3379

1378

6381

3383

6383

2381

7381

4380

2381

377

9384

0383

3379

8

TiO

206

203

001

001

904

605

102

002

902

702

904

103

202

802

203

501

0

Al 2

O3

205

5214

6216

5213

2212

0212

8214

6210

3211

8210

3210

3210

9211

8217

6211

9213

5

Cr 2

O3

ndashndash

ndashndash

ndash00

400

1ndash

ndashndash

ndash00

100

3ndash

ndashndash

Fe 2

O3

06

000

4ndash

00

6ndash

ndashndash

04

003

002

701

700

801

400

002

101

5

MgO

25

143

340

234

628

731

733

442

242

539

936

937

242

840

536

235

1

CaO

62

463

358

960

377

878

059

561

671

461

669

258

352

773

268

770

5

MnO

25

515

724

421

922

517

622

217

814

817

915

118

219

816

917

829

6

FeO

297

7281

4282

0292

9278

2278

0293

5277

4271

6278

7280

0287

5290

8275

5280

4270

5

NiO

00

3ndash

ndashndash

ndashndash

00

2ndash

00

100

200

200

100

300

500

200

6

Na 2

O00

300

300

400

400

400

200

300

200

300

100

100

200

300

600

3

K2O

ndashndash

ndashndash

ndashndash

00

1ndash

ndash00

1ndash

ndash00

2ndash

ndash00

3

Tota

l1007

51006

91006

71004

91002

71005

11009

5999

4999

8996

2997

7997

41000

91010

81004

81002

8

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

60

083

60

154

60

097

59

908

59

890

59

997

60

253

60

385

60

070

60

369

60

167

60

37

59

781

59

829

60

257

59

954

Ti

00

743

00

351

00

117

00

221

00

551

00

600

00

234

00

341

00

315

00

349

00

486

00

386

00

329

00

256

00

414

00

122

Al

38

447

39

543

39

998

39

710

39

528

39

465

39

721

39

059

39

288

39

222

39

226

39

384

39

492

39

966

39

253

39

716

Cr

ndashndash

00

006

ndashndash

00

046

00

012

ndashndash

ndashndash

00

018

00

032

ndashndash

ndash

Fe

00

720

00

043

ndash00

077

ndash00

000

ndash00

476

00

353

00

322

00

200

00

09

00

171

00

252

00

176

Mg

05

938

10

094

09

405

08

154

06

770

07

429

07

827

09

915

09

975

09

422

08

697

08

778

10

091

09

416

08

476

08

264

Ca

10

610

10

600

09

886

10

203

13

187

13

151

10

010

10

396

12

039

10

445

11

727

09

899

08

940

12

221

11

574

11

926

Mn

03

429

02

085

03

237

02

929

03

009

02

352

02

959

02

375

01

968

02

399

02

026

02

442

02

647

02

236

02

372

03

958

Fe

39

530

36

789

36

974

38

715

36

804

36

583

38

552

36

557

35

744

36

893

37

063

38

097

38

474

35

905

36

859

35

709

Ni

00

043

ndashndash

00

004

ndashndash

00

026

ndash00

015

00

026

00

026

00

017

00

041

00

064

00

026

00

079

Na

00

096

00

088

00

128

00

113

00

112

00

049

00

090

00

057

00

098

00

031

00

031

00

063

00

078

00

182

00

098

Kndash

ndashndash

ndashndash

ndash00

018

ndashndash

00

027

ndashndash

00

032

ndash00

008

00

050

Tota

l159

639

159

746

159

848

160

034

159

851

159

672

159

701

159

506

159

823

159

573

159

649

159

513

160

09

159

971

159

672

160

052

Uv

ndashndash

00

1ndash

ndash01

200

3ndash

ndashndash

ndash00

500

8ndash

ndashndash

Ad

29

606

401

805

208

309

103

617

313

713

512

508

209

203

912

706

2

Gr

142

5168

6163

2163

208

205

9162

8155

3185

4160

1180

6155

3135

8198

5179

2192

Py

100

5170

1158

3136

2113

9125

6132

2167

9167

5159

8146

9148

8168

3157

9143

6138

2

Sp

58

135

154

548

950

639

850

040

233

140

734

241

444

137

540

266

2

Al

669

3619

8622

1646

7619

2618

4651

1619

2600

4625

8625

8645

9641

7602

2624

4597

3

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1495

123

Tab

le2

conti

nued

Sam

ple

G-a

-1G

-c-5

G-c

-3G

-c-1

G-5

a-1

G-5

a-2

Core

Man

tle

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

SiO

2384

5378

6379

5379

5386

4382

6386

1389

9384

4380

2373

0382

0376

0381

5376

4379

8

TiO

207

901

601

605

805

601

902

602

502

401

600

802

302

001

804

501

9

Al 2

O3

211

3214

3212

8215

7212

9215

3215

6219

8217

0220

2215

7217

1217

6216

0215

6215

5

Cr 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

00

4ndash

ndashndash

Fe 2

O3

01

9ndash

01

7ndash

01

2ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

MgO

31

436

236

326

626

537

742

045

038

142

741

341

336

742

832

038

2

CaO

107

463

458

9112

5114

164

069

973

159

762

365

662

064

160

175

064

8

MnO

11

318

019

904

004

716

118

013

918

518

916

516

317

618

117

616

0

FeO

254

9289

3293

1262

5256

8286

2272

0267

1287

4281

1279

5286

5287

0287

0286

2287

7

NiO

00

3ndash

00

100

2ndash

00

5ndash

ndash00

2ndash

ndashndash

00

2ndash

ndash00

1

Na 2

O00

100

500

500

500

500

800

500

300

200

100

500

200

200

3ndash

00

3

K2O

ndash00

4ndash

00

500

300

4ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Tota

l1011

01002

31004

31007

81008

91005

51006

71011

61007

91006

9992

91007

71001

71007

61007

41004

4

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

59

863

59

849

59

956

59

405

60

213

60

104

60

256

60

259

60

175

59

503

59

345

59

814

00

241

59

790

59

310

59

797

Ti

00

931

00

187

00

19

00

686

00

654

00

22

00

300

00

290

00

282

00

188

00

097

00

269

40

530

00

218

00

534

00

230

Al

38

777

39

925

39

617

39

799

39

105

39

861

39

661

40

036

40

032

40

611

40

439

40

057

00

046

39

895

40

042

39

992

Cr

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

Fe

00

222

ndash00

198

ndash00

143

ndashndash

ndashndash

ndashndash

ndash08

645

ndashndash

ndash

Mg

07

276

08

529

08

544

06

197

06

151

08

825

09

771

10

359

08

880

09

951

09

782

09

632

10

845

09

993

07

522

08

953

Ca

17

911

10

739

09

973

18

873

19

051

10

771

11

679

12

107

10

010

10

448

11

182

10

408

02

353

10

087

12

669

10

937

Mn

01

491

02

404

02

662

00

535

00

622

02

137

02

380

01

815

02

457

02

506

02

226

02

159

37

928

02

401

02

342

02

137

Fe

33

184

38

247

38

72

34

361

33

469

37

592

35

496

34

522

37

628

36

789

37

190

37

515

00

028

37

613

37

710

37

875

Ni

00

037

ndash00

007

00

028

ndash00

068

ndashndash

00

029

ndash00

006

ndash00

054

ndashndash

00

015

Na

00

030

00

153

00

148

00

153

00

143

00

253

00

140

00

091

00

067

00

018

00

144

00

066

ndash00

098

00

009

00

085

Kndash

00

089

00

006

00

098

00

057

00

08

ndashndash

ndashndash

ndashndash

160

084

ndashndash

ndash

Tota

l159

722

160

122

160

023

160

136

159

609

159

912

159

683

159

478

159

56

160

012

160

41

159

922

ndash160

094

160

139

160

02

Uv

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

01

2ndash

ndashndash

Ad

19

702

807

810

413

603

304

604

404

302

801

404

103

603

308

03

5

Gr

272

9174

9157

1299

6303

1176

4189

9199

1163

170

6183

168

174

7162

8198

1177

2

Py

122

7142

6142

9104

1104

4149

1165

2176

7151

167

162

2161

7145

166

6125

5149

8

Sp

25

140

244

509

010

636

140

230

941

842

136

936

339

540

039

135

8

Al

559

6639

5647

7577

568

2635

1600

1588

8639

9617

5616

5629

9636

1627

3629

3633

7

1496 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Geochronology

Zircon grains from the garnet-bearing tonalite porphyry

are euhedral and transparent and generally colorless or

light brown Most grains exhibit concentric oscillatory

zoning and no inherited zircon cores were observed

Eleven zircons were analyzed for U-Pb isotopic com-

position and the results are listed in Table 1 The zircons

show a wide range of U (337ndash1329 ppm) and Th (26ndash

308 ppm) contents Except for three grains with rela-

tively low ThU ratios (ca 007) most zircons have

moderate ThU ratios (018ndash033) which together with

their internal concentric zoning indicate a magmatic

origin These analyses form a coherent group with a

weighted mean 206Pb238U age of 213 plusmn 3 Ma (Fig 4)

This age is interpreted as the crystallization age of the

rock

Geochemical results

Mineral compositions

Garnet

Representative compositions of garnet in the tonalite por-

phyry are listed in Table 2 All garnets have a relatively

homogeneous composition consisting mainly of almandine

(56ndash76 mol) and grossular (24ndash30 mol) with minor

pyrope (9ndash18 mol) and spessartine (1ndash7 mol) compo-

nents Although the garnets generally show compositional

zoning (Fig 3andashc) there is no regular compositional varia-

tion within the grains As revealed in Table 2 some garnet

shows an increase in MgO MnO andor CaO towards the

rim whereas others show the reverse trend These features

are similar to those of garnet phenocrysts in the northern

Pannonian Basin eastern-central Europe and Setouchi

Japan (Harangi et al 2001 Kawabata and Takafuji 2005)

The compositional variation of garnet can be illustrated with

a profile analysis on a single garnet crystal (Fig 5) The

components of garnet generally keep relatively constant in

the central part of the crystal except for grossular showing a

weak fluctuation although a significant increase in alman-

dine and a decrease in grossular can be observed in the rim

while pyrope and spessartine exhibit only weak variation

Hornblende

Compositions of representative hornblende crystals are

given in Table 3 Hornblende in the garnet-bearing tona-

litic porphyry has relatively homogeneous composition

In comparison with those from garnet-bearing andesite

from Northland New Zealand (Day et al 1992) horn-

blende in this study is characterized by relatively low

MgO (881ndash101 wt) TiO2 (088ndash187 wt) and CaO

Table 1 SHRIMP zircon UndashPb results for the garnet-bearing tonalitic porphyry East Kunlun

Spot

name

U

ppm

Th

ppm

ThU 207Pb206Pb err 207Pb 235U err 206Pb238U Error () Error

correlation

Age (Ma)

206Pb238U 1r 207Pb206Pb 1r

L1211 440 30 007 00466 421 02114 435 00329 107 025 209 2 30 101

L1221 398 31 008 00486 433 02248 447 00336 108 024 213 2 127 102

L1231 939 308 033 00499 185 02383 209 00347 099 047 220 2 188 43

L1241 369 26 007 00495 283 02259 303 00331 107 035 210 2 169 66

L1251 453 80 018 00484 381 02181 396 00327 106 027 208 2 117 90

L1261 337 79 024 00477 522 02140 533 00325 110 021 206 2 85 124

L1271 1146 235 021 00502 141 02311 172 00334 098 057 212 2 202 33

L1281 837 156 019 00475 192 02220 216 00339 099 046 215 2 73 46

L1291 1329 264 020 00491 154 02284 182 00337 097 053 214 2 153 36

L12101 793 192 024 00498 205 02350 228 00342 100 044 217 2 186 48

L12111 1142 275 024 00485 175 02276 201 00340 098 049 216 2 126 41

290290

270270

250250

230230

190190

170170

150150

00220022

00260026

00300030

00340034

00380038

00420042

00460046

014014 018018 022022 026026 030030 034034

207207PbPb 235235UU

20

62

06 P

b

Pb

23

82

38UU

Weighted mean Pb U age = 213 3 Ma206 238

( 37)n 11 MSWD= =

Fig 4 SHRIMP zircon UndashPb concordia diagrams for the garnet-

bearing tonalitic Porphyry East Kunlun

1494 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

Rep

rese

nta

tive

maj

or

elem

ent

com

posi

tion

of

gar

net

inth

egar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

G-1

2a1

G-1

2a2

G-1

2a-

3G

-12c-

1G

-12c-

3G

-a-3

G-a

-2

Core

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Rim

SiO

2378

5384

8383

3379

1378

6381

3383

6383

2381

7381

4380

2381

377

9384

0383

3379

8

TiO

206

203

001

001

904

605

102

002

902

702

904

103

202

802

203

501

0

Al 2

O3

205

5214

6216

5213

2212

0212

8214

6210

3211

8210

3210

3210

9211

8217

6211

9213

5

Cr 2

O3

ndashndash

ndashndash

ndash00

400

1ndash

ndashndash

ndash00

100

3ndash

ndashndash

Fe 2

O3

06

000

4ndash

00

6ndash

ndashndash

04

003

002

701

700

801

400

002

101

5

MgO

25

143

340

234

628

731

733

442

242

539

936

937

242

840

536

235

1

CaO

62

463

358

960

377

878

059

561

671

461

669

258

352

773

268

770

5

MnO

25

515

724

421

922

517

622

217

814

817

915

118

219

816

917

829

6

FeO

297

7281

4282

0292

9278

2278

0293

5277

4271

6278

7280

0287

5290

8275

5280

4270

5

NiO

00

3ndash

ndashndash

ndashndash

00

2ndash

00

100

200

200

100

300

500

200

6

Na 2

O00

300

300

400

400

400

200

300

200

300

100

100

200

300

600

3

K2O

ndashndash

ndashndash

ndashndash

00

1ndash

ndash00

1ndash

ndash00

2ndash

ndash00

3

Tota

l1007

51006

91006

71004

91002

71005

11009

5999

4999

8996

2997

7997

41000

91010

81004

81002

8

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

60

083

60

154

60

097

59

908

59

890

59

997

60

253

60

385

60

070

60

369

60

167

60

37

59

781

59

829

60

257

59

954

Ti

00

743

00

351

00

117

00

221

00

551

00

600

00

234

00

341

00

315

00

349

00

486

00

386

00

329

00

256

00

414

00

122

Al

38

447

39

543

39

998

39

710

39

528

39

465

39

721

39

059

39

288

39

222

39

226

39

384

39

492

39

966

39

253

39

716

Cr

ndashndash

00

006

ndashndash

00

046

00

012

ndashndash

ndashndash

00

018

00

032

ndashndash

ndash

Fe

00

720

00

043

ndash00

077

ndash00

000

ndash00

476

00

353

00

322

00

200

00

09

00

171

00

252

00

176

Mg

05

938

10

094

09

405

08

154

06

770

07

429

07

827

09

915

09

975

09

422

08

697

08

778

10

091

09

416

08

476

08

264

Ca

10

610

10

600

09

886

10

203

13

187

13

151

10

010

10

396

12

039

10

445

11

727

09

899

08

940

12

221

11

574

11

926

Mn

03

429

02

085

03

237

02

929

03

009

02

352

02

959

02

375

01

968

02

399

02

026

02

442

02

647

02

236

02

372

03

958

Fe

39

530

36

789

36

974

38

715

36

804

36

583

38

552

36

557

35

744

36

893

37

063

38

097

38

474

35

905

36

859

35

709

Ni

00

043

ndashndash

00

004

ndashndash

00

026

ndash00

015

00

026

00

026

00

017

00

041

00

064

00

026

00

079

Na

00

096

00

088

00

128

00

113

00

112

00

049

00

090

00

057

00

098

00

031

00

031

00

063

00

078

00

182

00

098

Kndash

ndashndash

ndashndash

ndash00

018

ndashndash

00

027

ndashndash

00

032

ndash00

008

00

050

Tota

l159

639

159

746

159

848

160

034

159

851

159

672

159

701

159

506

159

823

159

573

159

649

159

513

160

09

159

971

159

672

160

052

Uv

ndashndash

00

1ndash

ndash01

200

3ndash

ndashndash

ndash00

500

8ndash

ndashndash

Ad

29

606

401

805

208

309

103

617

313

713

512

508

209

203

912

706

2

Gr

142

5168

6163

2163

208

205

9162

8155

3185

4160

1180

6155

3135

8198

5179

2192

Py

100

5170

1158

3136

2113

9125

6132

2167

9167

5159

8146

9148

8168

3157

9143

6138

2

Sp

58

135

154

548

950

639

850

040

233

140

734

241

444

137

540

266

2

Al

669

3619

8622

1646

7619

2618

4651

1619

2600

4625

8625

8645

9641

7602

2624

4597

3

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1495

123

Tab

le2

conti

nued

Sam

ple

G-a

-1G

-c-5

G-c

-3G

-c-1

G-5

a-1

G-5

a-2

Core

Man

tle

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

SiO

2384

5378

6379

5379

5386

4382

6386

1389

9384

4380

2373

0382

0376

0381

5376

4379

8

TiO

207

901

601

605

805

601

902

602

502

401

600

802

302

001

804

501

9

Al 2

O3

211

3214

3212

8215

7212

9215

3215

6219

8217

0220

2215

7217

1217

6216

0215

6215

5

Cr 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

00

4ndash

ndashndash

Fe 2

O3

01

9ndash

01

7ndash

01

2ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

MgO

31

436

236

326

626

537

742

045

038

142

741

341

336

742

832

038

2

CaO

107

463

458

9112

5114

164

069

973

159

762

365

662

064

160

175

064

8

MnO

11

318

019

904

004

716

118

013

918

518

916

516

317

618

117

616

0

FeO

254

9289

3293

1262

5256

8286

2272

0267

1287

4281

1279

5286

5287

0287

0286

2287

7

NiO

00

3ndash

00

100

2ndash

00

5ndash

ndash00

2ndash

ndashndash

00

2ndash

ndash00

1

Na 2

O00

100

500

500

500

500

800

500

300

200

100

500

200

200

3ndash

00

3

K2O

ndash00

4ndash

00

500

300

4ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Tota

l1011

01002

31004

31007

81008

91005

51006

71011

61007

91006

9992

91007

71001

71007

61007

41004

4

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

59

863

59

849

59

956

59

405

60

213

60

104

60

256

60

259

60

175

59

503

59

345

59

814

00

241

59

790

59

310

59

797

Ti

00

931

00

187

00

19

00

686

00

654

00

22

00

300

00

290

00

282

00

188

00

097

00

269

40

530

00

218

00

534

00

230

Al

38

777

39

925

39

617

39

799

39

105

39

861

39

661

40

036

40

032

40

611

40

439

40

057

00

046

39

895

40

042

39

992

Cr

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

Fe

00

222

ndash00

198

ndash00

143

ndashndash

ndashndash

ndashndash

ndash08

645

ndashndash

ndash

Mg

07

276

08

529

08

544

06

197

06

151

08

825

09

771

10

359

08

880

09

951

09

782

09

632

10

845

09

993

07

522

08

953

Ca

17

911

10

739

09

973

18

873

19

051

10

771

11

679

12

107

10

010

10

448

11

182

10

408

02

353

10

087

12

669

10

937

Mn

01

491

02

404

02

662

00

535

00

622

02

137

02

380

01

815

02

457

02

506

02

226

02

159

37

928

02

401

02

342

02

137

Fe

33

184

38

247

38

72

34

361

33

469

37

592

35

496

34

522

37

628

36

789

37

190

37

515

00

028

37

613

37

710

37

875

Ni

00

037

ndash00

007

00

028

ndash00

068

ndashndash

00

029

ndash00

006

ndash00

054

ndashndash

00

015

Na

00

030

00

153

00

148

00

153

00

143

00

253

00

140

00

091

00

067

00

018

00

144

00

066

ndash00

098

00

009

00

085

Kndash

00

089

00

006

00

098

00

057

00

08

ndashndash

ndashndash

ndashndash

160

084

ndashndash

ndash

Tota

l159

722

160

122

160

023

160

136

159

609

159

912

159

683

159

478

159

56

160

012

160

41

159

922

ndash160

094

160

139

160

02

Uv

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

01

2ndash

ndashndash

Ad

19

702

807

810

413

603

304

604

404

302

801

404

103

603

308

03

5

Gr

272

9174

9157

1299

6303

1176

4189

9199

1163

170

6183

168

174

7162

8198

1177

2

Py

122

7142

6142

9104

1104

4149

1165

2176

7151

167

162

2161

7145

166

6125

5149

8

Sp

25

140

244

509

010

636

140

230

941

842

136

936

339

540

039

135

8

Al

559

6639

5647

7577

568

2635

1600

1588

8639

9617

5616

5629

9636

1627

3629

3633

7

1496 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

Rep

rese

nta

tive

maj

or

elem

ent

com

posi

tion

of

gar

net

inth

egar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

G-1

2a1

G-1

2a2

G-1

2a-

3G

-12c-

1G

-12c-

3G

-a-3

G-a

-2

Core

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Rim

SiO

2378

5384

8383

3379

1378

6381

3383

6383

2381

7381

4380

2381

377

9384

0383

3379

8

TiO

206

203

001

001

904

605

102

002

902

702

904

103

202

802

203

501

0

Al 2

O3

205

5214

6216

5213

2212

0212

8214

6210

3211

8210

3210

3210

9211

8217

6211

9213

5

Cr 2

O3

ndashndash

ndashndash

ndash00

400

1ndash

ndashndash

ndash00

100

3ndash

ndashndash

Fe 2

O3

06

000

4ndash

00

6ndash

ndashndash

04

003

002

701

700

801

400

002

101

5

MgO

25

143

340

234

628

731

733

442

242

539

936

937

242

840

536

235

1

CaO

62

463

358

960

377

878

059

561

671

461

669

258

352

773

268

770

5

MnO

25

515

724

421

922

517

622

217

814

817

915

118

219

816

917

829

6

FeO

297

7281

4282

0292

9278

2278

0293

5277

4271

6278

7280

0287

5290

8275

5280

4270

5

NiO

00

3ndash

ndashndash

ndashndash

00

2ndash

00

100

200

200

100

300

500

200

6

Na 2

O00

300

300

400

400

400

200

300

200

300

100

100

200

300

600

3

K2O

ndashndash

ndashndash

ndashndash

00

1ndash

ndash00

1ndash

ndash00

2ndash

ndash00

3

Tota

l1007

51006

91006

71004

91002

71005

11009

5999

4999

8996

2997

7997

41000

91010

81004

81002

8

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

60

083

60

154

60

097

59

908

59

890

59

997

60

253

60

385

60

070

60

369

60

167

60

37

59

781

59

829

60

257

59

954

Ti

00

743

00

351

00

117

00

221

00

551

00

600

00

234

00

341

00

315

00

349

00

486

00

386

00

329

00

256

00

414

00

122

Al

38

447

39

543

39

998

39

710

39

528

39

465

39

721

39

059

39

288

39

222

39

226

39

384

39

492

39

966

39

253

39

716

Cr

ndashndash

00

006

ndashndash

00

046

00

012

ndashndash

ndashndash

00

018

00

032

ndashndash

ndash

Fe

00

720

00

043

ndash00

077

ndash00

000

ndash00

476

00

353

00

322

00

200

00

09

00

171

00

252

00

176

Mg

05

938

10

094

09

405

08

154

06

770

07

429

07

827

09

915

09

975

09

422

08

697

08

778

10

091

09

416

08

476

08

264

Ca

10

610

10

600

09

886

10

203

13

187

13

151

10

010

10

396

12

039

10

445

11

727

09

899

08

940

12

221

11

574

11

926

Mn

03

429

02

085

03

237

02

929

03

009

02

352

02

959

02

375

01

968

02

399

02

026

02

442

02

647

02

236

02

372

03

958

Fe

39

530

36

789

36

974

38

715

36

804

36

583

38

552

36

557

35

744

36

893

37

063

38

097

38

474

35

905

36

859

35

709

Ni

00

043

ndashndash

00

004

ndashndash

00

026

ndash00

015

00

026

00

026

00

017

00

041

00

064

00

026

00

079

Na

00

096

00

088

00

128

00

113

00

112

00

049

00

090

00

057

00

098

00

031

00

031

00

063

00

078

00

182

00

098

Kndash

ndashndash

ndashndash

ndash00

018

ndashndash

00

027

ndashndash

00

032

ndash00

008

00

050

Tota

l159

639

159

746

159

848

160

034

159

851

159

672

159

701

159

506

159

823

159

573

159

649

159

513

160

09

159

971

159

672

160

052

Uv

ndashndash

00

1ndash

ndash01

200

3ndash

ndashndash

ndash00

500

8ndash

ndashndash

Ad

29

606

401

805

208

309

103

617

313

713

512

508

209

203

912

706

2

Gr

142

5168

6163

2163

208

205

9162

8155

3185

4160

1180

6155

3135

8198

5179

2192

Py

100

5170

1158

3136

2113

9125

6132

2167

9167

5159

8146

9148

8168

3157

9143

6138

2

Sp

58

135

154

548

950

639

850

040

233

140

734

241

444

137

540

266

2

Al

669

3619

8622

1646

7619

2618

4651

1619

2600

4625

8625

8645

9641

7602

2624

4597

3

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1495

123

Tab

le2

conti

nued

Sam

ple

G-a

-1G

-c-5

G-c

-3G

-c-1

G-5

a-1

G-5

a-2

Core

Man

tle

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

SiO

2384

5378

6379

5379

5386

4382

6386

1389

9384

4380

2373

0382

0376

0381

5376

4379

8

TiO

207

901

601

605

805

601

902

602

502

401

600

802

302

001

804

501

9

Al 2

O3

211

3214

3212

8215

7212

9215

3215

6219

8217

0220

2215

7217

1217

6216

0215

6215

5

Cr 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

00

4ndash

ndashndash

Fe 2

O3

01

9ndash

01

7ndash

01

2ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

MgO

31

436

236

326

626

537

742

045

038

142

741

341

336

742

832

038

2

CaO

107

463

458

9112

5114

164

069

973

159

762

365

662

064

160

175

064

8

MnO

11

318

019

904

004

716

118

013

918

518

916

516

317

618

117

616

0

FeO

254

9289

3293

1262

5256

8286

2272

0267

1287

4281

1279

5286

5287

0287

0286

2287

7

NiO

00

3ndash

00

100

2ndash

00

5ndash

ndash00

2ndash

ndashndash

00

2ndash

ndash00

1

Na 2

O00

100

500

500

500

500

800

500

300

200

100

500

200

200

3ndash

00

3

K2O

ndash00

4ndash

00

500

300

4ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Tota

l1011

01002

31004

31007

81008

91005

51006

71011

61007

91006

9992

91007

71001

71007

61007

41004

4

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

59

863

59

849

59

956

59

405

60

213

60

104

60

256

60

259

60

175

59

503

59

345

59

814

00

241

59

790

59

310

59

797

Ti

00

931

00

187

00

19

00

686

00

654

00

22

00

300

00

290

00

282

00

188

00

097

00

269

40

530

00

218

00

534

00

230

Al

38

777

39

925

39

617

39

799

39

105

39

861

39

661

40

036

40

032

40

611

40

439

40

057

00

046

39

895

40

042

39

992

Cr

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

Fe

00

222

ndash00

198

ndash00

143

ndashndash

ndashndash

ndashndash

ndash08

645

ndashndash

ndash

Mg

07

276

08

529

08

544

06

197

06

151

08

825

09

771

10

359

08

880

09

951

09

782

09

632

10

845

09

993

07

522

08

953

Ca

17

911

10

739

09

973

18

873

19

051

10

771

11

679

12

107

10

010

10

448

11

182

10

408

02

353

10

087

12

669

10

937

Mn

01

491

02

404

02

662

00

535

00

622

02

137

02

380

01

815

02

457

02

506

02

226

02

159

37

928

02

401

02

342

02

137

Fe

33

184

38

247

38

72

34

361

33

469

37

592

35

496

34

522

37

628

36

789

37

190

37

515

00

028

37

613

37

710

37

875

Ni

00

037

ndash00

007

00

028

ndash00

068

ndashndash

00

029

ndash00

006

ndash00

054

ndashndash

00

015

Na

00

030

00

153

00

148

00

153

00

143

00

253

00

140

00

091

00

067

00

018

00

144

00

066

ndash00

098

00

009

00

085

Kndash

00

089

00

006

00

098

00

057

00

08

ndashndash

ndashndash

ndashndash

160

084

ndashndash

ndash

Tota

l159

722

160

122

160

023

160

136

159

609

159

912

159

683

159

478

159

56

160

012

160

41

159

922

ndash160

094

160

139

160

02

Uv

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

01

2ndash

ndashndash

Ad

19

702

807

810

413

603

304

604

404

302

801

404

103

603

308

03

5

Gr

272

9174

9157

1299

6303

1176

4189

9199

1163

170

6183

168

174

7162

8198

1177

2

Py

122

7142

6142

9104

1104

4149

1165

2176

7151

167

162

2161

7145

166

6125

5149

8

Sp

25

140

244

509

010

636

140

230

941

842

136

936

339

540

039

135

8

Al

559

6639

5647

7577

568

2635

1600

1588

8639

9617

5616

5629

9636

1627

3629

3633

7

1496 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-a

-1G

-c-5

G-c

-3G

-c-1

G-5

a-1

G-5

a-2

Core

Man

tle

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

Core

Rim

Core

Man

tle

Rim

SiO

2384

5378

6379

5379

5386

4382

6386

1389

9384

4380

2373

0382

0376

0381

5376

4379

8

TiO

207

901

601

605

805

601

902

602

502

401

600

802

302

001

804

501

9

Al 2

O3

211

3214

3212

8215

7212

9215

3215

6219

8217

0220

2215

7217

1217

6216

0215

6215

5

Cr 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

00

4ndash

ndashndash

Fe 2

O3

01

9ndash

01

7ndash

01

2ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

MgO

31

436

236

326

626

537

742

045

038

142

741

341

336

742

832

038

2

CaO

107

463

458

9112

5114

164

069

973

159

762

365

662

064

160

175

064

8

MnO

11

318

019

904

004

716

118

013

918

518

916

516

317

618

117

616

0

FeO

254

9289

3293

1262

5256

8286

2272

0267

1287

4281

1279

5286

5287

0287

0286

2287

7

NiO

00

3ndash

00

100

2ndash

00

5ndash

ndash00

2ndash

ndashndash

00

2ndash

ndash00

1

Na 2

O00

100

500

500

500

500

800

500

300

200

100

500

200

200

3ndash

00

3

K2O

ndash00

4ndash

00

500

300

4ndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Tota

l1011

01002

31004

31007

81008

91005

51006

71011

61007

91006

9992

91007

71001

71007

61007

41004

4

Form

ula

r(c

atio

ns

are

calc

ula

ted

bas

edon

12

oxygen

s)

Si

59

863

59

849

59

956

59

405

60

213

60

104

60

256

60

259

60

175

59

503

59

345

59

814

00

241

59

790

59

310

59

797

Ti

00

931

00

187

00

19

00

686

00

654

00

22

00

300

00

290

00

282

00

188

00

097

00

269

40

530

00

218

00

534

00

230

Al

38

777

39

925

39

617

39

799

39

105

39

861

39

661

40

036

40

032

40

611

40

439

40

057

00

046

39

895

40

042

39

992

Cr

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

Fe

00

222

ndash00

198

ndash00

143

ndashndash

ndashndash

ndashndash

ndash08

645

ndashndash

ndash

Mg

07

276

08

529

08

544

06

197

06

151

08

825

09

771

10

359

08

880

09

951

09

782

09

632

10

845

09

993

07

522

08

953

Ca

17

911

10

739

09

973

18

873

19

051

10

771

11

679

12

107

10

010

10

448

11

182

10

408

02

353

10

087

12

669

10

937

Mn

01

491

02

404

02

662

00

535

00

622

02

137

02

380

01

815

02

457

02

506

02

226

02

159

37

928

02

401

02

342

02

137

Fe

33

184

38

247

38

72

34

361

33

469

37

592

35

496

34

522

37

628

36

789

37

190

37

515

00

028

37

613

37

710

37

875

Ni

00

037

ndash00

007

00

028

ndash00

068

ndashndash

00

029

ndash00

006

ndash00

054

ndashndash

00

015

Na

00

030

00

153

00

148

00

153

00

143

00

253

00

140

00

091

00

067

00

018

00

144

00

066

ndash00

098

00

009

00

085

Kndash

00

089

00

006

00

098

00

057

00

08

ndashndash

ndashndash

ndashndash

160

084

ndashndash

ndash

Tota

l159

722

160

122

160

023

160

136

159

609

159

912

159

683

159

478

159

56

160

012

160

41

159

922

ndash160

094

160

139

160

02

Uv

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

01

2ndash

ndashndash

Ad

19

702

807

810

413

603

304

604

404

302

801

404

103

603

308

03

5

Gr

272

9174

9157

1299

6303

1176

4189

9199

1163

170

6183

168

174

7162

8198

1177

2

Py

122

7142

6142

9104

1104

4149

1165

2176

7151

167

162

2161

7145

166

6125

5149

8

Sp

25

140

244

509

010

636

140

230

941

842

136

936

339

540

039

135

8

Al

559

6639

5647

7577

568

2635

1600

1588

8639

9617

5616

5629

9636

1627

3629

3633

7

1496 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le2

conti

nued

Sam

ple

G-5

c-1

G-5

c-2

G-5

c-3

G-5

c-4

G-2

a-3

G-4

c-2

G-5

b-3

Core

Rim

Core

Rim

Core

Rim

Core

Man

tle

Rim

Rim

Core

Core

Rim

Core

Rim

SiO

2377

9381

4376

7378

7384

1381

5381

0380

6381

1378

8380

3376

4373

1368

0382

1

TiO

202

003

401

700

001

900

001

201

601

802

502

102

300

807

101

9

Al 2

O3

217

0218

8220

4217

8218

9218

5220

7218

6217

7218

4217

9217

2215

5210

2219

1

Cr 2

O3

ndashndash

00

2ndash

ndash00

2ndash

00

2ndash

ndash00

1ndash

ndashndash

ndash

Fe 2

O3

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

MgO

40

737

639

437

339

942

138

637

137

538

040

637

332

021

842

6

CaO

66

763

369

662

172

164

570

667

258

565

565

566

959

979

876

9

MnO

17

717

123

617

323

717

420

922

320

117

023

016

924

619

914

7

FeO

278

5287

9276

1291

1270

6283

1279

3281

6291

9287

2281

2286

2298

0295

6272

7

NiO

ndashndash

ndashndash

ndash00

3ndash

00

4ndash

00

400

1ndash

00

100

300

1

Na 2

Ondash

00

400

300

2ndash

00

100

100

100

100

400

400

500

400

4ndash

K2O

ndashndash

ndashndash

ndash00

1ndash

00

1ndash

ndash00

200

1ndash

00

200

1

Tota

l1000

61009

81008

01004

61011

31007

71012

31009

81008

81008

21011

61003

91004

41003

21010

1

Si

59

567

59

663

59

075

59

682

59

815

59

721

59

438

59

611

59

791

59

440

59

451

59

356

59

273

58

842

59

512

Ti

00

238

00

395

00

199

00

221

00

136

00

183

00

216

00

290

00

248

00

272

00

098

00

851

00

220

Al

40

322

40

340

40

735

40

445

40

172

40

310

40

578

40

354

40

262

40

382

40

154

40

378

40

340

39

611

40

221

Cr

ndashndash

00

028

ndashndash

00

024

ndash00

020

ndashndash

00

016

ndashndash

ndashndash

Fe

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndashndash

ndash

Mg

09

557

08

779

09

221

08

770

09

269

09

821

08

975

08

650

08

777

08

890

09

462

08

772

07

570

05

191

09

891

Ca

11

272

10

604

11

698

10

491

12

023

10

812

11

809

11

283

09

842

11

009

10

978

11

308

10

193

13

664

12

826

Mn

02

361

02

263

03

135

02

307

03

128

02

312

02

756

02

963

02

666

02

257

03

049

02

258

03

314

02

698

01

934

Fe

36

710

37

674

36

214

38

368

35

243

37

057

36

435

36

877

38

293

37

692

36

760

37

750

39

587

39

525

35

523

Ni

ndashndash

ndashndash

ndash00

037

ndash00

048

ndash00

053

00

017

ndash00

019

00

036

00

017

Na

00

009

00

106

00

079

00

058

00

013

00

022

00

022

00

031

00

031

00

124

00

128

00

147

00

128

00

129

ndash

Kndash

ndashndash

00

006

ndash00

014

ndash00

029

ndash00

006

00

038

00

029

ndash00

042

00

024

Tota

l160

037

159

825

160

384

160

128

159

884

160

13

160

148

160

049

159

878

160

144

160

299

160

271

160

522

160

587

160

169

Uv

ndashndash

00

7ndash

ndash00

6ndash

00

5ndash

ndash00

4ndash

ndashndash

ndash

Ad

03

606

003

003

302

002

803

304

403

704

101

512

603

3

Gr

182

6169

4188

8175

196

4179

6193

8184

160

1177

2176

1181

9165

8204

5208

1

Py

159

9148

6153

3146

3155

7163

7149

8145

147

6149

157

4146

4124

985

7164

7

Sp

39

538

352

138

552

538

546

049

744

937

850

737

754

744

532

2

Al

614

3637

6602

1640

1592

617

6608

3618

1644

1631

6611

6630

0653

2652

6591

6

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1497

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

(104ndash112 wt) and significantly higher Al2O3 (127ndash

159 wt) and FeO (160ndash179 wt) On the classification

diagram most data plot in the tschermakite field (Fig 6)

Plagioclase

The representative composition of plagioclase is presented

in Table 4 The feldspar is dominated by andesine

(An = 35ndash49) although one grain is more albite-rich

(An = 20) The Or component is generally less than 2 In

comparison with garnet-bearing volcanic rocks of the

northern Pannonian Basin eastern-central Europe (Harangi

et al 2001) plagioclase in this study is relatively poor in

Al Ca and rich in Na with much lower An values Sig-

nificantly plagioclase generally possesses reversed

compositional zoning with the rims containing a higher

proportion of anorthite than the cores (Table 4)

Ilmenite

Ilmenite occurs within garnet phenocrysts suggesting an

early phase of crystallization The results show that

ilmenite is characterized by low MgO (008 wt) and

relatively high MnO (208ndash595 wt) (Table 5) The

compositions are in contrast with those of ilmenite in calc-

alkaline volcanic rocks of Northland Stouchi and the

northern Pannonian Basin which is generally Mg-rich

(MgO [1 wt) and Mn-Poor (MnO 1 wt) (Day et al

1992 Harangi et al 2001 Kawabata and Takafuji 2005)

Whole-rock geochemistry

Major elements

The whole-rock major and trace element and Nd-Sr isotope

compositions of selected samples are presented in Table 6

The rock samples are homogeneous with SiO2 contents

ranging from 611 to 623 wt They are low in TiO2

(05 wt) and MgO (2 wt) and relatively Na-rich

with Na2OK2O ratios between 27 and 43 The most

distinctive feature is the high Al2O3 content (175ndash

181 wt) consistent with the high proportions of pla-

gioclase and garnet Despite their relatively high Al2O3

contents most the samples plot in the metaluminous field

except for a few samples showing weakly peraluminous

characteristics (10 ACNK 11) (Fig 7) In the nor-

mative feldspar classification diagram all samples fall in

the tonalite field (Fig 8)

Trace elements

The rock samples have low concentrations of transition

elements eg Cr (20 ppm) and Ni (13 ppm) compared

with rocks with similar SiO2 in the Andes (eg Franchini

et al 2003) Large ion lithosphile elements (LILE) and

high field strength elements (HFSE) are also relatively low

in abundance Except for the moderate Sr content (208ndash

250 ppm) Rb (35ndash50 ppm) Cs (121ndash327 ppm) and Ba

(167ndash342 ppm) are all relatively low The contrast between

Rb and Sr concentration levels gives rise to the strikingly

low RbSr ratios (025) Because of the relatively limited

SiO2 range most elements do not show definable trends

with major oxides (eg SiO2 or MgO) Most HFSE (eg

Nb Ta Zr Hf) are comparable to those in garnet-bearing

I-type granitoids (Day et al 1992 Harangi et al 2001) and

are comparable or lower than those in felsic magmatic

rocks from island arcs (eg Mason and McDonald 1978)

Like typical rocks at deconstructive plate margins the

samples display LREE-enriched patterns (Fig 9a) with

chondrite-normalized LaYb ratios between 12 and 38 The

distinctive characteristics of the samples are their remark-

ably low HREE contents (Yb = 055ndash073 ppm) and

significant HREE fractionation (GdYbn = 32ndash54) Most

samples have not experienced plagioclase fractionation

because they possess positive Eu anomalies (EuEu[11)

However three samples exhibit higher LREE contents and

higher LaYbn and GdYbn ratios and slight negative Eu

anomalies (EuEu = 085ndash089) (Table 5 Fig 9a) These

three samples also show relatively low ZrSm ratios

(19ndash24) whereas all other samples have high ZrSm ratios

([30) which are different from those of modern mid-

ocean-ridge basalts (MORBs) ocean-island basalts (OIB)

and island-arc basalts (IAB) but similar to those of

Archean TTG and adakitic rocks (Foley et al 2002) On a

primitive mantle normalized spider diagram the rock is

enriched in LILE relative to LREE and HFSE with pro-

nounced spikes of Pb and troughs of Nb-Ta P and Ti

(Fig 9b) exhibiting characteristics of typical subduction-

related magmas

0

20

40

60

80

Rim Rim

Per

cent

age

Almandine

Grossular

PyropeSpessartine

Core

G-5c 4

Fig 5 Line profile of analyses across a representative garnet from

the garnet-bearing tonalite porphyry

1498 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Sr-Nd-O Isotopic compositions

The porphyry possesses relatively homogeneous Sr and Nd

isotope compositions with initial 87Sr86Sr ratios and eNdT

values ranging from 07065 to 07067 and -23 to -14

respectively (Table 6) There are no significant trends

between incompatible element ratios (eg SrY ZrNb

ZrSm and BaLa) with either 87Sr86Sr or eNdT values In

the NdndashSr isotope correlation diagram all the data plot in

the field of arc magmatism and are quite close to the mantle

array (Fig 10) Analysis of garnet separates from the

tonalite porphyry has yielded a d18O value of +623

significantly higher than that of garnet from the mantle

(+524) (Schulze et al 2001)

Discussion

Origin of garnet in the tonalite porphyry

The origin of garnet in calc-alkaline rocks has been debated

for a long time being variously envisaged as a xenocryst a

phenocryst or a restite phase (Birch and Gleadow 1974

Popov et al 1982 Gilbert and Rogers 1989) Green (1977

1992) noticed a close relationship between garnet compo-

sition and the PndashT conditions of crystallization and

recognized that garnet crystallized under relatively high

pressure conditions is more Ca-rich and Mn-poor relative

to those formed in shallower environments In the case of

the East Kunlun porphyry all garnet crystals are euhedral

Table 3 Representative major element composition of hornblende in the garnet-bearing tonalitic porphyry East Kunlun

Sample g12b-4a g12b-4b g12c-2ac g12c-2br g5a-3c g5a-3r g5a-5c g-5a-5r g5a-5c g7a-1r g7a-1c g2a-2c g2a-2b g2a-2r g5b-1a g5b-1b

SiO2 4221 4282 4329 4331 4341 4291 4163 4192 4175 4235 4297 4135 4467 4347 4243 4112

TiO2 125 097 113 101 113 108 108 099 094 088 098 187 096 116 107 182

Al2O3 1589 1524 1432 1423 1407 1453 1517 1500 1486 1460 1453 1497 1269 1438 1404 1538

Cr2O3 000 001 002 000 004 000 001 001 000 000 000 000 000 000 000 000

FeO 1789 1756 1785 1780 1686 1645 1671 1650 1689 1690 1728 1609 1701 1727 1687 1596

MnO 011 021 024 025 019 014 019 014 020 033 032 032 024 024 025 029

MgO 881 910 920 944 942 941 899 921 902 898 926 963 1007 929 922 949

CaO 1093 1115 1082 1060 1104 1097 1109 1091 1104 1089 1077 1111 1036 1083 1104 1097

Na2O 165 153 160 159 160 159 158 160 161 152 156 196 144 154 147 190

K2O 056 061 055 059 054 041 058 045 053 056 053 048 035 047 053 048

NiO 000 000 000 001 004 003 000 000 000 001 001 000 001 001 005 004

Total 9931 9919 9902 9882 9835 9752 9702 9672 9685 9701 9822 9777 9779 9865 9696 9744

Formula (cations based on 23 oxygens)

Si 621 630 638 640 642 638 626 630 629 636 637 617 661 641 638 615

AlIV 179 170 162 160 158 162 174 170 171 164 163 183 139 159 162 185

AlVI 0970 0945 0874 0872 0870 0929 0944 0957 0930 0945 0915 0801 0826 0908 0865 0856

Ti 0139 0107 0126 0112 0126 0121 0122 0112 0107 0100 0109 0210 0106 0128 0121 0205

Cr 0000 0001 0002 0000 0005 0000 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000

Fe2+ 2202 2161 2202 2198 2085 2046 2100 2074 2128 2122 2144 2007 2105 2130 2121 1996

Mn 0014 0027 0030 0032 0024 0018 0024 0018 0026 0041 0041 0040 0030 0030 0032 0036

Ni 0000 0000 0000 0001 0005 0003 0000 0000 0000 0001 0001 0000 0001 0001 0006 0004

Mg 1934 1996 2022 2079 2078 2086 2015 2063 2025 2010 2048 2142 2222 2041 2065 2114

Total 5258 5237 5255 5293 5193 5203 5206 5226 5216 5219 5258 5200 5291 5238 5209 5212

Ca 1723 1758 1710 1677 1749 1748 1786 1757 1782 1753 1713 1776 1643 1711 1778 1757

Na 0018 0005 0035 0030 0058 0049 0008 0017 0002 0028 0029 0024 0066 0051 0013 0031

Total 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Na 0453 0431 0421 0425 0400 0411 0451 0449 0468 0416 0420 0544 0347 0389 0416 0518

K 0106 0114 0103 0112 0102 0079 0111 0086 0101 0107 0100 0090 0065 0087 0102 0092

Total 15559 15544 15525 15537 15502 15489 15562 15535 15569 15522 15520 15634 15413 15476 15517 15610

Total O 2601 2601 2596 2592 2589 2574 2547 2547 2541 2549 2580 2566 2586 2596 2547 2561

ON 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Al 2757 2643 2490 2477 2451 2547 2687 2657 2639 2584 2540 2632 2213 2499 2487 2709

Na 0471 0436 0457 0455 0458 0460 0459 0466 0470 0444 0449 0567 0413 0440 0429 0549

XMg 028 029 028 029 030 031 029 030 029 029 029 032 031 029 030 031

Pressure 101 96 88 88 87 91 98 96 96 93 91 95 75 89 88 99

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1499

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

with concentric zoning and have a similar composition

suggesting a magmatic origin The data show that all the

garnets contain relatively high Ca (CaO = 585ndash117 wt)

and low Mn (MnO = 040ndash296 wt) (Table 2) consis-

tent with crystallization at relatively high pressure

(CaO [ 4 wt MnO 4 wt) (Green 1977 1992 Con-

rad et al 1988) In the MnO versus CaO diagram

(Fig 11a) garnets from the tonalite porphyry from East

Kunlun show strong affinity to high-pressure garnet This is

different from garnets contained in xenoliths from the

Cenozoic volcanic rocks of Hohxil northern Tibetan

Plateau (Deng 1998) which mostly plot in the low-pressure

field The distinctive composition of the garnet is consistent

with the petrographic observation and suggests that all the

garnets are phenocrysts that crystallized under relatively

high pressure Furthermore it has been recognized that

garnet in cumulates of mantle-derived magma ecolgitic

restite and garnet peridotite generally contains high MgO

(usually [8 wt) (eg Lee et al 2006 and references

therein) However garnet in the tonalitic porphyry contains

much lower MgO (45 wt) strikingly different from

garnet grown in the mantle environment (Fig 11b) This

may suggest that these garnets crystallized in a felsic

rather than a mafic melt

80 75 70 65 60 550

1

Ferro-Actinolite

Actinolite

Tremolite Tr Hb

ActHbl

Fe-ActHbl Ferro-Hbl

Magnesio-Hbl

Fe-TschHbl

Tsch

Hbl

Ferro-

Tschermakite

Tschermakite

Tsi

Mg

(Mg+

Fe)

2+

Fig 6 Classification diagram for hornblende crystals from the

garnet-bearing tonalitic porphyry (after Hawthorne 1981)

Table 4 Representative analyses of plagioclase from the garnet-bearing tonalite porphyry East Kunlun

Sample Grt-12c3 Grt-c4c Grt-c4r Grt-7a1c Grt-7a1r Grt-7a2c Grt-7a2r Grt-7a3c Grt-7a3r

SiO2 6416 5791 5673 5915 5712 5954 5523 5929 5648

TiO2 ndash ndash ndash ndash ndash ndash 002 ndash ndash

Al2O3 2292 2781 2848 2592 2821 2643 2811 2611 2821

Cr2O3 021 002 002 001 ndash 002 002 002 001

MgO ndash ndash ndash ndash 001 ndash ndash ndash ndash

CaO 355 907 1015 742 964 771 1020 756 979

MnO 002 003 004 005 003 004 004 007 003

FeO 035 003 007 003 008 002 006 007 005

NiO 001 003 006 ndash 003 ndash ndash 001 001

Na2O 766 634 585 738 621 715 603 745 619

K2O 010 021 013 026 015 024 011 023 017

Total 9898 10145 10153 10022 10148 10115 9982 10081 10094

Formular (cations based on 8 oxygens)

Si 28404 25585 25132 26366 25292 26282 24945 26303 2517

Ti ndash ndash ndash ndash ndash ndash 00006 ndash ndash

Al 1196 14479 14866 13616 14722 13751 14964 13648 14817

Cr 00073 00007 00007 00004 00006 00006 00007 00003

Mg 00003 ndash ndash ndash 00005 ndash ndash ndash ndash

Ca 01683 04293 04817 03542 04571 03647 04934 03589 04674

Mn 00008 0001 00017 00018 00012 00015 00014 00026 00009

Fe 00128 00011 00025 00013 00029 00009 00021 00026 0002

Ni 00003 00011 00022 ndash 0001 ndash ndash 00002 00003

Na 06577 05429 05021 06378 05328 06116 0528 06405 05352

K 00058 0012 00071 00149 00085 00137 00065 00129 00098

Total 48897 49946 49978 50087 50053 49963 50236 50137 50146

ab 7906 5516 5067 6335 5337 6177 5136 6327 5286

or 070 122 072 148 085 138 064 128 096

an 2023 4362 4861 3518 4579 3684 4800 3545 4617

1500 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Constraints on the PndashT conditions

Several geobarometers and geothermometers have been

proposed to estimate the P-T conditions of granitoid

batholith formation (eg Holland and Blundy 1994

Anderson 1996 Holdaway et al 1997) Day et al (1992)

used phase equilibrium diagrams to constrain the P-T

conditions of garnet-bearing andesite in Northland

New Zealand and suggested that the mineral assemblage

of garnet + plagioclase + amphibole + quartz is stable

around 10 kbar and 800ndash850C and a similar estimate was

made for the garnet-bearing calc-alkaline volcanic rocks of

the northern Pannonion Basin eastern-central Europe

(Harangi et al 2001) In contrast to multiple mineral

barometers the Al-in-hornblende geobarometer is partic-

ularly suitable to estimate the emplacement pressure of

granitic rocks (Anderson 1996 Ague 1997) Because gar-

nets in the tonalitic porphyry are mostly surrounded by

plagioclase or hornblende the Al-in-hornblende barometer

can provide direct constraint on the crystallization pressure

of garnet Using the Al-in-hornblende barometer calibrated

by Schmidt (1992) the pressure is estimated at 75ndash

101 kbar suggesting that the garnet crystallized at a

crustal depth below 26ndash35 km Using the zircon saturation

thermometer (Watson and Harrison 1983) the temperature

of the tonalite porphyry was estimated as 706ndash713C

representing the temperature when the magma was em-

placed at a shallower crustal level

Petrogenesis of the garnet-bearing tonalite porphyry

The relatively high SiO2 low MgO Cr and Ni contents

suggest an evolved magmatic composition for the garnet-

bearing tonalitic porphyry The relatively high pressure of

hornblendes indicates that the phenocrysts formed prior to

emplacement of the magma therefore their compositions

may be useful to infer the origin of the early melt Garnet

phenocrysts with ilmenite inclusions are the earliest phases

preserved in the tonalite porphyry The garnet phenocrysts

are compositionally distinct from those crystallized from

primary mantle-derived magma and therefore probably

formed in an evolved magma (Fig 11b) Likewise

ilmenite within garnet phenocrysts has a very low MgO

(008 wt) content much lower than ilmenite in the

garnet-bearing andesitedacite of Northland New Zealand

(179ndash248 wt) northern Pannonian Basin (085ndash

327 wt) and the Setouchi volcanic belt (1ndash102 wt)

(Day et al 1992 Harangi et al 2001 Kawabata and

Takafuji 2005) In addition the garnet phenocrysts have an

oxygen isotope composition (+623) significantly higher

than that of normal mantle-derived garnets (+524)

(Schulze et al 2001) which together with the above

evidence suggests a crustal source for the phenocrysts

Experimental work conducted in the garnet-stability field

has revealed that partial melting of amphibolite would

generate silicic melt characterized by low MgO and high

SiO2 (eg Skjerlie and Johnston 1996 Rapp et al 1999)

which may well explain the low MgO contents in the

garnets and ilmenites from East Kunlun However the

garnet-bearing tonalite porphyry cannot be entirely ascri-

bed to partial melting of mafic crust because the rock

contains only moderate Sr (260 ppm) which is signifi-

cantly lower than the average Sr content (348 ppm) of the

lower crust (Rudnick and Gao 2004) Field investigation

and geochemical research on the Triassic arc magma in

East Kunlun have revealed extensive mixing of crust- and

mantle-derived magma (Luo et al 2002 Liu et al 2003)

In the Nd-Sr isotope correlation diagram (Fig 10) the

garnet-bearing tonalite porphyry plots mainly in the field

of Triassic arc magmas but much closer to the mantle

array and therefore distinct from those of the basement of

East Kunlun This may suggest that only a small propor-

tion of crustal component contributed to the genesis of the

rock

Table 5 Representative composition of ilmenite enclosed in garnet crystals

Sample Grt-2a-1 Grt-2a-2 Grt-2a-3 Grt-2a-4 Grt-2a-5 Grt-2b-1 Grt-2b-2 Grt-2b-3 Grt-3a-2 Grt-3a-3 Grt-3a-4 Grt-3a-5 Grt-3a-6

SiO2 002 007 004 ndash 005 004 004 002 004 003 004 006 001

TiO2 5047 5094 5001 5226 4999 4999 5078 5049 5003 5084 5084 4994 5017

Al2O3 ndash 003 ndash 001 010 004 004 007 006 001 002 001 004

FeO 4644 4347 4690 4451 4462 4639 4666 4593 4601 4565 4557 4702 4277

MnO 256 595 208 266 301 244 243 236 270 298 284 266 502

MgO 005 ndash 008 002 ndash ndash 006 006 007 003 003 003 004

CaO 003 003 ndash 027 021 001 ndash 003 038 ndash ndash ndash 001

Na2O 003 005 003 ndash 003 ndash 001 ndash 005 004 007 ndash ndash

K2O ndash ndash ndash ndash ndash ndash 001 ndash ndash 001 ndash ndash ndash

Cr2O3 ndash 001 ndash ndash 007 005 ndash ndash 004 ndash ndash ndash ndash

Total 9960 10055 9915 9973 9809 9897 10002 9897 9937 9960 9941 9971 9805

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1501

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Tab

le6

Whole

rock

com

posi

tions

of

the

gar

net

-bea

ring

tonal

itic

porp

hyry

E

ast

Kunlu

n

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

SiO

2616

2613

6621

8616

5616

9616

4614

0622

9620

9616

5616

0614

8612

8609

0610

7615

3615

2619

4619

7620

6618

3

TiO

204

504

504

304

304

404

504

404

304

404

304

404

304

204

104

104

304

304

304

404

404

4

Al 2

O3

179

0178

4181

3179

4178

6180

2179

4180

8179

8177

7177

7175

4175

0177

3177

6180

6180

0181

3179

5180

2178

3

Fe 2

O3T

50

750

547

648

448

050

850

848

048

348

548

648

448

348

248

547

948

048

148

248

248

6

MnO

00

800

800

800

700

800

800

800

700

700

800

800

700

700

800

800

800

800

800

800

700

8

MgO

18

618

617

617

517

218

018

017

717

617

817

717

817

716

917

117

517

317

517

417

817

8

CaO

64

564

566

165

964

964

263

952

452

463

263

463

663

564

063

964

464

364

465

252

463

5

Na 2

O36

337

634

636

333

037

137

636

036

133

432

934

234

032

738

534

834

134

433

336

033

9

K2O

08

708

711

611

510

911

211

211

811

911

311

210

510

512

312

509

909

809

811

011

911

2

P2O

500

800

800

900

900

800

900

800

900

900

900

900

800

800

800

800

800

900

900

800

900

9

LO

I24

222

718

219

620

521

321

326

927

422

324

130

130

231

430

623

022

023

419

626

924

8

Tota

l1004

21000

61004

61001

1996

01005

41002

31002

51000

3996

7997

71000

6997

7997

31005

1999

2996

71004

3999

8999

91002

4

Li

147

147

105

124

159

151

142

227

162

156

176

147

133

127

128

131

141

121

155

181

160

Be

14

515

115

215

715

916

216

316

117

116

816

117

617

116

116

216

016

415

715

516

115

8

Sc

70

073

763

668

965

771

266

675

974

162

269

773

668

474

478

265

566

267

771

765

768

2

V397

410

373

371

371

372

369

369

361

369

385

374

363

355

353

362

367

362

354

359

376

Cr

156

180

162

164

224

172

158

151

155

163

157

165

179

157

165

217

136

173

155

158

152

Co

94

097

091

091

188

490

689

768

067

282

881

685

987

797

397

878

078

278

185

566

882

2

Ni

126

106

112

85

109

89

582

872

588

384

570

480

595

592

684

497

664

584

278

378

864

4

Cu

126

126

128

124

126

108

104

105

119

135

134

119

137

103

112

97

95

100

120

101

130

Zn

772

799

729

737

694

756

714

664

693

730

703

736

742

953

943

737

730

721

708

643

693

Ga

171

174

175

178

174

175

170

170

162

166

171

169

169

170

167

173

173

169

166

162

168

Ge

11

211

311

111

111

111

010

710

610

510

910

911

811

711

111

712

312

512

110

710

111

1

Rb

352

361

496

495

419

408

408

476

480

434

433

426

430

460

457

466

454

459

409

477

432

Sr

252

259

251

254

249

245

243

208

209

236

236

232

234

240

239

232

230

229

243

208

238

Y66

668

662

762

763

469

870

460

756

967

267

964

564

271

572

669

668

566

962

459

369

0

Zr

672

722

783

786

725

769

751

689

686

674

757

884

814

825

670

687

771

820

730

676

756

Nb

39

040

139

439

639

740

039

438

539

039

739

639

239

038

638

739

338

537

939

338

840

1

Mo

07

607

207

907

007

707

006

407

306

704

805

407

808

909

207

806

404

806

206

507

305

3

Cd

01

401

401

701

601

502

101

905

601

901

401

501

802

501

701

901

301

401

801

401

401

8

Sb

04

704

804

604

405

406

006

008

908

506

706

913

413

609

309

707

808

308

204

908

406

9

Cs

12

112

414

214

013

315

215

231

731

518

518

717

617

618

418

116

015

815

713

732

718

8

Ba

247

256

281

282

270

317

314

186

183

259

263

263

267

341

342

171

170

167

265

182

267

La

113

130

112

115

111

118

119

115

108

114

117

115

115

116

114

361

334

345

112

113

117

Ce

225

249

219

226

217

230

231

227

211

221

225

223

223

221

221

668

611

632

221

219

230

Pr

27

030

226

727

026

427

428

427

425

927

227

926

527

426

726

673

867

369

626

326

528

4

Nd

107

115

106

107

104

108

107

105

98

106

109

106

106

104

103

251

230

237

103

103

110

Sm

22

423

622

322

421

921

822

921

420

422

322

521

722

721

621

336

234

434

821

720

623

5

Eu

07

307

507

607

607

307

407

207

106

807

407

707

307

407

407

509

008

908

707

406

907

7

Gd

18

419

418

118

018

018

618

717

216

318

718

318

318

118

218

128

627

127

317

716

718

7

Tb

02

602

702

602

502

602

602

602

502

402

602

602

502

602

602

703

203

103

102

602

302

7

Dy

13

413

513

012

813

113

913

812

412

013

613

313

013

114

213

814

914

514

012

612

113

9

1502 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Ta

ble

6co

nti

nu

ed

Sam

ple

EK

L2-

01

EK

L2-

03

EK

L2-

06

EK

L2-

08

EK

L2-

11

EK

L2-

13

EK

L2-

16

EK

L2-

17

EK

2-

19

EK

L2-

21

EK

L2-

23

EK

L2-

26

EK

L2-

28

EK

L2-

30

EK

L2-

31

EK

L2-

33

EK

L2-

35

EK

L2-

36

EK

L2-

37

EK

L2-

39

EK

L2-

40

Ho

02

502

602

402

402

402

702

702

302

202

602

602

502

402

602

702

702

602

602

402

202

6

Er

06

907

206

606

606

707

807

606

806

407

207

106

806

707

907

807

807

407

606

506

607

6

Tm

01

001

000

900

900

901

101

100

900

801

001

000

900

901

101

101

001

001

000

900

901

1

Yb

06

106

305

805

605

807

007

105

905

506

406

306

005

907

307

106

606

406

205

905

606

4

Lu

00

900

900

800

800

901

001

000

900

800

900

900

800

901

001

101

000

900

900

800

800

9

Hf

20

321

823

223

721

723

122

420

620

720

522

225

824

023

519

720

922

623

421

619

621

9

Ta

03

303

203

203

103

103

203

003

003

002

903

003

002

902

902

902

902

902

803

002

803

0

W04

404

203

403

203

403

302

905

604

902

903

204

004

203

603

603

002

502

703

105

502

9

Tl

02

402

503

203

102

603

102

903

703

802

502

603

003

103

303

202

502

502

402

703

802

7

Pb

95

294

8110

1108

9112

795

695

9101

1108

5101

7113

099

3119

9104

4108

098

099

7101

2111

4101

0101

8

Bi

00

900

900

500

500

800

600

601

201

201

401

501

201

300

500

501

601

601

700

701

201

5

Th

36

541

937

138

336

239

139

438

836

636

638

138

138

137

536

7135

5123

6130

536

537

237

3

U12

913

314

014

013

613

713

412

812

313

413

814

814

713

513

916

215

615

813

312

513

8

AC

NK

a09

309

209

309

109

409

209

110

410

409

509

509

309

309

308

909

509

509

609

410

409

4

Mg

48

48

48

48

47

47

47

48

48

48

48

48

48

47

47

48

48

48

48

48

48

RE

E553

610

544

555

538

567

570

553

517

551

561

550

553

551

548

1463

1349

1390

541

536

571

(La Y

b) C

hb

126

139

130

138

130

114

113

131

134

121

126

128

131

107

108

372

353

379

129

136

123

(Gd Yb) C

hb

36

937

337

838

837

932

332

035

136

235

735

236

837

030

130

853

051

453

936

635

935

2

Eu

10

910

711

611

511

311

310

611

311

411

111

611

211

211

411

708

508

908

611

511

411

2

Ce

09

509

309

409

509

409

509

309

509

309

309

209

509

309

309

409

609

609

609

509

409

4

Zr

Sm

30

31

35

35

33

35

33

32

34

30

34

41

36

38

32

19

22

24

34

33

32

Zr

Yb

110

114

134

140

126

110

106

116

126

106

120

146

137

113

94

105

121

133

124

120

117

NbY

b64

263

667

670

568

957

155

564

771

462

362

764

965

752

654

259

960

261

566

769

062

3

ThN

b09

310

409

409

709

109

810

010

109

409

209

609

709

809

709

534

532

134

509

309

609

3

Zr

Nb

17

18

20

20

18

19

19

18

18

17

19

23

21

21

17

17

20

22

19

17

19

ThL

a03

203

203

303

303

303

303

303

403

403

203

203

303

303

203

203

803

703

803

203

303

2

Sr

Y379

377

401

405

393

350

345

343

367

351

348

360

364

336

330

333

335

342

389

351

344

Ce

Pb

24

26

20

21

19

24

24

22

19

22

20

22

19

21

20

68

61

63

20

22

23

eNd

c-

18

-20

-21

-19

-23

-18

-14

-20

Init

ial

Srd

07

067

07

066

07

067

07

066

07

067

07

067

07

065

07

066

aA

lum

inum

satu

rati

on

index

=m

ola

rA

l 2O

3(

K2O

+N

a 2O

+C

aO)

bC

hondri

tedat

afr

om

Tay

lor

and

McL

ennan

1985

ck S

m=

65

49

10

-1

2yea

r-1

dk R

b=

14

29

10

-1

1yea

r-1

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1503

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Plagioclase phenocrysts record the compositional varia-

tion of the magma during a later stage of its crystallization

The reversed zoning in plagioclase (Table 3) is commonly

considered to reflect magma mixing with a more primitive

source (Hibbard 1995 Kawabata and Shuto 2005) Because

dehydration melting of lower crust requires relatively high

temperature ([850C) (eg Rushmer 1991 Sen and Dunn

1994 Skjerlie and Johnston 1996) a mantle-derived

magma must have been involved to fuse the crustal mate-

rial The high Al2O3 and mostly positive Eu anomalies of

the tonalite porphyry suggest retarded crystallization of

plagioclase which together with the abundant hornblende

in the rock indicates an H2O-rich magma (Muntener et al

2001 Grove et al 2002) Due to the scarcity of water in the

lower crust partial melting of lower crust cannot generate

an H2O-rich melt (Patino Douce 1999) therefore the high

H2O contents in the garnet-bearing tonalitic porphyry most

likely came from mantle-derived magma In the Triassic

the Paleo-Tethys was being consumed along the south

margin of the Kunlun arc (Yin and Harrison 2000) which

resulted in widespread arc magmatism in East Kunlun It is

therefore likely that mantle-derived arc magma was un-

derplated along the crust-mantle zone and mixed with a

felsic crustal melt a scenario consistent with experimental

work conducted by McCarthy and Patino Douce (1997)

In terms of tectonic setting Paleo-Tethys was still being

consumed along the Kunlun in the late Triassic (Sengor

1987 Yin and Harrison 2000) and Triassic limestone

within flysch sediments in the Kunlun range suggest a

marine-phase sedimentary environment that probably

05 10 15 2004

08

12

16

20

24

28

Peralkaline

Metaluminous Peraluminous

ACNK

AN

K

Fig 7 ANK versus ACNK diagram for the granitoids from East

Kunlun (after Maniar and Piccoli 1989)

Gra

nodi

orite

An

Ab Or

Tona

lite

Trondhjemite Granite

Fig 8 An-Ab-Or CIPW-normative ternary diagram for the granitoids

from East Kunlun (after Barker 1979)

Sa

mp

leC

ho

nd

rite

La

Ce

Pr

Nd Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

1000

100

10

1

01

1

1

10

100

1000

Cs

Rb

Ba

Th

U

K

Nb

Ta

La

Ce

Pb

Pr

Sr

P

Nd

Zr

Hf

Sm

Eu

Ti

Gd

Tb

Dy

Y

Ho

Er

Tm

Yb

Lu

Sa

mp

lep

rim

itiv

em

an

tle

(a)

(b)

Fig 9 Trace element characteristics of the garnet-bearing tonalite

porphyry (a) Chondrite-normalized rare earth element patterns for

representative samples of the tonalite porphyry East Kunlun (chon-

drite values from Taylor and McLennan 1985) b Primitive mantle-

normalized trace element spider diagrams for representative samples

of the tonalite porphyry East Kunlun (Primitive mantle data from Sun

and McDonough 1989)

1504 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

reflected a normal crustal thickness (35 km) for the East

Kunlun at this time Therefore although there is no direct

evidence of restite or xenoliths indicating generation at the

crust-mantle boundary the high pressure of the garnet

phenocrysts may indicate that they were formed at or just

above the crust-mantle transition zone The garnet-bearing

tonalite porphyry from East Kunlun therefore provides a

paradigm of MASH zone magmatic processes

Implications for genesis of adakitic rocks

Adakites are sodic rocks characterized by low HREE but

elevated Sr and Al2O3 contents and high SrY and LaYb

ratios which are ascribed to hydrous partial melting of a

subducted oceanic slab or over-thickened lower crust in the

garnet stability field (Defant and Drummond 1990

Atherton and Petford 1993 Martin et al 2005) Because of

the broad similarity to Archean tonalitendashtrondhjemitendash

granodiorite gneisses (TTG) and their potential role in

metallogenesis (Martin 1999 Smithies 2000 Condie 2005

Richards and Kerrich 2007) adakitic rocks have received

much attention Although the petrogenetic regime has been

supported by much experimental work (eg Rapp et al

1991 Rushmer 1991 Sen and Dunn 1994) most thermal

models require subduction of young and therefore warm

oceanic lithosphere to reach the temperature of the wet

basaltic solidus at depths of 90ndash120 km (eg Peacock

et al 1994) However such a prediction is contrary to

many modern cases where adakites occur in association

with old and thus cold subducting slabs (Macpherson

et al 2006) To deal with such a paradox some workers

have proposed that fractional crystallization of H2O-rich

arc magmas under high pressure conditions would give rise

to adakitic signatures in arc magmas (eg Castillo et al

1999 Kleinhanns et al 2003 Macpherson et al 2006 Eiler

et al 2007 Richards and Kerrich 2007 Roderıguez et al

2007) However both adakitic and non-adakitic rocks may

come from the mantle and experience high pressure frac-

tionation in the MASH zone therefore there must be other

key factors affecting the composition of arc magmas that

prevent some from becoming adakitic rocks

It is proposed that the garnet-bearing tonalite porphyry

from East Kunlun experienced strong fractional crystalli-

zation and magma mixing in the garnet stability field

therefore providing an opportunity to test the various

+10

+5

0

-5

-10

-15

-200690 0700 0710 0720 0730 0740 0750 0760

Basement of the East Kunlun

Arc magmas of the East Kunlun

Mantle array

87 87Sr Sri

εNd

T

Mixing trend

Garnet-bearing tonalite

Fig 10 Correlation diagram between 87Sr86Sri and eNdT for garnet-

bearing tonalitic porphyry (Data for the basement of East Kunlun

from Yu et al 2005 data for the arc magmas of East Kunlun from

Chen et al 2005 and Liu et al 2003)

Hig

h p

ress

ure

ga

rne

ts f

rom

MI

-typ

e m

ag

ma

s

Low pressure garnets from MI-type magmas

Garnets from S-type granite

Garnets from metapelites

0 2 4 6 80

2

4

6

8

10

MnO (wt)

Ca

O (

wt

)

Garnets from tonalitic porphyry of the East Kunlun

Garnets from xenoliths in Cenozoic volcanic rocks of the Hoh Xil northern Tibet

Garnet websteritesGarnet clinopyroxenites

Garnet peridotites

Garnet in eclogitic restite (2-3 Gpa) Garnet in this study

SNB cumulates of high MgO primitive magma

SNB cumulates of low MgO basaltic andesite

Ca

O (

wt

)

MgO (wt)

2 4 6 8 10 12 14 16 18 204

5

7

9

11

12

6

8

10

(a)

(b)

Fig 11 Garnet comparisons in this study compared to other settings

a CaO versus MnO correlation diagram (after Harangi et al 2001)

Data for Cenozoic volcanic rocks of the Hoh Xil northern Tibet from

Deng (1998) b CaO versus MgO correlation diagram (after Lee et al

2006) SNB Sierra Nevada Batholith data for garnet in eclogite

restite from Pertermann and Hirschmann (2003)

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1505

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

hypotheses It contains relatively high Al2O3 ([17 wt)

mostly positive Eu anomalies (EuEu [ 11) and high Zr

Sm ratios ([30) The low HREE (Yb 08 ppm) and high

SrY ([33) ratios are significantly differ from those of

normal island arc magmas In the Y versus SrY correlation

diagram all tonalite rock samples plot in the adakite field

(Fig 12) These features suggest that fractional crystalli-

zation of H2O-rich arc magma in the garnet stability field

can effectively scavenge HREE and generate Al-rich melt

However there are some differences between the tonalite

porphyry and adakitic rocks The porphyry has moderate Sr

(260 ppm) and LaYb ratios (16ndash21) which are lower

than those of adakite (Sr [ 400 ppm LaYb C 20) and

TTG (Sr [ 500 ppm LaYb generally[30) (Barker 1979

Richards and Kerrich 2007) Because plagioclase was

suppressed by the high water content in the magma

removal of Sr by fractionation of plagioclase can be

excluded Instead crystallization of apatite at an early stage

of magmatic evolution may be responsible for the relatively

low Sr contents and LaYb ratios in the residual melt

Apatite commonly occurs in mantle and crustal environ-

ments and possesses high partition coefficients for both Sr

and LREE (Chazot et al 1996 Bea and Montero 1999) For

example apatite may concentrate LREE up to 200 times

compared to clinopyroxene and although slightly lower

than that of plagioclase (up to 158) (Ren et al 2003) its

partition coefficient for Sr (DSr = 51ndash82) is still high

enough to affect magma composition (Pla Cid et al 2007

Prowatke and Klemme 2006) Petrographic observation of

the tonalite porphyry reveals that apatite is mainly enclosed

in the garnet phenocrysts which along with the depletion in

P in the spider diagram (Fig 9b) implies removal of apatite

as an early phase during evolution of the magma in the

MASH zone Because plagioclase was suppressed by a high

water content in the early stage of magmatic evolution

Sr concentration in the residual melt would be mainly

controlled by apatite Similarly moderate Sr contents

(400 ppm) and apatite inclusions in garnet phenocrysts

appear to be common features of garnet-bearing interme-

diate rocks worldwide (eg Day et al 1992 Harangi et al

2001 Bach et al 2003 Kawabata and Shuto 2005)

implying that apatite has played a crucial role in buffering

the Sr level in the magmas It is therefore suggested that

mantle-derived arc magmas cannot evolve into adakites

when extensive crystallization of apatite has already

occurred in the MASH zone

Conclusions

The garnet-bearing tonalitic porphyry from the East

Kunlun formed in the late Triassic (213 plusmn 3 Ma) related

to consumption of the Paleo-Tethys ocean It contains

phenocrysts of garnet hornblende plagioclase and quartz

that crystallized in an H2O-rich magma The relatively low

MgO contents of garnet and ilmenite and high d18O value

of garnet separates suggest these early phases were formed

in a felsic melt Pressure estimates for hornblende enclos-

ing garnet provide a minimum constraint on the formation

depth of the garnet phenocrysts (8ndash10 kb) suggesting they

were produced at or just above the crust-mantle transition

zone (MASH zone) NdndashSr isotope compositions indicate

involvement of both crust- and mantle-derived magma

and reversed compositional zoning of plagioclase implies

magma mixing Although the garnet-bearing tonalitic

porphyry resembles an adakitic rock in many respects the

relatively low Sr content and LaYb ratio makes it distinct

from lsquotruersquo adakites It is proposed that early crystallization

of apatite may effectively remove Sr and LREE from the

magma thus providing a mechanism whereby some arc

magmas do not evolve into adakite

Acknowledgments We thank Qian Mao Yuguang Ma and

Ms Ying Liu for their help with the analytical work The authors

benefited from discussions with Drs Guochun Zhao Hongfu Zhang

Nengsong Chen Chunming Wu and Petra Bach We also appreciate

the constructive and encouraging comments of reviewers Ali Polat

and Fu-yuan Wu which helped us to improve and clarify the man-

uscript This work was supported by research grants from the National

Basic Research Program of China (973 Program) 2007CB411308

NSFC Projects 40421303 40572043 40725009 and Hong Kong RGC

(HKU 704004)

References

Ague JJ (1997) Thermodynamic calculation of emplacement pres-

sures for batholithic rocks California implications for the

aluminum-in-hornblende barometer Geology 25563ndash566

doi1011300091-7613(1997)0250563TCOEPF[23CO2

0 10 20 30 40 500

10

20

30

40

50

60

Y (ppm)

SrY

Normal subduction-related volcanicrocks (andesite-dacite-rhyolite)

Adakite

Fig 12 SrY versus Y correlation diagram for discrimination of

adakites (after Defant and Drummond 1990)

1506 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Anderson JL (1996) Status of thermobarometry in granitic batholith

Trans R Soc Edinb Earth Sci 87125ndash138

Anderson DL (2006) Speculations on the nature and cause of mantle

heterogeneity Tectonophysics 4167ndash22 doi101016jtecto

200507011

Annen C Blundy JD Sparks RSJ (2006) The genesis of intermediate

and silicic magmas in deep crustal hot zones J Petrol 47505ndash

539 doi101093petrologyegi084

Atherton MP Petford N (1993) Generation of sodium-rich magmas

from newly underplated basaltic crust Nature 362144ndash146 doi

101038362144a0

Bach P Malpas J Smith IEM (2003) A petrogenetic link between

high-MgO and garnet-bearing andesitesmdasha Setouchi analogue

from the Eastern volcanic belt in Northland New Zealand

Geochim Cosmochim Acta 67A30ndashA30 doi101016S0016-

7037(03)00304-1 Suppl

Bandres A Eguıluz L Pin C Paquette JL Ordonez B Le Fevre B

et al (2004) The northern Ossa-Morena Cadomian batholith

(Iberian Massif) magmatic arc origin and early evolution Int J

Earth Sci 93860ndash885 doi101007s00531-004-0423-6

Barker F (1979) Trondhjemite definition environment and hypoth-

eses of origin In Barker F (ed) Trondhjemite Dacite and related

rocks Elsevier Amsterdam pp 1ndash12

Bea F Montero P (1999) Behavior of accessory phases and

redistribution of Zr REE Y Th and U during metamorphism

and partial melting of metapelites in the lower crust An example

from the Kinzigite Formation of Ivrea-Verbano NW Italy

Geochim Cosmochim Acta 631133ndash1153 doi101016S0016-

7037(98)00292-0

Behn MD Kelemen PB (2006) Stability of arc lower crust Insights

from the Talkeetna arc section south central Alaska and the

seismic structure of modern arcs J Geophys Res Solid Earth

111B11207 doi1010292006JB004327

Berger J Femenias O Coussaert N Mercier JCC Demaiffe D (2007)

Cumulating processes at the crust-mantle transition zone inferred

from Permian mafic-ultramafic xenoliths (Puy Beaunit France)

Contrib Mineral Petrol 153557ndash575 doi101007s00410-

006-0162-8

Bian QT Li DH Pospelov I Yin LM Li HS Zhao DS et al (2004)

Age geochemistry and tectonic setting of Buqingshan ophiolites

North Qinghai-Tibet Plateau China J Asian Earth Sci 23577ndash

596 doi101016jjseaes200309003

Birch WD Gleadow JW (1974) The genesis of garnet and Cordierite

in acid volcanic rocks evidence from the Cerberean Cauldron

Central Victoria Australia Contrib Mineral Petrol 451ndash13 doi

101007BF00371133

Bryant JA Yogodzinski GM Churikova TG (2007) Melt-mantle

interactions beneath the Kamchatka arc evidence from ultra-

mafic xenoliths from Shiveluch volcano Geochem Geophys

Geosyst 8Q04007 doi1010292006GC001443

Castillo PR Janney PE Solidum RU (1999) Petrology and geochem-

istry of Camiguin Island southern Philippines insights to the

source of adakites and other lavas in a complex arc setting

Contrib Mineral Petrol 13433ndash51 doi101007s004100050467

Chang C Chen N Coward MP Deng W Dewey JF Gansser A et al

(1986) Preliminary conclusions of the Royal society and

Academia Sinica 1985 geotraverse of Tibet Nature 323501ndash

507 doi101038323501a0

Chazot G Menzies MA Harte B (1996) Determination of partition

coefficients between apatite clinopyroxene amphibole and melt

in natural spinel lherzolites from Yemen implications for wet

melting of the lithospheric mantle Geochim Cosmochim Acta

60423ndash437 doi1010160016-7037(95)00412-2

Chen NS Wang XY Zhang HF Sun M Li XY Chen Q (2005)

Geochemistry and NdndashSrndashPb isotopic compositions of granitoids

from Qaidam and Oulongbuluke micro-blocks NW China

constraints on basement nature and tectonic affinity Earth Sci J

China Univ Geosci 327ndash21

Chen NS Li XY Zhang KX Wang GC Zhu YH Hou GJ et al (2006)

Lithological characteristics of the Baishahe formation to the

South of Xiangride Town Eastern Kunlun Mountains and its age

constrained from Zircon PbndashPb dating Geol Sci Technol Inf

251ndash7

CIGMR (Chengdu Institute of Geology and Mineral Resources)

(1988) Notes for the geological map of Tibet-Qinghai Plateau

and adjacent areas (11500000) Geological Publication House

Beijing pp 1ndash60

Compston W Williams IS Meyer C (1984) UndashPb geochronology of

zircons from Lunar breccia 73217 using a sensitive high

massresolution ion microprobe J Geophys Res 89B525ndash534

doi101029JB089iS02p0B525

Condie KC (2005) TTGs and adakites are they both slab melts

Lithos 8033ndash44 doi101016jlithos200311001

Conrad WK Nicholls LA Wall VJ (1988) Water-saturated and

unsaturated melting of metaluminous and peraluminous crustal

compositions at 10 kb evidence for the origin of silicic magmas

in the Taupo Volcanic Zone New Zealand and other occurrence

J Petrol 29765ndash803

Cowgill E Yin A Harrison TM Wang X-F (2003) Reconstruction of

the Altyn Tagh fault based on UndashPb geochronology role of back

thrusts mantle sutures and heterogeneous crustal strength in

forming the Tibetan Plateau J Geophys Res 1082346 doi

1010292002JB002080

Day RA Green TH Smith IEM (1992) The Origin and Significence

of garnet phenocrysts and garnet-bearing xenoliths in Miocene

calc-alkaline volcanics from Northland New Zealand J Petrol

33125ndash161

Defant MJ Drummond MS (1990) Derivation of some modern arc

magmas by melting of young subducted lithosphere Nature

347662ndash665 doi101038347662a0

Deng WM (1998) Cenozoic intraplate volcanic rocks in the northern

Qinghai-Xizang Plateau (in Chinese with English abstract)

Geological Publishing House Beijing pp 1ndash180

Dewey JF Shackleton RS Chang CF Sun YY (1988) The tectonic

evolution of the Tibetan Plateau Philos Trans R Soc Lond

327379ndash413 doi101098rsta19880135

Dufek J Bergantz GW (2005) Lower crustal magma genesis and

preservation a stochastic framework for the evaluation of basalt-

crust interaction J Petrol 462167ndash2195 doi101093petrology

egi049

Eiler JM Schiano P Valley JW Kita NT Stolper EM (2007)

Oxygen-isotope and trace element constraints on the origins of

silica-rich melts in the subarc mantle Geochem Geophys

Geosyst 8Q09012ndash00 doi1010292006GC001503

Foley S Tiepolo M Vannucci R (2002) Growth of early continental

crust controlled by melting of amphibolite in subduction zones

Nature 417837ndash840 doi101038nature00799

Franchini M Lopez-Escobar L Schalamuk IBA Meinert L (2003)

Magmatic characteristics of the Paleocene Cerro Nevazon region

and other Late Cretaceous to Early Tertiary calc-alkaline

subvolcanic to plutonic units in the Neuquen Andes Argentina

J S Am Earth Sci 16399ndash421 doi101016S0895-9811(03)

00103-2

Garrido CJ Bodinier J-L Burg J-P Zeilinger G Hussain SS

Dawwood H et al (2006) Petrogenesis of mafic garnet granulite

in the lower crust of the Kohistan Paleo-arc complex (northern

Pakistan) implications for Intra-crustal differentiation of island

arcs and generation of continental crust J Petrol 471873ndash1914

doi101093petrologyegl030

Gehrels GE Yin A Wang X (2003b) Magmatic history of the

northeastern Tibetan Plateau J Geophys Res 108(B9)2423 doi

1010292002JB001876

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1507

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Gehrels GE Yin A Wang X-F (2003a) Detrital zircon geochronology of

the northeastern Tibetan plateau Geol Soc Am Bull 115

881ndash896 doi1011300016-7606(2003)1150881DGOTNT[20CO2

Gilbert JS Rogers NW (1989) The significance of garnet in the

Permo-carboniferous volcanic rocks of the Pyrenees J Geol Soc

London 146477ndash490 doi101144gsjgs14630477

Green TH (1977) Garnet in Silicic liquids and its possible use as a

PndashT indicator Contrib Mineral Petrol 6559ndash67 doi101007

BF00373571

Green TH (1992) Experimental phase equilibrium stdies of garnet-

bearing I-type volcanics and high-level intrusives from North-

land New Zealand Trans R Soc Edinb Earth Sci 83429ndash438

Greene AR DeBari SM Kelemen PB Blusztajn J Clift PD (2006) A

detailed geochemical study of island arc crust the Talkeetna arc

section SouthndashCentral Alaska J Petrol 471051ndash1093 doi

101093petrologyegl002

Grove TL Parman SW Bowring SA Price RC Baker MB (2002)

The role of H2O-rich fluid component in the generation of

primitive basaltic andesites and andesites from the Mt Shasta

region N California Contrib Mineral Petrol 251229ndash250

Harangi SZ Downes H Kosa L Szabo CS Thirlwall MF Mason

PRD et al (2001) Almandine garnet in calc-alkaline volcanic

rocks of the Northern Pannonian Basin (Eastern-Central

Europe) geochemistry petrogenesis and geodynamic implica-

tions J Petrol 421813ndash1843 doi101093petrology4210

1813

Hawthorne FC (1981) The crystal chemistry of the amphiboles In

Veblen DR (ed) Amphiboles and other hydrous pyribolesmdash

mineralogy Mineralogical Society of America Reviews in

Mineralogy 9 m pp 1ndash140

Hermann J Muntener O Trommsdorff V Hansmann W (1997) Fossil

crust-to-mantle transition Val Malenco (Italian Alps) J Geophys

Res 10220123ndash20132 doi10102997JB01510

Hibbard MJ (1995) Petrography to petrogenesis Prentice Hall

Englewood Cliffs pp 1ndash586

Hildreth W Moorbath S (1988) Crustal contributions to arc magma-

tism in the Andes of central Chile Contrib Mineral Petrol

98455ndash489 doi101007BF00372365

Holdaway MJ Mukhopadhyay B Dyar MD Guidotti CV Dutrow BL

(1997) Garnet-biotite geothermometry revised new Margules

parameters and a natural specimen data set from Maine Am

Mineral 82582ndash595

Holland T Blundy J (1994) Nonideal interactions in clacic amphi-

boles and their bearing on amphibole-plagioclase thermometry

Contrib Mineral Petrol 116433ndash447 doi101007BF00310910

Jiang CF (1992) Opening-closing evolution of the Kunlun Mountains

In Jiang C Yang J Feng B Zhu Z Zhao M Chai Y Shi X

Wang H Hu J (eds) Opening closing tectonics of Kunlun Shan

Geological Memoirs Series 5 Number 12 pp 205ndash217

Geological Publishing House Beijing China

Kawabata H Shuto K (2005) Magma mixing recorded in intermediate

rocks associated with high-Mg andesites from the Setouchi

volcanic belt Japan implications for Archean TTG formation J

Volcanol Geotherm Res 140241ndash271 doi101016jjvolgeores

200408013

Kawabata H Takafuji N (2005) Origin of garnet crystals in calc-

alkaline volcanic rocks from the Setouchi volcanic belt Japan

Mineral Mag 69951ndash971 doi1011800026461056960301

Kleinhanns IC Kramers JD Kamber BS (2003) Importance of water

for Archaean granitoid petrology a comparative study of TTG

and potassic granitoids from Barberton Mountain Land South

Africa Contrib Mineral Petrol 145377ndash389 doi

101007s00410-003-0459-9

Lan CL Wu J Li JL Yu LJ Li HS Wang YT (2000) Discovery of

early Carboniferous radiolarians in Muztag ophiolitic melange

East Kunlun Xinjiang (in Chinese with English abstract) Chin J

Geol 37104ndash106 in Chinese with English abstract

Lee CTA Cheng X Horodyskyj U (2006) The development and

refinement of continental arcs by primary basaltic magmatism

garnet pyroxenite accumulation basaltic recharge and delami-

nation insights from the Sierra Nevada California Contrib

Mineral Petrol 151222ndash242 doi101007s00410-005-0056-1

Li XH (1997) Geochemistry of the Longsheng Ophiolite from the

southern margin of Yangtze Craton SE China Geochem J

31323ndash337

Li YJ Jia CZ Hao J Wang ZM Zheng DM Peng GX (2000)

Radiolarian fauna found from Tieshidas Group in East Kunlun

Chin Sci Bull 45943ndash946 doi101007BF02887089

Liu CD Mo XX Luo ZH Yu XH Chen HW Li SW et al (2003) Pbndash

SrndashNdndashO isotope characteristics of granitoids in East Kunlun

Orogenic Belt (in Chinese with English abstract) Acta Geosci

Sin 24584ndash588

Liu JB Ye K (2004) Transformation of garnet epidote amphibolite to

eclogite western Dabie Mountains China J Metamorph Geol

22383ndash394 doi101111j1525-1314200400520x

Liu YJ Genser J Neubauer F Jin W Ge XH Handler R et al (2005)

Ar-40Ar-39 mineral ages from basement rocks in the Eastern

Kunlun Mountains NW China and their tectonic implications

Tectonophysics 398199ndash224 doi101016jtecto200502007

Ludwig KR (2001) Users Manual for a geochronological toolkit for

Microsoft Excel Berkeley Geochronology Center Spec Publ

1a59

Luo ZH Deng JF Cao YQ Guo ZF Mo XX (1999) On Late

Paleozoic-Early Mesozoic volcanism and regional tectonic

Evolution of Eastern Kunlun Qinghai Province (in Chinese

with English abstract) Geoscience 1351ndash56

Luo ZH Ke S Cao YQ Deng JF Zhan HW (2002) Late Indosinian

mantle-derived magmatism in the East Kunlun (in Chinese with

English abstract) Geol Bull China 21292ndash297

Macpherson CG Dreher ST Thirlwall MF (2006) Adakites without

slab-melting high pressure differentiation of island arc magma

Mindanao the Philippines Earth Planet Sci Lett 243581ndash593

doi101016jepsl200512034

Maniar PD Piccoli PM (1989) Tectonic discrimination of granitoids

Geol Soc Am Bull 101635ndash643 doi1011300016-7606(1989)

1010635TDOG[23CO2

Martin H (1999) Adakitic magmas modern analogues of Archaean

granitoids Lithos 46411ndash429 doi101016S0024-4937(98)

00076-0

Martin H Smithies RH Rapp R Moyen J-F Champion D (2005) An

overview of adakite tonalite-trondhjemite-granodiorite (TTG)

Lithos 791ndash24 doi101016jlithos200404048

Mason DR McDonald JA (1978) Intrusive rocks and porphyry copper

occurrence of the Papua New Guinea-Solomon Island region a

reconnaissance study Econ Geol 73857ndash877

Matte P Tapponnier P Arnaud N Bourjot L Avouac JP Vidal P et al

(1996) Tectonics of Western Tibet between the Tarim and the

Indus Earth Planet Sci Lett 142311ndash330 doi1010160012-

821X(96)00086-6

McCarthy TC Patino Douce AE (1997) Experimental evidence for

high-temperature felsic melts formed during basaltic intrusion of

the deep crust Geology 25463ndash466 doi1011300091-

7613(1997)0250463EEFHTF[23CO2

Muntener O Kelemen PB Grove TL (2001) The role of H2O during

crystallization of primitive arc magmas under uppermost mantle

conditions and genesis of igneous pyroxenites an experimental

study Contrib Mineral Petrol 141643ndash658

Nitoi E Munteanu M Marincea S Paraschivoiu V (2002) Magma-

enclave interactions in the East Carpathian subvolcanic zone

Romania petrogenetic implications J Volcanol Geotherm Res

118229ndash259 doi101016S0377-0273(02)00258-5

1508 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Pan YS Zhou WM Xu RH Wang DA Zhang YQ Xie YW et al

(1996) Geological characteristics and evolution of the Kunlun

mountains region during the early Paleozoic Sci China Ser D

39337ndash347

Pan GT Ding J Wang LQ Zhuang YX Wang QH Zhai YG et al

(2002) Important new progress of regional geological investiga-

tion in the Tibetan Plateau Geol Bull China 21787ndash793 in

Chinese with English abstract

Patino Douce AE (1999) What do experiments tell us about the

relative contributions of crust and mantle to the origin of granitic

magmas In Carstro A Fernandez C Vigneresse JL (eds)

Understanding granites integrating new and classic techniques

vol 168 Geological Society London Special Publications

pp 55ndash75

Peacock SM Rushmer T Thompson AB (1994) Partial melting of

subducting oceanic crust Earth Planet Sci Lett 121224ndash227

doi1010160012-821X(94)90042-6

Pertermann M Hirschmann MM (2003) Anhydrous partial melting

experiments on MORB-like eclogite phase relations phase

compositions and mineralmdashmelt partitioning of major elements

at 2ndash3 GPa J Petrol 442173ndash2201 doi101093petrology

egg074

Pla Cid J Nardi LVS Campos CS Gisbert PE Merlet C Conceicao

H et al (2007) La Ce Nd and Sr behavior in minette magmas

during crystallization of apatite-clinopyroxene-mica paragenesis

at upper-mantle conditions Eur J Mineral 1939ndash50 doi

1011270935-122120070019-0039

Popov VS Boronikhin VA Gmyra VG Semina VA (1982) Garnets

from the andesite-dacites of the Kelrsquosk volcanic highlands

(Greater Caucasua) Int Geol Rev 24577ndash584

Prowatke S Klemme S (2006) Trace element partitioning between

apatite and silicate melts Geochim Cosmochim Acta 704513ndash

4527 doi101016jgca200606162

Qian ZZ Hu ZG Li HM (2000) Petrology and tectonic environment

of Indosinian Hypabassal rock in the middle belt of East Kunlun

Mountains J Mineral Petrol 1814ndash18

Rapp RP Watson EB Miller CF (1991) Partial melting of

amphiboliteeclogite and the origin of Archean trondhjemites

and tonalites Precambrain Res 511ndash25

Rapp RP Shimizu N Norman MD Applegate GS (1999) Reaction

between slab-derived melts and peridotite in the mantle wedge

experimental constraints at 38 GPa Chem Geol 160335ndash356

doi101016S0009-2541(99)00106-0

Ren MH Parker DF White JC (2003) Partitioning of Sr Ba Rb Y

and LREE between plagioclase and peraluminous silicic magma

Am Mineral 881091ndash1103

Richards J Kerrich R (2007) Adakite-like rocks their diverse origins

and questionable role in metallogenesis Econ Geol 102537ndash

576 doi102113gsecongeo1024537

Roderıguez C Selles D Dungan M Langmuir C Leeman W (2007)

Adakitic dacites formed by intracrustal crystal fractionation of

water-rich parent magmas at Nevado de Longavı| Volcano

(362S Andean SouthernVolcanic Zone Central Chile) J Petrol

482033ndash2061 doi101093petrologyegm049

Rudnick RL Gao S (2004) Composition of the continental crust In

Holland HD Turekian KK (eds) Treatise on geochemistry vol 3

The Crust Elsevier Amsterdam Pergamon New york pp 1ndash64

Rushmer T (1991) Partial melting of two amphibolites contrasting

experimental results under fluid-absent condition Contrib Min-

eral Petrol 10741ndash59 doi101007BF00311184

Schmidt MW (1992) Amphibole composition in tonalite as a function

of pressuremdashan experimental calibration of the Al-in-hornblende

barometer Contrib Mineral Petrol 110304ndash310 doi101007

BF00310745

Schulze DJ Valley JR Bell DR Spicuzza MJ (2001) Oxygen isotope

variations in Cr-poor megacrysts from kimberlite Geochim

Cosmochim Acta 654375ndash4384 doi101016S0016-7037(01)

00734-7

Schwab M Ratschbacher L Siebel W McWilliams M Minaev V

Lutkov V et al (2004) Assembly of the Pamirs age and origin of

magmatic belts from the southern Tien Shan to the southern

Pamirs and their relation to Tibet Tectonics 23TC4002 doi

1010292003TC001583

Sen C Dunn T (1994) Dehydration melting of a basaltic composition

amphibolite at 15 and 20 GPa implication for the origin of

adakites Contrib Mineral Petrol 117394ndash409 doi101007

BF00307273

Sengor AMC (1987) Tectonics of the Tethysides Orogenic Collage

Development in a Collisional Setting Annu Rev Earth Planet Sci

15213ndash244 doi101146annurevea15050187001241

Skjerlie KP Johnston AD (1996) Vapour-absent melting from 10 to

20 kbar of crustal rocks that contain multiple hydrous phases

implications for anatexis in the deep to very deep continental

crust and active continental margins J Petrol 37661ndash691 doi

101093petrology373661

Smithies RH (2000) The Archaean tonalitendashtrondhjemitendashgranodio-

rite (TTG) series is not an analogue of Cenozoic adakites Earth

Planet Sci Lett 182115ndash125 doi101016S0012-821X(00)

00236-3Sobel E Arnaud N (1999) A possible middle Paleozoic suture in the

Altyn Tagh NW China Tectonics 1864ndash74 doi101029

1998TC900023

Steiger RH Jager E (1977) Subcommission on geochronology

convention on the use of decay constants in geo- and cosmo-

chronology Earth Planet Sci Lett 36359ndash362 doi101016

0012-821X(77)90060-7

Stern RJ (2002) Subduction zones Rev Geophys 401012 doi

1010292001RG000108

Sun SS McDonough WF (1989) Chemical and isotopic systematics

of oceanic basalts implications for mantle composition and

processes In Saunders AD Norry MJ (eds) Magmatism in the

Ocean Basin Geological Society Special Publication vol 42

Blackwell Oxford pp 313ndash346

Tassara A (2006) Factors controlling the crustal density structure

underneath active continental margins with implications for

their evolution Geochem Geophys Geosyst 7Q01001 doi

1010292005GC001040

Tatsumi Y Eggins S (1995) Subduction Zone Magmatism Black-

well Oxford pp 1ndash210

Taylor HP Jr Epstein S (1962) Relationships between 18O16O ratios

in coexisting minerals of igneous and metamorphic rocks Part I

Principles and experimental results Geol Soc Am Bull 73461ndash

480 doi1011300016-7606(1962)73[461RBORIC]20CO2

Taylor SR McLennan SM (1985) The continental crust its compo-

sition and evolution Blackwell Oxford

van Sestrenen W Blundy JD Wood BJ (2001) High field strength

elementrare element fractionation during partial melting in the

presence of garnet implications for identification of mantle

heterogeneities Geochem Geophys Geosyst 22000GC000133

Wang GC Wang QH Jian P Zhu YH (2004) Zircon SHRIM P ages

of Precambrian metamorphic basement rocks and their tectonic

significance in the eastern Kunlun Mountains Qinghai Province

China Earth Sci Front 11481ndash490

Wang GC Zhang TP Liang B Chen NS Zhu YH Zhu J Bai YS (1999)

Composite ophiolitic melange zone in central part of eastern

section of Eastern Kunlun Orogenic Zone and geological signif-

icance of lsquolsquoFault belt in Central part of Eastern of Eastern Kunlun

Orogenic Zonersquorsquo Earth Sci J China Univ Geosci 24129ndash133

Watson EB Harrison TM (1983) Zircon saturation revisited

temperature and composition effects in a variety of crustal

magma types Earth Planet Sci Lett 64295ndash304 doi101016

0012-821X(83)90211-X

Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510 1509

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123

Williams IS (1998) UndashThndashPb geochronology by ion microprobe In

McKibben MA Shanks WC Ridley WI (eds) Applications of

microanalytical techniques to understanding mineralizing pro-

cesses Rev Econ Geol 71ndash35

Wu J Lan CL Li JL (2005) Geochemical characteristics and tectonic

setting of volcanic rocks in the Muztag ophiolitic melange East

Kunlun Mountains Xinjiang China (in Chinese with English

abstract) Geol Bull China 241157ndash1161

Xiao WJ Windley BF Chen HL Zhang GC Li JL (2002a)

Carboniferous-Triassic subduction and accretion in the western

Kunlun China implications for the collisional and accretionary

tectonics of the northern Tibetan plateau Geology 30295ndash298

doi1011300091-7613(2002)0300295CTSAAI[20CO2

Xiao WJ Windley BF Hao J Li JL (2002b) Arc-ophiolite obduction

in the Western Kunlun Range (China) implications for the

Palaeozoic evolution of central Asia J Geol Soc Lond 159517ndash

528

Yang JS Wu CL Shi RD Li HB Xu ZQ Meng FC (2002) Miocene

and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area

north of the Qinghai-Tibet Plateau Acta Petrol Sin 18161ndash176

Yang JZ Shen YC Li GM Liu TB Zeng QD (1999) Basic features

and its tectonic significance of Yaziquan ophiolite belt in eastern

Kunlun orogenic belt Xinjiang (in Chinese with English

abstract Geoscience 13309ndash314

Yin A Harrison TM (2000) Geologic evolution of the Himalayanndash

Tibetan Orogen Annu Rev Earth Planet Sci 28211ndash280 doi

101146annurevearth281211

Yin HF Zhang KX (1997) Characteristics of the eastern Kunlun

orogenic Belt Earth Sci J China Univ Geosci 22339ndash342

Yu N Jin W Ge WC Long XP (2005) Geochemical study on

Peraluminous granite from Jinshuikou in East Kunlun (in

Chinese with English abstract Glob Geol 24123ndash128

Yuan C Sun M Zhou MF Xiao WJ Zhou H (2005) Geochemistry

and petrogenesis of the Yishak volcanic sequence Kudi

ophiolite West Kunlun (NW China) implications for the

magmatic evolution in a subduction zone environment Contrib

Mineral Petrol 150195ndash211 doi101007s00410-005-0012-0

Zhang HF Sun M Zhou XH Fan WM Zhai MG Yin JF (2002)

Mesozoic lithosphere destruction beneath the North China

Craton evidence from major trace element and SrndashNdndashPb

isotope studies of Fangcheng basalts Contrib Mineral Petrol

144241ndash253

1510 Int J Earth Sci (Geol Rundsch) (2009) 981489ndash1510

123