Conservation Laws of Some Physical Models via Symbolic Package GeM

8
Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2013, Article ID 897912, 7 pages http://dx.doi.org/10.1155/2013/897912 Research Article Conservation Laws of Some Physical Models via Symbolic Package GeM Rehana Naz, 1 Imran Naeem, 2 and M. Danish Khan 2 1 Centre for Mathematics and Statistical Sciences, Lahore School of Economics, Lahore 53200, Pakistan 2 Department of Mathematics, School of Science and Engineering, LUMS, Lahore Cantt 54792, Pakistan Correspondence should be addressed to Rehana Naz; rehananaz [email protected] Received 10 May 2013; Accepted 13 June 2013 Academic Editor: Chaudry Masood Khalique Copyright Β© 2013 Rehana Naz et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study the conservation laws of evolution equation, lubrication models, sinh-Poisson equation, Kaup-Kupershmidt equation, and modified Sawada-Kotera equation. e symbolic soο¬…ware GeM (Cheviakov (2007) and (2010)) is used to derive the multipliers and conservation law fluxes. Soο¬…ware GeM is Maple-based package, and it computes conservation laws by direct method and first homotopy and second homotopy formulas. 1. Introduction e study of conservation laws plays a vital role in analysis, solution, and reductions of PDEs. For the PDEs, the con- servation laws are used in wide variety of applications, for example, inverse scattering transform in soliton solutions [1], bi-Hamiltonian structures and recursion operators [2], Lax operators [3], and derivation of conserved quantities for jet flows [4]. Different methods have been developed so far for the construction of conservation laws and are well documented in [5–7]. In the last few decades, the researchers focused on the development of symbolic computational packages based on different approaches of conservation laws. ese packages work with either Mathematica or Maple. e development of symbolic computational packages gives relief to perform complicated and tedious algebraic computation. Recently, several computational packages have been devel- oped, for example, CONDENS.M by GΒ¨ oktas ΒΈ and Hereman [8], RUDCE by Wolf et al. [9–11], TransPDEDensity.m by Adams and Hereman [12], GeM by Cheviakov [13, 14], Vessiot suite by Anderson and Cheb-Terrab [15], Conserva- tionLawsMD.m by Poole and Hereman [16], and SADE by Rocha Filho and Figueiredo [17]. In this paper, we will use GeM package [13] to com- pute the conservation laws for partial differential equations (PDEs) arising in applications. GeM package works with Maple to obtain the symmetries and conservation laws of differential equations. In symmetry analysis, it first computes the overdetermined system of determining equations and then simplifies the system by Rif package routines. Aο¬…er simplification, a Maple command in GeM generates all symmetry generators of differential equation. In conservation laws analysis, GeM computes an overdetermined system of determining equation of conservation law multipliers, and then this system is simplified by Rif package which is solved by using the built-in Maple function pdsolve to get multipliers. Aο¬…er computing multipliers, the conservation laws fluxes are derived by one of the following four methods: direct method [18, 19], first homotopy formula [20], second homotopy formula [19], and scaling symmetry formula [21]. All these four methods have some limitations in their use. e direct method written in GeM [13] is a Maple implemen- tation based on Wolf [11] program in REDUCE. For simple partial differential equation (PDE) systems and multipliers, direct method is used to calculate fluxes. It is also used if arbitrary functions are involved. e conservation laws fluxes for complicated PDEs or multipliers, not involving arbitrary functions, are established by using first and second homotopy formulas. e scaling symmetry method is used to compute fluxes for the scaling-homogeneous PDEs or/and multipliers. For the complicated scaling-homogeneous PDEs

Transcript of Conservation Laws of Some Physical Models via Symbolic Package GeM

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2013, Article ID 897912, 7 pageshttp://dx.doi.org/10.1155/2013/897912

Research ArticleConservation Laws of Some Physical Models viaSymbolic Package GeM

Rehana Naz,1 Imran Naeem,2 and M. Danish Khan2

1 Centre for Mathematics and Statistical Sciences, Lahore School of Economics, Lahore 53200, Pakistan2Department of Mathematics, School of Science and Engineering, LUMS, Lahore Cantt 54792, Pakistan

Correspondence should be addressed to Rehana Naz; rehananaz [email protected]

Received 10 May 2013; Accepted 13 June 2013

Academic Editor: Chaudry Masood Khalique

Copyright Β© 2013 Rehana Naz et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the conservation laws of evolution equation, lubrication models, sinh-Poisson equation, Kaup-Kupershmidt equation,andmodified Sawada-Kotera equation.The symbolic software GeM (Cheviakov (2007) and (2010)) is used to derive the multipliersand conservation law fluxes. Software GeM is Maple-based package, and it computes conservation laws by direct method and firsthomotopy and second homotopy formulas.

1. Introduction

The study of conservation laws plays a vital role in analysis,solution, and reductions of PDEs. For the PDEs, the con-servation laws are used in wide variety of applications, forexample, inverse scattering transform in soliton solutions [1],bi-Hamiltonian structures and recursion operators [2], Laxoperators [3], and derivation of conserved quantities for jetflows [4].

Different methods have been developed so far for theconstruction of conservation laws and are well documentedin [5–7]. In the last few decades, the researchers focusedon the development of symbolic computational packagesbased on different approaches of conservation laws. Thesepackages work with either Mathematica or Maple. Thedevelopment of symbolic computational packages gives reliefto perform complicated and tedious algebraic computation.Recently, several computational packages have been devel-oped, for example, CONDENS.M by Goktas and Hereman[8], RUDCE by Wolf et al. [9–11], TransPDEDensity.m byAdams and Hereman [12], GeM by Cheviakov [13, 14],Vessiot suite by Anderson and Cheb-Terrab [15], Conserva-tionLawsMD.m by Poole and Hereman [16], and SADE byRocha Filho and Figueiredo [17].

In this paper, we will use GeM package [13] to com-pute the conservation laws for partial differential equations

(PDEs) arising in applications. GeM package works withMaple to obtain the symmetries and conservation laws ofdifferential equations. In symmetry analysis, it first computesthe overdetermined system of determining equations andthen simplifies the system by Rif package routines. Aftersimplification, a Maple command in GeM generates allsymmetry generators of differential equation. In conservationlaws analysis, GeM computes an overdetermined systemof determining equation of conservation law multipliers,and then this system is simplified by Rif package which issolved by using the built-in Maple function pdsolve to getmultipliers. After computing multipliers, the conservationlaws fluxes are derived by one of the following four methods:direct method [18, 19], first homotopy formula [20], secondhomotopy formula [19], and scaling symmetry formula [21].All these four methods have some limitations in their use.The direct method written in GeM [13] is a Maple implemen-tation based on Wolf [11] program in REDUCE. For simplepartial differential equation (PDE) systems and multipliers,direct method is used to calculate fluxes. It is also usedif arbitrary functions are involved. The conservation lawsfluxes for complicated PDEs or multipliers, not involvingarbitrary functions, are established by using first and secondhomotopy formulas. The scaling symmetry method is usedto compute fluxes for the scaling-homogeneous PDEs or/andmultipliers. For the complicated scaling-homogeneous PDEs

2 Mathematical Problems in Engineering

and/or multipliers involving arbitrary functions, this is onlya systematic method for computing fluxes.

The evolution equations are important and arise in manyapplications. We compute the conservation laws of variousnonlinear evolution equations using GeM Maple routines.This includes a (1 + 1)-dimensional evolution equation [22],lubrication models [23], sinh-Poisson equation [24], Kaup-Kupershmidt equation [25], and modified Sawada-Koteraequation [26]. At last, we summarize and discuss our results.

2. Multipliers and Conservation LawsUsing GeM Maple Routines

2.1. Evolution Equation. As a first example, consider thefollowing evolution equation [22]:

𝑒𝑑𝑑+ π‘Žπ‘’π‘₯π‘₯+ 𝑏𝑒 + 𝑐𝑒

3= 0, (1)

where 𝑒(𝑑, π‘₯) and π‘Ž, 𝑏, 𝑐 are constants. We will explain thisexample in detail along with GeM Maple routines given in[13, 14]. The variables and partial differential equation (PDE)(1) are defined in GeM by the following Maple commands.

With(GeM):gem decl vars(indeps=[t,x], deps=[u(t,x)]);gem decl eqs([diff(u(t,x),t,t)+aβˆ—diff(u(t,x),x,x)+bβˆ—u(t,x)+cβˆ—u3(t,x)=0],solve for=[diff(u(t,x),t,t)]).

The option solve for is used in the flux-computation routine,and actually it defines a set of leading derivatives the givenPDE systems can be solved for.

Consider multipliers of the form Ξ› = Ξ›(𝑑, π‘₯, 𝑒, 𝑒𝑑, 𝑒π‘₯). In

GeM, we use the Maple routines,

det eqs:=gem conslaw det eqs([t,x,u(t,x),diff(u(t,x),t),diff(u(t,x),x)]):CL multipliers:=gem conslaw multipliers();simplified eqs:=DEtools[rifsimp](det eqs,CL multipliers,mindim=1),

to obtain the set of determining equations for the multipliersexpressed in the simplified form as

Ξ›π‘₯π‘₯= 0, Ξ›

𝑒= 0, Ξ›

π‘₯𝑒π‘₯

= 0, Λ𝑒π‘₯𝑒π‘₯

= 0,

Λ𝑑= βˆ’π‘Žπ‘’π‘₯Ξ›π‘₯

𝑒𝑑

,

Λ𝑒𝑑

=Ξ› βˆ’ 𝑒

π‘₯Λ𝑒π‘₯

𝑒𝑑

, with π‘Ž = 0, 𝑏 = 0, 𝑐 = 0.

(2)

To solve the system (2), we use the Maple command

multipliers sol:=pdsolve(simplified eqs[Solved]),

and it yields

Ξ› (𝑑, π‘₯, 𝑒, 𝑒𝑑, 𝑒π‘₯) = (𝑐3π‘₯ + 𝑐1) 𝑒𝑑+ (βˆ’π‘3π‘Žπ‘‘ + 𝑐2) 𝑒π‘₯, (3)

where 𝑐1, 𝑐2, 𝑐3are arbitrary constants. We obtain three

linearly independent conservation laws, arising from themultipliers

Ξ›(1)= 𝑒𝑑, Ξ›

(2)= 𝑒π‘₯, Ξ›

(3)= π‘₯π‘’π‘‘βˆ’ π‘Žπ‘‘π‘’π‘₯. (4)

Next step is the derivation of conservation laws associatedwith multipliers given in (4). The Maple command

gem get CL fluxes(multipliers sol)computes the flux expressions by the direct method. Forthe multipliers (4), we have the following conservation lawsfluxes:

πœ™(1)=1

2𝑒2

π‘‘βˆ’1

2π‘Žπ‘’2

π‘₯+1

4𝑐𝑒4+1

2𝑏𝑒2, πœ“

(1)= π‘Žπ‘’π‘₯𝑒𝑑,

πœ™(2)= 𝑒𝑑𝑒π‘₯+ 𝑏𝑑𝑒𝑒

π‘₯+ 𝑐𝑑𝑒3𝑒π‘₯,

πœ“(2)= βˆ’1

2𝑒2

π‘‘βˆ’ 𝑐𝑑𝑒3π‘’π‘‘βˆ’ 𝑏𝑑𝑒𝑒

𝑑+1

2π‘Žπ‘’2

π‘₯,

πœ™(3)= βˆ’1

2π‘Žπ‘₯𝑒2

π‘₯βˆ’ π‘Žπ‘‘π‘’π‘‘π‘’π‘₯+1

2π‘₯𝑒2

𝑑+1

4𝑐π‘₯𝑒4+1

2𝑏π‘₯𝑒2,

πœ“(3)= βˆ’1

4π‘Žπ‘π‘‘π‘’4βˆ’1

2π‘Žπ‘π‘‘π‘’2+1

2π‘Žπ‘‘π‘’2

𝑑+ π‘Žπ‘₯𝑒

π‘₯π‘’π‘‘βˆ’1

2π‘Ž2𝑑𝑒2

π‘₯.

(5)

The multipliers given in (4) do not involve arbitrary func-tions, so homotopy formulas can be used to compute fluxes.We call the routine for first homotopy method

gem get CL fluxes(multipliers sol,method=β€œHomotopy1”)

to get the following expressions for conservation law fluxes:

πœ™(1)=1

4𝑐𝑒4+1

2𝑒2

𝑑+1

2π‘Žπ‘’π‘’π‘₯π‘₯+1

2𝑏𝑒2,

πœ“(1)= βˆ’1

2π‘Žπ‘’π‘’π‘‘π‘₯+1

2π‘Žπ‘’π‘₯𝑒𝑑,

πœ™(2)= βˆ’1

2𝑒𝑒𝑑π‘₯+1

2𝑒𝑑𝑒π‘₯,

πœ“(2)=1

4𝑐𝑒4+1

2π‘Žπ‘’2

π‘₯+1

2𝑒𝑒𝑑𝑑+1

2𝑏𝑒2,

πœ™(3)=1

4𝑐𝑒4π‘₯ +1

2π‘Žπ‘’π‘’π‘₯+1

2π‘Žπ‘‘π‘’π‘’π‘‘π‘₯βˆ’1

2π‘Žπ‘‘π‘’π‘‘π‘’π‘₯

+1

2π‘₯𝑒2

𝑑+1

2π‘Žπ‘₯𝑒𝑒π‘₯π‘₯+1

2𝑏π‘₯𝑒2,

πœ“(3)= βˆ’1

4π‘Žπ‘π‘‘π‘’4βˆ’1

2π‘Žπ‘’π‘’π‘‘βˆ’1

2π‘Žπ‘₯𝑒𝑒𝑑π‘₯βˆ’1

2π‘Ž2𝑑𝑒2

π‘₯

+1

2π‘Žπ‘₯𝑒𝑑𝑒π‘₯βˆ’1

2π‘Žπ‘‘π‘’π‘’π‘‘π‘‘βˆ’1

2π‘Žπ‘π‘‘π‘’2.

(6)

For second homotopy formula, the Maple commandgem get CL fluxes(multipliers sol,method=β€œHomotopy2”)

yields divergence expressions in the same form as in (6).

Mathematical Problems in Engineering 3

Table 1: Multipliers and conserved vectors for PDE (14).

Multiplier Fluxes

Ξ›(1) = 𝑒𝑑

πœ™(1)= πœ†2+1

2𝑒𝑒π‘₯π‘₯+1

2π‘’π‘’π‘§π‘§βˆ’1

2𝑒2

π‘‘βˆ’ πœ†2 cosh 𝑒

πœ“(1) = βˆ’1

2𝑒𝑒𝑑π‘₯+1

2𝑒𝑑𝑒π‘₯

πœ‹(1) = βˆ’1

2𝑒𝑒𝑑𝑧+1

2𝑒𝑑𝑒𝑧

Ξ›(2) = 𝑒π‘₯

πœ™(2)=1

2𝑒𝑒𝑑π‘₯βˆ’1

2𝑒𝑑𝑒π‘₯

πœ“(2)= πœ†2+1

2𝑒𝑒𝑧𝑧+1

2𝑒2

π‘₯βˆ’ πœ†2 cosh 𝑒 βˆ’ 1

2𝑒𝑒𝑑𝑑

πœ‹(2) = βˆ’1

2𝑒𝑒π‘₯𝑧+1

2𝑒π‘₯𝑒𝑧

Ξ›(3) = 𝑒𝑧

πœ™(3)=1

2π‘’π‘’π‘‘π‘§βˆ’1

2𝑒𝑑𝑒𝑧

πœ“(3) = βˆ’1

2𝑒𝑒π‘₯𝑧+1

2𝑒π‘₯𝑒𝑧

πœ‹(3) = πœ†2 +1

2𝑒𝑒π‘₯π‘₯+1

2𝑒2π‘§βˆ’ πœ†2 cosh 𝑒 βˆ’ 1

2𝑒𝑒𝑑𝑑

Ξ›(4) = π‘₯𝑒𝑑+ 𝑑𝑒π‘₯

πœ™(4)=1

2𝑒𝑒π‘₯βˆ’1

2π‘₯𝑒2

𝑑+1

2𝑑𝑒𝑒𝑑π‘₯βˆ’1

2𝑑𝑒𝑑𝑒π‘₯+1

2π‘₯𝑒𝑒𝑧𝑧+1

2π‘₯𝑒𝑒π‘₯π‘₯βˆ’ πœ†2π‘₯ cosh 𝑒 + πœ†2π‘₯

πœ“(4)= βˆ’1

2π‘₯𝑒𝑒𝑑π‘₯βˆ’1

2𝑑𝑒𝑒𝑑𝑑+1

2π‘₯𝑒π‘₯𝑒𝑑+1

2𝑑𝑒𝑒𝑧𝑧+ πœ†2𝑑 βˆ’ πœ†2𝑑 cosh 𝑒 βˆ’ 1

2𝑒𝑒𝑑+1

2𝑑𝑒2

π‘₯

πœ‹(4)= βˆ’1

2π‘₯𝑒𝑒𝑑𝑧+1

2π‘₯π‘’π‘‘π‘’π‘§βˆ’1

2𝑑𝑒𝑒π‘₯𝑧+1

2𝑑𝑒π‘₯𝑒𝑧

Ξ›(5)= βˆ’π‘§π‘’

π‘₯+ π‘₯𝑒𝑧

πœ™(5) =1

2𝑧𝑒𝑒𝑑π‘₯+1

2π‘₯𝑒𝑒𝑑𝑧+1

2𝑧𝑒𝑑𝑒π‘₯βˆ’1

2π‘₯𝑒𝑑𝑒𝑧

πœ“(5)= βˆ’1

2π‘’π‘’π‘§βˆ’1

2π‘§π‘’π‘’π‘§π‘§βˆ’1

2π‘₯𝑒𝑒π‘₯𝑧+1

2π‘§π‘’π‘’π‘‘π‘‘βˆ’1

2𝑧𝑒2

π‘₯+1

2π‘₯𝑒π‘₯π‘’π‘§βˆ’ πœ†2𝑧 + πœ†2𝑧 cosh 𝑒

πœ‹(5)=1

2𝑒𝑒π‘₯+1

2π‘₯𝑒𝑒π‘₯π‘₯βˆ’ πœ†2π‘₯ cosh 𝑒 + 1

2π‘₯𝑒2

𝑧+1

2𝑧𝑒𝑒π‘₯π‘§βˆ’1

2𝑧𝑒𝑧𝑒π‘₯βˆ’1

2π‘₯𝑒𝑒𝑑𝑑+ πœ†2π‘₯

Ξ›(6)= 𝑑𝑒𝑧+ 𝑧𝑒𝑑

πœ™(6) =1

2π‘’π‘’π‘§βˆ’1

2𝑧𝑒2𝑑+1

2π‘‘π‘’π‘’π‘‘π‘§βˆ’1

2𝑑𝑒𝑑𝑒𝑧+1

2𝑧𝑒𝑒𝑧𝑧+1

2𝑧𝑒𝑒π‘₯π‘₯+ πœ†2𝑧 βˆ’ πœ†2𝑧 cosh 𝑒

πœ“(6) = βˆ’1

2𝑧𝑒𝑒𝑑π‘₯+1

2𝑧𝑒𝑑𝑒π‘₯βˆ’1

2𝑑𝑒𝑒π‘₯𝑧+1

2𝑑𝑒π‘₯𝑒𝑧

πœ‹(6) = βˆ’1

2𝑑𝑒𝑒𝑑𝑑+ πœ†2𝑑 βˆ’ π‘‘πœ†2 cosh 𝑒 βˆ’ 1

2𝑒𝑒𝑑+1

2𝑑𝑒2π‘§βˆ’1

2𝑧𝑒𝑒𝑑𝑧+1

2𝑧𝑒𝑧𝑒𝑑+1

2𝑑𝑒𝑒π‘₯π‘₯

The PDE (1) has no scaling symmetry; therefore, we can-not apply the scaling symmetry formula here for derivationof fluxes.

2.2. Lubrication Models. Now we will study two lubricationmodels for conservation laws point of view. Gandarias andMedina [23] performed the symmetry analysis of lubricationmodel

𝑒𝑑= 𝑓 (𝑒) 𝑒

π‘₯π‘₯π‘₯π‘₯, (7)

where 𝑓 is an arbitrary function. For 𝑓(𝑒) = 𝑐(𝑒 + 𝑏)π‘Ž and𝑓(𝑒) = 𝛾𝑒𝛼𝑒, this equation has some extra symmetry [23].Without loss of generality, take 𝑓(𝑒) = 𝑒 + 𝑏 in (7); we have

𝑒𝑑= (𝑒 + 𝑏) 𝑒

π‘₯π‘₯π‘₯π‘₯, (8)

where 𝑏 is arbitrary constant. Consider themultipliers of formΞ›(𝑑, π‘₯, 𝑒) in GeM Maple routines, and then we obtain thefollowing four multipliers:

Ξ›(1)(𝑑, π‘₯, 𝑒) =

1

(𝑒 + 𝑏), Ξ›

(2)(𝑑, π‘₯, 𝑒) =

π‘₯

(𝑒 + 𝑏),

Ξ›(3)(𝑑, π‘₯, 𝑒) =

π‘₯2

2 (𝑒 + 𝑏), Ξ›

(4)(𝑑, π‘₯, 𝑒) =

π‘₯3

6 (𝑒 + 𝑏).

(9)

The fluxes associated with the multipliers given in (7) arecomputed by homotopy first method and are given by

πœ™(1)= ln(𝑒 + 𝑏

𝑏) , πœ“

(1)= 𝑒π‘₯π‘₯π‘₯,

πœ™(2)= π‘₯ ln(𝑒 + 𝑏

𝑏) , πœ“

(2)= βˆ’π‘’π‘₯π‘₯+ π‘₯𝑒π‘₯π‘₯π‘₯,

πœ™(3)=1

2π‘₯2 ln(𝑒 + 𝑏𝑏) , πœ“

(3)= 𝑒π‘₯βˆ’ π‘₯𝑒π‘₯π‘₯+π‘₯2𝑒π‘₯π‘₯π‘₯

2,

4 Mathematical Problems in Engineering

Table 2: Multipliers and conserved vectors for PDE (15).

Multiplier Fluxes

Ξ›(1) = 1πœ™(1)= 𝑒

πœ“(1) = βˆ’π‘’π‘₯π‘₯π‘₯π‘₯βˆ’5

3𝑒3 βˆ’ 5𝑒𝑒

π‘₯π‘₯βˆ’15

4𝑒2π‘₯

Ξ›(2) = 2𝑒2 + 𝑒π‘₯π‘₯

πœ™(2) =2

3𝑒3 +1

2𝑒𝑒π‘₯π‘₯

πœ“(2) = 4𝑒𝑒π‘₯𝑒π‘₯π‘₯π‘₯+1

2𝑒𝑑𝑒π‘₯βˆ’ 4𝑒2π‘₯𝑒π‘₯π‘₯βˆ’9

2𝑒𝑒2π‘₯π‘₯+1

2𝑒2π‘₯π‘₯π‘₯βˆ’ 2𝑒2𝑒

π‘₯π‘₯π‘₯π‘₯βˆ’ 𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯βˆ’1

2𝑒𝑒𝑑π‘₯βˆ’ 10𝑒3𝑒

π‘₯π‘₯βˆ’ 2𝑒5

Ξ›(3) = π‘₯ + 5𝑑𝑒2 +5

2𝑑𝑒π‘₯π‘₯

πœ™(3)=5

3𝑑𝑒3+5

4𝑒𝑒π‘₯π‘₯+ π‘₯𝑒

πœ“(3) = 𝑒π‘₯π‘₯π‘₯βˆ’ π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+5

4𝑑𝑒2π‘₯π‘₯π‘₯βˆ’5

4𝑑𝑒𝑒𝑑π‘₯βˆ’ 5𝑑𝑒2𝑒

π‘₯π‘₯π‘₯π‘₯βˆ’5

2𝑑𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+ 10𝑑𝑒𝑒

π‘₯𝑒π‘₯π‘₯π‘₯+5

4𝑑𝑒𝑑𝑒π‘₯βˆ’5

3π‘₯𝑒3

βˆ’5𝑑𝑒5βˆ’15

4π‘₯𝑒4

π‘₯βˆ’ 10𝑑𝑒

2

π‘₯𝑒π‘₯π‘₯βˆ’45

4𝑑𝑒𝑒2

π‘₯π‘₯βˆ’ 5π‘₯𝑒𝑒

π‘₯π‘₯βˆ’ 25𝑑𝑒

3𝑒π‘₯π‘₯+15

4𝑒𝑒π‘₯

Ξ›(4) = 𝑒𝑒π‘₯π‘₯+1

2𝑒2π‘₯+1

6𝑒π‘₯π‘₯π‘₯π‘₯+4

9𝑒3

πœ™(4) =1

9𝑒4 +1

3𝑒2𝑒π‘₯π‘₯+1

6𝑒𝑒2π‘₯+1

12𝑒𝑒π‘₯π‘₯π‘₯π‘₯

πœ“(4) = βˆ’5

6𝑒3𝑒2π‘₯+1

12𝑒𝑒2π‘₯π‘₯π‘₯βˆ’10

27𝑒6 βˆ’11

16𝑒4π‘₯βˆ’1

12𝑒2π‘₯π‘₯π‘₯π‘₯βˆ’1

12𝑒𝑒𝑑π‘₯π‘₯π‘₯+1

12𝑒π‘₯𝑒𝑑π‘₯π‘₯βˆ’1

2𝑒2π‘₯𝑒π‘₯π‘₯π‘₯π‘₯

βˆ’1

12𝑒𝑑π‘₯𝑒π‘₯π‘₯+ 𝑒𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+1

12𝑒𝑑𝑒π‘₯π‘₯π‘₯βˆ’1

3𝑒2𝑒𝑑π‘₯βˆ’1

12𝑒π‘₯𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯+1

3𝑒𝑒𝑑𝑒π‘₯+1

36𝑒3π‘₯π‘₯

βˆ’11

4𝑒2𝑒2

π‘₯π‘₯βˆ’20

9𝑒4𝑒π‘₯π‘₯βˆ’4

9𝑒3𝑒π‘₯π‘₯π‘₯π‘₯βˆ’7

2𝑒𝑒2

π‘₯𝑒π‘₯π‘₯+1

2𝑒2𝑒π‘₯𝑒π‘₯π‘₯π‘₯

πœ™(4)=1

6π‘₯3 ln(𝑒 + 𝑏𝑏) ,

πœ“(4)= βˆ’π‘’ + π‘₯𝑒

π‘₯βˆ’π‘₯2𝑒π‘₯π‘₯

2+π‘₯3𝑒π‘₯π‘₯π‘₯

6.

(10)We will get the same fluxes for (7) if we define higher ordermultipliers in GeMMaple routines.

Another interesting lubrication model is

𝑒𝑑+𝑒π‘₯π‘₯π‘₯π‘₯

𝑒𝑒= 0. (11)

It is obtained by taking 𝑓(𝑒) = π‘’βˆ’π‘’ in (7). The GeM Mapleroutines yield the following fourmultipliers of formΞ›(𝑑, π‘₯, 𝑒):

Ξ›(1)(𝑑, π‘₯, 𝑒) = 𝑒

𝑒, Ξ›

(2)(𝑑, π‘₯, 𝑒) = π‘₯𝑒

𝑒,

Ξ›(3)(𝑑, π‘₯, 𝑒) =

1

2π‘₯2𝑒𝑒, Ξ›

(4)(𝑑, π‘₯, 𝑒) =

1

6π‘₯3𝑒𝑒.

(12)

The corresponding fluxes obtained by homotopy firstmethod are

πœ™(1)= βˆ’1 + 𝑒

𝑒, πœ“

(1)= 𝑒π‘₯π‘₯π‘₯,

πœ™(2)= π‘₯ (βˆ’1 + 𝑒

𝑒) , πœ“

(2)= βˆ’π‘’π‘₯π‘₯+ π‘₯𝑒π‘₯π‘₯π‘₯,

πœ™(3)=1

2π‘₯2(βˆ’1 + 𝑒

2) , πœ“

(3)= 𝑒π‘₯βˆ’ π‘₯𝑒π‘₯π‘₯+π‘₯2𝑒π‘₯π‘₯π‘₯

2,

πœ™(4)=1

6π‘₯3(βˆ’1 + 𝑒

𝑒) ,

πœ“(4)= βˆ’π‘’ + π‘₯𝑒

π‘₯βˆ’π‘₯2𝑒π‘₯π‘₯

2+π‘₯3𝑒π‘₯π‘₯π‘₯

6.

(13)

The conservation laws fluxes derived here can be used to findthe solution of lubrication models and will be considered infuture work.

2.3. sinh-Poisson Equation. The (2 + 1)-dimensional sinh-Poisson equation is [24]

𝑒π‘₯π‘₯+ π‘’π‘§π‘§βˆ’ 𝑒𝑑𝑑= πœ†2 sinh 𝑒, (14)

where 𝑒(𝑑, π‘₯, 𝑧). The conservation laws for PDE (14) arederived here by usingGeM routines. Consider themultipliersof formΞ›(𝑑, π‘₯, 𝑒, 𝑒

𝑑, 𝑒π‘₯, 𝑒𝑧) in GeM routines, then it will yield

six multipliers not containing any arbitrary function. Theexpression for fluxes is computed by using first homotopyformula. The multipliers and associated conserved vectorscomputed by first homotopy formula are given in Table 1.

2.4. Kaup-Kupershmidt Equation. Now, we will compute theconservation laws for the fifth order Kaup-Kupershmidt [25]:

𝑒𝑑= 𝑒π‘₯π‘₯π‘₯π‘₯π‘₯+ 5𝑒𝑒

π‘₯π‘₯π‘₯+25

2𝑒π‘₯𝑒π‘₯π‘₯+ 5𝑒2𝑒π‘₯. (15)

The GeM Maple routines yield three multipliers of theform Ξ›(𝑑, π‘₯, 𝑒, 𝑒

𝑑, 𝑒π‘₯, 𝑒π‘₯π‘₯) for PDE (14). The first homo-

topy formula is applied to derive the expressions for con-servation laws fluxes. One more multiplier can be com-puted if we consider higher order multipliers of the formΞ›(𝑑, π‘₯, 𝑒, 𝑒

𝑑, 𝑒π‘₯, 𝑒π‘₯π‘₯, 𝑒π‘₯π‘₯π‘₯, 𝑒π‘₯π‘₯π‘₯π‘₯). All themultipliers and asso-

ciated conserved vectors for PDE (14) computed by firsthomotopy formula are presented in Table 2.

Mathematical Problems in Engineering 5

Table 3: Multipliers and conserved vectors for PDE (16).

Multiplier Fluxes

Ξ›(1) = 1 πœ™(1)= 𝑒, πœ“(1) = 5𝑒

π‘₯𝑒π‘₯π‘₯βˆ’ 𝑒π‘₯π‘₯π‘₯π‘₯+ 5𝑒2𝑒π‘₯π‘₯+ 5𝑒𝑒

2

π‘₯βˆ’ 𝑒5

Ξ›(2) = π‘’πœ™(2)=1

2𝑒2,

πœ“(2)= 5𝑒𝑒

π‘₯𝑒π‘₯π‘₯βˆ’1

2𝑒2

π‘₯π‘₯+ 𝑒π‘₯𝑒π‘₯π‘₯π‘₯βˆ’5

3𝑒3

π‘₯+5

2𝑒2𝑒2

π‘₯+ 5𝑒3𝑒π‘₯π‘₯βˆ’5

6𝑒6βˆ’ 𝑒𝑒π‘₯π‘₯π‘₯π‘₯

Ξ›(3) = 𝑒5 + 𝑒π‘₯π‘₯π‘₯π‘₯βˆ’ 5𝑒π‘₯𝑒π‘₯π‘₯

βˆ’5𝑒2𝑒π‘₯π‘₯βˆ’ 5𝑒𝑒2

π‘₯

πœ™(3)=1

6𝑒6βˆ’5

4𝑒3𝑒π‘₯π‘₯βˆ’5

3𝑒𝑒π‘₯𝑒π‘₯π‘₯+1

2𝑒𝑒π‘₯π‘₯π‘₯π‘₯

πœ“(3) = βˆ’1

2𝑒2π‘₯π‘₯π‘₯π‘₯βˆ’1

2𝑒10 βˆ’ 25𝑒𝑒3

π‘₯𝑒π‘₯π‘₯βˆ’25

2𝑒2π‘₯𝑒2π‘₯π‘₯βˆ’25

2𝑒2𝑒4π‘₯+1

2𝑒𝑑𝑒π‘₯π‘₯π‘₯

βˆ’5

3𝑒𝑑𝑒2

π‘₯βˆ’5

4𝑒2𝑒𝑑𝑒π‘₯βˆ’ 𝑒5𝑒π‘₯π‘₯π‘₯π‘₯+5

3𝑒𝑒π‘₯𝑒𝑑π‘₯βˆ’ 25𝑒

3𝑒2

π‘₯𝑒π‘₯π‘₯+ 5𝑒5𝑒π‘₯𝑒π‘₯π‘₯

+5𝑒2𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+ 5𝑒𝑒2

π‘₯𝑒π‘₯π‘₯π‘₯π‘₯βˆ’1

2𝑒𝑒𝑑π‘₯π‘₯π‘₯+5

4𝑒3𝑒𝑑π‘₯+ 5𝑒7𝑒

π‘₯π‘₯+ 5𝑒6𝑒2

π‘₯

+5𝑒π‘₯𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯βˆ’ 25𝑒2𝑒

π‘₯𝑒2π‘₯π‘₯+1

2𝑒π‘₯𝑒𝑑π‘₯π‘₯βˆ’1

2𝑒𝑑π‘₯𝑒π‘₯π‘₯βˆ’25

2𝑒4𝑒2π‘₯π‘₯

Ξ›(4) = 5𝑑𝑒2𝑒π‘₯π‘₯βˆ’ 25𝑑𝑒2𝑒

π‘₯π‘₯+ π‘₯𝑒

βˆ’25𝑑𝑒π‘₯𝑒π‘₯π‘₯+ 5𝑑𝑒

π‘₯π‘₯π‘₯π‘₯

πœ™(4) =1

6𝑑𝑒6 βˆ’25

4𝑑𝑒2𝑒2π‘₯βˆ’25

4𝑑𝑒3𝑒π‘₯π‘₯βˆ’25

3𝑑𝑒𝑒π‘₯𝑒π‘₯π‘₯+5

2𝑑𝑒𝑒π‘₯π‘₯π‘₯π‘₯+1

2π‘₯𝑒2

πœ“(4)= βˆ’25

4𝑑𝑒𝑑𝑒π‘₯+5

4𝑒3𝑒π‘₯βˆ’ 5𝑑𝑒

5𝑒π‘₯π‘₯π‘₯π‘₯+1

2𝑒π‘₯𝑒π‘₯π‘₯+ 25𝑑𝑒𝑒

2

π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+ 25𝑑𝑒

2𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+ 5π‘₯𝑒𝑒

π‘₯𝑒π‘₯π‘₯

βˆ’125𝑑𝑒3𝑒2π‘₯𝑒π‘₯π‘₯βˆ’ 125𝑑𝑒2𝑒

π‘₯𝑒2π‘₯π‘₯βˆ’ 125𝑑𝑒𝑒3

π‘₯𝑒π‘₯π‘₯βˆ’1

2π‘₯𝑒2π‘₯π‘₯βˆ’5

6π‘₯𝑒6 βˆ’5

2𝑑𝑒2π‘₯π‘₯π‘₯π‘₯βˆ’5

3π‘₯𝑒3π‘₯+5

3𝑒𝑒2π‘₯

βˆ’3

2𝑒𝑒π‘₯π‘₯π‘₯+ 25𝑑𝑒5𝑒

π‘₯𝑒π‘₯π‘₯+ 25𝑑𝑒

π‘₯𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯βˆ’5

2𝑑𝑒10 βˆ’125

2𝑑𝑒2π‘₯𝑒2π‘₯π‘₯βˆ’25

3𝑑𝑒𝑑𝑒2π‘₯+5

2𝑑𝑒𝑑𝑒π‘₯π‘₯π‘₯

+5

2𝑑𝑒π‘₯𝑒𝑑π‘₯π‘₯+ 25𝑑𝑒

6𝑒2

π‘₯+ 25𝑑𝑒

7𝑒π‘₯π‘₯βˆ’5

2𝑑𝑒𝑑π‘₯𝑒π‘₯π‘₯βˆ’5

2𝑑𝑒𝑒𝑑π‘₯π‘₯π‘₯+25

4𝑑𝑒3𝑒𝑑π‘₯

+π‘₯𝑒π‘₯𝑒π‘₯π‘₯π‘₯+ 5π‘₯𝑒3𝑒

π‘₯π‘₯βˆ’ π‘₯𝑒𝑒

π‘₯π‘₯π‘₯π‘₯βˆ’125

2𝑑𝑒4𝑒π‘₯π‘₯βˆ’125

2𝑑𝑒2𝑒4π‘₯+5

2π‘₯𝑒2𝑒2π‘₯+25

3𝑑𝑒𝑒π‘₯𝑒𝑑π‘₯

Ξ›(5) = βˆ’4

3𝑒7 + 9𝑒4𝑒

π‘₯π‘₯+ 8𝑒3𝑒2

π‘₯

βˆ’2𝑒2𝑒π‘₯π‘₯π‘₯π‘₯+ 14𝑒

2𝑒π‘₯𝑒π‘₯π‘₯βˆ’ 𝑒𝑒2

π‘₯π‘₯

+2𝑒𝑒π‘₯𝑒π‘₯π‘₯+28

3𝑒𝑒3π‘₯+ 7𝑒2π‘₯𝑒π‘₯π‘₯

+𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯βˆ’ 2𝑒π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+ 𝑒𝑑π‘₯

πœ™(5)= βˆ’1

6𝑒8+1

2𝑒4𝑒2

π‘₯+3

2𝑒5𝑒π‘₯π‘₯+14

5𝑒3𝑒π‘₯𝑒π‘₯π‘₯+28

15𝑒2𝑒3

π‘₯+5

4𝑒4

π‘₯

+27

4𝑒𝑒2π‘₯𝑒π‘₯π‘₯+7

4𝑒2𝑒π‘₯𝑒π‘₯π‘₯π‘₯βˆ’1

4𝑒2𝑒π‘₯π‘₯βˆ’1

2𝑒3𝑒π‘₯π‘₯π‘₯π‘₯+1

3𝑒𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯

βˆ’2

3𝑒𝑒π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+5

3𝑒π‘₯𝑒2π‘₯π‘₯+5

3𝑒2π‘₯𝑒π‘₯π‘₯π‘₯+1

2𝑒𝑒𝑑π‘₯+1

2𝑒𝑑𝑒π‘₯βˆ’1

2𝑒π‘₯𝑒π‘₯π‘₯π‘₯π‘₯π‘₯

πœ“(5) =2

3𝑒𝑒𝑑π‘₯𝑒π‘₯π‘₯π‘₯+1

3𝑒3π‘₯π‘₯π‘₯+19

18𝑒6π‘₯+1

2𝑒4π‘₯π‘₯βˆ’ 8𝑒3𝑒2

π‘₯𝑒π‘₯π‘₯π‘₯π‘₯βˆ’ 𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯

βˆ’9𝑒4𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯βˆ’ 7𝑒2

π‘₯𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+140

3𝑒3𝑒3

π‘₯𝑒π‘₯π‘₯βˆ’20

3𝑒7𝑒π‘₯𝑒π‘₯π‘₯βˆ’28

3𝑒𝑒3

π‘₯𝑒π‘₯π‘₯π‘₯π‘₯

+𝑒𝑒2π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯+1

4𝑒𝑑𝑒3π‘₯+ 16𝑒𝑒2

π‘₯𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯+ 12𝑒3𝑒

π‘₯𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯+1

2𝑒π‘₯𝑒𝑑π‘₯π‘₯π‘₯π‘₯βˆ’ 2𝑒𝑒

π‘₯𝑒π‘₯π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯

βˆ’14𝑒2𝑒π‘₯𝑒π‘₯π‘₯𝑒π‘₯π‘₯π‘₯π‘₯βˆ’13

4𝑒2𝑒π‘₯𝑒𝑑π‘₯π‘₯βˆ’1

2𝑒2𝑒𝑑𝑒π‘₯π‘₯π‘₯+133

6𝑒6𝑒2π‘₯π‘₯+ 10𝑒4𝑒4

π‘₯βˆ’7

3𝑒2π‘₯𝑒𝑑π‘₯π‘₯

+𝑒𝑑𝑒2

π‘₯π‘₯βˆ’1

2𝑒π‘₯π‘₯𝑒𝑑π‘₯π‘₯π‘₯+1

2𝑒𝑑π‘₯π‘₯𝑒π‘₯π‘₯π‘₯βˆ’1

2𝑒𝑑π‘₯𝑒π‘₯π‘₯π‘₯π‘₯βˆ’ 𝑒𝑒π‘₯π‘₯𝑒𝑑π‘₯π‘₯+86

3𝑒𝑒π‘₯π‘₯𝑒4

π‘₯+ 14𝑒

2𝑒3

π‘₯𝑒π‘₯π‘₯π‘₯

+3𝑒π‘₯𝑒2

π‘₯π‘₯𝑒π‘₯π‘₯π‘₯βˆ’ 5𝑒𝑒

π‘₯𝑒3

π‘₯π‘₯+ 4𝑒2𝑒2

π‘₯π‘₯𝑒π‘₯π‘₯π‘₯+ 45𝑒

4𝑒π‘₯𝑒2

π‘₯π‘₯βˆ’ 3𝑒2𝑒π‘₯𝑒π‘₯π‘₯π‘₯+ 10𝑒

4𝑒2

π‘₯𝑒π‘₯π‘₯π‘₯

+67

2𝑒2𝑒2π‘₯𝑒2π‘₯π‘₯βˆ’3

2𝑒5𝑒𝑑π‘₯+3

2𝑒4𝑒𝑑𝑒π‘₯βˆ’1

4𝑒𝑒2π‘₯𝑒𝑑π‘₯+4

3𝑒7𝑒π‘₯π‘₯π‘₯π‘₯βˆ’20

3𝑒9𝑒π‘₯π‘₯

+15

4𝑒2𝑒𝑑π‘₯𝑒π‘₯π‘₯βˆ’35

6𝑒8𝑒2

π‘₯βˆ’1

2𝑒𝑒𝑑𝑑+1

2𝑒3𝑒𝑑π‘₯π‘₯π‘₯+5

9𝑒12 βˆ’1

2𝑒𝑒𝑑𝑒π‘₯𝑒π‘₯π‘₯+ 26𝑒

5𝑒2

π‘₯𝑒π‘₯π‘₯

+2

3𝑒6𝑒π‘₯𝑒π‘₯π‘₯π‘₯+ 𝑒π‘₯𝑒2π‘₯π‘₯π‘₯π‘₯+ 𝑒2𝑒2

π‘₯π‘₯π‘₯π‘₯βˆ’17

3𝑒3𝑒3π‘₯π‘₯+70

3𝑒2𝑒5π‘₯βˆ’70

9𝑒6𝑒3π‘₯βˆ’1

2𝑒2π‘₯𝑒2π‘₯π‘₯π‘₯

βˆ’1

2𝑒4𝑒2π‘₯π‘₯π‘₯+40

3𝑒3π‘₯𝑒2π‘₯π‘₯βˆ’2

3𝑒4π‘₯𝑒π‘₯π‘₯π‘₯+7

3𝑒π‘₯𝑒𝑑π‘₯𝑒π‘₯π‘₯

+14

5𝑒𝑑𝑒2𝑒2

π‘₯βˆ’4

3𝑒𝑑𝑒π‘₯𝑒π‘₯π‘₯π‘₯+2

3𝑒𝑒π‘₯𝑒𝑑π‘₯π‘₯π‘₯βˆ’14

5𝑒3𝑒π‘₯𝑒𝑑π‘₯

6 Mathematical Problems in Engineering

2.5. Modified Sawada-Kotera Equation. Consider the fifthorder modified SK equation:

𝑒𝑑= 𝑒π‘₯π‘₯π‘₯π‘₯π‘₯βˆ’ (5𝑒

π‘₯𝑒π‘₯π‘₯+ 5𝑒𝑒

2

π‘₯+ 5𝑒2𝑒π‘₯π‘₯βˆ’ 𝑒5)π‘₯. (16)

For PDE (16), two conserved densities were derived byfirst computing Lax pair (see [26]). The higher orderconservation laws fluxes exist for higher order multipliersand are not reported in [26]. Consider the multipliers ofform Ξ›(𝑑, π‘₯, 𝑒, 𝑒

𝑑, 𝑒π‘₯, 𝑒𝑑𝑑, 𝑒𝑑π‘₯, 𝑒π‘₯π‘₯, 𝑒π‘₯π‘₯π‘₯, 𝑒π‘₯π‘₯π‘₯π‘₯) in GeM rou-

tines, then it will yield two simple and three higher ordermultipliers not containing any arbitrary function.The simplemultipliers yield same fluxes as derived in [26], and threenew fluxes corresponding to higher order multipliers arecomputed. The multipliers and associated conserved vectorscomputed by first homotopy formula are listed in Table 3.

3. Conclusions

The conservation laws for the evolution equation, Benjaminequation, lubrication models, sinh-Poisson equation, Kaup-Kupershmidt equation, and modified Sawada-Kotera equa-tion were derived by using the symbolic software GeM.First of all, we considered the evolution equation, and thecommands for all GeMMaple routines, were explicitly given.The first order multipliers were defined in GeM Mapleroutines and threemultipliers were obtained.The expressionsfor fluxes were computed by direct method and first andsecond homotopy formulas and equivalent expressions forfluxes were obtained. The scaling symmetry method wasnot applicable here as no scaling symmetry exists for thenonlinear evolution equation. The conservation laws fluxesfor the lubrication models, sinh-Poisson equation, Kaup-Kupershmidt equation, and modified Sawada-Kotera equa-tion were derived by the first homotopy formula. For themodified Sawada-Kotera equation, three new fluxes werederived.

The fluxes derived here can be used in constructing thesolutions of underlying PDEs and will be considered in thefuture work.

Conflict of Interests

The authors declare that there is no conflict of interests.

References

[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear EvolutionEquations and Inverse Scattering, vol. 149 of London Mathemat-ical Society Lecture Note Series, Cambridge University Press,Cambridge, 1991.

[2] D. E. Baldwin and W. Hereman, β€œA symbolic algorithm forcomputing recursion operators of nonlinear partial differentialequations,” International Journal of Computer Mathematics, vol.87, no. 5, pp. 1094–1119, 2010.

[3] V. Drinfel’d and V. Sokolov, β€œLie algebras and equations ofKorteweg-de vries type,” Journal of Soviet Mathematics, vol. 30,no. 2, pp. 1975–2036, 1985.

[4] R. Naz, D. P. Mason, and F. M. Mahomed, β€œConservation lawsand conserved quantities for laminar two-dimensional and

radial jets,” Nonlinear Analysis, vol. 10, no. 5, pp. 2641–2651,2009.

[5] G. W. Bluman, A. F. Cheviakov, and S. C. Anco, Applications ofSymmetry Methods to Partial Differential Equations, vol. 168 ofApplied Mathematical Sciences, Springer, New York, NY, USA,1st edition, 2010.

[6] R. Naz, Symmetry solutions and conservation laws for some par-tial differ-ential equations in fluidmechanics [Ph.D. dissertation],University of the Witwatersrand, Johannesburg, South Africa,2008.

[7] R. Naz, F. M. Mahomed, and D. P. Mason, β€œComparison ofdifferent approaches to conservation laws for some partialdifferential equations in fluid mechanics,” Applied Mathematicsand Computation, vol. 205, no. 1, pp. 212–230, 2008.

[8] U. Goktas and W. Hereman, β€œSymbolic computation of con-served densities for systems of nonlinear evolution equations,”Journal of Symbolic Computation, vol. 24, no. 5, pp. 591–621, 1997.

[9] T. Wolf, A. Brand, and M. Mohammadzadeh, β€œComputeralgebra algorithms and routines for the computation of con-servation laws and fixing of gauge in differential expressions,”Journal of Symbolic Computation, vol. 27, no. 2, pp. 221–238,1999.

[10] T. Wolf, β€œA comparison of four approaches to the calculation ofconservation laws,” European Journal of Applied Mathematics,vol. 13, no. 2, pp. 129–152, 2002.

[11] T. Wolf, β€œCrack, LiePDE, ApplySym and ConLaw. section 4.3.5and computer programon CD-ROM,” in Computer AlgebraHandbook, J. Grabmeier, E. Kaltofen, andV.Weispfenning, Eds.,pp. 465–468, Springer, Berlin, Germany, 2002.

[12] P. J. Adams and W. Hereman, TransPDEDensityFlux.m: Sym-bolic computation of conserved densities and fluxes for systemsof partial differential equations with transcendental nonlinear-ities, Scientific Software, 2002, http://inside.mines.edu/.

[13] A. F. Cheviakov, β€œGeM software package for computation ofsymmetries and conservation laws of differential equations,”Computer Physics Communications, vol. 176, no. 1, pp. 48–61,2007.

[14] A. F. Cheviakov, β€œComputation of fluxes of conservation laws,”Journal of EngineeringMathematics, vol. 66, no. 1–3, pp. 153–173,2010.

[15] I. M. Anderson and E. S. Cheb-Terrab, Differential geome-try package, Maple Online Help, 2009, http://www.maplesoft.com/support/help/view.aspx?sid=26040.

[16] L. D. Poole and W. Hereman, β€œConservationLawsMD.m: amathematica package for the symbolic computation of conser-vation laws of polynomial systems of nonlinear PDEs in mul-tiple space dimensions,” scientific software, 2009, http://inside.mines.edu/∼whereman/.

[17] T. M. Rocha Filho and A. Figueiredo, β€œ[SADE] aMaple packagefor the symmetry analysis of differential equations,” ComputerPhysics Communications, vol. 182, no. 2, pp. 467–476, 2011.

[18] S. C. Anco andG. Bluman, β€œDirect construction of conservationlaws from field equations,” Physical Review Letters, vol. 78, no.15, pp. 2869–2873, 1997.

[19] S. C. Anco and G. Bluman, β€œDirect construction method forconservation laws of partial differential equations. II: generaltreatment,”European Journal of AppliedMathematics, vol. 13, no.5, pp. 567–585, 2002.

[20] W. Hereman, M. Colagrosso, R. Sayers et al., β€œContinuous anddiscrete homotopy operators and the computation of conserva-tion laws,” inDifferential Equations with Symbolic Computation,D. Wang and Z. Zheng, Eds., pp. 249–285, Birkhauser, 2005.

Mathematical Problems in Engineering 7

[21] S. C. Anco, β€œConservation laws of scaling-invariant field equa-tions,” Journal of Physics, vol. 36, no. 32, pp. 8623–8638, 2003.

[22] C. Bai, β€œExact solutions for nonlinear partial differential equa-tion: a new approach,” Physics Letters A, vol. 288, no. 3-4, pp.191–195, 2001.

[23] M. L. Gandarias and E.Medina, β€œAnalysis of a lubricationmodelthrough symmetry reductions,” Europhysics Letters, vol. 55, no.2, pp. 143–149, 2001.

[24] A. H. Khater, W. Malfliet, D. K. Callebaut, and E. S. Kamel,β€œTravelling wave solutions of some classes of nonlinear evolu-tion equations in (1 + 1) and (2 + 1) dimensions,” Journal ofComputational and Applied Mathematics, vol. 140, no. 1-2, pp.469–477, 2002.

[25] V. P. Gomes Neto, β€œFifth-order evolution equations describingpseudospherical surfaces,” Journal of Differential Equations, vol.249, no. 11, pp. 2822–2865, 2010.

[26] H. Guoliang and G. Xian-Guo, β€œAn extension of the modi-fied Sawada-Kotera equation and conservation laws,” ChinesePhysics B, vol. 21, no. 7, Article ID 070205, 2012.

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of