Accretion of juvenile crust at the Early Palaeozoic Antarctic margin of Gondwana: geochemical and...

11
Accretion of juvenile crust at the Early Palaeozoic Antarctic margin of Gondwana: geochemical and geochronological evidence from granulite xenoliths M. Gemelli, 1 S. Rocchi, 1 G. Di Vincenzo 2 and M. Petrelli 3 1 Dipartimento di Scienze della Terra, Universita ` di Pisa, Via S.Maria 53, 56126 Pisa, Italy; 2 Istituto di Geoscienze e Georisorse, CNR, Via Moruzzi 1, 56127 Pisa, Italy; 3 Dipartimento di Scienze della Terra, Universita ` di Perugia, P.zza Universita `, 06123 Perugia, Italy Introduction For ancient active margins, petrolog- ical evidence on the nature of the intermediate-lower crust can be gath- ered from either granulite terrains or deep-seated xenoliths in volcanic rocks (e.g. Downes and Leyreloup, 1986; Al-Mishvat and Nasir, 2004). The temporal evolution of the deep crust is mostly constrained by geo- chronological data on xenolith whole rocks, as ion- or laser-probe mineral data are still scarce (e.g. Boger et al., 2006). A key to the geodynamic interpre- tation of the Early Palaeozoic Antarc- tic margin in Victoria Land (Fig. 1a) is the nature and age of the deep crust of the Robertson Bay terrane, the marginÕs outermost lithotectonic (Weaver et al., 1984). A number of hypotheses have been formulated on the kinematics and dynamics of jux- taposition accretion of fault-bounded lithotectonic units (Stump, 1995) and includes a variable number of sub- ducting plates with varied dip direc- tion (Weaver et al., 1984; Kleinschmidt and Tessensohn, 1987). In these models, a key role is invari- ably played by the Robertson Bay terrane, which is covered with thick turbidite sequences that hide the underlying crust. This terrane has been considered as being either (i) an exotic continental block, based on petrological investigations on Devo- nian granites (Borg and DePaolo, 1991), or (ii) of an oceanic outboard nature, based on aeromagnetic studies (Finn et al., 1999), or as (iii) an ocean ridge-arc-backarc, based on prelimin- ary petrological investigations on crustal xenoliths from a single locality (Berg and Wu, 1992). To collect direct evidence on the nature and age of the deep crust in this convergent setting, we integrated whole-rock geochemical data with zircon spot U–Pb geochro- nological investigations on granulite xenoliths. Geological setting The studied xenoliths are found in the products of the Cenozoic plutonic– volcanic alkaline province of the West Antarctic rift (Le Masurier and Thomson, 1990; Rocchi et al., 2002). Cretaceous–Cenozoic rift activity led to the uplift of the Transantarctic Mountains (Fitzgerald and Stump, 1997) (Fig. 1a), which represent the roots of the Palaeozoic Ross Orogen. This Orogen and its northward con- tinuation in Australia (Delamerian Orogen) are linked to the Early Palaeozoic convergence between the palaeo-Pacific oceanic plate and the Antarctic-Australian Gondwana mar- gin (Stump, 1995). In Victoria Land, convergence resulted in the colli- sional–accretional assembly of three fault-bounded lithotectonic units, the Wilson, Bowers and Robertson Bay terranes (Fig. 1b), whose nature is still a matter of debate (Weaver et al., 1984; Borg et al., 1987; Kleinschmidt and Tessensohn, 1987; Rocchi et al., 1998; Finn et al., 1999; Goodge, 2002; Tessensohn and Henjes-Kunst, 2005; Federico et al., 2006). The Wilson terrane consists of both polydeformed metamorphic rocks (Kleinschmidt and Tessensohn, 1987) and granulite remnants (Talarico et al., 1995) intruded by calcalkaline tonalites, potassic granites and bi- modal peraluminous-lamprophyric dykes between c. 530 and 490– 480 Ma (Borg et al., 1987; Di Vince- nzo and Rocchi, 1999; Goodge, 2002; Rocchi et al., 2004; Bomparola et al., 2007). Amphibolite- to greenschist- facies regional metamorphism in the Lanterman Range (Fig. 1b) occurred at c. 490–480 Ma, slightly after the c. 500 Ma eclogite metamorphism (Goodge and Dallmeyer, 1996; Di Vincenzo et al., 1997; Di Vincenzo and Palmeri, 2001). The Bowers terrane consists of Middle–Late Cambrian magmatic arc volcanic–vol- caniclastic rocks (Weaver et al., 1984; Stump, 1995) showing metamorphic overprint of variable intensity (Cri- spini et al., 2007). ABSTRACT Geodynamic models for the Antarctic sector of the active Early Palaeozoic Palaeo-Pacific margin of Gondwana are based on the nature and age of the deep crust of the Robertson Bay terrane, the outermost lithotectonic unit of the margin. As this crustal block is covered with thick turbidite deposits, the only way to probe the deep crust is through the analysis of granulite xenoliths from Cenozoic scoria cones. Low-K felsic xenoliths yield the oldest (Middle Cambrian) laser-probe U–Pb ages on zircon areas with igneous growth zoning. This finding, along with the positive whole-rock e Nd(500Ma) , suggests that these felsic rocks derived from a juvenile magma formed during the Early Palaeozoic Ross orogenic cycle. Mafic xenoliths have geochemical-isotopic compositions similar to those of modern primitive island arcs, suggesting the involvement of subducted oceanic crust in their magma genesis and accretion of juvenile crust at the Antarctic margin of Gondwana. Terra Nova, 21, 151–161, 2009 Correspondence: Maurizio Gemelli, Dipar- timento di Scienze della Terra, Universita` di Pisa, Via S.Maria 53, 56126 Pisa, Italy. Tel.: +390502215796; fax: +3905022158 00; e-mail: [email protected] Ó 2009 Blackwell Publishing Ltd 151 doi: 10.1111/j.1365-3121.2009.00868.x

Transcript of Accretion of juvenile crust at the Early Palaeozoic Antarctic margin of Gondwana: geochemical and...

Accretion of juvenile crust at the Early Palaeozoic Antarcticmargin of Gondwana: geochemical and geochronologicalevidence from granulite xenoliths

M. Gemelli,1 S. Rocchi,1 G. Di Vincenzo2 and M. Petrelli31Dipartimento di Scienze della Terra, Universita di Pisa, Via S.Maria 53, 56126 Pisa, Italy; 2Istituto di Geoscienze e Georisorse, CNR, Via

Moruzzi 1, 56127 Pisa, Italy; 3Dipartimento di Scienze della Terra, Universita di Perugia, P.zza Universita, 06123 Perugia, Italy

Introduction

For ancient active margins, petrolog-ical evidence on the nature of theintermediate-lower crust can be gath-ered from either granulite terrains ordeep-seated xenoliths in volcanicrocks (e.g. Downes and Leyreloup,1986; Al-Mishvat and Nasir, 2004).The temporal evolution of the deepcrust is mostly constrained by geo-chronological data on xenolith wholerocks, as ion- or laser-probe mineraldata are still scarce (e.g. Boger et al.,2006).A key to the geodynamic interpre-

tation of the Early Palaeozoic Antarc-tic margin in Victoria Land (Fig. 1a)is the nature and age of the deep crustof the Robertson Bay terrane, themargin�s outermost lithotectonic(Weaver et al., 1984). A number ofhypotheses have been formulated onthe kinematics and dynamics of jux-taposition ⁄accretion of fault-boundedlithotectonic units (Stump, 1995) andincludes a variable number of sub-ducting plates with varied dip direc-tion (Weaver et al., 1984;Kleinschmidt and Tessensohn, 1987).In these models, a key role is invari-ably played by the Robertson Bay

terrane, which is covered with thickturbidite sequences that hide theunderlying crust. This terrane hasbeen considered as being either (i) anexotic continental block, based onpetrological investigations on Devo-nian granites (Borg and DePaolo,1991), or (ii) of an oceanic outboardnature, based on aeromagnetic studies(Finn et al., 1999), or as (iii) an oceanridge-arc-backarc, based on prelimin-ary petrological investigations oncrustal xenoliths from a single locality(Berg and Wu, 1992). To collect directevidence on the nature and age of thedeep crust in this convergent setting,we integrated whole-rock geochemicaldata with zircon spot U–Pb geochro-nological investigations on granulitexenoliths.

Geological setting

The studied xenoliths are found in theproducts of the Cenozoic plutonic–volcanic alkaline province of the WestAntarctic rift (Le Masurier andThomson, 1990; Rocchi et al., 2002).Cretaceous–Cenozoic rift activity ledto the uplift of the TransantarcticMountains (Fitzgerald and Stump,1997) (Fig. 1a), which represent theroots of the Palaeozoic Ross Orogen.This Orogen and its northward con-tinuation in Australia (DelamerianOrogen) are linked to the EarlyPalaeozoic convergence between thepalaeo-Pacific oceanic plate and the

Antarctic-Australian Gondwana mar-gin (Stump, 1995). In Victoria Land,convergence resulted in the colli-sional–accretional assembly of threefault-bounded lithotectonic units, theWilson, Bowers and Robertson Bayterranes (Fig. 1b), whose nature is stilla matter of debate (Weaver et al.,1984; Borg et al., 1987; Kleinschmidtand Tessensohn, 1987; Rocchi et al.,1998; Finn et al., 1999; Goodge, 2002;Tessensohn and Henjes-Kunst, 2005;Federico et al., 2006).The Wilson terrane consists of both

polydeformed metamorphic rocks(Kleinschmidt and Tessensohn, 1987)and granulite remnants (Talaricoet al., 1995) intruded by calcalkalinetonalites, potassic granites and bi-modal peraluminous-lamprophyricdykes between c. 530 and 490–480 Ma (Borg et al., 1987; Di Vince-nzo and Rocchi, 1999; Goodge, 2002;Rocchi et al., 2004; Bomparola et al.,2007). Amphibolite- to greenschist-facies regional metamorphism in theLanterman Range (Fig. 1b) occurredat c. 490–480 Ma, slightly after the c.500 Ma eclogite metamorphism(Goodge and Dallmeyer, 1996; DiVincenzo et al., 1997; Di Vincenzoand Palmeri, 2001). The Bowersterrane consists of Middle–LateCambrian magmatic arc volcanic–vol-caniclastic rocks (Weaver et al., 1984;Stump, 1995) showing metamorphicoverprint of variable intensity (Cri-spini et al., 2007).

ABSTRACT

Geodynamic models for the Antarctic sector of the active EarlyPalaeozoic Palaeo-Pacific margin of Gondwana are based on thenature and age of the deep crust of the Robertson Bay terrane,the outermost lithotectonic unit of the margin. As this crustalblock is covered with thick turbidite deposits, the only way toprobe the deep crust is through the analysis of granulitexenoliths from Cenozoic scoria cones. Low-K felsic xenolithsyield the oldest (Middle Cambrian) laser-probe U–Pb ages onzircon areas with igneous growth zoning. This finding, along

with the positive whole-rock eNd(500Ma), suggests that thesefelsic rocks derived from a juvenile magma formed during theEarly Palaeozoic Ross orogenic cycle. Mafic xenoliths havegeochemical-isotopic compositions similar to those of modernprimitive island arcs, suggesting the involvement of subductedoceanic crust in their magma genesis and accretion of juvenilecrust at the Antarctic margin of Gondwana.

Terra Nova, 21, 151–161, 2009

Correspondence: Maurizio Gemelli, Dipar-

timento di Scienze della Terra, Universita

di Pisa, Via S.Maria 53, 56126 Pisa, Italy.

Tel.: +390502215796; fax: +3905022158

00; e-mail: [email protected]

� 2009 Blackwell Publishing Ltd 151

doi: 10.1111/j.1365-3121.2009.00868.x

The Robertson Bay terrane is a40 000 km2-wide crustal sector cov-ered with a thick, folded series ofslightly metamorphosed turbiditicgreywackes and mudstones (Borget al., 1987; Rossetti et al., 2006)intruded by the Middle–Late Devo-nian Admiralty granites (Fiorettiet al., 1997). Based on palaeontologi-cal (Tessensohn and Henjes-Kunst,2005) and geochronological (Henjes-Kunst, 2003) constraints, deformationin both the Bowers and RobertsonBay terranes occurred later than490–485 Ma. A continental sourcehas been suggested for the RobertsonBay turbidites (Stump, 1995; Rolandet al., 2004), whereas the nature of

the underlying basement (whethercontinental or oceanic) remains un-known.

Geochemical and geochronologicalconstraints

Petrography and geochemistry

Crustal xenoliths are known fromseveral Cenozoic volcanoes of theWest Antarctic rift (Berg et al.,1989; Wysoczanski et al., 1995). Innorthern Victoria Land, crustal xeno-liths were found as 2- to 20-cm-sizedcores to bombs (Fig. 2a,b) in scoriacones of the coastal Adare (Bergand Wu, 1992), Hallett and Daniell

peninsulas, as well as up to 200 kmsouth-westward, inland of the Victoryand Admiralty mountains (Fig. 1b).The xenolith population includesdominant felsic and mafic, mostlygranulitic types, along with minoralkaline cumulates (most likely Ceno-zoic, not relevant to this study;Table 1). Although the mineralogicalassemblage of these xenoliths ham-pers geobarometric estimates, theirgranulitic nature, temperature esti-mates of 730–830 �C (two-pyroxenegeothermometer: Brey and Koheler,1990), and the lack of olivine in maficsamples indicate that they are repre-sentative of an intermediate-deepcrust.Felsic granulites are the most com-

mon type of xenoliths (Fig. 2a); theyare usually medium- to coarse-grained granoblastic and show localductile deformation features (Fig. 2c).The mineral assemblage consists ofplagioclase (An7–19), quartz, ortho-pyroxene (Mg# = 0.37–0.57) andK-feldspar, along with rare apatiteand zircon. These granulites are SiO2-rich (64–77 wt%, Table 1) and K2O-poor (0.4–1.6 wt%). Rare earthelement (REE) patterns (Fig. 3a) aremoderately fractionated. The onlyexception is sample DS4A ⁄6, whichshows heavy REE enrichment likelyrelated to zircon cumulates occurringas large scattered crystals. REEenrichment levels are variable andcorrelate negatively with Eu ⁄Eu*(Fig. 3a), which is in turn positivelycorrelated with Sr ⁄Ce, Al2O3 andCaO. These relationships suggest theoccurrence of plagioclase cumulus insamples with the lowest REE con-tents. The REE patterns most likelyrepresentative of igneous melts arethus those with a negligible Euanomaly, like those of island arcrhyolites (Lai et al., 2000). Relation-ships among incompatible elements,when compared with those of gran-ites from various tectonic settings,also best match those of low-K tho-leiitic oceanic arcs (Fig. 4). One sam-ple shows a REE distribution(Fig. 3b) resembling those of somemetasedimentary xenoliths (Downesand Leyreloup, 1986; Sachs andHansteen, 2000). A few felsic xeno-liths contain K-feldspar as large (upto 1 cm) subhedral microcline crys-tals, in a typical hypidiomorphicgranitic texture (Fig. 2d). One gra-

(a)

(b)

Fig. 1 (a) Location map for the Transantarctic Mountains and Victoria Land with anEarly Palaeozoic reconstruction of Antarctica-Australia-Tasmania; the DelamerianOrogen includes Adelaidean successions. (b) Northern Victoria Land portion of theAntarctic margin of Gondwana and its constituent fault-bounded (thin dashed lines)lithotectonic units. The thick dashed line delimits the approximate area of theCambrian primitive island arc inferred in this work; Devonian Admiralty granitesfrom this area are characterized by high eNd values (Borg et al., 1987). West of thearc, the low eNd values of Devonian granites indicate that the continental crust wassignificantly involved in their genesis. The eNd values for the Admiralty granites(stars) reported in the ellipse are recalculated at an age of 500 Ma to allowcomparison between their hypothetical crustal source and the studied crustalxenoliths.

Granulite xenoliths from Gondwana Antarctic margin • M. Gemelli et al. Terra Nova, Vol 21, No. 3, 151–161

.............................................................................................................................................................

152 � 2009 Blackwell Publishing Ltd

Fig. 2 Photographs and microphotographs of granulite xenolith samples: (a) felsic xenoliths found as volcanic bomb cores;(b) mafic xenoliths with a crust of host volcanic scoria; (c) felsic xenolith with local ductile deformation features (mortar textureand quartz ribbons); (d) felsic xenolith with subhedral microcline crystal; (e) mafic xenolith from Cape McCormick; (f) maficxenolith from Nameless Glacier. It is worth noting that within a few of the felsic xenoliths, thin glass veins rich in clinopyroxeneand plagioclase crystals occur as infiltrations connected to the basaltic material of the host bomb. The xenolith portions affected bythese veins were discarded during sample preparation for whole-rock chemical analyses. The intergranular, colourless to paleyellow, subaphiric glass films present in some felsic xenoliths probably derive from partial melting during xenolith ascent.

Terra Nova, Vol 21, No. 3, 151–161 M. Gemelli et al. • Granulite xenoliths from Gondwana Antarctic margin

.............................................................................................................................................................

� 2009 Blackwell Publishing Ltd 153

Tab

le1

Majorandtrace

elem

ents.

Loca

liti

es

Fels

icxe

no

lith

sM

afic

xen

oli

ths

Alk

alin

exe

no

lith

sH

ost

lava

26

.01

.02

DS

4A

⁄7C

MC

26

.01

.02

DS

4A

⁄29

CM

C

26

.01

.02

DS

4A

⁄2C

MC

26

.01

.02

DS

4A

⁄6C

MC

26

.01

.02

DS

4A

⁄3C

MC

18

.01

.02

DS

1A

⁄1R

R

23

.01

.02

DS

16

MB

26

.01

.02

DS

4A

⁄34

CM

C

27

.01

.02

DS

15

⁄1N

G

27

.01

.02

DS

15

⁄2N

G

27

.01

.02

DS

15

⁄4N

G

26

.01

.02

DS

4B

⁄1C

MC

26

.01

.02

DS

4B

⁄2C

MC

26

.01

.02

DS

4B

⁄3C

MC

27

.01

.02

DS

13

⁄7N

G

18

.01

.02

DS

1C

⁄1R

R

11

.01

.02

DS

13

AP

SiO

275

.63

72.4

074

.37

73.2

475

.60

72.4

277

.16

63.9

446

.86

50.1

147

.85

45.4

950

.19

50.0

662

.07

36.8

342

.04

TiO

20.

250.

460.

240.

320.

220.

160.

390.

610.

471.

140.

480.

870.

800.

550.

203.

983.

49

Al 2

O3

12.0

313

.66

12.6

112

.96

12.8

114

.73

7.68

16.7

624

.63

24.6

919

.74

13.5

313

.38

16.1

718

.82

17.3

314

.37

Fe2O

3T

3.25

3.38

3.32

4.52

3.41

1.64

6.16

5.03

4.50

4.48

6.10

16.7

013

.50

11.8

14.

1814

.09

12.5

9

MnO

0.07

0.04

0.10

0.12

0.10

0.04

0.09

0.08

0.06

0.05

0.08

0.25

0.26

0.23

0.13

0.15

0.22

MgO

0.44

1.06

0.36

1.35

0.30

0.56

4.12

2.75

6.28

2.44

7.63

8.09

6.94

6.56

0.27

5.38

7.99

CaO

1.85

3.48

1.46

2.31

1.46

1.35

1.90

5.56

14.5

611

.32

14.1

011

.24

10.8

410

.05

1.67

14.2

410

.39

Na 2

O4.

164.

304.

664.

134.

753.

210.

583.

831.

863.

931.

752.

542.

783.

336.

012.

534.

41

K2O

0.88

0.36

1.59

0.39

1.64

4.58

0.32

0.37

0.07

0.40

0.37

0.24

0.30

0.29

5.23

0.51

2.00

P 2O

50.

060.

090.

040.

040.

040.

110.

040.

110.

040.

100.

060.

060.

120.

080.

101.

560.

87

Tota

l10

0.35

100.

4599

.36

99.8

010

1.02

100.

9410

0.79

99.2

599

.93

99.8

299

.27

98.8

299

.15

99.6

499

.67

97.2

198

.71

L.O

.I.1.

731.

220.

610.

420.

692.

142.

350.

210.

601.

161.

11-0

.19

0.04

0.51

0.99

0.61

0.34

Be

1.66

<d.

l.1.

580.

295

1.66

60.

37<

d.l.

0.35

0.34

0.19

10.

286

1.15

0.44

0.43

0.79

3.06

Sc4.

3<

d.l.

6.6

14.0

6.8

<d.

l.17

.5<

d.l.

14.6

10.6

22.2

6052

22.8

1.03

15.2

22.9

V8.

439

4.7

30.7

3.5

15.0

113

8680

105

156

504

287

123

19.4

287

239

Cr

8.1

<d.

l.0.

972.

370.

50<

d.l.

274

<d.

l.10

84.

344

615

210

510

.82.

050.

6012

6

Co

3.15

8.5

2.37

6.7

1.59

2.40

19.0

16.4

26.2

16.4

3563

4322

.63.

3338

45

Ni

13.7

9.4

5.7

5.4

4.9

1.50

866.

980

10.3

126

115

4914

.61.

439.

211

9

Cu

18.6

4330

.214

.227

.97

3529

.514

.114

.322

.128

.838

14.0

12.0

9747

Ga

13.6

11.4

14.4

12.0

14.8

16.2

8.3

17.3

12.3

18.7

13.9

14.9

15.0

9.7

22.0

21.0

20.3

Rb

7.5

2.90

25.1

2.93

26.2

269

1.99

7.6

3.9

1.29

1.48

2.28

3.5

3.9

965.

052

Sr63

8476

108

7279

100

185

549

1148

622

262

138

115

258

1771

1285

Y13

.94.

622

.537

25.7

21.9

31.2

3.6

4.2

3.8

5.6

20.0

26.9

9.8

6.9

3540

Zr18

215

220

814

921

112

135

15.9

1733

2311

275

148

161

391

Nb

3.29

2.90

4.4

2.91

4.7

16.5

8.4

5.7

1.23

3.16

1.31

3.8

5.6

1.54

18.0

4913

7

Cs

0.05

90.

204

0.07

20.

159

0.08

921

.00.

047

0.60

0.22

10.

017

0.01

90.

049

0.04

70.

112

0.09

90.

092

0.69

Ba

236

115

422

9643

454

722

342

3613

844

8246

27.0

702

283

715

La14

.45.

518

.16.

618

.633

3.6

5.3

2.35

4.6

2.77

5.0

5.6

2.27

3657

92

Ce

25.7

10.3

3413

.137

704.

79.

84.

98.

66.

110

.914

.05.

657

126

180

Pr2.

911.

183.

91.

604.

37.

60.

461.

100.

651.

060.

851.

382.

070.

855.

416

.520

.3

Nd

11.3

5.2

15.2

6.6

17.2

25.5

1.87

4.1

2.95

4.5

4.1

5.9

9.6

4.1

18.1

7077

Sm2.

320.

943.

201.

313.

84.

80.

720.

750.

771.

001.

151.

652.

861.

142.

6713

.113

.3

Eu0.

900.

881.

011.

161.

040.

520.

780.

540.

381.

060.

560.

830.

940.

481.

154.

24.

2

Gd

2.19

0.99

3.33

1.58

3.9

4.2

2.36

0.66

0.81

0.92

1.18

2.26

3.5

1.37

1.96

10.5

10.5

Tb0.

360.

152

0.55

0.42

0.64

0.72

0.60

0.11

00.

134

0.14

10.

191

0.44

0.67

0.24

70.

264

1.46

1.51

Dy

2.22

0.87

3.4

4.1

4.1

3.8

4.6

0.61

0.75

0.78

1.10

3.14

4.4

1.61

1.35

7.4

7.9

Ho

0.50

0.17

20.

801.

300.

910.

731.

070.

131

0.14

50.

150.

216

0.74

0.97

0.36

0.25

81.

311.

49

Er1.

370.

472.

475.

02.

722.

113.

190.

370.

350.

360.

502.

112.

831.

010.

672.

973.

6

Tm0.

205

0.08

10.

380.

990.

410.

320.

520.

062

0.04

80.

046

0.07

10.

323

0.44

0.15

20.

105

0.38

0.51

Granulite xenoliths from Gondwana Antarctic margin • M. Gemelli et al. Terra Nova, Vol 21, No. 3, 151–161

.............................................................................................................................................................

154 � 2009 Blackwell Publishing Ltd

nitic-textured xenolith has the highestK2O content (4.6 wt%) and a distri-bution of REE (Fig. 3b) and incom-patible elements (Fig. 5) typical ofgranites from the continental crust.Mafic granulite xenoliths (Fig. 2b)

show a medium- to coarse-grained,granoblastic to polygonal texture(Fig. 2e,f) and mostly consist oforthopyroxene (Mg# = 0.53–0.57),clinopyroxene (Mg# = 0.53–0.70)and plagioclase (An44-63), with acces-sory apatite, magnetite and ilmenite.The basic composition (SiO2 = 45.5–50.2 wt.%) and N-MORB normal-ized incompatible trace element dis-tribution of these xenoliths (Fig. 5)are similar to those of modern oce-anic-arc basalts (Pearce et al., 1995)and show a low-K tholeiitic (CapeMcCormick samples) to calcalkaline(Nameless Glacier) affinity. Traceelement distributions compared to afertile MORB mantle composition(Fig. 6) are very similar to those ofPacific island arcs such as Vanuatuand Marianas (Cape McCormicksamples) or Tonga (Nameless Gla-cier). Trace element distributionssimilar to those of primitive islandarcs are likewise found in oceanicridge segments at small distancesfrom subduction systems (e.g. SouthSandwich island arc-oceanic ridge,Leat et al., 2004; Fig. 7). Theseobservations suggest that the mag-mas associated with the mafic xeno-liths may have been generated in aprimitive island arc or in an oceanicridge setting linked to active subduc-tion.

U–Pb zircon geochronology

Only two low-K felsic granulite xeno-liths yielded zircon separates in suffi-cient quantity for study.Cathodoluminescence imaging re-vealed complex structures (Fig. 8),with internal areas characterized bymore or less well-defined oscillatoryzoning surrounded by either oscilla-tory-zoned or featureless light greyrims up to �50 lm in thickness. Thelatter are locally connected to theinner portions of crystals through anetwork of microveins.Within-error U–Pb concordant

data (Table S1) collected by laser-ablation-inductively coupled plasma-mass spectrometry (methods inTable S1 and Alagna et al., 2008)Ta

ble

1(Continued)

Loca

liti

es

Fels

icxe

no

lith

sM

afic

xen

oli

ths

Alk

alin

exe

no

lith

sH

ost

lava

26

.01

.02

DS

4A

⁄7C

MC

26

.01

.02

DS

4A

⁄29

CM

C

26

.01

.02

DS

4A

⁄2C

MC

26

.01

.02

DS

4A

⁄6C

MC

26

.01

.02

DS

4A

⁄3C

MC

18

.01

.02

DS

1A

⁄1R

R

23

.01

.02

DS

16

MB

26

.01

.02

DS

4A

⁄34

CM

C

27

.01

.02

DS

15

⁄1N

G

27

.01

.02

DS

15

⁄2N

G

27

.01

.02

DS

15

⁄4N

G

26

.01

.02

DS

4B

⁄1C

MC

26

.01

.02

DS

4B

⁄2C

MC

26

.01

.02

DS

4B

⁄3C

MC

27

.01

.02

DS

13

⁄7N

G

18

.01

.02

DS

1C

⁄1R

R

11

.01

.02

DS

13

AP

Yb

1.32

0.54

2.60

6.8

2.79

2.08

3.27

0.42

0.29

00.

268

0.40

2.10

2.80

0.97

0.70

2.14

2.96

Lu0.

212

0.09

10.

441.

070.

450.

310.

480.

071

0.04

10.

034

0.05

20.

311

0.41

0.14

40.

118

0.28

60.

41

Ta0.

172

<d.

l.0.

231

0.13

00.

241

2.31

0.44

0.30

0.11

80.

235

0.08

30.

164

0.35

0.08

51.

153.

108.

5

Tl0.

060

<d.

l.0.

033

0.04

70.

030.

200

0.25

1<

d.l.

0.02

80.

013

0.00

20.

018

0.00

50.

009

0.05

90.

015

0.03

4

Pb12

.41.

8028

.54.

328

.64.

32.

880.

600.

910.

861.

350.

903.

418

.75.

61.

393.

9

Th0.

440.

208

0.34

0.05

40.

261

230.

191

0.51

0.14

00.

148

0.17

40.

183

0.34

0.06

13.

291.

9510

.6

U0.

154

0.10

50.

510.

153

0.50

3.1

0.05

90.

104

0.29

20.

111

0.08

70.

058

0.12

50.

058

0.87

0.56

3.00

Maj

orel

emen

tsw

ere

dete

rmin

edon

fuse

ddi

scs

via

stan

dard

XR

Fat

Dip

artim

ento

diSc

ienz

ede

llaTe

rra,

Uni

vers

ityof

Pisa

,usi

ngan

AR

L94

00X

P+sp

ectr

omet

er,f

ollo

win

gTa

mpo

niet

al.(

2003

).Lo

sson

igni

tion

was

dete

rmin

ed

bygr

avim

etry

at10

00�C

afte

rpr

e-he

atin

gat

110

�C.T

race

elem

ents

wer

ede

term

ined

for

sele

cted

sam

ples

atD

ipar

timen

todi

Scie

nze

della

Terr

a,U

nive

rsity

ofPi

saby

stan

dard

nebu

lizat

ion

ICP-

MS

(Fis

ons

PQ2

Plus

�)

follo

win

g

the

proc

edur

ede

scrib

edin

D�O

razi

o(1

995)

and

Roc

chi

etal

.(2

002)

.<

d.l.:

belo

wde

tect

ion

limit.

Loca

lity

abbr

evia

tions

:(C

MC

)C

ape

McC

orm

ick,

(NG

)N

amel

ess

Gla

cier

,(R

R)

Red

cast

leR

idge

,(M

B)

Mt.

Bur

ton,

(AP)

Ada

re

Peni

nsul

a.

Terra Nova, Vol 21, No. 3, 151–161 M. Gemelli et al. • Granulite xenoliths from Gondwana Antarctic margin

.............................................................................................................................................................

� 2009 Blackwell Publishing Ltd 155

yielded comparable 206Pb ⁄ 238U agepatterns for the two samples: coreand rim areas characterized by vari-ably well-defined growth zoning sys-tematically yielded the oldest ages (inthe range 520–460 Ma; Figs 8 and 9),whereas featureless rims and internallight-coloured microveins yieldedyounger ages clustering c. 370–350 Ma (Figs 8 and 9). This agepattern could be ascribed to a pre-Ross origin, followed by Ross-agegranulite facies metamorphism andsubsequent Devonian reworking.However, the lack of pre-Ross agessuggests that the zircon age patternresults from the magmatic origin ofthese felsic rocks during the Rossorogenic cycle, followed by granulitefacies metamorphism during the Rosscycle itself and final reworking duringDevonian intrusive activity. A similartwo-stage magmatic-granulitizationprocess in a supra-subduction zonesetting during a single subductioncycle has been documented for zirconsin Cenozoic granulites from Japan(Kemp et al., 2007).

Sm–Nd isotope data

Initial eNd values for felsic sampleswere calculated to 500 Ma on thebasis of U–Pb data (Table 2). Maficsamples were assumed to have thesame initial crystallization age, be-cause comparable Nd isotopic com-positions were found for EarlyPalaeozoic igneous rocks only. Boththe Devonian Admiralty Intrusives(Borg et al., 1987) and the JurassicFerrar basalts (Hergt et al., 1991;Antonini et al., 1999) exhibit signifi-cantly lower initial eNd values,whereas Cenozoic alkaline basaltshave higher values and different geo-chemical features (Rocchi et al.,2002).The two mafic xenoliths from

Cape McCormick and NamelessGlacier yield eNd(500Ma) values(1.5–5.6) that are much higher thanthose typical of old continentalcrusts, thereby indicating their man-tle origin. However, the fact thateNd(500Ma) values are definitely lowerthat those of a Depleted Mantle at500 Ma (DePaolo et al., 1991) sug-gests the involvement of a subduc-tion component. The two low-Kfelsic granulites from Cape McCor-mick used for U–Pb zircon dating

DS 4A/6 26.01.02DS 4A/7 26.01.02DS 4A/2 26.01.02DS 4A/3 26.01.02DS 4A/34 26.01.02DS 4A/29 26.01.02

Roc

k/ch

ondr

ite

1000(a)

(b)

100

10

1

100

10

1

0.1

Roc

k/ch

ondr

ite

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

DS 16 23.01.02DS 1A/1 18.01.02

Fig. 3 Rare earth element (REE) patterns of felsic granulite xenoliths normalized tochondrite values. Normalization factors after Sun and McDonough, 1989. In the text,the Eu anomaly is described by the ratio Eu ⁄Eu* = Eun ⁄ (Smn*Gdn)

1 ⁄ 2.

0.01

0.1

1

10

100

0.1 1 10 100 1000Rb

Rb n

/Ba

n VAG

ORG

WPG

COLG

SSP

Low-K felsic xenoliths

High-K felsic xenolith

Fig. 4 Rbn ⁄Ban vs. Rb for low-K felsic xenoliths. Normalization factors andreference values for granites from different settings are after Pearce et al. (1984).ORG (Ocean Ridge Granites), VAG (Volcanic Arc Granites), WPG (Within PlateGranites), COLG (Collision Granites). SSP is a dacite from a low-K tholeiite series ofthe South Sandwich island arc (Pearce et al., 1995).

Granulite xenoliths from Gondwana Antarctic margin • M. Gemelli et al. Terra Nova, Vol 21, No. 3, 151–161

.............................................................................................................................................................

156 � 2009 Blackwell Publishing Ltd

also have a positive eNd(500Ma) (1.5–2.1) like the mafic granulite from thesame locality. Nd model ages for

felsic samples (1.04–1.09 Ga) cannotbe considered the ages of differenti-ation of their source from a depletedmantle. Based on their inferred

origin from a subduction-modifiedmantle, they should instead be re-garded as maximum magma genera-tion ages. This observation rules outa Neoproterozoic (or older) genesisof these felsic melts, in keeping withthe lack of any evidence of precam-brian zircons. In summary, bothmafic and felsic granulites representmostly juvenile materials derivedfrom the mantle during the Rossorogenic cycle.

Discussion and conclusions

Petrographic and geochemical fea-tures of different types of crustalxenoliths testify the significant com-positional heterogeneity of the inter-mediate-lower crust of the easternRobertson Bay terrane. Both maficand felsic granulite xenoliths aregeochemically distinct from mafic-enderbitic and felsic-metasedimentarygranulites cropping out in the Wil-son terrane (Talarico et al., 1995),thereby suggesting that the deepcrust in the two areas differs innature. Mafic xenoliths have traceelement distributions and Nd isotopecompositions similar to those ofprimitive island arcs. Geochemicalcomparison with the South Sandwichisland arc-oceanic ridge (Leat et al.,2004) suggests the involvement ofa young subducted oceanic crust inan intraoceanic island arc or asupra-subduction-zone segment ofan oceanic ridge.Along the whole Antarctic margin

of Gondwana, such an isotopic sig-nature is only found for the TigerGabbro intrusion [eNd(535 Ma) = 3.0,Rocchi et al., 1999; Fig. 1b]; theinitial eNd values for the entire intru-sive association of comparable age inthe Wilson margin are much lessradiogenic (£)1.5, Fig. 9). Evidencefor the generation of Cambrian gran-ites through the partial recycling of apre-existing crust is documented onthe Pacific side of the Robertson Bayterrane (Surgeon Island, Fig. 1b),where a granite contains Early-Mid-dle Cambrian zircon populations aswell as Proterozoic relics (Fiorettiet al., 2005). The eNd values (recal-culated at 500 Ma to allow compar-ison between their hypotheticalsource and the studied xenoliths) ofDevonian granites from the western,Pacific side of the Robertson Bay

CsTl

RbBa

ThU

TaNb

LaCe

PrSr

NdZr

HfSm

EuGd Tb

DyY

HoEr

TmYb

Lu

0.1

1

10Roc

k / N

-MO

RB

0.1

1

10

Mafic xenoliths-NG

Mafic xenoliths-CMC

Ti

Fig. 5 N-MORB normalized multielemental diagrams for mafic granulite xenolithsfrom the Nameless Glacier (NG) and Cape McCormick (CMC) areas. Normalizationfactors after Sun and McDonough (1989).

Tonga arc

Mafic xenoliths-NG

Mafic xenoliths-CMC

Vanuatu arc

Marianas arc

Nb Zr

Ti Y

Yb Ca

Al Ga

V Sc

Mn Fe

Co Mg

Cr Ni

Roc

k/F

MM

R

ock/

FM

M

100

10

1

0.1

10

1

0.1

0.01

Fig. 6 FMM (Fertile MORB Mantle)normalized multielemental diagrams formafic xenoliths from Cape McCormick(CMC) and Nameless Glacier (NG).Normalization factors after Pearce andParkinson (1993).

Mafic xenoliths-NG

Mafic xenoliths-CMC

E2

Central ESR

E10

Regio

nal M

ORB-O

IB a

rray

Volcanic Arc

Ba/

Yb

Nb/Yb

1000

100

10

11 10 100 0.1

Fig. 7 The Ba ⁄Yb vs. Nb ⁄Yb plot formafic xenoliths also reports the regionalMORB-OIB array defined by samplesfrom the South America-Antarctic ridge,the volcanic arc field for the SouthSandwich island arc, and the composi-tional fields for ridge sectors (E2, E10)closest to the subduction zone (Leatet al., 2004). ESR, East Scotia Ridge;NG, Nameless Glacier; CMC, CapeMcCormick.

Terra Nova, Vol 21, No. 3, 151–161 M. Gemelli et al. • Granulite xenoliths from Gondwana Antarctic margin

.............................................................................................................................................................

� 2009 Blackwell Publishing Ltd 157

terrane (Borg et al., 1987) range from)3.4 to )6.2, indicating that thecontinental crust was significantlyinvolved in their genesis. In contrast,the area facing the Ross Sea, inferredto be underlain by a thinner crust(Borg et al., 1987), hosts Devoniangranites with eNd values close to zero,much like those of our xenoliths(Fig. 1b).Overall, the data highlight the

complex nature of the deep crust ofthe Robertson Bay terrane, whichconsists of fragments of (i) an oldercontinental crust on the Pacific Oceanside and (ii) a Ross-age juvenilecomponent generated in an oceanicsubduction setting on the Ross Seaside (Fig. 1b: area delimited by thedashed line). A comparable change inthe nature of the basement, fromcontinental (west) to oceanic (east), isdocumented in the Tasmanides of SEAustralia (Grey and Foster, 2004).The inferred oceanic subduction onthe Ross Sea side of the RobertsonBay terrane could have had an oppo-site dip with respect to subductionbelow the Wilson margin, as inferredfor coeval south-eastern Australia-Tasmania (Gibson, 1987; Flottmannet al., 1998; Munker and Crawford,2000). Nevertheless, a commonsouth-westward dip for both subduc-tion zones is most likely in the overallframework of convergence betweenthe palaeo-Pacific plate and theAntarctic margin.In conclusion, we infer that the

deep crust of the Robertson Bayterrane was constructed during theRoss Orogeny through accretion of asupra-subduction-zone oceanic crustcarrying primitive island arc(s), alongwith fragments of continental crust,to the active Antarctic margin ofGondwana. In this scenario, the RossOrogen was not produced by colli-sion against the margin of largecontinents or exotic continental colli-ders (Federico et al., 2006), nor bythe accretion of a forearc oceaniclithosphere (Finn et al., 1999). Weinstead infer that transient couplingbetween the lower and upper plates(Cawood and Buchan, 2007) gener-ated multiple docking of small-sizedfragments of continental crust and aNS-trending island arc forming ahigh angle with respect to the NW-trending Bowers island arc–forearc–(backarc) system.

520±17

346±12

500±16

491±15

503±18

360±12476±15

485±16

358±13

335±10

401±12485±16

482±15

504±18

440±16504±16

495±16

496±16

364±13

447±14

349±12

379±12

489±17

386±18

478±16

394±13

366±12

465±16

464±15

457±16

361±14

475±15

488±14

461±16

432±15

405±13

100 µm

1 2 3 4

5 6 7 8

9

10 11 12

13 14 15 16

Fig. 8 Selected SEM-cathodoluminescence images of zircons separated from felsicgranulite xenoliths. Circles represent the location of spots analysed by LA-ICP-MSfor U–Pb systematics. The general 30 lm analytical spot size was reduced to 20 lmfor rim analyses. The 206Pb ⁄ 238U age is reported for each spot. Data from Table S1.

Table 2 Sm–Nd isotopic data.

Sample

Sm

p.p.m.

Nd

p.p.m. 147Sm ⁄ 144Nd

143Nd ⁄ 144NdeNd

500 Ma

T(DM)

GaMeasured ± 2rm

Felsic xenoliths

DS4A ⁄ 3 3.80 17.2 0.1333 0.512508 ± 0.000009 1.5 1.09

DS4A ⁄ 2 3.26 15.4 0.1281 0.512516 ± 0.000009 2.1 1.04

Mafic xenoliths

DS4B ⁄ 2 2.86 9.59 0.1803 0.512663 ± 0.000008 1.5 1.09

DS15 ⁄ 4 1.15 4.15 0.1675 0.512830 ± 0.000009 5.6 0.71

Sm and Nd by ICP-MS. Initial eNd calculated at 500 Ma. T(DM) calculated according to DePaolo et al. (1991).

T(DM) for mafic xenoliths are reported in italics to indicate their poor significance because of their high147Sm ⁄ 144Nd ratios. Sm ⁄ Nd isotopic ratios were determined via TIMS techniques at the IGG–CNR (Pisa,

Italy) using a Finnigan MAT 262 multicollector mass spectrometer running in dynamic mode. Nd was

separated using standard separation techniques after digestion in a PTF Teflon bomb at �200 �C. At the

time of data collection, the JNdi-1 standard (Tanaka et al., 2000) yielded an average 143Nd ⁄ 144Nd of

0.512103 ± 0.000007(±2 SD).

Granulite xenoliths from Gondwana Antarctic margin • M. Gemelli et al. Terra Nova, Vol 21, No. 3, 151–161

.............................................................................................................................................................

158 � 2009 Blackwell Publishing Ltd

Acknowledgements

This study was completed as a part ofItaly�s National Program for Research inAntarctica (PNRA). We thank M. Tamp-oni, M. D�Orazio and S. Tonarini forassistance with XRF, ICP-MS and TIMSanalyses, respectively. Constructive criti-cisms by W. Van Schmus and X. Liuhelped significantly improve the quality ofthe manuscript.

References

Alagna, K.E., Petrelli, M., Perugini, D.and Poli, G., 2008. Micro-analyticalzircon and monazite U-Pb isotopedating by laser ablation-inductivelycoupled plasma-quadrupole mass

spectrometry. Geostand. Geoanal. Res.,32, 103–120.

Al-Mishvat, A.T. and Nasir, S.J., 2004.Composition of the lower crust of theArabian Plate: a xenolith perspective.Lithos, 72, 45–72.

Antonini, P., Piccirillo, E.M., Petrini, R.,Civetta, L., D�Antonio, M. and Orsi,G., 1999. Enriched mantle – Dupalsignature in the genesis of the Juras-sic Ferrar tholeiites from PrinceAlbert Mountains (Victoria Land,Antarctica). Contrib. Mineral. Petrol.,136, 1–19.

Berg, J.H. and Wu, B., 1992. Crustalxenolith from Cape McCormick Crater,northern Victoria Land. In: Recent Pro-gress in Antarctic Earth Science(Y. Yoshida, K. Kaminuma and K.

Shiraishi, eds), pp. 265–271. Terra Sci-entific Publishing Company, Tokyo.

Berg, J.H., Moscati, R.J. and Herz, D.L.,1989. A petrologic geotherm from acontinental rift in Antarctica. EarthPlanet. Sci. Lett., 93, 98–108.

Boger, S.D., Wilson, C.J.L. and Fanning,M.C., 2006. An Archaean province inthe southern Prince Charles Mountains,East Antarctica: U-Pb zircon evidencefor c. 3170 Ma granite plutonism and c.2780 Ma partial melting and orogenesis.Precambrian Res., 145, 207–228.

Bomparola, R.M., Ghezzo, C., Belousova,E., Griffin, W.L. and O�Reilly, S.Y.,2007. Resetting of the U-Pb zircon sys-tem in Cambro-Ordovician intrusives ofthe Deep Freeze Range, northern Vic-toria Land, Antarctica. J. Petrol., 48,327–364.

Borg, S.G. and DePaolo, D.J., 1991. Atectonic model of the Antarctic Gondw-ana margin with implications for south-eastern Australia: isotopic andgeochemical evidence. Tectonophysics,196, 339–358.

Borg, S.G., Stump, E., Chappell, B.W.,McCulloch, M.T., Wyborn, T., Arm-strong, R.L. and Holloway, J.R., 1987.Granitoids of Northern Victoria Land,Antarctica: implications of chemical andisotopic variations to regional crustalstructure and tectonics. Am. J. Sci.,287, 127–169.

Brey, G.P. and Koheler, T., 1990.Geothermobarometry in four-phaselherzolites: II. New thermobarometers,and practical assessment of existing ther-mobarometers. J. Petrol., 31, 1353–1378.

Cawood, P.A. and Buchan, C., 2007.Linking accretionary orogenesis withsupercontinent assembly. Earth Sci.Rev., 82, 217–256.

Crispini, L., Di Vincenzo, G. and Palmeri,R., 2007. Petrology and 40Ar–39Ardating of shear zones in the LantermanRange (northern Victoria Land, Ant-arctica): implications for metamorphicand temporal evolution at terraneboundaries. Mineral. Petrol., 89, 217–249.

D�Orazio, M., 1995. Trace element deter-mination in igneous rocks by ICP-MS:results on ten international referencesamples. Period. Mineral., 64, 315–328.

DePaolo, D.J., Linn, A.M. and Schubert,G., 1991. The continental crustal agedistribution: methods of determiningmantle separation ages from Sm-Ndisotopic data and application to thesouth-western United States. J. Geophys.Res., 96, 2071–2088.

Di Vincenzo, G. and Palmeri, R., 2001. An40Ar-39Ar investigation of high pressuremetamorphism and the retrogressivehistory of mafic eclogites from Lan-terman Range (Antarctica): evidenceagainst a simple temperature control on

300 350 400 450 500 550 600

–15

–12

–9

–6

–3

0

+3

+6

+9

Ross main intrusive association

Ross peraluminous granites

Felsic granulites

AI-PO

AI-RS

CHUR

Depleted mantle

Migmatites ε Nd

Tiger Gabbro

206 Pb/ 238 U Age (Ma)

Mafic granulites

felsic xenoliths

Mafic xenoliths

1

2

3

4

5

6 50 µm

50 µm

50 µm

7

8

9

Relative probability curve

Number of analyses

Fig. 9 Summary of 206Pb ⁄ 238U zircon ages from U–Pb data concordant within error(and relative probability diagram), along with selected cathodoluminescence imagesof zircon crystals from felsic xenoliths. Source of Nd isotopic data: this work(diamonds); main Ross intrusive association, Ross peraluminous granites andmigmatites (Borg et al., 1987; Rocchi et al., 1998; Di Vincenzo and Rocchi, 1999);Tiger Gabbro (Rocchi et al., 1999); mafic and felsic granulite terrains (Talarico et al.,1995); AI-RS, Admiralty Intrusives from the Ross Sea side of the Robertson Bayterrane (Fig. 1b); and AI-PO, Admiralty Intrusives from the Pacific Ocean side (Borget al., 1987). AI-PO ⁄RS values of eNd are shown at both the emplacement age(360 Ma) and the Ross Age (at 500 Ma). Depleted Mantle evolution line afterDePaolo et al. (1991). Gray stripe represents the overall age interval of igneousactivity in Victoria Land during the Ross Orogeny.

Terra Nova, Vol 21, No. 3, 151–161 M. Gemelli et al. • Granulite xenoliths from Gondwana Antarctic margin

.............................................................................................................................................................

� 2009 Blackwell Publishing Ltd 159

argon transport in amphibole. Contrib.Mineral. Petrol., 141, 15–35.

Di Vincenzo, G. and Rocchi, S., 1999.Origin and interaction of mafic and felsicmagmas in an evolving late orogenicsetting: the early Paleozoic Terra NovaIntrusive Complex, Antarctica. Contrib.Mineral. Petrol., 137, 15–35.

Di Vincenzo, G., Palmeri, R., Talarico, F.,Andriessen, P.A.M. and Ricci, C.A.,1997. Petrology and geochronology ofeclogites from the Lanterman Range,Antarctica. J. Petrol., 38, 1391–1417.

Downes, H. and Leyreloup, A., 1986.Granulitic xenoliths from the FrenchMassif Central - petrology, Sr andisotope systematics and model ageestimates. In: The Nature of the LowerContinental Crust (J.B. Dawson, D.A.Carswell, J. Hall and K.H. Wedepohl,eds). Geol. Soc. Spec. Publ., 24, 319–330.

Federico, L., Capponi, G. and Crispini, L.,2006. The Ross orogeny of the tran-santarctic mountains: a northern Victo-ria Land perspective. Int. J. Earth Sci.,95, 759–770.

Finn, C., Moore, D., Damaske, D. andMackey, T., 1999. Aeromagnetic legacyof early subduction along the Pacificmargin of Gondwana. Geology, 27,1087–1090.

Fioretti, A., Visona, D., Cavazzini, G. andLombardo, B., 1997. Devonian magma-tism: implications for the evolution ofNorthern Victoria Land, Antarctica, andcorrelation with southeastern Australiaand northeastern Tasmania. In: TheAntarctic Region: Geological Evolutionand Processes (C.A. Ricci, ed.), pp. 293–296. Siena, ISAES VII Proceedings,Siena, 1995.

Fioretti, A., Capponi, G., Black, L.P.,Varne, R. and Visona, D., 2005. Surgeonisland granite SHRIMP zircon ages: aclue for the Cambrian tectonic settingand evolution of the Palaeopacific mar-gin of Gondwana (northern VictoriaLand, Antarctica). Terra Nova, 17, 242–249.

Fitzgerald, P.G. and Stump, E., 1997.Cretaceous and Cenozoic episodicdenudation of the TransantarcticMountains, Antarctica: new constraintsfrom apatite fission track thermochro-nology in the Scott Glacier region.J. Geophys. Res., 102, 7747–7765.

Flottmann, T., Haines, P., Jago, J., James,P., Belperio, A. and Gum, J., 1998.Formation and reactivation of theCambrian Kanmantoo Trough, SEAustralia: implications for early Palaeo-zoic tectonics at eastern Gondwana�splate margin. J. Geol. Soc. Lond., 155,525–539.

Gibson, G.M., 1987. Metamorphism anddeformation in the Bowers Supergroup:implications for terrane accretion innorthern Victoria Land, Antarctica.

In: Terrane Accretion and Orogenic Belts(E. Leitch and E. Scheibner, eds). Am.Geophys. Union Geodyn. Ser., 19, 207–219.

Goodge, J.W., 2002. From Rodinia toGondwana: supercontinent evolutionin the Transantarctic Mountains. In:ISAES VIII Proceedings (J.A. Gamble,D.N.B. Skinner and S. Henrys, eds). R.Soc. N. Z. Bull., 35, 61–74.

Goodge, J.W. and Dallmeyer, R.D., 1996.Contrasting thermal evolution within theRoss Orogen, Antarctica: evidence frommineral 40Ar ⁄ 39Ar ages. J. Geol., 104,435–458.

Grey, D.R. and Foster, D.A., 2004. Tec-tonic evolution of the Lachlan Orogen,southeast Australia: historicalreview, data synthesis and modernperspectives. Aust. J. Earth Sci., 51, 773–817.

Henjes-Kunst, F., 2003. Single-crystal Ar-Ar laser dating of detrital micas frommetasedimentary rocks of the Ross oro-genic belt at the Pacific margin of theTransantarctic Mountains, Antarctica.9th International Symposium on AntarcticEarth Sciences, Potsdam, Germany, 8–12September 2003, pp. 150–151.

Hergt, J.M., Peate, D.W. and Hawkes-worth, C.J., 1991. The petrogenesis ofMesozoic Gondwana low-Ti flood bas-alts. Earth Planet. Sci. Lett., 105, 134–148.

Kemp, A.I.S., Shimura, T. and Hawkes-worth, C.J., 2007. Linking granulites,silicic magmatism, and crustal growth inarcs: ion microprobe (zircon) U-Pb agesfrom the Hidaka metamorphic belt,Japan. Geology, 35, 807–810.

Kleinschmidt, G. and Tessensohn, F.,1987. Early Paleozoic westward directedsubduction at the Pacific continentalmargin of Antarctica. Sixth GondwanaSymposium. American GeophysicalUnion, Geophysical Monograph, 40,Washington D.C., pp. 89–105.

Lai, S., Zhang, G. and Yang, R., 2000.Identification of the island-arc magmaticzone in the Lianghe-Raofeng-Wulibaarea, south Qinling and its tectonic sig-nificance. Sci. China, 43, 69–81.

Le Masurier, W.E. and Thomson, J.W.(eds), 1990. Volcanoes of the AntarcticPlate and Southern Oceans. AntarcticResearch Series, 48. American Geo-physical Union, Washington, DC, 487pp.

Leat, P.T., Pearce, J.A., Barker, P.F.,Millar, I.L., Barry, T.L. and Larter,R.D., 2004. Magma genesis and mantleflow at a subducting slab edge: the SouthSandwich arc-basin system. Earth Pla-net. Sci. Lett., 227, 17–35.

Munker, C. and Crawford, A.J., 2000.Cambrian arc evolution along the SEGondwana active margin: a sinthesisfrom Tasmania-New Zealand-Austalia

Antarctica correlations. Tectonics, 19,415–432.

Pearce, J.A. and Parkinson, I.J., 1993.Trace element models for mantlemelting: application to volcanic arc pet-rogenesis. In: Magmatic Processes andPlate Tectonics (H.M. Prichard,T. Alabaster, N.B.W. Harris and C.R.Neary, eds). Geol. Soc. Spec. Publ., 76,373–403.

Pearce, J.A., Harris, N.B.W. and Tindle,A.G., 1984. Trace element discrimina-tion diagrams for the tectonic interpre-tation of the granitic rocks. J. Petrol., 25,956–983.

Pearce, J.A., Baker, P.E., Harvey, P.K. andLuff, I.W., 1995. Geochemical evidencesfor subduction fluxes, mantle meltingand fractional crystallization beneath theSouth Sandwich island arc. J. Petrol., 36,1073–1109.

Rocchi, S., Tonarini, S., Armienti, P., In-nocenti, F. and Manetti, P., 1998. Geo-chemical and isotopic structure of theearly Palaeozoic active margin ofGondwana in northern Victoria Land,Antarctica. Tectonophysics, 284, 261–281.

Rocchi, S., Di Vincenzo, G., Tonarini, S.and Ghezzo, C., 1999. The Tiger Gabbroof northern Victoria Land: age, affinityand tectonic implications. In: 8th Inter-national Symposium on Antarctic EarthSciences (D.N.B. Skinner, ed.). Welling-ton, New Zealand, 270 pp.

Rocchi, S., Armienti, P., D�Orazio, M.,Tonarini, S., Wijbrans, J. and DiVincenzo, G., 2002. Cenozoic magma-tism in the western Ross Embayment:role of mantle plume vs. plate dynamicsin the development of the West AntarcticRift System. J. Geophys. Res., 107, 2195.

Rocchi, S., Di Vincenzo, G. and Ghezzo,C., 2004. The Terra Nova IntrusiveComplex (Victoria Land, Antarctica),with 1:50,000 geopetrographic map.Terra Antartica Rep., 10, 51.

Roland, N.W., Laufer, A. and Rossetti, F.,2004. Revision of the terrane model ofnorthern Victoria Land. Terra Antartica,11, 55–65.

Rossetti, F., Tecce, F., Aldega, L., Brilli,M. and Faccenna, C., 2006. Deforma-tion and fluid flow during orogeny at thepalaeo-active margin of Gondwana: theEarly Palaeozoic Robertson Bay accre-tionary complex (north Victoria Land,Antarctica). J. Metamorph. Geol., 24,33–53.

Sachs, P.M. and Hansteen, T.H., 2000.Pleistocene underplating and metaso-matism of the lower continental crust: axenolith study. J. Petrol., 41, 331–356.

Stump, E., 1995. The Ross Orogen of theTransantarctic Mountains. CambridgeUniversity Press, Cambridge, 284 pp.

Sun, S.S. and McDonough, W.F., 1989.Chemical and isotopic systematics of

Granulite xenoliths from Gondwana Antarctic margin • M. Gemelli et al. Terra Nova, Vol 21, No. 3, 151–161

.............................................................................................................................................................

160 � 2009 Blackwell Publishing Ltd

oceanic basalts: implications for mantlecomposition and processes. In: Magma-tism in the Ocean Basins (A.D. Saundersand M.J. Norry, eds). Geol. Soc. Lond.Spec. Publ., 42, 313–345.

Talarico, F., Borsi, L. and Lombardo, B.,1995. Relict granulites of the Ross Oro-gen of northern Victoria Land (Antarc-tica). II – Geochemistry and paleo-tectonic implications. Precambrian Res.,75, 157–174.

Tamponi, M., Bertoli, F., Innocenti, F. andLeoni, L., 2003. X-ray fluorescenceanalysis of major elements in silicaterocks using fused glass discs. Atti Soc.Toscana Sci. Nat. Mem. Ser. A, 107, 73–80.

Tanaka, T., Togashi, S., Kamioka, H.,Amakawa, H., Kagami, H., Hamamoto,T., Yuhara, M., Orihashi, Y., Yoneda,S., Shimizu, H., Kunimaru, T., Takah-ashi, K., Yanagi, T., Nakano, T., Fuji-maki, H., Shinjo, R., Asahara, Y.,Tanimizu, M. and Dragusanu, C., 2000.

JNdi-1: a neodymium isotopic referencein consistency with LaJolla neodymium.Chem. Geol., 168, 279–281.

Tessensohn, F. and Henjes-Kunst, F.,2005. Northern Victoria Land terranes,Antarctica: far travelled or local prod-ucts? In: Terrane Processe at the Marginof Gondwana (A.P.M. Vaughan, P.T.Leat and R.J. Pankhurst, eds). Geol. Soc.Lond. Spec. Publ., 246, 275–291.

Weaver, S.D., Bradshaw, J.D. and Laird,M.G., 1984. Geochemistry of Cambrianvolcanics of the Bowers Supergroup andimplication for early Paleozoic tectonicevolution of Northern Victoria LandAntarctica. Earth Planet. Sci. Lett., 68,128–140.

Wysoczanski, R.J., Gamble, J.A., Kyle,P.R. and Thirlwall, M.F., 1995. Thepetrology of lower crustal xenoliths fromthe Executive Committee Range, MarieByrd Land Volcanic Province, WestAntarctica. Lithos, 36, 185–201.

Received 1 August 2008; revised versionaccepted 27 January 2009

Supporting Information

Additional Supporting Informationmay be found in the online versionof this article:Table S1 U–Pb data for zircons

separated from low-K felsic granulitexenoliths.Please note: Wiley-Blackwell are

not responsible for the content orfunctionality of any supporting mate-rials supplied by the authors. Anyqueries (other than missing material)should be directed to the correspond-ing author for the article.

Terra Nova, Vol 21, No. 3, 151–161 M. Gemelli et al. • Granulite xenoliths from Gondwana Antarctic margin

.............................................................................................................................................................

� 2009 Blackwell Publishing Ltd 161