about the use and benefits of worms in aquaculture - AquaVIP

41
Worms... – about the use and benefits of worms in aquaculture University of Rostock Aquaculture & Sea-Ranching Faculty of Agricultural and Environmental Sciences Presenter: Dr. Adrian A. Bischoff-Lang Included scientific staff: Prof. Dr. Harry Palm M.Sc. Jan Klein M.Sc. Philipp Sandmann M.Sc. Sven-Ole Meiske

Transcript of about the use and benefits of worms in aquaculture - AquaVIP

Worms... – about the use and benefits of worms inaquaculture

University of Rostock

Aquaculture & Sea-Ranching

Faculty of Agricultural and Environmental Sciences

Presenter: Dr. Adrian A. Bischoff-Lang

Included scientific staff: Prof. Dr. Harry Palm

M.Sc. Jan Klein

M.Sc. Philipp Sandmann

M.Sc. Sven-Ole Meiske

Contents of the presentation:

• General introduction to the topic and why worms?

• Case studies on worm aquaculture• Bischoff 2003 & 2007; Bischoff et al. (2009) Bischoff et al. (2014)

• Sandmann (2018 – Master thesis); Meiske (2021 – Master thesis)

• Research projects

• IntAPol – Integrated Aquaculture of Polychaetes (Original title:Integrierte Aquakultur von Polychaeten)

General Introduction: Fisheries & Aquaculture…

Global Fisheries

• stagnating

Global Aquaculture

• increasing

FAO (2020)

0

20

40

60

80

100

120

1950 1957 1964 1971 1978 1985 1992 1999 2006 2013

Mio

. To

nn

en

Global Aquaculture

0

20

40

60

80

100

120

1950 1957 1964 1971 1978 1985 1992 1999 2006 2013

Mio

. To

nn

en

Global Fisheries

Fishmeal - an essential resource for aquaculture feeds

• ^

• Fishmeal will be a limited resource in the future, claimed by various users

• Fishmeal production can affect natural fish stocks

• However, limiting fishmeal quantities can also influence aquaculture development

Fish, oil & meal world

2019

IFFO 2009

Nutrient budget of a fish illustrated by nitrogen (N)

Feed

100%

Excretion

36 – 57% als NH3

Fish 14 – 30%

Uneaten

Feed 5%

Faecal material

10 – 20% According toSchneider et al. 2005

Case study: Norwegian salmon production

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

195

0

195

2

195

4

195

6

195

8

196

0

196

2

196

4

196

6

196

8

197

0

197

2

197

4

197

6

197

8

198

0

198

2

198

4

198

6

198

8

199

0

199

2

199

4

199

6

199

8

200

0

200

2

200

4

200

6

200

8

201

0

201

2

201

4

201

6

201

8

Mio

. T

Norwegian Salmon production

FAO (2020)

Case study: Norwegian salmon production

• Salmon production 2018: 1.28 million tonnes

• Total feed quantity 2018: 1.6 million tonnes

• Total solids 2018: 0.32 million tonnes (DW)

• Organic material 2018: 29 000 tonnes (DW)

www.ens-newswire.com

Conclusion:A high-quality "resource" is

discarded unused and pollutes

the surrounding environment of

the aquaculture farms.

Feed

Aquaculture production in closed (recirculating) systems

Husbandry

Water

treatment

Primary Production

Conventional Recirculating

Aquaculture System (RAS)

Secundary Production

IMTA - Integrated MultiTrophic

(Multiloop) Aquaculture

Photoautotrophic

Organisms

Detritivorous

Organisms

Feed

Aquaculture production in closed (recirculating) systems

Husbandry

Water

treatment

Primary Production

Why worms?

• Worms are found almost everywhere

• Represent a large fraction of the natural diet of many animals (birds,fish, small mammals, etc.) - suitable biochemical composition (e.g.amino & fatty acids)

• Short generation times and very broad food spectrum

• Agricultural soils - earthworms (Oligochaeta) up to 600 ind./m²(<300g/m²)

• Seabed - sea worms (Polychaeta) according to Scaps (2002) up to5,000 ind./m² adults and up to 60,000 ind./m² with juveniles) (up to 39g/m² in natural systems)

→ BUT: own investigations 500 - 1,200 g/m²

Investigations concerning the suitability of solid matter utilisation by Hediste (Nereis) diversicolor (O. F. Müller, 1776)

Hediste (Nereis) diversicolor / Common ragworm (Polychaeta)

• Native species

• Variable feeding behaviour(planktivorous, carnivorous, detritivorous)

• Tolerant to temperature and salinitychanges

→ Important part of the naturaldiet of various fish andcrustacean species

Investigations concerning the suitability of solids utilisation by H. diversicolor (ZAFIRA / Bischoff 2003)

zugeführte Energie [Joule Wurm-1

Tag-1

]

0 500 1000 1500 2000 2500

Sp

ezifis

ch

es W

ach

stu

m [d

-1]

-0.04

0.00

0.04

0.08

Algen als Futterquelle

Garnelenfleisch als Futterquelle

Feststoffe als Futterquelle

Fed Energy [J/worm/day]

SG

R

Particulate nutrients

as feed source

n = 25

zugeführte Energie [Joule Wurm-1

Tag-1

]

0 500 1000 1500 2000 2500S

pe

zifis

ch

es W

ach

stu

m [d

-1]

-0.04

0.00

0.04

0.08

Algen als Futterquelle

Garnelenfleisch als Futterquelle

Feststoffe als Futterquelle

Investigations concerning the suitability of solids utilisation by H. diversicolor (ZAFIRA / Bischoff 2003)

zugeführte Energie [Joule Wurm-1

Tag-1

]

0 500 1000 1500 2000 2500

Sp

ezifis

ch

es W

ach

stu

m [d

-1]

-0.04

0.00

0.04

0.08

Algen als Futterquelle

Garnelenfleisch als Futterquelle

Feststoffe als Futterquelle

Fed Energy [J/worm/day]

SG

R

Particulate nutrients

as feed source

n = 25

Fed Energy [J/worm/day]

Algae

Shrimp meat

Particulate nutrients

Nielsen et al. 1995

Investigations concerning the suitability of solids utilisationby H. diversicolor (ZAFIRA / Bischoff 2003)

Experiment 1 Experiment 2 Experiment 3

Mo

rta

litä

t [%

] (±

SD

)

0

10

20

30

40

50

niedrig

hoch

Mo

rta

lity [

% ±

SD

]

lowhighStocking density

• positive growth could be

achieved

• growth is lower than described

in the literature, but the feeds

described had higher nutrient

contents and more energy

• unsatisfactory mortality during

the trials

+

-

-

Research questions:

1. What are the biological requirements for the successfulculture of detritivorous organisms?

2. Under which conditions is nutrient recycling bydetritivorous organisms possible?

3. Is a reduction of solid waste possible through integratedaquaculture?

Impact of the sediment on H. diversicolor?

• Experimental setup (partial section)

Sediment 1 Sediment 2

Biofilter

Measurement of the

• initial & final weights

• mortality

Impact of the sediment on H. diversicolor?

Fine sand (grain size ≤ 2mm) Sediment 1 (Sed. 1)

Coarse sand (grain size 2 - 4mm) Sediment 2 (Sed. 2)

Ceramic bodies (Ø inside 5mm) Sediment 3 (Sed. 3)

Without sediment Sediment 4 (sed. 4)

PVC doormat Sediment 5 (Sed. 5)

Aquaclay© (grain size ≤ 3mm) Sediment 6 (Sed. 6)

Impact of the sediment on H. diversicolor?

→ Fine sand (Sed.1) was selected as the most suitablesediment for all further experiments

Sedimenttypen

Sed.1 Sed.2 Sed.3 Sed.4 Sed.5 Sed.6

Sp

ezifis

ch

es W

ach

stu

m (

± S

D)

[d-1

]

-0.03

-0.02

-0.01

0.00

SGR (Specific Growth Rate)

n = 4

Sedimenttypen

Sed.1 Sed.2 Sed.3 Sed.4 Sed.5 Sed.6Üb

erl

eb

en

sra

te [%

] (±

SD

)

0

20

40

60

80

100

Survival

n = 4

Su

rviv

al [

% ±

SD

]

SG

R [

%/d

±SD

]

Under which conditions is the culture of H. diversicolor successful?

• Experimental setup

Biofilter

Measurement of the

• mortality

• initial & final weights

• concentrations of dissolved

nutrients

Under which conditions is the culture of H. diversicolor successful?

Versuchstage

0 5 10 15 20 25 30

TA

N [m

g L

-1] (±

SE

)

0

10

20

30

40

50

60

70

n = 3 Futtermenge = 1.0 % der Wurmbiomasse (Fischfutter)

Versuchstage

0 5 10 15 20 25 30

Mo

rta

litä

t [n

] (±

SE

)

0

5

n =

3

Futtermenge = 1.5 % der Wurmbiomasse (Feststoffe)

Versuchstage

0 5 10 15 20 25 30

Mo

rta

litä

t [n

] (±

SE

)

0

5

n =

3

Futtermenge = 1.0 % der Wurmbiomasse (Feststoffe)

Versuchstage

0 5 10 15 20 25 30

Mo

rta

litä

t [n

] (±

SE

)

0

5+

n =

3

Futtermenge = 0.5 % der Wurmbiomasse (Feststoffe)

Versuchstage

0 5 10 15 20 25 30

Mo

rta

litä

t [n

] (±

SE

)

0

5●

n = 3

Experimental days

Experimental days

Daily feeding rate in % worm biomass

Mo

rta

ilty [

% ±

SD

]

TAN concentrations strongly

influence the survival of the worms!

2.0

1.5

1.0

0.5

Under which conditions is the culture of H. diversicolor successful?

Gereinigtes Sediment Gealtertes Sediment

Sp

ezifis

che

s W

ach

stu

m [d

-1]

-0.010

-0.005

0.000

0.005

0.010

SG

R [

d-1

]

Clean sediment „Aged“ sediment

Cleaned sediment→low microbiological

activity within the

sediment

Aged sediment→Established micro-

biological activity

How does H. diversicolor perform in an integrated RAS?

Particulate nutrients

Dissolved nutrients

Dissolved nutrients

MARE I

MARE II

experimental days

0 50 100 150 200

avera

ge w

orm

weig

ht

[mg]

0

500

1000

1500

experimental day 216experimental day 119experimental day 91experimental day 65experimental day 33experimental day 0

rel. abundance

0 1siz

e c

lasses

<0,15

<0,30

<0,45

<0,60

<0,75

<0,90

>0,90 (n = 150) (n = 56) (n = 100) (n = 86) (n = 31) (n = 9)

How does H. diversicolor perform in an integrated RAS?

• MARE I

experimental days

0 50 100 150

avera

ge b

odyw

eig

ht

[mg]

0

500

1000

1500

experimental day 162experimental day 143experimental day 124experimental day 101experimental day 80experimental day 57experimental day 35

rel. abundance

0 1siz

e c

lasses

<0.15 g

<0.30 g

<0.45 g

<0.60 g

<0.75 g

<0.90 g

>0.90 g (n = 26) (n = 32) (n = 32) (n = 28) (n = 24) (n = 26) (n = 47)

How does H. diversicolor perform in an integrated RAS?

• MARE II

Does the production in the integrated system influence the composition of the fatty acids of H. diversicolor?

Abundanz [%] (± SD)

0 10 20 30 40

8:010:012:013:014:014:115:015:116:016:117:118:0

18:1 (n-9/n-12)18:1 (n-7)18:2 (n-6)18:3 (n-6)18:3 (n-3)

20:020:1 (n-9)20:2 (n-6)20:3 (n-6)20:4 (n-6)

21:020:3 (n-3)20:5 (n-3)

22:022:1 (n-9)22:2 (n-6)22:6 (n-3)

Abundanz [%] (± SD)

0 10 20 30 40

8:010:012:013:014:014:115:015:116:016:117:118:0

18:1 (n-9/n-12)18:1 (n-7)18:2 (n-6)18:3 (n-6)18:3 (n-3)

20:020:1 (n-9)20:2 (n-6)20:3 (n-6)20:4 (n-6)

21:020:3 (n-3)20:5 (n-3)

22:022:1 (n-9)22:2 (n-6)22:6 (n-3)

Abundance [% ± SD] Abundance [% ± SD]

Conclusion 1:

• Polychaetes are suitable for IMTA production, thusincreasing the nutrient efficiency of the system

• Hediste diversicolor is able to selectively enrich fatty acidsor to re-synthesise them by itself

Project IntAPol – Integrated Aquaculture of Polychaetes

• Saltwater recirculation system for European sea bass (Dicentrachuslabrax) on the southern edge of the Lüneburger Heide

• Solids removal via 2 drum filters (faeces of the fish = solids 1 andexcess bacterial biomass of the biofilter = solids 2).

Project IntAPol – Integrated Aquaculture of Polychaetes

• Rag system close to the production

Project IntAPol – Integrated Aquaculture of Polychaetes

• The experiment was successful (including positive growth)

• Amino acid profile of the worm groupsAmino Acid Initial values Solids 1 Solids 2

Asparagine (asp) 54 (± 1,32) 64 (± 3,35) 63 (± 1,39)Glutamic acid (glu) 76 (± 1,39) 89 (± 4,66) 90 (± 1,86)Serine (ser) 24 (± 0,62) 29 (± 1,51) 29 (± 0,75)Threonine (thr) 16 (± 0,80) 24 (± 0,83) 23 (± 0,55)Histidine (his) 11 (± 0,50) 14 (± 0,66) 14 (± 0,54)Glycine (gly) 29 (± 0,96) 38 (± 2,53) 37 (± 1,30)Arginine (arg) 31 (± 0,51) 39 (± 3,08) 40 (± 1,21)Alanine (ala) 35 (± 0,76) 40 (± 2,13) 42 (± 1,03)Tyrosine (tyr) 18 (± 0,45) 22 (± 1,19) 23 (± 0,83)Valine (val) 25 (± 0,50) 31 (± 1,32) 34 (± 1,29)Methionine (met) 10 (± 0,28) 12 (± 0,93) 13 (± 0,33)Tryptophan (trp) 30 (± 0,64) 38 (± 1,47) 42 (± 1,55)Phenylalanine (phe) 22 (± 0,52) 27 (± 1,12) 28 (± 1,03)Leucine (leu) 28 (± 0,68) 34 (± 1,49) 36 (± 1,10)

Conclusion 2:

• Nitrogen content of worm biomass increases duringfeeding with solids from an aquaculture recirculationsystem

• Amino acid spectrum improves during feeding with solidsfrom an aquaculture recirculation system

Master thesis Philipp Sandmann (2018): Utilization ofsediments from the culture of African Catfish (Clariasgariepinus) for cultivating the Polychaete Hedistediversicolor (Müller, 1776)

• Special characteristics of this work:

• Culture of a marine polychaete with solids from freshwateraquaculture

• Transferability of the principle (?)

• Avoiding the transfer of potential pathogens

• African catfish is considered to be a very good nutrient utiliser,especially nitrogen, and the solids are therefore classified as"nutrient-poor"

• Master thesis Philipp Sandmann (2018)

• Positive growth and biomass increase during the experimental phase (temperature effect ?)

initial final initial final initial final0.0

0.5

1.0

1.5

min

div

idu

al[g

]

12°C

16°C

20°C

• Master thesis Philipp Sandmann (2018)

• Specific Growth Rates (SGR)

System A (12°C) System B (16°C) System C (20°C)

Replicat 1 2.38 % 2.66 % 1.58 %

Replicat 2 2.73 % 2.20 % 1.53 %

Replicat 3 2.32 % 2.27 % 1.28 %

Mean±SD 2.48 ± 0.18% a 2.38 ± 0.20% a 1.46 ±0.13 % b

Conclusion 3:

• Feeding Hediste diversicolor with solids from freshwateraquaculture is possible and successful

• Feed quality does not influence the growth and survivalrate of Hediste diversicolor to the extent suspected

• Unfortunately, the effects of temperature on gametematuration and somatic growth could not be clearlyexplained

Master thesis Sven-Ole Meiske (2021): Suitability of nutrientrecovery from particulate nutrients of a commercial troutpond system (Oncorynchus mykiss Walbaum, 1792) usingvermifiltration

• Evaluation of the potential of Eisenia fetida (Bouché, 1972) forfurther utilisation of solids from aquaculture

• Verification of the fate of heavy metals present in the culture ofEisenia fetida

• Evaluation of the compost produced

Master thesis Meiske (2021)

Comparative analysis

of the heavy metals

Cd, Co, Ni, Pb & Cr …

Conclusion 4:

• Feeding Eisenia fetida with solid excreta from freshwateraquaculture is possible and can be successful

• Feed quality influences the growth, survival rate andreproductive potential of Eisenia fetida

• The cultured worms accumulate some heavy metalsaccording to the feed supply (Co & Cd), but others to alesser extent (Ni, Pb & Cr)

Final conclusions:

• Culture of detritivorous organisms - with regularreproductive events - is possible, culture conditionsdescribed

• Nutrient recycling through the culture of detritivorousorganisms is possible; high-quality and healthy rawmaterials, as alternatives for future animal feed, can beproduced through integrated aquaculture

• The bioreactors for the cultivation of Hediste (Nereis)diversicolor as well as Eisenia fetida can be used asadditional biological filters to stabilize or improve waterquality

BUT (so far):• Implementing the production of worms in integrated

aquaculture systems in accordance with

• EU regulation 178/2002 „food law & safety“

• EU regulation 183/2005 „feed hygiene“

• EU regulation 767/2009 „placing on the market and use of feed“

• EU regulation 68/2013 „catalogue of feed materials“

is (theoretically) only possible with substantial administrative

effort.

Thanks to the

• Aquaculture & Sea-Ranching teamat Rostock University

• Mariculture Working Groupat Institute for Marine Sciences in Kiel

• Department Marine Aquacultureat the Institute for Marine Resourcesin Bremerhaven

and (of course) your attention

Contact details:

University of Rostock (UROS)

Facultuy of Agricultural and Environmental Sciences

Department Aquaculture & Sea-Ranching

Justus-von-Liebig-Weg 6

18059 Rostock

Germany

Dr. Adrian Bischoff-Lang

[email protected]

Phone: +49-381-498 3738