Untitled 1

download Untitled 1

of 50

description

Pedoman Pemeriksaan Jembatan Rangka Baja

Transcript of Untitled 1

  • No. 005/BM/2009

    PEDOMAN Konstruksi dan Bangunan

    Pemeriksaan Jembatan Rangka Baja

    KEMENTERIAN PEKERJAAN UMUM

    DIREKTORAT JENDERAL BINA MARGA

  • ii

    Daftar Isi

    Prakata ........................................................................................ i Daftar Isi ...................................................................................... ii Daftar Tabel ................................................................................ iv Daftar Gambar ............................................................................ v Pendahuluan ............................................................................... 1 1. Ruang lingkup ....................................................................... 1 2. Acuan normatif ...................................................................... 1 3. Istilah dan definisi ................................................................. 1 4. Umum ................................................................................... 8

    4.1. Tipe dan Komponen Berbagai Jembatan Rangka .......... 8 4.2. Mutu Bahan Komponen Jembatan ............................... 15

    4.2.1. Mutu Bahan Komponen Jembatan Belanda Baru ... 15 4.2.2. Mutu Bahan Komponen Jembatan Austria ............. 15

    4.3. Baut Jembatan ............................................................. 16 4.3.1. Baut Jembatan Rangka CH ................................... 16 4.3.2. Baut Jembatan Rangka Belanda ........................... 18 4.3.3. Kunci Momem Torsi Manual Jembatan Rangka

    Belanda Baru ........................................................ 19 4.3.4. Baut Austria ........................................................... 20

    4.4. Sistem perletakan ......................................................... 23 4.4.1. Sistem Perletakan CH ............................................ 23 4.4.2. Sistem Perletakan Jembatan Rangka Belanda ...... 23 4.4.3. Alat Dongkrak Hidrolis ............................................ 25 4.4.4. Sistem Perletakan Austria, Australia ...................... 25

    4.5. Sistem Lantai ................................................................ 25 4.5.1. Sistem Lantai Jembatan Rangka Belanda Baru ..... 25 4.5.2. LHD - Profile (besi siku pinggir untuk lantai) ........... 27

  • iii

    4.5.3. Sistem Lantai Jembatan Rangka Austria dan Bukaka ............................................................................. 27

    4.6. Standar pembebanan ................................................... 29 4.6.1. Standar pembebanan jembatan CH ....................... 29 4.6.2. Standar pembebanan jembatan rangka Belanda Baru

    ............................................................................. 29 5. Pemeriksaan Jembatan Rangka Baja ................................. 30

    5.1. Pemeriksaan Jembatan ................................................ 30 5.1.1. Pemeriksaan Inventarisasi ..................................... 32 5.1.2. Pemeriksaan Detail ................................................ 32

    5.1.2.1. Kerusakan Tipikal Struktur Beton..................... 35 5.1.2.2. Kerusakan Tipikal Struktur Baja Jembatan ...... 37

    5.1.3. Pemeriksaan Khusus ............................................. 46 5.1.3.1. Pemeriksaan mutu beton ................................. 46 5.1.3.2. Pemeriksaan karbonasi ................................... 47 5.1.3.3. Pemeriksaan tulangan dan selimut beton dengan

    alat covermeter ............................................... 47 5.1.3.4. Pemeriksaan retak dengan alat Pundit atau

    UPV dan alat pengukur retak .......................... 47 5.1.3.5. Pengujian getaran jembatan ............................ 48 5.1.3.6. Uji beban ......................................................... 48 5.1.3.7. Pengujian laboratorium .................................... 49

    5.2. Pengujian Lapangan dan Laboratorium ........................ 49 5.2.1. Kriteria dan Metoda ................................................ 49 5.2.2. Pemeriksaan dan Pengujian Lapangan dan

    Monitoring ............................................................. 55 5.2.3. Uji Laboratorium ..................................................... 76

  • iv

    Daftar Tabel Tabel 1 Mutu bahan baja jembatan CH ..................................... 15 Tabel 2 Dimensi Baut High Yield Steel (H.Y.S.) ....................... 17 Tabel 3 Dimensi Baut Mild Steel (M.S.) .................................... 17 Tabel 4 Kunci Momem Torsi Manual Jembatan Rangka Belanda

    Baru ........................................................................... 20 Tabel 9 Sifat Bahan dan Perusakan Bahan dan Struktural yang

    Ditentukan selama Uji Lapangan Jembatan Beton ..... 57 Tabel 10 Sifat Bahan dan Cacat Bahan dan Struktural yang

    Ditentukan selama Pengujian Lapangan Jembatan Baja .59

    Tabel 11 Sifat Bahan yang Diuji dalam Laboratorium pada Spesimen yang Diambil dari Jembatan Beton dan Baja .77

  • v

    Daftar Gambar Gambar 1 Jembatan Rangka Baja CH sistem Through Type ...... 9 Gambar 2 Jembatan Rangka Baja CH sistem Deck Type ........... 9 Gambar 3 Elemen Tipikal Jembatan Rangka Baja CH .............. 10 Gambar 4 Jembatan Rangka Baja Australia ............................. 11 Gambar 5 Elemen Tipikal Komponen Jembatan Rangka Baja

    Australia, Austria, Bukaka, KBI, dan Spanyol .......... 11 Gambar 6 Jembatan Rangka Belanda Baru .............................. 12 Gambar 7 Urutan/pemasangan Komponen R.B.B di atas

    perletakan. 1. Diafragma didudukkan pada "Uper bearing plate" dan memasang "Tap bolt". 2. Pasang " End Bottom Chord" dan "Bottom Chord" pada "Upper bearing Plate".3. Pemasangan selanjutnya yaitu "Gusset Plate" dimasukkan pada cela antar "Diafragma" dan "Bottom Chord" tersebut. 12

    Gambar 8 Tipikal Jembatan Rangka Baja Austria, Bukaka, KBI, dan Spanyol ............................................................ 13

    Gambar 9 Jembatan Panel Bailey - Acrow ................................ 13 Gambar 10 Jembatan Rangka Semipermanen Australia........... 14 Gambar 11 Jembatan Transpanel Australia .............................. 14 Gambar 12 Bentuk Baut yang Dipergunakan dalam Jembatan

    Callender Hamilton ............................................... 16 Gambar 13 Baut Jembatan Rangka Baja Belanda .................... 19 Gambar 14 Baut Standar Metrik ................................................ 22 Gambar 15 Sistem Perletakan Jembatan CH ............................ 23 Gambar 16 Sistem Perletakan Jembatan Rangka Baja Austria . 24 Gambar 17 Pelat baja bergelombang Jembatan Rangka Baja

    Belanda Baru ........................................................ 26 Gambar 18 Sistem pemasangan pelat lantai di Jembatan Rangka

    Austria dan Jembatan Rangka Bukaka ................. 27 Gambar 19 Pelat baja bergelombang Jembatan Rangka Austria

    ............................................................................. 28 Gambar 20 Pelat baja bergelombang Jembatan Rangka Bukaka

    ............................................................................. 28

  • vi

    Gambar 24 Perkembangan Kehilangan Bahan Akibat Korosi Permukaan sebagai Fungsi dari Waktu dan Kondisi Lingkungan ........................................................... 42

    Gambar 25 Penampang yang Terbuka dari Rangka Bawah dengan Akumulasi Pencemaran ........................... 43

    Gambar 26 Penampang Struktur Jembatan dari Tipe Jembatan Rangka dengan Ikatan Angin di Bagian Atas dengan Lokasi yang Sensitif .............................................. 44

    Gambar 27 Lokasi Retak Fatik Tipikal di Dalam Bangunan Atas Jembatan Baja ...................................................... 44

    Gambar 28 Lokasi yang Memungkinkan dari Retak Fatik di Dalam Jembatan Rangka yang Disambung dengan Paku Keling .......................................................... 45

    Gambar 29 Penyajian Sistematik Umur Pelayanan Jembatan secara Teknis ....................................................... 50

    Gambar 30 Informasi dari Tipe Penyelidikan yang Berbeda ...... 54 Gambar 31 Gagasan Pokok untuk Pengujian CAPO ................ 60 Gambar 32 Uji Kecepatan Pulsa Ultrasonik .............................. 61 Gambar 33 Pengujian Impact-echo ........................................... 62 Gambar 34 Scan Radar ............................................................ 62 Gambar 35 Scan Radiografi ...................................................... 63 Gambar 36 Rekaman Infra Merah ............................................. 63 Gambar 37 Sirkuit untuk Pengukuran Potensial Setengah Sel .. 64 Gambar 38 Contoh Garis-garis Isopotensial untuk Penentuan

    Letak Korosi yang Muncul di dalam Element Struktural .............................................................. 65

    Gambar 39 Pemeriksaan Endoskop Kabel dan Saluran Kabel Prategang ............................................................. 65

    Gambar 40 Perbandingan Suatu Contoh Lendutan yang Terhitung dan yang Terukur (yang terlihat di dalam tanda kurung) dari Gelagar Utama akibat Pembebanan (a) Simetris dan (b) Tidak Simetris .. 71

  • vii

    Gambar 41 Suatu Contoh Vibrograf Ideal dari Perpindahan Vertikal Gelagar Jembatan. O- penanda waktu (1 s = 1 detik), P - didapat ketika poros sumbu kendaraan pertama berada di atas jembatan dan didapat ketika poros sumbu kendaraan yang terakhir keluar dari jembatan, W - jangka waktu getaran paksa, S - jangka waktu getaran bebas, yst - perubahan statis, yav - garis perubahan rata-rata, ymax - perubahan dinamis maksimum, delta- amplitudo getaran, tw - periode getaran paksa, ts - periode getaran bebas (periode alami) ...................................................... 74

  • viii

    Pendahuluan

    Dalam rangka memantapkan kestabilan sarana perhubungan lalu-lintas angkutan darat yang sangat penting artinya bagi pembangunan nasional sebagai perwujudan nyata terhadap pelayanan jasa distribusi yang meliputi jasa angkutan dan jasa perdangangan yang tidak bisa dipisahkan satu sama lain, oleh karena itu jaringan jalan dan jembatan merupakan hal yang utama untuk dijaga kemampuan daya layannya. Pemerintah memiliki wewenang untuk mengupayakan sistem jaringan jalan dan jembatan yang mantap sesuai dengan tuntutan zaman dalam rangka mewujudkan sasaran pembangunan nasional dalam menuju masyarakat yang adil dan sejahtera.

    Jembatan yang merupakan bagian dari jalan sangat diperlukan dalam sistem jaringan transportasi darat yang akan menunjang pembangunan nasional di masa yang akan datang. Oleh sebab itu perencanaan, pembangunan dan rehabilitasi perlu diperhatikan sehingga dapat mencapai sasaran umur jembatan yang direncanakan.

    Saat ini tidak kurang 88 ribu buah jembatan atau ekuialen dengan panjang kurang lebih 1000 km yang telah dibangun dan diinventarisasi walaupun sebagian kecil merupakan peninggalan masa penjajahan. Dari jumlah tersebut tidak kurang dari 29 ribu buah jembatan berada di ruas jalan nasional dan provinsi atau ekuialen dengan panjang kurang lebih 482 km dan sisanya berada di ruas jalan kabupaten, dan tersebar di seluruh kepulauan Indonesia yang berjumlah sekitar 17.000 pulau.

    Jembatan rangka baja yang merupakan salah satu jenis bangunan atas jembatan adalah bagian yang penting dari jembatan, maka pemanfaatan rangka baja jembatan harus seefektif dan seefesien mungkin, mulai dari tahap perencanaan, fabrikasi dan pelaksanaan hingga rehabilitasi, sehingga dana yang telah dialokasikan dapat dimanfaatkan secara maksimal.

  • ix

    Jenis-jenis jembatan rangka baja yang ada di Indonesia antara lain : Callender Hamilton (RBU), rangka baja Belanda (RBD, RBB), rangka baja Australia (RBA), rangka baja Austria (RBR), rangka baja Bukaka (RBK), rangka baja KBI (RBC), rangka baja Spanyol (RBE), dll.

    Penggunaan jembatan rangka dimulai dari zaman sebelum tahun 1945 sampai saat ini sehingga banyak yang telah melebihi umur rencananya dan belum diganti karena keterbatasan dana yang ada. Perkembangan teknologi angkutan dan penambahan beban yang tidak terkendali serta kurangnya pemeliharaan menyebabkan banyak jembatan rangka baja yang rusak, rusak parah hingga runtuh.

    Untuk mengatasi masalah tersebut diperlukan suatu system pemeliharaan dan perkuatan struktur dan lantai jembatan pada jembatan rangka baja sesuai dengan perkembangan peraturan dan teknologi yang ada saat ini serta memperhatikan dan memenuhi persyaratan sebagai berikut : kekuatan dan stabilitas struktural, kelayakan, keawetan, kemudahan pelaksanaan, ekonomis, dan bentuk estetika yang baik.

    Dalam pelaksanaan tugas Subdit Teknik Jembatan mencakup perencanaan teknik jembatan nasional dan pengembangan teknologi jembatan serta pembinaan perencanaan teknik jembatan provinsi dapat dijabarkan dan dimanifestasikan dalam tupoksi yang berfokus pada tahapan pembangunan dan perencanaan teknik baik untuk perencanaan, pemeliharaan/perawatan jembatan manapun pada tahap pembangunan baru dan penunjangan atau perkuatan jembatan.

    Sebagai acuan dalam kegiatan pemeliharaan/ perawatan jembatan dan berkaitan dengan tugas pembinaan teknik ke seluruh Indonesia, diperlukan suatu pengaturan yang berkaitan dengan penanganan kerusakan pada jembatan rangka baja berupa disusunnya suatu sistem perkuatan struktur dan lantai

  • x

    jembatan pada jembatan rangka baja sesuai dengan perkembangan peraturan dan teknologi yang ada saat ini.

  • 1 dari 82

    Pemeriksaan Jembatan Rangka Baja 1. Ruang lingkup

    Pedoman ini memuat secara umum tatacara perkuatan struktur jembatan rangka sehingga dapat mengembalikan kapasitas jembatan mendekati kondisi semula dengan tindakan yang paling tepat, efektif tanpa mengubah desain awal dan spesifikasi yang ada.

    2. Acuan normatif

    Undang-undang No. 32 tahun 2005

    : Tentang Jalan

    SK.SNI T-02-2005 : Pembebanan Jembatan

    SK.SNI T-12-2004 : Perencanaan Struktur Beton untuk Jembatan

    SK.SNI T-03-2005 : Perencanaan struktur baja untuk jembatan

    3. Istilah dan definisi

    3.1. angker

    adalah bagian jembatan sebagai penambat tetap terhadap pergerakan lateral atau longitudinal. 3.2. aspal

    lapis atas perkerasan elastik. 3. 3. bailey

    jembatan darurat portable yang bisa dibongkar pasang.

  • 2 dari 82

    3.4. baja

    material dengan kekerasan cukup tinggi yang umum digunakan pada suatu jenis konstruksi bangunan atau jembatan. 3.5. baut

    elemen untuk mengikat elemen struktur yang terpisah yang dikencangkan dengan suatu kunci momen. 3.6. bentang jembatan

    ukuran jarak as ke as pada abutmen atau pilar jembatan. 3.7. beton

    material batu buatan yang mampu menahan tekan tetapi tidak mampu menahan tarik. 3.8. callender hamilton

    tipe jembatan rangka dari inggris dengan sistem sambungan tumpu. 3.9. dongkrak hidrolis

    alat untuk mengangkat girder atau elemen struktur lainnya dalam usaha perbaikan dan pemeliharaan jembatan. 3.10. elastomer

    perletakan elastik tempat tumpuan girder baja atau girder beton. 3.11. elemen

    bagian dari suatu struktur jembatan.

    3.12. fatik

    beban pada jembatan yang bersifat berulang dan terus menerus.

  • 3 dari 82

    3.13. format numerik

    bentuk baku berdasarkan analisis yang diberikan oleh komputer. 3.14. fraktur

    keretakan secara tiba-tiba pada struktur baja setelah adanya kerusakan kecil yang bersifat desktruktif. 3.15. frekuensi alami

    banyaknya geteran pada struktur jembatan yang dipengaruhi bentuk dan dimensi geometri jembatan akibat beban dinamik eksternal. 3.16. galvanis

    lapisan khusus pada elemen baja untuk mengatasi perkaratan. 3.17. grouting

    upaya memberikan zat pengisi terhadap bagian struktur beton yang mengalami keretakan kecil. 3.18. jembatan

    sistem struktur dengan dua perletakan atau lebih yang direncanakan secara analitis dan sistematis untuk menyeberangkan angkutan di atasnya melewati suatu halangan, sungai atau lautan. 3.19. jembatan rangka

    tipe struktur jembatan dengan mengkombinasikan elemen-elemen baja sesuai kriteria desain dan aspek-aspek teknis yang mengikat.

  • 4 dari 82

    3.20. komponen

    bagian dari elemen suatu struktur yang mendukung terintegrasinya suatu sistem. 3.21. komposit

    aksi perilaku bersama antara dua atau lebih material yang memiliki karakteristik yang berbeda. 3.22. konstruksi

    sistem struktur yang dibuat manusia dengan menerapkan kaidah-kaidah desain. 3.23. korosi

    kerusakan pada elemen jembatan akibat pengikatan uap air oleh karat baja. 3.24. kunci momen

    alat untuk mengencangkan baut yang dilengkapi skala kekencangan tertentu. 3.25. lendutan

    perubahan geometrik elemen struktur akibat momen lentur. 3.26. longitudinal

    arah memanjang jembatan 3.27. lvdt

    linear variables displacement tranducers.

  • 5 dari 82

    3.28. metoda elastis

    kriteria desain dengan menerapkan hubungan linear tegangan vs regangan. 3.29. modulus young

    tetapan bahan yang menunjukkan tingkat elastisitas bahan merupakan harga tangens dari grafik tegangan vs regangan. 3.30. mortar

    bahan untuk pengisi suatu adukan semen yang telah dibersihkan dan memenuhi persyaratan lainnya 3.31. pelat

    bagian struktur yang dominan mengalami biaxial lentur dan torsi 3.32. pelat baja bergelombang

    lempengan baja yang digunakan sebagai bekisting pada saat pengecoran lantai 3.33. pemeriksaan detail

    pemeriksaan untuk mengetahui kondisi jembatan dan elemennya guna mempersiapkan strategi penanganan untuk setiap individual jembatan dan membuat urutan prioritas jembatan sesuai dengan jenis penanganannya. 3.34. pemeriksaan inventarisasi

    pemeriksaan yang dilakukan pada saat awal untuk mendaftarkan setiap jembatan ke dalam database. pemeriksaan inventarisasi juga dilaksanakan jika pada jembatan yang tertinggal pada waktu database dibuat.

  • 6 dari 82

    3.35. pemeriksaan khusus

    pemeriksaan yang disarankan oleh pemeriksa jembatan pada waktu pemeriksaan detail karena pemeriksa merasa kurangnya data, pengalaman atau keahlian untuk menentukan kondisi jembatan. 3.36. prategang

    suatu teknik memberikan momen lentur berlawanan dengan arah lentur beban sehingga meningkatkan kapasitas muat suatu elemen struktur. 3.37. profil

    baja penampang tertentu yang digunakan dalam konstruksi. 3.38. pundit

    alat untuk mengukur keretakan. 3.39. regangan

    perbandingan perubahan dilatasi terhadap panjang semula. 3.40. semi-permanen

    sistem jembatan baja yang dibuat untuk mengalihkan sementara tingkat lalu lintas dengan waktu layan jembatan lebih lama dari jembatan non permanen 3.41. sistem lantai

    konstruksi terintegrasi antara stringer, pelat beton, cross girder, stud, pelat gelombang dan komponen pendukung lainnya. 3.42. specific gravity

    ukuran perbandingan relatif kerapatan suatu zat terhadap kerapatan zat lain yang dianggap standard.

  • 7 dari 82

    3.43. struktur

    suatu tatanan konstruksi buatan manusia dengan menerapkan kaidah-kaidah alam, aturan dan spesifikasi teknis yang merupakan pedoman bersama. 3.44. struktural

    elemen-elemen jembatan yang dominan menerima beban-beban utama. 3.45. tegangan

    kondisi tarik atau tekan yang merupakan ukuran gaya per satuan penampang. 3.46. tendon

    kabel prategang yang terdiri dari banyak strand. 3.47. tingkat kerusakan

    kategori kerusakan elemen struktur dalam klasifikasi yang sudah ditetapkan sebelumnya. 3.48. titik leleh

    ukuran tertinggi batas linear elastik sebagai dasar perencanaan tegangan kerja 3.49. transversal

    arah melintang jembatan. 3.50. tulangan

    komponen baja batangan pada beton bertulang sebagai bagian yang menerima beban tarik.

  • 8 dari 82

    3.51. umur pelayanan

    masa penggunaan suatu konstruksi

    3.52. vibrocorder

    alat untuk mengukur getaran jembatan 3.53. warren

    tipe jembatan rangka dengan ciri khas elemen diagonal tanpa elemen vertikal 4. Umum

    4.1. Tipe dan komponen berbagai jembatan rangka

    Jembatan Rangka yang dipergunakan di Indonesia umumnya menggunakan tipe rangka Warren dimana jumlah rangka baja tersebut dibandingkan dengan jumlah jembatan pada ruas jalan nasional adalah sebagai berikut :

    1. Rangka Baja Callender Hamilton (CH )dari Inggris (kode BMS : RBU) berjumlah sekitar 0,87%

    2. Rangka Baja Hollandia Klos (=Belanda Baru) dari Belanda (kode BMS : RBB) berjumlah sekitar 1,07%

    3. Rangka Baja Transfield dari Australia (kode BMS : RBA) berjumlah sekitar 3,32 %

    4. Rangka Baja Waagner Biro dari Austria (kode BMS : RBR) berjumlah sekitar 0,50 %

    5. Rangka Baja Bukaka dari Indonesia (kode BMS : RBK) berjumlah sekitar 0,25 %

    6. Rangka Baja Karunia Berca Indonesia (KBI) (kode BMS : RBC)

    7. Rangka Baja Centunion dari Spanyol (kode BMS : RBE) 8. dan rangka baja lainnya baik yang ada setelah rangka baja

    Spanyol atau sebelum rangka baja Callender Hamilton.

  • 9 dari 82

    Sedangkan rangka baja semi-permanen dan jembatan darurat yang dipakai di Indonesia adalah: 1. Rangka Baja Panel Bailey dan Acrow Panel dari Inggris (kode

    BMS : RBW) ketersediaan 1,13 % stok jembatan nasional. 2. Rangka Baja Semipermanen Transfield dari Australia (kode

    BMS : RBS) ketersediaan 0,22 % stok jembatan nasional. 3. Rangka Baja Transpanel Transfield dari Australia (kode BMS

    : RBT) ketersediaan 0,12 % stok jembatan nasional.

    Untuk lebih jelasnya bentuk dari masing-masing tipe dapat dilihat pada gambar di bawah ini.

    Gambar 1 Jembatan Rangka Baja CH sistem Through Type

    Gambar 2 Jembatan Rangka Baja CH sistem Deck Type

  • 10 dari 82

    Gambar 3 Elemen Tipikal Jembatan Rangka Baja CH

  • 11 dari 82

    Gambar 4 Jembatan Rangka Baja Australia

    Gambar 5 Elemen Tipikal Komponen Jembatan Rangka Baja Australia, Austria, Bukaka, KBI, dan Spanyol

  • 12 dari 82

    Gambar 6 Jembatan Rangka Belanda Baru Gambar 7 Urutan/pemasangan Komponen R.B.B di atas

    perletakan. 1. Diafragma didudukkan pada "Uper bearing plate" dan memasang "Tap bolt". 2. Pasang " End Bottom Chord" dan "Bottom Chord" pada "Upper bearing Plate".3. Pemasangan selanjutnya yaitu "Gusset Plate" dimasukkan pada cela antar "Diafragma" dan "Bottom Chord" tersebut.

  • 13 dari 82

    Gambar 8 Tipikal Jembatan Rangka Baja Austria, Bukaka, KBI,

    dan Spanyol

    Gambar 9 Jembatan Panel Bailey - Acrow

    TAMPAK SAMPING (TUNGGAL)

    TAMPAK SAMPING (GANDA)

    POTONGAN MELINTANG

    JEMBATAN BAILEY - TIPE RBW/SBW

  • 14 dari 82

    Gambar 10 Jembatan Rangka Semipermanen Australia

    Gambar 11 Jembatan Transpanel Australia

  • 15 dari 82

    4.2. Mutu bahan komponen jembatan

    Mutu bahan komponen jembatan terdiri dari berbagai macam kelas. Untuk jembatan CH mutu komponen jembatan mempergunakan ketentuan BS 4630 sebagaimana yang dapat dilihat pada tabel di bawah ini.

    Tabel 1 Mutu bahan baja jembatan CH

    Kelas Kuat Tarik

    Tegangan leleh minimal untuk ketebalan

    s/d 16 mm

    16-25 mm

    25-40 mm

    40-63 mm

    63 mm

    N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 N/mm2

    43 A 430/510 255 245 240 239 225

    50 B 490/620 355 345 345 340 325

    55 C 550/700 450 430 415 - -

    4.2.1. Mutu bahan komponen jembatan Belanda Baru

    Fe 510 C sesuai standar Eropa 25 - 72. Baja konstruksi yang dipergunakan untuk seluruh komponen jembatan, dipabrikasi dari baja gilas sesuai dengan standar Eropa norm 25 - 72 dengan "grade" Fe 510 C (Fy 360 MPA) yang setara dengan ASTM A-572 "grade" 50 (Fy 350 MPA). 4.2.2. Mutu bahan komponen jembatan Austria

    Komponen-komponen baja konstruksi dalam Jembatan Rangka dibuat dari baja yang memenuhi S355JO atau HISTAR S460 sesuai dengan standar DIN EN 10025, kecuali ikatan angin dan sandaran dibuat dari baja S235JO.

  • 16 dari 82

    4

    3

    MILD STEEL (M.S)

    MURRING

    RING MUR

    HIGH YIELD STEEL (H.Y.S)

    BAUT

    BAUT

    4.3. Baut jembatan

    4.3.1. Baut jembatan rangka CH

    Pada jembatan Callender Hamilton (CH) yang terpasang sekarang dipakai 2 (dua) macam baut yaitu baut diameter 1 Mild Steel (M.S.) dan 11/2 High Yield Steel (H.Y.S). Baut diameter 1 dipakai pada sambungan-sambungan sekunder dan baut 11/2 pada sambungan-sambungan primer. Berikut nilai torsi minimum yang direkomendasikan untuk semua baut jembatan Callender Hamilton (CH) : 1. diameter 1" 34.5 kg. m (250 lbs ft) 2. diameter 1 " 48.4 kg. m (350 lbs ft) 3. diameter 2" 62.2 kg. m (450 lbs.ft) 4. M 20 grade 8.8 45.0 kg. m (325 lbs.ft) 5. M 24 grade 8.8 78.0 kg. m (565 lbs.ft) Gambar 12 Bentuk Baut yang Dipergunakan dalam Jembatan

    Callender Hamilton

  • 17 dari 82

    Tabel 2 Dimensi Baut High Yield Steel (H.Y.S.)

    Mark (notasi)

    Panjang (mm) 55 65 75 85 95 115

    Berat (kg) 1,32 1,41 1,50 1,59 1,68 1,86

    1,5 " Diameter H.Y.S. ( High Yield Steel ) bolt

    2 3 4 5 6 8

    Tabel 3 Dimensi Baut Mild Steel (M.S.)

    Mark (notasi)

    Panjang (mm) 52 62 72 82 92

    Berat (kg) 0,51 0,55 0,59 0,63 0,67

    1 " Diameter M.S. ( Mild Steel ) bolt

    2 3 4 5 6

    Angka didalam gambar juga menunjukkan berapa lapis pelat yang dijepit oleh baut tersebut. Contoh : - Baut Mild Stell (M.S.)

    3 lapis angka 3

  • 18 dari 82

    - Baut High Yield Steel (Y.H.S.) Spesifikasi H.Y.S. sama dengan Grade 55C dan M.S. sama dengan Grade 43A. Dipasaran sekarang sulit mendapatkan baut dengan Grade H.Y.S. Baut ini dapat diganti dengan baut yang kualitasnya lebih tinggi sesuai dengan ASTM A325 Grade 8.8. Sedang baut M.S. dapat dipakai baut biasa digalvanis . 4.3.2. Baut jembatan rangka Belanda

    Seluruh baut yang dipergunakan untuk sambungan konstruksi baja ini ialah baut tegangan tinggi tipe 10.9 H.V.termasuk juga mur dan ring datar yang sesuai dan diperkuat. Ring bujur sangkar menipis yang diperkuat untuk besi kanal standar Eropa sesuai dengan ukuran dan tebal keminringan yang terdapat dalam DIN 6918. Pada jembatan baja,baut-baut galvanis dipergunakan dengan kualitas 10.9 H.V. sesuai dengan NEN 5511 dan 5512, ring datar yang dipergunakan adalah kualitas 10.9 H.V.sesuai dengan NEN 5514 - 5515 yang mana disebut mur-mur dan ring datar yang kuat untuk hubungan pembautan pratekan. Data teknis baut: Kuat tarik = 1000 N/mm2 Titik Leleh = 900 N/mm2 Regangan = 12 %

    2 lapis angka 2

  • 19 dari 82

    Ada dua macam diameter baut yamg digunakan yaitu M20 dan M24 dengan panjang yang berbeda. Panjang baut dan kelebihan panjang ulir (min 7mm dan max 11mm) dapat dilihat pada gambar di bawah ini.

    Gambar 13 Baut Jembatan Rangka Baja Belanda

    4.3.3. Kunci Momem Torsi Manual Jembatan Rangka Belanda Baru

    Untuk setiap 2 (dua) bentangan dilengkapi dengan 1 (set) kunci Momen Torsi yang diperlukan untuk pengencangan baut-baut dalam pemasangan konstruksi baja. Setiap set terdiri atas: 1. Kunci Torsi merk Britool tipe HVT 5000 digunakan untuk

    pengencangan baut M20. 2. Kunci Torsi merk Britool tipe GVT 8400 digunakan untuk

    pengencangan baut M24.

  • 20 dari 82

    Dengan data teknis sebagai berikut:

    Tabel 4 Kunci Momen Torsi Manual Jembatan Rangka Belanda Baru

    HVT 5000 GVT 8400

    Diameter 3/4" (20 mm) 1" (25 mm)

    Panjang 44.5" (1130 mm) 55" (1397 mm)

    Momen Pengencangan

    140 - 560 Nm 480 - 940 Nm

    14 - 57 Kgm 49 - 95 Kgm

    1200 - 50001bf - in -

    100 - 4101bf - ft 350 - 700 lbf - ft

    Berat 6.58 kg 12.70 kg

    4.3.4. Baut Austria

    Baut untuk semua sambungan konstruksi adalah M16 dan M20, baut tegangan tinggi kualitas 10.9 sesuai DIN 6914 dengan mur dan cincin dari jenis semacam yang diperkeras, baut untuk pemasangan sandaran adalah M12 dari jenis yang sama. Panjang baut tegangan tinggi diameter 12mm,16mm dan 20mm untuk sambungan konstruksi dibuat perencanaannya dalam

  • 21 dari 82

    gambar dan dalam daftar baut dengan awalan "M" serta diameter dan panjangnya dalam milimeter (umpama M20 x 50). Semua baut-baut konstruksi untuk penyambungan batang sendiri-sendiri, kecuali penyambungan tumpuan kepada pelat dasar yang berturut-turut, peredam-peredam kepada besi siku penyambung, harus diberikan pratekanan terakhir dengan memberi tarikan puntiran, dengan momen puntiran Ma sebagai berikut: Baut M20: Pengencangan awal : Ma 1 = 400 Nm Pengencangan akhir : Ma 2 = 500 Nm Baut M16: Pengencangan awal : Ma 1 = 200 Nm Pengencangan akhir : Ma 2 = 250 Nm Baut M12: Ma = 60 Nm, untuk klemp sandaran. Untuk pengujian pratekan, periksalah paling sedikit 5% baut-baut tiap sambungan jembatan permanen dengan satu meter puntir yang dikalibrasi dengan baik, dengan satu momen puntiran: MT = 550 Nm (M20) MT = 275 Nm (MI6) Jika sudut puntir tambahan adalah 0 sampai 3 ini adalah balk, jika 30 sampai 60' adalah baik namun periksalah dua baut tambahan pada sambungan yang sama, dan apabila lebih besar dari 600 gantilah baut tersebut serta periksalah dua baut lagi sambungan yang sama.

  • 22 dari 82

    Gambar 14 Baut Standar Metrik

  • 23 dari 82

    4.4. Sistem perletakan

    4.4.1. Sistem perletakan CH

    Gambar 15 Sistem Perletakan Jembatan CH 4.4.2. Sistem perletakan jembatan rangka Belanda

    Bantalan karet perletakan (Elastomer) yang diperkuat dengan pelat baja Fe 510. Spesifikasi bahan untuk bantalan elastomer sesuai dengan BS 051031.

  • 24 dari 82

    Gambar 16 Sistem Perletakan Jembatan Rangka Baja Austria

  • 25 dari 82

    4.4.3. Alat dongkrak hidrolis

    Setiap dongkrak hidrolis mempunyai kapasitas 145 ton (2 x 72,5) dihubungkan dengan pompa tangan, pipa karet penghubung, dan alat penyambung, yang dipergunakan pada pemasangan bangunan atas jembatan (dari bentang jembatan 40m sampai 60m). Dan dilengkapi juga dengan dongkrak hidrolis "LAR ZEP" dengan kapasitas 200 ton (2 x 100 ton), yang dipergunakan untuk bentang jembatan 100 m dan 105 m. 4.4.4. Sistem perletakan Austria, Australia

    Tumpuan-tumpuan adalah jenis elastomer. Pelat elastomer diletakan di atas suatu pelat baja yang nantinya ditutup kembali dengan pelat baja, berlainan dengan jembatan rangka Belanda baru, pelat baja ini seringkali tidak diberi penahan disekitarnya seperti yang terlihat pada gambar di atas. 4.5. Sistem lantai

    Sistem lantai jembatan yang umum dipergunakan dalam rangka baja di Indonesia dibagi dua yaitu: 1. Sistem lantai beton yang ditumpu pada gelagar melintang

    seperti pada Jembatan Rangka CH dan Jembatan Rangka Baja Australia. Ketebalan pelat lantai umumnya 20 cm, lapisan aspal 5 cm.

    2. Sistem lantai beton dengan dikompositkan bekisting pelat baja bergelombang yang ditumpu pada gelagar memanjang seperti pada Jembatan Rangka Baja Belanda Baru, Austria, Bukaka, Spanyol, dan lain-lain.

    4.5.1. Sistem lantai jembatan rangka Belanda Baru

    Lantai Jembatan terbuat dari pelat-pelat baja gelombang sesuai dengan ASTM-572 grade 42 atau DIN 50049-2-3 ST44.2

  • 26 dari 82

    Lantai baja gelombang yang digalvanis ini diproses secara dingin dari pelat baja dengan mutu 42 sesuai dengan ASTM A-572 dan disediakan dalam dua jenis bentuk profil dengan lebar:

    Lantai jembatan tunggal = 444 mm dan

    Lantai jembatan ganda = 818 mm Dan tinggi gelombang 100 mm dan dua ukuran panjang untuk memenuhi kebutuhan jembatan kelas A & B . Lantai jembatan dibuat dengan lubang-lubang untuk memasang kebalok-balok memanjang dan untuk menggabungkan lembaran-lembaran pada sambungannya. Detail-detailnya terdapat pada gambar-gambar terlampir. Panjang dari lantai baja sama dengan setengah lebar dari lebar jembatan. Kelas A, panjang = 4.50 m Kelas B, panjang = 3.50 m Kelas C panjang = 2.75 m Ada dua macam baut yang digunakan untuk memasang lantai baja, yaitu M 10 dan M12. Gambar 17 Pelat baja bergelombang Jembatan Rangka Baja

    Belanda Baru

  • 27 dari 82

    4.5.2. LHD - Profile (besi siku pinggir untuk lantai)

    LHD - Profil disediakan bersama-sama dengan komponen baja konstruksi dan harus ditanam dalam beton sesuai dengan detail pada gambar. Besi siku pelindung untuk lantai dibentuk menurut kemiringan pelat lantai dan hares mempunyai jarak yang tepat, dan bila digunakan lapisan aspal, maka besi siku ini hares dipasang lebih tinggi dari lantai beton agar tingginya sama dengan permukaan akhir lantai. Dengan alasan-alasan ini, maka selama pengecoran lantai, besi siku pelindung ini harus diikat dan dikencangkan pada bekisting lantai. Untuk keperluan ini telah disediakan lubang-lubang pada besi siku tersebut. Jembatan ini telah dirancang untuk memakai lapisan aspal setebal 5 cm. 4.5.3. Sistem Lantai Jembatan Rangka Austria dan Bukaka

    Sistem lantai jembatan rangka baja tipikal seperti jembatan rangka Austria umumnya mempergunakan bekisting plat baja bergelombang yang di dalamnya diberi tulangan agar menyatu dengan beton, seringkali tulangan in tidak ditempelkan ke bagian atas pelat baja, sehingga akhirnya beton sering retak karena tidak terjadinya aksi komposit antara beton dan pelat baja.

    Gambar 18 Sistem pemasangan pelat lantai di Jembatan Rangka Austria dan Jembatan Rangka Bukaka

  • 28 dari 82

    Gambar 19 Pelat baja bergelombang Jembatan Rangka Austria Gambar 20 Pelat baja bergelombang Jembatan Rangka Bukaka

  • 29 dari 82

    4.6. Standar pembebanan

    Standar pembebanan yang digunakan paling umum adalah peraturan pembebanan Bina Marga tahun 1971. Kemudian setelah Sistem Manajemen Jembatan dikeluarkan tahun 1992 semua ketentuan pembebanan jembatan rangka diubah dengan persyaratan yang terbaru.. Selain ketentuan pembebanan tadi masih ada peraturan pembebanan tahun 1987. 4.6.1. Standar pembebanan jembatan CH

    Beban pada lantai kendaraan dan beban pada struktur rangka baja. Adapun beban-beban yang dipergunakan adalah: a. BINA MARGA : NO. 12/1970 b. RJ.K.A. : AVBP 1932 c. AASHTO : HS - 44 d. H.A. Loading : BS-5400 e. Dan lain-lain pembebanan

    Panjang bentang, maksimum panjang bentang untuk tiap-tiap.

    Lebar lantai kendaraan dan trotoarnya yang dapat dijadikan acuan kelas pembebanan Bina Marga adalah: a. Jembatan Kelas C : Single Lane = 3,50 m + trotoar

    0,25 tiap sisi. Muatan lantai 100 % dan muatan rangka 70 %.

    b. Jembatan Kelas B : Double Lane = 5,50 s/d 6,0 m + trotoar 0,25 m tiap sisi. Muatan lantai 100 % dan muatan rangka 70 %.

    c. Jembatan Kelas A : Double Lane = 7,00 m + trotoar 1,00 m tiap sisi. Muatan lantai dan rangka 100 %.

    4.6.2. Standar pembebanan jembatan rangka Belanda Baru

    "Spesifikasi Perencanaan untuk jembatan Jalan Raya" No. 12/1970 (diperbaiki Juli 1983) Direktorat Jenderal Bina Marga Indonesia.

    Spesifikasi Perencanaan untuk Jembatan Baja" 1978 oleh Direktorat Jenderal Bina Marga.

  • 30 dari 82

    VOSB 1963 (Standar Belanda NEN 1008).

    VVSB 1977 ( Standar Belanda NEN 2008).

    Spesifikasi AASHTO dan ASTM.

    Kelas A/B (Spesifikasi Pembebanan untuk Jembatan Jalan Raya). o Lalulintas : 2 lajur penuh ditambah trotoar. o 100% beban D (ditambah faktor kejut) dan

    100% beban T. o Trotoar : 500 kg/m2 Batang Sandaran: 100

    kg/m (gaya mendatar).

    Kelas C (Spesifikasi Pembebanan untuk Jembatan Jalan Raya). o Lalulintas : 1 lajur penuh ditambah trotoar. o 100% beban D (ditambah faktor kejut) dan

    100% beban T o Trotoar : 500 kg/m2, Rel pegangan: 100 kg/m

    (gaya mendatar)

    Bangunan atas jembatan diperhitungkan sebagai konstruksi dengan tumpuan bebas

    direncanakan dengan metoda Elastis dan dengan memberikan lawan lendut yang cukup

    untuk mengimbangi lendutan yang terjadi sebesar 150 % beban mati.

    5. Pemeriksaan jembatan rangka baja

    5.1. Pemeriksaan jembatan

    Pemeriksaan jembatan adalah salah satu komponen dalam sistem informasi manajemen jembatan yang terpenting. Hal ini merupakan sesuatu yang pokok dalam hubungannya antara keadaan jembatan yang ada dengan rencana pemeliharaan atau peningkatan dalam waktu mendatang.

  • 31 dari 82

    Tujuan pemeriksaan jembatan ini adalah untuk meyakinkan bahwa jembatan masih berfungsi secara aman dan perlunya diadakan suatu tindakan tertentu guna pemeliharaan dan perbaikan secara berkala. Jadi pemeriksaan jembatan mempunyai beberapa tujuan yang spesifik yaitu:

    Memeriksa keamanan jembatan pada saat layan

    Menjaga terhadap ditutupnya jembatan

    Mencatat kondisi jembatan pada saat tersebut

    Menyediakan data bagi personil perencanaan teknis, konstruksi dan pemeliharaan

    Memeriksa pengaruh dari beban kendaraan dan jumlah kendaraan.

    Memantau keadaan jembatan secara jangka panjang

    Menyediakan informasi mengenai dasar daripada pembebanan jembatan.

    Pemeriksaan dilakukan dari awal sejak jembatan tersebut masih baru dan berkelanjutan selama umur jembatan. Sangat penting artinya bahwa data yang dikumpulkan betul-betul merupakan data yang mutakhir, akurat dan lengkap sehingga hasil yang dikeluarkan betul-betul dapat dipercaya. Pekerjaan pemeriksaan jembatan adalah mengumpulkan data-data sebagai berikut:

    Detail secara administrasi seperti nama jembatan, Nomor Jembatan dan Tahun pembangunannya.

    Semua dimensi jembatan seperti panjang total dan jumlah bentang.

    Dimensi, jenis konstruksi, dan kondisi komponen-komponen utama setiap bentang jembatan dan elemen jembatan secara individual.

    Data lainnya.

  • 32 dari 82

    Data jembatan dikumpulkan dari berbagai jenis pemeriksaan yang berbeda dalam skala dan intensitasnya, frekuensinya dan secara sifat masing-masing elemen jembatan atau pemeriksaan secara detail. Jenis pemeriksaan yang utama dalam sistem informasi manajemen jembatan adalah sebagai berikut:

    Pemeriksaan Inventarisasi.

    Pemeriksaan Detail.

    Pemeriksaan Khusus. 5.1.1. Pemeriksaan inventarisasi

    Pemeriksaan Inventarisasi dilakukan pada saat awal untuk mendaftarkan setiap jembatan ke dalam database. Pemeriksaan inventarisasi juga dilaksanakan jika pada jembatan yang tertinggal pada waktu database dibuat. Selanjutnya pada jembatan baru yang belum pernah dicatat harus dilaksanakan pemeriksaan inventarisasi. Perlintasan Kereta Api, penyeberangan sungai, gorong-gorong dan lokasi dimana terdapat penyeberangan ferri juga diperiksa dan didaftar. Pemeriksaan inventarisasi adalah pengumpulan data dasar administrasi, geometri, material dan data-data tambahan lainnya pada setiap jembatan, termasuk lokasi jembatan, penjang bentang dan jenis konstruksi untuk setiap bentang. Kondisi secara keseluruhan diberikan pada komponen-komponen utama bangunan atas dan bangunan bawah jembatan. Pemeriksaan inventarisasi dilakukan oleh pemeriksa dari instansi yang terkait yang sudah dilatih atau oleh seorang sarjana yang berpengalaman dalam bidang jembatan. 5.1.2. Pemeriksaan detail

    Pemeriksaan detail dilakukan untuk mengetahui kondisi jembatan dan elemennya guna mempersiapkan strategi penanganan untuk

  • 33 dari 82

    setiap individual jembatan dan membuat urutan prioritas jembatan sesuai dengan jenis penanganannya. Pemeriksaan detail dilakukan paling sedikit sekali dalam lima tahun atau dengan interval waktu yang lebih pendek tergantung pada kondisi jembatan. Pemeriksaan Detail juga dilakukan setelah dilaksanakan pekerjaan rehabilitasi atau pekerjaan perbaikan besar jembatan, guna mencatat data yang baru, dan setelah pelaksanaan konstruksi jembatan baru, untuk mendaftarkan ke dalam database dan mencatatnya dalam format pemeriksaan detail. Pemeriksaan detail mendata semua kerusakan yang berarti pada elemen jembatan, dan ditandai dengan nilai kondisi untuk setiap elemen, kelompok elemen dan komponen utama jembatan. Nilai kondisi untuk jembatan secara keseluruhan didapat dari nilai kondisi setiap elemen jembatan. Kerusakan yang harus didata untuk jembatan rangka baja yang akan sangat menentukan metode perkuatan adalah :

    Tabel 5 Elemen-elemen yang harus diperiksa pada Jembatan Rangka Baja

    Kerusakan pada

    BETON

    Kerusakan pada beton termasuk terkelupas, sarang lebah, berongga, berpori dan kerusakan pada beton Keretakan Korosi pada tulangan baja Kotor, berlumut, penuaan atau pelapukan beton Pecah atau hilangnya bahan Lendutan

    BAJA

    Penurunan mutu cat dan atau galvanis Karat

  • 34 dari 82

    Perubahan bentuk pada komponen Retak Pecah atau hilangnya bahan Elemen yang tidak benar Kabel jembatan yang aus Sambungan yang longgar

    LANDASAN/PERLETAKAN

    Tidak cukupnya tempat untuk bergerak Kedudukan landasan yang tidak sempuma Mortar dasar retak atau rontok Perpindahan atau Perubahan bentuk yang berlebihan Landasan yang cacat (pecah sobek atau retak) Bagian yang longgar Kurangnya pelumasan pada landasan logam

    PELAT DAN LANTAI

    Pergerakan yang berlebih pada sambungan lantai arah memanjang Lendutan yang berlebihan

    Tabel 6 Elemen-elemen yang harus diperiksa pada Jembatan

    Rangka Baja (lanjutan)

    Kerusakan pada

    SAMBUNGAN /SIAR MUAI

    Kerusakan sambungan lantai yang tidak sama tinggi Kerusakan akibat terisinya sambungan Bagian yang longgar Bagian yang hilang Retak pada aspal karena pergerakan pada sambungan

    PIPA DRAINASE, PIPA CUCURAN DAN DRAINASE LANTAI

    Pipa cucuran dan drainase lantai yang tersumbat Elemen hilang atau tidak ada

  • 35 dari 82

    LAPISAN PERMUKAAN

    Permukaan yang licin Permukaan yang kasar/berlubang dan retak pada lapisan permukaan Lapisan permukaan yang bergelombang Lapisan permukaan yang berlebihan

    TROTOAR/KERB

    Permukaan trotoar yang licin Lubang/retak/kasar pada trotoar Bagian hilang

    UTILITAS

    Tidak berfungsi

    5.1.2.1. Kerusakan Tipikal Struktur Beton

    Kerusakan yang umum terjadi pada elemen beton jembatan rangka dirangkum dalam sebuah tabel sebagaimana yang dapat dilihat di bawah ini.

    Tabel 7 Kerusakan Tipikal Struktur Beton

    Ilustrasi Penyebab kerusakan

    Retak akibat korosi tulangan baja; terlalu tipisnya selimut beton; kualitas betonnya yang rendah

  • 36 dari 82

    1. Kebocoran sambungan siar-muai,

    2. Kebocoran, beton yang menurun kualitasnya,

    3. Gompal beton akibat korosi tulangan.

    Retak dalam kaitan dengan penyusutan (jika tingginya lebih dari separuh tinggi gelagar).

    1. Retak zone extremal momen lentur,

    2. Retak yang dihasilkan oleh tegangan tarik utama di sekitar zona pendukung.

    1. Retak dalam cetakan balok sandaran di dalam tahap yang sama dengan gelagar.

    1. Kerusakan akibat dampak yang dihasilkan oleh kendaraan dengan ukuran yang berlebih.

    1. Kebocoran sambungan

    siar-muai, 2. Korosi angker tendon, 3. Korosi tendon dengan

    tanda extemal akibat kualitas yang rendah dari grouting di dalam saluran kabel prategang.

  • 37 dari 82

    1. Kebocoran yang dihasilkan dari penyekatan yang dapat ditembus air di ataspelat lantai jembatan

    2. Retak akibta korosi tendon,

    3. Gompal beton dan tendon yang tidak ada lapisan luarnya akibat korosi.

    1. Retak yang dihasilkan dari

    efek pengurangan penegangan kabel ,

    2. Retak zone angker akibat tulangan yang terlalu lemah di dalam zone angker

    5.1.2.2. Kerusakan Tipikal Struktur Baja Jembatan

    Bagaimanapun, diperlukan untuk menyajikan dalam format lebih khusus dan untuk menunjukan beberapa contoh dari tipe ini, terutama kerusakan yang disebabkan oleh korosi dan fatik. Korosi adalah faktor yang paling umum yang mengarah pada penurunan kualitas bagian struktural dan sambungannya. Ada lima format korosi yang teramati pada jembatan baja, yaitu: 1. korosi permukaan, yang menyebabkan kerusakan seragam

    pada permukaan yang relatif besar pada baja struktural dan mengarah pada pengurangan penampang-lintang di dalam bagian struktural,

    2. korosi cekungan, terjadi pada permukaan yang sangat kecil (oleh karena itu, efek nya sukar dideteksi dalam banyak kasus), mengembang sangat dalam di dalam baja dan secara umum mengarah pada konsentrasi tegangan lokal,

  • 38 dari 82

    3. korosi celah, terjadi di lapisan kontak antara dua elemen tipe yang sama baja (sebagai contoh, pada pelat yang diperkuat dengan baut, pelat penyambung, pelat buhul, dll.) dan mengarah pada kerusakan oleh kekuatan yang merobek sebagai hasil dari efek pengembangan hasil korosi, dalam banyak kasus sangat sulit untuk mendeteksi efek yang membahayakan akibat tipe korosi ini karena muncul pada banyak tempat yang tidak mudah diakses di dalam struktur jembatan,

    4. korosi galvanis, yang umumnya terjadi pada sambungan dua tipe baja atau logam yang berbeda (sebagai contoh , dalam pengelasan, hubungan dengan menggunakan sekrup, baut atau paku keling yang disebut sel galvanis dapat dibentuk) dan mengarah pada pengrusakan bahan lokal, sulit untuk pendeteksian,

    5. korosi tegangan, terjadi kebanyakan di dalam kabel pada jembatan gantung dan jembatan cable-stayed, relatif jarang di dalam elemen jembatan struktural yang dibangun dengan baja karbon, korosi tegangan bersama-sama dengan korosi cekungan dan korosi celah kadang-kadang dianggap sebagai korosi fatik.

    Korosi permukaan, korosi cekungan dan korosi celah, yang ditandai di atas dengan (a), (b) dan (c), adalah yang paling sering diamati dalam struktur jembatan baja. Penyelesaian masalah fisik dan penyelesaian masalah kimia korosi tipe ini serupa dan seperti ditunjukkan gambar-gambar di bawah ini. Untuk membandingkan penyelesaian masalah korosi ini dalam baja struktural dan di dalam tulangan baja dari beton, ilustrasi yang relevan diberikan. Informasi yang lebih detail tentang korosi adalah di luar bidang buku ini dan dapat ditemukan lain dalam banyak sumber. Intensitas korosi kebanyakan tergantung pada bentuk bagian struktural yang memadai mudah untuk pengeluaran air, mudah

  • 39 dari 82

    untuk dapat diakses dalam pemeliharaan), kualitas perlindungan anti-korosi, kualitas pekerjaan konstruksi, program dan kualitas pemeliharaan seperti halnya kondisi-kondisi lingkungan, sebagian besar kelembaban dan polusi yang merusak di dalam atmosfer. Keterangan gambar : Penyelesaian masalah dasar-

    anoda : 2Fe 2Fe+++ 4e-, katoda: O2+ 2H2O+ 4e- 4(OH)-.

    Contoh hasil penyelesaian masalah korosi - dalam hal jumlah terbatas oksigen:

    Fe+++ 2(OH)- Fe(OH)2,- dalam kasus dari akses yang lebih bebas dari oksigen:

    2Fe+++ 4(OH)- + O2+ (n+1)H2O 2Fe(OH)3 x nH20, 4Fe++ +

    3O2 2Fe2O3.

    Gambar 21 Mekanisme Korosi Permukaan Baja Struktural

    Gambar 22 Mekanisme Penyelesaian Masalah Korosi Celah dalam Lapisan Kontak antara Dua Unsur dari Elemen Bagian Baja Struktural

    HASIL KOROSI Fe (OH)3 + n H2O Fe (OH)2

    TETESAN AIR

    KATODA ANODA

    KATODA BAJA

    BAJA

    ANODA

    BAJA

    KATODA

    AIR