STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN...

13
STUDI OPTIMASI LEPASAN WADUK BERDASARKAN RULE CURVE WADUK PEJOK DI BOJONEGORO DENGAN METODE ALGORITMA GENETIK Bagus Ibrahim Prijanto 1 , Widandi Soetopo 2 , Suwanto Marsudi 2 1 Mahasiswa Program Sarjana Teknik Jurusan Pengairan Universitas Brawijaya 2 Dosen Teknik Pengairan Fakultas Teknik Universitas Brawijaya 1 [email protected] ABSTRACT Waduk Pejok adalah salah satu upaya untuk mempertahankan dan meningkatkan produksi irigasi DI Pacal Kerjo Kabupaten Bojonegoro. Pada musim kemarau banyak area irigasi yang tidak dapat ditanamai tetapi pada musim penghujan Kali Kerjo tidak mampu menampung debit air. Dikarenakan belum adanya pedoman operasi pada Waduk Pejok maka agar pemenuhan kebutuhan irigasi dapat ditingkatkan perlu adanya optimasi dengan menggunakan aturan operasi berupa Rule Curve yang optimal untuk memanfaatkan tampungan Waduk Pejok. Studi ini ditujukan untuk meningkatkan kinerja waduk dan menghasilkan operasi lepasan berdasarkan Rule Curve menggunakan metode Algoritma Genetik, dengan fungsi tujuan memaksimalkan pemenuhan minimum kebutuhan irigasi. Dari hasil simulasi operasi selama 12 tahun dari tahun 2002-2013 didapatkan minimum pemenuhan Irigasi sebesar 0,583 % (0,012 m 3 /dt) dan rata-rata pemenuhan sebesar 76,496 % (0,762 m 3 /dt). Terjadi 97 periode tampungan waduk kosong dari 432 periode. Setelah optimasi didapatkan peningkatan nilai minimum sebesar 5,530% (0,583 m 3 /dt). Rata-rata pemenuhan sebesar 75,480% (0,664 m 3 /dt). Tidak terjadi periode dimana tampungan waduk menjadi kosong. Terjadi peningkatan pada pemenuhan minimum irigasi dengan tetap menjaga tampungan waduk agar tidak mengalami kekosongan dibandingkan simulasi sebelum proses optimasi. Kata Kunci: Lepasan Berdasarkan Rule Curve, Waduk, Algoritma Genetik, Optimasi ABSTRACT Pejok Reservoir is an effort to maintain and increase the irrigation production of Pacal Kerjo Irrigation Area on Bojonegoro. On the dry season, lots of irrigated area couldn’t be planted but when rainy season, Kerjo River unable to contain the water discharge. Because there is no operation guidance on Pejok Reservoir, then in order to increase the irrigation needs, it’s necessary to do optimization by using the operation rules in the form of optimal Rule Curve to utilize the Pejok Reservoir’s storage. This study focused to improve reservoir performance and produce release operation based on Rule Curve using Genetic Algorithm method, with objective function to maximize minimum fulfillment of irrigation needs. From the operation simulation of Pejok Reservoir for 12 years from 2002 - 2013 acquired a fulfillment of minimum irrigation needs by 0.583% (0,012 m 3 /s) and a fulillment of average irrigation needs by 76.496% (0.762 m 3 /s). From 432 periods, there are 97 periods when the storage reservoir is empty. After optimization, there is improvement of minimum irrigation needs by 5.530% (0.583 m 3 /s). Fulfillment of average irrigation needs by 75.480 % (0.664 m 3 /s). There are no periods occur which reservoir’s storage become empty. The fulillment of minimum irrigation needs has increased while maintaining the reservoir’s storage in order to avoid storage emptiness than before the simulation optimization process. Keywords: Release Based On Rule Curve, Reservoir, Genetic Algorithm, Optimization

Transcript of STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN...

Page 1: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

STUDI OPTIMASI LEPASAN WADUK BERDASARKAN RULE CURVE WADUK PEJOK DI BOJONEGORO DENGAN METODE

ALGORITMA GENETIK

Bagus Ibrahim Prijanto1, Widandi Soetopo2, Suwanto Marsudi2

1Mahasiswa Program Sarjana Teknik Jurusan Pengairan Universitas Brawijaya 2Dosen Teknik Pengairan Fakultas Teknik Universitas Brawijaya

[email protected] ABSTRACT

Waduk Pejok adalah salah satu upaya untuk mempertahankan dan meningkatkan produksi irigasi DI Pacal Kerjo Kabupaten Bojonegoro. Pada musim kemarau banyak area irigasi yang tidak dapat ditanamai tetapi pada musim penghujan Kali Kerjo tidak mampu menampung debit air. Dikarenakan belum adanya pedoman operasi pada Waduk Pejok maka agar pemenuhan kebutuhan irigasi dapat ditingkatkan perlu adanya optimasi dengan menggunakan aturan operasi berupa Rule Curve yang optimal untuk memanfaatkan tampungan Waduk Pejok. Studi ini ditujukan untuk meningkatkan kinerja waduk dan menghasilkan operasi lepasan berdasarkan Rule Curve menggunakan metode Algoritma Genetik, dengan fungsi tujuan memaksimalkan pemenuhan minimum kebutuhan irigasi.

Dari hasil simulasi operasi selama 12 tahun dari tahun 2002-2013 didapatkan minimum pemenuhan Irigasi sebesar 0,583 % (0,012 m3/dt) dan rata-rata pemenuhan sebesar 76,496 % (0,762 m3/dt). Terjadi 97 periode tampungan waduk kosong dari 432 periode. Setelah optimasi didapatkan peningkatan nilai minimum sebesar 5,530% (0,583 m3/dt). Rata-rata pemenuhan sebesar 75,480% (0,664 m3/dt). Tidak terjadi periode dimana tampungan waduk menjadi kosong. Terjadi peningkatan pada pemenuhan minimum irigasi dengan tetap menjaga tampungan waduk agar tidak mengalami kekosongan dibandingkan simulasi sebelum proses optimasi. Kata Kunci: Lepasan Berdasarkan Rule Curve, Waduk, Algoritma Genetik, Optimasi

ABSTRACT

Pejok Reservoir is an effort to maintain and increase the irrigation production of Pacal Kerjo Irrigation Area on Bojonegoro. On the dry season, lots of irrigated area couldn’t be planted but when rainy season, Kerjo River unable to contain the water discharge. Because there is no operation guidance on Pejok Reservoir, then in order to increase the irrigation needs, it’s necessary to do optimization by using the operation rules in the form of optimal Rule Curve to utilize the Pejok Reservoir’s storage. This study focused to improve reservoir performance and produce release operation based on Rule Curve using Genetic Algorithm method, with objective function to maximize minimum fulfillment of irrigation needs.

From the operation simulation of Pejok Reservoir for 12 years from 2002 - 2013 acquired a fulfillment of minimum irrigation needs by 0.583% (0,012 m3/s) and a fulillment of average irrigation needs by 76.496% (0.762 m3/s). From 432 periods, there are 97 periods when the storage reservoir is empty. After optimization, there is improvement of minimum irrigation needs by 5.530% (0.583 m3/s). Fulfillment of average irrigation needs by 75.480 % (0.664 m3

/s). There are no periods occur which reservoir’s storage become

empty. The fulillment of minimum irrigation needs has increased while maintaining the reservoir’s storage in order to avoid storage emptiness than before the simulation optimization process. Keywords: Release Based On Rule Curve, Reservoir, Genetic Algorithm, Optimization

Page 2: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

PENDAHULUAN Latar Belakang

Pemanfaatan sumber daya air dengan waduk merupakan salah satu alternatif dari sistem penyediaan air. Waduk dibangun dengan tujuan memanfaatkan sumber daya air dengan cara menampung kelebihan air pada musim hujan dan nantinya dapat dipergunakan saat musim kemarau. Untuk dapat memanfaatkan tampungan waduk sebaik mungkin diperlukan adanya aturan oprasi waduk yang optimal yang dapat memenuhi kebutuhan yang direncanakan

Identifikasi Masalah

Waduk Suplesi Pejok direncanakan untuk mensuplai kebutuhan air pada area irigasi di hilir rencana waduk yaitu DI Pacal Kerjo yang selama ini mendapatkan suplai air dari Bendung Kerjo. Tujuan dari pemanfaatan waduk ini adalah untuk memenuhi kebutuhan irigasi sekaligus meningkatkan fungsi jaringan irigasi DI Pacal Kerjo seoptimal mungkin yang pada akhirnya diharapkan dapat meningkatkan produksi hasil pertanian. Untuk dapat memenuhi kebutuhan irigasi tersebut diperlukan adanya aturan operasi yang bagus pada Waduk Pejok sebagai pedoman dalam pemanfaatan tampungan waduk.

Sangat penting sekali untuk menemukan aturan operasi waduk yang efektif. Mengingat belum adanya aturan operasi berupa rule curve pada Waduk Pejok, dikhawatirkan tampungan waduk masih belum dimanfaatkan sebaik mungkin. . Menetapkan aturan operasi yang efektif merupakan pekerjaan yang cukup sulit. Sehingga perlu adanya kajian berupa studi optimasi menggunakan metode Algoritma Genetika (AG). Diharapkan dengan menggunakan metode tersebut dapat memberikan pedoman aturan operasi yang terbaik berupa rule curve pada Waduk Pejok.

Batasan Masalah Batasan-batasan masalah dalam studi

ini adalah sebagai berikut : 1. Studi dilakukan di Waduk Pejok

Kabupaten Bojonegoro Provinsi Jawa Timur.

2. Metode yang digunakan dalam studi ini adalah metode simulasi stokastik model Algoritma Genetik.

3. Membahas pola pengoperasian dan optimasi waduk berdasarkan Rule Curve.

4. Membahas pengaruh optimasi waduk dengan metode Algoritma Genetik dengan kebutuhan air irigasi eksisting.

5. Daerah irigasi dalam studi adalah DI Pacal Kerjo seluas 2.983,5 ha.

6. Tidak membahas perencanaan kebutuhan air irigasi, desain bangunan, biaya konstruksi, analisa ekonomi, masalah usia guna waduk dan analisis sedimentasi.Menggunakan program Visual-Basic dari MS-Excel 2010 untuk membuat simulasi stokastik model Algoritma Genetik.

Rumusan Masalah Permasalahan yang dibahas dalam

studi ini adalah : 1. Bagaimana simulasi debit dengan

metode Model Tangki ? 2. Bagaimana rumusan operasi Waduk

Pejok sebelum proses optimasi Algoritma Genetik ?

3. Bagaimana optimasi operasi Rule Curve Waduk Pejok menggunakan metode Algoritma Genetik ?

Tujuan dan Manfaat Tujuan dari studi ini adalah

pembentukan Rule Curve Waduk Pejok sebagai pedoman pengaturan dalam melepas air berdasarkan pola dan karakteristik ketersediaan air Waduk Pejok dengan menggunakan model optimasi Algoritma Genetik. Diharapkan dengan studi dapat menyediakan pola pengoperasian waduk yang lebih baik dengan penjatahan air waduk yang paling optimal untuk kebutuhan irigasi.

Page 3: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

TINJAUAN PUSTAKA Umum

Waduk dapat menahan kelebihan air pada masa-masa aliran tinggi untuk digunakan selama masa-masa kekeringan. Tujuan akhir dari bentuk pemanfaatan waduk adalah untuk memanfaatkan aliran air, baik dengan cara pengaturan persediaan air yang berubah-ubah pada sungai ataupun dengan cara memenuhi tuntutan kebutuhan yang berubah-ubah. Ciri Fisik Waduk

Ciri fisik suatu waduk atau bagian- bagian pokok waduk adalah sebagai berikut : 1. Tampungan efektif atau Kapasitas

Berguna (useful storage), adalah volume tampungan diantara Muka air Minimum (Low Water Level/LWL) dan muka air normal (Normally Water Level/NWL).

2. Tampungan tambahan (Surcharge storage), adalah volume air diatas muka air normal selama banjir. Untuk beberapa saat debit meluap melalui pelimpah kapasitas tambahan ini umumnya tidak terkendali, dengan pengertian adanya hanya pada waktu banjir dan tidak dapat dipertahankan untuk penggunaan selanjutnya.

3. Tampungan Mati (dead storage) adalah volume air yang terletak di bawah muka air minimum dan air ini tidak dimanfaatkan dalam pengoperasian waduk.

4. Tampungan tebing (valley storage) adalah banyaknya air yang terkandung di dalam susunan tanah pervious dari tebing dan lembah sungai.

5. Permukaan genangan normal (normal water level / NWL) adalah elevasi maksimum yang dicapai oleh permukaan air waduk.

6. Permukaan genangan minimum (low water level / LWL) adalah elevasi terendah bila tampungan dilepaskan pada kondisi normal.

7. Permukaan genangan pada banjir

rencana adalah elevasi air selama banjir maksimum direncanakan terjadi (flood water level/FWL)

8. Pelepasan (release) adalah volume air yang dilepaskan secara terkendali dari suatu waduk selama kurun waktu tertentu.

9. Periode Kritis (critical perode) adalah perode dimana sebuah waduk berubah dari kondisi penuh ke kondisi kosong tanpa melimpah selama periode tersebut.

Gambar 1. Zona-Zona Tampungan Waduk

Sumber : Sudjarwadi, 1988:4 Simulasi Model Tangki

Pemilihan dasar metode model tangki ini adalah untuk meniru (stimulate) daerah pengaliran sungai dengan menggantinya oleh sejumlah tampungan yang digambarkan sebagai sederet tangki. Jumlah limpasan yang keluar dari lubang-lubang di dinding kanan semua tangki adalah merupakan besarnya limpasan yan dihitung dalam suatu daerah pengaliran dengan masukan curah hujan tertentu.

Gambar 2 Ilustrasi Model Tangki Sumber : Soemarto, 1987

Besarnya limpasan yang keluar dari tangki

Page 4: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

sebanding dengan tinggi air (h (t)) dalam tangki yang bersangkutan (storage depth) di atas lubang. Limpasan Q (t) dirumuskan sebagai berikut.

Q (t) = (h (t) – H1)λ

dengan : Q (t) = limpasan (mm/hari) h (t) = tinggi tampungan (mm) λ = koefisien lubang (hari-1)

Gambar 3. Komponen Tangki Sumber : Soemarto, 1987 Aturan Operasi Waduk

Lepasan tak bergantung tampungan dapat dilakukan untuk waduk dengan debit inflow yang relatif konstan besarrnya (Soetopo W, 2010:12). Keseimbangan waduk dinyatakan dalam persamaan berikut.

St+1 = St + I – R – Sp – L

Dengan St+1 adalah tampungan pada akhir periode t, St adalah tampungan pada awal periode t, I adalah total volume debit inflow yang masuk ke waduk selama periode t, dan O adalah total voume debit inflow yang masuk ke waduk selama periode t. R adalah volume debit lepasan terkontrol, Sp adalah volume debit limpahan (tak terkontrol), dan L adalah total bersih volume debit minor kehilangan yang keluar waduk. Operasi Berdasarkan Rule Curve Rule Curve adalah aturan operasi yang menyatakan nilai-nilai tampungan yang ideal dan menyediakan suatu mekanisme bagi aturan lepasan yang dispesifikasikan sebagai suatu fungsi tampungan. Jika

tampungan waduk cenderung menuju ke sebelah atas dari rule curve, maka lepasan ditambah besarnya. Sebaliknya jika tampungan waduk cenderung menuju ke sebelah bawah dari rule curve, maka lepasan dikurangi besarnya.

Gambar 4. Contoh Lepasan Berdasarkan Rule Curve Sumber : Soetopo W, 2010 Optimasi Algoritma Genetik

Algoritma Genetik adalah salah satu metode dari kelompok Simulasi untuk optimasi. Algoritma genetika merupakan metode pencarian dan optimasi berdasarkan prinsip dari seleksi alam dan genetika. Penggunaan Algoritma Gentika pertama kali diusulkan pada tahun 1975, oleh Holland (1992) berdasarkan penelitiannya pada teori evolusi Darwin. Terinspirasi oleh mekanisme seleksi alam dan reproduksi, Holland menciptakan rumusan ilmiah terhadap Teori Darwin untuk diterapkan pada metode Random Search agar lebih dapat mencari solusi secara intens. Model AG berpusat pada struktur daripada kromosom yang mewakili alternatif solusi. Jadi sebuah kromosom merupakan sekumpulan variabel-variabel keputusan sebagai gambar berikut.

Gambar 5. Kromosom sebagai Alternatif Solusi Sumber: Soetopo W, 2012:85

Sebuah alternatif solusi mempunyai nilai kinerja. Jadi, setiap kromosom mempunyai nilai kinerja dikarenakan sebuah kromosom itu adalah merupakan alternatif solusi. Oleh sebab itu, model optimasi Algoritma

Page 5: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

Genetika bertujuan untuk mendapatkan kromosom terbaik yang mempunyai nilai kinerja terbaik pula.

Model optimasi AG adalah proses optimasi yang secara iteratif mengembangkan suatu populasi daripada kromosom-kromosom (alternatif- alternatif solusi) sehingga tercapailah suatu populasi homogen daripada kromosom (alternatif solusi) yang terbaik. Secara garis besar maka proses pengembangan populasi kromosom hasil Inisialisasi dengan cara Algoritma Genetika itu terdiri dari komponen Reproduksi dan Crossover.

Reproduksi adalah proses seleksi terhadap kromosom yang terdapat pada suatu populasi berdasarkan nilai kinerja dari masing-masing kromosom, dan dilanjutkan dengan proses copy terhadap kromosom hasil seleksi. Kromosom hasil proses copy ini merupakan generasi turunan yang berikutnya.

Crossover adalah merupakan persilangan di antara kromosom-kromosom yang ada pada suatu generasi turunan. Hasil persilangan ini membentuk populasi dari generasi berikutnya. Dengan Vi adalah variabel dari kromosom baru gabungan, dan adalah variabel masing-masing dari kedua kromosom generasi turunan, dan U [0,1] adalah bilangan acak uniform antara 0 dan 1. Proses Algoritma Genetika terutama dilakukan oleh Reproduksi dan Crossover secara bergantian yang menghasilkan generasi turunan dari kromosom yang semakin baik dan juga semakin homogen.

METODOLOGI PENELITIAN Lokasi Studi

Waduk Pejok terletak di Sungai Brangkal, Dusun Pejok, Desa Pejok, Kecamatan Kepoh Baru Kabupaten Bojonegoro. Secara geografis as Waduk Pejok terletak pada koordinat 08 15’34,8” LS dan 113 59’6,4” BT.

Data – Data Yang Digunakan Data yang digunakan adalah sebagai

berikut.

Tahapan Penyelesaian

Tahapan perhitungan dan analisa yang dilakukan dalam studi ini adalah sebagai berikut: 1. Pengumpulan Data

Data yang dikumpulkan dalam studi ini adalah data curah hujan, data klimatologi, data debit inflow Bendung Kerjo kebutuhan air irigasi, dan karakteristik waduk.

2. Perhitungan Simulasi Model Tangki Data input yang dibutuhkan untuk menentukan besarnya debit inflow dari tahun 2002- 2013 dengan menggunakan simulasi Model Tangki adalah data curah hujan dan data evapotranspirasi potensial.

3. Perhitungan Simulasi Waduk Tahun 2002 -2013 Dalam tahapan ini dilakukan perhitungan simulasi waduk selama 12 tahun. Simulasi dimulai dari tahun 2002 hingga tahun 2013.

4. Optimasi Rule Curve dengan metode Algoritma Genetik (AG) Pada tahap ini akan dilakukan simulasi waduk berdasarkan Rule Curve hasil

Page 6: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

metode Algoritma Genetika selama 12 tahun dari tahun 2002-2013. Tahapan ini bertujuan untuk menemukan hasil simulasi dari Rule Curve Waduk Pejok yang optimal. Tahapan dalam metode AG adalah Inisialisasi, Crossover, Seleksi (Reproduksi), dan Klarifikasi.

5. Perhitungan Rule Curve Berdasarkan Keandalan Debit Perhitungan ini digunakan untuk mengetahui aturan operasi berdasarkan Rule Curve untuk Waduk Pejok berdasarkan tipikal tahun atau probabilitas keandalan debit inflow.

Gambar 6. Diagram Alir Metode Algoritma Genetik

Gambar 7. Diagram Alir Pengerjaan Skripsi

HASIL DAN PEMBAHASAN Analisa Simulasi Model Tangki

Susunan model tangki yang digunakan adalah susunan empat tangki yang disusun secara seri seperti yang ditunjukan pada gambar berikut.

Gambar 8. Susunan Model Tangki Sumber : Hasil Perhitungan

Page 7: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

Untuk mendapatkan data debit inflow yang sesuai, parameter-parameter tangki akan disimulasikan dengan metode coba-banding/trial and error. Debit hasil perhitungan Model Tangki akan dikalibrasi dengan debit pengamatan lapangan. Proses kalibrasi debit perhitungan Model Tangki dilakukan dengan melihat korelasi dan nilai Root Mean Square Error (RMSE) antar debit tahun 2002 dan 2003 dari hasil perhitungan dan debit pengamatan pada tahun yang sama. Paramter yang diterima dengan nilai korelasi dan RMSE sebesar 0,835 dan 3,952 ditampilkan berikut ini.

Tabel 1. Parameter Model Tangki

Tabel 2. Debit Inflow Hasil Model Tangki

Perhitungan Simulasi Waduk Pejok Simulasi dilakukan tiap tahun secara

berkelanjutan selama 12 tahun dari tahun 2002 – 2013. 1 tahunnya memiliki 36 periode dengan periodenya 10 harian. Simulasi setiap tahun dimulai dari bulan November menyesuaikan dari kebutuhan irigasi DI Pacal-Kerjo, dengan inflow yang didapat dari perhitungan debit Model Tangki.

Outflow waduk Pejok berdasarkan kebutuhan irigasi DI Pacal-Kerjo seluas 2.983,5 ha dengan periode tanam Padi – Padi – Palawija - Palawija, dan ada pengaruh dari bendung Kerjo pada hilir waduk. Dalam kondisi penuh waduk Pejok memiliki tampungan maksimum sebesar 6,405 juta m3, dengan tampungan aktif sebesar 6,363 juta m3 dan tampungan mati sebesar 0,042 juta m3.

Tabel 3. Hasil Simulasi Waduk Pejok Tahun 2002 - 2013

Diharapkan dengan dilakukannya optimasi menggunakan metode Algoritma Genetik berdasarkan Rule Curve akan dapat memaksimalkan fungsi kinerja waduk dengan menjaga agar tidak terdapat periode dimana tampungan waduk menjadi kosong dan menaikkan angka pemenuhan minimum kebutuhan irigasi. Model Optimasi Lepasan Waduk Pejok Dengan Algoritma Genetik Berdasarkan Rule Curve Umum

Operasi berdasarkan Rule Curve adalah operasi waduk yang dipengaruhi dari batas bawah Rule Curve. Batas bawah Rule Curve adalah persentase dari kapasitas tampungan aktif waduk. Lepasan waduk sepenuhnya ditinjau dari batas bawah Rule Curve. Model Algoritma Genetik berpusat pada pencarian alternatif solusi yang disebut kromosom, solusi yang dimaksud pada studi kali ini yaitu sebuah seri batas bawah Rule Curve selama 36 periode yang menjadi aturan waduk untuk

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

I 8,275 1,720 1,749 0,786 3,826 1,082 1,558 3,822 3,266 3,111 1,737 5,173II 6,710 0,831 2,385 2,348 3,017 0,621 0,617 1,396 2,625 0,415 8,881 2,333III 5,466 5,977 4,805 0,864 0,403 5,600 7,018 1,825 7,801 5,331 2,835 8,586I 5,848 9,989 4,546 3,736 7,274 3,331 0,945 0,652 2,144 3,753 1,262 1,142II 6,612 6,246 0,640 1,732 4,865 2,717 0,126 0,725 6,883 5,169 0,680 2,108III 5,962 1,049 6,105 4,632 5,938 4,443 4,305 6,812 1,218 1,290 1,837 0,805I 5,784 3,309 10,635 5,202 0,791 1,521 3,611 6,441 1,998 4,690 2,665 4,164II 3,983 3,331 4,728 0,697 0,107 0,915 1,463 1,281 0,803 3,559 0,355 11,503III 5,230 0,919 2,108 6,725 4,973 1,905 5,507 4,303 9,925 7,558 2,830 2,009I 8,949 1,081 4,681 10,356 3,654 2,213 1,246 0,573 5,459 4,249 4,746 6,499II 6,374 0,311 0,649 3,888 1,168 6,186 0,166 0,819 1,502 5,980 0,632 5,244III 2,775 1,041 0,112 0,521 0,505 1,744 1,438 0,110 1,072 2,729 0,085 1,063I 2,109 1,076 1,159 0,074 3,380 0,233 2,982 1,154 0,144 5,674 0,893 0,142II 1,860 2,729 0,177 0,020 2,052 0,555 0,397 0,486 2,559 1,943 0,120 2,397III 1,686 1,443 0,256 0,020 1,803 1,161 0,054 3,453 6,061 0,260 0,017 0,562I 1,532 0,321 0,055 0,020 0,241 0,155 0,016 0,460 4,012 0,036 0,017 3,397II 1,396 0,165 1,833 0,224 0,034 2,035 0,324 0,062 0,535 0,017 0,017 2,368III 1,275 0,150 0,263 2,826 0,017 0,272 0,044 0,016 0,072 0,017 0,016 1,186I 1,168 0,144 0,053 0,601 0,017 0,037 0,016 0,016 0,017 0,017 0,016 0,919II 1,073 0,137 0,035 0,089 0,017 0,016 0,016 0,016 0,017 0,017 0,016 2,337III 0,988 0,131 0,034 0,019 0,017 0,016 0,016 0,016 0,017 0,017 0,016 0,312I 0,913 0,125 0,033 0,019 0,017 0,016 0,016 0,016 0,017 0,017 0,016 0,043II 0,845 0,120 0,032 0,019 0,017 0,016 0,016 0,016 0,017 0,017 0,016 0,017III 0,784 0,114 0,032 0,019 0,017 0,016 0,016 0,016 2,104 0,017 0,016 0,016I 0,730 0,109 0,031 0,019 0,017 0,016 0,016 0,016 0,281 0,017 0,016 0,016II 0,681 0,105 0,030 0,018 0,017 0,016 0,016 0,016 1,191 0,017 0,016 0,016III 0,636 0,100 0,029 0,018 0,017 0,016 0,016 0,016 0,159 0,017 0,016 0,016I 0,595 0,096 0,029 0,018 0,017 0,016 4,101 0,016 0,022 0,017 0,016 0,016II 0,558 0,092 0,028 0,983 0,016 0,016 0,546 0,016 3,930 0,017 0,016 0,016III 0,524 0,088 0,027 0,133 0,016 1,272 0,073 1,425 3,636 0,456 0,016 3,947I 0,493 0,084 1,662 0,020 0,016 1,418 4,374 0,190 3,719 4,876 0,016 0,526II 0,464 0,081 0,230 0,018 0,016 2,206 0,723 6,251 0,651 5,015 0,016 3,829III 0,438 0,078 2,636 2,109 0,942 0,294 0,097 5,223 2,904 2,626 0,133 1,294I 4,646 1,563 0,590 2,183 2,852 4,687 3,326 1,610 6,397 5,945 0,231 2,881II 4,170 0,256 0,299 3,409 3,371 3,805 7,372 0,215 0,851 0,791 0,273 7,691III 2,045 0,744 2,963 3,897 8,131 1,313 2,564 3,184 4,762 2,291 1,616 1,023

Desember

Juli

Agustus

September

Oktober

Nopember

Februari

Maret

April

Mei

Juni

Bulan PeriodeDebit [m3/dt]

Tahun

Januari

Outflow Periode Juta m³ % Juta m³ Juta m³ Kosong

Minimum 0,012 0,583 0 0Rata-Rata 0,762 76,496 0,748 -Jumlah 269,417 - 320,356 -

97

Pemenuhan Spillout Tamp. Waduk

Page 8: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

dapat melepas outflow tertentu guna memenuhi kebutuhan irigasi.

Jadi, 1 kromosom (alternatif solusi) adalah 1 alternatif seri batas bawah Rule Curve. Fungsi tujuan metode ini untuk memaksimalkan kebutuhan minimum irigasi selama 12 tahun (2002 – 2003). Setiap seri Rule Curve memiliki nilai kinerja berupa fungsi tujuan yaitu pemenuhan kebutuhan minimum irigasi selama 12 tahun. Untuk mendapatkan fungsi tujuan yang terbaik maka metode Algoritma Genetika akan melakukan pencarian alternatif solusi hingga mendapatkan alternatif solusi yang memberikan fungsi tujuan yang terbaik.

Gambar 9. Contoh Alternatif Rule Curve (Kromosom) Sumber : Perhitungan Tahap Inisialisasi

Proses inisialisasi adalah langkah awal dalam metode Algoritma Genetika yang bertujuan untuk menghasilkan sekumpulan alternatif Rule Curve awal. Dalam proses ini, jumlah alternatif Rule Curve yang dihasilkan sebanyak 16 buah

alternatif Rule Curve. Untuk mendapatkan 16 alternatif tersebut dilakukan pencarian secara acak (random) dan berulang. Setiap Rule Curve yang digunakan dalan perhitungan simulasi waduk selama 12 tahun akan menghasilkan nilai-nilai kinerja yang berbeda, yaitu : 1. Total Tampungan Di Bawah Kurva Rule

Curve 2. Pemenuhan Gagal 3. Pemenuhan Minimum Irigasi

Tabel 4. Nilai-Nilai Kinerja 16 Alternatif Rule

Curve Hasil Inisialisasi

Tabel 5 16 Rule Curve Hasil Inisialisasi

Tahap Crossover

Crossover atau kawin silang adalah proses pengembangan 16 alternatif Rule Curve (kromosom) awal yang dihasilkan sebelumnya pada proses inisialisasi. 16 Rule Curve akan saling digabungkan (crossover) satu sama lain sehingga menghasilkan 120 Rule Curve baru. Rule Curve baru merupakan gabungan dari dua alternatif Rule Curve hasil inisialisasi dengan masing-masing alternatif

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

47,000 46,000 54,000 36,000 35,000 50,000 44,000 36,000 34,000 26,000 42,000 23,000 49,000 34,000 32,000 49,000Pemenuhan Minimum 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

27,027 29,403 12,778 13,565Di Bawah KurvaPemenuhan Gagal

21,799 17,142 26,606Total Tampungan

Nilai - Nilai

22,285 18,755 24,739 23,386 23,136 26,044 13,757 28,440 13,269

Kromosom (Alternatif Rule Curve )Kinerja

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 75,40 40,03 59,63 61,58 33,76 59,93 30,84 41,28 62,20 37,76 2,13 19,10 33,41 24,12 54,44 58,032 30,93 32,56 59,56 41,20 40,94 84,76 42,47 66,24 36,72 41,79 31,46 21,89 7,19 31,48 42,49 61,203 4,13 51,16 51,34 45,48 50,64 71,12 52,61 27,97 62,08 25,28 40,27 28,43 35,15 25,22 40,51 22,514 22,19 59,56 56,85 27,11 37,55 66,90 59,72 13,61 79,63 4,47 34,91 43,08 25,97 45,75 31,29 23,195 3,17 50,08 67,35 61,57 35,28 64,25 35,16 33,00 87,71 28,80 22,63 45,43 60,99 82,55 48,97 54,716 37,05 35,13 29,11 70,63 46,92 59,68 36,82 48,28 80,76 45,61 53,49 56,64 46,93 2,57 73,48 22,757 52,53 59,45 63,91 77,53 58,34 82,98 35,60 51,52 44,07 61,76 74,96 2,84 51,50 49,78 71,79 27,368 36,06 50,07 23,51 84,69 1,23 47,40 9,92 39,00 81,66 66,52 23,19 0,11 53,93 6,53 46,92 28,309 27,54 66,90 63,47 4,92 27,01 76,00 3,56 55,87 45,81 89,40 36,01 85,37 25,98 97,18 3,82 0,6410 65,67 49,47 50,21 76,05 17,85 39,35 0,61 53,59 26,95 69,96 67,96 38,10 67,68 4,93 31,60 73,5911 10,46 58,06 67,46 54,31 44,70 15,06 41,41 9,92 35,27 24,11 21,82 38,41 88,65 60,69 19,79 32,4312 86,53 86,09 1,33 40,21 90,01 92,88 63,73 21,46 68,78 64,62 71,09 17,98 83,81 37,39 25,00 11,2513 41,59 47,52 43,63 30,38 62,75 24,03 21,12 87,93 90,83 12,26 49,96 79,41 17,65 85,10 27,67 12,7014 16,13 7,78 42,17 14,94 70,84 28,50 24,93 56,52 35,39 64,44 87,10 51,91 23,18 92,40 76,46 3,0215 80,27 60,75 44,37 11,81 79,35 16,30 58,14 94,70 71,48 51,43 33,42 85,86 25,25 22,73 13,26 76,0916 51,68 78,98 11,14 9,36 68,00 62,74 57,57 51,64 92,24 59,64 6,23 43,83 86,21 70,61 83,00 65,1817 54,32 52,83 48,85 77,39 60,89 8,63 25,89 92,33 73,19 48,50 77,98 9,44 14,80 87,14 23,98 72,8618 67,35 69,50 75,23 92,26 58,79 58,67 68,38 89,14 72,51 87,50 67,02 70,05 75,81 86,70 83,92 67,9819 85,91 73,39 82,04 78,89 68,73 75,67 83,44 90,83 76,23 86,16 94,34 71,20 62,96 85,76 81,89 77,9920 76,15 70,36 78,23 80,77 78,10 76,21 99,05 77,23 75,30 84,38 77,90 71,75 67,27 84,05 75,90 83,8421 30,09 43,12 76,09 82,41 48,57 87,62 68,60 79,10 86,06 90,53 77,78 76,99 63,64 85,43 49,29 75,3122 62,86 43,60 75,60 86,35 57,90 81,50 76,77 44,55 76,96 90,60 77,57 70,21 66,69 81,84 60,46 79,8623 25,53 43,98 75,50 92,78 11,75 46,48 55,54 9,16 68,35 79,43 47,40 24,57 35,44 39,56 16,92 40,3724 57,77 56,41 73,99 81,34 72,15 78,35 70,82 64,41 74,10 88,09 73,27 67,96 62,63 18,39 54,00 70,9325 56,70 54,55 62,54 87,83 55,66 81,29 64,80 68,77 77,59 13,38 77,20 12,64 71,75 74,71 54,51 74,4326 56,25 57,79 64,87 73,58 58,88 75,82 67,77 61,72 71,99 62,29 71,13 38,01 59,63 63,85 51,85 69,6827 46,93 43,90 66,23 63,51 48,54 72,17 64,52 59,43 69,66 50,97 62,42 41,47 54,00 55,04 51,15 71,7628 46,63 36,17 57,02 62,53 37,62 72,39 64,79 66,59 73,97 48,52 61,52 36,56 45,18 55,12 50,12 68,1529 47,58 37,64 55,87 44,32 37,70 69,42 54,20 57,98 64,76 44,53 64,20 23,81 44,88 52,12 51,91 66,7330 40,40 31,64 60,28 43,44 35,54 68,91 37,40 43,39 61,77 41,13 59,50 22,60 40,12 46,36 48,92 63,7031 39,63 31,16 64,67 39,73 29,71 65,21 36,05 42,19 60,34 39,53 56,89 20,57 42,41 46,60 43,40 64,6932 35,45 31,23 19,92 37,03 26,93 33,97 11,60 37,48 17,71 34,00 58,79 9,76 53,53 5,82 8,65 43,8633 26,15 28,18 46,06 20,22 25,11 48,52 26,03 5,85 50,98 30,08 3,87 1,87 7,94 17,59 32,67 48,4334 28,31 16,79 33,42 14,36 10,80 12,56 13,93 38,95 25,75 18,53 11,28 6,15 9,96 37,42 38,03 49,7535 17,91 29,66 34,33 6,28 20,21 4,36 26,21 14,28 49,05 19,27 73,19 7,10 35,43 15,17 25,39 11,4336 33,38 8,91 45,49 31,58 18,30 54,14 3,18 6,57 29,25 5,05 19,47 12,44 35,74 33,94 29,33 54,62

Tampungan Aktif [%]PeriodeBulan

Jul

Jun

Mei

Apr

Mar

Des

Nov

Okt

Agu

Sep

Jan

Feb

Page 9: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

memiliki sejumlah porsi tertentu dari Rule Curve awal. Tabel 6. Nilai Kinerja Rule Curve Hasil

Crossover

Tabel 7. Rule Curve Hasil Crossover

Tahap Seleksi (Reproduksi)

Reproduksi adalah proses seleksi terhadap 120 alternatif Rule Curve (kromosom) hasil crossover yang nantinya akan terpilih 16 Rule Curve terbaik berdasarkan nilai kinerja dari masing-masing Rule Curve berupa pemenuhan minimum kebutuhan irigasi. 16 alternatif hasil seleksi ini disebut generasi turunan. Proses seleksi ini berdasarkan sistem peringkat (rangking) dengan semakin besar nilai kinerja Rule Curve maka semakin besar kemungkinan Rule Curve tersebut untuk masuk ke dalam kumpulan 16 Rule Curve hasil seleksi.

Rekapitulasi Hasil Optimasi Algoritma Genetik

Dari proses crossover dan reproduksi yang dilakukan secara berulang sebanyak 11 kali, menghasilkan seri Rule Curve optimal yang homogen. Tabel 8. Rekapitulasi Fungsi Tujuan

Gambar 10. Rule Curve Hasil Inisialisasi

(Belum Seragam) Sumber : Perhitungan

Gambar 11. Rule Curve Optimal Untuk Tahun

2002 – 2013 Setelah Optimasi (Sudah Seragam ) Sumber : Perhitungan

1 2 3 4 5 6 7 8 - 120

25,000 36,000 24,000 15,000 42,000 16,000 26,000 21,000 - 40,000Pemenuhan Minimum 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 - 0,00

5,629 19,120 8,690 8,732 16,294 - 10,278Di Bawah Kurva

Pemenuhan Gagal

7,578 9,517 11,351

Kromosom (Alternatif Rule Curve )Kinerja

Total Tampungan

Nilai - Nilai

1 2 3 4 5 6 7 8 - 1201 42,18 60,27 62,27 35,46 65,37 38,08 49,99 62,79 - 54,482 31,06 36,31 32,38 31,18 35,52 40,26 43,00 34,47 - 44,233 36,74 26,16 28,64 19,25 32,84 40,65 20,44 35,44 - 34,924 26,51 32,80 26,00 30,38 48,48 41,40 14,61 45,34 - 27,885 47,96 26,84 43,30 16,43 21,74 31,78 32,76 6,20 - 51,746 36,70 32,18 49,63 42,65 46,57 36,98 45,19 43,95 - 34,587 54,70 53,29 57,74 52,84 55,41 49,40 52,40 50,01 - 62,728 44,77 27,02 38,56 11,10 40,58 15,13 37,64 59,81 - 43,819 38,36 45,37 10,89 27,30 41,05 6,22 42,79 29,44 - 3,25

10 55,40 55,42 71,24 32,06 50,66 6,63 56,61 46,62 - 72,8811 25,97 31,93 39,16 23,86 11,49 32,68 10,00 20,60 - 26,4412 86,29 32,51 85,30 87,20 89,96 78,25 29,66 76,89 - 19,3913 45,00 41,97 40,74 47,92 41,32 22,98 44,40 48,65 - 16,3314 9,53 23,28 16,00 29,36 23,72 24,80 44,79 32,46 - 71,4715 61,47 63,70 13,39 79,69 73,22 68,58 92,10 77,39 - 29,9916 77,22 49,91 46,65 56,63 54,42 56,86 51,67 58,61 - 75,1817 54,03 49,32 54,33 59,80 38,58 28,89 91,55 68,94 - 69,8518 69,04 71,55 73,04 66,51 66,77 67,82 79,75 71,86 - 81,4819 80,23 82,94 83,28 75,75 79,88 84,50 86,86 84,02 - 78,6920 75,97 76,41 78,67 76,99 76,19 86,26 76,76 75,44 - 79,5721 38,98 65,80 74,85 34,48 81,76 48,58 48,30 79,36 - 74,2122 61,44 70,08 76,66 58,60 69,49 63,04 59,91 71,63 - 72,1523 36,19 54,56 67,25 20,74 46,31 53,33 13,21 35,02 - 29,0924 57,13 62,57 69,70 62,39 77,38 64,52 58,03 66,12 - 64,0025 56,21 62,20 66,41 56,66 63,43 58,45 61,65 64,17 - 62,0026 56,56 58,51 62,22 56,38 68,28 56,96 59,61 67,31 - 61,8927 46,71 57,75 61,82 48,54 56,64 53,60 55,21 60,25 - 59,0928 44,58 54,26 54,86 44,81 56,37 51,35 55,74 58,64 - 57,6429 45,06 54,40 46,22 43,54 53,35 49,10 49,05 56,68 - 60,3830 39,12 54,70 41,10 40,05 55,69 40,25 41,56 50,72 - 56,8631 37,15 49,26 39,64 35,82 47,44 38,68 39,84 41,24 - 55,8932 32,11 30,46 36,34 31,85 34,12 33,11 36,71 26,57 - 12,4533 26,59 34,10 21,50 26,11 36,47 26,11 14,21 36,45 - 47,9834 22,74 29,62 20,82 14,38 16,42 17,16 29,34 27,98 - 45,7435 21,16 30,41 10,05 18,44 10,84 19,24 17,09 30,43 - 13,7536 13,77 41,10 32,03 28,43 36,53 13,12 20,05 32,11 - 29,34

Tampungan Aktif [%]Bulan Periode

Nov

Des

Jan

Feb

Mar

Apr

Mei

Jun

Jul

Agu

Sep

Okt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Inisialisasi 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Crossover - Seleksi 1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Crossover - Seleksi 2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Crossover - Seleksi 3 3,06 1,35 1,16 0,00 0,00 0,54 0,00 0,00 0,41 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Crossover - Seleksi 4 3,51 3,39 3,56 3,33 3,43 3,47 3,29 3,31 3,33 3,27 3,38 3,23 3,20 3,23 3,27 3,16

Crossover - Seleksi 5 5,25 5,14 5,13 5,16 5,28 5,09 5,09 5,09 5,17 5,07 5,08 5,11 5,03 4,97 4,97 4,95

Crossover - Seleksi 6 5,49 5,46 5,43 5,43 5,42 5,40 5,39 5,38 5,39 5,38 5,39 5,38 5,37 5,38 5,36 5,35

Crossover - Seleksi 7 5,53 5,52 5,52 5,53 5,52 5,52 5,51 5,51 5,52 5,53 5,51 5,51 5,52 5,53 5,52 5,50

Crossover - Seleksi 8 5,53 5,53 5,53 5,53 5,53 5,52 5,52 5,52 5,52 5,52 5,51 5,51 5,51 5,51 5,51 5,51

Crossover - Seleksi 9 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,52 5,52 5,52 5,52 5,52 5,52 5,51 5,51

Crossover - Seleksi 10 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,52 5,52 5,52 5,52

Crossover - Seleksi 11 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53 5,53

Pemenuhan Minimum Irigasi (%)

Alternatif Rule Curve (Kromosom)Proses

0,000

0,641

1,281

1,922

2,562

3,203

3,843

4,484

5,124

5,765

6,405

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Nov Des Jan Feb Mar Apr Mei Jun Jul Agu Sep Okt

Volume (Juta m3)Tampungan (%)

Periode (10 Harian)

Perbandingan Rule Curve Waduk Setelah Optimasi

Alternatif 1 Alternatif 16

Page 10: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

Perhitungan Rule Curve Berdasarkan Keandalan Debit

Perhitungan Rule Curve berdasarkan keandalan debit digunakan untuk mengetahui aturan operasi berdasarkan Rule Curve untuk Waduk Pejok berdasarkan tipikal tahun atau probabilitas keandalan debit inflow, dalam perhitungan ini keandalan debit yang digunakan adalah 26,02% (tahun cukup), 50,68% (tahun normal), 75,34% (tahun rendah), 80,00 % (andalan) dan 97,30% (tahun kering).

Tabel 9. Keandalan Debit Inflow

Gambar 11. Rule Curve Untuk Keandalan Debit 26,02 % Sumber : Perhitungan

Gambar 12. Rule Curve Untuk Keandalan Debit 50,68 % Sumber : Perhitungan

Gambar 13. Rule Curve Untuk Keandalan Debit 75,34 % Sumber : Perhitungan

Gambar 14. Rule Curve Untuk Keandalan Debit 80,00 % Sumber : Perhitungan

Gambar 15. Rule Curve Untuk Keandalan Debit 92,70 % Sumber : Perhitungan

No. Tahun Rata-Rata Debit Tahun Terurut Debit Terurut Probabilitas (%) Tipikal Tahun[1] [2] [3] [4] [5] [6] [7]1 2002 2,877 2002 2,8772 2003 1,546 2010 2,4663 2004 1,274 2013 2,378 26,02 Cukup4 2005 1,618 2011 2,1665 2006 1,655 2006 1,6556 2007 1,441 2005 1,6187 2008 1,532 2003 1,546 50,68 Normal8 2009 1,463 2008 1,5329 2010 2,466 2009 1,463

10 2011 2,166 2007 1,441 75,34 Rendah11 2012 0,892 2004 1,274 80,00 Andalan12 2013 2,378 2012 0,892 97,30 Kering

0,000

0,640

1,280

1,920

2,560

3,200

3,840

4,480

5,120

5,760

6,400

0,000

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Nov Des Jan Feb Mar Apr Mei Jun Jul Agu Sep Okt

Tampungan (%)Volume (Juta m3)

Periode (10 Harian)

Grafik Rule Curve Waduk Pada Keandalan 26,02 %

Rule Curve

0,000

0,640

1,280

1,920

2,560

3,200

3,840

4,480

5,120

5,760

6,400

0,000

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Nov Des Jan Feb Mar Apr Mei Jun Jul Agu Sep Okt

Tampungan (%)Volume (Juta m3)

Periode (10 Harian)

Grafik Rule Curve Waduk Pada Keandalan 50,68 %

Rule Curve

0,000

0,640

1,280

1,920

2,560

3,200

3,840

4,480

5,120

5,760

6,400

0,000

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Nov Des Jan Feb Mar Apr Mei Jun Jul Agu Sep Okt

Tampungan (%)Volume (Juta m3)

Periode (10 Harian)

Grafik Rule Curve Waduk Pada Keandalan 75,34 %

Rule Curve

0,000

0,640

1,280

1,920

2,560

3,200

3,840

4,480

5,120

5,760

6,400

0,000

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Nov Des Jan Feb Mar Apr Mei Jun Jul Agu Sep Okt

Tampungan (%)Volume (Juta m3)

Periode (10 Harian)

Grafik Rule Curve Waduk Pada Keandalan 80,00 %

Rule Curve

0,000

0,640

1,280

1,920

2,560

3,200

3,840

4,480

5,120

5,760

6,400

0,000

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Nov Des Jan Feb Mar Apr Mei Jun Jul Agu Sep Okt

Tampungan (%)Volume (Juta m3)

Periode (10 Harian)

Grafik Rule Curve Waduk Pada Keandalan 92,70 %

Rule Curve

Page 11: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

Pola Operasi Pintu Pengambilan Data yang akan digunakan dalam

perhitungan operasi pintu bangunan pengambilan berdasarkan data teknis yang diketahui antara lain : 1. Elevasi = 33 m 2. Lebar = 1 m 3. Jumlah Pintu = 2

Pada perhitungan tinggi bukaan pintu bangunan pengambilan menggunakan ketentuan tinggi bukaan pintu maksimal adalah 1,200 m Tabel 10. Pola Operasi Pintu Pengambilan

KESIMPULAN DAN SARAN Kesimpulan

Setelah melakukan analisa pada bab- bab sebelumnya, dapat diambil beberapa kesimpulan berikut tentang optimasi waduk berdasarkan Rule Curve menggunakan program Algoritma Genetik . 1. Untuk menentukan besarnya debit

inflow pada Waduk Pejok digunakan analisa dengan metode Model Tangki dari tahun 2002 sampai dengan tahun 2013. Dalam simulasi tiap tahun dibagi menjadi tiga periode disetiap bulannya dengan periode 10 harian. Parameter untuk Model Tangki didapat dengan cara uji coba kemudian debit hasil perhitungan dikalibrasikan pada debit tahun 2002-2003. Perhitungan debit untuk tahun berikutnya dilakukan ketika parameter tersebut dapat diterima. Paramter yang diterima dengan nilai korelasi dan RMSE sebesar 0,835 dan 3,952 ditampilkan pada tabel 1.

2. Dari simulasi Waduk Pejok dari tahun 2002 - 2013 sebelum proses optimasi dengan Algoritma Genetik didapatkan hal-hal sebagai berikut.

Tabel 11. Hasil Simulasi Waduk Pejok Sebelum Optimasi

Dilihat dari tabel bahwa pemenuhan minimum irigasi sebesar 0,012 Juta m3 (0,583 %) dengan terdapat 97 periode dimana tampungan waduk mengalami kekosongan .

3. Dari simulasi waduk Pejok akan dilakukan peningkatan nilai minimum pemenuhan kebutuhan irigasi, nilai tersebut menjadi fungsi tujuan optimasi. Rumusan model optimasi dengan Algoritma Genetik adalah membangkitkan alternatif Rule Curve secara acak kemudian dikembangkan secara berulang untuk menghasil alternatif unggulan. Pembangkitan secara acak dilakukan pada proses Inisialisasi. Dari proses Inisialisasi dibangkitkan 16 alternatif Rule Curve secara acak sebagai kumpulan alternatif awal ,setiap Rule Curve memiliki 36 variabel keputusan berupa batas bawah Rule Curve tiap periode. Setiap Rule Curve memiliki nilai-nilai kinerja yang didapat dari memasukan Rule Curve ke dalam simulasi waduk. Setelah proses Inisialisasi dilakukan, kumpulan Rule Curve tersebut dikembangkan melalui penggabungan antar Rule Curve, hingga terbentuklah 120 Rule Curve baru Berikutnya adalah seleksi, memilih 16 Rule Curve terbaik dari 120 Rule Curve berdasarkan fungsi tujuan yaitu nilai minimum pemenuhan kebutuhan irigasi. Selanjutnya dari 16 Rule Curve hasil seleksi tersebut akan dilakukan proses crossover kembali dengan mekanisme yang sama. Pengulangan proses crossover dan seleksi tersebut akan berhenti jika antar Rule Curve seragam. Hal tersebut menandakan bahwa Rule Curve sudah

Elevasi Tinggi MukaMuka Air 0,200 0,400 0,600 0,800 0,900 1,000 1,200Air Di Hulum m

1 33,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,0002 34,000 1,000 1,045 1,045 1,045 1,045 1,045 1,045 1,0453 35,000 2,000 1,503 1,503 1,503 1,503 1,503 1,503 1,5034 36,000 3,000 1,841 2,762 2,762 2,762 2,762 2,762 2,7625 37,000 4,000 2,126 4,252 4,252 4,252 4,252 4,252 4,2526 38,000 5,000 2,377 4,754 7,131 7,131 7,131 7,131 7,1317 39,000 6,000 2,604 5,208 7,812 9,114 9,114 9,114 9,1148 40,000 7,000 2,813 5,625 8,438 11,250 11,250 11,250 11,2509 41,000 8,000 3,007 6,014 9,020 12,027 13,531 13,531 13,531

No.

m3/detik

Tinggi Bukaan Pintu (m)

Debit

Outflow Periode Juta m³ % Juta m³ Juta m³ Kosong

Minimum 0,012 0,583 0 0Rata-Rata 0,762 76,496 0,748 -Jumlah 269,417 - 320,356 -

97

Pemenuhan Spillout Tamp. Waduk

Page 12: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah

identik satu sama lain, jadi tidak memungkinkan lagi untuk dikembangkan. Dari hasil optimasi dengan Algoritma Genetik didapatkan hal-hal sebagai berikut.

Tabel 12. Hasil Simulasi Waduk Pejok Setelah Optimasi

Sumber : Perhitungan

Terjadi peningkatan pada pemenuhan minimum irigasi menjadi 0,118 Juta m3 (5,530 %) dengan tetap menjaga tampungan waduk agar tidak mengalami kekosongan dibandingkan simulasi sebelum proses optimasi.

Saran 1. Pada proses Inisialisasi, sebaiknya

populasi awal dan iterasi diperbanyak sehingga akan menghasilkan solusi yang lebih baik lagi yang mempunyai nilai kinerja lebih baik pula.

2. Pada pola operasi aktual, perlu adanya peninjauan agar lepasan bisa terkontrol menyesuaikan kondisi tampungan waduk yang ada.

DAFTAR PUSTAKA

Chang, F.-J., Chen, L., Chang, L.-C. 2005. Optimizing The Reservoir Operating Rule Curves By Genetic Algorithms. Taiwan: John Wiley & Sons, Ltd. http://onlinelibrary.wiley.com/doi/10.1002/hyp.5674/abstract (diakses 18 November 2014)

Harto, Sri. 1993. Analisa Hidrologi. Jakarta: Gramedia Pustaka Utama

Limantara, L. M. 2010. Hidrologi Praktis. Bandung: Lubuk Agung.

Lee, C. 2013. Mahir Otodidak VBA Macro Excel. Jakarta: Elex Media Komputindo

Linsley , K. Ray JR, Max A. Kohler, Joseph L.H. Paulhus. 1986. Hidrologi Untuk Insinyur. Terjemahan Hermawan. Jakarta: Erlangga

Mc. Mahon, T.A., and Russel, G.M. 1978. Reservoir Capacity And Yield. Amsterdam: Elsevier Scientific Publishing Company.

Oliveira, R., Loucks, D.P. 1997. Operating Rules For Multireservoir Systems. Water Resources Research. http://onlinelibrary.wiley.com/doi/10.1029/96WR03745/pdf (Diakses 18 November 2014)

Soemarto, CD. 1986. Hidrologi Teknik. Surabaya: Usaha Nasional

Sosrodarsono, S. Takeda, K. 2003. Hidrologi Untuk Pengairan, Jakarta: Pradnya Paramita,

Soetopo,W. 2012. Model-model Simulasi Stokastik untuk Sistem Sumberdaya Air. Malang: Asrori.

Soetopo,W. 2010. Operasi Waduk Tunggal. Malang: Citra Malang.

Subarkah, I. 1980. Hidrologi Untuk Perencanaan Bangunan Air , Bandung: Idea Dharma Bandung.

PT. Wiratman & Associates. 2006. Laporan Sela (Interim Report) tahun 2011. Surabaya: PT. Wiratman & Associates

Wilson, E.M. 1993. Hidrologi Teknik. Bandung: Institut Teknologi Bandung

Outflow Periode Juta m³ % Juta m³ Juta m³ Kosong

Minimum 0,118 5,530 0 2,131Rata-Rata 0,664 75,480 0,784 -Jumlah 254,842 - 330,255 -

Pemenuhan Spillout Tamp. Waduk

0

Page 13: STUDI OPTIMASI LEPASAN W ADUK BERDASARKAN …pengairan.ub.ac.id/wp-content/uploads/2016/01/Studi-Optimasi... · membuat simulasi stokastik model ... persediaan air yang berubah-ubah