SPEKTROSKOPI UV

download SPEKTROSKOPI UV

of 8

Transcript of SPEKTROSKOPI UV

SPEKTROSKOPI UV-VIS

Spektroskopi adalah studi mengenai interaksi cahaya dengan atom dan molekul. Radiasi cahaya atau elektromagnet dapat dianggap menyerupai gelombang. Dasar spektroskopi UV-Vis adalah serapan cahaya. Bila cahaya jatuh pada senyawa, maka sebagian dari cahaya diserap oleh molekul-molekul sesuai dengan struktur dari molekul senyawa tersebut. Serapan cahaya oleh molekul dalam daerah spektrum UV-Vis tergantung pada struktur elektronik dari molekul. Spektra UV-Vis dari senyawa-senyawa organik berkaitan erat dengan transisi-transisi diantara tingkatan-tingkatan tenaga elektronik. Oleh sebab itu, serapan radiasi UV-Vis sering dikenal sebagai spektroskopi elektronik. Keuntungan dari serapan ultraviolet yaitu gugus-gugus karakteristik dapat dikenal dalam molekul-molekul yang sangat kompleks (Hardjono Sastrohamidjojo, 1991 : 11).

Panjang gelombang cahaya UV-Vis jauh lebih pendek daripada panjang gelombang radiasi inframerah. Spektrum sinar tampak terentang dari sekitar 400 nm (ungu) sampai 750 nm (merah), sedangkan spektrum ultraviolet terentang dari 100 nm sampai 400 nm. Kuantitas energi yang diserap oleh suatu senyawa berbanding terbalik dengan panjang gelombang radiasi : E=h.V=hc/ dengan E=energiyangdiabsorpsi, dalam erg h=tetapanPlanck,6.6x1027ergdet-1 V c = frekuensi, dalam Hz = kecepatan cahaya, 3 x 1010 cm/det

= panjang gelombang, dalam cm

Spektrum ultraviolet adalah suatu gambar antara panjang gelombang atau frekuensi serapan lawan intensitas serapan (transmitasi atau absorbansi). Spektroskopi UV-Vis digunakan untuk menentukan gugus kromofor yang terdapat dalam sampel. Istilah kromofor digunakan untuk menyatakan gugus tak jenuh kovalen yang dapat menyerap radiasi dalam daerah-daerah UV-Vis (HardjonoSastrohamidjojo,2001:12-22). Daerah UV yang paling banyak penggunaannya secara analitik mempunyai panjang gelombang 200 - 380 nm dan disebut sebagai UV pendek (dekat). Sedangkan panjang gelombang daerah tampak (visible) berkisar antara 380 - 780 nm (Hardjono Sastrohamidjojo, 1991 : 11).

Spektrofotometri Infra Merah

Spektrofotometri Infra Red atau Infra Merah merupakan suatu metode yang mengamati interaksi molekul dengan radiasi elektromagnetik yang berada pada daerah panjang gelombang 0,75 1.000 m atau pada Bilangan Gelombang 13.000 10 cm-1. Radiasi elektromagnetik dikemukakan pertama kali oleh James Clark Maxwell, yang menyatakan bahwa cahaya secara fisis merupakan gelombang elektromagnetik, artinya mempunyai vektor listrik dan vektor magnetik yang keduanya saling tegak lurus dengan arah rambatan. Saat ini telah dikenal berbagai macam gelombang elektromagnetik dengan rentang panjang gelombang tertentu. Spektrum elektromagnetik merupakan kumpulan spektrum dari berbagai panjang gelombang. Berdasarkan pembagian daerah panjang gelombang pada Tabel 1 dan Gambar 2, sinar infra merah dibagi atas tiga daerah, yaitu: a. Daerah Infra Merah dekat. b. Daerah Infra Merah pertengahan. c. Daerah infra merah jauh.. Dari pembagian daerah spektrum elektromagnetik tersebut diatas, daerah panjang gelombang yang digunakan pada alat spektrofotometer infra merah adalah pada daerah infra merah pertengahan, yaitu pada panjang gelombang 2,5 50 m atau pada bilangan gelombang 4.000 200 cm-1. Satuan yang sering digunakan dalam spektrofotometri infra merah adalah Bilangan Gelombang ( ) atau disebut juga sebagai Kaiser.

Interaksi Sinar Infra Merah Dengan Molekul Dasar Spektroskopi Infra Merah dikemukakan oleh Hooke dan didasarkan atas senyawa yang terdiri atas dua atom atau diatom yang digambarkan dengan dua buah bola yang saling terikat oleh pegas seperti tampak pada gambar disamping ini. Jika pegas direntangkan atau ditekan pada jarak keseimbangan tersebut maka energi potensial dari sistim tersebut akan naik.Setiap senyawa pada keadaan tertentu telah mempunyai tiga macam gerak, yaitu : 1. Gerak Translasi, yaitu perpindahan dari satu titik ke titik lain 2. Gerak Rotasi, yaitu berputar pada porosnya 3. Gerak Vibrasi, yaitu bergetar pada tempatnya. Bila ikatan bergetar, maka energi vibrasi secara terus menerus dan secara periodik berubah dari energi kinetik ke energi potensial dan sebaiknya. Jumlah energi total adalah sebanding dengan frekwensi vibrasi dan tetapan gaya ( k ) dari pegas dan massa ( m1 dan m2 ) dari dua atom yang terikat. Energi yang dimiliki oleh sinar infra merah hanya cukup kuat untuk mengadakan perubahan vibrasi.Panjang gelombang atau bilangan gelombang dan kecepatan cahaya dihubungkan dengan frekwensi melalui bersamaan berikut :

Energi yang timbul juga berbanding lurus dengan frekwesi dan digambarkan dengan persamaan Max Plank :

E = Energi, Joule h = Tetapan Plank ; 6,6262 x 10-34 J.s c = Kecepatan cahaya ; 3,0 x 1010 cm/detik

n = indeks bias (dalam keadaan vakum harga n = 1)

l = panjang gelombang ; cm u = frekwensi ; HertzDalam spektroskopi infra merah panjang gelombang dan bilangan gelombang adalah nilai yang digunakan untuk menunjukkan posisi dalam spektrum serapan. Panjang gelombang biasanya diukur dalam mikron atau mikro meter ( m ). Sedangkan bilangan gelombang ( satuan cm-1. Persamaan dari hubungan kedua hal tersebut diatas adalah : ) adalah

frekwensi dibagi dengan kecepatan cahaya, yaitu kebalikan dari panjang gelombang dalam

Posisi pita serapan dapat diprediksi berdasarkan teori mekanikal tentang osilator harmoni, yaitu diturunkan dari hukum Hooke tentang pegas sederhana yang bergetar, yaitu :

dimana :

Keterangan : c = kecepatan cahaya : 3,0 x 1010 cm/detik k = tetapan gaya atau kuat ikat, dyne/cm = massa tereduksi m = massa atom, gram

Setiap molekul memiliki harga energi yang tertentu. Bila suatu senyawa menyerap energi dari sinar infra merah, maka tingkatan energi di dalam molekul itu akan tereksitasi ke tingkatan energi yang lebih tinggi. Sesuai dengan tingkatan energi yang diserap, maka yang akan terjadi pada molekul itu adalah perubahan energi vibrasi yang diikuti dengan perubahan energi rotasi. Perubahan Energi Vibrasi Atom-atom di dalam molekul tidak dalam keadaan diam, tetapi biasanya terjadi peristiwa vibrasi. Hal ini bergantung pada atom-atom dan kekuatan ikatan yang menghubungkannya. Vibrasi molekul sangat khas untuk suatu molekul tertentu dan biasanya disebut vibrasi finger print. Vibrasi molekul dapat digolongkan atas dua golongan besar, yaitu :1. Vibrasi Regangan (Streching) 2. Vibrasi Bengkokan (Bending)

Vibrasi Regangan (Streching) Dalam vibrasi ini atom bergerak terus sepanjang ikatan yang menghubungkannya sehingga akan terjadi perubahan jarak antara keduanya, walaupun sudut ikatan tidak berubah. Vibrasi regangan ada dua macam, yaitu:1. Regangan Simetri, unit struktur bergerak bersamaan dan searah dalam satu bidang datar. 2. Regangan Asimetri, unit struktur bergerak bersamaan dan tidak searah tetapi masih dalam satu bidang datar.

Vibrasi Bengkokan (Bending) Jika sistim tiga atom merupakan bagian dari sebuah molekul yang lebih besar, maka dapat menimbulkan vibrasi bengkokan atau vibrasi deformasi yang mempengaruhi osilasi atom atau molekul secara keseluruhan. Vibrasi bengkokan ini terbagi menjadi empat jenis, yaitu :1. Vibrasi Goyangan (Rocking), unit struktur bergerak mengayun asimetri tetapi masih dalam bidang datar. 2. Vibrasi Guntingan (Scissoring), unit struktur bergerak mengayun simetri dan masih dalam bidang datar. 3. Vibrasi Kibasan (Wagging), unit struktur bergerak mengibas keluar dari bidang datar. 4. Vibrasi Pelintiran (Twisting), unit struktur berputar mengelilingi ikatan yang menghubungkan dengan molekul induk dan berada di dalam bidang datar.

Daerah Spektrum Infra Merah

Para ahli kimia telah memetakan ribuan spektrum infra merah dan menentukan panjang gelombang absorbsi masing-masing gugus fungsi. Vibrasi suatu gugus fungsi spesifik pada bilangan gelombang tertentu. Dari Tabel 2 diketahui bahwa vibrasi bengkokan CH dari metilena dalam cincin siklo pentana berada pada daerah bilangan gelombang 1455 cm-1. Artinya jika suatu senyawa spektrum senyawa X menunjukkan pita absorbsi pada bilangan gelombang tersebut tersebut maka dapat disimpulkan bahwa senyawa X tersebut mengandung gugus siklo pentana.

Daerah Identifikasi Vibrasi yang digunakan untuk identifikasi adalah vibrasi bengkokan, khususnya goyangan (rocking), yaitu yang berada di daerah bilangan gelombang 2000 400 cm-1. Karena di daerah antara 4000 2000 cm-1 merupakan daerah yang khusus yang berguna untuk identifkasi gugus fungsional. Daerah ini menunjukkan absorbsi yang disebabkan oleh vibrasi regangan. Sedangkan daerah antara 2000 400 cm-1 seringkali sangat rumit, karena vibrasi regangan maupun bengkokan mengakibatkan absorbsi pada daerah tersebut. Dalam daerah 2000 400 cm-1 tiap senyawa organik mempunyai absorbsi yang unik, sehingga daerah tersebut sering juga disebut sebagai daerah sidik jari (fingerprint region). Meskipun pada daerah 4000 2000 cm-1 menunjukkan absorbsi yang sama, pada daerah 2000 400 cm-1 juga harus menunjukkan pola yang sama sehingga dapat disimpulkan bahwa dua senyawa adalah sama.