Overview_Subgrade_Aggregat_2013.pdf

download Overview_Subgrade_Aggregat_2013.pdf

of 90

Transcript of Overview_Subgrade_Aggregat_2013.pdf

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    1/90

    1

    Ir. Sony Sulaksono Wibowo, M.T., Ph.D

    DR. Ir. Eri Susanto Hariyadi, M.T.

    Semester Genap 2012/2013

    PROGRAM STUDI TEKNIK SIPIL

    FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN

    INSTITUT TEKNOLOGI BANDUNG

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    2/90

    2

    Bahan danDesain Perkerasan Jalan

    Copyright 2009 - ESH

    Dosen :

    DR. Eri Susanto Hariyadi

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    3/90

    3

    Course Syllabus

    1. Road Pavement Overview2. Subgrade

    3. Aggregates

    4. Bitumen

    5. Bituminuous Mixtures

    6. Pavement Design : Concept and Parameters

    7. Pavement Design

    a. Bina Marga : Metoda Analisa Komponenb. AASHTO 93

    8. Overlay Design

    9. Design of Rigid Pavement (Overview)

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    4/90

    4

    References

    American Association of State Highway andTransportation Officials (1993) AASHTO Guide forDesign of Pavement Structures, Washington DC, ISBN1-56051-055-2

    Departemen Pekerjaan Umum (1987) PetunjukPerencanaan Tebal Perkerasan Lentur Jalan Rayadengan Metode Analisa Komponen, SNI No. 1732-1989-F

    Manual Bahan Perkerasan Jalan Bina Marga Dep PU Highway Material by Kerb and Walker

    The Asphalt Handbook, MS-04 Asphalt Institute

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    5/90

    5

    Road Pavement Overview

    Copyright 2009 - ESH

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    6/90

    6

    Road Pavement History

    Roman Roads (300s BC) Telford Pavement (1780s)

    Macadam Pavement (1800s)

    The Rise of Bitumen

    The Rise of Portland Cement

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    7/90

    7

    Roman Roads Roman roads (see Figure 1.1) were constructed Via Appia, dates back to 312

    B.C. (Amergence Interactive, 2001). At its height, the Roman road networkconsisted of over 100,000 km (62,000 miles) of roads, which is about equal tothe length of the U.S. interstate system.

    A typical Roman road structure (see Figure 1.2), as seen in the UnitedKingdom, consisted of four basic layers (Collins and Hart, 1936): Summa Crusta (surfacing). Smooth, polygonal blocks embedded in the underlying

    layer.

    Nucleus. A kind of base layer composed of gravel and sand with lime cement.

    Rudus. The third layer was composed of rubble masonry and smaller stones alsoset in lime mortar.

    Statumen. Two or three courses of flat stones set in lime mortar.

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    8/90

    8

    Telford Pavement Thomas Telford build roads on relatively flat grades (no more than a 1

    in 30 slope) in order to reduce the number of horses needed to haulcargo. Telford's pavement section was about 350 to 450 mm (14 to 18inches) in depth and generally specified three layers. The bottom layerwas comprised of large stones 100 mm (4 inches) wide and 75 to 180mm (3 to 7 inches) in depth (Collins and Hart, 1936). It is this specificlayer which makes the Telford design unique (Baker, 1903). On top ofthis were placed two layers of stones of 65 mm (2.5 inches) maximumsize (about 150 to 250 mm (6 to 9 inches) total thickness) followed by awearing course of gravel about 40 mm (1.6 inches) thickIt was

    estimated that this system would support a load corresponding to about88 N/mm (500 lb per in. of width).

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    9/90

    9

    Macadam Pavement Macadam pavements introduced the use of angular aggregates. John MacAdam (born

    1756 and sometimes spelled "Macadam") observed that most of the paved U.K. roadsin early the 1800s were composed of rounded gravel (Smiles, 1904). He knew thatangular aggregate over a well-compacted subgrade would perform substantiallybetter. He used a sloped subgrade surface to improve drainage (unlike Telford who

    used a flat subgrade surface) on which he placed angular aggregate (hand-brokenwith a maximum size of 75 mm (3 inches)) in two layers for a total depth of about200 mm (8 inches) (Gillette, 1906). On top of this, the wearing course was placed(about 50 mm thick with a maximum aggregate size of 25 mm) (Collins and Hart,1936). Macadam's reason for the 25 mm (1 inch) maximum aggregate size was toprovide a "smooth" ride for wagon wheels. Thus, the total depth of a typicalMacAdam pavement was about 250 mm (10 inches) (refer to Figure 1.5). The term

    "macadam" is also used to indicate "broken stone" pavement (Baker, 1903). By 1850,about 2,200 km (1,367 miles) of macadam type pavements were in use in the urbanareas of the UK.

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    10/90

    10

    JENIS PERKERASAN JALAN

    PerkerasanPerkerasan BetonBeton

    PerkerasanPerkerasan AspalAspal

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    11/90

    11

    Jenis Konstruksi Perkerasan :

    STRUKTUR PERKERASAN

    Perkerasan LenturPerkerasan Kaku

    1.Perkerasan Lentur (flexible pavement)2.Perkerasan Kaku (rigid pavement)

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    12/90

    12

    Tipe Perkerasan UmumnyaPerkerasan aspal Perkerasan beton

    KeperluanKeperluan

    Bahan Pengikat Aspal Bahan Pengikat Semen

    Beton - Semen

    Aspal Beton Semen

    LPA

    LPB

    Tanah dasar

    Tanah dasar

    Beton mutu rendah

    atau LPB

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    13/90

    13

    Perkerasan Lentur flexible pavement)Umumnya terdiri atas:

    Lapisan Tanah Dasar (subgrade) Lapis Pondasi Bawah (subbase) Lapis Pondasi Atas (base) Lapis Permukaan (surface).

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    14/90

    14

    Tipikal Susunan Perkerasan AspalWearing course (lapisan aus)

    perlu aspal, batu kasar s/d halus

    Binder course (lapisan antara)

    perlu aspal, batu kasar s/d halus

    lapis resap ikat/ (lapis ikat) perlu aspal

    LPA, perlu batu kasar s/d halus

    LPB, perlu batu kasar s/d halus

    Tanah dasar

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    15/90

    15

    PERKERASAN BETON SEMEN

    STRUKTUR TERDIRI DARI PELAT BETON SEMEN TERLETAKDIATAS LAPIS PONDASI ATAU TANAH DASAR

    PELAT BETON SANGAT KAKU, MENYEBARKAN BEBAN PADABIDANG YANG LUAS SEHINGGA TEGANGAN PADA LAPISAN

    DIBAWAHNYA RENDAH DAYA DUKUNG PEKERASAN BETON TERUTAMA DIDAPAT

    DARI PELAT BETON BUKAN DARI LAPISAN PONDASI

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    16/90

    16

    LAPIS PONDASI

    Lapis Pondasi Agregat :

    Lapis Pondasi Atas

    Lapis Pondasi Bawah

    Lapis Pondasi Jalan Tanpa Penutup :

    Lapis Pondasi Agregat Kelas CLapis Makadam Ikatan Air (Waterbound Macadam)

    Lapis Pondasi Berbasis Semen :

    Lapis Pondasi Semen Tanah

    Lapis Beton Semen Pondasi Bawah (CTSB)

    Lapis Pondasi Agregat dengan Cement Treated Base (CTB)

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    17/90

    17

    Jenis-jenis Campuran Beraspal yang Biasanya Digunakan:

    Buras Surface Dressing

    Lapen

    Campuran Dingin

    Campuran Panas Latasir

    Lataston

    Laston

    Semua jenis campuran tersebut harus memenuhi sifat spt ygdisyaratkan dalam spesifikasi

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    18/90

    18

    1.Perkerasan beton semenbersambung tanpa tulangan,

    2.Perkerkerasan beton semen

    bersambung dengan tulangan

    3.Perkerasan beton semen menerus

    dengan tulangan

    4.Perkerasan beton semen pratekan.

    Perkerasan Beton Semen

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    19/90

    19

    1. Perkerasan Beton Semen Bersambung Tanpa Tulangan

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    20/90

    20

    2. Perkerasan Beton Semen Bersambung dengan tulangan

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    21/90

    21

    3. Perkerasan Beton Semen Menerus dengan Tulangan

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    22/90

    22

    FUNGSI LAPIS PONDASI pd PERKERASANBETON

    MENGENDALIKAN KEMBANG SUSUT

    TANAH DASAR MENCEGAH INTRUSI DAN PUMPING PADA

    TANAH DASAR

    MEMBERIKAN DUKUNGAN YANG MANTAPDAN SERAGAM PADA PELAT

    SEBAGAI LANTAI KERJA

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    23/90

    23

    JALAN BETON DI JALAN KABUPATEN

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    24/90

    24

    JALAN BETON DI JALAN UTAMA IBU KOTA KABUPATEN

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    25/90

    25

    Subgrade Layer

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    26/90

    26

    Tanah Dasar

    Tanah dasar harus dibentuk dan dipadatkan,mempunyai peranan yang penting bagi konstruksi

    perkerasan jalan, karena struktur perkerasan

    atau bahu jalan diletakkan diatas tanah dasar

    Kekuatan tanah dasar adalah faktor utama dalam

    menentukan ketebalan dari perkerasan

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    27/90

    27

    Tanah DasarPersyaratan Tidak termasuk tanah yang berplastisitas tinggi, (

    A-7-6 menurut AASHTO M145 atau CH menurut

    "Unified atau Casagrande Soil ClassificationSystem)

    Tanah dengan nilai aktif lebih besar dari 1,25, atauderajat pengembangan yang diklasifikasikan oleh

    AASHTO T 258 sebagai "very high" atau "extra high",tidak boleh digunakan sebagai bahan timbunan

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    28/90

    28

    Subgrade Performance

    Subgrade Performance related to Pavement Designdepend on :

    Load bearing capacity.

    The subgrade must be able to support loads transmitted from

    the pavement structure. This load bearing capacity is oftenaffected by degree of compaction, moisture content, and soil

    type. A subgrade that can support a high amount of loading

    without excessive deformation is considered good.

    Load Bearing capacity is characterized by :

    CBR Flexible Pavement

    K-value Rigid pavement

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    29/90

    29

    California Bearing Ratio (CBR)

    The California Bearing Ratio (CBR) test is a simple strength test that compares the

    bearing capacity of a material with that of a well-graded crushed stone. Introducing by California Division of Highway 1928, and be populated by O.J. Porter

    The basic CBR test involves applying load to a small penetration piston at a rate of 1.3mm (0.05") per minute and recording the total load at penetrations ranging from 0.64mm (0.025 in.) up to 7.62 mm (0.300 in.)

    where:

    x=material resistance or the unit load on the piston (pressure) for 2.54 mm (0.1") or 5.08 mm (0.2") of penetration

    y=standard unit load (pressure) for well graded crushed stone

    =for 2.54 mm (0.1") penetration = 6.9 MPa (1000 psi)

    =for 5.08 mm (0.2") penetration = 10.3 MPa (1500 psi)

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    30/90

    CBR Calculation

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    31/90

    31

    CBR Values (Typical)

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    32/90

    32

    CBR Classification

    Design CBR Soaked Design CBR

    Unsoaked Design CBR

    Field CBR, placing piston and penetrated bytruck load

    Undisturbed Soaked CBR, to obtained field CBR at

    saturated soil and maximum swelling

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    33/90

    33

    Field CBR using DCP

    Correlation Between DCP & CBR :

    log CBR(%)=2.81-1.32 log DD=penetration (mm/blow)

    Source :

    Harrison, JA : Correlation Between CBR and DCP Strength Measurement ofSoils, Proc Institution of Civil Eng. Part 2, 83 (1987), 833-844

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    34/90

    34

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    35/90

    35

    Modulus of Subgrade Reaction (k)

    The modulus of subgrade reaction (k) is used as a primary input for

    rigid pavement design. It estimates the support of the layers below arigid pavement surface course (the PCC slab). The k-value can bedetermined by field tests or by correlation with other tests. There isno direct laboratory procedure for determining k-value.

    The modulus of subgrade reaction came about because work done by

    Westergaard during the 1920s developed the k-value as a springconstant to model the support beneath the slab (see Figure below)

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    36/90

    36

    Plate Load Test

    The plate load test presses a steel bearing plate into the surfaceto be measured with a hydraulic jack.

    The resulting surface deflection is read from dial micrometers

    near the plate edge and the modulus of subgrade reaction is

    determined by the following equation:

    where:k=spring constant = modulus of subgrade reactionP=applied pressure (load divided by the area of the 762 mm (30 inch) diameter plate)

    =measured deflection of the 762 mm (30 inch) diameter plate

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    37/90

    37

    Correlation of k to Soil Properties

    Soil Density CBR MR E k

    A-1-a, well 125 - 140 60 - 80 22 - 35 30 - 43 300 - 450

    A-1-a, poor 120 - 130 35 - 60 22 - 31 30 - 38 300 - 400

    . . .

    A-2-4,5 gravelly 130 - 145 40 - 80 22 - 40 30 - 47 300 - 500

    A-2-4, 5 sandy 120 - 135 20 - 40 22 - 31 30 - 38 300 - 400

    . . .

    A-4, silt 90 - 105 4 - 8 < 11 6 - 18 25 - 165

    A-4, mix 100 - 125 5 - 15 < 15 7 - 23 40 - 220

    . . .

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    38/90

    38

    Degree of Saturation Affectsk of Fine-Grained Soils

    0

    50

    100

    150

    200

    250

    50 60 70 80 90 100

    Degree of saturation (percent)

    S

    ubgrade

    k

    value

    (psi/in)

    A-6A-7-6

    A-7-5

    A-5

    A-4

    A-6

    A-7-6

    A-7-5A-5A-4

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    39/90

    39

    Aggregates

    Copyright 2009 - ESH

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    40/90

    40

    Definitions

    "Aggregate" is a collective term for the mineral materials such

    as sand, gravel and crushed stone that are used with a bindingmedium (such as water, bitumen, portland cement, lime, etc.)to form compound materials (such as asphalt concrete andportland cement concrete).

    By volume, aggregate generally accounts for 92 to 96 percentof HMA and about 70 to 80 percent of portland cementconcrete.

    Aggregates can either be natural or manufactured.

    Natural aggregates are generally extracted from larger rock

    formations through an open excavation (quarry). Extracted rockis typically reduced to usable sizes by mechanical crushing.

    Manufactured aggregate is often by product or othermanufacturing industries.

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    41/90

    41

    Aggregate Sources

    Aggregates can come from either natural or manufactured sources. Natural

    aggregates come from rock, of which there are three broad geologicalclassifications : Igneous rock.

    These rocks are primarily crystalline and are formed by the cooling of molten rock materialbeneath the earths crust (magma).

    Sedimentary rocks. These rocks are formed from deposited insoluble material (e.g., the remains of existing rock

    deposited on the bottom of an ocean or lake). This material is transformed to rock by heat

    and pressure. Sedimentary rocks are layered in appearance and are further classified basedon their predominant mineral as calcareous (limestone, chalk, etc.), siliceous (chert,sandstone, etc.) or argillaceous (shale, etc.).

    Metamorphic rock. These are igneous or sedimentary rocks that have been subjected to heat and/or pressure

    great enough to change their mineral structure so as to be different from the original rock.

    Manufactured rock typically consists of industrial by products such as slag(byproduct of the metallurgical processing typically produced fromprocessing steel, tin and copper) or specialty rock that is produced to have aparticular physical characteristic not found in natural rock (such as the lowdensity of lightweight aggregate).

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    42/90

    42

    Life Cycle of Aggregates

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    43/90

    43

    Klasifikasi Batuan Berdasarkan Asal

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    44/90

    44

    Ringkasan Sifat Teknik Batuan

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    45/90

    45

    Klasifikasi Aggregat Berdasarkan ProsesPengolahan Agregat Alam:

    agregat yang langsung diperoleh dari lapangan

    Agregat Pecah:Batuan pecah ini dibedakan atas pecah tangan dan pecahdengan mesin pemecah batu

    Agregat Daur Ulang:batuan yang diperoleh dari hasil daur ulang baik hasilpembongkaran lapisan perkerasan ataupun pembongkaranbeton

    Agregat Buatan (Artifisial):agregat yang dipergunakan merupakan hasil samping/limbahdari produksi pabrik

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    46/90

    46

    Aggregates Production

    Aggregates are produced in a quarry or mine (see Figure) whose basic function is to convert in situ rockinto aggregate with specified characteristics. Usually the rock is blasted or dug from the quarry walls

    then reduced in size using a series of screens and crushers. Some quarries are also capable of washingthe finished aggregate

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    47/90

    47

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    48/90

    48

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    49/90

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    50/90

    50

    Gradation and Size

    Gradation is the particle size distributionof an aggregate.

    This is one of the most influentialaggregate characteristics in determininghow it will perform as a pavementmaterial.

    The gradation of a particular aggregate is

    most often determined by a sieve analysis(see Figure). In a sieve analysis, a sampleof dry aggregate of known weight isseparated through a series of sieves withprogressively smaller openings.

    Once separated, the weight of particlesretained on each sieve is measured andcompared to the total sample weight.Particle size distribution is then expressedas a percent retained by weight on eachsieve size. Results are usually expressed intabular or graphical format.

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    51/90

    51

    Sieve Analysis

    AASHTO

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    52/90

    52

    Maximum Aggregate Size

    Maximum aggregate size can affect HMA, instability of HMA may result from

    excessively small maximum sizes; and poor workability and/or segregationmay result from excessively large maximum sizes (Roberts et al., 1996). ASTMC 125 defines the maximum aggregate size in one of two ways: Maximum size.

    The smallest sieve through which 100 percent of the aggregate sample particles pass.

    Nominal maximum size. The largest sieve that retains some of the aggregate particles but generally not more than 10

    percent by weight.

    Maximum Size : 0.5 inch

    Nominal maximum size : 3/8 inch

    Fuller Curves

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    53/90

    Gradation has a profound effect on material performance. But what is the best gradation? This

    is a complicated question, the answer to which will vary depending upon the material, its desiredcharacteristics, loading, environmental, material, structural and mix property inputs.

    Therefore, although it may not be the "best" aggregate gradation, a maximum density gradation

    does provide a common reference. A widely used equation to describe a maximum density

    gradation was developed by Fuller and Thompson in 1907. Their basic equation is:

    where:

    P=% finer than the sieve

    d=aggregate size being consideredD=maximum aggregate size to be used

    n=parameter which adjusts curve for fineness or coarseness (for maximum particle density n 0.5 according toFuller and Thompson)

    In the early 1960s, the FHWA introduced the standard gradation graph used in the HMA industry today. This graphuses n = 0.45 and is convenient for determining the maximum density line and adjusting gradation

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    54/90

    54

    Aggregate Types

    Coarse Aggregate, grain size more thansieve No.8 (2.36 mm)

    Fine Aggregate, grain size less than sieve

    No.8 Filler, fine aggregate which passes in sieve

    No.30 (0.6 mm)

    Based on Asphalt Institute (MS-2) and Depkimpraswil

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    55/90

    55

    Ketentuan Agregat KasarPengujian Standar Nilai

    Kekekalan bentuk agregat terhadaplarutan natrium dan magnesium sulfat

    SNI 03-3407-1994 Maks.12 %

    Abrasi dengan mesin Los Angeles SNI 03-2417-1991 Maks. 40 %

    Kelekatan agregat terhadap aspal SNI 03-2439-1991 Min. 95 %

    Angularitas (kedalaman daripermukaan < 10 cm)

    DoTsPennsylvaniaTest Method,PTM No.621

    95/90

    Angularitas (kedalaman daripermukaan 10 cm) 80/75

    Partikel Pipih dan Lonjong* ASTM D-4791 Maks. 10 %

    Material lolos Saringan No.200 SNI 03-4142-1996 Maks. 1 %

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    56/90

    56

    Ketentuan Agregat HalusPengujian Standar Nilai

    Nilai Setara Pasir SNI 03-4428-1997 Min. 50 %

    Material Lolos Saringan No. 200 SNI 03-4428-1997 Maks. 8%

    Angularitas (kedalaman dari

    permukaan < 10 cm)

    ASTM C-1252

    Min 45

    Angularitas (kedalaman dari

    permukaan 10 cm) Min 40

    Persyaratan lain agregat :

    Penyerapan air maksimum 3 %.

    Berat jenis (bulk specific gravity) agregat kasar dan halus

    minimum 2,5 & perbedaannya < 0,2.

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    57/90

    57

    Spesifikasi bahan pengisi iller) Terdiri dari debu batu kapur (limestone dust), semen

    portland, abu terbang, abu tanur semen, abu batuatau bahan non plastis lainnya

    Mengandung bahan yang lolos ayakan No.200 (75

    micron) tidak kurang dari 75 % terhadap beratnya

    Proporsi maksimum yang diijinkan adalah 1,0 % dari

    berat total campuran aspal

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    58/90

    58

    Type of Aggregate Gradation

    Well/Dense Graded, agregat yang ukuran butirnya terdistribusi

    merata dalam satu rentang ukuran butir. Coarse graded, dominan agregat kasar

    Fine graded, dominan agregat halus

    Poor Graded, agregat yang ukuran butirnya tidak terdistribusimerata dalam satu rentang ukuran butir.

    Uniformly graded, contains most of the particles in a very narrowsize range

    Gap graded, contains only a small percentage of aggregateparticles in the mid-size range

    Open graded, contains only a small percentage of aggregateparticles in the small range

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    59/90

    59

    Gradasi Agregat

    0

    20

    40

    60

    80

    100

    0,01 0,1 1 10 100

    Ukuran Saringan (mm)

    PersenLolos(%)

    Gradasi Rapat Gradasi Senjang Gradasi Seragam

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    60/90

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    61/90

    61

    BAHAN AGREGAT UNTUK LAPISPONDASI

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    62/90

    62

    PENYIMPANGAN PADA LAPIS PONDASI

    Penyimpangan kepadatan lapangan lapisanpondasi

    Penyimpangan Nilai indeks Plastis daribahan lapis pondasi

    Perubahan prosentase bahan lapis pondasiyang lolos saringan no.200

    Terjadinya segregasi pada bahan lapis

    pondasi

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    63/90

    63

    SPESIFIKASI AGREGAT LAPIS PONDASI

    DIFINISI :

    Ukuran butir maksimum ?

    Rumus Fuller

    P = 100 (d/D) ^ n

    Dimana :

    P = % agregat lolos masing-masing saringan.

    D = ukuran maksimum agregat

    d = ukuran saringan yang bersangkutan

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    64/90

    64

    Agregat Untuk Lapis Pondasi dan Lapis PondasiBawah Lapis Pondasi terdiri dari Agregat Kelas A sedangkan Lapis

    Pondasi Bawah terdiri dari Agregat Kelas B. Agregat kasar (tertahan pada ayakan 2,38 mm) harus terdiri

    dari partikel yang keras dan awet.

    Agregat kasar Kelas A yang berasal dari kerikil harus 100 %mempunyai paling sedikit satu bidang pecah.

    Agregat halus (lolos ayakan 2,38 mm) harus terdiri daripartikel pasir atau batu pecah halus

    Agregat untuk lapis pondasi harus bebas dari bahan organikdan gumpalan lempung atau bahan-bahan lain yang tidakdikehendaki.

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    65/90

    65

    PROSEN PECAHPembanding, TRL-1993 RN-31 mensyaratkanprosen pecah minimum 40 % untuk mencapai

    CBR minimum 80 %, sedangkan AASHTO-1990mensyaratkan prosen pecah 50 % 75 %, tanpamenyebut batasan CBR yang ingin dicapai

    ABRASIPembanding ASTM -1993 mensyaratkan abrasi

    maksimum 50 % dan AASHTO 1990 mensyaratkanabrasi maksimum 40 % untuk kelas A, 45 % untukkelas B dan 50 % untuk kelas C.

    SPESIFIKASI AGREGAT LAPIS PONDASI

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    66/90

    66

    SPESIFIKASI AGREGAT LAPIS PONDASI

    (INDEKS PLASTISITAS)

    40

    50

    60

    70

    80

    90

    100

    110

    4 6 8 10 12 14 16 18

    Indek Plas tis itas ( %)

    CB

    R(

    %

    )

    Pros en Pecah

    50%

    0%

    100%

    SPESIFIKASI AGREGAT LAPIS PONDASI

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    67/90

    67

    (INDEKS PLASTISITAS)

    AGREGAT LP KELAS A

    Indeks plastisitas LPA maks adalah 6 %. Sebagai pembanding ASTM-1993, AASHTO-1990 dan RN-31 mencantumkan batasan maksimum nilai

    indeks plastisitas 6 % untuk lapis pondasi atas

    AGREGAT LP KELAS BIndeks plastisitas LPB maks adalah 10 %. Sebagai pembanding RN-31mencantumkan batasan maksimum nilai indeks plastisitas 12 % untuk lapis

    pondasi bawah, CBR 35 %

    BAHU JALANSesuai spesifikasi untuk jalan tanpa bahan penutup (kelas C), atau agregatLP kelas B dengan nilai Indeks plastisitas 4-10 %

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    68/90

    68

    BAHAN AGREGAT UNTUK CAMPURANBERASPAL

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    69/90

    69

    Sifat-sifat Agregata) Ukuran butir

    b) Gradasic) Kebersihan

    d) Kekerasan

    e) Bentuk partikelf) Tekstur permukaan

    g) Penyerapan

    h) Kelekatan terhadap aspal

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    70/90

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    71/90

    71

    Kebersihan Agregatsecara visual.

    Pengujian laboratorium

    Analisa saringan basah, yaitu dengan menimbang agregat sebelumdan sesudah dicuci lalu membandingkannya. Sehingga akan

    memberikan persentase agregat yang lebih halus dari 0,075 mm

    (No. 200).

    Pengujian setara pasir (Sand Equivalent Test) adalah satu metoda

    lainnya yang biasanya digunakan untuk mengetahui proporsi

    relatif dari material lempung yang terdapat dalam agregat yang

    lolos saringan No. 4,75 mm (No. 4).

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    72/90

    72

    Alat Uji

    Setara

    Pasir

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    73/90

    73

    Kekerasan

    Uji kekuatan agregat di laboratorium

    dilakukan dengan: uji abrasi dengan mesin Los Angeles (Los

    Angeles Abration Test)

    uji beban kejut (Impact Test)

    uji ketahanan terhadap pecah (Crushing

    Test) .

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    74/90

    74

    Mesin Los Angeles

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    75/90

    75

    Abrasion Resistance : Los Angeles

    A common test used to characterize abrasion resistance is the Los Angeles (L.A.) abrasiontest. For the L.A. abrasion test, the portion of an aggregate sample retained on the 1.70

    mm (No. 12) sieve is placed in a large rotating drum that contains a shelf plate attachedto the outer wall (the Los Angeles machine see Figure).

    The material is then extracted and separated into material passing the 1.70 mm (No. 12)sieve and material retained on the 1.70 mm (No. 12) sieve. The retained material (largerparticles) is then weighed and compared to the original sample weight. The difference inweight is reported as a percent of the original weight and called the "percent loss"

    Toughness Resistance :

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    76/90

    76

    g

    Crushing & Impact Test

    Toughness Resistance :

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    77/90

    77

    g

    Parameters

    Aggregate Crushing Value (ACV) : ratio of the weight of fines

    passing the 2.36mm sieves (No.8) to the total weight of thesamples as result for crushing test.

    Indian Road Congress have specified ACV of coarse aggregate PCC

    should not exceed 30 percent, for wearing surfaces ACV should

    not exceed 45 percent

    Aggregate Impact Value (AIV) : ratio of the weight of fines

    passing the 2.36mm sieves (No.8) to the total weight of the

    samples as result for impact test.

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    78/90

    78

    Particle Shape

    Flakiness Index : the percentage by weight of particles whose leastdimension (thickness) is less than three-fifths (0.6) of their meandimension. This test is not applicable to sizes smaller than 6.3 mm

    Elongation Index : the percentage by weight of particles whosegreatest dimension (length) is greater than 1.8 times their meandimension. This test is not applicable to sizes smaller than 6.3 mm

    Angularity Number : the amount by which the percentage voidsexceeds 33 after being compacted in a prescribed manner.

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    79/90

    79

    Bentuk butir

    Kubikal Lonjong Pipih

    V X X

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    80/90

    80

    Alat Uji Kepipihan

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    81/90

    81

    TeksturTekstur agregat utk keamanan (skid resistance)

    Tekstur:

    Makro: Utk lalulintas lambat, Diuji dengan Sand patch

    Mikro: Untuk lalulintas cepat, Diuji dengan Pendulum Test

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    82/90

    82

    Daya Serap Agregat

    Keporusan agregat menentukanbanyaknya zat cair yang dapat

    diserap agregat.

    Syarat penyerapan terhadap air 3%

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    83/90

    83

    Durability and Soundness

    Durability and soundness are terms typically given to an aggregatesweathering resistance characteristic.

    The most common soundness test involves repeatedly submerging anaggregate sample in a saturated solution of sodium or magnesiumsulfate. This process causes salt crystals to form in the aggregatepores, which simulate ice crystal formation (see Figure 3.10 and3.11)

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    84/90

    84

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    85/90

    85

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    86/90

    86

    Aggregate Surface Texture

    Smooth

    Rough

    Porous,

    dapat dibedakan atas agregat berpori sedikit dan berpori

    banyak. Agregat berpori banyak pada umumnyamempunyai tingkat kekerasan yang rendah, sehingga

    mudah pecah dan terjadi degradasi.

    Affi it f A h lt

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    87/90

    87

    Affinity for Asphalt

    Jenis Aggregat terkait Affinity :

    Hydrophilic Aggregate, mudah diresap air, sulit dilekatiaspal

    Contoh : granit dan aggregat yang mengandung silika

    Hydrophobic Aggregate, sulit diresap air, mudah dilekati

    aspal Contoh : Diorit, andesit

    Testing : SNI-03-2439-1991 ; AASHTO T182-84

    Affinity for Asphalt dinyatakan dalam PERSEN , yaitu

    persentase luas permukaan aggregat yang dilapisi

    aspal terhadap seluruh luas permukaan

    A t S ifi G it

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    88/90

    88

    Aggregates Specific Gravity

    AASHTO M 132 and ASTM E 12 define specific

    gravity as : "the ratio of the mass of a unit volumeof a material at a stated temperature to the mass of

    the same volume of gas-free distilled water at a

    stated temperature.

    Four types of aggregate specific gravity :

    Bulk specific gravity

    SSD (saturated surface dry) specific gravity

    Apparent specific gravity Effective specific gravity

    S ifi G it C l l ti

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    89/90

    89

    Specific Gravity Calculation

    Bulk volume = Vs + Vpp

    Net volume = bulk volume minusvolume absorbed water

    bulk

    SSD

    SSD

    V

    WG

    C t h S l

  • 8/14/2019 Overview_Subgrade_Aggregat_2013.pdf

    90/90

    90

    Contoh Soal

    Suatu aggregat mempunyai berat dalam

    kondisi kering sebesar 2017.1 gram. Jikaaggregat tersebut direndam dalam air pada

    kondisi jenuh akan mempunyai berat 1276.1

    gram. Aggregat ini mempunyai berat SSDsebesar 2034.2 gram. Hitunglah berat jenis

    Bulk, berat jenis Apparent, dan berat jenis

    SSD aggregat ini.