MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan...

7
JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-7 1 Abstrak - Dari awal terciptanya hingga saat ini, berbagai macam sistem dalam kendaraan terus menjadi obyek penelitian misalnya keamanan, kenyamanan, kemudahan dalam pemakaian serta keindahan desain interior dan eksterior dari bentuk kendaraan itu sendiri. Salah satu sistem yang sangat berperan penting dalam kendaraan adalah sistem pengereman yang mempunyai fungsi memberhentikan laju kendaraan. Salah satu metode untuk mengetahui performa dari sistem pengereman yaitu dengan melakukan pemodelan dinamis. Berikut ini adalah beberapa pemodelan pengereman yang telah dilakukan seperti, Rishabh dkk(2011) melakukan penelitian dengan pemodelan pengereman ABS berdasarkan sebuah kondisi permukaan kontak antara roda ban dan jalan dengan memprediksi permukaan kontak terlebih dahulu. Otis T. Nyandoro dkk(2011) meneliti tentang pemodelan perumusan linier slip kontrol pada kendaraan yang menggunakan ABS dengan pengaruh gerak suspensi. Wenjuan Li dkk(2008) membuat modeling dan simulasi sistem pengereman dengan dasar konfersi energi kinetik dengan menentukan parameter kondisi kecepatan dan mengahasilkan jarak pengereman.Dalam tugas akhir ini akan dilakukan pemodelan dan analisa kinerja antilock braking system pada kendaraan MPV (Multiple Purpose Vehicle) Toyota Innova new V A/T. Dari hasil analisa ini dapat diketahui pengaruh gaya pengereman pada beberapa tingkat kecepatan terhadap stoping distance, perlambatan, lama waktu pengereman, ratio slip roda pada antilock braking system dan lock braking system dengan variasi kecepatan 40 km/jam, 60 km/jam, 80 km/jam, 100 km/jam pada kondisi jalan kering. Jarak pengereman untuk antilock braking system kecepatan 40 km/jam 7.42 meter, kecepatan 60 km/jam 15.43 meter, kecepatan 80 km/jam 26.18 meter dan kecepatan 100 km/jam 39.51 meter. Kata kunci : antilock brake system, pemodelan, stoping distance, Innova dan Matlab. PENDAHULUAN Dari awal terciptanya hingga saat ini, berbagai macam sistem di dalam kendaraan terus menjadi obyek penelitian misalnya keamanan, kenyamanan, kemudahan dalam pemakaian serta keindahan desain interior dan eksterior dari bentuk kendaraan itu sendiri. Salah satu sistem yang sangat berperan penting dalam kendaraan adalah sistem pengereman yang mempunyai fungsi memberhentikan laju kendaraan. Salah satu metode untuk mengetahui performa dari sistem pengereman yaitu dengan melakukan pemodelan dinamis. Dalam tugas akhir ini kendaraan yang disimulasikan adalah kendaraan MPV (Multiple Purpose Vehicle). Kendaraan dengan ABS dimodelkan secara matematis sehingga didapatkan persamaan dinamika dari sistem. Dengan transformasi Laplace didapatkan transfer function dari kendaraan. Dengan bantuan software SIMULINK MATLAB didapatkan kinerja kendaraan dengan ditunjukkannya respon kecepatan kendaraan, stoping distance, perlambatan, lama waktu pengereman. I. URAIAN PENELITIAN A. Pemodelan Matematis Dinamika Kendaraan Pada Jalan Lurus Untuk mencari respon maka dibutuhkan beberapa langkah dari pemodelan dinamika ABS berupa memodelkan secara matematis dari sistem pengereman kendaraan, membuat model komponen dan kemudian membuat block diagram simulasi. Berikut merupakan pemodelan matematis dinamika kendaraan dan dinamika roda kendaraan. Gambar 1. Free body diagram dinamika kendaraan = Γ— ..........................................................................(1) οΏ½ = Γ— + + = Γ— = + + .....................................................(2) = Γ— Γ— .......................................................(3) = 1 2 Γ— Γ— Γ— Γ— 2 ..................................................(4) = + βˆ’ 2 ..................................................................(5) Gambar 2. Free body diagram roda kendaraan Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus Toyota Innova New V A/T Teguh Arif Pratama Adi Putra, Harus Laksana Guntur Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 E-mail: [email protected]

description

Dari awal terciptanya hingga saat ini, berbagai macam sistem dalam kendaraan terus menjadi obyek penelitian misalnya keamanan, kenyamanan, kemudahan dalam pemakaian serta keindahan desain interior dan eksterior dari bentuk kendaraan itu sendiri. Salah satu sistem yang sangat berperan penting dalam kendaraan adalah sistem pengereman yang mempunyai fungsi memberhentikan laju kendaraan. Salah satu metode untuk mengetahui performa dari sistem pengereman yaitu dengan melakukan pemodelan dinamis. Berikut ini adalah beberapa pemodelan pengereman yang telah dilakukan seperti, Rishabh dkk(2011) melakukan penelitian dengan pemodelan pengereman ABS berdasarkan sebuah kondisi permukaan kontak antara roda ban dan jalan dengan memprediksi permukaan kontak terlebih dahulu. Otis T. Nyandoro dkk(2011) meneliti tentang pemodelan perumusan linier slip kontrol pada kendaraan yang menggunakan ABS dengan pengaruh gerak suspensi. Wenjuan Li dkk(2008) membuat modeling dan simulasi sistem pengereman dengan dasar konfersi energi kinetik dengan menentukan parameter kondisi kecepatan dan mengahasilkan jarak pengereman.Dalam tugas akhir ini akan dilakukan pemodelan dan analisa kinerja antilock braking system pada kendaraan MPV (Multiple Purpose Vehicle) Toyota Innova new V A/T. Dari hasil analisa ini dapat diketahui pengaruh gaya pengereman pada beberapa tingkat kecepatan terhadap stoping distance, perlambatan, lama waktu pengereman, ratio slip roda pada antilock braking system dan lock braking system dengan variasi kecepatan 40 km/jam, 60 km/jam, 80 km/jam, 100 km/jam pada kondisi jalan kering. Jarak pengereman untuk antilock braking system kecepatan 40 km/jam 7.42 meter, kecepatan 60 km/jam 15.43 meter, kecepatan 80 km/jam 26.18 meter dan kecepatan 100 km/jam 39.51 meter.

Transcript of MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan...

Page 1: MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus Toyota

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-7

1

Abstrak - Dari awal terciptanya hingga saat ini, berbagai macam sistem dalam kendaraan terus menjadi obyek penelitian misalnya keamanan, kenyamanan, kemudahan dalam pemakaian serta keindahan desain interior dan eksterior dari bentuk kendaraan itu sendiri. Salah satu sistem yang sangat berperan penting dalam kendaraan adalah sistem pengereman yang mempunyai fungsi memberhentikan laju kendaraan. Salah satu metode untuk mengetahui performa dari sistem pengereman yaitu dengan melakukan pemodelan dinamis. Berikut ini adalah beberapa pemodelan pengereman yang telah dilakukan seperti, Rishabh dkk(2011) melakukan penelitian dengan pemodelan pengereman ABS berdasarkan sebuah kondisi permukaan kontak antara roda ban dan jalan dengan memprediksi permukaan kontak terlebih dahulu. Otis T. Nyandoro dkk(2011) meneliti tentang pemodelan perumusan linier slip kontrol pada kendaraan yang menggunakan ABS dengan pengaruh gerak suspensi. Wenjuan Li dkk(2008) membuat modeling dan simulasi sistem pengereman dengan dasar konfersi energi kinetik dengan menentukan parameter kondisi kecepatan dan mengahasilkan jarak pengereman.Dalam tugas akhir ini akan dilakukan pemodelan dan analisa kinerja antilock braking system pada kendaraan MPV (Multiple Purpose Vehicle) Toyota Innova new V A/T. Dari hasil analisa ini dapat diketahui pengaruh gaya pengereman pada beberapa tingkat kecepatan terhadap stoping distance, perlambatan, lama waktu pengereman, ratio slip roda pada antilock braking system dan lock braking system dengan variasi kecepatan 40 km/jam, 60 km/jam, 80 km/jam, 100 km/jam pada kondisi jalan kering. Jarak pengereman untuk antilock braking system kecepatan 40 km/jam 7.42 meter, kecepatan 60 km/jam 15.43 meter, kecepatan 80 km/jam 26.18 meter dan kecepatan 100 km/jam 39.51 meter.

Kata kunci : antilock brake system, pemodelan, stoping distance, Innova dan Matlab.

PENDAHULUAN Dari awal terciptanya hingga saat ini, berbagai macam

sistem di dalam kendaraan terus menjadi obyek penelitian misalnya keamanan, kenyamanan, kemudahan dalam pemakaian serta keindahan desain interior dan eksterior dari bentuk kendaraan itu sendiri. Salah satu sistem yang sangat berperan penting dalam kendaraan adalah sistem pengereman yang mempunyai fungsi memberhentikan laju kendaraan. Salah satu metode untuk mengetahui performa dari sistem pengereman yaitu dengan melakukan pemodelan dinamis. Dalam tugas akhir ini kendaraan yang disimulasikan adalah kendaraan MPV (Multiple Purpose Vehicle). Kendaraan dengan ABS dimodelkan secara matematis sehingga didapatkan persamaan dinamika dari sistem. Dengan transformasi Laplace didapatkan transfer function dari kendaraan. Dengan bantuan software SIMULINK MATLAB

didapatkan kinerja kendaraan dengan ditunjukkannya respon kecepatan kendaraan, stoping distance, perlambatan, lama waktu pengereman.

I. URAIAN PENELITIAN

A. Pemodelan Matematis Dinamika Kendaraan Pada Jalan Lurus

Untuk mencari respon maka dibutuhkan beberapa langkah dari pemodelan dinamika ABS berupa memodelkan secara matematis dari sistem pengereman kendaraan, membuat model komponen dan kemudian membuat block diagram simulasi. Berikut merupakan pemodelan matematis dinamika kendaraan dan dinamika roda kendaraan.

Gambar 1. Free body diagram dinamika kendaraan

𝐹𝐹𝑏𝑏 = πœ‡πœ‡ Γ— π‘Šπ‘Š..........................................................................(1)

�𝐹𝐹 = π‘šπ‘š Γ— π‘Žπ‘Ž

𝐹𝐹𝑏𝑏 + π‘…π‘…π‘Ÿπ‘Ÿ + π‘…π‘…π‘Žπ‘Ž = π‘šπ‘š Γ— π‘Žπ‘Ž

π‘Žπ‘Ž = 𝐹𝐹𝑏𝑏+π‘…π‘…π‘Ÿπ‘Ÿ+π‘…π‘…π‘Žπ‘Žπ‘šπ‘š

.....................................................(2)

𝑅𝑅𝑗𝑗 = πΉπΉπ‘Ÿπ‘Ÿ Γ— π‘…π‘…π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘Žπ‘Žπ‘šπ‘šπ‘‘π‘‘π‘‘π‘‘ Γ— πœ‡πœ‡π‘‘π‘‘ .......................................................(3)

π‘…π‘…π‘Žπ‘Ž = 12

Γ— 𝜌𝜌 Γ— 𝐢𝐢𝑑𝑑 Γ— 𝐴𝐴𝑓𝑓 Γ— 𝑉𝑉2..................................................(4)

π‘Ÿπ‘Ÿ = π‘Ÿπ‘Ÿπ‘Šπ‘Š + π‘Ÿπ‘Ÿπ‘Šπ‘Šβˆ’π‘Ÿπ‘Ÿπ‘‘π‘‘π‘‘π‘‘π‘Ÿπ‘Ÿπ‘‘π‘‘2

..................................................................(5)

Gambar 2. Free body diagram roda kendaraan

Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus

Toyota Innova New V A/T Teguh Arif Pratama Adi Putra, Harus Laksana Guntur

Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111

E-mail: [email protected]

Page 2: MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus Toyota

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-7

2

π½π½οΏ½Μ‡οΏ½πœ” = 𝑇𝑇𝑑𝑑 βˆ’ 𝑇𝑇𝑏𝑏 βˆ’ πœ”πœ”π‘€π‘€ .𝐡𝐡

οΏ½Μ‡οΏ½πœ” = π‘‡π‘‡π‘‘π‘‘βˆ’π‘‡π‘‡π‘π‘βˆ’πœ”πœ”π‘€π‘€ .𝐡𝐡𝐽𝐽

..................................................................(6)

𝐽𝐽 = 12

.π‘šπ‘š . (π‘Ÿπ‘Ÿπ‘‘π‘‘π‘‘π‘‘π‘Ÿπ‘Ÿπ‘‘π‘‘2 + π‘Ÿπ‘Ÿπ‘€π‘€ 2) ...................................................(7)

𝑇𝑇𝑑𝑑 = 𝐹𝐹𝑑𝑑 .π‘…π‘…π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘Žπ‘Žπ‘šπ‘šπ‘‘π‘‘π‘‘π‘‘ ...............................................................(8)

𝑇𝑇𝑏𝑏 = 𝐹𝐹𝑏𝑏 .π‘…π‘…π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘Žπ‘Žπ‘šπ‘šπ‘‘π‘‘π‘‘π‘‘ ................................................................(9)

πœ”πœ”π‘Šπ‘Š .𝐡𝐡 = πΉπΉπ‘Ÿπ‘Ÿ . π‘Ÿπ‘Ÿπ‘€π‘€ .πœ‡πœ‡π‘‘π‘‘ ............................................................(10)

B. Pemodelan dengan Program Simulink Matlab Untuk mendapatkan hasil yang diinginkan dari

pemodelan matematis, dalam tugas akhir ini akan dilakukan simulasi dengan bantuan software Simulink Matlab. Simulasi disini pada dasarnya melakukan penyelesaian persamaan matematis dari pemodelan kendaraan dengan menggunakan metode transfer function.

C. Tahap Analisa Hasil pemodelan kemudian akan dianalisa respon slip roda, tekanan pengereman, torsi pengereman, perlambatan, jarak pengereman, waktu pengereman serta kecepatan angular roda dan kecepatan kendaraan pada variasi kecepatan 40, 60, 80 dan 100 km/jam II. KAJIAN TERDAHULU MENGENAI ANTILOCK BRAKING

SYSTEM

Rishabh Bhandari dkk pada tahun 2010 melakukan penelitian dengan pemodelan pengereman ABS berdasarkan sebuah kondisi permukaan kontak antara roda, ban dan jalan dengan memprediksi permukaan kontak terlebih dahulu[1].

Otis T. Nyandoro dkk pada tahun 2011 meneliti tentang pemodelan perumusan linier slip kontrol pada kendaraan yang menggunakan ABS dengan pengaruh gerak suspensi, pemodelan seperempat kendaraan dengan obyek kajian kecepatan kendaraan, torsi pengereman, slip roda dan jarak pengereman[2].

Wenjuan Li dkk pada tahun2008 membuat modeling dan simulasi sistem pengereman dengan dasar konfersi energi kinetik dengan menentukan parameter kondisi kecepatan dan mengahasilkan jarak pengereman. Untuk membandingkan kinerja kendaraan yang disimulasikan dengan dasar energi kinetik, maka dibandingkan dengan simulasi menggunakan persamaan Newton, F= m.a, dimana F = Gaya (N) , m = massa (kg),dan a = percepatan ( m/𝑑𝑑2). Tabel 2.1. berikut adalah hasil stopping distance dari hasil simulasi pada umumnya menggunakan persamaan hukum Newton dan simulasi dengan persamaan energi kinetik[3].

Okan dkk pada tahun 2007 memodelkan seperempat kendaraan tentang pengereman regeneratif antilock brake system dari pemodelan tersebut didapatkan hasil simulasi yang menunjukkan bahwa respon regeneratif ABS lebih baik untuk mengerem secara mendadak / darurat dari pada menggunakan system hydraulic ABS seperti ditunjukkan pada gambar 2.5. Dengan menganalisa kehandalan, biaya dan ukuran permasalahan kendali elektrik serta energi yang dibutuhkan

oleh storage device untuk regeneratif ABS, merupakan solusi memungkinkan dalam meningkatkan ABS hybrid yang dapat dicapai untuk aplikasi kendaraan dengan menggunakan tegangan listrik sebagai sumber penggerak. Dari pemodelan diketahui perbedaan waktu pengereman kecepatan kendaraan dan kecepatan roda pada regenerative ABS dengan hydraulic ABS dimana waktu yang untuk regenerative ABS lebih cepat dari hydraulic ABS. Grafik kecepatan kendaraan dan kecepatan roda pada regenerative ABS[4]

III. DASAR TEORI

.

A. Mekanisme Antilock Braking System

Pada pengereman normal, roda akan tetap berputar dan gaya gesek antar roda dan jalan akan menyebabkan kendaraan terlambat berhenti. Sebaliknya bila roda terkunci (lock) tetapi mobil masih mempunyai momentum untuk bergerak ke depan maka ini disebabkan harga koefisien gesek statik (saat roda tidak lock) akan lebih besar harganya dibanding harga koefisien gesek kinetik,saat roda lock akibatnya jarak pengereman akan bertambah panjang dan kendaraan tidak terkendali lagi. Telah disinggung diatas, ketika roda lock koefisien adhesi antara roda dan jalan besarnya akan turun pada harga sliding (koefisien gesekan kinetik) maka kemampuan roda untuk menerima gaya samping turun hampir tak ada. Gambar 2.7 menunjukkan karakteristik umum dari koefisien pengereman dan koefisien gaya samping pada slip angle tertentu yang mana perbandingan gaya samping dan gaya vertikal sebagai fungsi dari prosentase skid pada roda yang menggunakan tekanan udara. Perubahan koefisien gesek terhadap perubahan prosentase skid dari roda[5].

Gambar 3. Perubahan koefisien gesek terhadap perubahan prosentase skid dari roda (sumber:Teknologi Otomotif Edisi Kedua. I.N. Sutantra dan Bambang Sampurno. 2010.Guna Widya, Surabaya) B. Gaya Pedal Rem

Gaya pedal adalah gaya yang diberikan pedal untuk menekan master silinder. Gaya yang diberikan manusia dapat diubah menjadi gaya pedal dengan menggunakan perbandingan jarak tuas.

Gambar 4.Brake Booster

Page 3: MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus Toyota

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-7

3

�𝑀𝑀 = 0

𝐹𝐹𝑝𝑝 . π‘™π‘™π‘Žπ‘Ž= (𝐹𝐹 π‘œπ‘œπ‘œπ‘œπ‘‘π‘‘ + 𝐹𝐹𝐹𝐹) . 𝑙𝑙𝑏𝑏 . π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘πœƒπœƒπ‘π‘

𝐹𝐹 π‘œπ‘œπ‘œπ‘œπ‘‘π‘‘ = 𝐹𝐹𝑝𝑝 . π‘™π‘™π‘Žπ‘Ž 𝑙𝑙𝑏𝑏 .𝑑𝑑𝑑𝑑𝑑𝑑 πœƒπœƒπ‘π‘

+ 𝐹𝐹𝐹𝐹 .........................................................(11)

Gaya pegas

𝐹𝐹𝐹𝐹 = βˆ†π‘₯π‘₯ . 𝐹𝐹 .........................................................................(12) C. Pemodelan Matematis Brake booster Booster merupakan salah satu komponen pada sistem yang dipasangkan menjadi satu dengan master silinder dan setelah pedal rem, yang berfungsi untuk menguatkan tekanan yang diberikan manusia, sehingga dengan hanya sedikit sentuhan sudah didapat hasil pengereman yang maksimal

Gambar 5.Brake Booster πΉπΉπ‘œπ‘œπ‘π‘πΉπΉ π‘œπ‘œπ‘œπ‘œπ‘‘π‘‘

= π‘ƒπ‘ƒπ‘Žπ‘Žπ‘‘π‘‘π‘šπ‘š π‘ƒπ‘ƒπ‘£π‘£π‘£π‘£π‘šπ‘š

πΉπΉπ‘œπ‘œπ‘π‘ = 𝐹𝐹 π‘œπ‘œπ‘œπ‘œπ‘‘π‘‘ x π‘ƒπ‘ƒπ‘Žπ‘Žπ‘‘π‘‘π‘šπ‘š π‘ƒπ‘ƒπ‘£π‘£π‘£π‘£π‘šπ‘š

..............................................................(13)

D. Master silinder model Master silinder berfungsi meneruskan tekanan dari pedal

menjadi tekanan hidrolik minyak rem untuk menggerakkan sepatu rem (pada model rem tromol) atau menekan pada rem (pada model rem piringan).

Gambar 6. Master Silinder Model π‘ƒπ‘ƒπ‘šπ‘šπ‘‘π‘‘ = F ob

0,25 . Ο€ . dms2 ...................................................................(4)

E. Kaliper Model Kaliper merupakan sebuah piston yang akan bergerak jika

mendapatkan tekanan dari fluida, kaliper inilah yang nantinya akan mendorong pad dan akan bergesekan dengan disk brake.

Gambar 6. Kaliper Model Tekanan Kaliper π‘ƒπ‘ƒπ‘šπ‘šπ‘‘π‘‘ = 𝑃𝑃𝑝𝑝𝑑𝑑

πΉπΉπ‘šπ‘šπ‘‘π‘‘π΄π΄π‘šπ‘šπ‘‘π‘‘

= 𝐹𝐹𝑝𝑝𝑑𝑑𝐴𝐴𝑝𝑝𝑑𝑑

Fps = Aps x πΉπΉπ‘šπ‘šπ‘‘π‘‘π΄π΄π‘šπ‘šπ‘‘π‘‘

.................................................................(14)

C. Pemodelan Matematis Disk Brake Disk brake merupakan komponen yang terpasang pada roda

berfungsi untuk menerima gaya yang dihasilkan dari master caliper yang akan diteruskan pada disk brake dan akan menghasilkan pengereman.

Gambar 7. Disc brake model Gaya gesek pad pada disk 𝐹𝐹𝑓𝑓 = 𝐹𝐹𝑝𝑝𝑑𝑑 x πœ‡πœ‡π‘‘π‘‘ ...................................................................(15)

Torsi disk

𝑇𝑇𝑑𝑑 = 𝐹𝐹𝑓𝑓 x 𝑅𝑅𝑑𝑑 ....................................................................(16)

C. Pemodelan Matematis Disk Brake Pada rem model tromol, kekuatan tenaga pengereman

diperlukan dari sepatu rem yang diam menekan permukaan tromol bagian dalam

Gambar 8. Drum brake model

Gaya yang menekan pad rem

yang berputar bersama-sama roda.

𝐹𝐹𝑝𝑝𝑑𝑑 = 𝑃𝑃𝑝𝑝𝑑𝑑 . 0,25 .πœ‹πœ‹ .𝑑𝑑𝑑𝑑𝑏𝑏2......................................................(17)

Gaya pegas πΉπΉπ‘π‘π‘‘π‘‘π‘π‘π‘Žπ‘Žπ‘‘π‘‘ = βˆ†π‘₯π‘₯ . 𝐹𝐹 ..................................................................(18) Gaya gesek rem tromol/gaya tangensial 𝐹𝐹𝑑𝑑𝑏𝑏 = (𝐹𝐹𝑝𝑝 βˆ’ πΉπΉπ‘π‘π‘‘π‘‘π‘π‘π‘Žπ‘Žπ‘‘π‘‘ ) . πœ‡πœ‡................................................(19) Torsi Rem Tromol 𝑇𝑇𝑑𝑑𝑏𝑏 = 𝐹𝐹𝑑𝑑𝑏𝑏 . π‘Ÿπ‘Ÿπ‘‘π‘‘π‘π‘ ............................................................(20)

IV. ANALISA HASIL PEMODELAN Dari hasil pemodelan program MATLAB untuk sistem

pengereman Lock Braking System (LBS) dan Anti-lock Braking System (ABS) di dapatkan beberapa karakteristik pengereman. Pada tugas akhir ini dilakukan simulasi untuk

Page 4: MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus Toyota

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-7

4

beberapa variasi kecepatan kendaraan, yaitu kecepatan 40 km/jam, 60 km/jam, 80 km/jam dan 100 km/jam.

Gambar 9. Blok Simulink MATLAB Anti-Lock Braking

System

A. Kecepatan Kendaraan 40 km/jam

Gambar 10. Grafik perbandingan respon slip LBS dan ABS

pada kecepatan 40km/jam

Gambar 11. Grafik perbandingn jarak pengereman pada

kecepatan 40 km/jam

Gambar 12. Grafik kecepatan angular roda dan kendaraan pada antilock braking system kecepatan 40km/jam

Gambar 13. Grafik kecepatan angular roda dan kendaraan pada lock braking system kecepatan 40km/jam

Gambar 14. Grafik torsi dan tekanan pengereman pada

Gambar 15. Grafik torsi dan tekanan pengereman pada lock

braking system kecepatan 40km/jam .

Gambar 16. Grafik perbandingan perlambatan kendaraan LBS dan ABS kecepatan 40km/jam

B. Kecepatan Kendaraan 60 km/jam

Gambar 17. Grafik perbandingan respon Slip LBS dan

ABS pada kecepatan 60 Km/jam

Gambar 18. Grafik perbandingan jarak pengereman pada

kecepatan 60 km/jam

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X: 1.179Y: 1

Rel

ativ

e S

lip

Time (s)

X: 1.566Y: 1

ABSLBS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

1

2

3

4

5

6

7

8

9

10

X: 1.566Y: 9.393

Jara

k Pe

nger

eman

(m)

Time (s)

Jarak Pengereman

X: 1.18Y: 7.42

ABSLBS

0 0.2 0.4 0.6 0.8 1 1.20

5

10

15

20

25

30

35

40

45

50

55

Time (s)

Spee

d (ra

d/se

c)

Kecepatan Roda dan Kendaraan ABS

Kecepatan rodaKecepatan kendaraan

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

10

20

30

40

50

60

Time (s)

Spee

d (ra

d/se

c)

Kecepatan Roda dan Kendaraan LBS

Kecepatan RodaKecepatan Kendaraan

0 0.2 0.4 0.6 0.8 1 1.2 1.40

1000

2000

3000

4000

5000

6000

7000

Time (s)

Tors

i (N

m)

Teka

nan

(Pa)

Torsi dan Tekanan ABS

TorsiTekanan

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.5

1

1.5

2

2.5x 10

5

Time (s)

Tors

i (N

m)

Teka

nan

(Pa)

Torsi danTekanan LBS

TorsiTekanan

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6-12

-10

-8

-6

-4

-2

0

2

Perla

mba

tan

(m/s

2)

Time (s)

Perlambatan Kendaraan

0 0.5 1 1.5 2-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X: 2.266Y: 1

Relat

ive S

leep

X: 1.693Y: 1

Time (s)

LBSABS

0 0.5 1 1.5 20

2

4

6

8

10

12

14

16

18

20

X: 2.264Y: 19.92

Jara

k Pe

mbe

rhen

tian

(m)

Time (s)

Jarak Pengereman

X: 1.682Y: 15.43

ABSLBS

Page 5: MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus Toyota

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-7

5

Gambar 19. Grafik kecepatan angular roda dan kendaraan

pada antilock braking system kecepatan 60km/jam

Gambar 20. Grafik kecepatan angular roda dan kendaraan pada lock braking system kecepatan 60km/jam

Gambar 21. Grafik torsi dan tekanan pengereman pada

antilock braking system kecepatan 60km/jam .

Gambar 22. Grafik torsi dan tekanan pengereman pada lock

braking system kecepatan 60km/jam

Gambar 23. Grafik perbandingan perlambatan kendaraan LBS

dan ABS kecepatan 60km/jam

C. Kecepatan Kendaraan 80 km/jam

Gambar 24. Grafik perbandingan respon Slip LBS dan

ABS pada kecepatan 80 Km/jam

Gambar 25. Grafik perbandingan jarak pengereman pada

kecepatan 80 km/jam

Gambar 26. Grafik kecepatan angular roda dan kendaraan

pada antilock braking system kecepatan 80km/jam

Gambar 27. Grafik kecepatan angular roda dan kendaraan

Gambar 28. Grafik torsi dan tekanan pengereman pada

antilock braking system kecepatan 80km/jam

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

10

20

30

40

50

60

70

80

Time (s)

Spee

d(ra

d/s)

Kecepatan angular roda dan kendaraan

Kecepatn rodaKecepatan Kendaraan

0 0.5 1 1.5 2

0

10

20

30

40

50

60

70

80

Time (s)

Spee

d (r

ad/s

ec)

Kecepatan Roda dan Kendaraan LBS

Kecepatan RodaKecepatan Kendaraan

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

1000

2000

3000

4000

5000

6000

7000

Time (s)

Tors

i (Nm

)Te

kana

n (P

a)

Torsi dan Tekanan ABS

TorsiTekanan

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

3

3.5x 10

5

Time (s)

Tors

i (N

m)

Teka

nan

(Pa)

Torsi dan Tekanan Pengereman LBS

TorsiTekanan

0 0.5 1 1.5 2-12

-10

-8

-6

-4

-2

0

2

Per

lam

bata

n (m

/s2)

Time (s)

Perlambatan Kendaraan

ABSLBS

0 0.5 1 1.5 2 2.5 3-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X: 2.945Y: 1

Rela

tive

Slip

Time(s)

Relative Slip

X: 2.198Y: 1

ABSLBS

0 0.5 1 1.5 2 2.5 30

5

10

15

20

25

30

35

X: 2.945Y: 34.1

Jara

k Pen

gere

man(

m)

Time (s)

X: 2.195Y: 26.18

Jarak Pengereman

ABSLBS

0 0.5 1 1.5 2 2.50

20

40

60

80

100

120

Time (s)

Spe

ed(r

ad/s

ec)

Kecepatan Angular Roda dan Kendaraan

Kecepatan RodaKecepatan Kendaraan

0 0.5 1 1.5 2 2.5 3

0

20

40

60

80

100

120

Time (s)

Spee

d (ra

d/se

c)

Kecepatan Roda dan Kendaraan LBS

Kecepatan RodaKecepatan Kendaraan

0 0.5 1 1.5 2 2.50

1000

2000

3000

4000

5000

6000

7000

Times (s)

Tors

i (N

m)

Teka

nan(

Pa)

Torsi dan tekanan Pengereman ABS

TorsiTekanan

Page 6: MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus Toyota

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-7

6

Gambar 29. Grafik torsi dan tekanan pengereman pada lock

braking system kecepatan 80km/jam

Gambar 30. Grafik perbandingan perlambatan kendaraan LBS

dan ABS kecepatan 80km/jam D. Kecepatan Kendaraan 100 km/jam

Gambar 31. Grafik perbandingan respon Slip LBS dan

ABS pada kecepatan 100 Km/jam

Gambar 32. Grafik perbandingan jarak pengereman pada

kecepatan 100 km/jam

Gambar 33. Grafik perbandingan perlambatan kendaraan LBS

dan ABS kecepatan 100km/jam

Gambar 34. Grafik kecepatan angular roda dan kendaraan

pada antilock braking system kecepatan 100km/jam

Gambar 35. Grafik kecepatan angular roda dan kendaraan

pada antilock braking system kecepatan 100km/jam

Gambar 36 Grafik torsi dan tekanan pengereman pada antilock

braking system kecepatan 100km/jam

Gambar 37 Grafik torsi dan tekanan pengereman pada lock

braking system kecepatan 100km/jam Dari perolehan grafik simulali di atas maka dapat di buat

tabel seperti di bawah ini :

Tabel 5.1. Respon Parameter Antilock Braking System

Parameter 40 km/h

60 km/h

80 km/h

100 km/h

Jarak pengereman (m) 7.42 15.43 26.18 39.51 Waktu pengereman (sec) 1.18 1.682 2.195 2.677 Torsi pengereman (Nm) 5245 5383 5528 5688 Tekanan Pengereman(Pa) 6641 6809 6993 7200 Perlambatan (m/s2 10.63 ) 10.7 10.8 10.93

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

5

Time (s)

Tors

i (N

m)

Teka

nan

(Pa)

Torsi dan Tekanan LBS

TorsiTekanan

0 0.5 1 1.5 2 2.5 3-12

-10

-8

-6

-4

-2

0

2

Perla

mba

tan

(m/s

2)

Time (s)

Perlambatan Kendaraan

ABSLBS

0 0.5 1 1.5 2 2.5 3 3.5 4-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Relat

ive Sl

ip

Time (s)

Relative Slip

ABSLBS

0 0.5 1 1.5 2 2.5 3 3.5 40

10

20

30

40

50

60

X: 3.594Y: 51.64

Jara

k Pen

gere

man

(m)

Time (s)

Jarak Pengereman

X: 2.677Y: 39.51

ABSLBS

0 0.5 1 1.5 2 2.5 3 3.5 4-12

-10

-8

-6

-4

-2

0

2

Perla

mbata

n (m/

s2)

Time(s)

Perlambatan Kendaraan

ABSLBS

0 0.5 1 1.5 2 2.5 30

20

40

60

80

100

120

140

Time (s)

Spee

d (ra

d/sec

)

Kecepatan Roda dan Kendaraan ABS

Kecepatan RodaKecepatan kendaraan

0 0.5 1 1.5 2 2.5 3 3.5 40

20

40

60

80

100

120

140

Time (s)

Spee

d (rad

/sec)

Kecepatan Angular Roda dan Kendaraan LBS

Kecepatan RodaKecepatan Kendaraan

0 0.5 1 1.5 2 2.5 30

1000

2000

3000

4000

5000

6000

7000

8000

Time (s)

Teka

nan

(Pa)

Tors

i (N

m)

Tekanan dan Torsi Pengereman ABS

Torsi Tekanan

0 0.5 1 1.5 2 2.5 3 3.5 40

1

2

3

4

5

6x 10

5

Time (s)

Tors

i (N

m)

Teka

nan

(Pa)

Torsi dan Tekanan Pengereman LBS

Torsi Tekanan

Page 7: MODELING AND ANALYSIS OF THE PERFORMANCE OF ANTILOCK BRAKING SYSTEM ON MULTIPLE Pemodelan dan Analisa Kinerja Antilock Braking System Pada Multiple Purpose Vehichle Studi Kasus Toyota

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-7

7

Tabel 5.2. Respon Parameter Lock Braking System

Parameter 40 km/h

60 km/h

80 km/h

100 km/h

Jarak pengereman (m) 9.393 19.92 26.18 39.51 Waktu pengereman (sec) 1.566 2.264 2.945 3.954 Torsi pengereman (Nm) 1.853e

+005 2.746e+005

3.623e+005

5.638e+005

Tekanan Pengereman(Pa) 2.346e+005

3.485e+005

4.585e+005

5.638e+005

Perlambatan (m/s2 7.708 ) 7.779 7.878 8.005

V. KESIMPULAN/RINGKASAN Respon slip roda, tekanan pengereman, torsi pengereman,

perlambatan, jarak pengereman, waktu pengereman serta kecepatan angular roda dan kecepatan kendaraan pada variasi kecepatan 40, 60, 80 dan 100 km/jam mengalami kenaikan trend pada setiap kenaikan kecepatan.

UCAPAN TERIMA KASIH Penulis mengucapkan terima kasih Bapak Dr. Eng. Harus

Laksana Guntur, ST., M.Eng. yang telah membimbing dan memberikan sumbangsih ilmu pengetahuan sehingga penelitian yang dilakukan dapat terselesaikan dengan baik, juga terima kasih kepada keluarga dan teman-teman yang selalu memberikan dukungan moril maupun materi selama pelaksanaan penelitian.

DAFTAR PUSTAKA [1] Bhandari. Rishabh., Sangram Patil, Ramesh K. Singh.,

β€œSurface prediction and control algorithms for anti-lock brake system”, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India.

[2] Otis T. Nyandoro ,Jimoh O. Pedro,Olurotimi A. Dahunsi , Barry. Dwolatzky. ” Linear Slip Control Formulation for Vehicular Anti-Lock Braking System with Suspension Effects”, Preprints of the 18th IFAC World Congress Milano (Italy) August 28 - September 2, 2011.

[3] Wenjuan Li, Xudong Wang, Xue Leng, and Meng Wang.”Modeling and Simulation of Automobile Braking System Based on Kinetic Energy Conversion” College of Electrical & Electronic Engineering, Harbin University of Science & Technology, Harbin, China.IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008, Harbin, China

[4] TUR. Okan., Ozgur USTUN, Member IEEE, and R. Nejat TUNCAY, Member, IEEE. 2007 β€œAn Introduction to Regenerative Braking of Electric Vehicles as AntiLock Braking System” Intelligent Vehicles Symposium Istanbul, Turkey.

[5] Sutantra, I.N. dan Sampurno, Bambang. 2010. Teknologi Otomotif Edisi Kedua. Surabaya : Guna Widya.