makalahcacatkristaldandislokasi-130414235604-phpapp02

25
TUGAS IV CACAT KRISTAL DAN DISLOKASI DI SUSUN OLEH: SYAMSUL HUDA/ 421103980 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SURABAYA 1

description

fggsds

Transcript of makalahcacatkristaldandislokasi-130414235604-phpapp02

TUGAS IVCACAT KRISTAL DAN DISLOKASI

DI SUSUN OLEH: SYAMSUL HUDA/ 421103980PROGRAM STUDI TEKNIK MESINFAKULTAS TEKNIKUNIVERSITAS 17 AGUSTUS 1945 SURABAYA2013BAB ICACAT KRISTAL 1.1 Pengertian kristalKristal adalah suatu padatan yang atom, molekul, atau ion penyusunnya terkemas secara teratur dan polanya berulang melebar secara tiga dimensi. Secara umum, zat cair membentuk kristal ketika mengalami proses pemadatan. Pada kondisi ideal, hasilnya bisa berupa kristal tunggal, yang semua atom-atom dalam padatannya "terpasang" pada kisi atau struktur kristal yang sama, tapi secara umum kebanyakan kristal terbentuk secara simultan sehingga menghasilkan padatan polikristalin. Misalnya, kebanyakan logam yang kita temui sehari-hari merupakan polikristal. Struktur kristal mana yang akan terbentuk dari suatu cairan tergantung pada kimia cairannya sendiri, kondisi ketika terjadi pemadatan, dan tekanan ambien. Kristal terbentuk karena proses kristalisasi. Pengertian kristalisasi sendiri yaitu proses pembentukan kristal yang terjadi pada saat pembekuan, perubahan dari fasa cair ke fasa padat. Jika ditinjau dari mekanismenya, kristalisasi terjadi melalui 2 tahap:1. Tahapan Nucleation (pembentukan inti)2. Tahapan Crystal Growth (Pertumbuhan Kristal)

Gambar 1.1 Kristal Insulin

Secara sederhana dapat dijelaskan sebagai berikut :Dalam keadaaan cair, atom-atom tidak memiliki susunan yang teratur (selalu mudah bergerak) dan mempunyai temperature yang relatip tinggi serta atom-atomnya memiliki energi yang cukup banyak sehingga mudah bergerak dan tidak ada pengaturan letak atom relatip terhadap atom lainnya. Dengan semakin turunnya temperature maka energy atom akan semakin rendah dan semakin sulit bergerak sehingga atom-atom ini mulai mencari atau mengatur kedudukan relatip terhadap atom lainnya dan mulai membentuk lattice. Proses ini terjadi pada temperature yang relatip lebih dingin dimana sekelompok atom menyusun diri membentuk inti Kristal. Inti-inti ini akan menjadi pusat dari proses kristalisasi selanjutnya.Dengan semakin turunnya temperature maka akan semakin banyak atom-atom yang ikut bergabung dengan inti yang sudah ada ataupun membentuk inti baru. Setiap inti akan tumbuh dengan menarik atom-atom lainnya dari cairan ataupun dari inti yang tidak sempat tumbuh, untuk mengisi tempat kosong pada lattice yang akan dibentuk. Pertumbuhan ini berlangsung dari tempat yang bersuhu dingin ke tempat yang bersuhu panas. Pertumbuhan ini tidak bergerak lurus saja tetapi mulai membentuk cabang-cabang dan ranting-ranting. Struktur ini disebut dengan struktur dendritik. Dendrit ini akan terus tumbuh ke segala arah sehingga cabang-cabang (ranting-ranting) dendrit ini hampir bersentuhan satu dengan lainnya sehingga sisa cairang yang terakhir akan membeku disela-sela dendrit ini.Pertemuan antara satu dendrit kristal dengan lainnya dinamakan grain boundary (butir-butir kristal) yang merupakan bidang yang membatasi antara 2 kristal. Pada grain boundary ini akan terkandun unsur-unsur ikutan (impurity) yang lebih banyak dan pada grain boundary ini juga terdapat ketidakteraturan susunan atom (mismatch).Istilah "kristal" memiliki makna yang sudah ditentukan dalam ilmu material dan fisika zat padat, dalam kehidupan sehari-hari "kristal" merujuk pada benda padat yang menunjukkan bentuk geometri tertentu, dan kerap kali sedap di mata. Berbagai bentuk kristal tersebut dapat ditemukan di alam. Bentuk-bentuk kristal ini bergantung pada jenis ikatan molekuler antara atom-atom untuk menentukan strukturnya, dan juga keadaan terciptanya kristal tersebut. Bunga salju, intan, dan garam dapur adalah contoh-contoh kristal. Susunan yang sempurna ada di keseluruhan material kristal pada skala atom tidaklah ada. Semua bahan padat mengandung sejumlah besar cacat atau ketaksempurnaan. Beberapa material kristalin mungkin menunjukkan sifat-sifat elektrik khas, seperti efek feroelektrik atau efek piezoelektrik. Kebanyakan material kristalin memiliki berbagai jenis cacat kristalografis. Jenis dan struktur cacat-cacat tersebut dapat berefek besar pada sifat-sifat material tersebut.

1.2 Pembentukan KristalAdapun cara terbentuknya kristal secara sederhana bahwa dalam keadaaan cair, atom-atom tidak memiliki susunan yang teratur (selalu mudah bergerak) dan mempunyai temperature yang relatip tinggi serta atom-atomnya memiliki energi yang cukup banyak sehingga mudah bergerak dan tidak ada pengaturan letak atom relatif terhadap atom lainnya. Dengan semakin turunnya temperature maka energy atom akan semakin rendah dan semakin sulit bergerak sehingga atom-atom ini mulai mencari atau mengatur kedudukan relatip terhadap atom lainnya dan mulai membentuk lattice. Proses ini terjadi pada temperature yang relatip lebih dingin dimana sekelompok atom menyusun diri membentuk inti Kristal. Inti-inti ini akan menjadi pusat dari proses kristalisasi selanjutnya.Ciri kristal yang sempurna (perfect crystal ) adalah terdapat pengulangan posisi setimbang atom-atom penyusun kristal. Terdapat berbagai cacat sebagai penyimpangan dari kristal sempurna, tapi yang akan dibahas hanyalah cacat titik.

1.3 Cacat KristalCacat dapat terjadi karena adanya solidifikasi (pendinginan) ataupun akibat dari luar. Cacat paling sederhana adalah kehilangan atom pada posisi tertentu dalam kristal (vacancy) yang sering disebut cacat Schottky. Cacat kristal yang terjadi dalam suatu bahan padat dapat mempengaruhi sifat fisis tertentu seperti sifat mekanik atau sifat listrik. Cara memodelkan cacat ini adalah dengan menganggap terjadi perpindahan suatu atom (atau molekul) dari suatu titik dalam kristal ke permukaan. Perubahan ini adalah endoterm (tidak disukai) tetap diimbangi oleh penaikan entropi akibat peningkatan ketakteraturan kristal. Kita gunakan anggapan (1) energi yang diperlukan untuk memindahkan atom dari kisi ke permukaan adalah v dan (2) kekosongan yang ada amatlah jarang sehingga proses ini dianggap independen. Dengan asumsi ini, dapat dituliskan :

Dengan n adalah jumlah kekosongan, dan faktor kombinatorial adalah jumlah cara mendistribusikan kekosongan dalam kristal. Keadaan setimbang adalah keadaan dengan nilai A(n) minimum, yaitu :

Dimana kita mengabaikan nilai n dibandingkan dengan N. Cacat yang lain yang dikenal adalah acat Frenkel, dimana kekosongan diimbangi dengan interstisi di tempat lain. Anggap energi yang dibutuhkan untuk memindahkan atom dari kisi ke interstisi adalah I , N adalah jumlah titik dalam kisi dan N0 adalah jumlah titik yang mungkin disisipi.

Dengan cara yang sama (meminimalkan A), kita peroleh:

Secara umum, entropi dapat dituliskan sebagai S = k ln (N; V;E), dengan adalah jumlah susunan yang mungkin dari suatu sistem.Angka kesetimbangan vakansi, Nv untuk material tertentu tergantung atas kenaikan temperatur sesuai dengan persamaan:

dimana N = jumlah total sisiQv = energi yang diperlukan untuk membentuk vakansi T = emperature mutlak, K k = konstanta Boltzmqan = 1,38 x 10-23 J/atom-K = 8,62 x 10-5 eV/atom-K

Gambar 1.3 Cacat Kekosongan (Vacancy) dan Cacat InterstisiSelain cacat vacancy (kekosongan), salah satu macam cacat titik adalah cacat interstisi yaitu sebuah atom dari bahan kristal yang berdesakan ke dalam sisi interstisi, yaitu ruang kosong kecil dimana dalam kondisi normal tidak diisi atom. Pada logam, interstisi diri mengakibatkan distorsi yang relatif besar di sekitar kisi karena atom interstisi lebih besar dari ruang interstisi. Karena itu pembentukan cacat ini kemungkinannya kecil, dan juga konsentrasinya kecil, dimana konsentrasinya jauh lebih kecil dari cacat vakansi.Cacat tersebut dapat berupa :

1.3.1 Cacat Titik dan Jenis Cacat1. Cacat kekosongan (Vacancy) yang terjadi karena tidak terisinya suatu posisi atom pada lattice atau kekosongan sisi kisi, yaitu sisi yang seharusnya ditempati atom, kehilangan atomnya. Vakansi terbentuk selama proses pembekuan, dan juga karena getaran atom yang mengakibatkan perpindahan atom dari sisi kisi normalnya.2. Interstitial (sisipan) adalah salah tempat, posisi yang seharusnya kosong justru ditempati atom. Interstitial diffusion secara umum lebih cepat daripada vacancy diffusion karena ikatan dari interstiti terhadap atom-atom sekelilingnya lebih kuat dan terdapat beberapa posisi interstiti dibandingkan posisi kekosongan dalam hal berdifusi. 3. Impurity (ketidakmurnian), adanya atom asing yang menggantikan tempat yang seharusnya diisi oleh atom. Impuritas adalah atom asing yang hadir pada material. Logam murni yang hanya terdiri dari satu jenis atom adalah tidak mungkin. Impuritas bisa menyebabkan cacat titik pada kristal. Ada paduan dimana atom impuritas sengaja ditambahkan untuk mendapatkan karakteristik tertentu pada material seperti untuk meningkatkan kekuatan mekanik atau ketahanan korosi. 4. Cacat Schottky dan Frenkel banyak dijumpai pada kristal ionik. Cacat Schottky adalah berupa kekosongan pada suatu titik kisi bersama-sama dengan cacat sisipan di permukaan. Sedangkan bila kekosongan berpasangan dengan sisipan di dalam kristal membentuk cacat Frenkel.

1.3.2 Cacat BidangPada bahan polikristal, zat padat tersusun oleh kristal-kristal kecil yang disebut butir (grain). Setiap butir dapat berukuran mulai dari nanometer hingga mikrometer. Pada setiap butir atom-atom tersusun pada arah tertentu, dan arah keteraturan atom ini bervariasi dari satu butir ke butir lain. Batasan antara 2 buah dimensi dan umumnya memisahkan daerah dari material yang mempunyai struktur kristal berbeda dan atau arah kristalnya berbeda, misalnya : Batas Butir (karena bagian batas butir inilah yang membeku paling akhir dan mempunyai orientasi serta arah atom yang tidak sama. Semakin banyak batas butir maka akan semakin besar peluang menghentikan dislokasi. Kemudian contoh yang berikutnya adalah Twin (Batas butir tapi special, maksudnya, antara butiran satu dengan butiran lainnya merupakan cerminan) dan ini menimbulkan cacat pada daerah batas butir, sehingga disebut cacat batas butir.

1.3.3 Cacat RuangPerubahan bentuk secara permanen disebut dengan Deformasi Plastis, deformasi plastis terjadi dengan mekanisme :a. Slip, yaitu : Perubahan dari metallic material oleh pergerakan dari luar sepanjang Kristal. Bidang slip dan arah slip terjadi pada bidang grafik dan arah atom yang paling padat karena dia butuh energi yang paling ringan atau kecil. Lihat gambar 1.4

Gambar 1.4. Perubahan dari metallic material oleh pergerakan

b. Twinning terjadi bila satu bagian dari butir berubah orientasinya sedemikian rupa sehingga susunan atom di bagian tersebut akan membentuk simetri dengan bagian kristal yang lain yang tidak mengalami twinning. Lihat gambar 1.5

Gambar 1.5 Twinning terjadi bila satu bagian dari butir berubah orientasinya.

BAB IIDISLOKASI2.1Pengertian DislokasiDislokasi adalah suatu pergeseran atau pegerakan atom-atom di dalam sistem kristal logam akibat tegangan mekanik yang dapat menciptakan deformasi plastis (perubahan dimensi secara permanen). Pada saat terjadinya deformasi plastis maka melibatkan pergerakan sejumlah besar dislokasi, sebuah dislokasi sisi bergerak sebagai respons terhadap tegangan geser yang diterapkan hingga akhirnya menimbulkan deformasi plastis seperti ditunjukan pada gambaar 1. Dimana sebuah dislokasi berada dibidang A, dan pada saat tegangan geser diberikan dilokasi pada bidang A dipaksa kekanan kearah bidang B dan seterusnya hingga akirnya membentuk Kristal yang sempurna. . Proses dimana deformasi plastis dihasilkan oleh gerakan dislokasi disebut Slip; bidang kristalografi sepanjang yang melintasi dislokasi garis adalah bidang slip, seperti ditunjukkan pada Gambar 2.1. Dislokasi bisa mudah bergerak dan juga bisa sulit bergerak. Misalya pada proses pengerjaan dingin (cold work) terjadi peningkatan dislokasi di dalam kristal logam sehingga kekuatan logam meningkat, namun keuletan menurun. Pada dasarnya dislokasi itu ada dua, yaitu dislokasi sisi dan dislokasi ulir namun ada juga dislokasi campuran yaitu kombinasi antara dislokasi sisi dan dislokasi ulir.Dalam ilmu material, dislokasi adalah kristalografi cacat, atau ketidakteraturan, dalam struktur kristal. Teori ini awalnya dikembangkan oleh Vito Volterra pada tahun 1905. Beberapa jenis dislokasi dapat digambarkan sebagai disebabkan oleh penghentian pesawat dari atom di tengah-tengah sebuah kristal. Dalam kasus seperti itu, di sekitar pesawat tidak lurus, tapi tekuk di sekitar tepi menghentikan pesawat sehingga struktur kristal yang tertata dengan sempurna di kedua sisi. Analogi dengan tumpukan kertas sangat tepat, jika setengah secarik kertas dimasukkan ke dalam tumpukan kertas, cacat dalam tumpukan hanya terlihat di pinggir setengah lembar. Ada dua tipe utama: dislokasi tepi dan dislokasi ulir. Mixed dislokasi penengah antara ini.

Gambar 2.1 Ujung Dislokasi ulir dan sisiSecara matematis, dislokasi adalah jenis topologi cacat, kadang-kadang disebut soliton. Dua dislokasi berlawanan orientasi, ketika dibawa bersama-sama, dapat membatalkan satu sama lain (ini adalah proses penghancuran), tetapi satu dislokasi biasanya tidak dapat menghilang dengan sendirinya.2.2 Karakteristik Dislokasi dan Macam-Macam Dislokasi

Beberapa karakteristik dislokasi berpengaruh kepada sifat mekanik material . Termasuk medan regangan yang berada disekitar dislokasi yang akan menentukan mobilitas dislokasi dan kemampuan untuk bertambahnya dislokasi. Jika logam mengalami deformasi , 5% energi deformasi tetap berada pada material , sisanya menjadi panas. Sebagian besar energi yang disimpan tersebut berupa energi regangan dan berada disekitar dislokasi . Energi regangan berupa: tekan , tarik dan geser. Jenis dislokasi ditentukan oleh orientasi garis dislokasi dan Vektor Burgers :

Saling tegak lurus maka dislokasi tepi Sejajar maka dislokasi sekrup Arah Vektor Burgers pada logam = arah kristalografi terpadat.Besar Vektor Burgers = jarak antar atom

2.2.1 Dislokasi Geometri

Gambar 2.3 Crystal Kisi-Kisi Menunjukkan Atom dan Pesawat

Dua jenis utama dislokasi adalah tepi dan sekrup. Dislokasi ditemukan dalam bahan nyata biasanya dicampur, yang berarti bahwa mereka memiliki karakteristik dari keduanya. Sebuah bahan kristal terdiri dari atom array biasa, disusun dalam bidang kisi.

Gambar 2.4 Skema Diagram (kisi pesawat) menunjukkan dislokasi sisi. Vektor Burgers hitam, garis dislokasi dengan warna biru.2.2.2 Dislokasi SisiSebuah dislokasi sisi merupakan suatu cacat di mana setengah ekstra bidang atom diperkenalkan pertengahan jalan melalui kristal, distorsi pesawat dekat atom. Bila kekuatan yang cukup diberikan dari satu sisi struktur kristal, pesawat tambahan ini melewati atom pesawat pecah dan bergabung dengan ikatan bersama mereka sampai mencapai batas butir. Sebuah diagram skematik sederhana seperti pesawat atom dapat digunakan untuk menggambarkan cacat kisi seperti dislokasi. Dislokasi memiliki dua sifat, garis arah, yang merupakan arah berjalan sepanjang dasar setengah ekstra pesawat, dan vektor Burgers yang menggambarkan besar dan arah distorsi ke kisi. Dalam sebuah dislokasi tepi, Burgers vektor tegak lurus terhadap arah garis.Tekanan yang disebabkan oleh dislokasi sisi sangat kompleks karena asimetri yang terkandung di dalamnya. Tegangan tersebut dijelaskan oleh tiga persamaan:

di mana: = modulus geser dari bahanb = adalah vektor Burgers = adalah rasio Poisson x dan y = koordinat

Persamaan ini menyarankan halter berorientasi vertikal tegangan yang mengelilingi dislokasi, dengan kompresi yang dialami oleh atom dekat ekstra pesawat, dan ketegangan yang dialami oleh orang-atom dekat hilang pesawat.

2.2.3 Dislokasi Ulir

Gambar 2.5 Kanan Bawah Menunjukkan Dislokasi Ulir

Gambar 2.6 Skema Diagram (kisi pesawat) menunjukkan Dislokasi UlirSebuah dislokasi ulir jauh lebih sulit untuk memvisualisasikan. Bayangkan memotong kristal sepanjang pesawat dan tergelincir satu setengah melintasi kisi lain dengan sebuah vektor, yang setengah-setengah akan cocok kembali bersama-sama tanpa meninggalkan cacat. Jika hanya pergi bagian memotong jalan melalui kristal, dan kemudian tergelincir, batas dari memotong adalah dislokasi ulir. Ini terdiri dari sebuah struktur di mana heliks dilacak di sekitar jalan adalah cacat linear (garis dislokasi) oleh pesawat atom dalam kisi kristal (Gambar 2.6). Mungkin analogi yang paling dekat adalah spiraliris ham. Dislokasi ulir murni, vektor Burgers sejajar dengan garis arah. Meskipun kesulitan dalam visualisasi, tekanan yang disebabkan oleh dislokasi ulir kurang kompleks daripada sebuah dislokasi sisi. Tegangan tersebut hanya perlu satu persamaan, seperti simetri memungkinkan hanya satu koordinat radial untuk digunakan:

di mana: = modulus geser dari bahanb = adalah vektor Burgersr = koordinat

Persamaan ini menunjukkan silinder panjang stres yang memancar keluar dari silinder dan menurun dengan jarak. Model sederhana ini menghasilkan nilai yang tak terhingga untuk inti dislokasi pada r = 0 dan sehingga hanya berlaku untuk menekankan di luar inti dislokasi.

2.2.4 Dislokasi CampuranDalam banyak bahan, dislokasi dapat ditemukan di mana garis arah dan Burgers vektor yang tidak tegak lurus atau paralel dan dislokasi ini disebut dislokasi campuran, yang terdiri dari karakter ulir dan karakter tepi.

Gambar 2.7 Skema Diagram menunjukkan Dislokasi campuran: arah tegangan geser tegak lurus garis dislokasi maka gerak dislokasi sejajar tegangan geser :tegangan geser searah garis dislokasi maka gerak dislokasi tegak lurus tegangan geser Dislokasi campuran : arah gerak garis dislokasi tidak // ataupun tegak lurus arah tegangan geser2.3Sumber DislokasiKerapatan dislokasi dalam suatu material dapat ditingkatkan oleh deformasi plastik oleh hubungan berikut:

Karena kerapatan dislokasi meningkat dengan deformasi plastik, sebuah mekanisme untuk menciptakan dislokasi harus diaktifkan dalam materi. Tiga mekanisme untuk pembentukan dislokasi dibentuk oleh homogen nukleasi, inisiasi batas butir, dan interface kisi dan permukaan, presipitat, tersebar fase, atau memperkuat serat. Penciptaan dislokasi oleh nukleasi homogen adalah hasil dari pecahnya ikatan atom sepanjang garis dalam kisi. Sebuah pesawat dalam kisi dicukur, sehingga dihadapi setengah pesawat atau dislokasi. Dislokasi ini menjauh antara yang satu dan lainnya melalui kisi. Dalam homogen nukleasi bentuk kristal dislokasi dari sempurna dan melewati simultan dari banyak ikatan, energi yang diperlukan untuk nukleasi homogen tinggi. Misalnya stres diperlukan untuk homogen nukleasi tembaga

,

Di mana:G = modulus geser tembaga (46 GPa) = stres 3,4 Gpa

Oleh karena itu, dalam deformasi konvensional homogen nukleasi memerlukan terkonsentrasi stres, dan sangat tidak mungkin. Batas butir inisiasi dan antarmuka interaksi yang lebih umum sumber dislokasi. Langkah-langkah dan tepian di batas butir merupakan sumber penting dislokasi pada tahap awal deformasi plastik, permukaan kristal dapat menghasilkan dislokasi di dalam kristal. Karena langkah-langkah kecil di permukaan kristal, stres di daerah tertentu di permukaan jauh lebih besar daripada rata-rata stres dalam kisi. Dislokasi kemudian disebarkan ke kisi dengan cara yang sama seperti dalam batas butir inisiasi. Dalam monocrystals, mayoritas dislokasi terbentuk di permukaan. Kerapatan dislokasi 200 mikrometer ke permukaan material, telah terbukti menjadi enam kali lebih tinggi daripada kepadatan dalam massal. Namun, dalam bahan polikristalin sumber permukaan tidak dapat memiliki pengaruh yang besar karena sebagian besar butir tidak berhubungan dengan permukaan.

Batas antara logam dan oksida dapat sangat meningkatkan jumlah dislokasi yang terjadi. Lapisan oksida menempatkan permukaan logam dalam ketegangan karena memeras atom oksigen ke dalam kisi, dan atom oksigen di bawah kompresi. Hal ini sangat meningkatkan tekanan pada permukaan logam dan akibatnya jumlah dislokasi terbentuk pada permukaan. Tekanan yang dihasilkan oleh sumber dislokasi dapat divisualisasikan dengan photoelasticity dalam Lif iradiasi gamma-kristal tunggal. Tegangan tarik sepanjang bidang luncur merah. Stres kompresi hijau gelap.

2.4Dislokasi Terpeleset dan Plastisitas Salah satu tantangan dalam ilmu material adalah untuk menjelaskan plastisitas dalam istilah mikroskopis. Sebuah usaha untuk menghitung tegangan geser pada bidang yang atom tetangga dapat melewati satu sama lain dalam kristal yang sempurna menunjukkan bahwa, untuk bahan dengan modulus geser G, kekuatan geser m diberikan kira-kira oleh:

Modulus geser = 20.000-150.000 MPa,Tegangan geser = 0,5-10 Mpa

Pada tahun 1934, Egon Orowan, Michael Polanyi dan GI Taylor, secara simultan menyadari bahwa deformasi plastis dapat dijelaskan dalam kerangka teori dislokasi. Dislokasi dapat bergerak jika atom dari salah satu pesawat sekitar melanggar obligasi dan rebond dengan atom di tepi terminating. Akibatnya, pesawat setengah atom bergerak dalam menanggapi tegangan geser dengan melanggar dan mereformasi garis obligasi, pada satu waktu. Energi yang dibutuhkan untuk memecahkan ikatan tunggal kurang dari yang dibutuhkan untuk memutuskan semua ikatan pada seluruh bidang atom sekaligus. Bahkan model sederhana ini gaya yang dibutuhkan untuk memindahkan dislokasi plastisitas menunjukkan bahwa mungkin pada tegangan jauh lebih rendah dibandingkan dengan kristal yang sempurna. Dalam banyak bahan, terutama bahan ulet, dislokasi adalah pembawa deformasi plastik, dan energi yang dibutuhkan untuk memindahkan kurang dari energi yang dibutuhkan untuk patah tulang material. Dislokasi menimbulkan sifat lunak karakteristik logam.

Ketika logam menjadi sasaran untuk bekerja dingin (deformasi pada suhu yang relatif rendah dibandingkan dengan bahan temperatur leleh absolut, T m, yaitu biasanya kurang dari 0,3 T m) meningkatkan kerapatan dislokasi akibat pembentukan dislokasi baru dan dislokasi perkalian. Akibatnya meningkatkan ketegangan tumpang tindih antara bidang dislokasi yang berdekatan secara bertahap meningkatkan ketahanan terhadap gerakan dislokasi lebih lanjut. Ini menyebabkan pengerasan logam sebagai deformasi kemajuan. Efek ini dikenal sebagai pengerasan regangan. Kusut dislokasi ditemukan pada tahap awal deformasi dan muncul sebagai non batas-batas yang terdefinisi dengan baik. Proses dinamis pemulihan pada akhirnya mengarah pada pembentukan struktur selular yang berisi batas-batas dengan salah orientasi lebih rendah dari 15. Selain itu, menjepit menambahkan poin yang menghambat gerak dislokasi, seperti elemen paduan, dapat memperkenalkan bidang stres yang pada akhirnya memperkuat materi dengan mengharuskan tegangan yang lebih tinggi untuk mengatasi stres dan terus menjepit pergerakan dislokasi.

Efek pengerasan regangan oleh akumulasi dislokasi dan struktur gandum terbentuk pada tekanan tinggi dapat dihilangkan dengan perlakuan panas yang tepat (anil) yang mendorong pemulihan dan selanjutnya recrystallisation material. Gabungan teknik pemrosesan pekerjaan pengerasan dan anil memungkinkan untuk mengontrol kerapatan dislokasi, dislokasi derajat keterlibatan, dan akhirnya kekuatan luluh material.

2.5 Dislokasi Memanjat

Dislokasi dapat menyelinap dalam bidang yang mengandung dislokasi dan Burgers Vector. Untuk dislokasi ulir, dislokasi dan vektor Burgers sejajar, sehingga dislokasi mungkin akan terpeleset di setiap bidang yang mengandung dislokasi. Untuk dislokasi sisi, dislokasi dan vektor Burgers tegak lurus, sehingga hanya ada satu pesawat di mana dislokasi dapat tergelincir.

Ada mekanisme alternatif gerakan dislokasi, yang secara fundamental berbeda dari slip, yang memungkinkan sebuah dislokasi tepi untuk bergerak keluar dari slip, yang dikenal sebagai memanjat dislokasi. Memanjat memungkinkan dislokasi dislokasi sisi untuk bergerak tegak lurus pada bidang slip. Kekuatan pendorong untuk mendaki dislokasi adalah gerakan kekosongan melalui kisi-kisi kristal. Jika kekosongan bergerak di samping batas bidang tambahan setengah atom yang membentuk dislokasi sisi, atom dalam pesawat setengah terdekat dengan kekosongan dapat melompat dan mengisi kekosongan. Pergeseran atom ini bergerak kekosongan sesuai dengan bidang setengah atom, menyebabkan pergeseran, atau mendaki positif dari dislokasi. Proses kekosongan terserap di batas setengah bidang atom, bukan diciptakan, dikenal sebagai memanjat negatif. Sejak dislokasi memanjat hasil dari masing-masing atom melompat ke kekosongan, memanjat terjadi pada diameter atom tunggal bertahap. Selama memanjat positif, kristal menyusut dalam arah tegak lurus terhadap bidang tambahan setengah atom atom karena dikeluarkan dari setengah pesawat. Sejak negatif memanjat melibatkan penambahan atom untuk setengah pesawat, kristal tumbuh dalam arah tegak lurus terhadap pesawat setengah. Oleh karena itu, kompresi stres dalam arah tegak lurus terhadap pesawat setengah mempromosikan memanjat positif, sedangkan tegangan tarik mempromosikan memanjat negatif. Ini adalah salah satu perbedaan utama antara slip dan memanjat, karena slip hanya disebabkan oleh tegangan geser.

Salah satu perbedaan tambahan antara dislokasi slip dan memanjat adalah temperatur ketergantungan. Memanjat terjadi jauh lebih cepat pada temperatur tinggi daripada suhu rendah akibat kenaikan kekosongan gerak. Slip, di sisi lain, hanya memiliki sedikit ketergantungan pada suhu

2