Kuswanto-2012

22
Kuswanto-2012

description

Rancangan Bujur Sangkar Latin (RBL) (Latin Square Design). Kuswanto-2012. Rancangan Bujur Sangkar Latin: RBL adalah pengembangan dari RAK. Dimana RBL diterapkan untuk lahan yang mempunyai 2 arah gradien penyebab heterogenitas. - PowerPoint PPT Presentation

Transcript of Kuswanto-2012

Page 1: Kuswanto-2012

Kuswanto-2012

Page 2: Kuswanto-2012

Rancangan Bujur Sangkar Latin:

RBL adalah pengembangan dari RAK.Dimana RBL diterapkan untuk lahan yang mempunyai 2 arah gradien penyebab heterogenitas

Sangat tepat untuk penelitian dengan gradien kemiringan dan kelembaban tanah

Page 3: Kuswanto-2012

Imagine a field with a slope and fertility gradient:

fertility

slope B C A D E

C D E B A

B C

C D

A E

D B

E AA B C D E

B C D E A

C D E A B

D E A B C

E A B C D

Page 4: Kuswanto-2012

Imagine a field with a slope and fertility gradient:

fertility

slope B C A D E

C D E B A

B C

C D

A E

D B

E AA B C D E

B C D E A

C D E A B

D E A B C

E A B C D

Page 5: Kuswanto-2012

Imagine a field with a slope and fertility gradient:

fertility

slope B C A D E

C D E B A

B C

C D

A E

D B

E AA B C D E

B C D E A

C D E A B

D E A B C

E A B C D

Page 6: Kuswanto-2012

We refer to Latin Squares as 3x3 or 5x5 etc.A Latin square requires the same number of replications as we have treatments.

Degrees of freedom are calculated as follows (6x6 example):Total = (6x6) – 1 = 35Rows = r -1 = 6 – 1 = 5Columns = c – 1 = 6 – 1 = 5Treatments = k – 1 = 6 – 1 = 5Error = 35 – 5 – 5 – 5 = 20

or (r-1)(c-1) – (k – 1) = (5x5) – 5 = 20

Page 7: Kuswanto-2012

Example: We are interested in the effect of 4 fertilizers (A,B,C,D) on corn yield. We have seed which was stored under four conditions and we have four fields in which we are conducting the experiment.

stor1 stor2 stor3 stor4

Field1 B D A C

Field2 C A B D

Field3 A C D B

Field4 D B C A

Page 8: Kuswanto-2012

stor1 stor2 stor3 stor4

fld1 B D A C

fld2 C A B D

fld3 A C D B

fld4 D B C A

Each treatment appears in each row and column once.

Treatments are assigned randomly, but as each is assigned, constraints are placed on the next treatment to be assigned.

Page 9: Kuswanto-2012

A B C D E

B C D E A

C D E A B

D E A B C

E A B C D

1 2 3 4 5

1

2

3

4

5

How to randomizing??

Page 10: Kuswanto-2012

Then randomize the rows:

B C D E A

E A B C D

D E A B C

C D E A B

A B C D E

1 2 3 4 5

1

2

3

4

5

Pay attention the row position!

Page 11: Kuswanto-2012

Then randomize the rows:

B C D E A

E A B C D

D E A B C

C D E A B

A B C D E

1 2 3 4 5

1

2

3

4

5

Pay attention the row position!

Page 12: Kuswanto-2012

Then Randomize columns, then randomly assign treatments to letters:

E C B D A

A D C E B

B E D A C

C A E B D

D B A C E

5 3 2 4 1

1

2

3

4

5

Page 13: Kuswanto-2012

Then Randomize columns, then randomly assign treatments to letters:

E C B D A

A D C E B

B E D A C

C A E B D

D B A C E

5 3 2 4 1

1

2

3

4

5

Page 14: Kuswanto-2012

The LS design is most often used with a field to account for gradients in soil, fertility, or moisture.

In a greenhouse, plants on different shelves (rak) and benches (bangku) may be blocked.

Latin Squares are also useful when we know (or suspect variation) of a linear nature, but do not know the direction it will take (eg bark beetle study).

The Latin Square design is only useful if both rows and columns vary appreciably. If they do not, a RCBD (RAK) or Completely randomized design (RAL) would be better (more degrees of freedom in the error term for F test)

Page 15: Kuswanto-2012

How to analysis of a Latin Square:Three way model, treatment fixed effect, rows and columns are both random effects.

No replication so same problem as RCB design (RAL) with experimental error. Must remove interaction from model – assume no interaction.

Model Source of VariabilityTreatment (fixed)Row (random)Column (random)

Page 16: Kuswanto-2012

Example: We want to compare effect of 5 different fertilizer on yield of potatoes.

B D C A

C A D B

A C B D

D B A C

Page 17: Kuswanto-2012

Contoh : Hasil pipilan 4 varietas jagung

Lajur

Baris 1 2 3 4 Jlh baris

1 1,64 (B) 1,21(D) 1,42(C) 1,34(A) 5,62

2 1,47(C) 1,18(A) 1,40(D) 1,29(B) 5,35

3 1,67(A) 0,71(C) 1,66(B) 1,18(D) 5,225

4 1,56(D) 1,29(B) 1,65(A) 0,66(C) 5,17

Jlh lajur 6,35 4,395 6,145 4,475 21,365

Hitung jumlah perlakuan (P) dan rata-ratanya

Page 18: Kuswanto-2012

Jumlah perlakuan dan rerata

Perlakuan Jumlah Rerata

A 5,855 1,464

B 5,885 1,471

C 4,270 1,068

D 5,355 1,339

Page 19: Kuswanto-2012

Hitung JK

FK = (21,365)²/16 = 28,529JKt = {(1,640)² + …+ 0,660)² -FK = 1,4139JKb = (5,62)² + …+ (5,170)² -FK = 0,03015JKl = (6,350)² +…+ (4,475)² -FK = 0,8273JKp = (5,855)² + …+ (5,355)² -FK = 0,4268JKe = JKt-JKb-JKl-JKp = 0,1295

Masukkan ke tabel ANOVA

Page 20: Kuswanto-2012

Tabel AnovaSK DB JK KT F hit Ft5% Ft1%

Baris 3 0,03015 0,01005

Lajur 3 0,8273 0,2757

Perlakuan 3 0,4268 0,1422 6,59* 4,76 9,78

Galat 6 0,1295 0,0215

Total 15 1,4139

Kesimpulan : Perlakuan berbeda nyata

Page 21: Kuswanto-2012

Interpretasi

F hitung perlakuan berbeda nyata berarti 4 perlakuan tersebut secara statistik berbeda nyata

Perbedaan antar perlakuan menyebabkan keragaman, dan keragaman yang disebabkan oleh perlakuan lebih besar daripada keragaman yang disebabkan oleh faktor sesatan percobaan (faktor lain)

Page 22: Kuswanto-2012