Kuliah_5_14pdf

download Kuliah_5_14pdf

of 37

Transcript of Kuliah_5_14pdf

  • 8/10/2019 Kuliah_5_14pdf

    1/37

    OCEAN HEAT BUDGET (PERIMBANGAN BAHANG)

    Penting:mengerti iklim dunia variabilitas jangka pendek dan panjang

    Peran Lautan:

    50% cahaya mthr diserap dan disimpan sementara pd perm bumi

    (daratan & lautan)

    Sbgn bahang yg tersimpan di laut: dilepas ke atm (evaporasi + radiasi

    infra merah) Selebihnya disebarkan oleh arus laut ke lintang tinggi

    Total dari perimbangan fluks bahang kedalam atau keluar volume air:

    Heat Budget (perimbangan bahang)

    Umumnya fluks lewat permukaan.

    Fluks lewat lap. dalamjauh lebih kecil

    Secara global: fluks bahang balance (berimbang) kalau tdk

    lautmkn hangatatau dingin purba@14

    Kuliah#5

    1(37)

  • 8/10/2019 Kuliah_5_14pdf

    2/37

    Komponen utama (major term) heat budget pd perm:

    Insolation (QSW):fluks sinar mthr ke laut

    Radiasi bersih Inframerah (QLW): fluks bersih (net) radiasi

    infra mrh dari lautan

    Sensible Heat Flux (QS): fluks bahang dr perm akibat konduksi

    Latent Heat Flux (QL): fluks bahang yg dibawa uap air

    Adveksi (QV): bahang dibawa arus

    2(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    3/37

    Konservasi Bahang mengharuskan:

    QT= QSW+ QLW+ QS+ QL+ QV

    QT adalah resultan bahang yg diperoleh (gain) atau hilang (loss)

    Unit fluks bahang: watts/m2 .

    Perkalian fluks x luas permukaan x waktu = energi dalam joule

    Perubahan temperatur (T) airberhubungan dgn perubahan energi

    (E):

    E = Cpm T,

    dimana: Cp = sp. heat pd tek tetap (~ 4.0 x 103 J.kg-1.oC-1)

    m = massa yg dipanaskan atau didinginkan

    3(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    4/37

    Pentingnya laut dalam Neraca Bahang Bumi

    Perbandingan sederhana: bahang yg tersimpan di laut dan daratan

    dalam 1 siklus tahunan: pd summer(bahang disimpan) dan winter

    (bahang dilepas).Ternyata laut menyimpan dan melepas bahang yang lebih banyak

    dari daratan.

    Hal ini terjadi karena Cp laut> Cp daratan dan batuan (5:1) dan airlaut masih dapat kontak dengan atm sampai ked. 100 m sedangkan

    daratan dan batuan hanya ked 1m, jadi lebih banyak massa air laut

    yang dpt kontak dgn atm dibanding daratan dan batuan.

    Konsekuensinya: kisaran perubahan suhu udara musiman diatas

    daratan makin tinggi bila makin jauh dari laut, dan dapat melebihi

    40 oC ditengah benua dan mencapai 60oC di Siberia.

    Sedangkan di laut dan sepanjang pantai < 10 oC

    4(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    5/37

    Faktor2 Yang Mempengaruhi Komponen Neraca Bahang

    I. Insolation (QSW) (fluks sinar matahari ke laut):

    1. Tinggi matahari di atas horizon, tgt: lintang, musim dan waktu pd

    siang hr (tdk ada mlm hr)2. Lamanya waktu siang hr, tgt: lintang dan musim

    3. Penampang melintang perm yg menyerap snr mthr, tgt: ketinggian

    mthr di atas horizon

    4. Attenuasi, yg tgt:

    * pjg lint di atm, yg bervariasi sbg csc , = sdt mthr di atas horz* Awan : absorp dan scatter

    * mol gas yg absorp pd kanal tertentu. H2O, O3dan CO2: penting

    * aerosol: absorp dan scatter

    * debu: scatter5. Pantulan dari perm, tgt sdt elevasi mthr dan kekasaran muka laut

    Yg plg dominan: sdt inklinasi dan keawanan.

    Penyerapan oleh uap air dan ozon: lemah

    Insolasi tahunan rata-rata berada pada kisaran: +30 s/d + 260 W/m25(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    6/37

    II Fluks Inframerah (QLW) (fluks bersih (net) radiasi lautan) :

    Perm laut mengemisi bahang spt black bodydgn suhu air ~ 290 oK.

    Puncak emisi ~ 10 m. Emisi REM pada ini diserap awan dan uap airpd bgn ttt dari spektrum dan pd bgn lain di teruskan jendela atm

    Transmissi: 813 m, tgt uap airAbsorpsi: 3.54.0 m, tgt konsentrasi CO2 Fig 5.4

    CO2 jendela tertutup dan makin banyak radiasi bumiterperangkap di atm.

    Atm spt rumah kaca green house effect(bebas sr mthr msk,sbgn emisi bm terperangkap) ~ suhu perm bumi 33 oC lebih hangat

    bila dibandingkan dgn kondisi tidak ada atm.

    Gas green house effect: CO2, Uap air, methane dan O3

    6(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    7/37

    Uap air

    7(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    8/37

    Net fluks infra red tgt:

    1. Kecerahan jendela atm., yg tgt: ketebalan awan, ketinggian

    awan dan kandungan uap air di atm2. Suhu air: Radisi ~ T4 , T dalam oK

    3. Penutupan es dan salju mengisolasi muka laut

    Variasi uap air dan awan lebih penting dalam menentukan

    radiasi balik dibanding variasi suhu permukaan.

    Dari kutub ke ekuator terdapat kenaikan radiasi kembali ~ 42

    %, tetapi pada jarak yg sama, uap air dapat mempengaruhi

    emisi radiasi infra mrh bersih ~ 200 %,

    Fluks infra merah tahunan rata-rata berkisar: - 60 W/m2

    sampai - 30 W/m2

    8(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    9/37

    III. Fluks Latent Heat (QL): fluks bahang akibat

    Evaporasi

    Tgt terutama: kec. angin dan kelembaban relatif.Bila angin kencang dan udara kering evaporasi Juga laut terbuka lebih besar dari laut yg tertutup es di kutub

    Fluks evaporasi tahunan rata-rata berkisar: - 130 W/m2sampai - 10

    W/m2

    IV. Sensible Heat Flux (QS): akibat konduksi

    Tgt terutama: kec angin dan perbedaan temperatur mk laut dan

    udara

    Fluks Sensible Heat tahunan rata-rata berkisar: - 42 W/m2sampai

    - 2 W/m2

    9(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    10/37

    Penghitungan fluks secara langsung:

    Hanya ada satu cara yg akurat menentukan sensible dan latent heat

    dan momemtum: pengukuran langsung besaran turbulent pd lapisanbatas (boundary layer) atm yg diukur dgn gust probe(alat yg

    berespons sangat cepat) pada pesawat yg terbang rendah atau

    platform

    Mahal dan hanya ada bbrp pengukuran dan untuk kalibrasi metode

    lainnya.

    Gust probemengukur: kec angin vertikal dan horizontal,

    kelembaban dan suhu udara pada lapisan batas (boundary layer) atm

    dgn perm bumi ( kisaran 30 m diatas mk laut, karena fluks tidaktergantung ketinggian pada lapisan ini)

    Pengukuran harus super cepat (gust probe), bbrp pengukuran per

    detik

    Fluks dihitung dari informasi tsb 10(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    11/37

    11(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    12/37

    12(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    13/37

    Cara lain: Radiometer (alat mengukur radiasi dr mk bumi)

    Radiometers padaships, offshore platforms, and bahkansmall islands

    dapat mengukur langsung fluks radiasi.

    Kanal yang lebar yg sensitif thd radiasi: 0.3m s/d 50m: dpt

    mengukur incoming solar and infrared radiation (accuracy: 3%)

    Alat lain: radiometer khusus dapat mengukur: Radiasi mthr yang

    datang, radiasi infra merah kebawah dan ke atas.

    Akan tetapi biasanya, radiasi ifra merah keatas ditentukan

    berdasarkan pengukuran suhu laut permukaan

    Cara ini lebih akurat dari pada mengukur radiasi

    Penghitungan Fluks secara tidak langsung: Bulk Formula

    Kedua cara secara langsung: mahal utk jangka pjg

    Utk pengukuran praktis: diamati korelasi antar fluks dgn variabel yg

    dapat diukur secara global.13(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    14/37

    Fluks dari sensible heat dan latent heat serta momentum.

    Formula Bulk :

    Suhu Udara Tadiukur dengan termometer pada kapal

    TsSuhu permukaan laut diukur dengan termometer dari kapal atau

    dari ruang angkasa dengan infrared radiometersseperti AVHRR.

    Specific humidity udara pada ketinggian 10 m diatas paras laut (qa)

    dihitung dari pengukuran relative humidity dari kapal.

    Specific humidity pada paras laut (qs) dihitung dari Tsdgnasumsi

    udara pada muka laut sudah jenuh (saturated) dgn uap air.U10:kec angin pd 10 m diatas perm laut

    Koef: CD, CSdan CLdihitung mengkorelasikan pengukuran

    langsung fluks yang dilakukan dengan probesdengan variabel yang

    ada di bulk formulas14(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    15/37

    The problem now becomes:

    How to calculate the fluxes across the sea surface required for

    studies of ocean dynamics?

    The fluxes include: 1) stress; 2) solar heating; 3) evaporation; 4)

    net infrared radiation; 5) rain; 5) sensible heat; and 6) others such

    as CO2 and particles (which produce marine aerosols).

    Furthermore, the fluxes must be accurate.

    We need an accuracy of approximately 15 W/m2.

    This is equivalent to the flux of heat which would warm or cool a

    column of water 100 m deep by roughly 1oC in one year.

    Table 5.2 lists typical accuracies of fluxes measured globally

    from space.

    15(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    16/37

    16(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    17/37

    Hasil-hasil pengukuran: Global Data Sets for Fluxes

    Ship and satellite data: produce global maps of fluxes.

    Observations from ship measurements made over the past 150 years

    yield maps of the long-term mean values of the fluxes, especially inthe northern hemisphere.

    Ship data, however, are sparse in time and space, and they are

    increasingly supplemented by data from space.

    Space data give the variability of some of the fluxes.

    Output from numerical weather models is also used.

    Ada beberapa sumber data:1. Comprehensive Ocean-Atmosphere Data Set

    Data collected from observers on ships are the richest source ofmarine information. These marine reports have now been edited and

    published as the Comprehensive Ocean-Atmosphere Data Setcoads

    (Woodruff et al. 1987) available through the National Oceanic and

    Atmospheric Administration (NOAA).17(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    18/37

    2. Data Satelit.

    Raw data are available from the many satellite projects, but

    the data must be further processed to be useful.

    Data are available from the instruments on operational meteorologicalsatellites including:

    1) NOAAseries of polar-orbiting, meteorological satellites;

    2) Defense Meteorological Satellite Program DMSPpolar-orbiting

    satellites, which carry the Special Sensor Microwave/ Imager

    (SSM/I);

    3) Geostationary meteorological satellitesoperated by NOAA

    (GOES), Japan(GMS) and the European Space Agency

    (METEOSATS). Data are also available from :

    (i) Nimbus-7, Earth Radiation Budget Instruments;(ii) Earth Radiation Budget Satellite, Earth Rad. Budget Experiment;

    (iii) The European Space Agencys ERS1 & 2;

    (iv) The Japanese ADvanced Earth Observing System (ADEOS);

    (v) Quicksat, and (vi) Topex/Poseidon. 18(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    19/37

    3. International Satellite Cloud Climatology Project.

    The International Satellite Cloud Climatology Project is to collect

    observations of clouds made by dozens of Meteorological

    satellites from 1985 to 1995, to calibrate the the satellite data, to

    calculate cloud cover using carefully verified techniques, and to

    calculate surface insolation.

    4. Global Precipitation Climatology Project.

    Uses three sources of data to calculate rain rate:(i) Infrared observations of the height of cumulus clouds from GOES

    satellites.

    (ii) Measurements by rain gauges on islands and land.

    (iii) Radio-frequency emissions from from water droplets in theatmosphere observed by the SSMI.

    Accuracy is about 1 mm/day. Data on a 2.5 lat by 2.5 long grid

    from July 1987 to December 1995 from the Global Land Ocean

    Precipitation Analysis at the NASA Goddard Space Flight Center.19(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    20/37

    5. Reanalyzed Data From Numerical Weather Models

    Surface heat fluxes have been calculated from weather data using

    numerical weather models by various reanalysis projects.

    The fluxes are consistent with atmospheric dynamics, they are

    global, and they are available for many years on a uniform grid.

    For example, the NCAR/NCEP reanalyzed data are available on a

    CD-ROM including daily averages of wind stress, sensible and latent

    heat fluxes, net long and short wave fluxes, near-surface

    temperature, and precipitation.

    6. Data From Numerical Weather Models

    Some projects require flux data a few hours after observations are

    collected.The surface analysis from numerical weather models is a good

    source for this type

    of data.

    20(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    21/37

    DISTRIBUSI GEOGRAFIS KOMPONEN NERACA BAHANG

    Bbrp grup: data kapal, satelit dan model numerik dr sirkulasi atm utk

    menghitung rata-rata dari komponen Neraca Bahang.

    Fig 5.6: Menggambarkan pentingnya secara global nilai-nilai dari

    berbagai komponen

    Pd puncak atm. insolation balances radiasi infra merah

    Pd permukaan latent heat flux and net infrared radiation tend to

    balance insolation, and sensible heat flux is small.

    Hanya 20% of insolation reaching Earth is absorbed directly by

    the atmosphere while 49% is absorbed by the ocean and land.

    21(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    22/37

    22(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    23/37

    What then warms the atm and drives the atm circulation.

    Sunlight warms the tropical oceans which must evaporate water to

    keep from warming up.

    It also radiates heat to the atm, but the net radiation term is smaller

    than the evaporative term.

    Trade winds carry the heat in the form of water vapor to the tropical

    convergence zone where it falls as rain.

    Rain releases the latent heat evaporated from the sea, and it heats the

    air in cumulus rain clouds by as much as 125 W/m2 averaged over a

    six-year period

    23(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    24/37

    The zonal average of the oceanic heat-budget terms (figure 5.7):

    (1)insolation is greatest in the tropics,

    (2)evaporation balances insolation, and

    (3) sensible heat flux is small.

    Zonal average is an average along lines of constant latitude.

    The terms in Figure 5.7 dont sum to zero.

    The areal-weighted integral of the curve for total heat flux is not zero.

    Because the net heat flux into the oceans averaged over several yearsmust be less than a few watts per square meter, the non-zero value

    must be due to errors in the various terms in the heat budget.

    Errors in the heat budget terms can be reduced by using additional

    information.

    Heat and fresh water are transported by the oceans and atmosphere, and

    the known values for the transports can be used to constrain the

    calculations of net heat fluxes (figure 5.7).

    The constrained fluxes show that the ocean gains heat in the tropics and

    loses heat at high latitudes. 24(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    25/37

    Figure 5.7 Upper: Zonal averages of heat transfer to the ocean by insolation QSW, and loss

    by infrared radiation QLW, sensible heat flux QS, and latent heat flux QL. Lower:Net heat flux

    through the sea surface calculated from the data above (solid line) and net heat flux constrained

    to give heat and fresh-water transports by the ocean that match independent calculations of

    these transports. The area under the lower curves ought to be zero, but it is 16 W/m2 for

    the unconstrained case and -3 W/m2 for the constrained case. 25(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    26/37

    Maps of the regional distribution of fluxes give clues to the

    processes producing the fluxes.

    Net downward short-wave radiation (insolation) at the sea surface(Figure 5.8 a) shows that the large flux into the tropical region is

    modulated by the distribution of clouds, and that heating is

    everywhere positive.

    The net infrared heat flux (Figure 5.8 b) is largest in regions with

    the least clouds, such as the central gyres and the eastern central

    Pacific.

    The net infrared flux is everywhere negative.

    26(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    27/37

    Figure 5.8 a. Annual-mean insolation QSWthrough the sea surface during 1989

    calculated by the Satellite Data Analysis Center at the NASA Langley Research

    Center using data from the International Satellite Cloud Climatology Project.

    Units are W/m2, contour interval is 10 W/m2.

    27(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    28/37

    Figure 5.8 b. Annual-mean infrared radiation QLWthrough the sea surface

    during 1989 calculated by the Satellite Data Analysis Center at the NASA

    Langley Research Center using data from the International Satellite Cloud

    Climatology Project. Units are W/m2, contour interval is 10 W/m2.

    28(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    29/37

    Fig. 5.9: Latent heat fluxes. Dominated by evaporation in the trade wind regions

    and the offshore flow of cold air masses behind cold fronts in winter offshore of

    Japan and North America.

    Figure 5.9 Annual-mean latent heat flux from the sea surface QLin W/m2during 1989

    calculated from data compiled by the Data Assimilation Office of NASAS Goddard

    Space Flight Center using reanalyzed output from the ECMWF numerical weather

    prediction model. Contour interval is 10 W/m2. 29(37)purba@14

    Fi 5 10 S ibl h t fl d i t d b ld i bl i ff ti t

  • 8/10/2019 Kuliah_5_14pdf

    30/37

    Fig. 5.10 a. Sensible heat fluxes are dominated by cold air blowing off continents.

    Figure 5.10 a. Annual-mean upward sensible heat flux QSthrough the sea surface in

    W/m2calculated by DaSilva, Young, and Levitus (1995) using the COADS data set from

    1945 to 1989. Contour interval is 2 W/m2.30(37)purba@14

    Fi 5 10 b Th t h ti i i l t i t i l i d t

  • 8/10/2019 Kuliah_5_14pdf

    31/37

    Fig. 5.10 b. The net heating gain is largest in equatorial regions and net

    heat loss is largest downwind on Asia and North America (westerlies).

    Figure 5.10b. Annual-mean constrained, net, downward heat flux through the sea surface

    in W/m2calculated by DaSilva, Young, and Levitus (1995) using the COADS data set

    from 1945 to 1989. Contour interval is 20 W/m2(bottom). 31(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    32/37

    MERIDIONAL HEAT TRANSPORT

    Overall, earth gains heat at the top of the tropical atmosphere, and it

    loses heat at the top of the polar atmosphere.

    The atmospheric and oceanic circulation together must transport heatfrom low to high latitudes to balance the gains and losses.

    This north-south transport is called the meridional transport.

    How much heat is carried by the ocean and how much by the

    atmosphere?

    The sum of the meridional heat transport by the ocean andatmosphere together is calculated accurately from the divergence of

    the zonal average of the heat budget measured at the top of the

    atmosphere by satellites.

    To make the calculation, we assume steady state transports over

    many years so that any long term net heat gain or loss through the top

    of the atmosphere must be balanced by a meridional transport and not

    by heat storage in the ocean or atmosphere.32(37)

    y

    Q

    x

    QQ

    TyTxT

    purba@14

  • 8/10/2019 Kuliah_5_14pdf

    33/37

    Jadi ada 2 heat transport:

    1) Heat Budget at the top of the Atmosphere

    * Insolation is calculated from the solar constant and observations of

    reflected sunlight made by meteorological satellites and by specialsatellites such as the Earth Radiation Budget Experiment Satellite.

    * Back radiation is measured by infrared radiometers on the satellites.

    The difference between insolation and net infrared radiation is the net

    heat flux across the top of the atmosphere.

    2) Oceanic Heat Transport

    Oceanic heat transport are calculated three ways:

    Surface Flux Method uses measurements of wind, insolation, air, and

    sea temperature, cloudiness, and bulk formulas to estimate the heat

    flux through the sea surface.Then the fluxes are integrated to obtain the zonal average of the heat

    flux (figure 5.7).

    Finally, the meridional derivative of the net flux gives the flux

    divergence, which must be balanced by heat transport in the ocean33(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    34/37

    * Direct Methoduses measured values of current velocity and

    temperature from top to bottom along a zonal section spanning an

    ocean basin.

    The values are used to calculate the flux from the product of

    northward velocity and heat content derived from the temperature

    measurement.

    * Residual Methoduses atmospheric observations or the output ofnumerical models of the atmospheric circulation to calculate the heat

    transport in the atmosphere.

    This is the direct method applied to the atmosphere.

    The atmospheric transport is subtracted from the total meridional

    transport calculated from the top-of-the-atmosphere heat flux to

    obtain the oceanic contribution as a residual

    34(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    35/37

    Important Concepts

    1. Sunlight is absorbed primarily in the tropical ocean.

    The amount of sunlight is modulated by season, latitude, time of

    day, and cloud cover.2. Most of the heat absorbed by the oceans in the tropics is released

    as water vapor which heats the atmosphere when water is

    condenses as rain.

    Most of the rain falls in the tropical convergence zones, lesser

    amounts fall in mid-latitudes near the polar front.3. Heat released by rain and absorbed infrared radiation from the

    ocean are the primary drivers for the atmospheric circulation.

    4. The net heat flux from the oceans is largest in mid-latitudes and

    offshore of Japan and New England.5. Heat fluxes can be measured directly using fast response

    instruments on low-flying aircraft, but this is not useful for

    estimating heat budgets of the ocean.

    35(37)purba@14

    6 H t fl th h l i f th f b

  • 8/10/2019 Kuliah_5_14pdf

    36/37

    6. Heat fluxes through large regions of the sea surface can be

    estimated from bulk formula.

    Seasonal, regional, and global maps of fluxes are available

    based on ship and satellite observations.

    7. The most widely used data sets for studying heat fluxes are the

    Comprehensive Ocean-Atmosphere Data Set and the reanalysis

    of meteorological data by numerical weather prediction models.

    8. The oceans transport about one-half of the heat needed to warm

    higher latitudes, the atmosphere transports the other half.

    9. Solar output is not constant, and the observed small variations inoutput of heat and light from the sun seem to produce the

    changes in global temperature observed over the past 400 years.

    36(37)purba@14

  • 8/10/2019 Kuliah_5_14pdf

    37/37

    37(37)b @