Asam Lemak Bebas Dari Buah Kelapa Sawit

11
ASAM LEMAK BEBAS DARI BUAH KELAPA SAWIT Asam Lemak Bebas (ALB) atau free fatty acid (FFA), adalah asam yang di bebaskan pada hidrolisa dari lemak. Terdapat berbagai macam lemak, tetapi untuk perhitungan, kadar ALB minyak sawit dianggap sebagai Asam Palmitat (berat molekul 256). Daging kelapa sawit mengandung enzim lipase yang dapat menyebabkan kerusakan pada mutu minyak ketika struktur seluler terganggu. Enzim yang berada didalam jaringan daging buah tidak aktif karena terselubung oleh lapisan vakuola, sehingga tidak dapat berinteraksi dengan minyak yang banyak terkandung pada daging buah. Masih aktif di bawah 15 derajat C dan non aktif dengan temp diatas 50 derajat C. Apabila trigliserida bereaksi dengan air maka menghasilkan gliserol dan asam lemak bebas. CH2RCOO CH2OH l l CHRCOO + 3H2O <---> CHOH + RCOOH l l CH2RCOO CH2OH TAG + H2O <---> DAG + ALB DAG + H2O <---> MAG + ALB MAG + H2O <----> Gliserol + ALB

Transcript of Asam Lemak Bebas Dari Buah Kelapa Sawit

ASAM LEMAK BEBAS DARI BUAH KELAPA SAWIT Asam Lemak Bebas (ALB) atau free fatty acid (FFA), adalah asam yang di bebaskan pada hidrolisa dari lemak. Terdapat berbagai macam lemak, tetapi untuk perhitungan, kadar ALB minyak sawit dianggap sebagai Asam Palmitat (berat molekul 256).Daging kelapa sawit mengandung enzim lipase yang dapat menyebabkan kerusakan pada mutu minyak ketika struktur seluler terganggu.Enzim yang berada didalam jaringan daging buah tidak aktif karena terselubung oleh lapisan vakuola, sehingga tidak dapat berinteraksi dengan minyak yang banyak terkandung pada daging buah. Masih aktif di bawah 15 derajat C dan non aktif dengan temp diatas 50 derajat C.Apabila trigliserida bereaksi dengan air maka menghasilkan gliserol dan asam lemak bebas.

CH2RCOO CH2OHl lCHRCOO + 3H2O CHOH + RCOOHl lCH2RCOO CH2OH

TAG + H2O DAG + ALBDAG + H2O MAG + ALBMAG + H2O Gliserol + ALB

Reaksi hidrolisis lemak bersifat reversible merupakan reaksi kesetimbangan kondisi tercapai bila kecepatan reaksi pemecahan lemak sama dengan reaksi pembentukan lemak.Reaksi hidrolisis lemak berlangsung secara bertahap yaitu pembentukan isomer diasilgliserol, proses pembentukan alpha & betha monoasilgliserol dan proses pembentukan gliserol.

Sebelum proses ektraksi minyak dilakukan, pertama-tam buah direbus di dalam stelizer. Salah satu tujuannya yaitu mengnonaktifkan aktifitas enzim. Didalam buah kelapa sawit ada enzim lipase dan oksidase yang tetap bekerja sebelum enzim itu dihentikan dengan cara fisika dan kimia.

Cara fisika yaitu dengan cara pemanasan pada suhu yang dapat mendegradasi protein.Enzim lipase bertindak sebagai katalisator dalam pembentukan trigliserida dan kemudian memecahnya kembali menjadi asam lemak bebas (ALB).

Enzim Oksidase berperan dalam proses pembentukan peroksida yang kemudian dioksidasi lagi dan pecah menjadi gugusan aldehide dan kation. Senyawa yang terakhir bila dioksidasi lagi akan menjadi asam. Jadi ALB yang terdapat dalam minyak sawit merupakan hasil kerja enzim lipase dan oksidase.

Aktifitas enzim semakin tinggi apabila buah mengalami luka. Untuk mengurangi aktifitas enzim sampai di pabrik kelapa sawit diusahakan agar buah tidak rusak dan buah tidak busuk. Enzim tersebut tidak aktif lagi pad temperatur 50 derajat C. Karena itu perebusan di dalam sterilizer pada temperatur 120 derajat C akan menghentikan enzim.

VARIABEL YANG SANGAT BERPENGARUH TERHADAP ASAM LEMAK BEBAS

Beberapa variabel proses yang sangat berpengaruh terhadap perolehan asam lemak seperti pengaruh suhu, kematangan buah, kadar pelukaan buah, pengadukan, penambahan air, penambahan CPO dan lama penyimpanan.

1. Pengaruh Temperatur

Dari hasil penelitian yang telah dilakukan, diperoleh bahwa kadar asam lemak yang paling tinggi didapat pada suhu kamar (25 oC 27 oC). Enzim lipase pada buah kelapa sawit sudah tidak aktif pada suhu pendinginan 8 oC dan pada pemanasan pada suhu 50 oC.Secara umum temperatur sangat berpengaruh pada reaksi kimia, dimana kenaikan temperatur akan menaikkan kecepatan reaksi. Sifat enzim yang inaktif pada suhu tinggi, maka pada proses enzimatis ada batasan suhu supaya enzim dapat bekerja secara optimal. Penurunan aktifitas enzim pada suhu tinggi diduga diakibatkan oleh denaturasi protein. juga pada suhu rendah, aktifitas enzim juga menurun yang diakibatkan oleh denaturasi enzim.

2. Pengaruh Penambahan Air

Air mempunyai pengaruh pada reaksi yang terjadi, dan pengaruh ini pada dasarnya adalah membantu terjadinya kontak antara substrat dengan enzim. Enzim lipase aktif pada permukaan (interface) antara lapisan minyak dan air, sehingga dengan melakukan pengadukan, maka kandungan air pada buah akan mampu untuk membantu terjadinya kontak ini.Pada proses hidrolisa ini, secara stokiometri air pada buah sudah berlebih untuk menghasilkan asam lemak (kadar air pada buah adalah sekitar 28%), tetapi karena air ini berada pada padatan maka perlu dilakukan pelumatan buah dan selanjutnya dilakukan pengadukan. Disamping itu, untuk mengatasi/mencegah kekurangan air. Pengaruh kadar air pada produk yang dicapai sangat besar, dimana kandungan air yang sangat besar ini mengakibatkan reaksi antara asam lemak dan gliserol tidak dapat terjadi dengan baik.

3. Pengaruh Pelukaan dan Pengadukan Buah

Enzim lipase tidak berada dalam minyak, tetapi berada dalam serat. Tingkat pelukaan buah dan pengadukan sangat berpengaruh terhadap proses hidrolisa karena akan membantu terjadinya kontak antara enzim dan minyak (substrat). Hal ini karena posisi enzim lipase pada buah sawit belum diketahui secara pasti, sehingga untuk mengatasi hal ini maka buah harus dilumat sampai halus, kemudian minyak dan seratnya dicampur kembali. Dengan proses seperti ini terbukti bahwa kadar asam lemak yang diperoleh lebih tinggi dibandingkan jika buah tidak dilumat sampai halus (hanya dimemarkan/dilukai).Pengaturan kecepatan pengadukan pada reaksi ini perlu dilakukan, karena pada proses ini pengadukan berpengaruh kepada waktu kontak antara air, substrat dan enzim. Disamping itu, karena yang diaduk adalah campuran serat dan minyak, maka pemilihan rancangan pengaduk sangat perlu untuk diperhatikan.

4 Pengaruh Kematangan Buah

Buah yang terdapat pada satu tandan buah kelapa sawit tidak akan matang secara serempak. Buah yang berada pada lapisan luar biasanya lebih matang jika dibandingkan dengan buah yang berada pada bagian yang lebih dalam. Hal ini mengakibatkan adanya perbedaan persentase minyak yang terdapat pada setiap buah yang berada dalam satu tandan.Pada buah kelapa sawit, semakin matang buah maka kadar minyaknya akan semakin tinggi. Dengan semakin tingginya kadar minyak pada buah maka proses hidrolisa secara enzimatis akan semakin cepat terjadi, sehingga perolehan asam lemak akan lebih tinggi.

5. Pengaruh Lama Penyimpanan

Secara alami asam lemak bebas akan terbentuk seiring dengan berjalannya waktu, baik karena aktifitas mikroba maupun karena hidrolisa dengan bantuan katalis enzim lipase. Namun demikian asam lemak bebas yang terbentuk dianggap sebagai hasil hidrolisa dengan menggunakan enzim lipase yang terdapat pada buah sawit.

6. Pengaruh Penambahan CPO

Pada proses ini, kecepatan reaksi lebih rendah jika penambahan kadar CPO terhadap campuran antara serat dan minyak semakin meningkat. Hal ini dapat terjadi karena enzim lipase yang berada pada buah sudah jenuh atau jumlahnya terbatas, sementara jumlah substrat sudah sangat berlebih. Kecepatan reaksi bergantung kepada konsentrasi enzim lipase, bukan pada konsentrasi substrat.Sifat-sifat enzim lipase adalah sebagai berikut : Temperatur optimum: 35 oC, pada suhu 50 oC enzim sebagian besar sudah rusak. pH optimum : 4,7 5,0 Berat molekul : 45000-50000 Dapat bekerja secara aerob maupun anaerob ko-faktor : Ca++, Sr++, Mg++. Dari ketiga ko-faktor ini yang paling efektif adalah Ca++ Inhibitor : Zn2+, Cu2+, Hg2+, iodine, versene

- Pengertian Ekstraksi Ekstraksi merupakan suatu metoda pemisahan berdasarkan kelarutan suatu zat yang tak saling campur. Metoda - metoda ekstraksi terdiri dari maserasi, sokletasi,perkolasi serta refluks. Metoda yang digunakan untuk bunga sependong hingga didapat ekstrak adalah metoda sokletasi. Sokletasi ini menggunakan suatu pelarut yang mudah menguap dan dapat melarutkan senyawa organic yang terdapat dalam bahan alam dalam suhu panas, dimana sample terpisah dari pelarut, sample hanya dilewati oleh pelarut.Sample yang akan diekstraksi dibagi menjadi 5 bagian dan dibungkus dengan kertas saring. Setiap bungkus sample dilakukan 2 jam atau sampai warna pelarut seperti warna aslinya. Pelarut yang digunakan adalah n-heksan. Saat penggantian bungkus sample tidak dilakukannya penggantian pelarut atau penambahan pelarut. Ekstrak yang diperoleh dari ekstraksi ini dievaporasi agar didapat ekstrak pekat. Proses evaporasi bertujuan untuk menguapkan pelarut dari ekstrak sehingga didapat ekstrak pekat. Dilakukan dalam keadaan vakum agar tidak ada senyawa yang keluar atau masuk dari evaporator dan juga evaporator ini menggunakan pendingin balik. Ektrak pekat yang diperoleh disimpan dalam vial.

Penyairan secara berkesinambungan, dimana cairan penyari dipanaskan sehingga menguap, uap cairan akan terkondensasi molekul-molekul cairan penyari oleh pendingin balik dengan turun kedalam klonsong menyari simplisia dan selanjutnya masuk kembali kedalam labu alas bulat setelah melewati pipa siphon, proses ini berlangsung hingga penyarian zat aktif menjadi sempurnaEkstraksi adalah proses pemisahan suatu bahan dari campurannya, biasanya dengan menggunakan pelarut. Ekstraksi dapat dilakukan dengan berbagai cara. Ekstraksi menggunakan pelarut didasarkan pada kelarutan komponen terhadap komponen lain dalam campuran (Suyitno, 1989). Shriner et al. (1980) menyatakan bahwa pelarut polar akan melarutkan solut yang polar dan pelarut non polar akan melarutkan solut yang non polar atau disebut dengan like dissolve like.Ekstraksi adalah proses pemisahan suatu zat berdasarkan perbedaan kelarutannya terhadap dua cairan tidak saling larut yang berbeda, biasanya air dan yang lainnya pelarut organik.Ekstraksi yang dilakukan menggunakan metoda sokletasi, yakni sejennis ekstraksi dengan pelarut organik yang dilakukan secara berulang ulang dan menjaga jumlah pelarut relatif konstan dengan menggunakan alat soklet. Minyak nabati merupakan suatu senyawa trigliserida dengan rantai karbon jenuh maupun tidak jenuh. Minyak nabati umumnya larut dalam pelarut organik, seperti heksan dan benzen. Untuk mendapatkan minyak nabati dari bahagian tumbuhannya, dapat dilakukan dengan metoda sokletasi menggunakan pelarut yang sesuai. Adapun prinsip sokletasi ini adalah Penyaringan yang berulang ulang sehingga hasil yang didapat sempurna dan pelarut yang digunakan relatif sedikit. Bila penyaringan ini telah selesai, maka pelarutnya diuapkan kembali dan sisanya adalah zat yang tersari. Metode sokletasi menggunakan suatu pelarut yang mudah menguap dan dapat melarutkan senyawa organik yang terdapat pada bahan tersebut, tapi tidak melarutkan zat padat yang tidak diinginkan. Metoda sokletasi seakan merupakan penggabungan antara metoda maserasi dan perkolasi. Jika pada metoda pemisahan minyak astiri ( distilasi uap ), tidak dapat digunakan dengan baik karena persentase senyawa yang akan digunakan atau yang akan diisolasi cukup kecil atau tidak didapatkan pelarut yang diinginkan untuk maserasi ataupun perkolasi ini, maka cara yang terbaik yang didapatkan untuk pemisahan ini adalah sokletasi Sokletasi digunakan pada pelarut organik tertentu. Dengan cara pemanasan, sehingga uap yang timbul setelah dingin secara kontunyu akan membasahi sampel, secara teratur pelarut tersebut dimasukkan kembali kedalam labu dengan membawa senyawa kimia yang akan diisolasi tersebut. Pelarut yang telah membawa senyawa kimia pada labu distilasi yang diuapkan dengan rotary evaporator sehingga pelarut tersebut dapat diangkat lagi bila suatu campuran organik berbentuk cair atau padat 2 ditemui pada suatu zat padat, maka dapat diekstrak dengan menggunakan pelarut yang diinginkan. Syarat syarat pelarut yang digunakan dalam proses sokletasi : 1. Pelarut yang mudah menguapEx : heksan, eter, petroleum eter, metil klorida dan alkohol2.Titik didih pelarut rendah. 3. Pelarut tidak melarutkan senyawa yang diinginkan. 4. Pelarut terbaik untuk bahan yang akan diekstraksi. 5. Pelarut tersebut akan terpisah dengan cepat setelah pengocokan. 6. Sifat sesuai dengan senyawa yang akan diisolasi, polar atau nonpolar. 7. Ekstraksi sinambung dengan menggunakan alat soklet merupakan suatu prosedur ekstraksi kontituen kimia tumbuhan dari jaringan tumbuhan yang telah dikeringkan. Ekstraksi dilakukan dengan menggunakan secara berurutan pelarut pelarut organik dengan kepolaran yang semakin menigkat. Dimulai dengan pelarut heksana, eter, petroleum eter, atau kloroform untuk memisahkan senyawa senyawa trepenoid dan lipid lipid, kemudian dilanjutkan dengan alkohol dan etil asetat untuk memisahkan senyawa senyawa yang lebih polar. Walaupun demikian, cara ini seringkali tidak menghasilkan pemisahan yang sempurna dari senyawa senyawa yang diekstraksi. Cara menghentikan sokletasi adalah dengan menghentikan pemanasan yang sedang berlangsung. Sebagai catatan, sampel yang digunakan dalam sokletasi harus dihindarkan dari sinar matahari langsung. Jika sampai terkena sinar matahari, senyawa dalam sampel akan berfotosintesis hingga terjadi penguraian atau dekomposisi. Hal ini akan menimbulkan senyawa baru yang disebut senyawa artefak, hingga dikatakan sampel tidak alami lagi. Alat sokletasi tidak boleh lebih rendah dari pipa kapiler, karena ada kemungkinan saluran pipa dasar akan tersumbat. Juga tidak boleh terlalu tinggi dari pipa kapiler karena sampel tidak terendam seluruhnya. Dibanding dengan cara terdahulu ( destilasi ), maka metoda sokletasi ini lebih efisien, karena: 1. Pelarut organik dapat menarik senyawa organik dalam bahan alam secara berulang kali.2. Waktu yang digunakan lebih efisien.3. Pelarut lebih sedikit dibandingkan dengan metoda maserasi atau perkolasi.4. Pelarut tidak mengalami perubahan yang spesifik.Keunggulan sokletasi : 1. Sampel diekstraksi dengan sempurna karena dilakukan berulang ulang. 2. Jumlah pelarut yang digunakan sedikit. 3. Proses sokletasi berlangsung cepat. 4. Jumlah sampel yang diperlukan sedikit. 5. Pelarut organik dapat mengambil senyawa organik dalam bahan berulang kali. Kelemahan sokletasi : 1. Tidak baik dipakai untuk mengekstraksi bahan bahan tumbuhan yang mudah rusak atau senyawa senyawa yang tidak tahan panas karena akan terjadi penguraian. 2. Harus dilakukan identifikasi setelah penyarian, dengan menggunakan pereaksi meyer, Na, wagner, dan reagen reagen lainnya. 3. Pelarut yang digunakan mempunyai titik didih rendah, sehingga mudah menguap.

Destilasi Bertingkat DistilasiDistilasi adalah seni memisahkan dan pemurnian dengan menggunakan perbedaan titik didih. Distilasi memiliki sejarah yang panjang dan asal distilasi dapat ditemukan di zaman kuno untuk mendapatkan ekstrak tumbuhan yang diperkirakan dapat merupakan sumber kehidupan. Teknik distilasi ditingkatkan ketika kondenser (pendingin) diperkenalkan. Gin dan whisky, dengan konsentrasi alkohol yang tinggi, didapatkan dengan teknik yang disempurnakan ini. Pemisahan campuran cairan menjadi komponen dicapai dengan distilasi fraksional. Prinsip distilasi fraksional dapat dijelaskan dengan menggunakan diagram titik didih-komposisi (Gambar 12. 1). Dalam gambar ini, kurva atas menggambarkan komposisi uap pada berbagai titik didih yang dinyatakan di ordinat, kurva bawahnya menyatakan komposisi cairan. Bila cairan dengan komposisi l2 dipanaskan, cairan akan mendidih pada b1. Komposisi uap yang ada dalam kesetimbangan dengan cairan pada suhu b1 adalah v1. Uap ini akan mengembun bila didinginkan pada bagian lebih atas di kolom distilasi (Gambar 12.2), dan embunnya mengalir ke bawah kolom ke bagian yang lebih panas. Bagian ini akan mendidih lagi pada suhu b2 menghasilkan uap dengan komposisi v2. Uap ini akan mengembun menghasilkan cairan dengan komposisi l3. Jadi, dengan mengulang-ulang proses penguapan-pengembunan, komposisi uap betrubah dari v1 ke v2 dan akhirnya ke v3 untuk mendapatkan konsentrasi komponen A yang lebih mudah menguap dengan konsentrasi yang tinggi.

Gambar 12.1 Diagram titik didih- komposisi larutan ideal campuran cauran A dan B. Komposisi cairan berubah dari l1 menjadi l2 dan akhirnya l3. Pada setiap tahap konsentrasi komponen B yang kurang mudah menguap lebih tinggi daripada di fasa uapnya.Contoh soal 12.1 Distilasi fraksional Tekanan uap benzen dan toluen berturut-turut adalah 10,0 x 104 N m-2 dan 4,0 x 104 N m-2, pada80C. Hitung fraksi mol toluen dalam uap yang berada dalam kesetimbangan dengan cairan yang terdiri atas 0,6 mol toluen dan 0,4 molar benzen. Hitung fraksi mol toluen x dalam fas uap.Jawab Dengan bantuan hukum Raoult (bab 7.4(b)), komposisi uapnya dapat dihitung sebagai berikut. Jumlah mol toluen di uap /jumlah mol benzen di uap = [0,60 x (4,0 x 104)]/[0,40 x (10,0 x 104)] = 0,60.Fraksi mol toluen di uap x adalah: x/(1 - x) = 0,60; x = 0,60 / (1,0 + 0,60) = 0,375.Bila dibandingkan dengan komposisi cairan, konsentrasi toluen di fasa uap lebih besar menunjukkan bahwa adanya pengaruh distilasi fraksional. Kolom distilasi yang panjang dari alat distilasi digunakan di laboratorium (Gambar 12.2) memberikan luas permukaan yang besar agar uap yang berjalan naik dan cairan yang turun dapat bersentuhan. Di puncak kolom, termometer digunakan untuk mengukur suhu fraksi pertama yang kaya dengan komponen yang lebih mudah menguap A. Dengan berjalannya distilasi, skala termometer meningkat menunjukkan bahwa komponen B yang kurang mudah menguap juga ikut terbawa. Wadah penerima harus diubah pada selang waktu tertentu. Bila perbedaan titik didih A dan B kecil, distilasi fraksional harus diulang-ulang untuk mendapatkan pemisahan yang lebih baik. Produksi minyak bumi tidak lain adalah distilasi fraksional yang berlangsung dalam skala sangat besar.