Kecelakaan Reaktor Nuklir - mesin.pnj.ac.id · Kecelakaan Reaktor Nuklir Dr. Eng. Pribadi Mumpuni...

Post on 10-Mar-2019

231 views 0 download

Transcript of Kecelakaan Reaktor Nuklir - mesin.pnj.ac.id · Kecelakaan Reaktor Nuklir Dr. Eng. Pribadi Mumpuni...

Kecelakaan Reaktor Nuklir

Dr. Eng. Pribadi Mumpuni Adhi

Politeknik Negeri Jakarta

20181

List of MAJOR ACCIDENT IN ENERGY SYSTEM

Place year number killed comments

Machhu II, India 1979 2500 hydro-electric dam failure

Hirakud, India 1980 1000 hydro-electric dam failure

Ortuella, Spain 1980 70 gas explosion

Donbass, Ukraine 1980 68 coal mine methane explosion

Israel 1982 89 gas explosion

Guavio, Colombia 1983 160 hydro-electric dam failure

Nile R, Egypt 1983 317 LPG explosion

Cubatao, Brazil 1984 508 oil fire

Mexico City 1984 498 LPG explosion

Tbilisi, Russia 1984 100 gas explosion

northern Taiwan 1984 314 3 coal mine accidents

Chernobyl, Ukraine 1986 31+ nuclear reactor accident

Piper Alpha, North Sea 1988 167 explosion of offshore oil platform

Asha-ufa, Siberia 1989 600 LPG pipeline leak and fire

Dobrnja, Yugoslavia 1990 178 coal mine

Hongton, Shanxi, China 1991 147 coal mine

Belci, Romania 1991 116 hydro-electric dam failure

Kozlu, Turkey 1992 272 coal mine methane explosion

Cuenca, Equador 1993 200 coal mine

Durunkha, Egypt 1994 580 fuel depot hit by lightning

Seoul, S.Korea 1994 500 oil fire

Minanao, Philippines 1994 90 coal mine

Dhanbad, India 1995 70 coal mine

Taegu, S.Korea 1995 100 oil & gas explosion

List of MAJOR ACCIDENT IN ENERGY SYSTEM

List of MAJOR ACCIDENT IN ENERGY SYSTEM

Spitsbergen, Russia 1996 141 coal mine

Henan, China 1996 84 coal mine methane explosion

Datong, China 1996 114 coal mine methane explosion

Henan, China 1997 89 coal mine methane explosion

Fushun, China 1997 68 coal mine methane explosion

Kuzbass, Russia/Siberia 1997 67 coal mine methane explosion

Huainan, China 1997 89 coal mine methane explosion

Huainan, China 1997 45 coal mine methane explosion

Guizhou, China 1997 43 coal mine methane explosion

Donbass, Ukraine 1998 63 coal mine methane explosion

Liaoning, China 1998 71 coal mine methane explosion

Warri, Nigeria 1998 500+ oil pipeline leak and fire

Donbass, Ukraine 1999 50+ coal mine methane explosion

List of MAJOR ACCIDENT IN ENERGY SYSTEM

Donbass, Ukraine 2000 80 coal mine methane explosion

Shanxi, China 2000 40 coal mine methane explosion

Muchonggou, Guizhou, China 2000 162 coal mine methane explosion

Jixi, China 2002 115 coal mine methane explosion

Gaoqiao, SW China 2003 234 gas well blowout with H2S

Kuzbass, Russia 2004 47 coal mine methane explosion

Donbass, Ukraine 2004 36 coal mine methane explosion

Henan, China 2004 148 coal mine methane explosion

Chenjiashan, Shaanxi, China 2004 166 coal mine methane explosion

Sunjiawan, Liaoning, China 2005 215 coal mine methane explosion

Fukang, Xinjiang, China 2005 83 coal mine methane explosion

Xingning, Guangdong, China 2005 102 coal mine flooding

Dongfeng, Heilongjiang, China 2005 164 coal mine methane explosion

Flashback BWR

6

Prinsip Kerja BWR

7

http://www.nrc.gov/

BWR Mark I type Primary ContaimentVessel (PCV) – Fukushima Daichi

8

Spent fuel pool Reactor Building

PCV

RPV

Drywell (D/W)

Suppression chamber

Wetwell (W/W)

Structure BWR RPV

9

Multiple Barrier to confine radioactivity

ECCS : Emergency Core Cooling System

PCV : Primary Containment Vessel10PWR

Peristiwa 3/11 (Fukushima)

11

Intensitas Gempa

12

Penjelasan Intensitas Gempa

Magnitude-ShindoNumber (Shindo

Number in Japanese)

/ Meter reading

Effects on people

Indoor situations

Outdoor situations

ResidencesOther

buildingsLifelines

Ground and slopes

Peak ground

acceleration[

Approximate

Equivalent Rating

on Mercalli Scale

7 (7) / 6.5 and up

Thrown by the shaking and impossible to move at will.

Most furniture moves to a large extent and some jumps up.

In most buildings, wall tiles and windowpanes are damaged and fall. In some cases, reinforced concrete-block walls collapse.

Most or all residences collapse or receive severe damage, no matter how earthquake-resistant they are.

Most or all buildings (even earthquake-resistant ones) suffer severe damage.

Electrical, gas and water service are interrupted.

The ground is considerably distorted by large cracks and fissures, and slope failures and landslides take place, which can change topographic features.

Greater than 4 m/s²

X-XII

13

Distribusi Ketinggian Tsunami

14

Persebaran Reaktor Nuklir di Jepang

15

Fukushima Daichi Site

16

Fukushima Daichi Reaktor

Unit Tipe Power (Mwe) Mulai Beroperasi

F-1 BWR/3 460 3/26/1971

F-2 BWR/4 784 18/7/1974

F-3 BWR/4 784 27/3/1976

F-4 BWR/4 784 12/10/1978

F-5 BWR/4 784 18/4/1978

F-6 BWR/5 1100 24/10/1979

17

Fun Fact:Unit 1 dijadwalkan berhenti beroperasi pada awal tahun 2011, tetapi pada Februari2011 regulator di Jepang mengizinkan perpanjangan untuk 10 tahun ke depan

Invasion Area Tsunami

18

Situasi saat Tsunami pada F5/F6

19

Situasi Tsunami pada Fukushima Daichi

20

Situasi Setelah Tsunami

21

Hydrogen Explosion

22

Accident Outline

23RHR : residual heat removal

Safety System

24

Mechanism of Isolation Condenser for BWR/2 and 3

25

Terjadi pada F1

PLR : primary loop recirculation

Reactor Core Isolation Cooling System (RCIC)

26

Recirculation pump

Containment Suppression Chamber

RCIC

Pump

Condensate Storage

Tank

Containment/Drywell

Recirculation Loop

(Typical of 2)

Safety/Relief valveAutomatic Depressurization System (ADS)

Terjadi pada F2 – F4

27

Low Pressure Emergency Core Cooling System

Mekanisme Cooling Systen

28

Injection of Seawater into RPV

29

Watering Fuel Pool by Helicopter

30

• Awalnya diduga penyebab ledakan dari F-3 berasal dari terbentuknya gas H2 di fuel pool, sehingga penyiraman denganhelicopter perlu dilakukan

• Karena radioaktivitas sangat tinggi dan adanya puing-puing, maka mobilpemadam tidak dapat mendekat

Seawater Injection into F-3/4 by Fire Engine

31

Ledakan gas H2 pada F-4 yang sedang dalam kondisi maintenance diduga berasal dari terbentuknya gas H2 pada fuel pool yang tidaktertutup air

Core Damage and H2

Generation

32

Melting Point of Structural Materials

33

Distribusi Temperatur pada Fuel Pin

34

Metal – Water Reaction

35

Propagation of Severe Accidents in RPV

36

Physical Phenomena in PCV after core damage

37

(1) Fuel Coolant interaction(2) Molten Core Concrete Interaction(3) Direct Containment Heating

N2 Injection into PCV

38

N2 diinjeksi ke PCV untukmengurangi kemungkinanledakan pada PCV

Leakage of Cooling Water from the Lower Part of PCV

39

Polluted Water Outflow to Sea from Trench

40

Mekanisme Core Damage

41

Status NPP yang Lain

42

Onagawa-1,2,3

43

Tokai-2 (1100 Mwe)

44

Fukushima Daini 1.2.3.4 units

45

Three Miles Island Incident

46

Overview

47

•In 1979 at Three Mile Island nuclear power plant in USA a cooling malfunction caused

part of the core to melt in the #2 reactor. The TMI-2 reactor was destroyed.

•Some radioactive gas was released a couple of days after the accident, but not enough

to cause any dose above background levels to local residents.

•There were no injuries or adverse health effects from the Three Mile Island accident.

How it happened?

48

• Failure of secondary loop , feedwater pump prevented send water to SG• Pressure increased, relief valve opened.• Relief valve failed to close → pressure decreased• The staff reduced emergency cooling water into primary system• Reactor core overheat → Loss of Coolant Accident

Masalah pada pompa

Relief valve stuck

Reducing flow

Core melt down

Gen III+, ESBWR

49

What is ESBWR ?

• The Economic Simplified Boiling Water Reactor (ESBWR) is a 1520 MWe Generation III+ boiling water reactor.

• Certified by the US Nuclear Regulatory Commission (NRC) in 2014, the ESBWR is the world’s safest reactor.

• It has the lowest core damage frequency (industry standard measure of safety) of any Generation III or III+ reactor and can safely cool itself with no AC electrical power or human action for more than seven days.

50

•Residual heat transferred to the atmosphere•11 systems eliminated from previous designs•25 percent of pumps, valves and motors eliminated

Feature and Benefits

Sirkulasi Alamiah pada ESBWR

51

Overview ESBWR Feature

52

ESBWR Passive Safety System

53

Overview Passive Safety ESBWR

54

Tugas

Menurut pendapat kalian apa yang menyebabkan kecelakaan pada reaktor nuklir Fukushima Daichi

a. Gempa/tsunami

b. H2 explosion

c. Human error saat beroperasi

d. Loss of Coolant

e. Decay heat

f. Gagalnya reaktor nuklir shutdown

g. Sudah takdir

h. Semua benar

Jelaskan jawaban kalian dan tulis pada selembar kertas max 1 halaman

55