Download - informe 3 fisica

Transcript

UNIVERSIDAD NACIONAL DE INGENIERIA

NDICE

1. NDICE1

2. PRLOGO2

3. INTRODUCCIN4

4. FUNDAMENTO TERICO5

5. SEGUNDA LEY DE NEWTON.

5.1 OBJETIVOS GENERALES8

5.2. DESCRIPCIN DE LOS MATERIALES8

5.3. DESCRIPCIN DE LOS PROCEDIMENTOS10

5.4. DATOS OBTENIDOS EXPERIMENTALMENTE11

5.5. CLCULOS Y RESULTADOS12

5.6. GRFICAS15

5.7. OBSERVACIONES17

5.8. CONCLUSIONES18

6. BIBLIOGRAFA19

7. HOJAS DE DATOS DE LABORATORIO 20

PRLOGO

Desde la ms remota antigedad los humanos han tratado de comprender la naturaleza y los fenmenos que en ella se observan desde el paso de las estaciones, el movimiento de los cuerpos y de los astros, los fenmenos climticos, las propiedades de los materiales hasta fenmenos que hoy en da an no tienen explicacin.

Las primeras explicaciones aparecieron en la antigedad y se basaban en consideraciones puramente filosficas, sin verificarse experimentalmente.

Con el avance del pensamiento puramente racional se fue dejando la filosofa y las especulaciones sobrenaturales de un lado, para as dar pase a pensamientos ms fuertes y con mayor sustento en la razn y en la experiencia.

De entre los fenmenos ms indagados en la antigua era se presenta el movimiento y sus causas, durante muchos siglos se intentaron encontrar leyes fundamentales que se apliquen a todas o por lo menos a muchas experiencias cotidianas relativas al movimiento.

Inicialmente fue un tema central de la filosofa natural, pero no fue sino hasta la poca de Galileo y Newton cuando se efectuaron dramticos progresos en la resolucin de esta bsqueda.

Antes de la poca de Galileo, la mayora de los pensadores o filsofos sostena que se necesitaba alguna influencia externa o "fuerza" para mantener a un cuerpo en movimiento.

Se crea que para que un cuerpo se moviera con velocidad constante en lnea recta necesariamente tena que impulsarlo algn agente externo; de otra manera, "naturalmente" se detendra.

Fue el ingenio de Galileo el que imagin el caso lmite de ausencia de friccin e interpret a la friccin como una fuerza, llegando a la conclusin de que un objeto continuar movindose con velocidad constante, si no acta alguna fuerza para cambiar ese movimiento.

Pero adems de las expectativas empricas de galileo existi otro gran genio que con el clculo infinitesimal como arma de resolucin, logro descifrar ya no solo en forma emprica, sino que adems con sustento terico estas leyes de tendencia general

En 1687 Isaac Newton publica un libro fundamental Philosohiae Naturalis Principia Matemtica

En l se hace una verdadera sntesis de la fsica existente hasta entonces.

La primera ley de Newton, conocida tambin como Ley de inercia, nos dice En ausencia de la accin de fuerzas un cuerpo en reposo continuar en reposo y uno en movimiento, se mover en lnea recta y con velocidad constante

Al redactar y estructurar los principios de la mecnica, el importante fsico Isaac Newton se bas en todos los estudios realizados por otros fsicos que lo precedieron, entre ellos se encuentra Galileo. As se pude sealar que la primera ley de newton no es ms que una simple sntesis de las ideas de Galileo, referente a la inercia y por esta misma razn esta ley de newton es denominada tambin con el nombre de ley de la inercia.

La segunda ley de Newton no s dice que: La aceleracin que un cuerpo adquiere es directamente proporcional a la resultante de las fuerzas que actan en el y tiene la misma direccin y el mismo sentido que dicha resultante. Un cuerpo sometido a la accin de varias fuerzas, f1 f2 f3 etc. Es posible sustituir el sistema de fuerzas por una fuerza nica resultante. La aceleracin que el cuerpo va adquirir luego de la accin de este sistema de fuerzas se obtiene como si el cuerpo estuviese sometido a la accin de una nica fuerza igual a la resultante. La segunda ley de Newton es una de las leyes bsicas de la mecnica y se utiliza en el estudio de los movimientos de los cuerpos celestes y en otros estudios. Se sabe que el mismo Isaac Newton lo aplic para estudiar los movimientos de los planetas y el gran xito logrado constituyo una de las primeras confirmaciones de esta ley.

La tercera ley de Newton: Cuando un cuerpo A ejerce una fuerza sobre un cuerpo B este reacciona sobre A con una fuerza de la misma magnitud, misma direccin pero de sentido contrario.

En sus estudios, Newton pudo comprobar que en la interaccin de dos cuerpos, la fuerza siempre aparecer en pares, para cada accin de un cuerpo sobre otro, siempre existir una reaccin igual y contraria de este sobre el primero. Con todas estas observaciones Newton pudo sintetizar el enunciado de su tercera ley, conocida tambin como Ley de accin y la reaccin.

Las dos fuerzas que se mencionan en el enunciado de la tercera ley de Newton se denominan accin y reaccin, cualquiera de ellas puede ser indistintamente considerada como la fuerza de accin o reaccin. Se observa que la accin es aplicada y por lo tanto acta en uno de los cuerpos y que la reaccin acta en el cuerpo que ejerce la accin, esto quiere decir que las fuerzas de accin y de reaccin estn aplicadas en cuerpos diferentes.

Las tres leyes de newton del movimiento son las llamadas leyes clsicas del movimiento.

Ellas iluminaron por 200 aos el conocimiento cientfico y no fueron objetadas hasta que Albert Einstein desarroll la teora de la relatividad en 1905.

INTRODUCCIN

Las demostraciones experimentales son de mucha importancia en el marco cientfico y en nuestro proceso de aprendizaje, cualquiera que sea nuestra especialidad u orientacin. En las ciencias tericas por ejemplo, cada concepto, frmula o idea puede ser demostrado en un laboratorio para su mejor entendimiento.

En relacin a lo dicho anteriormente, este informe de laboratorio se refiere a la segunda ley de newton, que se expresa como la suma vectorial de todas las fuerzas que actan sobre un cuerpo, es decir que el cuerpo adquiere una aceleracin en cada instante de tiempo, que tendr la misma direccin y sentido que la fuerza resultante. Para establecer dichas mediciones se debe hacer uso de instrumentos y de una metodologa ya establecida y del mismo modo se debe especificar sus unidades.

La finalidad de este trabajo consistir en:

Demostrar la segunda ley de Newton es decir que la fuerza es la causa de una aceleracin para ello se ha asumido que el rozamiento entre el disco y la superficie de deslizamiento es nulo esto debido al colchn de aire generado por el aire comprimido.

Con la realizacin de las operaciones respectivas notaremos que los resultados solo se aproximan al estimado en teora, esto es debido a que debe existir otra fuerza que este modificando el movimiento del disco estudiado, y la nica fuerza que podra ser es la de rozamiento, llevndonos a demostrar que a pesar del colchn de aire, existe una determinada fuerza de rozamiento en cada instante de tiempo, eso nos indica que solo el colchn de aire la reduce mas no la anula..

Para ello nuestro informe constar de:

Calibracin de los resortes

Con la utilizacin de los datos experimentales haremos una grfica (fuerza vs deformacin) la cual nos permitir obtener la constante de rigidez que utilizaremos posteriormente en el clculo de la fuerza elstica.

Obtencin de la fuerza elstica

Nos referimos a la fuerza resultante producida por los resortes, para ello haremos uso de la constante de rigidez obtenida anteriormente; este resultado ser presentado en un cuadro que le permitir observar la obtencin de la resultante en sus componentes X e Y.

Corroboracin de la segunda ley de Newton

Con todo lo obtenido anteriormente se calculara el valor de la fuerza resultante en cada instante de tiempo, adems de presentar una grafica que nos permita ver la variacin de la fuerza respecto a la aceleracin, ya que por teora esta variacin debe ser constante.

Con mayor detalle y profundidad encontrar lo mencionado en el cuerpo de este informe, y sobre todo en las observaciones y conclusiones respecto al tema.

FUNDAMENTO TERICO

Conocidas tambin como Leyes del movimiento de Newton, Las Leyes de Newton son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinmica, en particular aquellos relativos al movimiento de los cuerpos.

Estos revolucionaron los conceptos bsicos de la fsica y el movimiento de los cuerpos en el universo, en tanto que constituyen los cimientos no slo de la dinmica clsica sino tambin de la fsica clsica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirm que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones ms bsicas. La demostracin de su validez radica en sus predicciones. La validez de esas predicciones fue verificada en todos y cada uno de los casos durante ms de dos siglos.

En concreto, la relevancia de estas leyes radica en dos aspectos:

Por un lado, constituyen, junto con la transformacin de Galileo, la base de la mecnica clsica;

Por otro, al combinar estas leyes con la Ley de la gravitacin universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.

As, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, as como toda la mecnica de funcionamiento de las mquinas.

El primer concepto que maneja es el de masa, que identifica con "cantidad de materia"; la importancia de esta precisin est en que le permite prescindir de toda cualidad que no sea fsica-matemtica a la hora de tratar la dinmica de los cuerpos.

Es de estos conceptos que Newton plantea:

La primera ley de Newton,

Conocida tambin como Ley de inercia, nos dice que si sobre un cuerpo no acta ningn otro, este permanecer indefinidamente movindose en lnea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).

Como sabemos, el movimiento es relativo, es decir, depende de cul sea el observador que describa el movimiento. As, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andn de una estacin, el interventor se est moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento. La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no acta ninguna fuerza neta se mueve con velocidad constante.

En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algn tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuvisemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximacin de sistema inercial.

La segunda ley de Newton

Siempre que una fuerza acte sobre un cuerpo produce una aceleracin en la direccin de la fuerza que es directamente proporcional a la fuerza pero inversamente proporcional a la masa.

La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleracin que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relacin de la siguiente manera:

F = m a

Tanto la fuerza como la aceleracin son magnitudes vectoriales, es decir, tienen, adems de un valor, una direccin y un sentido.

F= m a

Consideraremos una partcula de masa m sometida a la accin de n fuerzas concurrentes,. Si las fuerzas le proporcionan a m la aceleracin a, la resultante de estas deben reflejar lo enunciado en la Segunda Ley de Newton; es decir, Fres= m a.

La expresin de la Segunda ley de Newton que hemos dado es vlida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es vlida la relacin F = m a.

Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.

Para ello primero vamos a definir una magnitud fsica nueva. Esta magnitud fsica es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:

p = m v

La cantidad de movimiento tambin se conoce como momento lineal. Es una magnitud vectorial. En trminos de esta nueva magnitud fsica, la Segunda ley de Newton se expresa de la siguiente manera:

La Fuerza que acta sobre un cuerpo es igual a la variacin temporal de la cantidad de movimiento de dicho cuerpo, es decir,

F = dp/dt

De esta forma incluimos tambin el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definicin de cantidad de movimiento y que como se deriva un producto tenemos:

F = d(mv)/dt = mdv/dt + dm/dt v

Como la masa es constante

dm/dt = 0

Y recordando la definicin de aceleracin, nos queda: F = m a

Tal y como habamos visto anteriormente.

Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservacin de la cantidad de movimiento. Si la fuerza total que acta sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:

0 = dp/dt

Esto es el Principio de conservacin de la cantidad de movimiento: si la fuerza total que acta sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.

La tercera ley de Newton

Tal como comentamos en al principio de la Segunda ley de Newton las fuerzas son el resultado de la accin de unos cuerpos sobre otros.

La tercera ley, tambin conocida como Principio de accin y reaccin nos dice que si un cuerpo A ejerce una accin sobre otro cuerpo B, ste realiza sobre A otra accin igual y de sentido contrario.

Hay que destacar que, aunque los pares de accin y reaccin tenga el mismo valor y sentidos contrarios, no se anulan entre si, puesto que actan sobre cuerpos distintos.

En cuanto a las leyes de Newton en la prctica resultan inexactas debido las fuerzas externas como el rozamiento.

LABORATORIO No 3

SEGUNDA LEY DE NEWTON

OBJETIVOS GENERALES:

1. Verificar experimentalmente la segunda ley de newton de acuerdo a la teora dada en clase y ubicada en la bibliografa consultada.

2. Estimar la constante K, del resorte, estimando su valor experimental explicito, se dar mediante la calibracin experimental de los resortes.

3. Analizar el comportamiento de las fuerzas elsticas, para ello se tomara de referencia las fuerzas que ejercen los resortes sobre el disco a lo largo de su trayectoria.

4. Demostrar que es imposible que exista alguna superficie que sea perfectamente lisa y si lo hubiese serian en pequeos tramos, todo esto mediante se demostrara con la variacin obtenida entre la prctica y la teora al respecto de la segunda ley de Newton.

5. Mostrar los posibles factores (aparte del inevitable rozamiento) que contribuyen a la variacin calculada entre la prctica y la teora al respecto de la segunda ley de Newton.

6. Analizar las grficas obtenidas y determinar conclusiones que sustenten la variacin de los datos experimentales de los tericos.

DESCRIPCIN DE LOS MATERIALES:

Chispero elctrico

Fuente del chispero.

Tablero con superficie de vidrio y conexiones para aire comprimido.

Papel bond tamao A3.

Un disco.

Dos resortes.

Una regla de 1 m graduada en milmetros.

Una balanza.

Un balde pequeo con pesas de distintas masas.

Soporte Universal.

PAPEL MILIMETRADO REGLA METALICA

DESCRIPCIN DE LOS PROCEDIMENTOS:

Calibracin de los resortes

1. Pesar cada uno de los instrumentos que se usara en el laboratorio.

2. Enganchar un extremo del resorte al soporte universal y el otro al balde con cada pesita.

3. Mediante los clculos obtener aproximadamente la constante de rigidez de cada resorte.

Obtencin de la fuerza elstica

4. Armar el equipo como se muestra en la figura

5. Fije los dos resortes en el disco como se muestra en la figura.

6. Colocar una hoja de papel bond A3 sobre el tablero mostrado en la figura.

7. Marque los puntos fijos de los resortes 1 y 2 en el papel bond.

8. Trazar un arco con radio igual a la longitud natural del resorte 1 para poder hallar las deformaciones de los puntos lo mismo para el resorte 2, abrir la llave del aire comprimido moderadamente.

9. Un estudiante mantendr fijo el disco aproximadamente entre el centro del tablero y una esquina de ste.

10. En el instante que su compaero prenda el chispero, el primer estudiante soltar el disco.

11. El estudiante que prendi el chispero debe estar alerta para que en el instante en que el disco describa una trayectoria semejante a una curva cerrada apague el chispero.

12. En el papel bond quedara la trayectoria que realizo el disco.

13. Tomar un sistema de referencia.

14. Determinar los vectores posiciones de los puntos de la trayectoria, pasando necesariamente por el tramo ms cncavo.

15. Medir la longitud de las posiciones de los puntos de la trayectoria del disco desde el punto 1, hacia como el ngulo que forman los vectores posicin con la horizontal.

16. Hacer los clculos para obtener la Fuerza del resorte A y B en cada punto.

Corroboracin de la segunda ley de Newton

17. Por medio de clculos obtener los resultados tanto tericos como prcticos, para posteriormente realizar las grficas e inferir las conclusiones.

DATOS OBTENIDOS EXPERIMENTALMENTE

Durante el laboratorio se recogieron los siguientes datos, cuya comprobacin(hoja de datos original) se ver al final del informe.

Masa(Kg)

Fuerza(N)

M3

0.0515

0.5047

M2

0.1018

0.99764

M2+ M3

0.1533

1.50234

M4

0.1965

1.9257

M4+ M1

0.2467

2.41766

M4+ M3

0.248

2.4304

M4+ M2

0.2983

2.92334

M1+ M2+ M3+ M4

0.4

3.92

M1 M2 M3 M4

Masa

M1

0.0502 Kg

M2

0.1018 Kg

M3

0.0515 Kg

M4

0.1965 Kg

CLCULOS Y RESULTADOS

Calibracin de los resortes

Resorte Chico

(L=0.0098m.)

Masa(Kg)

Fuerza(N)

Elongacin(m)

M3

0.0515

0.5047

0.005

M2

0.1018

0.99764

0.015

M2+ M3

0.1533

1.50234

0.024

M4

0.1965

1.9257

0.028

M4+ M1

0.2467

2.41766

0.033

M4+ M3

0.248

2.4304

0.0335

M4+ M2

0.2983

2.92334

0.043

M1+ M2+ M3+ M4

0.4

3.92

0.0575

Resorte Grande

(L=0.0105m.)

Masa(Kg)

Fuerza(N)

Elongacin(m)

M3

0.0515

0.5047

0.015

M2

0.1018

0.99764

0.023

M2+ M3

0.1533

1.50234

0.035

M4

0.1965

1.9257

0.038

M4+ M1

0.2467

2.41766

0.048

M4+ M3

0.248

2.4304

0.0485

M4+ M2

0.2983

2.92334

0.061

M1+ M2+ M3+ M4

0.4

3.92

0.078

Obtencin de la fuerza elstica

Para hallar las fuerzas generadas por los resortes que actan sobre el disco en los siguientes instantes: 5, 6, 7, 8, 9, 10, 11y 12 tick, debemos usar la formula: F=K.X para cada resorte y despus con la ayuda del grafico hallar la fuerza resultante.

Tiempo

(tick)

Distancia a O1 (cm.)

Distancia a O2 (cm.)

Fuerza del resorte 1 (N)

Fuerza del resorte 2 (N)

Fuerza resultante (N)

5

24.5

25.8

16.6159

13.30506

15

6

24

28.2

16.2768

14.54274

19

7

23.4

30.1

15.86988

15.52257

19

8

22.6

31.6

15.32732

16.29612

20.5

9

21.5

32.9

14.5813

16.96653

20

10

20.2

33.4

13.69964

17.22438

19.5

11

18.5

33.4

12.5467

17.22438

18.5

12

16.6

32.9

11.25812

16.96653

15.3

Velocidad instantnea

Para hallar las velocidades instantneas aproximadas en los instantes que nos piden podemos usar las siguientes expresiones

V (t) = r (t+0.5)- r (t-0.5)

1tick

Se sabe que:

Tiempo (tick)

X(cm.)

Y(cm.)

r(cm.)

4

10.6

38.8

40.2

5

8.8

40.7

41.6

6

6.9

42.2

42.8

7

5.2

43.2

43.5

8

3.6

43.5

43.65

9

2.1

43.4

43.4

10

1

42.5

42.5

11

0.4

41.5

41.5

12

0

38.85

38.85

13

0.1

36.2

36.2

De los datos podemos hallar las velocidades instantneas

Tiempo

(tick)

Vx(t)=X (t+0.5)-X (t-0.5)

1tick

Vy (t)=Y (t+0.5)-Y (t-0.5)

1tick

V (t)

(cm./tick)

4.5

-1.8

1.9

2.617250466

5.5

-1.9

1.5

2.42074369

6.5

-1.7

1

1.97230829

7.5

-1.6

0.3

1.62788206

8.5

-1.5

-0.1

1.50332964

9.5

-1.1

-0.9

1.42126704

10.5

-0.6

-1

1.16619038

11.5

-0.4

-2.15

2.18689277

12.5

0.1

-2.65

2.65188612

Aceleracin instantnea

Para hallar una aceleracin aproximada, se hallara con:

a (t)=V (t+0.5)-V (t-0.5)

1 tick

Tiempo

(tick)

ax(t)=Vx (t+0.5)-Vx (t-0.5)

1tick

ay (t)=Vy (t+0.5)-Vy (t-0.5)

1tick

a (t)

(cm./tick)

5

0.1

0.4

0.41231056

6

-0.2

0.5

0.53851648

7

-0.1

0.7

0.70710678

8

-0.1

0.4

0.41231056

9

-0.4

0.8

0.89442719

10

-0.5

0.1

0.50990195

11

-0.2

1.15

1.16726175

12

-0.5

0.5

0.70710678

Comparando los modulos de la fuerza resultante con la aceleracin

Fuerza

(N)

Aceleracin

(cm./tick)

0.4123106

21.286445

0.5385165

21.827174

0.7071068

22.199173

0.4123106

22.37164

0.8944272

22.371353

0.509902

22.008167

1.1672618

21.309598

0.7071068

20.361935

Tabla General:

Tiempo

(tick)

a(t)

(m/s)

F(t)

(N)

( )

F/a

(Kg.)

5

11.3137085

15

16

1.32582521

6

18.676188

19

53

1.01733823

7

8.1584312

19

14

2.32887911

8

14.310835

20.5

61

1.43248105

9

6.59696896

20

63

3.03169533

10

11.3137085

19.5

78

1.72357278

11

8.61626368

18.5

62

2.14710235

12

6.59696896

15.3

60

2.31924693

(UNIVERSIDAD NACIONAL DE INGENIERIA ) (15)

( FACULTAD DE INGENIERIA MECNICA )

Proceso de calibracin de los resortes

RESORTE CHICO

K1 =67.82

RESORTE GRANDE

K2 =51.57

Observaciones:

1. El constante uso de los resortes hace que estos pierdan su tendencia a lo ideal.

2. Las incertidumbres en las mediciones y en los clculos no fueron consideradas, lo cual altera algunos resultados.

3. Observamos que en la trayectoria del disco existen puntos de interseccin que hacen suponer que se presentan las mismas fuerzas.

4. Observamos que debido al empleo de una regla milimetrada y a su constante uso, la capacidad de esta para medir con cierta exactitud se ve alterada.

5. Observamos que para un mejor clculo de las fuerzas ejercidas por los resortes se debe de usar un sistema de coordenadas cartesianas, para que luego con esto se pueda hallar los vectores posicin y hallar la fuerza que cada resorte genera al disco.

6. Observamos que al calcular la constante de deformacin de los resortes por medio de los pesos obtenidos, esta vara de forma que tenemos que hacer una grafica lineal, para calcular con aproximacin su valor ms aparente.

7. Observamos que los resortes en todo momento se encuentra deformados, tratando cada uno de recuperar su longitud natural, este proceso es la que propicia la formacin de la trayectoria del disco.

8. En la experimentacin no se considero las masas de los resortes para hallar la constante de deformacin.

9. Por ms que usemos un colchn de aire comprimido para disminuir el rozamiento del disco sobre, este siempre se mantiene presente.

10. Observamos que la relacin lineal (terica) donde la fuerza es igual a la constante de HOOKE por la deformacin, no se cumple en la prctica, donde para llegar a esta constante (aproximadamente) se necesita de una grafica por ajuste de curvas.

11. En la experimentacin debemos observar que al momento de hallar la masa de las pesas estas tendrn cierta incertidumbre, primero causado por el desgaste de estas, segundo por el error incorporado de la balanza que usamos y tercero por el error en la observacin al momento de ver su peso.

12. La cantidad de puntos depende de la frecuencia del chispero esto nos ayudo a tener mayor precisin al calcular la direccin de la fuerza resultante.

13. Se observa que los puntos plasmados en el papel bond poseen un rea y de ella lo que hicimos es asumir que era circular y tomar un posible centro, esto influencia ms la variacin de resultados

14. Al observar los resultados de los clculos notamos tramos en que ocurren aceleracin y otros en los que desacelera, esta aceleracin tiende a seguir la direccin de la fuerza que la provoca.

Conclusiones:

1. Concluimos que los resortes a pesar de estar hechos del mismo material, y tener una forma similar, no tienen la misma constante elstica.

2. La direccin de la aceleracin (tericamente), es colineal con la direccin de la fuerza resultante, pero en la prctica esto no es as, ya que existe cierto desfasaje entre el ngulo que forma la fuerza resultante y el ngulo de la aceleracin.

3. La fuerza rozamiento cintico es variable, de lo cual tericamente deducimos que el coeficiente cintico varia, en conclusin la superficie en donde realizamos la experiencia no es uniforme.

4. Concluimos que si tomamos en cuenta las fuerzas de los resortes al aplicar la segunda ley de newton, esta sera mayor que la fuerza resultante, con lo que concluimos que existe una fuerza de oposicin al movimiento llamada fuerza de rozamiento.

5. Se concluye que la relacin F=K .X, no toma en cuenta fuerzas externas que la afecten, esto se comprueba experimentalmente.

6. Concluimos que el rozamiento producido por el contacto entre un cuerpo y la superficie que no es uniforme, siempre est presente por mas que se tomen medidas para evitarlo.

7. Si solo tomamos en cuenta las fuerzas de los resortes al aplicar la segunda del de newton, m.a seria mayor que la fuerza resultante, con lo cual se concluye que existe una fuerza adicional llamada friccin.

8. La energa mecnica del sistema no se conserva debido a la existencia de fuerzas no conservativas como el rozamiento y la resistencia del aire.

9. Adems parte de la energa elstica de los resortes, se transfiere al disco y es transformada en energa cintica.

10. La diferencia de aceleraciones fue debido a la existencia de la fuerza de rozamiento.

BIBLIOGRAFA

SEARS, Francis W. - ZEMANSKY, Mark W. - YOUNG, Hugh D. Fsica Universitaria. Ed. ADDISON-WESLEY IBEROAMRICANA, Massachusetts, 11va edicin.

SERWAY, Raymond A. Fsica, Tomo 1. Ed. McGRAW-HILL, Mxico, 4ta edicin.

CASADO MARQUEZ, Jos Martin. Fsica para estudiantes de ingeniera. Ed.EDUNI. 1ra edicin.

Manual de laboratorio de fsica. Edicin 1999

HALLIDAY, David RESNICK, Robert. Fsica I. Ed. San Marcos, Per.

MERIAN, J.L. Dinmica. Ed. San Marcos, Per.

05.0000000000000018E-31.4999999999999998E-22.4000000000000007E-22.8000000000000004E-23.3000000000000002E-23.3500000000000002E-24.3000000000000003E-25.7500000000000016E-200.504700000000000040.99764000000000031.502341.92572.41765999999999932.43039999999999972.92334000000000053.920000000000000401.4999999999999998E-22.3E-23.500000000000001E-23.7999999999999999E-24.8000000000000001E-24.8500000000000001E-26.1000000000000013E-27.8000000000000014E-200.504700000000000040.99764000000000031.502341.92570000000000022.41765999999999932.43039999999999972.92334000000000053.9200000000000004